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Zusammenfassung

Datenzentren sind ein essentieller Teil der modernen Gesellschaft, da sie
gewährleisten, dass IKT-Dienste verfügbar und responsiv bleiben. Aktuelle
Trends zeigen, dass Datenzentren immer größer werden und damit auch ihr
bereits erheblicher Energieverbrauch weiter steigt. Da Regierungen weltweit
Schwierigkeiten damit haben ihre Nachhaltigkeitsziele zu erreichen, besteht
ein dringender Bedarf nach effizienten und nachhaltigen Datenzentren.
Das Internet of Things (IoT)-Paradigma spielt eine wichtige Rolle darin, die
Gebäudeeffizienz und -nachhaltigkeit zu steigern. Die Domänen Smart Home
und Büro demonstrieren den erfolgreichen Einsatz von IoT zum Einsparen
von Energie durch kontinuierliche Überwachung und Optimierung. Die
Erweiterung dieser Techniken auf Datenzentren verspricht das Smarte wie
bereits bei Smart Homes und Büros ins Datenzentrum zu bringen. Allerdings
müssen dazu noch einige Herausforderungen überwunden werden bis das
Konzept des smarten und optimierten Datenzentrums umgesetzt werden
kann. Diese Arbeit befasst sich mit einigen dieser Herausforderungen aus
einem datengetriebenen IoT-Blickwinkel.

Zunächst wird das Konzept eines nachhaltigen Datenzentrums fokussiert.
Durch Interviews mit dem Personal von sieben Datenzentren werden die ak-
tuellen Best Practices zu Nachhaltigkeit und ihre Anwendung in Datenzentren
untersucht. Es werden zahlreiche Probleme und Verbesserungsmöglichkeiten
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identifiziert, darunter die Rolle der Flüssigkühlung. Daraus folgt die Demon-
stration des Potentials einer Tauchkühlung und eine Analyse der möglichen
Energieeinsparungen, die durch den Ersatz klassischer Luftkühlungen er-
reicht werden können. Andere Faktoren wie Leistungsdichte und Kosten
werden dabei ebenfalls berücksichtigt. Um den Effekt der Umsetzung von
Best Practices oder der Veränderung von Kühlsystemen zu messen, ist es
von äußerster Bedeutsamkeit Messungen durchzuführen. Um zu verstehen
was gemessen und auf welchem Level gemessen werden soll, wird eine
Taxonomie aus über 100 Datenzetrumsmetriken erstellt. Dabei werden
einige Probleme und Defizite in Bezug auf Datenzetrumsmetriken erkannt,
darunter die Herausforderungen, die sich Co-Location-Datenzentren stellen
müssen und die Notwendigkeit für einen IoT-orientierten Ansatz für die
Datenzentrumsüberwachung.

Daher wird die Datenzentrumsüberwachung und die Rolle von IoT betra-
chtet. Aus der Untersuchung des Datengenerierungspotentials einer Echtzeit-
und IoT-getriebenen Datenzentrumsüberwachung sticht der Fakt hervor,
dass die generierten Daten durch ihre schiere Größe einen negativen Ef-
fekt auf die Netzwerkbandbreite des Datenzentrums haben. Um diesem
Problem entgegenzuwirken wird eine Edge-basierte Lösung für die Daten-
zentrumsüberwachung, die in der Lage ist mit diese Bandbreitenlimitierun-
gen umzugehen und gleichzeitig eine Überwachung mit geringer Latenz
ermöglicht, vorgeschlagen. Der Ansatz ist stark in das Datenzentrum integri-
ert, indem er die Vorteile des traditionellen Netzwerklayouts nutzt. IoT-Hubs
spielen eine zentrale Rolle bei der Vernetzung von Sensoren und Aktoren
und bei der Verarbeitung der Daten, die bei der Überwachung anfallen. Es
gibt viele Open-Source-IoT-Hubs und aus einer anfänglichen Auswahl von
zwanzig Hubs werden vier im Detail analysiert. Indem jedes der vier Systeme
zahlreichen Anwendungsfällen und Kriterien ausgesetzt wird, werden die
Stärken und Schwächen jedes Systems identifiziert. Und es wird eine verall-
gemeinerte IoT-Hub-Architektur basierend auf den Gemeinsamkeiten der
vier Systeme aufgebaut. Darüber hinaus wird das Problem der Überwachung
von Datenzentren, bei denen der Betreiber des Datenzentrums keinen Zugriff
auf das Betriebssystem oder das Gehäuse der IT-Ausrüstung hat, untersucht.
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Es wird ein Überwachungsansatz vorgeschlagen bei dem die Privatsphäre
gewahrt wird, da nur IoT-Sensoren nötig sind, die außerhalb des Gehäuses
platziert werden. Es werden Modelle entwickelt, die in der Lage sind, die
CPU-Auslastung und die Temperatur ohne Zugriff auf das Betriebssystem
präzise zu schätzen und ermöglichen so eine detaillierte Überwachung von
Co-Location-Datenzentren.

Und abschließend wird die Domäne der Büros statt der Domäne der
Datenzentren betrachtet. Die Bedeutung intelligenter Reaktionen auf Ak-
tivitäten, die in Gebäuden stattfinden, wird demonstriert indem zahlreiche
IoT-Sensoren und -Aktoren in einer Büroumgebung eingesetzt werden und
eine Aktivitätserkennung durchgeführt wird, um den Zustand eines Raums
oder Bereichs innerhalb eines Raums zu bestimmen. Mit Hilfe von AI Plan-
ning reagiert das Gebäude auf Zustandsänderungen, um den Energiebedarf
des Gebäudes zu optimieren. Die Ähnlichkeiten in der zugrunde liegenden
IoT-Architektur für Gebäude und Datenzentren werden dabei hervorge-
hoben. Außerdem wird ein Ansatz zur Gerätelastplanung vorgeschlagen, der
erneuerbare Energien, Energiespeicher, benachbarte Prosumer, Preissignale
und Planungsbeschränkungen berücksichtigt. Der parallele Suchalgorithmus
mit einheitlichen Kosten verwendet diese Parameter, um den optimalen Zeit-
plan zu finden, der die ökonomischen Einsparungen für den Endverbraucher
maximiert. Eine Microservice-Architektur wird für die Datenerfassung in
Echtzeit verwendet. Die Einsparungen durch die Verfügbarkeit eines lokalen
Energiespeichers werden hervorgehoben.
Zusammenfassend lässt sich sagen, dass die Beiträge aus dieser Arbeit

den Weg für smarte und nachhaltige Datenzentren durch den Einsatz eines
IoT- und datengetrieben Ansatzes ebnen. Des Weiteren wird die Arbeit auf
den Bereich der smarten Büros erweitert.
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Abstract

Data centers are a fundamental part of modern society, as they ensure that
today’s ICT services are available and responsive. The current trends show
that data centers are increasing in size, which corresponds with an increase
in their already significant energy footprint. As governments around the
globe struggle to achieve their desired sustainability goals, the need for
efficient and sustainable data centers is urgent. The Internet of Things (IoT)
paradigm plays an important role in increasing the efficiency and sustain-
ability of buildings. The smart home and office domains demonstrate the
successful application of IoT in order to achieve energy savings through
continuous monitoring and optimization of the building environment. Ex-
tending these techniques to the data center domain promises to bring the
smartness previously seen in homes and offices to the data center. However,
there are challenges that need to be overcome before the concept of a smart
and optimized data center becomes a reality. In this thesis, a number of
these challenges are addressed from a data-driven and IoT point of view.
First, we focus on the concept of a sustainable data center. Through

interviews with personnel of seven data centers we investigate the current
state of sustainability best practices and their application to data centers.
Numerous issues and areas for improvement are identified, including the
role for liquid cooling. Thus, we show the potential of immersion cooling,
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and analyze the potential energy savings that can be achieved by replacing
traditional air cooling solutions. We also consider other factors such as power
density and costs. To measure the effect of implementing best practices or
making changes in the cooling system, it is critical to take measurements. To
understand what to measure, and at which level to measure it, we construct
a taxonomy of over one hundred data center metrics. We also identify several
issues and shortcomings with regards to data center metrics, including the
challenges co-location data centers face when it comes to data collection, as
well as the need for an IoT-oriented approach to data center monitoring.

Thus, we shift our attention to data center monitoring and the role of IoT.
By investigating the data generation potential of real-time and IoT-driven
data center monitoring, we highlight the fact that the generated data has a
negative effect on the data center’s networking bandwidth due to its sheer
volume. To counter this issue, we propose an edge-based solution to data
center monitoring that is able to address these bandwidth limitations while
still ensuring low latency monitoring. The approach is tightly integrated
with the data center by taking advantage of the traditional network layout.
IoT hubs play a central role in enabling interconnectivity between sensors
and actuators, and in processing the data that is generated while monitoring.
There are many open-source IoT hubs available, and out of an initial selection
of twenty hubs, we analyze four in great detail. By subjecting each of the
four systems to numerous use cases and criteria, we are able to identify
strengths and weaknesses for each system. And we synthesize a generalized
IoT hub architecture, based on the commonalities between the four systems.
Furthermore, we investigate the problem of monitoring co-location data
centers, where the data center operator has no access to the operating system
or chassis of the IT equipment. We propose an approach to monitoring that is
privacy-preserving by only requiring IoT sensors that are placed external to
the chassis. We develop models that are able to accurately estimate the CPU
usage and temperature without access to the operating system, enabling
detailed monitoring of co-location data centers.
And finally, we switch from the data center domain to the office domain.

We demonstrate the importance of intelligent responses to activities that
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occur within buildings by deploying numerous IoT sensors and actuators in
an office environment and performing activity recognition to determine the
state of a room or area within a room. With the assistance of AI planning,
the building reacts to changes in state to optimize the building’s energy
footprint. We highlight the similarities in the underlying IoT architecture
for buildings and data centers. We also propose a device load scheduling
approach that considers renewable energy, energy storage, neighboring
prosumers, price signals, and scheduling constraints. Our parallel uniform-
cost search algorithm uses these parameters to find the optimal schedule
that maximizes the economic savings for the end-user. A micro-service
architecture is used for the real-time collection of data. We emphasize the
savings that are achieved by having local energy storage available.
To summarize, the contributions that are made in this thesis pave the

way towards smart and sustainable data centers supported by an IoT and
data-driven approach. Furthermore, we also extend our work to the domain
of smart offices.
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Introduction

Information and Communications Technology (ICT) permeates all aspects of
modern society, from health care and education, to our work environments
and the way we socialize. To ensure the availability and responsiveness of
ICT services, the supporting infrastructure plays a critical role. Typically, this
supporting infrastructure is located in a centralized structure, or groups of
structures, known as data centers. A data center is dedicated to the central-
ized accommodation, operation, and interconnection of ICT equipment while
providing data storage, processing, and transportation services [GAB+12].
A data center also encompasses all of the facilities and infrastructures for
power distribution, Heating, Ventilation and Air Conditioning (HVAC) con-
trol, together with the necessary levels of resilience and security that are
required to provide the desired service availability levels. It is therefore
not surprising that data centers are one of the most dynamic and critical
operations in any business [WB15]. Data centers also form the backbone
of the modern Internet, it is their computational, storage, and networking
resources that enable many of the services that are present on the World
Wide Web today.
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Modern data centers are massive in size, covering areas of tens of thou-
sands square meters, housing many thousands of individual server racks
[CGC16]. For example, the Tahoe Reno 1 co-location data center owned
by Switch and located in Nevada (USA) has 120,000 square meters of data
center space, and has a power capacity of 120 MW. Another example is the
Tulip Data Center in Bengaluru (India) which has 90,000 square meters of
space, 12,000 racks, and a peak power supply capacity of 100MW. Of the
modern data centers, the hyper-scale data centers are among the largest in
existence. These hyper-scale data centers are enormous warehouse-scale
facilities that have emerged in parallel with the growing demand for cloud
computing, social media platforms, and big data processing. The growth
in hyper-scale cloud data centers is one of the major contributors to the
increase in ICT-related energy consumption across the globe. However, it
is not only the hyper-scale data centers that are experiencing a growth in
numbers, in general data centers are experiencing a steady growth both
in number and in size [GSS15]. Furthermore, investments in data center
services are expected to grow from $48.90 billion in 2020 to $105.6 billion
in 2026 [Mor21]. The operational costs of data centers are vastly different
from those of other enterprises, as less than 5% of the costs are personnel
related. Servers are responsible for 45% of the amortized costs, followed by
infrastructure (25%), power draw (15%) and networking (15%) [GHMP08].
As the number of data centers grows and their size increases, the demand
on the electrical grid grows proportionally.
The environmental impact of ICT and data centers should not be over-

looked. In 2013, the world’s ICT infrastructure was estimated to consume
1,500 TWh of electricity, which was roughly 10% of the global energy usage.
Furthermore, it was reported that data centers are responsible for 14% of the
total ICT energy footprint, as well as 3% of the energy consumption of the
United States [Mil13]. The overall energy consumption of data centers has
been steadily rising by approximately 7% per year [Jon14]. Some predict
that the energy needs of data centers will grow from 286 TWh in 2016 to
about 321 TWh in 2030 [KW21]. While others predict that the energy usage
of ICT and data centers will reach 3,234 TWh and 974 TWh respectively
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[And19]. It is also important to note that data centers are expected to be
responsible for 24.7% of the ICT energy footprint by 2030 [WZY+22]. This
would be a 10% increase compared to 2013. Within the data center, cooling
systems and servers are responsible for 50% and 26% of the energy con-
sumption, which is depicted in Figure 1.1. Power conversion losses, network
equipment, and lighting are responsible for 11%, 10%, and 3% of a data
center’s energy consumption respectively. The continuous growth of the data
center market has implications where sustainability is concerned.

Cooling
50%

Servers & Storage
26%

Power Conversion
11%

Network Hardware
10%

Lighting
3%

Figure 1.1: Contributors of the energy consumption of data centers
[DWF16].

Quantifying the sustainability level of a data center is challenging, as
existing metrics typically focus only on a single parameter of the data cen-
ter [LMG18], such as the facility’s water reusage or renewable energy usage.
Regardless, it is clear that the energy consumption associated with data cen-
ters has significant implications, there is a real risk of energy supply shortage
and grid instability as the energy demand keeps increasing [CAB+18]. In
fact, the Dutch government banned the construction of new hyper-scale
data centers for a period of 9 months in 2022. The ban applies to facilities
larger than 100,000 square meters and a power capacity exceeding 70 MW.
The reason for this ban is the limited available resources, both in spatial
terms, as well as in terms of the power grid. A potential solution to this
problem is the use of demand response programs to improve the stability
of the grid through the forecasting and shifting of power loads [VCA+20].
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However, this requires detailed monitoring and the ability to distinguish
between shiftable loads and non-shiftable loads. As governments impose
stricter sustainability policies to meet climate goals, the need for a smart
and sustainable data center is emerging.
A smart building allows for the monitoring and control of devices and

appliances that are connected through a complex network [VPS+19]. The
Internet of Things (IoT) has a crucial role in ensuring the connectivity of
these devices, as it embraces the idea that devices are always connected
to the Internet and are able to provide data and actuate in the physical
world [GBMP13]. Homes and offices are becoming a prominent example
of this trend as everyday objects are increasingly equipped with digital
controllers that are connected to home local networks. Smart buildings are
able to optimize their energy consumption by continuously monitoring the
state of the environment, understanding what activities are happening in the
building, and controlling the IoT devices based on these inputs [NNLA14].
The application of IoT within the context of data center enables a data-driven
and IoT-based approach that can bring the smartness previously seen in homes
and offices to the data center domain.

1.1 Challenges and Research Questions

It is clear that there is a need for an IoT and data-driven approach to data
centers to support the concept of an efficient and smart data center. However,
there are challenges that need to be overcome to bring the concept of a smart
data center closer to reality. In this thesis, we address a number of those
challenges. The first step in optimizing the efficiency of data centers is to
make Data Center Operators (DCOs) aware of the energy waste and to im-
plement best practices for sustainability. The difficulty lies in understanding
the available measures that can be taken in practice, and knowing what
issues are addressed by a given measure. Furthermore, it is important to
understand which of these measures are used in practice, and which are not.
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This assists us with the identification of problem areas and future research
directions. Based on these challenges, we define the following research
question:

Research Question #1

RQ1 –What measures can be implemented by a data center operator
to increase the level of efficiency and sustainability of their data center,
and which of these measures are implemented in practice today?

Once we understand the practices that are available to DCOs and the
problems they solve, the next challenge is to quantify the results of applying
said practices. The data generated from monitoring the data center has a
vital role in continuously evaluating the effects of best practices and other
policy changes. However, many different parameters can be monitored
within the data center environment. The difficulty is to understand what
to measure, at what level to measure it, and knowing what standardized
measurements are available. We define the second research question as
follows:

Research Question #2

RQ2 – How can the effect of policy changes in a data center, such as
the implementation of best practices, be measured in a standardized
manner?

The data generation potential of large scale IoT deployments is truly
astounding. On a world-wide level, the volume of generated IoT data is in
the order of Zettabytes [BCC20]. But even on the scale of a single data center,
the amount of data that can be generated for monitoring purposes alone
is significant, as we show in Chapter 4. In fact, the quantity of monitoring
data that has to be transmitted is so large that it has a negative effect on the
available bandwidth in the data center. This brings us to our third research
question:
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Research Question #3

RQ3 – How can the traditional network architecture of a data center
be leveraged to support IoT-based real-time monitoring while simul-
taneously reducing the processing load and bandwidth consumption
associated with monitoring?

While collecting data in an enterprise or hyper-scale data center is rela-
tively straight forward, new obstacles arise when attempting to collect data
in a co-location data center. In a co-location data center, rack space is rented
out and as a result the majority of the IT equipment is owned by third parties.
This complicates the situation for DCOs, who no longer have access to the
IT equipment, and are unable to directly monitor parameters such as the uti-
lization of the servers. Co-location data centers do enable a unique demand
response scheme where customers are charged higher prices during peak
energy demand to promote the deferring of workloads [ZLWR15]. However,
such an approach does not address the challenges regarding monitoring.
Therefore, we pose the following research question:

Research Question #4

RQ4 – With which precision is it possible to monitor servers of a co-
location data center while not having access to the operating system
or the internals of the server chassis?

Next, we shift our focus from the data center domain to the office domain.
At first glance, these two domains appear to be disjoint, but as we will see
in this thesis, many parallels exist between smart offices and smart data
centers from the IoT point of view. Specifically, we want to understand the
role of IoT in supporting smart responses from the building depending on
the contextual state, and additionally we focus on the parallels that exist
between IoT in offices and data centers. Uncovering these parallels would
assist in transferring IoT approaches from the office domain to the data
center domain. Thus, the fifth research question is posed as follows:
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Research Question #5

RQ5 – What role does the IoT paradigm have in enabling intelligent
responses to activities taking place in office buildings, and which
similarities and differences exist between IoT architectures for offices
and data centers?

The smart grid promises to transform the traditional grid into an intelligent
grid that enables actors to cooperate responsively and organically [TA16].
A key feature of the smart grid is the varying energy price signal which is
influenced by demand and response, as well as the available energy sources.
Taking advantage of these price fluctuations by shifting device loads can
result in economic savings for the consumer. Furthermore, IoT allows for the
devices to be controlled according to a pre-generated schedule. However,
finding an optimal schedule for device loads given scheduling constraints
for each device while also considering renewable energy generation, energy
storage systems, energy generation by neighboring prosumers, and varying
price signals is a complex problem due to the large state space that has to be
explored as quickly as possible. This brings us to the final research question:

Research Question #6

RQ6 – How can devices in an office building be scheduled optimally
considering the availability of renewable energy, energy storage,
neighboring prosumers, varying price signals, and different schedul-
ing constraints, while ensuring timely schedule generation?

1.2 Methodology

The approach taken in this thesis is experimental in nature. The majority
of our research follows an empirical methodology. The data that we use is
collected from real data centers and real IoT deployments. Furthermore, the
research in this thesis is subdivided in three complementary themes: sustain-
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able data centers, monitoring of smart data centers, and smart buildings.
To address research question RQ1 , we follow a survey methodology

where we interview domain experts using a questionnaire consisting of open
questions. Based on the interviews, we quantify the application of best
practices across multiple data centers and identify areas for improvement.
For research question RQ2 , we perform a systematic review and analysis of
data center metrics. Through analyzing each metric, we identify inter-metric
relationships and potential issues. To answer research question RQ3 , we
apply an experimental approach on a small scale and extrapolate the results
to encompass the entire data center. Additionally, we perform a comparative
study between IoT hubs. To evaluate research question RQ4 we take an
empirical approach and collect data at a large scale from a real data center.
The collected data is used to train and evaluate supervised machine learning
models. For the purpose of answering research question RQ5 we perform
physical experiments in an office building, supported by an IoT framework
we design and develop ourselves. The experiments are performed while the
occupants of the building are actively using the affected rooms and areas.
And finally, we address RQ6 by empirically collecting data from appliances,
devices, and cloud services. We use the collected data in our experiments
which simulate the scheduling of devices.

1.3 Contributions

To address the research questions posed in the thesis, six contributions are
made. First, we investigate the state of the art in data center best prac-
tices. By subjecting seven Dutch and Indian data centers to a questionnaire,
interviews, and procedure reviews, we are able to quantify the practical
adoption of twenty-three best practices for sustainability. Each best practice
is assigned one of five categories, ranging from energy efficiency to storage
and networking. This enables us to identify areas where improvements
can be made. One area of improvement is liquid cooling, which is why we
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investigate the state of immersion cooling in greater detail. We summarize
our first contribution as follows:

Contribution #1

C1 – An overview of 23 best practices and their adoption in 7 data
centers as gathered from interviews with data center operators, and a
review of the current state and future potential of immersion cooling.

Data center metrics play a critical role in understanding the effect of imple-
menting the aforementioned best practices. The challenge lies in selecting
the appropriate metric for the task at hand. To assist in this process, we
identify one-hundred thirty-six metrics to measure the sustainability and
efficiency of a data center. Each metric is assigned one of nine categories.
We also investigate the relationships between metrics, as there are metrics
that directly use or are derived from other metrics. And finally, we uncover
numerous open issues, including the need for IoT-based data center monitor-
ing, and the challenges faced by co-location data centers when attempting
to monitor their facilities. This results in the following contribution:

Contribution #2

C2 – A taxonomy of 136 sustainability and efficiency metrics across
9 different data center domains, an analysis of the relationships be-
tween these metrics, and an evaluation of open issues and challenges
related to data center metrics.

Evaluating the large variety of available data center metrics in real time
and in great detail requires an IoT-based approach to data center monitoring.
The potential volume of data that can be collected on a per server basis is
vast, especially when considering the fact that there can be thousands of rack
in a data center, each containing dozens of servers. In fact, we show that the
amount of data that can be generated is so large that there is a significant
negative effect on the data center’s network bandwidth. Therefore, we
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propose to leverage the edge computing paradigm by taking advantage of
the data center network hierarchy. Using IoT hubs deployed at the edge, the
bandwidth usage is reduced and response times are improved. Furthermore,
we perform a detailed analysis of four open-source IoT hubs out of an initial
selection of twenty hubs. Using thirteen features and thirty-four criteria,
we are able to identify strengths and weaknesses for the four systems, and
extract a generic IoT hub architecture based on the commonalities between
the four systems. Which leads us to the following contribution:

Contribution #3

C3 – An edge-based architecture taking advantage of the hier-
archical network layout to deploy IoT hubs and distribute the data
processing load, as well as a detailed analysis of 4 open-source IoT
hubs based on 13 features and 34 criteria.

To address the difficulties related to co-location data center monitoring, we
develop an approach that enables the monitoring of individual servers despite
not having access to the operating system or the server chassis. Instead, all
the required measurements are taken external to the servers, thus avoiding
any privacy or security compromises with regards to monitoring. As part
of our approach, we train and evaluate machine learning models using a
data set collected from one-hundred sixty-four servers and consisting of
over two billion data points covering thirteen different metrics. In total, we
create over ten thousand different models, from individual models for each
server, to universal models that are trained using the data of all servers. We
summarize our fourth contribution:
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Contribution #4

C4 – A privacy-preserving approach to monitoring servers in a
co-location data center by only collecting data through sensors that
are external to the chassis, and an evaluation of the approach using a
data set consisting of 2.5 billion data points collected from 13 metrics
collected on 164 servers.

The Internet of Things has an important role in enabling intelligent re-
sponses to activities occurring within a building. To demonstrate this, we
deploy a multitude of IoT sensors and actuators in an office building, focusing
specifically on a restaurant, a social corner with a kitchen, and two offices.
The data collected from the sensors is used in the activity recognition process
to determine the state of each room or area. An Artificial Intelligence (AI)
planning solution is used to adjust the building environment by controlling
the deployed actuators based on the recognized states. Our optimization of
the building environment results in significant energy saving. We focus on
the underlying architecture that supports the deployment of the IoT devices
in order to highlight the similarities between IoT in office buildings and IoT
in data centers. Therefore, we define the following contribution:

Contribution #5

C5 – A practical evaluation of an IoT deployment in the Bernoulli-
borg office building using two use cases: one deployed in two offices
and a social corner, and one deployed in a restaurant. Furthermore,
similarities and differences in the underlying Internet of Things ar-
chitecture between buildings and data centers are highlighted.

Scheduling device loads in a smart grid environment is a non-trivial prob-
lem, especially when considering the varying price signals from the grid
and neighboring prosumers, the local generation of renewable energy, as
well as energy storage systems. On top of that, each device also has specific
scheduling constraints that have to be satisfied. To solve this problem in
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a timely manner, we propose a parallel uniform-cost search algorithm to
explore the complex state space to find the optimal solution that minimizes
the energy costs. We design a micro-service architecture that enables real-
time prediction of renewable energy generation and day ahead price signals.
For the evaluation of our approach we use real-world device data as well as
weather data for the prediction of renewable energy generation. And finally,
we show that the inclusion of energy storage systems results in additional
economic savings when compared to an office environment without energy
storage. We summarize our final contribution as follows:

Contribution #6

C6 – A load scheduling approach for devices based on a paral-
lel uniform-cost search algorithm that considers renewable energy,
energy storage, neighboring prosumers, price signals, and schedul-
ing constraints when searching for the device load schedule that
maximizes economic savings, and a micro-service architecture for
real-time data collection for the prediction of renewable energy and
price signals.

The six contributions that are listed above have been reported also in
eight peer reviewed publications. What follows next is a list of first authored
works:

• P1 – B. Setz, K. Haghshenas, and M. Aiello, “Optimizing Energy
Costs for Offices Connected to the Smart Grid: Ten Years Later”,
manuscript submitted, 2022.

• P2 – B. Setz, S. Graef, D. Ivanova, A. Tiessen, and M. Aiello, “A
Comparison of Open-Source Home Automation Systems” in IEEE Access,
vol. 9, 2021.
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• P3 – B. Setz and M. Aiello, “Towards Real-Time Monitoring of Data
Centers using Edge Computing” in European Conference On Service-
Oriented And Cloud Computing, 2020.

• P4 – B. Setz, A. Lazovik, and M. Aiello, “A Data-Driven Approach to
Monitoring Co-location Data Centers” in IEEE International Conference
on Big Data Intelligence and Computing, 2019.

• P5 – V. Reddy, B. Setz, G. Rao, G. Gangadharan, and M. Aiello, “Met-
rics for Sustainable Data Center” in IEEE Transactions on Sustainable
Computing, vol. 2, no. 03, 20171.

The following works were co-authored:

• P6 – K. Haghshenas, B.Setz, Y. Bloch, and M. Aiello, “Enough Hot
Air: The Role of Immersion Cooling”, submitted, 2022.

• P7 – V. Reddy, B. Setz, G. Rao, G. Gangadharan, and M. Aiello,
“Best Practices for Sustainable Data Centers” in IT Professional, vol. 20,
no. 05, 2018.

• P8 – I. Georgievski, T. Nguyen, F. Nizamic, B. Setz, A. Lazovik, and
M. Aiello, “Planning meets activity recognition: Service coordination
for intelligent buildings”, in Pervasive and Mobile Computing, vol. 38,
no. 01, 2017.

Authored related works performed during the PhD period, though not
included in this thesis:

• P9 – M. Kalksma, B. Setz, A. Rizky Pratama, I. Georgievski, and M.
Aiello, “Mining Sequential Patterns for Appliance Usage Prediction”,
in 7th International Conference on Smart Cities and Green ICT Systems
(SMARTGREENS), 2018.

1V. Reddy and B. Setz are both to be considered first authors, as they contributed equally
to this manuscript.
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• P10 – B. Setz, F. Nizamic, T. Nguyen, A. Lazovik, and M. Aiello,
“Power Management of Personal Computers based on User Behaviour”,
in 5th International Conference on Smart Cities and Green ICT Systems
(SMARTGREENS), 2016.

In Figure 1.2, we present an overview of the thesis and visualize how
each chapter and section is mapped to one or more research questions
( RQ1 - RQ6 ), contributions ( C1 - C6 ), and publications ( P1 - P8 ).

1.4 Structure

The remainder of this thesis is structured as follows:

Chapter 2: Background and Related Work In this chapter, we introduce
the core concepts and terminology that are relevant to the work presented
here. Furthermore, we discuss the related works in the three key areas.

Chapter 3: Sustainable Data Centers In this chapter, we focus on the
efficiency and sustainability of data centers. First, we present an overview
of best practices that promote sustainability in data centers. This is followed
by a taxonomy and analysis of existing data center metrics. And finally, we
also investigate an alternative cooling technique, namely immersion cooling.
We address the research questions RQ1 and RQ2 through contributions
C1 and C2 , as published in our works in P5 , P6 , and P7 .

Chapter 4: Monitoring of Smart Data Centers In this chapter, we inves-
tigate the role of the Internet of Things within the context of data center
monitoring in order to transform regular data centers into smart data cen-
ters. We start by taking advantage of the data center rack layout to promote
real-time and performant monitoring, and we identify the need for an IoT
hub. Next, we perform a structured analysis of open-source IoT hubs, extract
a generic IoT hub architecture, and discuss the strengths and weaknesses
of existing hubs. And lastly, we demonstrate an approach for monitoring in
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co-location data centers that enables privacy-preserved monitoring through
the use of IoT. We address the research questions RQ3 and RQ4 through
contributions C3 and C4 , as published in our works in P2 , P3 ,
and P4 .

Chapter 5: From Smart Data Center to Smart Building In this chapter,
we transition from smart data centers to smart buildings. First, we discuss the
case of the Bernoulliborg building, and present our IoT-oriented architecture
to support intelligent decision making. And second, we propose a method
for device load scheduling in a smart grid environment while considering
renewable energy sources, energy storage, and varying price signals. We
address the research questions RQ5 and RQ6 through contributions C5
and C6 , as published in our works in P1 and P8 .

Chapter 6: Conclusions and Outlook In this chapter, we reflect on our
research questions and contributions to provide the conclusions to this work.
We also present our outlook with regards to future research directions related
to the topics discussed in this thesis.
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Background and Related
Work

Data centers are complex buildings, consuming vasts amounts of energy
while operating under a set of constraints. Some of these constraints are
expressed in Service-level Agreements (SLAs), which define constrains re-
garding uptime guarantees, power supply, temperature ranges, networking
bandwidth, and so on. An increasingly important constraint is the sustain-
ability of the data center. As governments around the globe introduce new
regulations to reduce the carbon footprint, data centers are increasingly
affected. Monitoring the building in detail is a significant step towards opti-
mizing the data center and meeting the new sustainability goals. To fulfill
these goals, it is critical to measure in a standardized way the aspects that
should be monitored, this is where metrics play an important role. Novel
cooling techniques also promise to reduce the environmental impact. The
application of IoT approaches within the data center domain enables detailed
monitoring that was not possible before. As data centers become smarter, it
becomes clear that there are many similarities to smart buildings.
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In this chapter, we explore the works that are closely related to the three
main aspects of this thesis: sustainability in data centers, IoT-driven monitor-
ing of data centers, and the interconnection between smart data centers and
smart buildings. But first, an introduction to data centers and the relevant
terminology is given. Next, we look at the concept of sustainable data centers,
with a focus on the available metrics to capture the different sustainability
characteristics. As data center cooling is the major contributor to the energy
footprint, we also explore works related to novel cooling approaches. After
exploring sustainability and its related metrics, the focus shifts towards the
monitoring of data centers using an IoT approach. In particular, we highlight
works related to the monitoring of data centers, the significant role of IoT-
hubs, as well as other monitoring-related aspects such as hardware modeling
and privacy concerns. And finally, we shift from the data center domain to
the smart building domain, while still retaining the focus on sustainability.
We show that many parallels exist between smart data centers and smart
buildings, particularly with regards to the role that the IoT-paradigm has in
both domains.

2.1 Data Centers

A data center is a building or cluster of buildings dedicated to housing pri-
marily Information Technology (IT) equipment for data processing, data
storage, and network communications, while providing specialized power
conversion, reliable and high-quality power signals, a controlled environment
in which temperature and humidity are optimal [Gen14]. Despite the fact
that data centers house mainly IT equipment, not all space in a data center
is dedicated to this purpose. The cooling systems and power distributed
systems also require space within the data center buildings. The same holds
true for on-site back-up power generation, which typically consists of energy
storage and diesel motors. Additional space is also required by fire suppres-
sion systems, general storage, and office space for the employees.
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The majority of the space is dedicated to the racks. A rack is a metal
enclosure with standardized dimensions, typically with a maximum size
of 42U, where ’U’ stands for rack unit. The dimension of a rack unit is
also standardized, as per EIA-310-D and DIN 41494. The IT equipment
is mounted in a rack, and depending on the dimensions, takes up one
or multiple rack units. This equipment includes computational hardware,
networking equipment, storage servers, Power Distribution Unit (PDU),
Uninterruptible Power Supply (UPS), as well as rack-mounted keyboards
and displays. An example of a typical rack layout that one can find in a
data center is displayed in Figure 2.1a. Data centers that rent out space in
their server racks are known as co-location data centers. The co-location
provides networking, power, and cooling, while the customer provides the
hardware that is to be placed in the rented rack space. A challenge regarding
co-location data centers is the lack of access to the hardware from the point
of view of the data center operator.

Rack (Front View)

UPS

Network Attached
Storage

Server

Server

Server

Firewall
Switch

KVM Switch

(a) A typical data center rack lay-
out.

Racks (Top View) Racks (Top View)

Cold Aisle Cold Aisle

CRAC / 
CRAH

Hot Aisle

Door

(b) Hot aisle / cold aisle configuration as viewed from
above.

Figure 2.1: Data Center racks and their layouts.

Racks are typically configured in multiple rows consisting of numerous
individual racks. A rack has a hot side, and a cold side. The hot side is where
the hot air is exhausted from the equipment, and the cold side is where the
cold air enters the equipment through the use of forced air ventilation. The
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racks are positioned in such manner that the hot side of one row of racks
faces the hot side of another row of racks. The same holds true for cold sides
facing each other. This creates so-called hot aisles and cold aisles. In modern
data centers, either the hot aisle or the cold aisle are completely isolated
from the main hall. However, in practice open aisle air-based cooling is the
dominant approach [NLL18]. Figure 2.1b shows an example of hot aisle
isolation, where the hot aisle (in red) is enclosed separately from the cold
aisle (in blue). This, in combination with closing any gaps in the server racks,
ensures that the mixing of hot and cold air is minimized.

Chilled
Water

Condenser
WaterCRAH

Hot IT Air

Cold IT Air

Chiller Cooling 
Tower

Hot Outside Air

Cold Outside Air

RefrigantCRAC

Hot IT Air

Cold IT Air Hot Outside Air

Cold Outside Air

Condenser

CRAH System

Air-cooled CRAC System

Figure 2.2: Comparison of Computer Room Air Handlers and Computer
Room Air Conditioners.

It is typical for racks in a data center to stand on a raised floor. The raised
floor allows cold air to enter from underneath the space in which the racks
are located, through perforated floor tiles. Typically only the cold aisle has
these perforated tiles. The fans inside the IT equipment draw the cold air
inside the chassis and then force it over heatsinks covering the processors
and other heat-producing hardware. After absorbing the heat of the server
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components, the warm air is pushed out into the hot aisle due to the air
pressure difference. The warm air is then extracted by a Computer Room
Air Conditioning (CRAC) unit or a Computer Room Air Handler (CRAH), in
order to lower the air temperature to a level where it can be reused again in
the cooling cycle [Gen14]. The main differences between CRAC and CRAH
systems are illustrated in Figure 2.2. Whereas CRACs function much like
residential air conditioners using refrigerants and compressors, CRAHs use
a chilled water loop in combination with a chiller and a cooling tower. In
general, CRACs are cheaper, while CRAHs are more efficient and reliable.

Water-side 
Economizer

Chilled
Water

Condenser
Water

CRAH

Hot IT Air

Cold IT Air

Chiller Cooling 
Tower

Hot Outside Air

Cold Outside Air

CRAH System

Cold  
Outside Air

Air-side 
Economizer

Exhaust  
Air

Heat
Ex- 

changer

Figure 2.3: Cooling loop with air-side and water-side economizers.

To further increase the energy efficiency of a data center, it is typical to
include so-called economizers in the cooling loop. The two economizers
typically used in data centers are air-side economizers, and water-side econ-
omizers. Figure 2.3 illustrates a cooling loop with both types of economizers.
The air-side economizer enables hot air to be exhausted to the outdoor
environment, as well as using the cold outside air directly for cooling. This
only works if the outside temperature is below a certain threshold. The
economizer can be turned off if the outside air temperature is too high. A
water-side economizer enables the cooling loop to by-pass the chiller and
use a (passive) heat exchanger to cool the chilled water, assuming the con-
denser water is sufficient cold. On cold days the cooling tower will cool
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the condenser water to a point where the chiller is no longer required. The
efficiency of both types of economizers is highly dependent on the climate
in which the data center is located.
To guarantee the high uptime specified in the SLAs, it is important for

data center to have a level of redundancy built into their systems. The
Tier classification, as defined by the Uptime Institute, gives the data center
industry a consistent mechanism for comparing typical facilities based on
their up-time and facility performance, as well as pinpointing the available
level of redundancy [TIPSB06]. The Tier classification distinguishes between
the following categories of tiers:

• Tier 1: a facility composed of a single path for power and cooling
distribution. It does not contain redundant components and provides
at least 99.671% availability.

• Tier II: a facility composed of a single path for power and cooling
distribution, it contains redundant components and provides at least
99.741% availability.

• Tier III: a facility composed of multiple active power and cooling
distribution paths, and redundant components with only one active
path. It is concurrently maintainable and provides at least 99.982%
availability.

• Tier IV: facility composes of all components of Tier III and it is fault
tolerant, it provides at least 99.995% availability.

2.2 Sustainable Data Centers

In the last years, significant research efforts and technological develop-
ments have been devoted to data centers, targeting energy efficiency and
eco-friendliness. Meeting sustainability goals has become an important ob-
jective when managing data centers for which there exists a multitude of
strategies [MSMR21]. To capture the effects of these strategies and the data
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center management, the first step is to decide which dimensions are relevant,
followed by defining the metrics, and finally populating them [DJK+09].
There is a continuous development of novel data center metrics, with an ever-
increasing focus on sustainability. For example, the European Union financed
an 8-project cluster of over 50 partners to develop new environmental effi-
ciency metrics and methodologies. The projects were All4Green, CoolEmAll,
GreenDataNet, RenewIT, GENiC, GEYSER, Dolfin, and DC4Cities. The cluster
has published several works in which they analyze existing metrics and also
propose novel metrics to assess the performance of data centers [PVC14;
SSO+14]. Capozzoli et al. reviewed thermal, power and energy consumption
metrics [CCPS15]. Aravanis et al. introduced new metrics for the assessment
of flexibility and sustainability of data centers [AVS+15]. In [SSJ+13], Siso
et al. propose and evaluate several metrics for the CoolEmAll project.
Energy efficiency metrics are the most prevalent type of metric in the

context of data centers. The Green Grid consortium proposed the Power
Usage Effectiveness (PUE) [BRPC07], which currently is the dominating
metric used and often made public by data centers. However, PUE has some
shortcomings, as decreasing the overall power usage may actually result
in a higher PUE [Col11]. The Green Grid consortium proposed the Partial
Power Usage Effectiveness (pPUE) metric, based on PUE, and the Data Cen-
ter Infrastructure Efficiency (DCiE) metric [AAFP12] which measures the
efficiency of data centers by relating power consumption to IT equipment.
PUE and DCiE help data center operators determine the efficiency of the
data center, where pPUE measures the energy efficiency of a zone in a data
center. The consortium also proposed metrics such as Carbon Usage Effec-
tiveness (CUE) [DAMPT10], Water Usage Effectiveness (WUE) [PABP11],
and Electronics Disposal Efficiency (EDE) [BBC+12] to measure the CO2

footprint, the water consumption per year, and the disposal efficiency of the
data centers, respectively. Munteanu et al. proposed two different metrics
based on energy consumption and Central Processing Unit (CPU) usage for
calculating useful work done by in data centers. [MDBB13]. They proposed
EnergeTIC Usage Effectiveness (EUE) considering total Internet Data Cen-
ters (IDC) power, IT power and load levels. They also proposed EUE(CPU),
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EUE(kWh) and EUE(kWh)-IT. Schaeppi et al. explored energy related
metrics for IT equipment, data storage and network equipment [SBS+12].
Fiandrino et al. proposed new metrics for computing the energy efficiency
of the data center communication systems, processes and protocols which
includes the network energy efficiency, network power usage effectiveness
and network performance related metrics [FKBZ15]. Daim et al. explored
measurable components of a data center and proposed a new metric that
fills the gap in measuring the data center equipment power and uses a
credit-based system for data centers not meeting the standard [DJK+09].
While the majority of metrics focuses on energy efficiency, there are also

other important metrics and standards that focus on other aspects of sustain-
ability. The American Society of Heating Refrigeration and Air Conditioning
Engineers (ASHRAE) provides a common set of environmental guidelines for
data processing environments, equipment and guidance on server metrics
which enables data center operators to optimize temperature and humidity
conditions [ASH11; Ash]. Metrics to monitor and control the air flow in a
data center are discussed in [CSLC14; TS10]. Chen et al. identified and
presented usage-centric green performance indicators at various data cen-
ter levels [CPH+11]. Wang et al. presented a set of performance metrics
for a green data center [WK13]. Their focus is on available benchmarks
and on how performance metrics can be used to measure the greenness.
Wiboonrat discussed the effect of a data center outage and provided a solu-
tion to minimize the data center downtime [Wib08]. The author proposed
improvements on the data center topologies to reduce the failure rate.
A detailed analysis of metrics for sustainable data centers can be found

in Chapter 3. Measuring, monitoring, and evaluating metrics is critical
for determining the present level of efficiency and sustainability, though
a more active approach is required to improve the sustainability of data
centers. Historical trends show that the number of computations per kilowatt-
hour (kWh) has doubled every 1.57 years [KBSW10]. Therefore, upgrading
aging IT equipment typically results in an increase of the energy efficiency.
Another approach is to optimize the scheduling of workloads [HTGM20;
SDCB17]. The optimizations goal can be set to reduce energy consumption,
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heat output, or the carbon footprint. Scheduling in data centers typically
requires power models for individual servers, which in turn requires data
regarding a systems power consumption under different load profiles.

One of the most diverse data sets on server power consumption is provided
by the SPECpower_ssj2008 benchmark [GKL08]. The benchmark measures
performance and power of servers using gradually increasing load levels.
The benchmark focuses on collecting measurements, but does not perform
predictive modeling. In [BJ12], the authors propose a complete system
model for modeling the power consumption of six subsystems: CPU, memory,
chipset, Input / Output (I/O), disk, and Graphics Processing Unit (GPU).
They have observed an average error of less than 9% per subsystem when
evaluating their model. These results are obtained using highly detailed,
low level hardware information. The authors of [WDDB12] propose a more
abstract approach to modeling power consumption, aiming for data centers
in particular. In their model, they consider servers which are running virtual
machines, and evaluate how the number of virtual machines influences the
server’s power consumption. They also include the idle power consumption
and the additional load introduced by the hypervisor. Linear regression is
applied to obtain the values of the model’s parameters. A different approach
for estimating power consumption is proposed by Dargie et al. [Dar15]. In
their work, the authors model the CPU usage and the power consumption as
random variables and exploit the monotonicity property to describe the rela-
tionship between these variables. The authors report mean errors between
2% to 5.2%, depending on the data set. Similar to the previous work, only
power consumption and CPU usage are compared. In [OKC+10], the authors
propose a method to estimate the power consumption of individual CPU
cores based on the measured CPU core temperature. They also develop a
technique to optimize the throughput on CPUs that have thermal constraints.
Their optimization method improved throughput by 4%, when compared to
existing temperature-based methods. It is important to note that almost all
IT power consumption is converted into heat, which has to be dissipated.
When it comes to sustainable data centers cooling is also an important

aspect to consider, and several reviews on cooling solutions have appeared.
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One of the earliest reviews considers the thermal aspects of air cooling in
data centers [Pat10]. In a review by Ebrahimi et al., different data center
cooling technologies are analyzed, and particular attention is devoted to the
opportunity of recovering the heat [EJF14]. For example, district heating
can be fed from recovered hot air from a data center. Li et al. offer a detailed
thermal analysis of cooling solutions, including several strategies based on
cold plates, waste heat recovery, and heat pipes [LK15]. Though air cooling
is the prevalent cooling method, a more drastic approach to increase the
energy efficiency is to migrate away from air cooling and switch to liquid
cooling, or even immersion cooling.

Immersion cooling is an approach that uses liquid instead of air to absorb
heat from computing hardware. In immersion cooling, components are fully
immersed into a dielectric fluid. A dielectric fluid conducts heat while not
conducting electricity at all; instead, it acts as an insulator. As this fluid
has a much higher heat capacity than air, the heat of all the components is
efficiently removed by the liquid [EFV+14; SBS+19]. The use of immersion
cooling eliminates the need for components to move air, such as fans. The
most commonly used liquids in immersion cooling are white mineral oil,
engineered dielectric fluids, and other oils [JMG+21; SBS+19]. Kuncoro
et al. review immersion cooling solutions and compare the performance
of different types of cooling liquids [KPB+19]. In general, a distinction is
made between two types of liquid immersion cooling: single-phase cooling
and two-phase cooling, as shown in Figure 2.4.
In single-phase immersion cooling, the fluid remains in liquid form and

there is no phase change. Heat emitting components are cooled by the
fluid flowing over them, and the heated fluid is transported away. The
circulation of the fluid is driven by a pump or by natural convection. In
natural convection-driven systems, the heated fluid floats to the top of the
tank because it has a higher volume than colder fluid. It then flows, due
to more fluid rising to the top, to the side of the tank where it is cooled by
a heat exchanger connected to an external loop. As with CRAC and CRAH
systems, a cooling tower can be used for heat rejection in the external loop.
The density of the cooled liquid increases again and it sinks back to the
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Figure 2.4: Liquid-based immersion cooling techniques for data centers

bottom of the tank by gravity. In a pump-driven system, the convection is
driven by a pump. The pump forces the liquid through an inlet inside the
tank and out through an outlet on the opposite side. The liquid is then
cooled by flowing through a coolant-to-water heat exchanger.
In two-phase immersion cooling, the coolant changes phase whenever it

gets in contact with a heat-producing component. In order to avoid damage
to the components, the boiling point of the coolant has to be lower than
the critical temperature of the components. While evaporating on a hot
component, the gas will float to the top of the tank and will make room
for colder liquid coolant. A condenser is located inside the tank above the
liquid. Cooling water flows through the condenser to exchange the heat to
the external loop. The coolant condenses there and will fall back into the
immersion tank where it can absorb heat again [KWF+20].

Some authors were already proposing immersion cooling for data center
equipment [Tum10b] in 2010. The work of Kheirabadi et al. focuses on the
thermal aspects of server cooling [KG16]. They classify the cooling solu-
tions as air-based or liquid-based. Air-based solutions include CRAC, CRAH,
Rear Door Heat Exchanger (RDHx), and Side Car Heat Exchanger (SCHx).
Whereas liquid-based solutions are split into two subcategories; direct and in-
direct. The indirect liquid cooling solutions include: single-phase, two-phase,
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and heat pipes. And direct solutions include: pool boiling, spray cooling, and
jet impingement. The results of the review and the technological comparison
show a higher efficiency for liquid cooling-based solutions while maintaining
that air-based solutions are a valid option especially if high efficiency is not
a top requirement. The chemical and physical effects of immersion cooling
on IT equipment are investigated in [SESA16]. The results are particularly
relevant to understand the maintenance requirements and life expectancy
of the equipment. In addition, several advantages of immersion cooling
are identified, such as a decreased chance of overheating and temperature
swings, elimination of fan failures, decrease in dust and moisture-related
failures, and reduced corrosion. Furthermore, Watson et. al compare two
prototypical systems, one based on air cooling and one on immersion cool-
ing, and provide an evaluation of the two based on simulations especially
focusing on scalability aspects [WV17]. The results indicate a preference for
immersion cooling.
There are many facets to consider where sustainable data centers are

concerned. In this section, we have focused on works related to two of those
aspects, the importance of metrics for measuring and monitoring purposes,
and the role of novel cooling methods such as immersion cooling. Both
aspects are explored in detail in Chapter 3.

2.3 Monitoring of Smart Data Centers

Real-time monitoring is a technique that has become more popular in several
domains with the emergence of the Internet of Things. In smart grids,
for example, real-time monitoring promises to assist in the prevention of
severe safety accidents by automatically identifying threats, and it can also
contribute to the optimization and sustainability of the production and
transport of energy. The authors of [HLW+18] identified that real-time
monitoring of smart grids would cause an increase in data that would be
too large to handle using the traditional cloud computing paradigm. In
their solution they introduce edge computing as a key component of their

46 2 | Background and Related Work



real time monitoring solution, reducing the network load by more than
50%. The authors of [AP14] also identify the capability of the smart grid
to generate substantial amounts of data. Hassan et al. [HGA+18] describe
the role that edge computing has in the Internet of Things. They propose
a layered model in which millions of IoT devices connected to thousands
of edge gateways, which in turn connect to hundreds of cloud data centers.
The authors also recognize the need for data abstraction, which uses edge
gateways to reduce the volume of the raw data before sending it to the data
center. However, deciding which data should be reduced, and by how much,
is an open problem according to the authors. It is also important to consider
the security of edge gateways, as the distributed nature of edge computing
increases the possible attack vectors [SRCL+22]. The application of real-
time monitoring in the domain of data centers enables in-detail monitoring
of the entire data center at any level, but has similar drawbacks when it
comes to the quantity of data that is generated. Utilizing edge computing
for data center monitoring promises to address some of these challenges.

When it comes to monitoring data centers, we make some important dis-
tinctions. First of all, the difference between external and internal sensing.
External sensing is non-intrusive and is typically used tomonitor the humidity
and temperature per rack, or of the entire room. Another example of external
sensing is measuring the power consumption of servers or racks using PDUs.
Internal sensing is intrusive to the IT equipment and typically requires either
access to the chassis or the operating systems. The work of Hubbell et al.
illustrates the difference between external and internal sensing [HMA+15].
They collect 5,000 environmental data points (external sensing) and 3,500
server data points (internal sensing). Their environmental data points in-
clude temperature, humidity, air pressure, power consumption, voltages,
and amperages. Server data points consist of software versions, CPU load,
memory allocations, disk utilization, network and link utilization, storage
health and the state of the job scheduler. It is also important to note the
difference between hardware sensors and software-defined / virtual sensors.
Hardware sensors are standalone hardware-based devices that can be placed
in the data center, for example on top of a rack, or in front of IT equipment.
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Software-defined sensors and virtual sensors are sensors that execute as
software on the IT equipment. For example, monitoring the CPU utilization
via the operating system requires software.

The authors of [LH17] propose a real-time monitoring infrastructure
using low-power wireless sensors. They employ low-power wireless sensors
to monitor the following parameters within a data center: temperature,
humidity, airflow, water, security, vibration, differential air pressure, and fire
systems. They state that such a system can be rapidly deployed and would
enable real-time predictive modeling. In [Wib14], the authors also propose
a wireless system architecture for monitoring a data center. However, in
their work not only sensing is considered, but also actuation. They propose
to control the PDUs and the cooling systems using wirelessly networked
sensors and actuators. Medina-Santiago et al. developed a method for
real-time monitoring of data centers using an IoT approach [MAG+20]. The
data in question is environmental data, such as the temperature and the
humidity level. These values are collected, by means of external sensing,
every 10 seconds. A total of 1.4 million data points were collected. Their
IoT platform is based on a simple web service which accepts data collected
by the custom-built sensors. The monitoring takes place on the level of
individual racks. When extrapolating these findings to monitoring on the
level of individual servers, the amount of collected data increases by an
order of magnitude. In the work of [LH17], an approach is proposed for
monitoring a data center in real time using low-power wireless hardware
sensors. The collected data includes temperature, humidity, airflow, air
pressure, water pressure, security status, vibrations, and the state of the fire
systems. The need for collecting data from servers for monitoring purposes
is also recognized. The authors envision that some type of IoT platform is
required for the collection, processing, storage, and management of the data.
The envisioned platform is not designed or implemented by the authors.

We can conclude that large scale monitoring of data centers requires an
IoT platform, also known as an IoT hub, for interfacing with numerous
different types of sensors and handling all of their data. It is also clear
that edge computing can play an important role and facilitating the data
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processing. Obvious parallels can be drawn between IoT hubs that would
be required in data centers and those that can be found in smart homes and
smart offices. Fortunately, there is a vast body of literature available on IoT
hubs, specifically on academic and commercial platforms.
Jerabandi, et al. provide an overview of existing IoT hubs [JK17] . Their

focus is on academic works that address very specific problems. Based on
the review of 14 systems, the authors identify numerous design issues re-
lated to IoT hubs. The issues are: serviceability, scalability, programmability,
auto-configuration, centralized vs. decentralized architectures, heterogene-
ity, transparency, security, open standards, robustness, and energy efficient
communication. A generic IoT framework for home automation systems is
briefly described. Taiwo, et al. propose a taxonomy of IoT hubs, with the
main focus on technology, trends, and challenges [TGE20]. The systems
are primarily academic; the results of closed-source studies with limited to
no adoption. The taxonomy highlights five components of IoT hubs: (1)
application area, (2) automation layers, (3) protocols, (4) platforms, and (5)
sensors. The authors also identify trends and challenges in IoT hubs. The
current research trends focus on: energy efficiency and energy reduction,
privacy and security, and innovative technologies. End-to-end encryption
using the Public Key Infrastructure can be used to address some of the secu-
rity concerns by ensuring that intermediary receivers cannot decipher the
messages [AGC+19]. Furthermore, the following challenges are identified
in [TGE20]: authentication and authorization, privacy, high cost and incom-
patibility, and energy management. Derhamy, et al. focus on commercial IoT
frameworks [DEDP15]. In their work they analyze 14 different frameworks
and platforms. The emphasis is on commercially available IoT frameworks
for automation, including: IPSO Alliance, IoTivity, AllJoyn, and Thread. The
authors recognize that for a platform or framework to succeed they must:
(1) securely expose Application Programming Interfaces (APIs) for third
parties, (2) provide protocol interoperability with third party API, as well as
protocol extensibility, (3) enable constrained devices to participate, and (4)
enable management and governance of heterogeneous networks of device
and applications. The authors of [SZZ14] highlight that openness is an
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important prerequisite for experts to contribute to IoT hubs.
Particularly relevant is the work of Risteska Stojkoska et al. which features

a review of the state-of-the-art in Internet of Things applications in smart
environments [RT17]. They identified numerous challenges related to this
topic, which also apply to the monitoring of data centers. First of all, the use
of edge computing shows great promise despite a lack of adoption in existing
platforms and frameworks. This is inline with our findings regarding real-
time monitoring of data centers, and the need for edge computing. The next
challenge relates to big data, specifically regarding the overall performance
when handling big data. The scale at which data can be collected in data
center indeed enters the domain of big data. Finally, security and privacy
is another challenge which is highlighted, which is primarily due to the
way data is transmitted wirelessly in smart homes. Where data centers are
concerned, security and privacy are always critical, especially considering
the vast quantity of potentially sensitive data.

As data is generated and collected in increasingly larger quantities, more
opportunities will arise for businesses and governments to combine and pro-
cess this data to gain new and interesting insights. However, this frequently
endangers the privacy of individuals [JGK16]. A significant effort is made in
the research on privacy preservation within big data.
A classical approach to preserving privacy in data analytics is applying

de-identification. The k-anonymity property of a data set ensures the individ-
ual’s privacy by preventing identification through linking attacks [MGKV06].
A data set satisfying k-anonymity ensures that every entry is indistinguish-
able from at least k - 1 other entries, for every combination of attributes (e.g.
place of birth, phone number, age) that could uniquely identify an individual
when combined with external sources. An extension of the k-anonymity
property is the l-diversity model as proposed by [MGKV06], which addresses
a number of weaknesses. It utilizes generalization and suppression to further
ensure an individual’s privacy. For example, the exact age of an individual is
not stored, but instead a range is specified. This inevitably leads to a loss
of information. A more recent extension of l-diversity, addressing a number
of vulnerabilities, is t-closeness [LLV07]. This approach takes into account
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the distribution of the attributes that can potentially identify an individ-
ual. More recent developments include privacy preservation in MapReduce
frameworks [DDGS16], anonymization of real-time data streams [KG15],
and differential privacy [DR+14]. In many cases this is implemented by
distorting the original data set, or by adding additional noise to guarantee an
individual’s privacy. In the case of real-time data streams, the computational
complexity of the anonymization algorithm has to allow for high throughput.

To monitor all dimensions of a data center requires the appropriate mon-
itoring infrastructure. The potential amount of data that can be collected
is enormous, and requires interfacing with many different types of power
and cooling systems, as well as IT equipment. In Chapter 4, we explore how
edge computing can play an important role when monitoring data centers at
a large scale. We also analyze multiple open-source IoT hubs. And finally we
demonstrate how a co-location data center can be monitored non-intrusively
while preserving privacy and security.

2.4 From Smart Data Center to Smart Building

A smart building is one which integrates and accounts for intelligence, sens-
ing, control, and optimization, typically through use of IoT, with adaptability
as a core concept in order to optimize for: energy, overall efficiency, comfort,
and occupant satisfaction [BMB14]. There exist many parallels between
smart buildings and smart data centers. Both environments require an inter-
connection of sensors and actuators to optimize for a given goal. Whereas
smart buildings integrate their IoT hubs with a Building Management Sys-
tem (BMS), a data center on the other hand depends on a Data Center
Management (DCM) system for integration. Optimizing for energy efficiency
or carbon footprint is something that is important in both domains.
When optimizing for the energy efficiency, the potential savings are sig-

nificant, and there exist a multitude of different approaches that optimize
different aspects of a building. For example, intelligent lighting control has
the potential of energy savings up to 58% [NA13]. Yu et al. provide an
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overview of energy optimization approaches using deep learning [YQZ+21].
The approaches are grouped into three categories: single building, multi
building and micro grid. The overall energy savings for most of these works
are in the 5-30% range, with some outliers going up as much as to 70%.
The authors of [PC21] review the state of the art in AI for smart buildings.
They identify five research domains: energy, comfort, safety, design, and
maintenance. Their conclusion is that AI will continue to play an important
role in the optimization of smart buildings.
The use of AI planning in pervasive computing has been a subject of

research in many studies, but only few use planning in actual pervasive
computing environments [GA16]. The studies usually describe pervasive
computing environments intuitively through scenarios and examples where
devices provide some operations or services and requests are issued by
people or software components. In some cases, a spatial organization of
environments is portrayed too. The basic correspondence that these studies
establish between pervasive computing environments and AI planning is by
relating services to actions and requests to goals. All other environment-
specific knowledge, such as the spatial organization, is integrated into the
planning domain model. The use of AI planning for building optimization is
one of the open challenges identified by Paola et al. [DPOLR+14]. Kaldeli et
al. [KWLA13] take a more transparent approach and provide a formalized
transition between their home domain and planning domain model.

In the future, smart buildings and smart data centers are expected to inte-
grate even more tightly with the power grid using modern technology and
artificial intelligence, creating a smart grid. The smart grid is an intelligent
grid, it is able to store, communicate, and make decisions in a coopera-
tive and responsive manner [TA16]. To improve sustainability, economics,
and security, the smart grid aims to integrate the behaviors of consumers,
producers, and prosumers. Prosumers do not only consume energy, but
also produces energy. In other words, the smart grid allows the different
actors on the grid to work together based on signals that are transmitted
alongside the energy delivery. The building’s BMS can interpret these signals
and control the building as necessary to optimize for a certain goal. The
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authors of [Gha19] highlight the important role of IoT within the context of
smart grids, specifically with respect to monitoring energy generation and
consumption at the source, integration with smart meters, and coordination
of energy storage. The authors also identify challenges, especially with
regards to communication between IoT, BMS, and smart grids, as well as
interpreting smart grid signals. An example of a typical smart grid signal
is the price signal. Throughout the day, the electricity prices fluctuate on
the energy markets as demand and supply changes. A smart building is able
to take advantage of these fluctuations and schedule appliances, devices,
and other loads to perform work at a time during the day which minimizes
energy costs while still adhering to constraints, such as comfort.
A common approach to the scheduling of electrical loads is using Mixed-

Integer Linear Programming (MILP) models. Paterakis et al. present a
method for optimal scheduling of household appliances [PEBC15]. The
scheduling is performed under hourly pricing and peak power limiting de-
mand response strategies. The authors utilize a MILP model for optimal
scheduling, distinguishing between thermostatically and non-thermostatically
controllable devices. The results show that the load factor can be improved
significantly, while the economic costs slightly increase. Duman et al. also
demonstrate the use of a MILPmodel for scheduling the operation of shiftable
loads [DEGG21]. The distinction is made between time-shiftable loads,
power-shiftable loads, and thermostatically controlled loads. Their simula-
tion shows that daily costs can be reduced by 53.2%. A similar method has
been proposed by Nan et al. for optimal demand response scheduling in
residential communities [NZL18]. A distinction is made between interrupt-
ible loads, shiftable loads, and distributed generation. The authors define
a MILP problem to be solved in order to find a solution that reduces peak
load and peak-valley differences and, in turn, the overall cost of power. The
end user costs are reduced by up to 1.52%.
While Mixed-Integer Linear Programming (MILP) appears to be the pre-

dominant approach, alternatives have been proposed. Amer et al. propose a
home energy management system centered around a multi-objective opti-
mization problem [ASGM21]. A distinction is made between shiftable loads,
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non-shiftable loads, and active loads. Energy storage and Photo-voltaic (PV)
energy resources are also considered. The objective is to balance the benefits
for the end-user and the Distribution System Operator (DSO). The results
show a reduction in energy cost of 31%, and a reduction in demand peak by
18%. Lu et al. present a different approach for demand response manage-
ment using reinforcement learning and artificial neural networks [LHY19].
While a distinction between different types of loads is made, energy storage
and renewable generation are not considered. The obtained cost savings are
between 7.3% and 72.3%. The authors demonstrate that their approach out-
performs MILP as the number of iterations increases. The method proposed
by Li et al. utilizes deep-reinforcement learning for the optimal scheduling
of home appliances [LWH20]. The appliances are split into three categories:
deferrable devices, regulatable devices, and critical devices. The approach
reduces the overall electricity costs by 31.6%. An approach that is more
closely related to the work that is presented in this thesis, is the work of
Fioretto et al. [FYP17]. They define a constraint optimization problem,
which is solved by a distributed algorithm that divides the problem into
individual sub-problems to overcome the complexity of the problem. The
savings compared to the baseline use case are over 50%. Finally, Georgievski
et al. demonstrated that the optimal scheduling of the operation of devices
based on user-defined policies can result into significant savings [GDP+12].
From the economic perspective, the obtained savings are of about 35%.
Furthermore, energy savings of 10% are also observed. The occupant sat-
isfaction study shows that comfort and satisfaction is preserved while the
system operates the devices.
Whether it is a smart home, a smart office, or a smart data center, the

potential for energy savings through optimization is clear, both in theory
and in practice. IoT enables many aspects of the building to be monitored
and controlled, either through an IoT Hub, a BMS, or a DCM system. In
Chapter 5, we focus specifically on smart offices. Two practical cases are
evaluated, a kitchen/social corner area, and a restaurant. We also research
the role that energy storage plays when scheduling device loads.
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Sustainable Data Centers

Climate change has been an important driver of a continued push towards
increasing sustainability all across society. The green house effect is one
of the main contributors to climate change, and of the greenhouse gases,
carbon dioxide emissions are the main culprit. The burning of coal, oil, and
gas for the purpose of electricity generation is causing a sharp rise in green
house gas emissions. As data centers are responsible for a significant portion
of the global energy consumption [Jon14], the concept of a sustainable
data center becomes increasingly important. The focus of this chapter is on
sustainable data centers. We stress the necessity of applying best practices,
selecting the appropriate metrics to measure sustainability, and exploring
novel cooling solutions.
In Section 3.1, we investigate the adoption of best practices for sustain-

ability in data centers. Additionally, we identify a number of recurring issues
and the appropriate best practices to apply to counteract them. Next, in
Section 3.2, we review the state of the art in data center metrics across
numerous dimensions, with an emphasis on metrics that help to promote
sustainable decision making. Furthermore, open issues and challenges are
identified for each of the dimensions. And finally, Section 3.3 discusses the
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potential that immersion cooling has compared to traditional cooling sys-
tems. We compare air and liquid based approaches in terms of efficiency, cost,
and maintenance. The goal of the chapter is to give a deeper understanding
of what practices steer data centers towards sustainability, how the effects
of these changes can be measured and evaluated, and how novel cooling
methods can play a role in the near future. We summarize our findings in
Section 3.4.

3.1 Best Practices for Sustainable Data Centers

An important first step towards sustainable data centers is to identify and
understand the best practices that can be applied to improve sustainability,
and determine to what extent these best practices are followed in reality.
This section presents the outcome of our study on such practices. We analyze
the current state of affairs in seven data centers in India and the Netherlands
using a multiple case study approach [Yin09]. We compare the practices
followed in these data centers against the relevant standards on sustainable
data centers, identify design issues and operation inefficiencies, and provide
recommendations for improvements at various operational levels of the data
centers.

3.1.1 Methodology

The features and infrastructure details of the seven data centers partaking in
our study are presented in Table 3.1. For each data centers we present details
on the number of racks, the size in square meters, the power capacity, the
number of security zones, the tier, and the Power Usage Effectiveness (PUE).
Among the seven selected data centers, two are co-location data centers
and provide various services including public cloud services. Three data
centers are privately owned by companies and are used in the financial
services sector running banking, financial, and insurance applications. The
remaining two data centers are those of academic institutions. The selection
was made to cover a wide range of types of data centers.
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A uniform and standard data-collection methodology was adopted in
each case, which included a standard questionnaire, a review of procedures,
benchmarks, and interviews with key personnel. The standard questionnaire
was based on the assessment of the following dimensions: energy efficiency,
cooling, thermal and air management, greenness, and network and storage.
For each dimension, issues and best practices were identified directly in the
data center for the purpose of the study. Based on interview transcripts,
we developed an ad hoc case study report, which was then distributed and
discussed with the interviewees and other staff to gain insights and tailored
feedback for the correct understanding of the status of the data center.

3.1.2 Adoption of Best Practices

The following dimensions for best practices are at the core of the present
study: energy efficiency, cooling, air and thermal management, greenness,
and storage and network. Each practice is categorized accordingly. Based
on the interviews that have taken place with the personnel from the seven
data centers, Table 3.2 has been populated. Each practice is assigned to a
dimension, and each data center is subjected to the practice. In case a data
center follows a given best practice, a check mark (✓) is used to indicate
this. We will now discuss the practices for each of our dimensions.

Table 3.1: The seven selected data centers and their configuration.
Racks Size Power Zones Tier PUE

DC1 5 000 21 300 sqm 30 MW 8 4 1.6
DC2 1 400 3 700 sqm 10 MW 6 4 1.7
DC3 800 1 850 sqm 6 MW 6 3 1.6
DC4 3 000 11 600 sqm 20 MW 6 3 1.6
DC5 1 000 2 800 sqm 10 MW 6 3 1.7
DC6 160 325 sqm 450 kW Redacted 2 1.25
DC7 100 300 sqm 300 kW Redacted 2 1.25
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3.1.2.1 Energy Efficiency Practices

Efficiency is defined as the ratio of the useful work done by a system to the
total energy delivered to it. For data centers, the energy efficiency translates
to the useful work performed by different subsystems. For example, the
energy efficiency of a server is the ratio of energy delivered to the server to
the energy used to complete the computational workload. Inefficiencies may
arise from power conversion losses, capacitor leakage, or even the cooling
fans. What follows next are some of the key practices to improve the energy
efficiency in a data center.

Automation Tools The use of data center automation tools helps to au-
tomate tasks such as provisioning, configuration, patching, release man-
agement, and compliance. Most of the data centers we studied rely on
automation tools that enable real-time optimization, reduce error rates, and
improve the performance of the applications. As can be seen in Table 3.2,
larger data centers rely more heavily on automation tools.

Virtualization and Consolidation Virtualization enables abstracting physi-
cal servers in a data center facility along with storage, networking, and other
infrastructure devices and equipment. Consolidation combines workloads
from different machines into a smaller number of systems when servers are
under-utilized and therefore consume more energy as a whole [FNCDR11].
All the data centers in our study are virtualized and use different virtual ma-
chine consolidation and placement techniques to reduce power consumption
and improve server utilization.

Dynamic Voltage and Frequency Scaling The power management tech-
nique known as Dynamic Voltage and Frequency Scaling (DVFS) reduces the
power consumption of a processor on the fly by adjusting clock frequency
according to current workload, which indirectly leads to a reduction in the
supply voltage [MSA+03]. Load scheduling techniques that take advantage
of DVFS or directly control the frequencies are able to achieve energy savings
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by leveraging the changes in supply voltage. All of the interviewed data
centers use this best practice.

Handling Comatose / Zombie Servers Comatose or zombie servers are
those that run applications that are no longer required or are unused, yet
remain plugged in while operating continuously. Data center operators have
to audit and identify comatose servers as well as duplicate applications. A
report from the Anthesis Consulting Group states that the percentage of
comatose servers in data centers is around 25% [KT17], whereas Ngoko et al.
[NC17] report that up to 30% of servers are comatose. In our interviews we
observed that decommissioning unused servers may result in energy savings
of up to 50%. Each of the seven data centers has procedures in place to
handle these types of servers.

Controlled Lighting with Sensors Installing a lighting control system in
conjunction with more efficient fixtures and occupancy sensors can help
reduce energy usage. Only three of the data centers in our study were using
resource-friendly timers that dim or turn off lighting when people are not
present.

On-Site Power Plant The critical need for clean and economical sources
of energy is transforming data centers that are primarily energy consumers
to energy producers. On-site renewable power generation is an economical
and eco-friendly solution for regions with high electricity prices, and for
campus-like facilities that can re-utilize excess heating and cooling [Ahu12;
TLCS13]. In these cases, one can utilize the grid power as a backup in
combination with on-site generation systems such as gas turbines or diesel
engines combined with fuel cells as the primary source. However, none of
the data centers in our study used on-site power generation.

Data Center Infrastructure Management Tools Energy monitoring allows
greater visibility into overall data center energy usage while providing solu-
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tions to maximize server and infrastructure equipment operating efficiency.
Many data centers use Data Center Infrastructure Management (DCIM)
tools to monitor energy and cooling efficiency and claim 20% savings in
operational expenses [GRD13]. IoT also has an important role to play in the
monitoring of data centers, as we will see in Chapter 4. The majority of the
interviewed data centers utilize DCIM tools.

3.1.2.2 Cooling, Thermal, and Air Management Practices

The data center cooling system ensures that air flows from the raised floor
to the air inlets of the IT equipment in order to maintain the desired thermal
envelope [BP06]. As cooling is one of the main contributors to a data
center’s energy footprint, the energy efficiency of a data center can be
improved by implementing the appropriate air management practices. What
follows are best practices that promote sustainable cooling, thermal, and air
management.

Custom Central Air Handler Efficient airflow can be achieved by eliminat-
ing bypass and re-circulation air flows, as this is where the airflow is wasted
in a data center. All the data centers in our study used horizontal, vertical,
under-rack panels, and PVC curtains for isolation with the goal of minimizing
the re circulation of hot air. All the data centers also used high-raised floors,
overhead cabling, cable grouping, the placing of cable trays below the hot
aisle, and cabling within the cabinets and racks to avoid air blockages. The
best practice is to have dedicated horizontal airflow rather than a mixture of
vertical and horizontal airflow, because dedicated horizontal airflow provide
much more uniform distribution. During the inspection of the return air
ducts for HVAC, we observed inadequate ceiling height or undersized hot air
return plenum in a few of the data centers. Increasing the size of the return
duct to match the air handler avoids this problem. Use of high overhead
plenum and several feet of clearance under the raised floor provides better
maintenance. For efficient airflow management, some of the data centers in
our study made use of custom-designed central air handler systems
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Liquid Cooling As coolant liquids have a higher thermal conductivity than
air, liquid cooling is an interesting solution to data center, and is typically
deployed on room-level and row-level systems. The most common type of
liquid cooling is direct-to-chip cooling, which uses flexible tubing and copper
plates to bring the cooling liquid directly to the heat sources. Only one
data center in our study is using liquid cooling, as it is more expensive than
air-based cooling. A more extreme solution to liquid cooling is immersion
cooling, where the hardware is completely immersed in a dielectric fluid.
The state of immersion cooling, as well as the benefits and drawbacks are
discussed in Section 3.3.

Sensors for Chiller Plant Monitoring is critical in data centers, not only
for IT equipment, but also for the cooling systems. Load-monitoring sensors
for chiller plants enable the data center to determine if the current cooling
capacity is sufficient, or if it needs to be increased or decreased. All of the
data centers we interviewed used chiller plant sensing.

Hot and Cold Aisle Containment When the rack aisles are not contained,
there is a risk of by-pass and re-circulation airflow, as shown in Figure 3.1.
Ideally, all the hardware in a row of cabinets faces the same way so that hot
air is expelled on one side and cold air blows from the other side. And air
from the hot and cold aisles should not be allowed to mix. All of the data
centers followed a containment approach that allows the proper flow of cold
air to the destination while preventing mixing of air, in turn reducing energy
consumption.

LOOP Design for Chillers The control of humidity in data centers is es-
sential to achieve high availability and reduce maintenance costs. The level
recommended is around 50% or higher. However, data centers without large
high-speed fans can safely operate at 40% humidity levels, thus decreasing
water and energy consumption [IBM12]. Humidity can be best controlled
knowing both inside and outside environmental conditions. Adiabatic humid-
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Figure 3.1: Hot aisle/cold aisle air mixing in data centers.

ification technology provides higher efficiency than infrared or isothermal
technologies [CH16a]. Many of the data centers used LOOP design, with a
median temperature of 10°C to 15°C [Har99]. A LOOP design uses a closed
feedback control loop to optimally adjust the parameters of the cooling
systems.

Adjustable Speed Drive Chillers Variable frequency fans in the CRAH
units would allow for self-adjusting, thus resulting in energy savings. Most of
the data centers in our study were operating at conservatively low baseline
temperatures, but raising the baseline temperature would save 4% in energy
costs with each degree of increase in the temperature set point [Ahu12].
The use of variable speed drive chillers, which slow down their motors to
match the varying capacity requirements, can further reduce the energy
consumption of the cooling system. Less than half of the interviewed data
centers make use of this technology.

3.1.2.3 Green Practices

A green data center incorporates energy-efficient design with high-efficiency
power delivery, highly efficient cooling, and increased utilization of renew-
able energy sources [GLMP13; Mur08]. What follows next are some of the
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approaches and practices for the development of green data centers.

Economizers (Free Cooling) Data centers can achieve significant energy
savings through the use of water-side or air-side economizers. Economizers
make an impact when wet bulb temperatures outside the data center are less
than 13°C for more than 3,000 hours per year. Four out of seven interviewed
data centers used economizers. Some of the data centers in our study claimed
up to a 20% decrease in energy costs and a 7% decrease in maintenance costs
since deploying economizers. However, the use of economizers depends on
the geographical location, weather conditions, and economizer design.

Reclaimed Water for Data Center Cooling The use of reclaimed, or so-
called gray water, is neither harmful to the environment nor to human
health. Using gray water for cooling is considered more ecologically and
environmentally friendly because it reduces demands for ground water and
does not require energy for the recycling process at waste-water treatment
sites. This best practice was applied by none of the data centers.

Cooling Water Re-circulation Using the same water for several cycles of
cooling operations reduces water consumption. The water savings improve
data center’s efficiency and lower the impact on the environment and on
potable water supplies while simultaneously cutting costs. Only two data
centers utilized the re-circulation of water for their cooling systems.

Renewable Resources Renewable energy typically comes from solar pan-
els, wind turbines, or hydroelectric installations. As renewable energy pro-
duction is intermittent in nature and dependent on the geographical location,
it is often combined with energy storage facilities. Nevertheless, these are
still expensive installations. Most of the data centers in our study were not
using green energy.
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3.1.2.4 Storage and Network Practices

Generally, a data center is seen as a facility used to house computer systems
and associated components, such as telecommunications and storage systems.
Storage and networking equipment are critical pieces of IT equipment within
the data center. Some of the best practices followed for storage and network
communications of a data center are described as follows.

Storage Tiering Tiered storage is an approach to organizing storage that
aims to reduce overall storage costs and simultaneously improve availabil-
ity and performance by ranking data based on business value and access
frequency. The way this is achieved is by categorizing the data in different
tiers, for example: mission critical data, hot data, warm data, and cold
data. Depending on the category, the appropriate storage requirements can
be defined. Mission critical data requires high levels of redundancy and
backups, hot data depends on highly throughput storage devices, and for
cold data the size of storage is more important than the performance. All of
the interviewed data centers use storage tiering.

Automatic Waste Storage Management Reducing wasted storage is an
important step in decreasing the e-waste of a data center. Managing wasted
storage reduces the need for the data center to rapidly expand its storage
capabilities. Actively monitoring the storage capacity is important for the
automation of wasted storage management. All of the interviewed data
centers have procedures or tooling in place to reduce the storage waste.

Centralized Control and Storage Optimization All of the data centers we
surveyed have centralized control over the servers, storage, and databases
for storage optimization. A solid-state drive helps reduce the energy con-
sumption of spinning disks and handles the enormous demand on storage
systems. Some of the data centers in our study were using pooling storage,
hybrid storage, and flash caches.
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Software-defined Networking Software-defined Networking (SDN) is the
virtualization of networking and storage infrastructure, it offers resource
flexibility, optimal resource usage, and scalability [DKR13]. All of the data
centers had either adopted SDN or are planning to adopt SDN in the near
future. Some were using network virtualization, which allows each customer
to have their own network with different controller applications and balances
the performance, port utilization, and traffic demands. The data centers in
our study used automation tools to predict network loads and avoid outages.

Storage Pooling and Geo-replication All of the data centers were using
geo-replication for storage backup, e-discovery, and data mapping for archiv-
ing data, whereas flash storage was used for specific applications in very few
of the data centers in our study.

3.1.3 Recommendations for Data Center Operators

Based on the results of the multiple case study, we have compiled a number
of recommendation and general observations. First of all, data center life
cycle management helps enterprises understand key management tasks,
connections between different phases, and the pitfalls that exist in each
phase. Generally, the data center life cycle is comprised of five phases:
plan and analyze, design, build, operate, and continuous evaluation. For
initial phases, it is better to use reference designs to validate the early
project choices and develop system concepts. Considering the whole chain
of operations, data center operations become the base layer with the goal of
optimizing not only energy and cost, but also of helping with the long-term
planning and provisioning of equipment and resources.
Nowadays, cloud computing is of strategic importance, benefiting both

providers and their customers. If a new data center is under-utilized, it can
act as a cloud provider for other data centers and customers. To accommo-
date the growing demands of users and other background processes using
the same physical resources, data centers are required to make optimal use
of all the resources by increasing utilization and visibility. Proper selection

66 3 | Sustainable Data Centers



of virtual machines for migration minimizes the number of power-on nodes.
Designing and implementing fast energy-efficient virtual machine allocation
and selection algorithms considering multiple resources can result in energy
efficient data centers.

Maintaining a separate, direct current feed to power the telecommunica-
tions and storage systems directly will reduce energy consumption, building
costs, and conversion losses. DCIM or automation tools can achieve con-
siderable energy savings, ranging from 5 to 20% [GRD13]. Centralized
cooling systems in a large-scale data center can be optimized by maintaining
a median temperature of 10°C to 15°C, using adjustable-speed drive chillers,
storing excess thermal energy, and by installing energy- and load-monitoring
sensors. Following the recommendations for chiller plants will have quick
return on investment in the order of two to three years due to energy savings.
Hot and cold aisle containment, increasing the data center supply air

temperatures, using air-side or water-side economizers, and increasing the
room temperature all reduce the cooling capacity requirements of the CRAH
units. Furthermore, increasing the temperature of the chilled-water supply
can still provide sufficient cooling for a data center while reducing the
number of hours of compressor-based cooling.
To improve the PUE, it is important to understand the baseline power

consumption of the data center. It is also important to monitor and evaluate
compute efficiencies per server type, adjust operations according to peak
power utilization, and shift resource usage based on usage profiles. There is
a need for DCOs to correlate the infrastructure investments more closely to
the actual resource requirements of applications.
Table 3.3 and Table 3.4 summarize the various implementation issues in

the dimensions we studied that lead to inefficiencies, as well as the solutions
and best practices that were uncovered to avoid these problems and improve
the data center’s efficiency. In short, optimizing the cooling plant, oper-
ational parameters of the data center, uninterruptible power supply load,
and zombie servers along with controlled lighting, continuous monitoring,
and proper airflow management can improve the energy efficiency of a data
center. Placing cold data on slower, larger drives that use less power can
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also reduce the energy footprint. In our study, DC3 claimed a reduction of
20% in their PUE score by following best practices in cooling, thermal and
air management, and storage and network practices. DC1 claimed a PUE
reduction of 20% by strictly adhering to energy-efficiency practices such as
virtualization, consolidation, and automation tools. DC2 and DC4 claimed a
PUE reduction of 10% by effectively following the best practices of energy
efficiency and cooling, thermal, and air management.

3.1.4 Conclusions

Best practices play an important role in identifying areas of improvement,
and in increasing the data center’s operational efficiency. The greenness best
practices specifically aim towards increasing the sustainability aspects of
the data center. We studied issues in seven data centers in India and the
Netherlands to identify and describe which of the best practices are applied
with regards to sustainability. In total, 23 best practices were selected, across
the domains of cooling-, thermal-, and air-management, as well as energy
efficiency, greenness, and storage and networking. Each of the seven data
centers were subjected to these best practices, and results show that most
of the practices were indeed implemented. However, there were only two
data centers which implemented the majority of the greenness practices.
Progress can also be made when it comes to using reclaimed water for
cooling, re-circulation of cooling water, and the use of renewable resources.
Furthermore, none of the interviewed data centers make use of smart lighting
controls, or on-site power generation. Implementing all of the listed best
practices enables data centers to become more efficient and sustainable. Now
that we understand what actions to implement to increase sustainability
in data centers, the next question is how can we determine the effect that
these best practices have on the data center? This is where the use of the
appropriate metrics is critical.
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3.2 Metrics for Sustainable Data Centers

Metrics are quantifiable assessments, they are useful for evaluating, com-
paring, and monitoring performance over time. More formally, metrics are
an empirical, objective assignment of numbers, according to a rule derived
from a model or theory, to attributes of objects or events with the intent of
describing them [FP16]. Metrics often play an important role in the form of
Key Performance Indicators, which track the progress towards certain goals.
In the context of data centers, metrics enable the data center operators to
have a better view on potential inefficiencies and areas of improvement.
Data center metrics also allow architects and operators to measure the per-
formance and effects of changes made to subsystems, for example when
implementing sustainability practices. Poorly defined metrics will impede
business innovation and prevent meeting environmental sustainability goals.
The number of available metrics that can be applied in the context of

data centers is vast. To assist in the process of metric selection, we present
an analysis of metrics that are commonly used in data centers, starting
from the power grid and going all the way up to the service delivery. One
of the major contributions presented in this section is the identification of
various metrics relating to a data center and the classification based on the
different core dimensions of data center operations. We define the core
dimensions of data center operations as follows: energy efficiency, cooling,
greenness, performance, thermal- and air-management, network, security,
storage, and financial impact. An emphasis is put on metrics that measure
the performance of the data centers in terms of sustainability. Furthermore,
we derive relationships between metrics, and discuss the advantages and
disadvantages of each metric in order to expose the research gaps and
illustrate the latest research trends in computing the efficiency of a data
center. We present a taxonomy of state-of-the-art metrics used in the data
center industry which is useful for the researchers and practitioners working
on monitoring and improving the energy efficiency of data centers. And
finally, we identify issues and open challenges with regards to the state of
the art in data center metrics.
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3.2.1 A Taxonomy of Data Center Metrics

The continuous monitoring and evaluation of metrics is a critical tool for
organizations to gain information and insights to control and optimize their
data centers, and to measure the impact of policy changes. To remain com-
petitive with their peers in the industry, organizations must ensure optimal
utilization of resources in order to increase efficiency while minimizing envi-
ronmental impact. This is only possible if there is information available that
is meaningful and actionable. Well-defined and organized metrics increase
the organization’s productivity and assist with making management deci-
sions. The goal of our taxonomy of metrics is to bring order and structure
in the heterogeneous landscape of data center metrics, as well as identify
relationships between existing metrics, and uncover potential issues and
challenges.

For efficient and eco-friendly operation of data centers, we need to monitor
all the components of a data center. The components that we have identified
are visualized in Figure 3.2. At the top level, we have the entire facility, which
encompasses energy and other resources going into IT related components,
and into support components such as lighting, HVAC, and offices. The
IT power flows to the Power Distribution System (PDS) and UPS, which
further distributes the power to IT equipment. The IT equipment consists of
servers that are organized into racks. Servers can include application servers,
networking equipment such as switches, routers, and storage servers. This
classification enables us to assign a category to each metric and group them
based on these categories.

Besides metric categories, we also identify the dimension in which the met-
ric operates. The following dimensions emerge as core dimensions: Energy
Efficiency, Cooling, Greenness, Performance, Thermal and Air Management,
Network, Storage, Security and Financial Impact. Each dimension has many
different metrics, across different categories, each with its own approach
to measuring performance of a data center, each with its own advantages,
drawbacks and limitations. We provide a survey of data center metrics, and
for each metric describe the unit in which it is expressed, the objective, the
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Figure 3.2: The identified metric categories for data centers.

optimal value as well as the scale at which the metric operates. The objective
specifies the optimization that should be done for a given metric, which
typically means either minimizing or maximizing the metric. The optimal
value is the ideal or target value for the metric. Furthermore, there are
inter-dependencies between individual metrics, as some are based on or
have a strong relationship with other metrics. We identify these relationships
and label them as ’uses’-relationships and ’based on’-relationships. The ’uses’-
relationship exists when a metric uses another metric directly as input for
the calculation. The ’based on’-relationship indicates that a metric is based
on the principles of another metric, but does not directly use this metric as
input. It is critical to understand these dependencies, as the shortcomings of
one metric are not necessarily overcome when it is used in the calculation
of another metric. What follows next is a detailed review of metrics per
dimension. For a complete description and definition of all metrics we refer
to our work in [RSR+17]. Only the abbreviation of the metric are given in
the tables, for the full name of the metric we refer to the list of acronyms of
this thesis.
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3.2.1.1 Energy Efficiency Metrics

The energy efficiency of a system is defined as the ratio of useful work done
by a system to the total energy delivered to the system. For data centers,
the energy efficiency translates into the useful work performed by different
subsystems, where useful work is typically the computational load. An
overview of available energy efficiency metrics is presented in Table 3.5 and
Table 3.6. The unit of each metric is listed, including the objective, optimal
value and the category to which it belongs. We analyze the relationship
between these metrics and present them in Figure 3.3, where we organize the
metrics horizontally based on their category and visualize the relationships
that exist among them.

The most popular energy efficiency metric, PUE, is used by a large number
of other metrics either directly or as a derivation. For example, Server Power
Usage Efficiency (SPUE) and pPUE metrics are based on the same principles
as the PUE metric. The Data Center Performance Per Energy (DPPE) metric
is also noteworthy as the metric is a combination of four other metrics:
DCiE, Green Energy Coefficient (GEC), IT Equipment Energy (ITEE), and IT
Equipment Utilization (ITEU). The PUE is defined as the ratio of the total
energy consumption of the data center, and the total energy consumption of
the IT equipment. Since the IT energy consumption is included in the total
energy, the value of PUE will typically be greater or equal to one.

PU E =
Total Facil i t y Ener g y
I T Equipment Ener g y

(3.1)

To calculate the ITEU, one needs to know the exact power used by fans,
voltage regulators and other components inside IT equipment. One of the
challenges is the accurate measurement of the total energy that goes into
IT equipment. Defining coefficients for different types of IT equipment
is also challenging, especially in the heterogeneous environments of co-
location data centers. To accurately calculate the Operating SystemWorkload
Efficiency (OSWE) metric, the number of operating systems needs to be
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known, including the operating systems of virtual machines. We can conclude
that some of these metrics require accurate and very hardware-specific data
in order to be useful. In other words, it requires monitoring of the data
center at a large scale. In Chapter 4 we will further investigate data center
monitoring and explore how data centers can be monitored at a large scale
using the principles of IoT.

Facility IT Equipment Rack Server
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WPE
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uses
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Figure 3.3: Relationships between energy efficiency metrics.

3.2.1.2 Cooling Metrics

Almost all of the electrical energy used for computations in a data center
is transformed into thermal energy, or heat. The heat generated by the
IT equipment must be controlled and removed to maintain high levels of
operational performance and ensure that hardware operates within their
environmental envelope. Therefore, cooling plays a vital role in any data
center. The complex interconnection of HVAC systems ensures optimal
conditions for the computing environment in a data center, guaranteeing
the life span, scalability and flexibility of the servers [KK15]. An overview
of the available cooling metrics that can be applied in the context of data
centers can be found in Table 3.7.
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Table 3.7: An overview of cooling metrics.
Acro. Unit Objective Optimal Category Ref.
AEUF % Maximize 1.0 HVAC [LC13]
CoP Ratio Maximize ∞ Facility [PP09]
DCCSE kW/ton Minimize 0.0 HVAC [MGGS09]
DCSSF Ratio Minimize 1.0 HVAC [MGGS09]
EER Ratio Maximize ∞ Facility [SSO+14]
HSE Ratio Maximize 3.5 HVAC [Van11]
RI Ratio N/A N/A HVAC [VS06]
WEUF % Maximize 1.0 HVAC [Han08]

3.2.1.3 Green Metrics

The reduction of the carbon footprint and greenhouse gases are critical for
the future of our society and are therefore becoming subject to governmental
regulations and taxes. As a result, the "greenness" of a data center is becom-
ing increasingly important. A green data center is defined as a system in
which the mechanical, lighting, electrical and IT equipment are designed to
maximize energy efficiency and minimize environmental impact [BBDC+15;
Mur10]. Green IT addresses the sustainability issues by improving energy
efficiency, lowering greenhouse gas emissions, using renewable resources,
and by encouraging reuse, and recycling [MG12]. Table 3.8 presents various
green metrics which reflect the greenness of the data center in terms of
carbon footprint, heat reuse, efficiency of water consumption and use of
renewable energy resources. Figure 3.4 illustrates the relationships between
these metrics using the following concepts: reducing resource usage, reusing
resources, recycling resources, renewable resource usage. We organize the
green metrics horizontally according to the these four concepts and vertically
based on the category in which they operate.
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Figure 3.4: Relationships between green metrics.

3.2.1.4 Performance Metrics

The performance of a data center is the total effectiveness of the system,
including throughput, response time, and availability [WK13]. Measuring
performance and productivity is crucial as sub-optimal performance has
operational and financial implications for a data center. When determining
the performance of a data center one can encounter several difficulties in-
cluding: identifying workloads, overhead of performance measurements,
energy distribution losses, and measuring the energy consumption at various
levels of the data center. Measuring the actual performance and productiv-
ity allows data center operators to determine how to further improve the
performance and plan for future work loads. An overview of the metrics
which measure the performance of various components in data centers is
presented in Table 3.9.
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Table 3.9: An overview of performance metrics.
Acro. Unit Objective Optimal Category Ref.
ACE Ratio Maximize 1.0 HVAC [BDD14]
DCP Work / W Maximize ∞ Facility [ACD08]
DEEPI Prod. / Watt Maximize ∞ Facility [Bri07]
DR Ratio Maximize 1.0 Server [WA12]
EP Ratio Maximize 1.0 Server [RPE11]
FpW Ops / J Maximize ∞ Server [BC10]
IPR Ratio Minimize 0.0 Server [VAG10]
LD Ratio Minimize 0.0 Server [WA12]
LDR Ratio Minimize 0.0 Server [VAG10]
PG Ratio Minimize 0.0 Server [WA12]
SWaP Ratio Maximize ∞ Facility [Gre05]
UC PU % Maximize 1.0 Server [BC10]
UDC % Maximize 1.0 Facility [BP08]
Userver % Maximize 1.0 Server [BP08]
UPSC F Ratio Optimize 1.4 UPS [Ras06]
UPSEE % Maximize 1.0 UPS [Giu11]
UPSPF Ratio Maximize 1.0 UPS [Ras06]
UPSPFC Ratio Maximize 1.0 UPS [NO10]
UPSSF Ratio Optimize 1.5 UPS [Ras06]

3.2.1.5 Thermal and Air Management Metrics

Thermal and air management metrics measure environmental conditions
of the data center and also determine how air flows within a data center,
from cooling units to the vents. These metrics assist with the diagnostic
analysis to determine, for example, the amount of re-circulation and by-
pass air. In general, the metrics are based on the relationship between
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air flow rate and ambient temperature. When it comes to thermal and air
management, the metrics can be influenced by internal parameters, such as
the data center’s layout and configuration, as well as external parameters,
such as geographical location [WB15]. Metrics like temperature, humidity,
dew point and heat flux are used to prevent the over-heating, maintain the
humidity levels, capture the current condition of the cooling system, and to
assist with making the correct decisions. The dimension, objective, optimal
value of the outcomes, and the scale at which these metrics operate are
presented in Table 3.10.

Table 3.10: An overview of thermal and air management metrics.
Acro. Unit Objective Optimal Category Ref.
AE W/cfm Minimize 0.0 Facility [MGGS09]
βindex Ratio N/A N/A Rack [QLL13]
BPR Ratio N/A N/A Facility [TS10]
BR Ratio N/A N/A Facility [TS10]
CI % Maximize 1.0 HVAC [VS07]
DC oC /o F Optimize 18-27oC Facility [ASH11]
DP oC /o F Optimize 17oC Facility [ASH11]
HF W/m2 Minimize 0.0 Facility [ASH11]
IoTemp % Minimize 0.0 Rack/Server [SSO+14]
D2 Unit Minimize 0.0 Facility [NHE+03]
Mx cfm N/A N/A Facility [TKS09]
NPR Ratio N/A N/A Facility [TS10]
RCI % Maximize 1.0 Rack [Her05]
RH % Optimize 60% Facility [Eva15]
RHI Ratio Maximize 1.0 Facility [SBP02]
RR Ratio N/A N/A Facility [TS10]
RTI % Optimize 1.0 Rack [HK07]
SHI Ratio Maximize 1.0 Facility [SBP02]
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Figure 3.5: Relationship between thermal and air management metrics.

Air management metrics address air flow efficiency and separation of
hot and cold air streams. We observed that most of the air management
metrics depend on common inputs. We have analyzed these metrics, looking
specifically at their inputs, airflow path, and purpose of each metric. The
result of this analyses can be seen in Figure 3.5. Noteworthy is the fact that
Return Heat Index (RHI) and Supply Heat Index (SHI) differ in airflow paths,
and that Balance Ratio (BR) can be developed as a function of Recirculation
Ratio (RR) and Bypass Ratio (BPR).

3.2.1.6 Network Metrics

The data center network is a core component of the data center, providing
numerous interconnectivity services. Networking equipment is responsible
for up to 15% of a data center’s amortized cost [GHMP08]. To increase the
efficiency of data centers, operators should improve the energy efficiency of
their network. At the same time, performance levels should be maintained
as decreased network performance harms application performance and can
lead to revenue loss. A data center’s network performance can typically be
characterized using well-known metrics such as bandwidth, Network Power
Usage Effectiveness (NPUE), Communication Network Energy Efficiency
(CNEE), reliability and throughput [AMW+10]. An overview of the network
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metrics with the unit of each metric, objective, optimal value and the scale
at which these metrics operate are presented in Table 3.11.

Table 3.11: An overview of network metrics.
Acro. Unit Objective Optimal Category Ref.
BJC b/J Maximize ∞ IT Equip. [RM07]
CNEE J/b Minimize 0.0 IT Equip. [FKBZ15]
DS Ratio Optimize 1.0 IT Equip. [CCC12]
ECR-VL W/Gbps Minimize 0.0 IT Equip. [ANK10]
NPUE Ratio Minimize 1.0 IT Equip. [FKBZ15]
NTkwh b/kWh Maximize ∞ Facility [Glo14]
PS Ratio Optimize 1.0 IT Equip. [CCC12]
RSmax Ratio Maximize 1.0 IT Equip. [CCC12]
TEER Ratio Maximize ∞ IT Equip. [ATI14]
Unetwork % Maximize 1.0 IT Equip. [BP08]

3.2.1.7 Storage Metrics

Efficient and performant storage for cloud data centers can be challenging to
achieve as it requires interaction with many components in the infrastructure
such as application servers, storage devices, and network equipment. By
applying a set of metrics for storage operations in the data centers the
storage performance can be increased by continuous monitoring of these
metrics [CAP+11]. Overall Storage Efficiency (OSE) and slot utilization,
for example, enable insights into how efficiently the storage capacity is
utilized. Traditional metrics are unable to capture the improved efficiency
achieved by new tools and methods such as trim storage and just-in-time
allocations. We perceive the requirement for a single set of metrics that
reflects storage utilization across a changing technology base. We analyze
and present the current storage metrics along with their units as well as
the objective, optimal value of the outcomes and the scale at which these
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metrics operate in Table 3.12.

Table 3.12: An overview of storage metrics.
Acro. Unit Objective Optimal Category Ref.
CEE GB/W Maximize ∞ Storage [Sch09]
LSP % Maximize 1.0 Storage [CAP+11]
OSE Ratio Maximize 1.0 Storage [CAP+11]
RT ms Minimize 0.0 Storage [Sch09]
SU % Maximize 1.0 Storage [Sch09]
TPi/o B/s Maximize ∞ Storage [MK91]
Umem Ratio Maximize 1.0 Storage [MK91]
Ustorage % Maximize 1.0 Storage [BP08]

3.2.1.8 Security Metrics

Data centers can be designed to withstand everything from corporate espi-
onage to terrorists, to natural disasters. To ensure high security standards,
data centers need to follow several practices and guidelines. Data centers
should be built on the right site with walls capable of withstanding explosions.
To handle fire break outs, data centers should establish fire compartments
and monitor the environment with the help of aspirating smoke detectors.
Data centers should have redundant utilities, a buffer zone around the site, a
limited number of entry points, plenty of surveillance cameras, etc. In addi-
tion, data center employees, customers and visitors should be authenticated
at least three times [ANI12]. Security metrics quantify how well security
strategies are deployed. A security metric is defined as a system of related
dimensions (compared against a standard) enabling quantification of the
degrees of freedom from the possibility of suffering damage or loss from
malicious attacks [Abb11]. The basic security goals in a data center include
authentication, authorization, and data protection.
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Most of the data centers have layered security in place. The number of
layers of security increases with the tier of the data centers, with Tier 4 data
centers having more than 6 security levels [Ctr15; Sca15]. Layered security
include perimeter fences equipped with senors, badge access to inner doors,
guard escorted visitors, a floor to ceiling turnstile, access card or bio-metric
authentication to secure parts of the data center, video surveillance, and
locked cages for servers. Some data centers use testing, development and
production zones, where production zones have high security and testing
zones have less [Yas09].
For full control, it is advised to have security zones in a data center net-

works to provide better visibility and improve detection performance [Lyo12].
A security zone is created in a network, consisting of a group of IT equip-
ment that have similar access control requirements. Security zones are
logical entities that provide isolation and minimize security risks. They are
organized as layered trust zones with inner layers having higher levels of
security than the outer ones. This layering offers one way communication
from higher trust zones to lower trust zones. Furthermore, virtual private
networks can be used to manage and protect the networked environment. In
a virtualized environment, strict enforcement of security policies may not be
possible due to migrations of virtual machines across data centers [BBG10].
Providers and customers should communicate their expectations for security
as part of agreement process and component level security controls need
to be developed in the shared control model. Table 3.13 lists the metrics
for the complexity and performance of firewalls, intrusion detection, and
prevention systems.

3.2.1.9 Financial Impact Metrics

Within organizations, financial impact metrics are useful for setting up bud-
gets and measuring project expenses [APP15].In the context of data centers,
employing financial metrics in a balanced score-card approach can assist the
data center operators with placing other key metrics, such as outage reports
and service quality metrics, in a financial perspective. An example of an
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Table 3.13: An overview of security metrics.
Acro. Unit Objective Optimal Category Ref.
ACPR Count Minimize 0.0 IT Equip. [AHAS11]
AS Count Optimize - IT Equip. [AHAS11]
ATR b/s Maximize ∞ IT Equip. [Sny10]
CC Count Maximize ∞ IT Equip. [AHAS11]
CER Con/s Maximize ∞ IT Equip. [AP03]
CTR Con/s Optimize - IT Equip. [AP03]
DeD Count Maximize ∞ Facility [Sny10]
DeP - Maximize 1.0 IT Equip. [BM08]
DTE Count Minimize 0.0 IT Equip. [BM08]
FC Ratio Optimize - IT Equip. [AHAS11]
FL ms Minimize 0.0 IT Equip. [Sny10]
HTR b/s Maximize 0.0 IT Equip. [AP03]
IAS Count Optimize - IT Equip. [AHAS11]
IPFH - Maximize ∞ IT Equip. [AP03]
ITH % Maximize ∞ IT Equip. [AP03]
RA Count Optimize - IT Equip. [AHAS11]
RC Count Minimize 0.0 Facility [BM08]
RCD Days Minimize 0.0 IT Equip. [BM08]
T Days Minimize 0.0 IT Equip. [BM08]
TPI P b/s Maximize ∞ IT Equip. [New99]

important financial metric is Total Cost of Ownership (TCO), which is the
main cost driver for IT and represents a significant expense for other units
such as cooling and lighting. The metric empowers us to settle on better
venture choices and manage demand. Capital expenditure and Operational
expenditure indicate the amount of funds required to purchase the physi-
cal assets and the cost incurred for making them operational, respectively.
Along with other metrics, such as carbon credit and Return On Investment,
these assist in the development of an effective business case for data center
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modernization. An overview of the financial impact metrics is presented in
Table 3.14 where the unit of each metric is listed including the objective,
optimal value, and the category to which it belongs.

Table 3.14: An overview of financial impact metrics.
Acro. Unit Objective Optimal Category Ref.
A Ratio Maximize 1.0 Facility [Wib08]
BVCI Dollars Maximize ∞ Facility [VPDS11]
CapEx Dollars N/A N/A Facility [APP15]
CCr Tons Maximize ∞ Facility [Sch09]
λ f aul ts Faults/Hour Minimize 0.0 Facility [Wib08]
MTBF Hours Maximize ∞ Facility [TA04]
MTTF Hours Maximize ∞ Storage [Wib08]
MTTR Hours Minimize 0.0 Facility [Wib08]
OpEx Dollars Minimize 0.0 Facility [APP15]
ROI Ratio Maximize ∞ Facility [VD13]
TCO Dollars N/A N/A Facility [Ras11]

We analyze the relationships between the financial metrics and present
them in Figure 3.6. This figure shows that the Total Cost of Ownership (TCO),
is calculated as a sum of Capital Expenditure (CapEx) and Operational Ex-
penditure (OpEx) of the data center. Component failure rate (λ) is calculated
using Mean Time Between Failures (MTBF). And Availability (A) is calcu-
lated using both MTBF and Mean Time To Repair (MTTR).

3.2.2 Open Issues and Research Challenges

There are a multitude of metrics to measure and monitor different aspects
of data centers. We have identified a number of open issues and challenges
in each of the dimensions. By applying a well-defined set of metrics which
measure energy consumption and environmental impact during data center
operation, and while making choices at various levels, it is possible for
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Figure 3.6: Relationship between financial metrics.

data centers to be planned, designed, implemented and operated in an
energy-aware and eco-friendly manner. In Tables 3.15 and 3.16, we make
a distinction between independent and dependent metrics. Independent
metrics do not depend on other metrics; while dependent metrics do depend
on other metrics. What follows next is a summary of the open issues we
have identified.
When looking at the relationship between the metrics and challenges

associated with using them, it becomes apparent that there is no single
metric which covers all dimensions of the data center’s performance. Even
per dimension, there are several metrics promising to provide insights into
the same area, through similar or different methods. However, none of these
metrics are designed for the purpose of comparing data centers. In practice
however, it is the PUE metric that is used for this purpose, despite the fact
that it was never intended to be used as a comparison metric [BRPC07].
Instead, the metric was envisioned to be an internal measurement to steer
an individual data center towards higher levels of efficiency, by knowing
which areas have a low efficiency in terms of energy consumption. There are
several problems when using PUE for the purpose of comparing data centers.
For example, the IT load of a data center influences the PUE significantly.
Furthermore, the PUE is also influenced by the weather and the geographical
location of the data center. Therefore, comparisons between data centers
using PUE are most often not representative of the actual situation. We see
that there is a need for a metric which is designed with comparison in mind
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from its inception. Ideally, this metric should attempt to normalize the data
in such a way that a fair comparison between data centers can be performed.
The metric should take into account the overall utilization of data centers,
as well as the location and weather.

Table 3.15: Metrics categorization into independent and dependent, part 1.
Independent Metrics Dependent Metrics

Energy Efficiency

APC, CADE, DCA, DCeP, DCLD, DCPD,
DC-FVER, DH-UE, DH-UR, EES, EWR, GEC,
H-POM, ITEE, OSWE, PEsavings, PUE,
PpW, ScE, SI-POM, TUE.

CPE, DCcE, DCiE,
DCPE, DPPE, DWPE,
ITEU, PDE, pPUE,
PUEscalabil i t y , SPUE,
SWaP.

Cooling
AEUF, CoP, DCCSE, DCSSF, EER, RI, WEUF. HSE.

Greenness

CO2S, EDE, ERF, GUF, MRR, TGI. CUE, ERE, GEC,
ωener g y , TCE, WUE.

Performance
DCP, DR, EP, FpW, IPR, LD, LDR,
PG, UC PU , UDC , Userver , UPSC F , UPSEE , UPSPF ,
UPSPFC , UPSSF .

ACE, DEEPI, SWaP.

Thermal and Air Management
AE, CI, DC, DP, HF, IoTemp, D2, Mx , RCI,
RH, RHI, RTI, SHI, βindex .

BPR, BR, NPR, RR.

Network
BJC, CNEE, ECR-VL, NTkwh, RSmax , TEER,
Unetwork.

DS, NPUE, PS.

Another challenge is the difficulty of capturing the energy efficiency for all
of the possible parameters of the data center using a single metric. This can
be partially addressed by extending existing metrics, for example Corporate
Average Data Center Efficiency (CADE) metric can be extended by consid-
ering how efficiently servers, storage, and network equipment are utilized.
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Table 3.16: Metrics categorization into independent and dependent, part 2.
Independent Metrics Dependent Metrics

Storage
CEE, OSE, RT, SU, TPi/o, Umem, Ustorage. LSP.

Security
ACPR, ATR, CC, CER, CTR, DeD, DeP, DTE,
FC, FL, HTR, RA, RC, RCD, T, TPI P .

AS, IAS, IPFH, ITH.

Financial Impact
BVCI, CapEx, MTBF, MTTF, MTTR, OpEx, ROI. A, CCr, TCO, λ f aul ts.

Data Center Infrastructure Efficiency (DCiE) metric is effective at discovering
initial efficiency problems and helps justify the need to implement energy
saving changes. However, the DCiE metric varies for each data center as it
depends on the IT electrical load, which is a variable and is a site specific
function of the IT hardware, software, architecture, load and efficiency. Due
to this variability, we can not predict the impact of changes to the data
center using DCiE. The Green Index (TGI) metric allows for flexibility in
green benchmarking as it can be used and viewed in different ways by
its end-users. Even though we have specified the use of the performance-
per-watt metric for computing the TGI, it can also be computed with any
other energy efficiency metric. TGI does not consider the power consumed
outside of the IT equipment context. In case other components need to be
included, the metric can be extended. Overhead metrics such as IT Hardware
Power Overhead Multiplier (H-POM), Site Infrastructure Power Overhead
Multiplier (SI-POM) give an understanding of a data center’s energy use
considering variations in IT equipment energy consumption and the facility
energy consumption. These metrics provide useful insights to the data cen-
ter operators regarding the efficiency of the different components of a data
center, from cooling to electrical losses. However, to accurate evaluate all of
these metrics requires in-detail monitoring of the data center. We foresee
that IoT plays an important role in achieving the required level of detail
with regards to monitoring.
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The number of inter-dependencies between metrics is large. It is important
to be aware of these relationships, as metrics can have certain limitations
that affect other metrics associated with them. When combining existing
metrics into new ones, or basing new metrics on existing ones, the flaws
of the existing metrics are usually not overcome, and are sometimes even
magnified. Therefore, it is useful to understand these shortcomings and
know what a metric can and cannot measure. Applying metrics is even more
difficult for co-location data centers as the equipment, space and bandwidth
are available for rental in these types of data centers. Co-location data
centers face an additional challenge, as metrics that define useful work are
not usable by co-location centers. This is due to the fact that the facility
has no access to the servers, and therefore cannot monitor the load. Even
more crucially, the operators cannot define useful work on servers which
are not their own. In the next chapter, we will investigate a method to
enable monitoring in co-location data centers. We summarize our findings
per dimension with respect to data center metrics:

Energy efficiency metrics measure the compute and non-compute energy
usage of a data center. These metrics measure the efficiency at various levels
of granularity starting from operating system to data center. But it is difficult
to measure the energy consumption at operating system level. Also, it is
challenging to measure the energy consumption at sub-component level of a
data center, as these low level measurements are often not available.

Cooling metrics are used to specify the performance of the Computer
Room Air Conditioning (CRAC) / Heating, Ventilation and Air Conditioning
(HVAC) units and proper sizing of the cooling units. These metrics also
measure the efficiency of the cooling systems. Estimating power and cooling
capacity requirements using the ratings found in the specifications of IT
equipment may not be accurate. Another issue is that heat densities change
within racks, and also differ from one rack to the next.
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Green metrics measure the environmental impact of a data center and its
components. They highlight the importance of green energy and measure
the efficiency of recycling and reuse in a data center. Efficient measurement
of these metrics requires capturing regional and seasonal changes, which
also enables comparisons with different data centers.

Performance metrics can assist the data center with increasing its pro-
ductivity. These metrics help to measure IT performance and productivity of
the data center and also identify problem areas. Metrics can range from low
level UPS performance to high level data center utilization. Across all the
components, a single fault may affect many other systems and ultimately
decrease the overall performance of the data center. Operators rely on name-
plate capacities and modeled load which do not accurately represent the
actual capacity requirements. It is challenging to understand in real-time
the impact of changes that are made.

Thermal and Air Management metrics monitor environmental conditions
inside the data center. These metrics give an overview of how efficiently
air flows within a data center and also quantify the extent of cold and hot
air mixing. Continuous monitoring of these metrics allows the operators to
reduce fan speed and increase cooling set points in real-time, which increases
cooling efficiency and energy savings. It is difficult to determine the correct
values for temperature and humidity in the data center, as the environment
is dynamic and constantly changing.

Network metrics cover the network energy efficiency, network utilization
and traffic demands of a data center. Networking equipment is responsible
for a large portion of a data center’s energy consumption, therefore it is
important to optimize the efficiency of the networking equipment.

Security metrics cover aspects such as the firewall performance. These
metrics are highly dependent on internal governance, compliance standards
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and SLAs of the data center in question. Another issue is authorization: the
visibility of resources and the control over resources in a data center.

Storage metrics capture the performance of storage operations. These
metrics assist the operators in reducing storage cost, improving storage
utilization, and increasing the overall storage performance. The distributed
nature of cloud computing makes it critical to learn what workloads cus-
tomers are accessing and the level of importance of the accessed data.

Financial Impact metrics help achieve a data center’s financial and strate-
gic objectives. These metrics range from total cost of ownership to return on
investments. Measuring business value may vary from one organization to
another due to different definitions, and Carbon Credit may vary based on a
country’s policies.

3.2.3 Conclusions

Metrics are important for planning, designing, building and operating a
data center in an efficient manner. When implementing best practices,
metrics are a critical tool in understanding the effects of these practices.
Our classification of metrics provides deep insights into the state-of-the-art
of measuring different data center components. Our study on the most
adopted and representative metrics currently in use throughout the data
center industry revealed that the use of these metrics is critical to enable
monitoring the data center efficiency in a timely manner, aiming to minimize
energy consumption and total cost of ownership. Our proposed classification
allows for quick access to the right subset of metrics from a huge collection
that fits the desired context.
Evaluation of the metrics can be performed either by using manually

collected data or data automatically gathered from sensors. We foresee that
IoT has an important role to play in the automatic gathering of this data.
Energy efficiency, performance, network and storage metrics can be used to
increase the operational efficiency. So-called green metrics can be used to
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decrease the environmental impact of data centers. However, in all cases, it
is crucial to use accurate data as input. This reinforces the importance of
data center monitoring, in particular real-time monitoring of the different
sub-components. We observed that existing metrics are mainly focused on
measuring the energy efficiency of IT equipment or facilities. Older facilities
may not be able to capture the raw data that feeds today’s more sophisticated
metrics. There are very few metrics defined which can integrate different
components of the data center that have a single numerical value to report
the efficiency of the data center in all perspectives. Also, there is no metric
which reflects the changes made to a data center and its sub-components.
Furthermore, there is a need for new metrics that consider different factors
such as the geographical location and age of the data center, in order to
allow world-wide comparisons across different data centers.
As there is a wide range of different metrics available for data centers it

would be beneficial if there was an automated process to collect, process and
analyze the data and use it to automatically calculate all available metrics.
Such an automated process can take advantage of the Internet of Things
philosophy by connecting numerous sensors together to create one platform.
It can also maintain the history of sensor data and provide different types of
analytics on top. Such a platform can potentially discover new correlations
between data sets. The data can also be used to decide whether the existing
technology and equipment can be used more efficiently, for example using
improved scheduling algorithms, or whether it is better to replace them
with the latest, most efficient technology or equipment. Data collection in
co-location data centers is especially challenging, as there is no access to the
IT equipment that is not owned by the data center.

Finally, it is important to note that aside from the IT equipment, the main
contributor to a data center’s energy footprint is the cooling system. So when
it comes to sustainability, the cooling-related metrics play an important role
in determining the effect of changes made in the cooling system or policies of
the data center. An even more impactful approach to increasing the cooling
efficiency is migrating away from air-based cooling, and instead explore
alternatives such as liquid cooling, or even immersion cooling.
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3.3 On Immersion Cooling and Sustainability

Data centers transform energy into useful work, where useful work is typi-
cally some computational load. A significant amount of heat is generated
as the IT equipment consumes energy and performs these computations as
almost all of the supplied electrical energy is converted into heat. To ensure
the high level of availability and reliability as typically defined in the data
center’s SLA, the produced heat needs to be removed and the temperature
and humidity should be maintained in a certain range. A cooling system
needs to be in place to handle and remove the large amount of heat pro-
duced by the IT equipment. The cooling system is one of the main energy
consumers in a data center.

Presently, air cooling is the most prominent technique used in data centers,
and is responsible for approximately 40% of the data center’s total energy
consumption [NB17]. In an air-cooled data center, cold air is circulating
through the perforated tiles up and into the front of the servers and hot air
is pushed out by new cold air coming into the servers. By this method, it is
possible to cool server racks with at most 50kW power density [KG16]. In
2018, only 10% of respondents to a survey reported that the power density of
some of their racks was above 40kW [Smo19]. However, as more workloads
depend on GPUs, the power density also increases. Moreover, recent studies
show that as the end of Dennard scaling is reached [DGY+74], and transistor
sizes approach their practical limitations, new cooling solutions are needed to
maintain the traditional performance improvement trend. Therefore, CPUs
and GPUs with higher power consumption are expected to be manufactured
in near future [FWKT18; SADK19], and consequently, the power density of
racks will increase as well. We now shift our focus towards an alternative
to air cooling, namely immersion cooling, and investigate its benefits and
drawbacks.
In immersion cooling, IT components are fully immersed in a dielectric

fluid that conducts heat and does not conduct electricity, therefore, the heat
of all components is fully transferred to the liquid, which reduces the PUE
of the data center as the liquid has a better heat transfer coefficient than air.
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In fact, the PUE of immersion-cooled data centers is close to perfection, at
about 1.02-1.04 [AAH+18; CGB17; EFV+14; MMK17; Sha18], which shows
that these centers consume 10-50% less energy compared to their air-cooled
counterparts for the same amount of computational load. When compared to
the air, common dielectric fluids have a much higher heat capacity. Therefore,
immersion cooling allows for more computing power in less space. While
the maximum power density per rack for an air-cooled data center is around
50 kW, immersion-cooled counterpart allows for up to 250 kW per rack [Bit;
KG16].

Immersion cooling is certainly an efficient solution in terms of computing
efficiency and power density. In addition, the capital expenditure for con-
structing a data center, assuming a constant power density, is lower with
immersion cooling compared to air cooling [BTA20]. Despite the benefits,
the topics of maintenance and reliability, and specifically the lack of practical
information on these aspects, are the primary concerns for the adoption of
immersion cooling technologies [Ali18; CH16b; JMG+21; RRC+19; Var19;
Vil20]. Maintenance is challenging due to an increased number of IT equip-
ment failures, liquid leakage, and liquid evaporation, which also impose
additional operational costs. However, there are several successful imple-
mentations of immersion cooling in data centers. For example, one of the
biggest players in cloud computing, Microsoft, has already constructed its
first immersion-cooled data center [Wes21].

We explore quantitatively the trade-offs between air and immersion cool-
ing technologies and evaluate several aspects of both methods. For this
evaluation, we refer to various references, from research studies to prac-
tical implementations. Additionally, quantitative analyses on data center
efficiency and computing power are presented. This will help data center
operators to have a better perspective while selecting the best solution for
their specific application. Our investigations show that immersion cooling
has significant advantages specifically for high power applications and we
expect its adoption to grow. Improving the efficiency of a big data center by
a small percentage would considerably impact total energy consumption. In
addition, the migration from air to liquid cooling could influence operators
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of smaller data centers in trusting immersion cooling. However, we also
argue that retrofitting an air-cooled data center with liquid cooling is more
expensive and is generally not recommended.

3.3.1 Immersion Cooling in Practice

While air cooling is the dominant solution in data centers, several large
companies are adopting the immersion cooling technology and a number
of startups have appeared offering innovative immersion cooling systems.
Microsoft has announced its first liquid immersion-cooled data center in
Washington, USA [Wes21]. which is used for cloud-based communication
platforms such as Microsoft Teams. Alibaba also uses Single-Phase Immersion
Cooling (1PIC) tanks in its data centers. They have shown that immersion
cooling reduces the total power consumption by 36% and helps to achieve a
PUE of 1.07 [Zho19]. Another example comes from the BitFury group that
built a 40+ MW data center that comprises 160 tanks, achieving a PUE of
1.02 using Two-Phase Immersion Cooling (2PIC) [Bit].

Furthermore, some companies are offering immersion-cooled server sys-
tems. Asperitas, for example, is a Dutch company located in Amsterdam that
offers complete liquid immersion cooling solutions to its customers. Their
AIC24 server enclosures utilizes single-phase immersion cooling and natural
convection, avoiding the use of any mechanical parts such as pumps. The
immersion-cooled servers of Asperitas are insulated in order to capture all
heat produced by the servers in the fluid and to allow for maximum waste
heat re-utilization. Each of their enclosures can contain up to 48 servers or
288 GPUs with a footprint of only 60cm x 120cm1.

An alternative interesting approach was that proposed by the Dutch com-
pany Nerdalize. The idea was to offer a distributed data center by displacing
servers in the residential buildings [NSCT18]. The immersion cooled servers
would exchange heat with water that was then used for indoor heating and
hot tab water. When the energy savings of heating the water are taken into
account, the PUE of such a system would be less than 1.0. The company

1Asperitas – Immersion Cooling solutions for data centers, https://asperitas.com/
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deployed several servers before bankruptcy in 2018. Interestingly, the com-
pany which restarted Nerdalize, LeafCloud, decided to opt for air cooling,
mostly due to its lower maintenance costs and failure rates.

Another company offering liquid immersion cooling enclosures in various
sizes is Submer1. All of Submer’s products use single-phase immersion cool-
ing and are ranging from cabinet-sized enclosures called microPod, up to
megaPod, which are set up inside shipping containers. The microPods are
capable of cooling 5 kW of components even in direct sunlight which makes
them suitable for companies who want to cool their in-house equipment
efficiently. On the other hand, megaPods are targeted for higher computing
powers. They can be put in almost any place since there is only electricity
and network connection needed. For example, it would be possible to install
a megaPod onto or near a building which then supplies the building with
heat. Similar to Nerdalize and LeafCloud, their products are excellent for
waste heat re-utilization.

We will now compare air cooling and immersion cooling solutions on
several dimensions including computing efficiency, computing density, power
density, cost, and maintenance. From the perspective of a DCO, there is a
clear link between each dimension and the profit margin.

3.3.2 Computing Efficiency

The PUE is used by data center professionals to determine the energy effi-
ciency of their facility [AAFP12]. It is the most popular metric for measuring
the energy efficiency of a data center. Several studies report on the PUE of
data centers with specific installations of immersion and air cooling solutions,
these are shown in Table 3.17. For air-cooled data centers, reported PUE
values range from 1.1 to 2.9 [MMK17; McN13; Mil14; Sha18]. Values close
to 1.1 can only be achieved by hyper-scale data center facilities, which are
especially optimized for efficient cooling. For example, Google’s state of the
art air-cooled data centers have the PUE of 1.12 [Mil14]. This means that
in these data centers, 89% of the total energy is consumed by IT equipment.

1Submer – Data centers that make sense, https://submer.com/
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Table 3.17: Reported PUE values for air and immersion cooling.
Reference PUE Air-cooled PUE Immersion-cooled
[MMK17] 1.1 <1.04

[AAH+18] 1.02
[EFV+14] 1.03 - 1.17
[CGB17] 1.02 - 1.03
[Sha18] 1.7 - 2.9 1.02 - 1.03
[Mil14] 1.12, 1.18

[McN13] 2.2 - 2.61

However, worldwide there are only a small number of high efficient data
centers with state of the art designs [Jon18]. In addition, average air-cooled
data centers have a much higher PUE compared to the most efficient ones.
The average PUE has been reported to be between 2.2 and 2.61 for data
centers in Singapore, Japan, Hong Kong, and Australia. This shows a sig-
nificant difference between state of the art hyper-scale and average data
centers [McN13].
Studies on immersion cooling data centers have reported consistently

better results. For these studies, the PUE falls in the range 1.02 to 1.04
[AAH+18; CGB17; EFV+14; MMK17; Sha18]. The PUE of 1.02 appears
to be the sweet spot for immersion cooling. Table 3.17 shows how the
various studies agree on the fact that PUE values around 1.02 are achievable
with immersion cooling. With a PUE of 1.02, about 98% of the energy
consumed by the data center goes to the IT equipment. This is close to
perfect efficiency. The maximum reported PUE for immersion-cooled data
centers is 1.17 [EFV+14], which was achieved in an experiment for the
maximization of cooling capacity without regards for efficiency.

As we mentioned in Section 3.2, the PUE metric is useful for evaluating the
efficiency of a data center over time, but it is not suitable for comparing data
centers. While PUE offers a reasonable indicator of data center efficiency,
it is also desirable to have a value representing the compute capacity in
relation to energy consumption. Computing performance is traditionally
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measured by running a benchmark on the IT equipment and measuring the
completion time. An example of such a performance benchmark is measuring
the number of Floating Point Operations Per Second (FLOPS) versus the
power consumption [BC10]:

F pW =
F loating Point Operations / Second

Joules / Second

= F loating Point Operations / Joule
(3.2)

The FLOPS per Watt (FpW) metric only considers the power consumption
of the IT equipment. This means changes in the cooling systems are not re-
flected in the metric because changing the cooling system does not influence
the computing performance and the IT equipment’s power consumption.
Typically, when modifying the cooling systems, the IT energy remains con-
stant while the total energy changes. To calculate the improvement in FpW
by changing the cooling method, the knowledge of PUE and FpW can be
combined:

ηdata center =

bops

bt ime

IT power
·

1
PUE

= c ·
1

PUE
(3.3)

where bops and bt ime represent the number of benchmark operations and
benchmark time, respectively. The inverse of PUE represents the part of the
energy that has been used by IT equipment. For example, a data center with
a PUE of 1.5 uses two-third of its electricity for IT equipment. As the cooling
method is changed, the values for bops, bt ime, and IT power remain constant,
indicated by c. In other words, the overall computing efficiency depends
directly on the fraction of power used for IT equipment. The expected im-
provement in the data center’s overall computing efficiency by switching from
air cooling to immersion cooling can be calculated by comparing 1

PUE values.
For example, when migrating from best practice air cooling (PUE=1.12) to
immersion cooling (PUE=1.02), the overall computing efficiency is increased
by 9.8%. While this is a significant increase that reduces the operational
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Table 3.18: Efficiency changes by migrating between cooling techniques.

From
To Standard

air cooling
State of the art
air cooling

Immersion
cooling

Standard air cooling - 78.6% 96.1%
State of the art
air cooling

-44% - 9.8%

Immersion cooling -49% -8.9% -

expenditures, migrating from standard air cooling (PUE=2) to immersion
cooling (PUE=1.02) increases the computing efficiency by 96.1%, reducing
the energy consumption by half. The increase and decrease in computing
efficiency when changing cooling method is shown in Table 3.18.
Let us present a numerical example based on one of the most powerful

server CPUs currently on the market, the EPYC 7742 as manufactured by
Advanced Micro Devices, Inc. (AMD). This processor has a peak power con-
sumption of 225 watts and achieves approximately 3.48 teraFLOPS [Tra19].
This equates to 15.5 gigaFLOPS per watt:

ηEPYC7742 =
3.48 teraFLOPS

225W
= 15.5 (gigaFLOPS/W) (3.4)

The CPU is not the only power consuming component of a server. There-
fore, to calculate the server computing efficiency, one needs to know the
proportion of power consumed by the processor in relation to the server’s
total power. The computing efficiency of a server is calculated as follows:

ηserver = ηprocessor.pprocessor (3.5)

where pprocessor stands for the proportion of power consumed by the proces-
sor in relation to the total server consumption. Various works have reported
different power breakdowns for the components of a server. In accordance
with the results presented in [GB18], we assume that 50% of the server’s
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power is consumed by its processor. From Equation 3.5, the computing
efficiency of the server amounts to 7.73 gigaFLOPS/W. To calculate the
computing efficiency of the IT equipment, we consider the power of all IT
equipment including storage and network facility. In this way, the computing
efficiency of IT equipment is calculated as:

ηIT equipment = ηserver.pserver (3.6)

where pserver stands for the proportion of the server’s power in relation to
the total IT power. We use pserver in Equation 3.6 to take into account the
energy consumption of non-computational IT equipment such as storage
and networking. The contribution of the servers, storage, and network fa-
cility in the total power consumption of a data center has been reported
in several works [DWF16; SSS+16]. For our numerical example, we as-
sume the average of reported values, that is 77%. Therefore, ηIT equipment is
5.95 gigaFLOPS/W. Finally, the computing efficiency of the data center is
calculated by:

ηdata center = ηIT equipment.
1

PUE
(3.7)

As per Equation 3.7, the computing efficiency of a data center cooled by
standard air cooling, state of the art air cooling, and immersion cooling is
calculated as 2.98, 5.32, and 5.84, respectively. The computing efficiency of
an immersion-cooled data center is almost 9% higher than a state of the art
air-cooled hyperscale data center. For the average data center, the switch to
immersion cooling offers even more improvement. Operators can decrease
the power consumption by about 50% without any decrease in computing
performance.
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3.3.3 Computing and Power Density

Computing density is defined as the amount of computation that a system
can offer in relation to its physical size. The metric used to determine the
computing density of a data center is F LOPS/m3. This metric considers all
aspects of the data center: from the servers to the power management system
and up to the cooling equipment. Comparing air-cooled and immersion-
cooled in these terms also shows significant differences as the required space
for immersion cooling has been reported to be about one third of traditional
air cooling method [MMK17].
The increase in computing density offered by immersion cooling comes

from various factors. In immersion cooling, there is no space needed in
between the racks for airflow. Tubs can be placed right next to each other and
the only limitation is the required accessibility for maintenance personnel. In
addition, there is significantly less cooling equipment needed, and no raised
floors or air vents are required [MMK17]. Unlike air cooling, immersion
cooling does require pipes or flexible tubes for the transportation of liquids
or gasses. Using immersion cooling, the density increases at both the rack
and facility levels [Tum10b]. Furthermore, many air-cooled data centers
trade their computing density for efficiency and reliability [Mil14]. The
cooling units of these centers are often bigger than they need to be.

Power density is another important factor for data center operators. Power
density is low in air-cooled data centers, otherwise, either fan speeds need to
be increased or air temperature needs to be lowered, resulting in a decreased
energy efficiency. The typical rack-level power density of air-cooled data
centers is about 0.018 kW/l - 0.028 kW/l [KG16], while the density of
immersion-cooled data centers is between 0.045 kW/l [MMK17] and 0.23
kW/l [GBR+14]. At the extreme, 4 kW/l has been reported to be possible
in immersion-cooled data centers with enough coolant flow and compact
hardware design [Tum10a; Tum10b]. Table 3.19 presents the data gathered
from various references on the power density of air-cooled and immersion-
cooled data centers. Since power densities are presented in kW per rack for
air-cooled data centers and for immersion cooling there is no typical rack size,
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the values need to be converted to kW/l.The power density with immersion
cooling is almost six times higher than air cooling. Therefore, power density
can be another strong motivation for DCOs to consider immersion cooling
for their future projects.

Table 3.19: Power densities as reported in the literature.

Reference
Air cooling
density

Immersion cooling
density

Normalized
to kW/l

[MMK17] 14 kW/bathtub 0.045
[GBR+14] 400 W/bathtub 0.23
[AAH+18] 250 kW/rack 0.14
[Tum10b] 4 kW/l 4
[KG16] 33-50 kW/rack 0.018-0.028
[Smo19] 40 kW/rack 0.022

3.3.4 Cost

Important factors to consider when adopting immersion cooling are the
CapEx and OpEx for the data center. The CapEx includes the sealed chassis
for immersing the IT equipment, dielectric fluids, as well as pumps and
tubing. Similar to air-cooled data centers, the OpEx includes electricity,
staff, network connection fees, as well as supporting and maintaining the IT
equipment.
According to Bunger et al.[BTA20], for air-cooled data centers with a

power density of 10 kW per rack, the capital expenditures are $7.02 per
watt. For a liquid-cooled data center with a similar power density, the
cost is reduced slightly to $6.98 per watt. The benefit of liquid cooling is
also that much higher power densities can be achieved. Assuming a power
density of 40 kW per rack, the expenditures are further reduced to $6.02
per Watt. Furthermore, when it comes to the operational expenditures, a
reduction between 9-20% is expected with regards to the energy cost due to
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the absence of fans. This is in agreement with the results of Neudorfer et al.
who state that a 5-10% reduction of the IT energy consumption is expected
due to the avoidance of internal fans [NEKZ16]. The need for fans is also
absent for the entire facility, reducing the total energy costs by 15 to 25%.
Another point to consider is that the dielectric fluids present in the sealed
chassis can be used virtually indefinitely, assuming some form of filtration is
present.

Day et al. highlight that when building a new data center and optimizing
it for liquid cooling from the ground up, capital expenditure savings can be
achieved over air-cooled data centers [DLB19]. On the contrary, retrofitting
an air-cooled data center with liquid cooling can result in higher costs. An
important exception is retrofitting an air-cooled data center with limited
floor space and power capacity. In this case, the increased power density
possible with liquid cooling, as well as a reduction in energy consumption,
can address both the space and power limitations with one solution.

3.3.5 System Maintenance

The operational costs of a data center includes system maintenance. The
cooling method influences the components’ environmental conditions and
consequently affects the number of and time to failures and overall equip-
ment lifetime. The number of maintenance requests caused by failures has
been reported to be almost 6.6% higher for an immersion-cooled data center
compared to a traditional air-cooled counterpart [CH16b]. The higher num-
ber of maintenance requests associated with immersion cooling results in
additional operating costs. In addition, higher failure rates can degrade the
components’ lifetime, but immersion cooling can compensate for this degra-
dation with lower junction temperatures [JMG+21]. Besides the number
of maintenance requests, the maintenance procedure is more challenging
with immersion cooling as immersed IT equipment is removed by opening
the lid and lifting the equipment out of the tank. This can result in liquid
evaporation and spillage.

106 3 | Sustainable Data Centers



According to the work presented in [Vil20] and [Ali18], the maintenance
overheads and reliability concerns, as well as the leaks and spills, are the
top contributors to the low adoption of immersion cooling. Indeed, the
enclosure that the racks are immersed in must be sealed perfectly to avoid
liquid evaporation/losses. Complete enclosure sealing would mitigate the
problem but is not practical. The high number of maintenance requests,
compared to the air cooling system, cause access issues and adds operating
costs related to compensating the fluid losses [Var19].
The operating costs imposed by the liquid loss have been evaluated

in [CH16b]. The cost of the lost liquid divided by the cost of the IT equip-
ment’s energy usage has been reported to be 4.68 for a specific implemen-
tation. This number shows that the maintenance overhead is a significant
drawback associated with immersion cooling. It can even mitigate the energy
efficiency improvement of immersion cooling. However, it should be noted
that the implementation characteristics including the liquid price and the
electricity costs affect the reported value. In [CH16b], these values are set
at 75 $/l i ter and 0.09 $/kWh, respectively. One-phase immersion cooling
is reported to have fewer maintenance needs than two-phase immersion
cooling [Var19].

3.3.6 Conclusions

Air cooling is the traditional solution for dissipating heat in data centers.
A high energy consumption and low cooling capacity, and consequently
limited power density, are the main challenges associated with air cooling.
Immersion cooling is emerging as a novel method with many advantages in
terms of efficiency, density, and cost. We provide a quantitative comparison
of these two approaches and provide an overview of the results presented
in the literature. While most data centers around the world depend on
air cooling, immersion cooling is recognized as a potential alternative and
several cloud providers have already constructed their immersion-cooled
data centers. The key findings related to immersion cooling are listed next.
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First, based on the PUEs reported in the literature, we conclude that
the immersion cooling method consumes less energy and offers a higher
computing efficiency. Our analysis shows that a typical immersion-cooled
data center consumes almost 50% less energy compared to its air-cooled
counterpart. Second, immersion-cooled data centers allow for compact de-
signs, more than three times the density of their air-cooled counterparts.
In liquid immersion-cooled data centers, there is no trade-off between effi-
ciency and density. Conversely, air-cooled data centers can only be either-or.
Immersion-cooled data centers can be placed in ordinary spaces as they
have lower requirements and require less additional cooling infrastructure.
Third, while research related to immersion cooling is mostly targeting effi-
ciency, the aspect of power density should not be overlooked. The increase
of computing power in a specific volume is even more important than the
efficiency improvement. The most conservative figures for immersion cooling
are about double density in kW/l on rack-level compared to the maximum
possible in air-cooled data centers. Double the density means less than half
of the physical space is required to achieve the same compute performance,
addressing issues seen in the Netherlands where the physical space is lim-
ited. In the extreme case, densities of 4kW/l are possible with IT equipment
optimized for liquid immersion cooling. This high-density capability makes
immersion cooling the first-choice solution for running high-performance
workloads. In addition, it allows manufacturing the CPUs and GPUs with
higher frequency and higher power consumption. Fourth, the capital expen-
diture for an air-cooled data center with a power density of 10 kW per rack is
about 4% higher compared to its immersion-cooled counterpart. In addition,
a 9-20% operational expenditures reduction is expected with immersion
cooling. Fifth and final, the main downside of immersion cooling is the
challenges related to the maintenance and reliability concerns. This is a
reasonable explanation for why even with significant advantages in efficiency
and density, not many companies have switched their cooling solution to
immersion cooling, yet.
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As we approach the limits of Moore’s law and Dennard scaling, the increase
in overall performance per watt slows down. If we want to maintain the same
rate of increase for computer performance, more efficient cooling techniques
are required to promote the sustainability of data centers. Immersion cooling
appears to be a solution that should be strongly considered when designing
a sustainable data center and we expect its adoption to grow. At the same
time, retrofitting any air-cooled data center with liquid cooling does not
seem convenient in most cases, if feasible at all. Considering the reliability
and maintenance challenges and uncertainties, immersion cooling might not
be useful for small and average power densities. On the contrary, immersion
cooling appears to be the best solution for high power densities.

3.4 Summary

In this chapter, we have focused on several important aspects of sustain-
able data centers. First, we identified 23 best practices across 4 different
dimensions and subjected 7 data centers to these best practices by means
of questionnaires and interviews to the relevant stakeholders. It is clear
that not all best practices are implemented, and that the implementation of
greenness practices was lacking. We also identified the need for metrics to
monitor the impact of best practices. As there is a vast variety of available
metrics, we created a taxonomy of metrics covering 9 dimensions. For each
dimension we analyzed potential issues and open challenges. From the
analysis we conclude that real-time data center monitoring is important, as
well as the need for an IoT-based approach for large scale data collection.
Additionally, we emphasize that co-location data centers will struggle with
data collection from the IT equipment due to a lack of access. And finally, we
investigated a more efficient technique for data cooling, namely immersion
cooling. While there is no widespread adoption as of yet, it is clear that
especially newly built data centers can benefit from using immersion cooling
instead of traditional air cooling. We use the metrics from our taxonomy to
perform a quantitative analysis of different cooling approaches. Our analysis
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shows that migrating to immersion cooling can reduce the energy consump-
tion by up to 50% while increasing the maximum power density. In the next
chapter, we dive deeper into the issues regarding real-time monitoring, data
collection in co-location data center, and the role of IoT in this context.
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Monitoring of Smart Data
Centers

Traditionally, data center operators rely on DCIM tools to maintain a high
level overview of the data center. Monitoring the data centers is crucial for
multiple reasons. First of all, it assists in improving the energy efficiency
by discovering comatose or zombie servers. These comatose servers are
performing no useful work, yet still consume energy. It is estimated that
up to 30% of servers are comatose [NC17]. Monitoring is also critical in
preventing outages, which can have a wide-spread global effect [ZB17].
Preventing outages is critical for upholding the Quality of Service (QoS)
as is specified in the SLA. Furthermore, monitoring aids the expansion
planning process of data centers by predicting future cooling and space
requirements as the data center grows. IoT has an important role to play
in transforming the contemporary data center into a smart data center, or
smart building, by enabling detailed monitoring on a level that was not
possible before. In a smart buildings, devices are typically connected to a
central hub on the local network, known as an IoT hub. The IoT devices,
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together with the hub, provide monitoring and control of the physical spaces
and instruments of the building, [LL15]. In a smart data center, the IoT hub
could be responsible for monitoring the data center temperature and keeping
it within a given range in a certain time of the day by controlling the cooling
systems. Monitoring and control are the foundation for building automation
and, in turn, the enabler of truly smart data centers. This automation
also plays an important role in improving the energy efficiency and overall
sustainability of buildings [EH12]. It is clear that the amalgamation of
monitoring and IoT, applied to the context of data centers, has significant
potential.
We investigate the potential of real-time monitoring using an IoT-based

approach in Section 4.1. We also uncover some potential issues with moni-
toring on such a large scale, and turn towards edge computing for solutions.
The need for an IoT hub becomes apparent, and an edge gateway architec-
ture is proposed. Next, in Section 4.2, we analyze 20 different IoT hubs,
of which four are selected for a more detailed analysis. The strengths and
weaknesses are identified, and a generic IoT architecture emerges, which
shares many features with the proposed edge gateway architecture. Then,
in Section 4.3, we utilize IoT to collect data from a real-world co-location
data center to allow privacy-preserving monitoring of servers not owned
by the data center. This is one of the challenges uncovered in the previous
chapter. And finally, in Section 4.4, a summary is given of the major points
uncovered in this chapter.

4.1 Real-Time Monitoring of Data Centers

Real-timemonitoring is an approach, typically supported by the IoT paradigm,
that enables the continuous streaming and analysis of vast quantities of
data [MIT18]. By continuously analyzing the data stream, decision making
becomes proactive rather than reactive. A concrete example of this phe-
nomenon in the context of data centers is the detection and prevention of
hard disk drive failures through continuously monitoring the data reported
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by the Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.)
system. Furthermore, the IoT paradigm enables monitoring of data centers
at a scale that was not possible in the past. A wide variety of hardware and
virtual sensors can be utilized to collect different types of data which, in turn,
can be used to evaluate dozens of sustainability and performance metrics
such as those presented in Chapter 3. As a result, the amount of data that
can be collected in this environment is of massive proportions: a data center
of 100 000 servers, each of which report 50 distinct metrics every second,
would result in 300 000 000 data points every minute. Collecting data at
such fine granularities enables the real-time monitoring of the data center in
its entirety. However, if this data would be collected at the high frequencies
required for real-time monitoring, a different problem arises: the quantity
of transmitted data would be sufficiently large to negatively impact the data
center’s network infrastructure. This problem is also observed in real-time
monitoring of smart grids [HLW+18]. We foresee that edge computing can
play an important role in alleviating the pressure caused by large-scale data
generation.

In this section, we investigate how we can leverage a data center’s network
infrastructure to efficiently monitor a data center in real-time by utilizing
the edge computing paradigm. First, we analyze the common network
architectures found in data centers. Next, we look at the potential data
sources that can be found in a data center in order to determine the size
of the raw data and the required network throughput. This is followed by
a preliminary design of an edge-based data collection platform that takes
advantage of a data center’s network infrastructure to reduce the load on
the network. Finally, we discuss the results we have obtained thus far.

4.1.1 Data Center Network Infrastructure

The IT equipment of a data center is placed in racks. This equipment, such as
servers and switches, often occupies between 1U to 4U of space, with blade
server enclosures consuming up to 10U of space. Efficiently connecting all
the rack equipment to the network can be a challenge, and the design of the
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Figure 4.1: An example of a 3-layer data center network architecture.

data center network affects the networking efficiency at which the connected
equipment operates. The most widely used network architecture in data
centers is the 3-layer data center network architecture [BCH13], shown in
Figure 4.1. As the name suggests, this architecture consists of 3 distinct
layers: a core layer at the top, an aggregation layer in the middle, and an
access layer at the bottom. Equipment, such as servers, that requires network
access is connected to the access layer, usually with 1 or 10 Gigabit links.
The access layer is commonly implemented as a network switch located
at the top of a rack, known as a Top of Rack (ToR) switch. Alternatively,
the switch can be placed at the end of a row of racks, known as an End
of Row (EoR) switch. The aggregation layer aggregates the different ToR
and EoR switches, to enable network connectivity between racks or rows
of racks. The links between ToR and EoR switches are commonly 10 or
40 Gigabit. The aggregation layer switches all connect to the core layer,
these links can often be up to 100 Gigabit. The core layer is responsible for
providing uplinks to the Internet.

There are also other network architectures currently in use in data center,
such as Facebook’s data center fabric approach [FA13]. This approach is
similar to approaches taken by Google and eBay. The notion of a server pod is
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introduced, which is essentially a standalone cluster consisting of racks and
servers, containing up to 48 ToR switches and 4 special fabric switches. These
fabric switches are responsible for interconnecting the servers in a single
pod. To connect different pods, a network spine is introduced consisting of
up to 48 spine switches per spine plane. This approach is highly scalable, as
computational resources can be increased by introducing more pods, and
the network capacity can be increased by introducing more spine planes.
Another approach is the Fat Tree data center network [AFLV08]. This

approach is similar in design to the 3-layer approach, but provides guarantees
regarding the available bandwidth for each server in a rack. This is done by
carefully planning the numbers of switches in each layer, and increasing the
number of links between individual switches the higher up the hierarchy
they are. Any horizontal slice in the network graph has the same amount of
bandwidth available.
Despite the significant differences between the available data center net-

work architectures, they all contain an access layer with ToR and EoR
switches in one form or another. As we show later in our proposed ar-
chitecture, these types of switches are excellent candidates to become edge
gateways due to their proximity to the servers that are being monitored.

4.1.2 Impact on Network Load

To understand the significance of the additional load that is associated with
real-time monitoring of a data center, a number of steps have to be taken.
First, the number of servers per rack and the number of racks per data center
have to be identified. Next, the data types that can be collected from a server
have to be investigated, as well as their data size. And finally, the load on
the network that is generated by real-time monitoring has to be calculated.

The number of servers that can be placed inside a rack is not only limited
by the size of the servers, but also by the data center’s cooling capacity and
power limitations. A standard full height rack offers space for up to 40
servers, leaving 2U for other equipment. In practice this number is between
25 to 35 servers per rack. Using blade servers, the density of a rack can
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be increased much further. A typical high performance 10U blade server
enclosure contains 16 servers. This increases the density to 64 servers per
rack. There are also 3U blade servers enclosures for low performance blade
servers that house 20 blade servers. This results in a maximum density of
260 servers per rack. In all cases we assume there is at least 2U left for the
ToR switch and a Keyboard Video Mouse switch.

The largest data center in the world is China’s Range International In-
formation Group data center, covering over 500 000 square meters. More
commonly, data centers are between 10 000 and 20 000 square meters in
size. For example, Google’s Dallas data center is 18 000 square meters and
contains 9090 server racks [CGC16]. Applying the previously determined
server density numbers, it can be extrapolated that a data center containing
9090 server racks can house anywhere between 318 000 and 2 363 400
servers. A report from Gartner estimates that Google had around 2.5 million
servers in July 2016, spread across 13 data centers, which equates to around
192 000 servers per data center [ZKS+19].

There are two types of sensors required to monitor a data center: hardware
sensors and virtual sensors. The hardware sensors are typically used to
monitor the temperature and humidity, as well as power consumption. These
measurements can be taken on a global level for the whole data center,
but also on an individual server level. Virtual sensors are software-based
sensors, such as agents interacting with the operating system to gather
information about the CPU, memory, networking interfaces, storage devices,
and more. There are software agents available that can collect and transmit
this type of data, popular solutions include: Telegraf, StatsD, collectd, Zabbix,
Prometheus, and Nagios. In our experiments, Telegraf is used to represent
the virtual sensors, because of its popularity and its ability to integrate
with a multitude of platforms. Telegraf is a plugin-based software solution
for collecting and transmitting a wide variety of data. It consists of four
plugin types: input plugins, processor plugins, aggregator plugins, and
output plugins. Input plugins collect data from the system, processor plugins
transform the data, aggregator plugins aggregate the data, and output
plugins transmit the data to other systems. Only the input plugins that
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collect generic system information are included in our experiments, a full
overview of all of the used plugins and their reported metrics is given in
Table 4.1.

Table 4.1: Telegraf input plugins and the metrics they collect.
Input Plugin Metrics

cpu Time the CPU spends in different states (e.g.
user time, system time).

disk Storage device usage in bytes and percentages.
diskio I/O statistics of reads and writes to storage

devices.
kernel Operating system statistics not covered by other

plugins.
mem Detailed information on Random Access Mem-

ory usage.
processes Total number of processes and their status.
swap Swap usage in bytes and percentages.
system Load, uptime, and number of users logged in.
hddtemp Temperature data from storage devices.
internal Internal statistics of the Telegraf agent.

kernel_vmstat Statistics regarding the virtual memory usage.
net Network usage per network interface.

netstat TCP and UDP connection state and count.
nstat Fine-grained networking statistics.
ntpq NTP query metrics and status.

sensors Data from hardware sensors (e.g. chipset tem-
perature).

smart S.M.A.R.T. information.
temp CPU-related system temperatures.

To measure the bandwidth required to monitor the generic metrics col-
lected by Telegraf, experiments are performed using a real server. The server
in question is a Dell PowerEdge R7425 with dual AMD EPYC 7551 32-core
processors, 512 GB of Random Access Memory (RAM), and six 960 GB
Intel S4510 Solid-state Drives (SSDs). The operating system is Proxmox, a
Debian-based virtualization environment. Telegraf is installed on the operat-
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Figure 4.2: Setup to analyze the bandwidth usage of real-time monitoring.

ing system and configured to collect the selected metrics. Message Queue
Telemetry Transport (MQTT), a lightweight publish-subscribe network pro-
tocol, is configured as the output plugin. An MQTT broker is deployed on a
second host. Wireshark, a network packet analyzer, is also installed on this
second host in order to monitor the network usage. The traces produced by
Wireshark are analyzed to calculate the required bandwidth for real-time
monitoring of a data center. An overview of the setup is shown in Figure 4.2.
To determine the load on the infrastructure, network packets were col-

lected for a duration of 600 seconds. During this period, 185 400 messages
were sent to theMQTT broker. In total, 55.3megabytes of data were transmit-
ted, an average of 92.2 kilobytes per second. While seemingly insignificant
for one server, however when we extrapolate this and use Google’s Dallas
data center and a rack density of 25 servers per rack as an example, the
total bandwidth would equal 25 servers per rack×9090 racks×92.2 kB/s=
167.62 Gbit/s. In practice this number is conservative, as the servers per
rack density is ever increasing, and data centers are becoming ever larger.

4.1.3 Proposed Edge-based Architecture

One method to reduce the overall load on a data center’s network is bringing
the computations closer to the source of the data. This reduces the amount
of hops required for the data to reach their destination, and in turn limits
the load to the access layer instead of overloading the aggregation and core
layers. Edge computing has an important role in achieving this reduction in
networking load. The architecture we propose is shown in Figure 4.3. As
each rack has a ToR switch, the goal is to leverage the computational power of
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the switch to turn it into an edge gateway. Every edge gateway is responsible
for processing and analyzing the data of their rack only. Therefore, the edge
gateway would only have to handle the network traffic of a limited amount
of servers. The network load for the gateway ranges between 18 Mbit/s and
47 Mbit/s, for 25 servers and 64 servers per rack respectively. At these loads
the impact on the switch itself is minimal.

Edge Gateway

Server #1

Server ...

Server #25

Top of the Rack
Switch X Edge Gateway

Server #1

Server ...

Server #25

Top of the Rack
Switch Y

Aggregation Layer 
Switch

Cloud

Figure 4.3: Proposed edge-based architecture using Top of the Rack switches.

Because edge gateways are close to the source of the data, the network
latency is also greatly reduced. This is crucial for real-time monitoring,
as the data center operator should be informed as soon as possible about
critical events. The edge gateway can also be used to automatically interact
with the servers. For example, when a server is overheating, the gateway
could inform the server to reduce the load, or even lower the frequency at
which the CPU cores are operating. This allows the edge gateways to act as
autonomous agents. The proposed architecture also improves the scalability
of the data center. As the data center grows and more racks are placed
and filled with servers, the impact that monitoring these new servers has
will be minimized as the majority of the data remains at the ToR switch.
It also possible for multiple racks to be clustered together, such that the
edge gateways of these racks communicate with each other in a peer-to-peer
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fashion. Another benefit of this approach concerns the privacy. In case a
rack is dedicated to processing sensitive data, the edge gateway will ensure
that monitoring data collected from these sensitive servers does not leave
the rack. Or, when the data does have to be transmitted outside the rack, it
is anonymized and privacy sensitive data is removed before it is sent across
the network.
A schematic overview of a possible implementation of an edge gateway

is shown in Figure 4.4. The hardware sensors and virtual sensors generate
data, which is then transmitted to an event queue to facilitate real-time
streaming data. Some data streams can be monitored directly, whereas other
may have to be processed and aggregated first. Based on the events that are
happening, alerts can be sent out. The processed data can then be sent to
the cloud, or broadcasted to neighboring edge gateways. There are clear
similarities to IoT hubs and gateways, as we will see in Section 4.2.

Edge Gateway

Hardware Sensors Virtual Sensors

Event Queue

Monitoring Alerting Processing

Cloud Edge  
Gateways

Figure 4.4: A schematic view of the edge gateway.

Using edge computing instead of traditional cloud computing to perform
real-time monitoring in data centers has a number of benefits. From reducing
the network load, to increasing the responsiveness, enabling autonomous
control, as well as improved scalability and privacy. These advantages come
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at the cost of increased deployment complexity, and more complex ToR
switches.

4.1.4 Conclusions

We show that real-time monitoring of a data center comes at a cost: the
increase in network traffic is significant enough to influence the networking
performance of a data center. We estimated the additional load that is
placed on a data center’s network, and have shown that this additional
load is significant. To counteract this problem, we proposed an architecture
based on edge computing that enables real-time monitoring while reducing
the required bandwidth, leveraging the network infrastructure of the data
center by relying on ToR switches. As the edge gateway’s responsibility is to
interface with hardware sensors and virtual sensors to process their data,
there are clear similarities with IoT hubs. Therefore, it may not be necessary
to reinvent the wheel, and instead a selection can be made from one of many
available IoT hubs.

4.2 Open-Source Internet of Things Hubs

Today, we are able to talk about smart buildings because the pervasiveness
of IoT devices and because the ease of their installation and interoperation
has brought them to the masses. This has been a long journey. About 40
years ago, home automation components were expensive and with non
standardized interfaces, making them isolated components that would not
coordinate and cooperate with other home components [AD08]. Vendors’
lock-in was the standard practice. Slowly standards for building automation
started to appear and interoperability efforts occurring in other areas of
ICT contaminated also the home and office environment. More than 15
years ago, the use of Extensible Markup Language (XML)-based web services
standards for resolving the building automation problem was proposed, and
an application for supporting the elderly in their own homes was demon-
strated [AD08; AZZ05]. Today, the situation is very different. Not only are
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internetworking and interoperation standards widely adopted, but there are
also commercially available IoT hubs and even open source software for de-
vice integration. IoT hubs facilitate the integration of products from different
vendors. Commercial examples include the Fibaro Home Center 3, Athom
Homey, or the Samsung SmartThings Hub v3. While these hubs are easy to
install, and easy to use, they do have their limitations. Typically, these hubs
support only a few protocols and device types, and have a high total cost of
ownership [BLM+11]. Vendor lock-in is also still a challenge that consumers
face when using commercial IoT hubs, as these systems often promote the
use of devices that are manufactured by the same company. On the contrary,
open-source automation systems enables the use of well-developed system
free of charge, though quality control may suffer [VR08].

There is no doubt that IoT hubs play an important role in smart homes and
smart offices. But we also foresee that smart data centers will heavily rely on
IoT hubs for the interconnection and integration of sensors and actuators, as
well as data processing and analysis. This requirement was also highlighted
in Chapter 3, where we discuss the need for an IoT platforms to automate
the collection and analysis of data within data centers. Such a platform,
or hub, would be responsible for the interconnection between sensors and
actuators found in the data center, as well as perform real-time monitoring
tasks to continuously evaluate metrics and alert operators when necessary.
Edge computing has an important role to play in these task by optimizing
latency and bandwidth utilization in the data center, as the potential for
data generation is vast. Regardless of where the data analysis takes place,
decentralized at the edge or more centralized in the cloud, the need for an
IoT hub to support the concept of a smart data center is clear.

In recent years there has been a significant increase in the number of free
and open-source IoT hubs. Their open-source nature allows them to provide
support for hundreds, if not thousands, of diverse devices, overcoming the
vendor lock-in issues that some of the commercial solutions have. At the same
time, there is no cost associated with the software itself, which can often
run on cheap single board computers such as the Raspberry Pi. Therefore,
the total cost of ownership is also reduced. These types of systems have
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their own features and limitations, as will become clear later in this section.
The challenge today is thus that of selecting the appropriate open-source
automation system. First of all, there is a vast number of available systems,
each with a varying number of functionalities, different levels of support for
devices and protocols, and also variations in overall maturity and quality
of the software. Second, while vendor lock-in is not a critical issue with
these open platforms, migrating from one system to another system is time
consuming due to the lack of migration tools. Finally, open-source projects
come and go, which means the longevity of the system also needs to be
considered. Projects with fewer contributors and low commit activity in the
community are at higher risk of becoming stale or inactive. Therefore, it is
important to be able to choose the system that fits the requirements of the
users. To the best of our knowledge, there are no works that: (1) present an
overview of available systems, (2) identify which of these systems are actively
developed, or (3) perform any type of comparisons between these systems
to identify differences in functional and non functional requirements, as
well as identify gaps in the state of the art.

The work presented in this section is multi-purpose: it is a framework
which can be applied to related domains by researchers, it is a tool for the
practitioner to help make an informed decision when designing a building
automation system, and it is an overview of open-source software for smart
buildings for the hobbyist. These goals are achieved by evaluating 20 au-
tomation systems based on five core criteria, and making a selection of the
top four systems based on the combined score of these criteria. These four
systems are then methodologically compared in greater detail. The detailed
comparison consists of two views: a use case based analysis to determine
what is supported, and a criteria-based analysis that considers other useful
aspects such as setup complexity and pricing. This evaluation is practical in
nature; to evaluate each system, we installed and configured it on specific
hardware. When applicable, the criteria is evaluated using the deployed sys-
tem. Furthermore, a reference architecture for IoT hubs is identified based
on the commonalities that emerge from the analysis of the four systems, and
parallels are drawn between the reference architecture and the envisioned
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edge gateways for smart data centers.

4.2.1 Methodology

The approach that is taken consists of three steps. First, a list of IoT hubs is
compiled and ranked. The list of systems is compiled by searching for open-
source systems using numerous search engines (Google, Bing, Wikipedia)
and online source code management platforms (GitHub, BitBucket, GitLab,
Launchpad). The search terms that were used include: IoT Platform, Home
Automation, and Building Automation. A selection of the top four systems is
made, based on their individual scores. These top four systems are analyzed
in great details. Next, a catalog of 13 system features is created based on
17 use cases, and each of the four systems is subjected to this catalog of
features in order to determine which features are supported. The final step
is an extensive analysis of 34 different criteria to which the four systems are
subjected, each of these criteria are scored from 0 to 5. For the evaluation,
the systems are deployed on a Lenovo ThinkPad E490 with an Intel Core
i5-8265U CPU. What follows is a description for each of the three steps.

Initial Selection There is a wide variety of open-source IoT hubs available.
To reduce the number of systems that are subjected to the detailed analysis,
we perform an initial selection by ranking each system based on five criteria.
Each criteria has a score i where i ∈ Z : i ∈ [0,5]. The criteria scores for
each system are summed to obtain the final score. The criteria for the initial
selection are as follows:

S1 Commits: the number of commits to the source code repository can be
an important indicator of the level of activity within a project. While
not all commits are of equal importance, their frequency is useful
indicator. The commit score is calculated according to Equation 4.1.

s(x) = log10(x) (4.1)

Where x is the number of commits. When s(x)> 5 then s(x) = 5.
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S2 Stars: the number of stars on a source code repository is comparable
to the number of likes on social media platforms. These stars are
commonly used as a proxy to determine the overall popularity of a
repository [PDS16; SN16]. The score for this criteria is calculated
in the same manner as the number of commits, using Equation 4.1,
where x becomes the number of stars.

S3 Latest Commit: the date of the latest commit is checked in order to
penalize inactive projects. This is done by looking at the number of
years since the latest commit, and applying Equation 4.2.

scommits(x) =

(

5− x , if x ≤ 5

0, otherwise
(4.2)

Where x is the number of years since the last commit.

S4 Documentation: the quality of the documentation is crucial for au-
tomation systems. For the initial selection, if the system has any docu-
mentation, 5 points are assigned. If the system has no documentation,
0 points are assigned. This is done in order to penalize projects without
any documentation. A more detailed review of the documentation
will be performed for the top 4 systems, as part of the criteria-based
analysis.

S5 Contributors: the number of contributors to the system are also taken
into account, as this number is important for multiple reasons. First
of all, the longevity of the project can be jeopardized when there
are only a handful of contributors. Furthermore, there is a positive
correlation between the number of contributors and the ease with
which the source code of a system can be extended or modified. And
finally, it is another indication of the popularity of the system. The
score for this criteria is calculated using Equation 4.3.
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scont ributors(x) =























5, if x > 1000

3, if 100< x ≤ 1000

1, if 2< x ≤ 100

0, otherwise

(4.3)

Where x is the number of contributors to the project.

In case IoT hubs have identical total score after evaluating all criteria, a tie
breaker is decided as follows: whichever system has the higher sum of scores
for the stars, latest commits, and documentation criteria. In case the scores
remain equal, the precise values of Equation 4.1 are used. After determining
the overall ranking, the top four systems are selected, and these systems are
analyzed in great detail.

Use Case Based Analysis The goal of the use case based analysis is to
obtain a high-level overview of the functionality which the four selected
IoT hubs offer. The list of features to which each of the selected systems is
subjected has been extracted from 17 different use cases. These use cases
have been partially selected from a survey by Abbas et al. [Abb18]. The
remaining use cases are defined based on collective academic and industrial
experience. Each use case requires the system to provide a certain set of
features in order to fulfill the requirements. The collection of use cases and
the corresponding set of features that have been extracted from the use cases
is shown in Table 4.3 and Table 4.4.
The thirteen high-level features, that have been identified based on the

uses cases, are divided into five categories: Visualization (F1), Localization
(F2), Notification (F3), Data-Handling (F4), Interaction (F5). The high-level
features of the four selected systems will be evaluated. When a system
supports a feature natively, or provides an official plugin (near-native) then
no points are deducted. If the feature is supported only through third-
party plugins or applications, or requires a workaround, then 0.5 points are
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deducted. In case the feature is entirely unsupported, 1 point is deducted.
The final score is calculated according to Equation 4.4.

s f eatures(x) =

(

5− x , if x ≤ 5

0, otherwise
(4.4)

Where x is the number of points that are deducted for features that are
not (fully) supported. What follows is the list of features that have been
identified and their descriptions. These features were extracted from 17
different uses cases. Each feature is categorized in one of 5 categories.

F1 Visualization

F1.1 ePaper/eInk: allows the user to employ a paper-white display
in a static way, that is, for viewing and not for interactions. Most
commonly used for low resolution wall-mounted displays.

F1.2 Dashboard: allows the user to create customized dashboards,
which can display real-time information (e.g. news feeds, states of
other sensors, historical data). Also provides the user with control
of various devices from a single location.

F2 Localization

F2.1 Global Positioning System (GPS)-Tracking: enables the system
to track the location of the user, or multiple users, using GPS coordi-
nates.

F2.2 Presence Detection: detects the presence of a human in an area
of interest. Typically realized with Bluetooth Low Energy beacons,
sometimes also realized with motion sensors. This includes the use
of geo-fencing.

F3 Notification

F3.1 Mobile Notification: includes all types of notifications that can
be received on mobile devices, for example: e-mail, SMS, Telegram,
WhatsApp, push-notifications, text-to-speech, and voice calls.
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F4 Data-Handling

F4.1 Sensor – Read: forms the foundation of a smart building, allows
the system to collect data from IoT devices.

F4.2 Device – Actuation: forms the foundation of a smart building,
allows the system to actuate IoT devices.

F4.3 Automation rule: transforms the "IoT building" into a smart
building, enables rules to be defined which can be triggered by
events.

F4.4 Media Streaming: allows the user to utilize video and audio
streams, can be used for surveillance cameras or baby monitors.

F5 Interaction

F5.1 Mobile Remote Control: extends feature F4.2, to enable control
of any IoT device connected to the system using a mobile application.

F5.2 External API Calls: enables the system to use external services
on the Internet. For example, to display weather information to the
user or to interact with an external calendar.

F5.3 Scheduler: allows a user to schedule an action to be performed
at a specific time. Also enables the creation of recurring events.

F5.4 Bio-metric User Authentication: enables the use of bio-metric
authentication. It can be used to secure private information on
dashboards via Face ID or fingerprint authentication for door access
control.

Criteria-based Analysis In the final step of the analysis, 34 distinct criteria
are evaluated for each of the four remaining IoT hubs. Similar to the initial
selection, each criteria in this part of the analysis also has a score i where
i ∈ Z : i ∈ [0, 5]. Where 5 indicates that a criterion has been fully satisfied,
and 0 indicates that the criterion is entirely unfulfilled. What follows is the
list of criteria and their descriptions. Each criterion is categorized in one of
8 categories.
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C1 Popularity and Community

C1.1 Activity: is the system actively maintained? This is determined
by the time of the latest commit to the main repository of the project.

C1.2 Developer Popularity: how popular is the system among devel-
opers? This is measured using the Stargazers Metric as defined by
Jarczyk et al. [JGJ+14]. This metric utilizes the number of stars a
source code repository has received.

C1.3 Overall Popularity: what is the popularity index of the system?
The popularity index is determined using Google Trends1. The name
of the system is used as the search term. The mean popularity over
the last 24 months is used to quantify this criteria.

C2 Pricing

C2.1 Support Plans: are support plans available, and what is their
cost? The cheapest support plan is considered.

C2.2 Minimum Hardware Requirements: what are the minimum hard-
ware requirements, and what is the cost associated with these re-
quirement? Prices are gathered from German retailers.

C2.3 Recommended Hardware Requirements: what are the recom-
mended hardware requirements, and what is the cost associated
with these requirement? Prices are gathered from German retailers.

C3 Setup Complexity

C3.1 System Start-Up Time: how much time does it take to download
and install the system from scratch? The time is measured from
download until the moment the system user interface becomes
responsive.

C3.2 Basic Sensor Setup: how many steps does it take to setup the
system and add an MQTT based sensor? After the completion of all
the steps, the sensor data should be in the desired format, ready

1Google Trends, https://trends.google.com/trends/
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to be displayed and used. A step in this context is not individual
clicks or keystrokes, but a significant step in the overall process. For
example, opening the plug-in marketplace, adding a sensor, and so
on.

C4 User Interface and User Experience
These criteria will be measured by means of a self-review in the context
of a workbench use-case experiment. We use the metrics defined by
Sauro et al. [JS16].

C4.1 Effort: how much effort is required to create the necessary
automation rules to fulfill a given scenario? The scenario is taken
from the Smart Home Scenarios data set [Abb18]. Effort is expressed
as the number of clicks necessary to finish the tasks.

C4.2 Task Time: how much time is required for the user to complete
the task from C4.1? The time required to complete the task is
measured.

C4.3 Extensibility: does the system support extension of the user
interface? The number of available user interface widgets in the
source code repository or on the marketplace are used to quantify
this criteria.

C4.4 Responsiveness: does the system provide a user interface that
adheres to the responsive web design principles? Responsiveness
is the ability to correctly render the user interface on a variety of
devices with different display sizes, from smartphones and tablets
to 4K televisions.

C5 Security and Authentication

C5.1 User Authentication: is there any form of user authentication
available? If so, what types of user authentication are supported?

C5.2 Multiple User Accounts: is it possible to create multiple user
accounts within the system?
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C5.3 Authorization Management: does the system provide role or
attribute based access control to limit and control user permissions?

C6 Extensibility and Support

C6.1 Custom Extensions: does the system offer the possibility to
implement custom plug-ins?

C6.2 Extension Count: how many extensions are available that ex-
tend the system to enable support for different IoT devices and
protocols? Other types of extensions, such as user interface exten-
sions and widgets, are excluded.

C6.3 Quality of Documentation: the quality of the documentation is
defined by six sub-criteria, which are adapted from [CSA14; Sco17;
WELL10].

C6.3.1 Actuality: does the system provide up-to-date documenta-
tion? The date of the most recent change to the documentation is
taken.

C6.3.2 Completeness and Comprehensiveness: does the documenta-
tion cover all the different aspects of the system?

C6.3.3 Examples: does the documentation include examples on
how to use the system.

C6.3.4 Findability: how easy is it to find the documentation? Is the
documentation referenced on the homepage or the source code
repository of the system?

C6.3.5 Readability: does the documentation use clear terms for
describing the system and its features?

C6.3.6 Skimmable: is the documentation made to skim through
quickly? To evaluate skimmability, the following sub-criteria are
investigated: (1) informative headlines,(2) short paragraphs, (3)
table of content, (4) global index, and (5) glossary.
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C6.4 Variety of Support: does the system offer a variety of support
methods? This is determined by the availability of e-mail support,
forum support, and social-media support.

C7 System Performance

C7.1 Concurrency: how many concurrent MQTT-sensors are sup-
ported?

C7.2 Update Rates: how many updates per second can the system
handle without performance drops?

C7.3 Scalability: does the system support horizontal scaling?

C8 Software Quality

C8.1 Code reviews: does the system require code reviews before new
features are added to the source code?

C8.2 End-to-end Test Metric: does the system have end-to-end tests?

C8.3 Formal Code Metric: how many lines of code does the system
have?

C8.4 Pipeline Support: does the system use Continuous Integration /
Continuous Delivery pipelines?

C8.5 Quality Checks for Third-Party Plugins: does the system guar-
antee a certain level of quality of third-party plug-ins added to the
repositories?

C8.6 Unit Test Metric: what is the unit test coverage level?

4.2.2 System Selection

The IoT hubs presently available range from recent projects to projects that
are quite mature. Based on the proposed methodology, 20 systems are dis-
covered and considered for further analysis. As the number of systems is
great, a selection is made to reduce this number to 4 systems. As part of the
selection process, each of these systems are evaluated based on the five met-
rics: commit count, number of stars, date of latest commit, documentation,
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and number of contributors. A total score for each system is obtained by
summing the scores of the individual metrics.

The results of the initial selection process are presented in Table 4.2. The
Table is populated with data collected on the 16th of July, 2021. The scores
of the individual metrics for each of the 20 systems are shown, as well as
the total score of each system. Based on the scoring, the top 4 systems are:
Home Assistant, Domoticz, openHAB, and ioBroker. These are the systems
that are selected and analyzed in greater detail. What follows next is a brief
description of each of the selected system, covering its history, as well as the
architecture and conceptual model. And finally, based on the commonalities
between the systems, a generic IoT hub architecture is defined.

Table 4.2: Initial selection of IoT hubs.
IoT Hubs Rank Score Commits Stars Latest

Commit Docs Contributors

Home Assistant [Homb] 1 24 4.6 4.6 5 5 5
Domoticz [Doma] 2 21 4.1 3.5 5 5 3
openHAB [Comb] 3 17 3.2 2.7 5 5 1
ioBroker [ioBb] 4 17 3.2 2.7 5 5 1
HomeGenie [G-L] 5 16 3 2.4 5 5 1
Calaos [Cal] 6 16 3.1 2.2 5 5 1
Wirehome [Kra] 7 16 2.6 2.3 5 5 1
OpenMotics [Ope] 8 16 3.5 1.4 5 5 1
Freedomotic [NCT+] 9 16 3.2 2.6 4 5 1
FHEM [FK] 10 15 4.3 1.1 5 5 0
MisterHouse [Kee] 11 15 3.6 2.3 3 5 1
OpenNetHome [Str] 12 14 2.7 1.6 5 5 0
Ago Control [Kle] 13 14 3.6 0.5 4 5 1
TheThingSystem [MH] 14 12 3.1 2.5 0 5 1
üAutomate [GS] 15 11 2.2 1.1 3 5 0
Neon HomeControl [Gia] 16 11 1.9 1.4 3 5 0
Pytomation [kin] 17 11 3 1.9 0 5 1
Smarthomatic [Fre] 18 10 2.8 1.5 0 5 1
Smart Haus [Off] 19 8 2.1 0.8 5 0 0
AutoBuddy [Wau] 20 8 2.4 1.2 4 0 0

Home Assistant The Home Assistant project was founded by Paulus Schout-
sen, and is an open-source system maintained by a worldwide community.
It currently provides over 1.500 different integrations. These integrations
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add support for new devices, adapter protocols, user interface modifications
or extensions, and the integration of external services. The configuration
of Home Assistant is mainly done through the use of YAML Ain’t Markup
Language (YAML)-defined configuration files. Though more configuration
options are being added to the user interface instead [HH19].

The Home Assistant core and its integrations are written in the Python pro-
gramming language. The architecture of the system is shown in Figure 4.5.
As can be seen in this figure, the event bus is the core of the system, listening
to and firing events to other components. One of these components is the
State Machine, used to keep track of the state of entities. Each change in a
state fires an event that is handled by the event bus. The Timer component
generates regular ’time changed’ events. The Service Registry allows other
components to register services, and allows these services to be discovered.

Figure 4.5: Home Assistant core system architecture [Homa].

In Home Assistant, every sensor, controller, and actor is a represented as a
device which can be organized into groups. Every device and integration is
represented as one or more entities, each having attributes representing the
state of the entity. For automation, there is the ability to create automation
rules which can be triggered by various events, including state changes of
entity attributes, when a user enters a defined area, when the sun is set, or
when the host restarts. In addition, the automation rules can have conditions
to prevent the execution of the rule if the conditions are not satisfied. Lastly,
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there are actions that specify what should be executed when the automation
rule fires.

Domoticz Domoticz is an IoT hub that is able to monitor and configure a
variety of devices. The first version of Domoticz was released in December
2012. Thanks to a responsive user interface, the system is usable on both
desktop andmobile devices. It is maintained by a large and active community
of developers.

Domoticz is implemented in the C++ programming language. The project
also implements its own web server, written in C++ as well. Unfortunately,
little documentation is available on the architecture of Domoticz and on the
underlying concepts of the project. However, Figure 4.6 shows an example of
a typical Domoticz setup. As is shown, sensors and actuators are connected
to Domoticz through MQTT. The actuators can be triggered by automation
rules defined in an external system such as Node-RED, or Domoticz’s own
Blockly rule builder. The backend handles the incoming data, which can
then be displayed on the Graphical UI (GUI).

Figure 4.6: Domoticz system architecture [Domb].
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openHAB Open Home Automation Bus, commonly known as openHAB, is
an open-source automation controller [HHKM17]. The first lines of code
were added to the project in 2010. The project does not have a singular
creator, instead, it has been implemented by a community of volunteers. The
openHAB system is vendor-independent and it works with many protocols
and devices. This is one of its main strengths and goals: providing a uniform
user experience regardless of the vendors and subsystems it interfaces with.
openHAB is primarily written in the Java programming language. A

representation of the openHAB architecture can be seen in Figure 4.7. The
figure clearly demonstrates that the Event Bus is the central component of the
system, enabling communication between the other openHAB components.
Bindings enable uniform communication between the system and the devices
or services. Thanks to openHAB’s extensibility, there are many different user
interfaces available to interact with the system, as well as a Representational
State Transfer (REST) API.

Figure 4.7: openHAB system architecture [HHKM17].

Conceptually, openHAB consists of five important elements: Things, Chan-
nels, Bindings, Items, and Links. Things are objects that are physically added
to the system, and that can provide one or more functions. A temperature
and humidity sensor is a single physical Thing that provides two function-
alities: temperature sensing, and humidity sensing. Each functionality of
a Thing is exposed through a Channel. Bindings are adapters, they enable
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access to Things through the system and hide hardware specific details.
Items are stateful, and provide functionality that can be used by application
or in automation logic. A Link connects one or more Channels to one or
more Items. The act of linking Channels and Items enables the functionality
provided by an Item to be access through that specific Channel. Figure 4.8
illustrates this connection between Things, Items, Channels, and Links.

Figure 4.8: openHAB conceptual architecture [HHKM17].

ioBroker The first version of ioBroker was published in 2014 by the com-
pany ioBroker GmbH. It is the successor of the CCU.IO project, which was
terminated in April 2015 [HH19]. The goal of ioBroker is to integrate hetero-
geneous smart building devices and systems. At the time of writing, ioBroker
offers 350+ adapters to integrate with different devices and systems. The
system is non-commercial software, and is developed and maintained by
volunteers. One of the main advantages of ioBroker is that all configuration
can be done through a web interface. This makes the system accessible to a
wide range of users [HH19]. Additionally, ioBroker uses the local API of a
device, when this is supported, in order to bypass the online cloud services
of the vendors. The benefit of this approach is that sensitive data remains
local and any security vulnerabilities that might exist in the cloud service
are avoided.
The ioBroker core is primarily written in JavaScript. The adapters are

also written in JavaScript, though Typescript can be used as well. The
architecture of the system is shown in Figure 4.9. It is clear from the figure
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Figure 4.9: ioBroker system architecture [ioBa].

that two databases play an important role: the objects database and the
states database. The object database is responsible for storing meta data
and configurations, whereas the states database is used to keep track of the
state of devices and services. By default in-memory databases are used, but
there are adapters available to support other types of databases. Adapters
are used to integrate with different IoT devices and systems, resulting in a
loosely coupled architecture. The controller is responsible for managing the
adapter processes.
From a conceptual viewpoint, ioBroker is an extremely modular system.

Each module or adapter is responsible for a specific function. Even the
administration user interface is developed as a separate adapter. A central
coordinator, also known as the js-controller, is responsible for managing the
adapters and realizing the communication between them.

4.2.3 The IoT Hub System Architecture

The architecture of an IoT hub influences the capabilities and the charac-
teristics of the system itself. It is clear that the architectures of the top
four systems show a large number of commonalities. On the basis of these,
we discuss concepts, components, and designs that are present in multiple

138 4 | Monitoring of Smart Data Centers



systems and can be considered jointly core architectural principles for an
IoT hub. Due to a lack of documentation, especially with respect to system
architecture, the Domoticz system is not included. This emerging architec-
ture is shown in Figure 4.10. What follows next is a description for each of
the components.

Event Bus

Virtual Device Virtual DeviceVirtual Device

Physical Device Physical Device Physical Device
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Browser
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Figure 4.10: The generic IoT Hub architecture.

• Database is a critical component to store historical device data. The
database is generally also used to store the current state of devices
and other entities within the system. Furthermore, it is also used to
track all devices and extensions. All three systems, Home Assistant,
openHAB, and ioBroker support a multitude of database systems.
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• Web-based User Interface is the most popular option to interact with the
system, though not the only one. While Home Assistant leans heavily
on a single user interface which is highly personalize, openHAB and
ioBroker support multiple, entirely distinct, user interfaces each with
their own strengths and weaknesses.

• (REST) API to interact with the system by means other than the web-
based user interface. All of the investigated systems have an API of
some form and shape to enable interactions with the system, such as
triggering actuators or automation rules.

• Event Bus is present in both Home Assistant and openHAB, the event
bus plays a central role in facilitating asynchronous communication
between components. The bus is also used to listen to events generated
by devices or by the system itself. On the contrary, ioBroker opts for a
direct TCP/IP connection for communication between components.

• Physical Device, such as a temperature sensor or relay, needs to be
represented in the building automation system. Home Assistant simply
refers to a physical device as ’device’, openHAB uses the label ’thing’.
ioBroker does not make a clear distinction, though in general physical
devices are abstracted and represented as the ’object’ data type.

• Virtual Device can represent a physical device that has multiple sensors,
and sometimes multiple actuators, to uniformly abstract individual
features provided by physical devices. In Home Assistant, a virtual
device is called an ’entity’, while openHAB uses the name ’item’. Again,
ioBroker does not support such abstraction.

• Extensions are critical for IoT hubs given the high dynamicity of the
related ecosystem. Extensions allow the systems to offer support for
many devices and services. Though, there is no agreement on what
they should be called; openHAB talks about ’bindings’, Home Assis-
tant considers them ’integrations’, and ioBroker uses the concept of
’adapters’.
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• Rule Engine enables the automation of the building to define and exe-
cute rules. Home Assistant and openHAB provide their own compo-
nents to wire together devices and events. ioBroker relies on exten-
sions, such as Blockly and Node-RED. Though both Home Assistant
and openHAB also support Node-RED.

Interestingly, many commonalities can be observed between the generic
IoT hub architecture, and the edge gateway architecture for smart data
centers proposed in Figure 4.4. In both cases there is a need for integrating
with many different sensors and actuators, each using a variety of com-
munication protocols. Events are emitted to an event bus or event queue,
allowing the rest of the system to interact by monitoring these events and
triggering rules when certain preconditions are met. Therefore, IoT hubs
are good candidates for becoming the foundation of an edge gateway as we
have envisioned for the real-time monitoring of smart data centers.

4.2.4 Use Case Based Analysis

The features supported by the four selected systems largely overlap, though
they are not exactly the same. Let us consider the four system under the
lenses of the use cases and corresponding features identified in Table 4.3 and
Table 4.4. The support for each of these features is determined and translated
into a numeric score as shown in Equation 4.4. In order to determine which
features are supported, each system is deployed in practice in order to verify
the support of each feature. The results are summarized in Table 4.5 where a
check mark (✓) indicates native or near-native support of the feature; a circle
(O)" indicates that the feature is supported by means of a third-party solution,
or that it requires significant effort (e.g. writing custom scripts) from the
user; and finally, a dash (-) indicates that the feature is not supported.

F1.1 (ePaper / eInk Display): Home Assistant is the only system that
supports ePaper Displays natively. There are third-party alternatives available
for Home Assistant, such as Basic-Hass-Dash or HASS eInk Display, which
can display the Home Assistant dashboard in an ePaper-friendly manner. The
remaining systems only support this feature through third-party solutions.
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Domoticz has the Dashticz third-party dashboard that could be user on
ePaper devices with a browser. For openHAB there is a third-party project
called PaPiRus-MQTT, which uses the lightweight message queue MQTT
to transmit the data from openHAB to the ePaper device. For ioBroker a
solution suggested in the community forums is to use Remote Procedure
Call (RPC) calls and a Homematic display.

F1.2 (Dashboard): All systems have native support for dashboards to
display data and to control devices. Both Home Assistant and ioBroker make
use of the Lovelace User Interface (UI). All systems also support third-party
dashboards. For example, by connecting to an InfluxDB time-series database
and using the Grafana visualization platform.

F2.1 (GPS-Tracking): Home Assistant includes a native companion
app that can be installed on mobile devices to enable detailed tracking
information. No native support is provided by Domoticz, though there
are workarounds to include GPS data or to use the GeoFence mobile app.
openHAB includes native add-ons that offer integration with applications
such as OpenPaths and OwnTracks to provide detailed tracking. For ioBroker,
the community provides third-party adapters, such as ioBroker.places, which
adds support for mobile apps such as OwnTracks.

F2.2 (Presence Detection): All systems provide support for detecting
the users presence using Internet Protocol (IP)-based approaches, tracking
the presence of mobile devices in the building’s network. Additionally, Home
Assistant, Domoticz, and openHAB provide native support for Bluetooth Low
Energy (BLE) beacons. Third party adapters exist for ioBroker to enable
presence detection through BLE.

F3.1 (Mobile Notification): All systems support mobile notifications.
Email notifications are supported on all systems, and add-ons are also pro-
vided for Telegram notifications. Push notifications are also supported on all
systems.

F4.1 (Sensor – Read): All systems support the reading of sensor data
from devices.

F4.2 (Device – Actuation): All systems support the actuation of devices.
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F4.3 (Automation Rule): The creation of automation rules is an integral
part of the dashboard provided by Home Assistant and openHAB. Domoticz
and ioBroker rely on scripts written by the user, or the use of Blockly, a
third-party visual programming editor.

F4.4 (Media Streaming): This criteria of Media Streaming is evaluated
based on the support for the Real Time Streaming Protocol. Home Assistant,
openHAB, and ioBroker have out-of-the-box support for it. Domoticz does
not offer native support for the protocol, though third-party workarounds
do exist.

Table 4.5: Features Overview: ✓ (near-)native support, O 3rd-party support,
– no support.

Features

System
H
om

e
As

si
st
an

t
D
om

ot
ic
z

op
en

H
AB

io
Br
ok

er
F1.1: ePaper / eInk Display O O O O
F1.2: Dashboard ✓ ✓ ✓ ✓

F2.1: GPS-Tracking ✓ O ✓ O
F2.2: Presence Detection ✓ ✓ ✓ ✓

F3.1: Mobile Notification ✓ ✓ ✓ ✓

F4.1: Sensor – Read ✓ ✓ ✓ ✓

F4.2: Device – Actuation ✓ ✓ ✓ ✓

F4.3: Automation Rules ✓ ✓ ✓ ✓

F4.4: Media Streaming ✓ O ✓ ✓
F5.1: Mobile Remote Control ✓ O ✓ O
F5.2: External API Calls ✓ ✓ ✓ ✓

F5.3: Scheduler ✓ ✓ ✓ ✓

F5.4: Biometric User Auth. ✓ - O O

Score 4.5 2 4 3
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F5.1 (Remote control): Home Assistant and openHAB provide official
mobile applications, for both Android and iOS, that enable the remote control
of devices connected to the system. ioBroker only offers an official iOS appli-
cation, and a third-party Android application. Domoticz provides support
for multiple third-party applications, such as Domoticz for Android, and
ImperiHome.

F5.2 (External API Calls): All systems have support for external service
REST API calls.

F5.3 (Scheduler): Home Assistant, openHAB, and ioBroker offer native
solutions for time-based triggers and scheduling. Whereas, Domoticz relies
on user-defined scripts or Blockly functionality.

F5.4 (Bio-metric User Authentication): The only system providing
native support from bio-metric features is Home Assistant. There are official
integrations available for Dlib Face Detect, Facebox, and Microsoft Face
Detect, among others. Third-party projects also explain how to integrate
fingerprint recognition. For both openHAB and ioBroker, third party projects
are available that demonstrate the addition of face recognition. Domoticz
offers no support for this feature.

4.2.5 Criteria-based Analysis

To complete the analysis of the system, after having studied the functionali-
ties derived from uses cases, we proceed with checking the features identified
in Section 4.2.1. Each criteria is evaluated, and a score between 0 (not ful-
filled) and 5 (completely fulfilled) is assigned to each system.

C1.1 (Activity): All four systems are actively maintained. The latest
commit to the source code repository for each system was made on the 16th
of July, 2021. As a result, the four systems receive the maximum score of 5
for this criterion.
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C1.2 (Developer Popularity): We define popularity based on the Stargaz-
ers metric as defined by Jarczyk et al. [JGJ+14]:

f (x) = log10(x + 10) (4.5)

where x is the number of stars a source code repository has received. Apply-
ing Equation 4.5 to each of the systems and rounding to the nearest integer
value yields the results shown in Table 4.6.

Table 4.6: Popularity among developers.
System Stars Stargazers Score

Home Assistant 33511 4.53 5
Domoticz 2700 3.43 3
openHAB 297 2.49 2
ioBroker 684 2.84 3

C1.3 (Overall Popularity): TheGoogle Popularity Index is used tomeasure
overall popularity. Figure 4.11 shows the trend of the relative popularity
index over time. The value represents the search interest relative to the
highest point on the chart. A value of 100 represents the peak popularity.
Scores are assigned based on the results of the latest relative popularity as
is shown in Table 4.7, where the most popular system receives the highest
score.

Table 4.7: Relative Popularity (2016 - April 2020).
System Average Gradient Latest Score

Home Assistant 38.92 37.09% 89 5
Domoticz 17.39 0.47% 12 2
openHAB 24.50 2.82% 30 4
ioBroker 9.35 9.39% 19 3
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Figure 4.11: Google Popularity Index (2016 - April 2020).

C2.1 (Support Plans): None of the four IoT hubs provide support plans.
Instead, the support is provided by the communities in the shape of chat
rooms and discussion boards. Therefore, for this category, all of the systems
receive zero points.

C2.2 (Minimum Hardware Requirements): Single board computers
such as the Raspberry Pi are popular hardware platforms for IoT platforms.
Not only do they have a small form factor, they also are one of the most
affordable hardware options available for these systems. Table 4.9 shows the
mapping between price and score. The minimum hardware requirements
for each system, their price, and the score, are shown in Table 4.8. These
prices are in accordance with what is expected in the market for 2021.

C2.3 (Recommended Hardware Requirements): Table 4.9 shows the
mapping between price and score. The recommended hardware require-
ments for each system, their price, and the score, are derived and shown
in Table 4.10. These prices are in accordance with what is expected in the
market for 2021.
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Table 4.8: Minimum hardware requirements.
System Required Hardware Price Score

Home Assistant Raspberry Pi 3 Model B 34.90 - 38.17 Euro 4
Domoticz Raspberry Pi 1 Model B+ 26.99 - 31.92 Euro 5
openHAB Raspberry Pi 2 Model B 33.90 - 39.79 Euro 4
ioBroker Raspberry Pi 2 Model B 33.90 - 39.79 Euro 4

Table 4.9: Price to score conversion.
≤ 30 € ≤ 35 € ≤ 40 € ≤ 60 € ≤ 100 € > 150 €

5 4 3 2 1 0

Table 4.10: Recommended hardware requirements.
System Recommended Hardware Criterion C2.2 Score

Home Assistant Raspberry Pi 4 Model B 38.73 - 39.56 Euro 3
Domoticz Raspberry Pi 3 Model B 34.90 - 38.17 Euro 4
openHAB Raspberry Pi 2 Model B 33.90 - 39.79 Euro 4
ioBroker Raspberry Pi 4 Model B 38.73 - 39.56 Euro 3

C3.1 (System Start-Up Time): Each system provides Docker container
images for deployment. Since Docker containers automate many of the
installation steps, using these containers is generally the fastest way to setup
a system. Therefore, the time to download and and fully initialize these
containers is measured. The results are shows in Table 4.11. Scores are
assigned as follows, where time is measured in seconds: 5 points for ≤ 40,
4 points for ≤ 80, 3 points for ≤ 120, 2 points for ≤ 180, and 1 point for
≤ 300.

C3.2 (Basic Sensor Setup): To evaluate this criteria, a MQTT broker
(Eclipse Mosquito) and a virtual MQTT sensor are set up using Docker
containers. The virtual MQTT sensor generates random sensor data. The
number of required steps for each system to integrate this MQTT-based
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Table 4.11: System start-up time.
System Mean Setup Time Score

Home Assistant 85s 3
Domoticz 84s 3
openHAB 69s 4
ioBroker 94s 3

Table 4.12: Interaction steps to setup an MQTT sensor.
System # Interaction steps Score

Home Assistant 5 4
Domoticz 3 5
openHAB 8 3
ioBroker 11 2

sensor is measured. The results, shown in Table 4.12 show that setting up
the sensors requires a comparable number of steps, the minimum is 3 for
Domoticz and the maximum is 11 for ioBroker.

C4.1 (Effort): To measure the effort, we consider the following task from
the Smart Home Scenario data set is measured: During the day, whenever I
walk into the bathroom the light should come on, and after a certain time,
when it is night, I would want a much softer light to come on [Abb18]. All
systems are tested with virtual sensors and lighting fixtures, which are set-up
ahead of time. The automation rule creation of Domoticz is tested through
its integrated rule engine Blockly. The creation of the automation rule and
the corresponding scene takes 43 clicks using Domoticz. In turn, openHAB
offers an experimental UI-based rule engine [Comc], which is used in this
test. Overall, it takes 70 clicks to install the rule engine and create the nec-
essary rules in openHAB. Home Assistant comes with a built-in automation
rule editor, which is used in this test, taking 38 clicks in total to setup the
rules to fulfill the scenario. Due to an unexpected error within a required
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module of ioBroker, the score for this system cannot be evaluated. Table 4.13
provides an overview of the results and the scoring, which is assigned by rank.

Table 4.13: Effort of creating the automation rules for the user story.
System # clicks Score

Home Assistant 38 5
Domoticz 43 4
openHAB 70 3
ioBroker - 0

C4.2 (Task Time): The scenario and tasks used to evaluate the Task Time
criteria are identical to C4.1 (Effort), and the same setup is used. In our
evaluation, the time to complete the task takes 1:39 minutes with Domoticz,
2:16 minutes with openHAB, and 1:00 minute with Home Assistant. Because
of an error with a required module, ioBroker cannot be evaluated. An
overview of the test result is shown in Table 4.14.

Table 4.14: Completion time of the user story.
System Duration Score

Home Assistant 60s 5
Domoticz 99s 4
openHAB 136s 3
ioBroker - 0

C4.3 (Extensibility): In terms of extensibility, Home Assistant has 25
official widgets available for its Lovelace UI. Panels can also be customized
using ReactJS. Domoticz does not have built-in widgets. There are ways
the dashboard can be customized, but they are quite limited, such as ap-
plying skins and modifying icons. Domoticz can be used with a number of
third-party dashboards, including Reacticz, New Frontpage, and Dashticz.
openHAB has 13 built-in widgets. It also allows for inclusion of custom
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widgets, which can then be accessed through the widget gallery. The fourth
and final system, ioBroker, has a considerable number of third party widgets,
that can be imported into the system. The widgets can also be customized
further by changing the Cascading Style Sheets (CSS) attributes. Home
Assistant and openHAB both provide official UI widgets and other means to
customize the UI, therefore they receive the maximum score of 5. The other
two systems, Domoticz and ioBroker, appear to only support third party
widgets, thus receiving a score of 3.

C4.4 (Responsiveness): All IoT hubs provide a UI that is responsive,
ensuring that it functions on smartphones, tablets, and other mobile devices.
However, the UI of Domoticz is lacking with regards to its responsiveness,
for example, the automation rule editor is borderline unusable on a mobile
device as it does not scale well. Therefore, two points are deducted from
its score. To conclude, Home Assistant, Domoticz and openHAB receive full
marks, and Domoticz has a score of 3.

C5.1 (User Authentication): Domoticz, openHAB, and ioBroker only
offer basic-auth as a login method. Home Assistant is the only system
which provides webauthn as an additional login method. In addition, Home
Assistant supports Multi-factor Authentication (MFA) and Two-factor Au-
thentication (2FA) for self-hosted solutions. The other systems only support
2FA for their online cloud-hosted solutions. Table 4.15 shows the results.
Basic-auth yields a score of 3, additional points are given for webauthn
support, as well as MFA/2FA support.

Table 4.15: Protected settings by authentication.
System basic-auth MFA/2FA webauthn Score

Home Assistant ✓ ✓ ✓ 5
Domoticz ✓ (✓) 3
openHAB ✓ (✓) 3
ioBroker ✓ (✓) 3
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C5.2 (Multiple User Accounts): Multiple user accounts are either sup-
ported (5 points), or not (0 points). All four systems support multiple user
accounts, therefore receiving the full score of 5.

C5.3 (Authorizationmanagement): Both Domoticz and ioBroker provide
some form of authorization management. Domoticz supports a single admin
user and multiple regular users, who can be invited by the admin. ioBroker
has a similar authentication concept to Domoticz, there is one admin user
and there can be multiple regular users. However, in ioBroker, users be
separated into different user groups with different permissions. Currently,
Home Assistant does not provide authorization management. Thus, all users
have the same level of access. openHAB also does not provide any kind of
authorization management. ioBroker receives a score of 5, as it provides the
most comprehensive authorization management. Domoticz receives a score
of 3, as the features are more limited. Home Assistant and openHAB do not
currently have authorization management and therefore receives 0 points.

C6.1 (Custom Extensions): All four systems provide the means for their
systems to be extended with additional functionality using custom extensions
or plugins. One thing of note is that ioBroker, unlike the other systems, does
not provide a well documented framework for implementing extensions. As
all systems support custom extensions, they all receive the full score of 5
points.

C6.2 (Extension Count): The number of available extensions for each IoT
hub is obtained by analyzing official wiki’s and available documentation, as
well as plugin repositories or marketplaces, when available. An overview of
the number of available extensions for each system can be found in Table 4.16.
Score is assigned in accordance with the system ranking.

C6.3 (Quality of Documentation): The quality of documentation is
defined by the following sub-criteria: C6.3.1 Actuality, C6.3.2 Completeness
/ comprehensiveness, C6.3.3 Examples), C6.3.4 Findability, C6.3.5 Read-
ability, and C6.3.6 Skimmability. The overall quality of the documentation
is determined as the average over all sub-criteria. The final scores are pre-
sented in Table 4.17. What follows next is a more detailed analysis for each
of the sub-criteria.
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Table 4.16: Extension count.
System C6.2 Score

Home Assistant 1611 5
Domoticz 79 2
openHAB 323 3
ioBroker 352 4

Table 4.17: Quality of documentation.
System C6.3.1 C6.3.2 C6.3.3 C6.3.4 C6.3.5 C6.3.6 Score

Home Assistant 5 5 5 5 5 4 5
Domoticz 5 0 3 5 5 4 4
openHAB 5 3 0 5 5 3 4
ioBroker 5 0 0 5 5 4 3

C6.3.1 (Actuality): The actuality of the documentation is determined
by the date of the last change. This data was gathered either from the
documentation of the system, or from its source code repository. At the time
of writing, each of the four system had their documentation updated within
the last two days, and therefore they all receive 5 points.

C6.3.2 (Completeness / Comprehensiveness): The completeness and
comprehensiveness of the documentation is determined by how often other
sources besides the official documentation had to be consulted during the
analysis of the IoT hubs. The scores are assigned as follows: 5 for a complete
and comprehensive documentation and rarely needing other sources, 3 for
a mostly complete documentation where other sources had to be consulted
multiple times, and 0 in case there is no documentation or external sources
had to be primarily used to perform the analysis. Home Assistant scores
full marks for its documentation, openHAB scores 3 points for sufficient
but incomplete documentation. Both Domoticz and ioBroker are lacking
critical information in their documentation, requiring external sources to be
accessed regularly and therefore receive a score of 0.
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C6.3.3 (Examples): Home Assistant provides a separate section dedicated
to examples of many different use cases. Therefore, it receives the full score
for the availability of examples criterion. Domoticz offers a manual that
shows how many of its features can be used, individually. Though, it does
not provide complete example use cases. Therefore, Domoticz receives a
score of 3. Both openHAB and ioBroker do not provide any examples use
cases in their documentation, and therefore receive a score of 0.

C6.3.4 (Findability): Since all of the IoT hubs have made it simple to
locate the documentation, either through links on their websites or via the
source code repositories, each of them receives the full score.

C6.3.5 (Readability): Each of the systems use clear terms for the de-
scription of their system and features. It is interesting to note that the same
concepts have different terms in different systems, but the terms are well
defined. Despite this, it is not difficult to understand the similarities between
the systems. Therefore, each of the four systems receives a score of 5 for this
criterion.

C6.3.6 (Skimmability): To determine skimmability, the documentation
for each system is analyzed in terms of: (1) informative headlines, (2) short
paragraphs, (3) table of content, (4) global index, and (5) glossary. If an
item is partially or not available, then 1 point is deducted from the score.
The results are shown in Table 4.18.

Table 4.18: Quality of documentation - skimmable.
System (1) (2) (3) (4) (5) Score

Home Assistant ✓ ✓ - ✓ ✓ 4
Domoticz ✓ ✓ ✓ ✓ - 4
openHAB ✓ ✓ - ✓ - 3
ioBroker ✓ ✓ ✓ ✓ - 4

C6.4 (Variety of Support): Each IoT hub has some presence on social
media for support. Home Assistant is on Twitter, Facebook, and Reddit, as
well as Discord. Domoticz is on Facebook, Reddit, and Twitter, though the

4.2 | Open-Source Internet of Things Hubs 155



Twitter account appears to be inactive. openHAB is on Twitter, Facebook,
Reddit, and YouTube. Though, both Facebook and YouTube accounts appear
to be inactive. ioBroker is on Twitter, Facebook, and Reddit. In this case,
the Twitter account appears to be inactive. When it comes to email support,
openHAB and ioBroker provide an email address, Home Assistant does too
but not for support purposes, and Domoticz has no email contact details.
Each of the four systems has a forum available for support. The final score
can be found in Table 4.19.

Table 4.19: Variety of support.
System Social Media Forum Email Score

Home Assistant ✓ ✓ - 3
Domoticz ✓ ✓ - 3
openHAB ✓ ✓ ✓ 5
ioBroker ✓ ✓ ✓ 5

C7.1 (Concurrency): To evaluate the concurrency criterion, a virtual
MQTT sensor is created and connected to each of the systems. The sensor
updates at a frequency of one message per second. The number of virtual sen-
sors is gradually increased until noticeable performance issues arise. These
performance issues can include, but are not limited to, out-of-order message
processing, data inconsistency, high system response time, UI freezes, or
system crashes. The systems are deployed on a Raspberry Pi 3 Model B+
using the pre-configured Docker containers that each system provides. The
virtual sensors and MQTT broker are deployed on separate machines.

When testing, ioBroker was able to handle at least 100 concurrent sensors.
However, at this point problems do arise when displaying the real-time logs
of the incoming sensor data, which becomes notably slow until the page
is refreshed. Domoticz was able to handle up to 10 concurrent sensors, at
which point the processing of messages was notably delayed, and the order
in which the messages were processed became inconsistent. Home Assistant
was able to process the data from 70 concurrent sensors. When increasing
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beyond this number of sensors, Home Assistant is unable to process the
messages on time, and the visual representation of the data will be delayed.
Unfortunately, openHAB does not support this automated test bench, and
each virtual sensor has to be manually configured. Therefore, only 10 sensors
were set up. These manual tests indicated that openHAB was able to handle
at least 10 concurrent sensors. Table 4.20 shows the results, the score is
assigned in accordance with the ranking.

Table 4.20: Maximum concurrent sensors.
System C7.1 Score

Home Assistant 70 4
Domoticz 10 2
openHAB 10+ 3
ioBroker 100+ 5

C7.2 (Update Rates): To evaluate update rates, the same setup as
in C7.1 is used, with the difference that there is only one virtual MQTT
sensor. However, this single virtual MQTT sensor is able to transmit data at
varying rates: 1, 10, and 100 messages per second. Tests show that all of
the systems are able to handle a single sensor with update rates of up to 100
messages per second. The results are shown in Table 4.21.

Table 4.21: Maximum update rates.
System 1/s 10/s 100/s Score

Home Assistant ✓ ✓ ✓ 5
Domoticz ✓ ✓ ✓ 5
openHAB ✓ ✓ ✓ 5
ioBroker ✓ ✓ ✓ 5

C7.3 (Scalability): Two of the four IoT hubs that were examined offer
horizontal scaling. ioBroker supports a multi-host-mode setup, which makes
it possible for multiple instances to operate in parallel. And openHAB sup-

4.2 | Open-Source Internet of Things Hubs 157



ports a special version called openHAB-cloud, that enables off-loading to
the cloud or a local cluster. Both ioBroker and openHAB receive a score of 5,
whereas Home Assistant and Domoticz receive 0 points due to the lack of
scalability.

C8.1 (Code reviews): Each of the four systems require code reviews
before a pull or merge requests is accepted. Home Assistant and openHAB
provide a contribution document, in which the process to contribute to the
source code is detailed. Domoticz and ioBroker are less restrictive, but do
enforce code reviews. Therefore, all systems receive the full score.

C8.2 (End-to-End Test Metric): None of the IoT hubs provide end-to-
end tests, neither in their main source code repositories, or their UI-specific
source code repositories. Therefore, a score of 0 is assigned to each of the
systems.

C8.3 (Formal Code Metric): The maintainability of the source code is
critical for the longevity of the project. Each system provides a core source
code repository which contains the code for the backend of the system. To
determine the size of the backend, the Lines of Code (LoC) are determined
for each of the core repositories. Scores are assigned in accordance with
the LoC, where fewer lines equates a higher score. The results are shown in
Table 4.22

Table 4.22: Lines of Code of the core repository.
System LoC Score

Home Assistant 542013 2
Domoticz 208295 3
openHAB 127745 4
ioBroker 37017 5

C8.4 (Pipeline Support): Each of the systems use some form of Continuous
Integration and Continuous Delivery (CI/CD) pipeline to automate the soft-
ware engineering process such as testing, and the creation of Docker images.
All of the systems use either Travis or GitHub workflows for this purpose. To
conclude, each system receives 5 points for this criterion.
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C8.5 (Quality checks for 3rd party plugins): Home Assistant provides an
elaborate quality scale to determine the quality of 3rd party plugins [Homc].
The focus of Domoticz is more on the technical specification of the plugins,
rather than on the process that developers have to follow. openHAB on
the other hand, performs static code analysis, and provides a detailed list
of requirements for contributions [Coma]. ioBroker ensures that all 3rd
party plugins are checked before they are made available in their adapter
repository. Additionally, there is a forum on which developers search for
members to evaluate the new plugins, and verify that they are functioning.
The final scores are as follows: Home Assistant, openHAB, and ioBroker
receive full marks for their elaborate checks. Whereas Domoticz receives 3
points as their quality checks are significantly less elaborate.

C8.6 (Unit test metric): Home Assistant makes use of unit tests, though
the available information on how they should be written is limited. openHAB
provides a detailed explanation about how the unit tests and integration tests
should be coded, highlighting the importance of these tests in the project.
ioBroker also provides comprehensive documentation on the practices that
should be used when writing tests. Domoticz on the contrary does not have
unit tests. The three systems that do have unit tests receive a score of 5,
whereas Domoticz receives a score of 0.

4.2.6 Discussion

The comparison of the systems on the basis of the use cases and features
has highlighted many similarities among the currently available open-source
projects, but also some key differences. What follows is a discussion of
the findings of the previous sections in terms of use cases realizability and
feature possession.

Use Case Based Analysis (F1-F5) The use case analysis has highlighted
Home Assistant is the highest scoring system, followed closely by openHAB;
ioBroker is in third place, and Domoticz has the lowest score, as summa-
rized in Table 4.5. Each system supports the basic operations that one may
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expect from an IoT hub, such as reading sensor data, sending commands
to actuate devices, and creating automation rules. Though, none of the
systems have native support for ePaper and eInk displays. That said, almost
all functionality that is not supported natively can be provided by third party
extensions or plugins. This highlights the strong points of open-source and
extensible IoT hubs, which is extensibility and the ability for anyone to con-
tribute to the project. It is of note to mention that the use cases were defined
before any practical evaluation, and that the use cases are considered to be
comprehensive for smart buildings, for both residential and non-residential
buildings. The fact that all systems are able to support every use case, either
natively or through extension, demonstrates the maturity of these systems.

Popularity and Community (C1) The popularity among developers, as
well as users, are an important factor to consider when choosing a system,
as these factors influence the available support and longevity of the project.
Table 4.23 summarizes the results of the Popularity and Community category,
which consists of three individual criteria. While all systems are actively
developed by their community of developers, there is a clear difference
in overall popularity. Home Assistant takes the lead in both Developer
Popularity, as well as Overall Popularity. Interestingly, while openHAB
appears to be the least popular among developers, their overall popularity is
second highest.

Table 4.23: Popularity and community score.
Criterion Home Assistant Domoticz openHAB ioBroker

C1.1 5 5 5 5
C1.2 5 3 2 3
C1.3 5 2 4 3

Average 5 3.3 3.7 3.3

Rank 1st (5.0) 3th (3.3) 2nd (3.75) 3rd (3.3)
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Pricing (C2) The upfront costs can be a significant hurdle when first pur-
chasing an IoT hub. Deciding on an open-source solution instead of a
commercial system can help drastically reduce them, while sacrificing paid
support. Table 4.24 provides an overview of the scores related to the Pricing
category, considering both support plans and hardware costs. First of all,
none of the systems provides paid support plans. For any kind of assis-
tance, one has to rely on the community of developers and users. While
commercially available closed-source IoT hubs are expensive (€250-€600),
the hardware required to deploy the open-source systems considered in
this work are significantly cheaper. All four systems can be deployed on
the Raspberry Pi single board computer. The minimum and recommended
hardware requirements are nearly identical for all systems. Note that we
excluded the cost of the power supply and the non-volatile memory card, as
these costs are identical for all four systems.

Table 4.24: Pricing score.
Criterion Home Assistant Domoticz openHAB ioBroker

C2.1 0 0 0 0
C2.2 4 5 4 4
C2.3 3 4 4 3

Average 2.3 3 2.6 2.3

Rank 2nd (2.3) 1st (3.0) 4nd (2.6) 2nd (2.3)

Setup Complexity (C3) The complexity of a system is an important aspect
to consider, while uncomplicated systems make it easy to connect hardware
to the system, a more complex system may offer more options and function-
ality that can be configured. Table 4.25 presents the results of the Setup
Complexity category. While all systems are easy and quick to start from a
fresh setup, thanks to Docker support, there are still some differences in the
time it takes to start the Docker container. openHAB starts the fastest, in
69 seconds. Whereas ioBroker takes the longest, with 94 seconds. A bigger
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discrepancy can be found in the number of steps it takes to setup a basic
MQTT sensor. In Domoticz this only takes 3 steps, whereas ioBroker requires
11 steps.

Table 4.25: Setup complexity score.
Criterion Home Assistant Domoticz openHAB ioBroker

C3.1 3 3 4 3
C3.2 4 5 3 2

Average 3.5 4 3.5 2.5

Rank 2th (3.5) 1st (4.0) 2nd (3.5) 4rd (2.5)

User Interface and User Experience (C4) Many of the interactions with
the IoT hub takes place through the web interface provided. Therefore,
the experience and functionality that the interface offers are important
when deciding which system to adopt. Table 4.26 shows the results for
the User Interface (UI) and User Experience (UX) categories. While Home
Assistant and Domoticz require nearly the same number of clicks to setup an
automation rule (around 40), openHAB requires nearly double that amount
(70 clicks). The time it takes to setup an automation rule also widely differs,
from 60 seconds for Home Assistant, to 136 seconds for openHAB. When
it comes to extensibility of the UI, Home Assistant and openHAB support
this functionality natively, whereas the other two systems have third party
support for extending the UI. Domoticz is the only system which has a
number of issues with its responsive design, making it less prone to be used
on mobile and handheld devices. Unfortunately, C4.1 and C4.2 could not be
evaluated for ioBroker, due to an error in one of the modules.

Security and Authentication (C5) Home automation systems deal highly
sensitive data in terms of privacy, which should be managed with care.
Table 4.27 presents the results of the Security and Authentication category,
which consists of three criteria. All four systems provide support for basic-
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Table 4.26: UI and UX score.
Criterion Home Assistant Domoticz openHAB ioBroker

C4.1 5 4 3 N/A
C4.2 5 4 3 N/A
C4.3 5 3 5 3
C4.4 5 3 5 5

Average 5 3.75 4 2

Rank 1st (5.0) 3rd (3.75) 2nd (4.0) 4th (2.0)

auth. Only Home Assistant provides MFA/2FA and webauthn support for
their self-hosted solution. The other systems provide MFA/2FA only in their
cloud-hosted solutions. Perhaps unsurprisingly, all four systems have support
for multiple user accounts. Authorization management is in general lacking;
in most systems there is either only two predefined roles (user and admin),
or just one single role that provides everyone with the same level of access.
The main exception here is ioBroker, which provides the most detailed level
of control over permissions.

Table 4.27: Security and authentication score.
Criterion Home Assistant Domoticz openHAB ioBroker

C5.1 5 3 3 3
C5.2 5 5 5 5
C5.3 0 3 0 5

Average 3.3 3.6 2.6 4.3

Rank 3rd (3.3) 2nd (3.6) 4th (2.6) 1st (4.3)

Extensibility and Support (C6) An IoT hub should provide support for
as many devices and protocols as possible. Though in practice not every
system supports every device or protocol. While popular protocols, such as
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Z-Wave and ZigBee, are widely supported, more obscure or niche devices
and protocols may not be supported. Table 4.28 summarize the result for the
Extensibility and Support Category. While all systems provide support for
extensions, the number of available extensions varies widely. Home Assistant
has over 1.600 extensions available, whereas Domoticz has about 80. The
quality of the documentation also varies widely, with Home Assistant having
excellent documentation, while ioBroker’s documentation is clearly lacking,
especially when it comes to completeness and the inclusion of examples. All
of the systems rely heavily on the community to provide support to users.
The support is often provided via forums or social media.

Table 4.28: Extensibility and support score.
Criterion Home Assistant Domoticz openHAB ioBroker

C6.1 5 5 5 5
C6.2 5 2 3 4
C6.3 5 4 4 3
C6.4 3 3 5 5

Average 4.5 3.5 4.3 4.3

Rank 1st (4.5) 4rd (3.5) 2st (4.3) 2nd (4.3)

System Performance (C7) Current trends show that there is an increase
in the number of devices and appliances that can be connected to IoT hubs
[SKS+20]. Therefore, it is important that the system is able to scale to
support this increasing number of smart devices. Table 4.29 provides an
overview of the results for the System Performance category. The results show
that ioBroker is best suited to handle many sensors working concurrently.
Domoticz appears to struggle with more than 10. All systems support at least
up to 100 messages per second from a single sensor. Horizontal scalability
is lacking in Home Assistant and Domoticz, whereas both ioBroker and
openHAB support it.
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Table 4.29: System performance score.
Criterion Home Assistant Domoticz openHAB ioBroker

C7.1 4 2 3 5
C7.2 5 5 5 5
C7.3 0 0 5 5

Average 3 2.3 4.3 5

Rank 3rd (3.0) 4th (2.3) 2nd (4.3) 1st (5.0)

Software Quality (C8) The quality of software is not trivial to quantify,
however, there are indicators to the quality such as the presence of tests
(unit, e2e, etc.), lines of code, and the general processes and checks in
place when contributing to a project. Table 4.30 summarizes the results
for the Software Quality category. Source code reviews are present for
all four systems. Interestingly, none of the systems performs end-to-end
testing, which could benefit the overall user experience. Though unit tests
are performed by all systems with the exception of Domoticz. ioBroker’s
lines of code are significantly less than for the other systems, with Home
Assistant having by far the most lines of code. Quality checks are also in
place for third party plugins, though Domoticz’s checks are not as elaborate
as the checks that are in place for the other systems.

Discussion and limitations While at first glance all four systems appear
to offer very similar functionalities, as deduced from the use case based
analysis, on closer inspection, several differences emerge. These differences
are visualized in Table 4.31, which presents an overview of the satisfaction
of the criteria for each one of the top four systems. The results show quite
some variance for each criteria going from two to five stars for some of
them, e.g., for criteria C7. This indicates that the systems are not equivalent
and making an informed choice when selecting one will have consequences
for the effort and success of a building automation project. Furthermore,
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Table 4.30: System software quality score.
Criterion Home Assistant Domoticz openHAB ioBroker

C8.1 5 5 5 5
C8.2 0 0 0 0
C8.3 2 3 4 5
C8.4 5 5 5 5
C8.5 5 3 5 5
C8.6 5 0 5 5

Average 3.7 2.7 4 4.2

Rank 3rd (3.7) 4th (2.7) 2nd (4.0) 1st (4.2)

the importance of each criteria may differ based on the desired application;
some deployments may desire high performance, while others value the
support of a wide range of devices. High performance and low resource
utilization may be preferable where edge gateways for data centers are
concerned. Therefore, the criteria are not weighted: this should be done on
a per-deployment basis.
A limitation of our analysis is that obtained results are a snapshot of a

specific moment in time. Specifically, the majority of data was collected in
the month of July, 2021. The code base of these systems, especially for open-
source projects, is highly volatile and ever changing as many contributors are
continuously making changes to the source code on a daily basis. That said,
the underlying architecture of the systems is fundamental and therefore
not as susceptible to continuous changes. We therefore do not expect the
common architecture that emerges from the four systems to be subjected to
significant changes in the near future. As the systems continuously change,
it is challenging to obtain a snapshot of critical privacy and security vul-
nerabilities. Furthermore, these vulnerabilities are also strongly influenced
by the deployment environment: from the connected IoT hardware, to the
configuration of the operating system on which the software is installed.
Therefore, the analysis of vulnerabilities is not included in the analysis.
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Table 4.31: Overview of all categories.
Criterion Home Assistant Domoticz openHAB ioBroker

F1-5 4.5 2 4 3
C1 5 3.3 3.75 3.3
C2 2.3 3 2.6 2.3
C3 3.5 4.0 3.5 2.5
C4 5 3.75 4 2
C5 3.3 3.6 2.6 4.3
C6 4.5 3.5 4.3 4.3
C7 3.0 2.3 4.3 5
C8 3.7 2.7 4 4.2

Average 3.9 3.1 3.7 3.4

Rank 1st (3.9) 4th (3.1) 2nd (3.7) 3rd (3.4)

4.2.7 Conclusions

The selection of available IoT hubs is vast, making an informed decision
when designing a smart building or smart data center is difficult. Not only
because the available systems offer different functionalities, but also because
retroactively migrating from one system to another one is not a trivial task.
This means that the expected longevity of the open-source project is of
importance too. We have addressed these concerns by providing an overview
of 20 open-source IoT hubs. Out of the 20 systems, we investigate the four
most popular ones in greater detail, where popularity is determined by their
commit activity, stars, time of latest commit, documentation availability, and
number of contributors.
For each of the four selected systems, their architecture is analyzed and

seven distinct components that all systems have in common are identified,
compared, and discussed. We deem these components to be essential parts
of a modern building automation system architecture. We also uncovered
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many parallels between the reference architecture and the proposed edge
gateways for data centers. Furthermore, the use case based analysis shows
that almost all systems support the list of thirteen essential features. The
support is either native or through third party extensions, in turn highlighting
the importance of an extensible IoT hub. A further analysis is done based
on thirty four criteria. This criteria-based analysis reveals the strengths
and weaknesses of the selected systems. With Home Assistant presenting
a very solid user experience, Domoticz providing an uncomplicated setup,
openHAB having strong scores in all categories, and ioBroker offering great
system performance. It is for the practitioner or requirements engineer to
assign the appropriate weights to each criteria, as each deployment will
have distinct requirements. Significant shortcomings among the systems
were also identified, and include: the lack of role-based access control, no
horizontal scalability, and no options for enterprise or paid support. Finally,
we have also described the common architecture that emerges from the
design of the four systems, identifying the key components of which an IoT
hub is comprised.
The work presented in this section serves several purposes. The basic

service is that of inventorizing existing open-source IoT hubs. The second
one is to provide meaningful features to actually evaluate these kind of
systems. The features and methodology adopted may also be useful for
research in other related fields beyond building automation systems. The
final, and perhaps, more relevant service is that of acting as a decision
support tool for the practitioner and for the developer who intend to deploy
and contribute to open-source IoT hubs. It is clear that IoT hubs have an
important role in the realization of smart buildings and smart data centers.
The next step is to demonstrate the capabilities of IoT in a real-world data
center environment.

168 4 | Monitoring of Smart Data Centers



4.3 Data-Driven Approach to Monitoring Co-location Data
Centers

The Internet of Things (IoT) allows for the effortless and inexpensive col-
lection of large quantities of data regarding many different environmental
aspects. In the case of data centers, IoT can be applied to the IT infrastruc-
ture by employing a wide variety of sensors. From the temperature and
humidity levels of entire halls, to detailed thermal maps for individual server
racks, to measuring the power consumption of each individual piece of IT
equipment. As we have seen in Chapter 3, collecting such a large data set
is useful for evaluating the many metrics and key performance indicators
that can be applied to data centers. Utilizing IoT for data collection and
analysis also leads to improvements in the data center’s service levels by
use of predictive maintenance [SG16]. Another useful application of IoT in
the data center context is detecting so-called comatose or zombie servers.
Comatose servers are servers which are no longer in use and serve no useful
purpose, yet are responsible for a significant portion of the data center’s
energy consumption. Detecting and removing these types of servers can
greatly increase the energy efficiency of the data center by decreasing the
total energy consumption of servers and reducing the cooling load.

The application of IoT in the data center domain leads to a curious clash
of requirements. From a data center operator point-of-view, knowing ev-
ery detail regarding the infrastructure down to individual servers would
allow the operator to monitor the entire data center and take well-founded
decisions. However, full knowledge of such data does affect privacy and
security [MSFM16]. When collecting and processing highly sensitive data,
for example medical data, privacy is of the utmost importance. Exposing
server metrics to the data center operators is a potential security threat
that could make the server vulnerable to attacks. Therefore, it is preferable
that the server remains a black box to minimize external access to the op-
erating system. Another aspect to consider is that co-location data centers
face challenges when collecting data from servers in their data center. In
a co-location center, rack space is rented out to customers who store their
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own servers and other hardware in the racks they have rented. It is even
possible for a single rack to contain servers belonging to numerous distinct
customers. Due to privacy concerns, it is not possible for the co-location
center to monitor the internal state of these servers, as physical access and
operating system access remain exclusively with the customer. This is one of
the challenges we have identified in Chapter 3. The question that emerges
is: can we employ an Internet of Things approach to monitor the state of
a server without requiring direct access to the operating system or server
chassis? Having a positive answer would enable non-intrusive monitoring of
co-location data centers, as privacy is fully preserved from the data center
perspective.
To answer the question, we conduct a large scale experiment where we

collect data from over 160 High Performance Computing (HPC) servers in
a single data center over a period of 5 months. These servers are used by
researchers from the University of Groningen for data-intensive, computa-
tionally expensive, and privacy sensitive jobs. During these 5 months, the
data set has grown to 2.5 billion data points, which is almost 18 million data
points every day. The data set considers a multitude of metrics, ranging from
CPU usage to inlet and outlet air temperatures.

Themain contribution in this section is the proposal of a method for privacy
preserving monitoring of data centers. The objective is to determine the
internal state of a server by monitoring external, environmental parameters
using IoT. We distinguish between internal and external metrics. Internal
metrics require access to the operating system or chassis of the server, while
external metrics can be measured without such access. An internal metric is,
for example, the CPU usage of a server, as it is measured by the operating
system. An example of an external metric is the power consumption of a
server, which can be measured externally by a metered Power Distribution
Unit (PDU). We utilize these internal and external metrics to design and
develop models that depend on external metrics as input features in order to
estimate the internal state of a server. We prove that it is feasible to reason
about the internal state of servers using external parameters, thus enabling
privacy preservation when monitoring co-location data centers.
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4.3.1 Data Center

The University of Groningen has two on-campus data centers that house the
university’s IT infrastructure, in addition to a number of HPC clusters and
co-located servers. The servers which we monitor are located in an off-site
data center. The cluster in question, also known as the Peregrine cluster,
consists of 165 blade servers. Each server has two Intel Xeon E5-2680 v3
CPUs and 128 gigabytes of RAM, bringing the total to 3960 individual CPU
cores and 21 terabytes of RAM respectively. Each server has 1 terabyte of
internal disk space, and is connected to a storage area network consisting of
463 terabytes. The servers are locally connected by a 56 gigabit per second
Infiniband network connection, and are also connected by a 10 gigabit per
second ethernet connection to the Internet.

The cluster is utilized by researchers and staff of the University of Gronin-
gen to assist in computationally intensive jobs, such as processing large
quantities of astronomical data and other Big Data oriented tasks. For ex-
ample, the cluster is used in the genome analysis of almost 250,000 adults
to identify correlations in the human genome between smoking behavior
and obesity [JWF+17]. Over the years, the Peregrine cluster has assisted in
more than 150 scientific publications.

4.3.1.1 Data Acquisition

Each server in the HPC cluster reports around 150 individual metrics to Gan-
glia, a monitoring system for HPC applications and Big Data grid computing
clusters. We select a subset of 13 metrics for detailed collection and analysis.
The selection is made to exclude all aggregated metrics. We make this distinc-
tion such that we focus on the raw metrics, which can be used to derive the
aggregated metrics if necessary. Table 4.32 shows the selected metrics and
their unit. Servers report each metric every 10 seconds to Ganglia, where it
is aggregated after 1 hour in order to reduce the storage space requirements.
We require the collected data to be as granular as possible. Fortunately,
Ganglia exposes the data through a JavaScript Object Notation (JSON) API,
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which we use to collect and store the raw data with a granularity of 10
seconds. The collection of data started on the 1st of December 2016. Every
month we, collect around 560,000,000 individual data points from 164
servers. For this work, a subset of approximately 2,500,000,000 data points
was used.

Table 4.32: Selected server metrics.
Metric Name Unit

Internal Metrics
Tcpu CPU Temperature Degrees Celsius
C PUuser CPU Utilization (User) Percentage
C PUs ys CPU Utilization (System) Percentage
Mem f ree Unused Random Access Memory Kilobytes
Procrun # Processes Running Integer
Proctotal # Processes Total Integer
Ethin Ethernet In Bytes per Second
Ethout Ethernet Out Bytes per Second
In fin Infiniband In Bytes per Second
In fout Infiniband Out Bytes per Second

External Metrics
Pwat ts Power Consumption Watts
Tin Inlet Air Temperature Degrees Celsius
Tout Outlet Air Temperature Degrees Celsius

For the collection, processing, and storage of data, we utilize our own
service-oriented IoT hub as shown in Figure 4.12. We developed our own
platform as we require a generic, scalable solution for streaming and process-
ing high volume data. The arrows in the figure indicate the general flow of
data. The platform is optimized for throughput, as we need to handle tens of
millions of data points on a daily basis. To collect the metrics from Ganglia,
we develop the Ganglia Service, that regularly scrapes the data from Ganglia’s
JSON API. The data is published to Kafka, a distributed stream processing

172 4 | Monitoring of Smart Data Centers



platform. The data is consumed by the Data Collector Service, which collects
the raw data and inserts it into the database. For time-series data storage
we employ Cassandra, a distributed NoSQL database management system.
The data is made accessible by the Data Access Service to be consumed by
an External Application. We also make use of Spark, a cluster-computing
framework for data processing. The data processed by these Spark Jobs can
originate directly from a Kafka topic, from the Cassandra database, or a
combination of both. For hierarchically structured data we utilize OrientDB,
a distributed graph database. For example, the different metrics collected
by Ganglia all have their own unique data type identifier. These data types
form a type hierarchy which is preserved in OrientDB. The Ganglia Service,
and other services which generate data, register these new (data) types in
OrientDB. All services also register themselves with Consul, a distributed
service discovery and key-value store.
Even though we design our own IoT hub, there are still many parallels

between our proposed IoT hub and the IoT hubs discussed in Section 4.2.
The physical layer is represented by Ganglia and the conversion between
physical device and virtual device is done by the Ganglia Service. Kafka
takes the role of the event bus. The historical data and device states are
stored in Cassandra, and the meta data is stored in OrientDB. And finally, the
data access service exposes a REST API for reading data from the Cassandra
database.

4.3.1.2 Data Sanitation

We collect the data set using many sensors of which some are internal
metrics, such as RAM utilization as reported by the operating system, and
some are external metrics, such as the air temperature as measured by
hardware sensors. In order to prepare the data set for analysis, we apply the
following sanitation steps: (1) combine C PUuser and C PUs ystem to get the
C PUtotal such that 0.0≤ C PUtot ≤ 100.0, (2) subtract Tin from Tout to obtain
Tdi f f , the temperature difference between inlet and outlet, (3) detect and
remove outliers / faults introduced by measurements errors, (4) compute
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Figure 4.12: Service-oriented IoT hub. Green: external services/applications.
Orange: internal services. Blue: core infrastructure. Arrows
indicate main data flow.

the correlation between every pair of metrics, and (5) determine the lag
between time-series of metrics that will be part of the models.

Table 4.33: Kendall’s tau correlation, including standard deviation.
Tcpu Pwatts Procrun CPUtot

Pwatts 0.76± 0.07 -
Procrun 0.54± 0.11 0.62± 0.13 -
CPUtot 0.73± 0.08 0.83± 0.08 0.70± 0.13 -

Tdiff 0.78± 0.11 0.82± 0.09 0.57± 0.12 0.76± 0.07

Step 1 and 2 are simple mutations of the data set. In the first step, we
combine the CPU usage in user space ( C PUuser) and kernel space (C PUs ys),
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the combination of these metrics gives us the total CPU usage (C PUtot). In
the second step, we subtract the temperature of the cold air entering the
server (Tin) from the temperature of the hot air exiting the server (Tout) in
order to obtain the temperature difference (Tdi f f ).
In the third step, we remove the faulty measurements from the data set.

If a row in the data set does not conform to the following constraints, it is
discarded: Tcpu > 0, Pwat ts > 0, and

∑

m∈M

m > 0, where m is a measurement

and M is the set of measurements belonging to a row.
Inspection of the data set shows that Pwat ts and Tcpu are sometimes 0,

while other metrics are not. This indicates a measurement error. Thus, the
first and second constraints are required. The final constraint ensures that
rows with all zeros are excluded, by verifying that the sum of all metrics is
not zero. These all-zero rows appear when the Ganglia monitoring system is
unavailable.

For step 4, the goal is to identify which metrics are correlated, and to what
extent. This allows us to perform feature selection and use the appropriate
set of metrics for our models. We determine the correlation between metrics
using Kendall’s tau coefficient [Dod08] for each individual node:

τ=
nc − nd

n(n− 1)/2
(4.6)

Where nc is the number of concordant pairs, nd is the number of discordant
pairs, and n is the number of pairs. When applied to the data we immedi-
ately notice that there are numerous metrics with very weak correlations
all-around (−0.5< τ < 0.5): Tin, Availram, Proctot , Ethin, Ethout , In fin and
In fout . We discard the metrics with a weak correlation, as they would have
little to no contribution to our models.

There is a very high correlation between In fin and In fout , the Infiniband
connection for inter-node communication. This is likely caused by the fact
that when the inter-node communication is used, it is used to transfer data
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back and forth between nodes. However, for the purpose of this paper we
also discard these metrics as they only have a strong correlation among them-
selves, while they are both considered internal metrics. Table 4.33 provides
the resulting mean correlation and the associated standard deviation of the
remaining metrics, where the mean is taken over the correlation results for
each individual server. The remaining metrics consist of two external metrics
(Tdi f f and Pwat ts) and three internal metrics (Tcpu, Procrun, and C PUtot).

Table 4.34: Metrics characteristics.
Tcpu Pwatts Procrun CPUtot Tdiff

Mean 56.06 263.73 18.02 62.36 13.96
Std. Dev. 12.51 70.24 24.12 37.43 3.29

Min. 24.00 77.00 0.00 0.00 0.00
25% 34.00 196.00 12.00 29.22 11.00
50% 43.00 280.00 22.00 79.20 15.00
75% 60.00 336.00 24.00 100.00 17.00
Max. 100.00 448.00 2867.00 100.00 25.00

The characteristics of the remaining metrics are described in Table 4.34.
For each of the metrics we identify the mean value and corresponding stan-
dard deviation. We also include minimum and maximum values observed,
and the percentile statistics. Based on these characteristics we can conclude
that the data set is representable, as it covers the full range of possible values
that one can expect for all of the metrics. For example, CPU temperature
(Tcpu) ranges from 24.0◦C to 100.0◦C , as the thermal throttling threshold is
commonly set between 90◦C and 100◦C . The power consumption (Pwat ts)
also has a decent spread, ranging from 77 watts, when idle, to 448 watts, un-
der full load. The number of user-space processes running (Procrun) shows
a large spike as the maximum observed value: 2867 processes running.
Perhaps there was a mistake in one of the submitted jobs, starting too many
processes. The CPU usage (C PUtot) is not as evenly spread as other metrics,
we commonly observe the CPU usage to be at a 100%. This is expected for a
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HPC cluster, as Big Data jobs are CPU intensive. The temperature difference
between inlet and outlet air (Tdi f f ) varies from 0.0◦C to 25.0◦C .

Now that we have reduced the set of metrics to a set of highly correlated
metrics, we make our final selection with regards to which external metrics
we will utilize when modeling the internal state of a server. The metrics
that describe the internal state of a server are C PUtot , Tcpu, and Procrun.
However, we exclude Procrun as it is too specific to the tasks that a server is
performing, and therefore does not generalize well in different environments.
For example, a single process could have a CPU usage of 100%, while the
same hold true for 100 processes with 1% CPU usage each. Furthermore,
the correlation between Procrun and the external metrics are significantly
lower than the other correlations we have observed in Table 4.33.
The internal metrics that remain are C PUtot and Tcpu, representing the

state of the server. The external metrics that remain are Pwat ts and Tdi f f , as
these can be measured externally. This leaves the following models to be
explored:

• Model C PUtot using Tdi f f and / or Pwat ts

• Model Tcpu using Tdi f f and / or Pwat ts

• Model Tdi f f using Pwat ts

Thus in total we have 7 models to evaluate. The last model utilizes one
external metric (Pwat ts) to estimate another external metric (Tdi f f ). This
model does not provide any insights in the internal state of a server, but is
interesting none the less from a data center perspective, as it estimates the
increase in temperature which has to mitigated by the cooling system.
Finally, we consider the notion of lag between two discrete time-series,

this relates to step 5. To demonstrate the effect of lag, we normalize the
previously selected time-series and visualize them in Figure 4.13. We can
clearly observe that there is a certain amount of lag between the time-
series. The cause of this lag is twofold: there is a delay between individual
observations, and certain time-series have a natural tendency to lag behind.
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For example, an increase in Tcpu would eventually lead to an increase in Tdi f f

(as exhaust temperatures increase). However, it takes a certain amount of
time for the heat to dissipate, which causes lag between the two time-series.

Figure 4.13: Lag observed between selected, normalized time-series
([−1,1]).

Intuitively, decreasing the lag between time-series increases the number
of concordant pairs, and consequentially increases the correlation. A higher
correlation between time-series is of benefit when modeling the data. To
determine the exact amount of lag between two metrics, we look at the
cross-correlation. Given two discrete time-series x[m] and y[m], the cross-
correlation is defined as [RG75]:

Rx y(k) =
∞
∑

m=−∞
x[m]y[m− k] (4.7)

Where k ∈ Z, and −∞≤ k ≤∞. Parameter k is also known as the lag
parameter. For each of the selected metrics we determine the lag that exists
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between them by performing cross-correlation for every pair of time-series
and selecting the k which maximizes (since the time-series are positively
correlated) Rx y(k) such that:

lagunits = argmax
k

Rx y(k) (4.8)

We calculate the lag individually for every server and adjust the time-
series accordingly. Shifting the time-series based on the lag further increases
Kendall’s tau correlation by the values show in Table 4.35.

We collected data from 164 servers, of which 15 servers recorded unusable
data due to faulty configurations. Resulting in a data set consisting of 149
servers in total. We also identified the external metrics that are to be used to
model the internal state of a server, leaving 7 distinct models to investigate.

Table 4.35: Increase in correlation between metrics.
Tdiff Pwatts

CPUtot +0.007 +0.015

Tcpu +0.003 +0.006

Tdiff - +0.000

4.3.2 Models and Evaluation

In Section 4.3.1, we concluded that we have seven candidate models to
estimate a server’s internal state. In this section, we describe how we design
and train these candidate models, and summarize the results for evaluating
each model. We distinguish between two types of models: the individual
models and the universal model. Individual models are models which we
train separately for each individual server, using only the subset of data that
belongs to a specific server. For the universal model, we train and evaluate
one global model using all available data, of every server. In both cases, the
training and evaluation process is almost identical.
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Inspection of the data set shows that there is a near-linear correlation
between the external metrics (Pwat ts, Tdi f f ) and the internal metrics (C PUtot ,
Tcpu). Therefore, we define a linear regression model of at most two param-
eters (Eq. 4.9):

ŷ = w0 +w1 x1 +w2 x2 (4.9)

Where x1 and x2 are the parameters of the model, w0, w1, w2 are the
weights, and ŷ is the estimated value. Next, since the data is not fully linear,
we transform the features into polynomial features. For every model, we
generate all polynomial features from the 1st degree to the 10th degree.
Given two features x1 and x2, the transformation to polynomial features of
the second degree is shown in Equation 4.10.

z = [x1, x2, x1 x2, x2
1 , x2

2] (4.10)

The resulting model is a linear regression model in which the features are
polynomial (Eq. 4.11). Thus we can apply any linear regression technique,
such as ordinary least squares fitting, to obtain our polynomial model.

ŷ = w0 +w1z1 + · · ·+w5z5 (4.11)

To train our models we apply the Ridge Regression method, which is
expressed as ordinary least squares, the first term in Equation 4.12, with an
additional L2 regularization term, the second term in the equation. The α
parameter controls the strength of the regularization.

min
w
∥X w− y∥2 + ∥αw∥2 (4.12)

Finally, to evaluate how well our models generalize, we apply k-fold cross-
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validation with k = 10 [Koh+95]. We evaluate both the Root Mean Squared
Error (RMSE) and the Coefficient of Determination (R2) obtained using
cross-validation. Next, we evaluate the individual models, followed by the
universal models. The results are discussed in Section 4.3.3. The tables
which summarize the results distinguish between RMSEi and R2

i for the
individual models, and RMSEu and R2

u for the universal model.

4.3.2.1 Individual Models

To evaluate all of the individual models we train models for each of the 149
servers. For each of the seven models, we train 10 distinct iterations where
we vary the polynomial degree from 1 to 10. In total we train (149×7×10=)
10,430 distinct polynomial models. When we summarize the results, we
discard the results from polynomial degrees 7 till 10, as in nearly all cases
the models start to overfit at the 5th or 6th degree. The exception to this
observation are commonly models with only a single feature. For these
models, as the number of degrees approaches the number of data points,
the error approaches 0.

Individual Total CPU Usage (C PUtot) First, we evaluate the results for
modeling C PUtot , the total CPU usage. The summary of the results can be
found in Table 4.36. In this table we list the mean RMSEi and the mean
R2

i metrics, as well as their standard deviations, for every selection of input
features. The input features are the external parameters as selected in
Section 4.3.1. For feature Pwat ts, we observe a significant improvement in
RMSEi and R2

i between the 1st and 3rd degrees, with RMSE = 8.13 and
R2 = 0.95. For feature Tdi f f , the same improvement is observed at the 3rd
degree, where RMSEi = 12.45 and R2

i = 0.89. Furthermore, we can clearly
see that the models start to overfit from the 6th degree, as the standard
deviation of RMSEi increases, and the R2

i significantly decreases. The last
features we evaluate to model C PUtot is the combination of Pwat ts and Tdi f f .
As observed in previous cases, a notable improvement happens until the 3rd
degree, where RMSEi = 7.68 and R2

i = 0.96. Improvements are observed
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until the 5th degree, after which the models overfit as the increased standard
deviation of the RMSEi and the lower R2

i signify. The optimal result is
obtained using both Pwat ts and Tdi f f as features to model the C PUtot with a
polynomial of the 5th degree. This results in a mean RMSEi of 7.35%.

Individual CPU Temperature (Tcpu) Next, we analyze the results we ob-
tained when modeling the Tcpu, the CPU temperature. A summary of these
results is shown in Table 4.37. Again we list the mean RMSEi and R2

i that
was obtained individually for all 149 servers. First, we model Tcpu using
only Pwat ts as a feature. Again, we observe a significant improvement at the
3rd degree, where the RMSEi = 4.74 and the R2

i = 0.85. A similar decrease
in RMSEi is noted when only applying feature Tdi f f . At the 3rd degree we
observe RMSEi = 3.51 and R2 = 0.92. At the 6th degree the models start to
overfit; the RMSEi increases, as does the standard deviation. When using
both Pwat ts and Tdi f f as features, we observe RMSEi = 3.23 and R2

i = 0.93

for the 3rd degree. Significant over-fitting occurs after the 5th degree, with
R2

i becoming negative which indicates that the model fits the data extremely
poor. The optimal results are obtained when using both Pwat ts and Tdi f f as
features, a polynomial of the 5th degree models Tcpu with a mean RMSEi of
3.17◦C .

Individual Temperature Difference (Tdi f f ) Finally, we assess the results
of modeling Tdi f f , the difference between inlet and outlet temperature of a
server. The results are summarized in Table 4.38 In this case, there is only
one feature that has a strong correlation, that is Pwat ts. We do not observe a
significant increase at the 3rd degree, as we noted in previous models. The
RMSEi and R2

i improve ever so slightly as the number of degrees increases.
The optimal results are observed at the 10th degree, where the mean RMSEi

of the models is 1.07◦C . It is likely that these models continue to improve
slowly as the number of degrees increases.
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4.3.2.2 Universal Model

After evaluating all of the individual models in Section 4.3.2.1, it becomes
apparent that the individual models appear to be very similar. Therefore,
the next step is to reduce the ten-thousand individual models to less than a
hundred universal models. Considering that large data centers can contain
several hundreds of thousands of servers [Gen14], it would be advantageous
to develop a universal model that represents a significant subset of servers.
For each of the 7 models we train 10 distinct iterations where we vary the
polynomial degree from 1 to 10. In total we train (7 × 10 =) 70 distinct
polynomial models.
Due to the sheer size of the complete data set (2.5 billion data points)

compared to the data set for an individual server (15 million data points),
we have to modify the approach to learning our model, as we cannot fit all
2.5 billion data points simultaneously. Instead of Ridge Regression, we fit
the polynomial models using Stochastic Gradient Descent with L2 regular-
ization [Bot10]. We partially fit the data of every individual server, until all
the training data has been fitted.

Universal Total CPU Usage (C PUtot) As before with the individual models,
we first analyze the results for modeling C PUtot with one universal model
using three sets of features. When only using feature Pwat ts, we observe a
significant decrease in RMSEu at the 3rd degree, where RMSEu = 8.71 and
R2

u = 0.97. For feature Tdi f f we record RMSEu = 13.68 and R2
u = 0.93 at the

3rd degree, which shows the most significant improvement as well. And
finally, when using both Pwat ts and Tdi f f as features, we obtain RMSEu = 8.38

and R2 = 0.98 at the 3rd degree. However in this case the the 5th degree
shows slightly better results, whereas the 6th degree shows signs of over-
fitting. These results are in line with the results of the individual models for
C PUtot . We observe the optimal results using a polynomial of the 5th degree
while using both Pwat ts and Tdi f f as features. This yields a RMSEu of 8.14%.
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Universal CPU Temperature (Tcpu) We model Tcpu using the same three
sets of features as used when modeling C PUtot . First we use Pwat ts as a
feature, which yields significant improvements up until the 3rd degree
(RMSEu = 5.17 and R2

u = 0.92), after which the RMSE decreases much
slower. Selecting Tdi f f as a feature yields better results, at the 3rd degree we
obtain RMSEu = 4.22 with R2

u = 0.95. After the 3rd degree we observe minor
improvements in RMSE. When utilizing both Pwat ts and Tdi f f as features we
get RMSEu = 3.88 and R2

u = 0.95 at the 3rd degree, improving at the 4th
degree after which the error slowly increases. The best results are obtained
when using both features, a 4th degree polynomial gives a RMSEu of 3.85◦C .

Universal Temperature Difference (Tdi f f ) The last universal model we
train and evaluate is for modeling Tdi f f . The best result is observed when
using a polynomial between the 3rd and 10th degree. This yields a RMSEu =
1.25 and R2

u = 0.93. The error remains nearly constant after the 3rd degree,
which results in an optimal RMSEu of 1.25◦C .

4.3.3 Discussion

Based on the evaluation of the models, we conclude that the individual
models are, when compared to the universal model, better at estimating
the CPU usage, CPU temperature, and the difference between inlet and
outlet air temperature. This is as expected, as each server will have some
variations that are included in its individual model. These variations can be
caused by the positioning of the server in the rack. However, the universal
model comes very close to the individual models in terms of RMSE. Both
the individual and the universal models demonstrate a similar behavior: as
the number of polynomial degrees increases beyond the 6th degree, the
models tend to overfit. We remark that after the 3rd and 4th degree there is
little to no improvement in terms of RMSE and R2. Therefore the 3rd and
4th degree strike a good balance between computational complexity, which
grows exponentially as number of polynomial degrees increases, and the
RMSE and R2 scores.
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Without knowing anything about the internal state of a server, we prove
that we can still estimate the CPU usage (C PUtot) using external metrics. In
our data set, the CPU usage ranges from 0% to 100%. Exclusively monitor-
ing the power consumption (Pwat ts) of the server yields an error of 8.02%

(individual) or 8.66% (universal) when estimating the CPU usage. When
we estimate the CPU usage based on the temperature difference (Tdi f f )
between inlet air and outlet air, we get less accurate results with an error of
12.35% (individual) or 13.51% (universal). When considering both power
consumption and temperature difference the error is 7.35% (individual) or
8.14% (universal).
We also verify that we can estimate the CPU temperature (Tcpu) based

on external parameters. The CPU temperatures range from 24◦C to 100◦C
in our data set. When determining the CPU temperature using the server’s
power consumption we obtain an error of 4.65◦C (individual) or 5.13◦C
(universal). Using the temperature difference between inlet and outlet air to
estimate the CPU temperature yields a better result, with an error of 3.39◦C
(individual) or 4.13◦C (universal). Estimating the CPU temperature using
both power consumption and temperature difference results in an error of
3.17◦C (individual) or 3.84◦C (universal).

Additionally, we also demonstrate that we can estimate the difference
between inlet and outlet temperatures without requiring access to the server.
While this is not important for determining a server’s internal state, it is
useful from the data center perspective as it relates directly to the cooling
load of a data center. The temperature difference between the inlet and outlet
air of a server ranges from 0◦ to 25◦ within our data set. Given the power
consumption of a server, our model yields an error of 1.07◦C (individual) or
1.25◦C (universal) when estimating the temperature difference.

Our results confirm that we can monitor the internal state of servers
without requiring access to the operating system or server chassis. This
enables privacy-preserved monitoring of co-location data centers as servers
processing highly sensitive data can be considered black boxes, yet we’re still
able to estimate the internal state. We merely have to deploy inexpensive
networked sensors to measure the temperature difference between inlet and
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outlet air. In most cases, the IT equipment’s power consumption is already
monitored in data centers.

4.3.4 Conclusions

We have provided a positive answer to the question we posed in the begin-
ning of this section: can we employ an Internet of Things (IoT) approach
to monitor the state of a server without requiring direct access to the oper-
ating system or server chassis, to enable privacy-preserved monitoring in
co-location data centers? Our answer is based on 2.5 billion data points
collected from 164 individual servers, covering 13 distinct metrics. We deter-
mined the correlation between each of the metrics, and identified external
metrics that estimate well the internal state of servers. We outlined our ap-
proach to modeling the relationship between internal and external metrics,
where we distinguished between individual models and universal models. In
total, we trained and evaluated 10,430 individual models and 70 universal
models. The results validate the vision that using external measurements to
estimate the internal state of a server is feasible.
This enables privacy-preserved monitoring, as we demonstrate that we

do not need to access the server’s operating system or chassis to monitor
the server’s internal state. Instead, we can employ IoT to measure the inlet
and outlet air temperature, and the power consumption of a server. Using
these inexpensive sensors, the operators of data centers can monitor their
infrastructures, ensuring the privacy from a data center point of view as direct
access to the server is no longer required. It also enables co-location data
centers to evaluate metrics that require information about server utilization,
and assists DCOs in the expansion planning process.

4.4 Summary

We have set out to uncover the potential of data center monitoring using
IoT. To achieve this, we first investigated the data generation capabilities
of a smart data center. According to our scenario, a reasonably-sized data
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center can generate almost 170 Gbit/s of monitoring data. As this would
have a significant impact on the data center’s network load, we proposed an
edge-based approach to data center monitoring, which uses an IoT hub at
the edge to process data on a per-rack basis. There is a significant number of
freely available open-source IoT hubs. To assist in the selection process, we
have developed a framework for the evaluation of IoT hubs, and subjected
20 systems to this framework, of which four were studied in greater detail by
subjecting each system to 13 features and 34 criteria analysis. The resulting
analysis uncovered many of the strengths and weaknesses of each system,
and of IoT hubs in general. We also discussed the common architecture
that emerged from the analysis, and drew parallels with the proposed edge
gateway architecture. And finally, we demonstrated the potential of IoT-
driven data center monitoring by applying it to a real-world data center. In
total, 2.5 billion data points were collected from over 160 servers, covering
13 different metrics. The data was collected with the help of a tailor-made
IoT hub, which was influenced by the generic IoT hub architecture. Using
the data collected from monitoring the servers, we were able to train models
to estimate the internal state of the server using only externally measured
data points. This enables co-location data centers to monitor servers that
are not owned by them. We emphasize that IoT hubs do not only play an
important role in smart data centers, but are of course important in any
type of smart building. In the next chapter, we will shift our focus to smart
buildings and the parallels between smart buildings and smart data centers
will become clear.
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From Smart Data Center to
Smart Building

There are two emerging paradigms that play an important role in transform-
ing regular buildings into smart buildings: the smart power grid and the
digital interface to everyday objects known as the Internet of Things. On the
one hand, the smart grid aims to integrate the behaviors and actions of all
connected actors, be it consumers, producers, or prosumers by leveraging
information and communication technologies. Local energy generation and
storage, economic efficiency, and sustainability are some of the key features
associated with the concept of the smart grid [TMOSP19]. On the other
hand, the IoT paradigm enables a wide variety of devices and machines to
interact with one another programmatically and autonomously [LL15]. This
allows for the establishment of smart buildings, where devices can be used
to sense and control, and in turn influence the energy consumption of a
building by reacting to different signals while satisfying the occupants needs
and maintaining comfort levels.
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The signals to which a smart building can react are multiple. For example,
a smart building can react to the behavior of its occupants by learning usage
patterns of rooms, and ensuring comfortable temperature levels before
and while the room is expected to be in use. The benefits are multiple,
high comfort levels are maintained as the room is already at a comfortable
temperature before its expected use, and when the room is not in use no
unnecessary cooling or heating takes place. Room occupancy and user
behavior can also be used to control the lighting systems of a building.
Signals that are external to the building also play an important role. The
current weather conditions and the forecasted weather signals can be used to
optimize the heating and cooling of the building. The smart grid paradigm
promises to introduce another important external signal: the real time price
of energy as provided by different producers, such as power plants, and by
prosumers, such as neighboring buildings with renewable generation and
energy storage. This signal is mostly influenced by weather, fossil fuel prices
and current demand [PA15; WLJ12]. End users receive an incentive to
actively participate by changing and rescheduling their load patterns based
on current prices, while not being forced to [FA19; GMRH16]. This differs
from demand response schemes where the users leaves the ultimate control
of its consumption to their energy provider [Dar13].
The present chapter shifts our focus from smart data centers to smart

buildings, between which many parallels exist. In Section 5.1, we investigate
a practical example of transforming parts of a traditional building into a
smart building, with the principal goal of reducing the energy consumption
while maintaining user comfort. Two offices, a social corner, and a restaurant
are included in the experiments. Each area is equipped with smart sensors
and actuators, which enables our system to take control in order to optimize
the environment. In Section 5.2 we research an approach that optimally
schedules appliances and devices in order to minimize costs. A parallel
uniform-cost search algorithm for finding the optimal solution is proposed,
and a micro-service architecture is designed for integration with the building
management system. The evaluation considers eight schedulable devices, as
well as the inclusion of renewable energy sources and energy storage. Our
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findings are summarized in Section 5.3, where we also highlight similarities
between smart buildings and smart data centers.

5.1 An Intelligent Building: the Bernoulliborg

An intelligent building is a building that provides a responsive, effective, and
supportive environment for its occupants, supported by an automated build-
ing management system for controlling a wide variety of devices [Oma18].
Examples of devices that can be found in buildings include actuators, such
as controllable ceiling lamps, movement detectors, and light sensors. The
emergence of IoT-enabled devices has made it easy to remotely control and
monitor different aspects of a building. Traditionally, the building manage-
ment system is responsible for heating, ventilation and air condition control,
lighting control, hot water control, and electricity control. As building man-
agement systems migrate towards service-oriented architectures and IoT
devices are more prevalent, the system is able to trigger a single service or a
predefined sequence of services [AD08; DLGL+13]. However, the challenge
is to understand the context of the building and its occupants. For example,
a traditional building management systems may use a motion sensor to turn
on lights in a room when it is occupied. But the system does not have a deep
understanding of the context and state of the room and its occupants. Activ-
ity recognition is an important step to understanding the context, a room in
which there is a single occupant that is reading a book has different lighting
requirements than the same room with multiple occupants performing work
on personal computers. In short, the building is unable to anticipate the
occupants behavior in order to provide intelligent responses that may even
lead to energy savings.
To introduce intelligent responses, a search through the high number of

possible contextual states most occur. Finding the compositions of services
that will satisfy the requirements needed for performing the activities is
a complex task, especially when additional constraints exist, such as re-
ducing the energy consumption. The challenge is to address the building
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coordination problem by performing service composition automatically and
dynamically, while identifying the occupant’s activities as early as possible
during the coordination. Doing this should maximize occupant comfort and
minimize occupant disruption under the constraints of minimizing the en-
ergy consumption. Once a sequence of services that anticipates the activities
of occupants is found, the next step is to execute the services.

The main problem we address is how to efficiently coordinate and execute
services, and also anticipate occupant activities, while the environment
changes due to external factors, or as services happen to fail at execution
time. Hierarchical Task Network (HTN) planning and activity recognition
play a central role in solving this problem. To understand which services to
compose, activity recognition is needed to identify occupant activities as soon
as they occur. The combination of planning and activity recognition outputs
a sequence of services that needs to be executed under the uncertainty of a
building environment. A critical component to the solution we propose is the
underlying architecture. We resort to a service-oriented architecture, where
composition, orchestration, and activity recognition components are all
encapsulated in services. Furthermore, we standardize the communication
between services, and enable the automatic discovery of services. We develop
our own gateways for integrating and interacting with IoT devices through
a RESTful API. To evaluate our approach, we deploy our solution in the
Bernoulliborg building at the University of Groningen in the Netherlands.
The Bernoulliborg is an office building of more than 10,000 m2 erected in
2008. The building has 180 offices, 16 lecture rooms, 8 meeting rooms, 6
social corners, and a restaurant situated on the ground floor.
In this section, we focus on the design, implementation, and the eval-

uation of our work as published in [GNN+17], with an emphasis on the
service-oriented IoT point of view. For details, specifically regarding HTN
planning, domain modeling, and activity recognition algorithms, we refer to
[GNN+17] and [Geo15]. What follows next is a description of the approach
taken, as well as the architecture and implementation of the supporting
framework to solve the aforementioned building coordination problem. This
is followed by a description of the deployment and the practical evaluation
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using two different use cases in the Bernoulliborg building. The first case
concerns the deployment of our solution in two offices and one social corner,
and the second case concerns the deployment in the restaurant. Our results
show both energy savings, as well as economic savings, while maintaining
high levels of end-user satisfaction.

5.1.1 Approach

To enable intelligent responses from a building management system re-
quires several limitation to be addressed. First, preprogrammable timers
and set points simply cannot address the requirements of buildings, such
as dynamism, service availability, uncertainty, scalability, and support for
standards, protocols and policies. Second, the existing IoT hubs appear to
be limited in terms of providing only basic device interoperation [KWLA13].
Third, rule-based approaches, which provide more complex control func-
tionalities, are characterized by several drawbacks: 1) a lack of flexibility as
all possible situations that may happen in a building environment need to
be predicted and covered by a large number of carefully designed rules; 2)
a lack of systematicity as the building environment becomes more robust,
more rules are added without any enforced systematic steps resulting in a
cluttered building management system; 3) a limited service order as the
creation of ordered or partially ordered adaptations appears to be a challenge
(for example, given an objective to close a window, a rule-based approach
might create a coordination consisting of, first, pulling down the blinds, and
then closing the window); 4) a lack of re-usability as reuse, modifications
and maintenance across different types of building environments becomes
difficult. Two spaces may happen to have some commonalities, but if those
spaces serve different purposes, say a meeting room and a social corner, then
most of their situations will differ.
Our approach to the building coordination problem is based on an appli-

cation of AI planning to compose services. AI planning provides powerful
means for searching and composing ‘best’ sequences of actions in many
domains [GNT04]. Approaches based on AI planning are able to address
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the challenges of building environments and to overcome the drawbacks of
rule-based approaches. In fact, AI planning naturally supports the evolution
of environments in pervasive computing – it is easily adaptable and flexible
approach [KWLA13]. The domain model is maintained and modified in
an organized and conceptual way – the purpose of each action is always
known. Furthermore, situations that require execution order among some
or all actions in some coordination can be easily achieved. Finally, the same
domain model can be suitable with minor modifications to a wide range of
buildings.
Since we expect that the service coordination will be initiated as early

as occupant activities occur, the goal should correspond to the occupant
activities in terms of requirements needed to be satisfied for the comfortable
occupant performance. This means that to solve a planning problem, we
need to identify the current occupant activities. Identifying activities relates
to the problem of transforming low-level sensor data into high-level and
meaningful information over which AI planning is well suited to reason.
Fortunately, we can turn to human activity recognition to solve this problem.
Occupant activities in buildings are generally well known and often limited
in number, so we can use a predefined set of activities to recognize the
occurring ones. In particular, we enforce ontology-based reasoning on sensor
data to preprocess and classify the occupant activities [NRA14]. Once a
set of activities is identified, we may establish a correspondence with the
planning goal. A direct match can be established if each activity corresponds
to some procedure without specifying details on what has to hold in final
state for each activity. For support of procedural goals in AI planning, we
can turn to HTN planning [EHN94].
We solve the problem of execution of services by using the concept of

orchestration from service-oriented computing, which is the process of coor-
dinating and executing services with the purpose to carry out the computed
plans [Erl07]. We propose an advanced orchestration model and a strategy
to coordinate the receipt of events, the planing for new HTN planning prob-
lems, and the execution of their corresponding plans based on an effective
and modern approach for plan orchestration in dynamic and uncertain envi-
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ronments [KLA16]. With our solution, building management systems can
anticipate occupant behavior and provide dynamic and intelligent responses
to different building situations. Recalling the example of lights in office
buildings, a management system based on our solution will understand that
Theodore is working with a computer and that the level of natural light
for this activity is sufficient according to the building standard. It will thus
not turn on the lights. Moreover, different compositions of services can be
computed for the same objective depending on the current contextual state.
Since the coordination of services is performed at runtime, building man-
agement systems can consider availability of services dynamically. Finally,
our solution supports heterogeneous devices and is easily customizable to
different building management systems.

5.1.2 Architecture and Implementation

The realization of our proposed approach requires a platform to be in place
that is able to interface with IoT sensors and actuators, similar to the IoT
hubs discussed in Chapter 4. However, contemporary IoT hubs lack the
capabilities that enable a building to exhibit intelligent responses in a chang-
ing building environment as they are limited by their rule-based approach.
To address this limitation, we propose our own architecture which has ad-
ditional services that enable activity recognition and service orchestration.
With the orchestration, we can complete a whole operation cycle of buildings’
operation, starting from the collection of data through sensors; processing
it into context information; composing acting services to coordinate the
building environment by anticipating the occupants activities; until the exe-
cution of acting services upon devices representing actuators. In Figure 5.1
we show the architectural design of our proposed solution to the building
coordination problem. The arrows in the figure indicate the main data flow.
Communication is done by passing JSON objects between components, either
via the message queue, or via REST services. All services are automatically
registered with ZooKeeper, enabling service discovery. What follows next is
a description of the main components, including implementation details. It
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Figure 5.1: High-level overview of the architecture design.

will become clear that there are many similarities between our proposed
architecture and the generic architecture for IoT hubs as proposed in the
previous chapter.

Gateway Services and Devices Understanding the activities in the building
and providing an appropriate response requires our system to interface with
a wide variety of sensors and actuators. The gateway services that are
part of our architecture are responsible for the communication between the
devices and the rest of our system. Each communication protocol has its own
gateway. The Plugwise devices communicate with the Plugwise gateway,
and TelosB devices communicate with the TelosB gateway. When a protocol
allows for any sort of control, the gateway exposes this control in the form
of a RESTful API. In practical terms, this allows the Orchestration service to
send REST requests to the Plugwise gateway to turn the devices on and off.
Each gateway is also responsible for registering meta data about the devices
in the Meta Database.
We utilize wireless TelosB-based sensors produced by Advantic Systems.

These sensors are integrated with an on-board Passive Infrared (PIR) based
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Figure 5.2: Power meters and a receiver device.

movement detectors, microphones, FlexiForce pressure sensors, and light
sensors. The devices are programmed in nesC and run on the TinyOS
2.1.1 embedded operating systems. As power meters, we use Plugwise
products shown in Figure 5.2, consisting of plug-in adapters that fit between
a device and the power socket. The adapters can measure the real-time
power consumption of the device plugged in, and can turn on and off the
device on request. The adapters form a wireless ZigBee mesh network
around a coordinator. The network communicates with the base station
through a link provided by a USB-based receiver device. To monitor activities
on workstations, we use the Sleep Management gateway, and the Sleepy
software that is deployed on the workstations. For more details on Sleepy,
we refer to our work in [SNLA16]. The Gateway services are implemented
in the Scala programming language (www.scala-lang.org), and run on an
Intel Next Unit of Computing (NUC) thin client device, which is deployed in
the restaurant itself.

Context Services The Context services consists of a Context Processing
(CP) service and an Activity Recognition (AR) service. These services provide
the system with the ability to process the sensor data received from the
gateways. This is achieved by listening to events on the event queue, and
processing them as they are received. CP is responsible for ensuring a
consistent view over the ambient environmental condition, such as the
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Table 5.1: Description of activities considered for the evaluation of our system
Activities Definition Artifacts
Working with PC Person uses PC, PC and screen are

turned on, keyboard/mouse are
manipulated

Chair, PC, screen,
keyboard/mouse

Working without PC Person sits at a desk, PC and
screen are turned off

Chair

Having meeting Two or more persons discuss Chair, microphone,
PC

Presence Person is active in an area but no
further specific activity is recog-
nized

Motion sensor

Absence User is absent from an area No artifacts in-
volved

Having coffee Persons have lunch/coffee or just
a break

Microwave, move-
ment detector

natural light level. That is, raw sensor readings, coming from a light sensor
in the unit of lux, are calibrated and correlated in a standard form for the
light condition at different locations. To calibrate and correlate the readings,
we collect historical data from the sensors associated with the ground truth
about the natural light levels. Then, the CP uses this information to classify
the incoming raw sensor readings into appropriate natural light conditions.
The AR service is responsible for processing the data related to occupant
activities. For example, the movement data coming from PIR sensors is
used to reason over for the presence activity. The occupant presence of
an area can be determined from one or many PIR sensors, depending on
the pre-configuration of the environment. Table 5.1 shows the definitions
and involved artifacts of the activities considered for the evaluation of our
system.

We also implement a mechanism that adapts the timeout of the presence
activity depending on the time of the day. For example, in the Bernoulliborg
restaurant, in the early morning, when the chance of occupants staying long
in some area is low, the timeout is set as low as 5 minutes, while during the
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lunch time, when occupants would stay long for their lunch, the timeout is
set to 30 minutes. The time values are adjusted based on observations.

Meta and Time Series Databases Two different database are used to
store two types of building information. One involves descriptions of de-
vices deployed in the building, their device types and locations within the
environment, their data type and value ranges, the layout of the building,
and any other meta information. We use Neo4j to store the environment’s
meta data. Neo4j is an open-source graph database with features from both
document and graph database systems and excels in scalability, availability,
performance, and price. Our Neo4j database contains static information
about the building. The other type of information is dynamic and involves
the data coming periodically from devices directly or from the Context ser-
vices. This concerns mainly time series data. Therefore, we use Cassandra to
store time series data coming from sensor readings. Cassandra is a NoSQL
database that delivers fast performance for systems involving time series or
big data.

Composition Services The Composition services are composed of three
individual services: 1) a modeling service, which provide capabilities that
focus on the planning entities used to form an HTN planning problem;
2) a problem-solving service, which have capabilities bounded within the
process of solving planning problems; and 3) an utility service, which in-
clude capabilities related to message conversion, storage of domain models,
communication with other components, and exception handling. We en-
code the domain model using Hierarchical Planning Definition Language
(HPDL) [CFOGPP06]. We assume that a domain model specified in HPDL
is predefined. The HPDL problem and domain descriptions are then trans-
formed into programming-level constructs through the HPDL processor. This
processor uses parser combinators to transform HPDL descriptions into Scala
objects. The HPDL domain and problem specifications constitute a HTN plan-
ning problem which is provided as input to the Composition component.
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We use our own HTN planner, called Scalable Hierarchical (SH) planning
system. We provide planning as a service by implementing SH’s capabilities
as REST resources (Web services) [RR07]. Upon receiving a request with
appropriate arguments, SH may check, for example, the correctness of an
HPDL domain or problem, the consistency of a required problem and domain,
or search for a solution. The planner replies to an interested component
with an answer appropriate to the situation. For example, SH may provide a
plan in JSON format, or it may show a syntax failure at a specific position in
the domain encoding.

Orchestration Service Since building environments are expected to sup-
port continuous orchestration, we need to adopt a strategy that enables
long-running runtime activities of the Orchestration component. The Orches-
tration service receives events from the Context services continuously and
reacts immediately and accordingly. When necessary, the Orchestration uses
the planning services to create an HTN planning problem and to compute a
plan. If plan is found, the Orchestration executes it by executing REST calls
on the Gateway services.
Since the orchestration service is stateful, it maintains a model of the

environment, including the planning state, domain, task network and or-
chestration plan; and, in order to support our design assumption regarding
concurrent use and updates of the state. The orchestrator receives messages
asynchronously and reacts to them by making local decisions, creating other
actors to handle specific and/or concurrent messages, sending new messages,
and deciding what to do upon the next message received. The model of the
environment is represented by an implementation of the restaurant. The
orchestrator populates a specific environment by retrieving the information
from the databases. The set of variables, their types, locations, and proper-
ties are gathered from Neo4j. The initial values of variables are gathered
from Cassandra. Then, the orchestrator subscribes to RabbitMQ, and awaits
for messages, that is, events. Upon each event, the orchestrator creates a
corresponding HTN planning problem and invokes the core planning service

202 5 | From Smart Data Center to Smart Building



Figure 5.3: Schematic representation of the offices, social corner, and de-
ployed devices.

of SH. When a plan is found, the orchestrator translates the plan steps
into actuating services and uses the gateway services implemented as REST
resources for execution.

5.1.3 Evaluation: Offices and Social Corner

First we evaluated the deployment in the two offices and the social corner.
This area covers a total of 60 m2. Each space has several small and large
windows which let a large amount of natural light into the spaces. The
offices are typically used by two occupants, while the social corner is contin-
uously used by many occupants from the surrounding rooms. The layout
of the offices and social corner together with the network of power meters
attached to appliances and simple sensors is illustrated in Figure 5.3. In
particular, each space has three controllable light fixtures (or lamps). The
lamps consume 32 W each. Each lamp is equipped with a Plugwise plugs,
which make the lamps controllable but also provides information about the
power consumption of the fixtures.
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We consider simulated control of the workstations of the PhD candidates
in the two offices. A workstation consists of a Personal Computer (PC) with
an 24” LCD screen. The power consumption of a workstation when actively
in use is 120 W, and only 5W while in sleep mode. We attach Plugwise power
meters to each PC and screen to detect the power state and measure the
power consumption. In addition, we take into account the use of a microwave
at the social corner. The microwave is also associated with a Plugwise power
meter to measure its real-time power consumption. We installed 14 more
sensors to estimate chair’s occupancy, to measure the human voice level, and
to detect people’s movement. Finally, we simulate a natural light sensor by
using weather conditions retrieved from Freemeteo1. We assume that clear
weather equates to light levels of 700 lux, a few clouds to 550 lux, partly
cloudy skies to 500 lux, cloudy skies to 425 lux, light snow to 400 lux, and
mist indicates 350 lux.

We conducted tests on the system during the working hours of three days.
We analyze two scenarios to show the potential for energy saving. In the
first scenario, we consider manual control, meaning that occupants have
manual control over their workstations and lamps. In the second scenario,
we consider automated control where the planner takes into account both
the natural light level and recognized occupant activities to control the
workstations and lamps automatically. Here we do not actually control the
workstations, but we assume the use of the Sleepy software that enables
bringing workstations into sleep mode or waking them up on planner’s
demand, as is presented in our work in [SNLA16].

Energy savings For the manual control scenario, we consider that the
two workstations and lamps at all three areas are turned on during all
of the working hours, given the fact that it is common for office workers
to leave their computers on even when they are not using them and no
power management options are enabled [All07; All09; CM10; WRMB+06].
The average energy consumption is then 0.528 kWh. For the automated

1Freemeteo--TheWeather,https://freemeteo.com
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control, the workstations are in active mode only if the activity "working with
PC" is taking place, otherwise they are brought to sleep mode. Lamps are
controlled in accordance with the European standard on lighting in indoor
work places. In other words, for the activities working with PC, having a
meeting, and being present require lower levels of light at 500 lux, while the
activity working without PC requires a higher light level of 750 lux. In the
automated control mode, our system provides an intelligent coordination of
the use of workstations and lamps with respect to the activities of occupants
and the natural light level.
Figure 5.4 illustrates the power consumption of both the manual control

and our system at every minute on two different days; day one and day
two. The results of day three are very similar to day two. The red dotted
line indicates the base-line power consumption associated with manual
control, whereas the green line indicated the consumption using automated
control. A significant reduction of energy consumption is evident in the case
of automated control by taking into consideration the natural light level
and turning off as many lamps as possible, and bringing workstations into
sleep mode as soon as occupants do not work with their PC. In particular,
no lamps were needed on the first day , while on the second day only five
lamps were turned on for 11 minutes and 24 minutes, respectively. Similarly,
two workstations were needed in total for 5.13 hours on the first day, and
8.47 hours on the second day.
Table 5.2 shows the potential for energy savings of our system. When

compared to the manual control, the combination of activity recognition
with planning brings a significant potential for energy reduction of 75.5%,
including 46.9% and 98.5% savings from controlling the workstations and
lamps, respectively.

Performance We evaluate the accuracy of the activity recognition that our
system performs. The system is considered accurate if it is able to recognize
and classify occupant activities correctly. During the tests on the three
separate days, the system recognized six different activities performed by
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Table 5.3: Ground truth of the occurrences of activity instances at each area.

Activity Area
WorkingRoom-1 WorkingRoom-2 SocialCorner

Absence 70 129 843
Presence 232 112 0
Working without PC 256 139 0
Working with PC 640 754 358
Having meeting 3 67 0
Having coffee 0 0 0

the two occupants in the two offices and using the social corner. Using
pen and paper, the occupants took accurate notes of the actual activities
happening every minute, which are then used as the ground truth for the
evaluation. Table 5.3 shows the real occurrences of activity instances at each
area. We collected ground truth composed of 1201 activity instances with a
granularity of oneminute. The overall success rates of the activity recognition
service for WorkingRoom-1, WorkingRoom-2, and SocialCorner are 80.85%,
76.35% and 99.17%, respectively. On the other hand, the total number of
minutes of incorrect recognition for WorkingRoom-1, WorkingRoom-2, and
SocialCorner are 230, 284 and 56, respectively. A detailed analysis of these
results is presented in [NRA14].

5.1.4 Evaluation: Restaurant

The restaurant of the Bernoulliborg covers a total area of 252 m2 with a
capacity of 200 sitting places. Two photos of the restaurant are presented
in Figure 5.5. The restaurant has glass walls on three sides, allowing for a
significant amount of natural light to enter when the weather conditions
allow for it. The restaurant area is used for lunch from 11:30 a.m. until
2:00 p.m. Outside of these hours, the area is used by staff, students or other
visitors for work, meetings, or other purposes.

The restaurant area is an open space divided in two sections by design, in
between the sections is a stairway. We make use of this division in our set-up.
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Figure 5.5: Overview of the restaurant from the east and west sides.

The layout, together with the locations of deployed sensors and power meters,
is illustrated in Figure 5.6. In particular, each section has 15 controllable
light fixtures (or lamps), making 30 in total. All lamps are fluorescent Philips
tubes. There are several light fixtures that are uncontrollable and represent
security lamps. While we do not control these, we take into account the light
that they provide. In addition, there are two types of controllable lamps.
The first type are large lamps that have a power consumption of 38W each,
and the second one are small lamps, each of which has a power consumption
of 18W. These lamps are controllable via the Plugwise plugs, which also
provide information about the fixture’s power consumption. We installed
15 additional sensors, one to measure the natural light level, and the rest
to detect people’s movement. We divide each section of the restaurant into
smaller spaces, called areas. The areas are not necessarily of the same size,
and we have positioned the embedded movement sensors in each area such
that they cover most of the space of the respective area.
We conducted tests on the system over the course of five weeks in the

months of February, March, and April, involving measurements from Monday
to Sunday. These months are cold and dark months, meaning that we
experience some of the worst possible conditions to save energy. In the last
three weeks in February, we recorded measures of energy consumption of
lamps in order to understand the typical behavior of manual control of lamps
in the restaurant under manual control. This enables us to define a baseline.
In the last week of March and first week of April, we allowed for automated
control of the environment by using our system. Thus, manual control was
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Figure 5.6: Schematic representation of the restaurant and deployed de-
vices. The legend only describes the symbols of interest to the
experiment.

disabled and the system was running continuously without interruptions
during these two weeks. For the purpose of comparison, we simulate control
of lamps based only on the information coming from the movement sensors
during the period of automated control. We use the same setup of sensors
and lamps as in the case of automated control. We consider two types of
activities: presence and absence. To summarize, we consider three situations
in our evaluation: manual control, motion sensor control, and automated
control.

Energy savings Observing the measurements gathered in February, when
there is manual control in the restaurant, we found that the average time
point when the lamps are turned on by the building cleaners is 6:30 a.m; the
lamps stay turned on until around 8 p.m., when they are usually switched
off by the security personnel. The average consumption per working day in
the restaurant is 14 kWh. On weekends, there is no manual control of the
lamps, thus they are always off. The use of our system results in intelligent
coordination of the restaurant with respect to the natural light and presence
of people. This means that there are a plenty of possibilities for lamps to be
turned off, which enables energy savings. Figure 5.7 shows the daily average
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Table 5.4: Daily total energy consumption (kWh) and savings with respect to
the use of motion sensors during two weeks of using our system.

Day Motion sen-
sors

Our system Savings

Week one
Monday 3.63 0.37 89.6%
Tuesday 3.94 0.79 79.8%
Wednesday 3.97 3.97 0%
Thursday 3.56 1.34 62.2%
Friday 5.19 4.10 21.1%

Week two
Monday 3.16 0.73 76.8%
Tuesday 3.83 1.21 68.3%
Wednesday 4.27 0.63 85.3%
Thursday 3.98 0.60 84.8%

electricity consumption when the lamps are controlled manually, when the
lamps are triggered by motion sensors, and when our automated control
system is used in the restaurant. Table 5.4 shows the percentage of savings
for each day when compared to using only motion sensors. Wednesday
and Friday of the first week have lower savings compared to other days,
which is due to the worse weather conditions in these two days. In summary,
the average savings of electricity between the scenario of manual control
and motion sensors is 71%, the average savings between the scenario of
manual control and the one with our system is 89%, and the average savings
between the scenario of motion sensors and our system is 61%.

Economic savings The average daily cost when our automated system is
used is €0.34, assuming €0.22 as the kWh tariff. Even in the worst case
during working hours while weather conditions are worse than average and
the restaurant is visited more than usual, the cost resulting from the use of
our system is always less than the cost associated with manual control. On
average, seven months of automated control costs as much as one month of

5.1 | An Intelligent Building: the Bernoulliborg 211



T
im

e
 o

f d
a
y

Power (kWh)

0.00 0.02 0.04 0.06 0.080
0

:0
0

0
0

:5
5

0
1

:5
0

0
2

:4
5

0
3

:4
0

0
4

:3
5

0
5

:3
0

0
6

:2
5

0
7

:2
0

0
8

:1
5

0
9

:1
0

1
0

:0
5

1
1

:0
0

1
1

:5
5

1
2

:5
0

1
3

:4
5

1
4

:4
0

1
5

:3
5

1
6

:3
0

1
7

:2
5

1
8

:2
0

1
9

:1
5

2
0

:1
0

2
1

:0
5

2
2

:0
0

2
2

:5
5

2
3

:5
0

m
a

n
u

a
l c

o
n

tro
l

m
o
ve

m
e

n
t s

e
n

s
o

rs
a

u
to

m
a

te
d

 c
o

n
tro

l

Figure
5.7:Com

parison
ofdaily

average
electricity

consum
ption

betw
een

using
m
anualcontrol,m

otion
sensors

and
oursystem

to
controllam

ps.

212 5 | From Smart Data Center to Smart Building



manual control. In other words, while manual control costs €746 annually,
we only pay €88 annually when our system is used in the restaurant.

Usability To evaluate the usability, we prepared a questionnaire following
the guidelines in [GA16]. In particular, we identify two groups of users, one
experiencing the system during lunch, and another one outside lunchtime.
The attitude of occupants towards our system, such as the use of sensors,
switching lamps (more often than usual), and automation of tasks, defines
their acceptability. The need for occupants to understand how to use our
system defines learnability. The satisfaction of users with the overall system
is related to system effectiveness, and user satisfaction with the time the
system takes to perform its tasks relates to system efficiency. Occupants may
have different requirements for the system. For example, occupants having
lunch may not have the same expectations for the level of light as compared
to the ones reading or working in the restaurant outside lunchtime. Finally,
we use two Likert scales each with five levels to have an informed way of
defining the actual usability of the system [Lik32]. Our questionnaire has
24 questions, two with multiple choices and the rest with the items on the
Likert scales.

We conducted the survey on the group of occupants experiencing the sys-
tem during lunch (L), and the one outside lunchtime when working/reading
(W). The group L shows partial awareness with one third of the participants
stating that they are aware of the system. The perception of the group L is
that our system saves energy (65%), and considers the natural light level
(54%) and people’s presence (72%). Regarding the learnability, 43% of the
group state that it is easy to use the system, while more than half are neutral
or do not know the answer to this question. The majority of the participants
find the system to be acceptable, while 17% think that the system causes
distractions. As for the system efficiency, the majority of the participants
do not know if the system reacts immediately to changes or their answer is
neutral. When it comes to the effectiveness, 59% of the participants state
that they are satisfied with the system, 31% are neutral and only 6% are
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dissatisfied. Finally, the majority of participants state that they find the
system to be useful.
The group W also shows moderate awareness with a bit more than one

third of the participants stating that they are aware of the system. The
perception of the group W is that this system saves energy (78%), and
considers people’s presence (67%). Half of the participants think that the
system also considers the natural light level. Regarding the learnability, 67%
of the group state that it is easy to use the system, while 33% are neutral
or do not know the answer to this question. 83% of the participants find
system to be acceptable, while none of the participants think that the system
causes distractions. As for the efficiency of the system, the majority of the
participants do not know if the system reacts immediately to changes or
their answer is neutral (72%). When it comes to the effectiveness, 72% of
the participants state that they are satisfied or very satisfied with the system,
11% are neutral and none of the participants are dissatisfied. Finally, the
majority of the participants (83%) state that they find the system to be
useful.

5.1.5 Discussion

We discuss first the case of the deployment at the two offices and coffee
corner. Using real-world data, the outcome of the activity recognition process
is gathered. The control of the lights is simulated in our experiments, there
is no actual execution of the actions defined in the plan. It should also be
noted that the weather conditions were optimal with regards to natural light
levels. Therefore, the high percentage of energy savings is related to the fact
that the lamps could be turned off most of the time. The savings achieved
by controlling workstations and displays are realized by monitoring the
activities of the occupants. It is a known issue that energy waste is caused by
leaving computers on. According to [All07], 31% of office workers assume
that their computer has power management options enabled, but, in reality,
it is often the case that such options are not active. In fact, the sleep mode
is disabled by default at the Bernoulliborg. While our assumption to have
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workstations and lamps turned on continuously during working hours may
seem hypothetical at first, it does reflects the real-world conditions.
Since the main deployment and use of our system was performed in the

restaurant, we provide a more extensive discussion for this case. During
the first weeks, there were numerous challenges in the deployment at the
restaurant. First of all, the TelosB sensor network had to be reset regularly,
and the Plugwise plugs had some interference with the metal roof tiling
of the restaurant, causing messages to be dropped in transit. While these
reliability issues should be addressed in the long term, the reported savings
are still valid. If these issues were not present, slightly higher savings may
have been observed. For the detection of activities, a timeout was enforced
to prevent triggering new activities too frequently. Concretely, during peak
hours at the restaurant the timeout was increased to prevent occupants from
having to manually trigger motion sensors in case they are sitting at the
table and little to no movement is detected. Ideally, the timeouts should be
adjusted dynamically, as was also done for the Sleepy software [SNLA16].
In the case of the restaurant, we settled for three different timeout values
depending on the time of day.

We do consider the power consumption of the additional IoT devices and
hardware required to make the system function: 30 Plugwise devices, 14
sensors, one thin client, and one server that consume 3.3 W, 6.7 W, 4 W,
and 365 W, respectively. The consumption from the sensors and thin client
is negligible compared to the savings. The consumption of the server is
more difficult to quantify, as the server does not only perform calculations
related to the restaurant deployment, but is also used for other research
tasks. The costs associated with procuring the devices and hardware are
however not negligible. If we consider the equipment that needs to be bought
and deployed, the costs for 30 Plugwise devices, 14 sensors, one thin client,
and one server are €990, €2040, €200, and €2700, respectively. Then,
the payback period for the investment in our system would be nine years.
But once again, this concerns a server that is not exclusively used for the
services running in the restaurant.

In addition to the performance evaluation, we conducted a usability study.
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The study provided insights into the attitude and satisfaction of the restaurant
occupants with the usefulness and effectiveness of our system. Beside the
realistic nature of the setting, the participants are not a random sample of
the building population. The participants have specific social and academic
characteristics that are correlated to the university environment. Particularly,
the participants are well informed about sustainability issues and behavior.
In addition, the participants are familiar with automated control and sensors
in buildings. These factors prevent us from generalizing to all building
population. Moreover, even though the participants were exposed to a
mandatory use of our system, from the results it can be argued that these
participants are highly motivated to engage in environmentally friendly
behavior and will therefore be more inclined to accept our system than a
general building population. We thus have a second reason to be careful
about generalizing to the building population.
And finally, the system and underlying architecture was designed from

the ground up to be extensible and adaptable to other buildings, regardless
of the type of building. Communication between services is standardized,
and the gateway approach to device integration enables any device with
an open protocol to be integrated into the system. Furthermore, thanks to
the standardization of interfaces and a service-based approach, it is possible
to change the implementation of core services. In fact, we have done so in
Chapter 4, where we replaced Neo4J with OrientDB, RabbitMQ with Kafka,
and ZooKeeper with Consul.

5.1.6 Conclusions

We address the building coordination problem automatically by combining
AI planning, activity recognition, and the IoT paradigm. We presented our
architecture to support intelligent decision making. It enables the execu-
tion of computed plans to address the building coordination problem. Our
proposed architecture is able to fully support the capabilities of building
management systems: from sensing and recognizing occupant activities,
planning for composing services, to executing services upon devices. This is
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achieved by standardizing communication between the different services,
and by following a gateway approach to integrate and interact with external
systems and hardware.

The developed system is deployed in the offices, the social corner and the
restaurant of the Bernoulliborg building. We showed that the combination
of HTN planning, activity recognition, and IoT can bring savings that go
beyond those associated with traditional rule-based lighting control provided
by existing automation solutions. The return on investment for the adoption
of our solution in the restaurant is nine years. By design, the system has
the capabilities to support different occupant activities and to be applied in
diverse types of rooms. The system can also be integrated with any device
or building management system that has an open communication protocol.
While we could not generalize the results of our usability study to the
whole building population, we can conclude that environmentally motivated
occupants are satisfied with the system and ready to accept intelligent
systems as ours.
The results show energy savings of up to 80% and economic savings of

up to €658 per year, while at the same time 83% of restaurant occupants
find the system useful and up to 72% are satisfied with it. As government
regulations regarding climate and sustainability become increasingly more
restrictive, achieving even higher energy savings is a worthwhile objective
to pursue. What we did not consider in this section is the inclusion of local
renewable energy generation, energy storage systems, and varying energy
price signals as the future smart grid promises to provide. The inclusion
of these aspects has the potential to further increase savings. Therefore, in
the next section we will investigate the scheduling of device loads for the
purpose of saving energy while considering energy generation, storage, and
price signals.

5.1 | An Intelligent Building: the Bernoulliborg 217



5.2 Optimizing Energy Costs for Smart Grid Connected Offices

The dynamic electricity price signal represents the electricity price as it
changes over time depending on the demand and supply of energy, as well
as other market factors. As a reaction to the signal, a building can operate
subsystems by switching them on or off, and postpone their operation to
times where the signal is expected to be more favorable. However, deciding
when to schedule a subsystem load in order to minimize costs is a non trivial
task, especially when local energy generation and storage add uncertainty
to the overall set of possible decisions to make. For example, the heating of a
meeting room could be anticipated if energy prices are expected to increase
considerably just before the scheduled time of a meeting.
In 2012, Georgievski et al. proposed an architecture and optimization

strategy to control office appliances based on user needs and dynamic
prices [GDP+12]. In the last ten years, we have witnessed a widespread
adoption of IoT hubs to monitor and control appliances and building systems,
IoT and data science approaches to building context and human activity
recognition, and rapid developments in electricity storage technologies. This
provides both challenges and opportunities for building energy optimization.
The challenges are that more uncertainty is present in the system and

that the complexity of monitoring and decision making increases. The op-
portunities come from the major flexibility and controllability of the system,
enabled through IoT hubs. Therefore, we approach the problem considering
the current state of the art and resort to improved techniques for the optimal
scheduling of appliance and device loads in office buildings. Specifically, we
present an approach to find the optimal load schedule that minimizes costs
while considering (1) price signals from the grid and prosumers, (2) local
energy generation, (3) local energy storage, and (4) the scheduling con-
straints of typical office devices. Based on this information, an optimization
problem is formulated. The resulting search space is large, as for each time
slot there are many permutations of possible actions that can be taken. The
contributions made and presented in this section include:
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• A general optimal device scheduling algorithm for smart grid enabled
buildings that include photovoltaic panels, micro wind turbines, and
battery energy storage;

• A parallel uniform-cost search to find the optimal schedule that mini-
mizes overall costs while ensuring performance when navigating com-
plex search spaces;

• A micro-service architecture for the integration of building manage-
ment systems with independent cloud services, enabling a loosely
coupled, modular systems that can be deployed in virtually any build-
ing; and

• A real-world data evaluation for the scheduled devices and for the
prediction of renewable energy generation.

5.2.1 Approach

First we define the energy optimization problem in terms of the relationships
between devices, their desired behavior, and the available energy sources.
This is followed by the models of the energy sources, in the present case: wind
turbines, photovoltaic panels, and prosumers on the same local grid. Energy
storage in the form of batteries is also modeled as part of the optimization
problem. The last part of the problem definition relates to the user policies
associated to the office devices. Such policies drive the way in which each
one can be scheduled. Finally, we describe the algorithm to find the optimal
schedule.

Problem Definition Given the devices to be scheduled, the scheduling
policy for every device, and the available energy sources, the goal is to find
an optimal day-ahead schedule X that minimizes the costs while ensuring
all of the constraints as defined by the device policies are satisfied. The
following problem definition is based and extends the definitions from the
work of Georgievski et al. [GDP+12].
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For every time slot t with length t.duration, ES(t) = {esi} represents
the available energy sources at time slot t. An energy source consists of a
tuple esi = 〈cost, ener g y〉, where cost is the cost per kWh, and energy is the
available energy that the energy source can provide at time t.
The set of all building devices that are amenable to scheduling is D. For

each device di ∈ D there exists a tuple di = 〈did , Si〉 where did is the identifier
of the device, and Si is the set of available states in which the device can be.
Every state si j ∈ S consists of the tuple 〈sid , power〉 where sid is the identifier
of the state, and power is the power consumption in that particular state.

Each device di has associated one or more scheduling policies that deter-
mine the scheduling behavior for the device. The set P contains all of the
policies that are associated with devices. Each policy pi ∈ P is represented
by the triple pi = 〈pid , t ype, parameters〉 where pid is the identifier of the
policy, t ype is the policy type, and parameters are the specific parameters
for that type of policy.
A schedule X = {x t i} is a set of values per device per time slot, where

each value x t i ∈ Si denotes the state that a device i assumes at time t.
Then we define the office optimization problem as follows: find a schedule
X = {x t i},∀t ∈ T,∀i ∈ D that is optimal. A schedule is optimal if and only if:

∑

t∈T

cost(t, et)→ min,∀p ∈ P : sat is f ied(p, X ) (5.1)

where

et =
∑

di∈D

x t i .power ∗ t.duration (5.2)

In other words, the schedule is optimal when the devices are scheduled in
such a way that the policy constraints for each device are satisfied and the
total costs of operation are minimal.
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Energy Sources: Wind Turbines One of the energy sources that is consid-
ered is local on-site energy generation using wind turbines. The following
mathematical model is used to represent the wind turbine’s power output
and is based on the work of Xia et al. [XAW13]:

Pw =
1
2
ρCpAv3

w (5.3)

where:

Pw power output (W);

ρ air density (kg/m3);

Cp power coefficient;

A wind turbine swept area (m2);

vw wind speed (m/s).

The wind turbine swept area and the power coefficient are dependent on
the particular wind turbine model. As per the Betz Limit, the theoretical
maximum power coefficient is 0.59, though in practice the power coefficient
is generally in the 0.35-0.45 range [The10]. To determine the air density,
first the saturation vapor pressure must be calculated. We resort to the
work of Herman Wobus who has provided an approximating polynomial to
calculate the vapor pressure [GW03]:

ps = eso/C
8

C = c0 + Td(c1 + Td(c2 + Td(c3 + Td(c4+

Td(c5 + Td(c6 + Td(c7 + Td(c8 + Td c9))))))))

(5.4)

where:

ps saturation vapor pressure (hPa);

eso known constant (6.1078);
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c0 − c9 known constants;

Td dew point (°C).

Once the saturation vapor pressure is known, the air density can be
calculated according to the following equation:

pd = p− ps

ρ =
100pd

Rda Tok
+

100ps

Rwv Tok

(5.5)

where:

pd dry air pressure (hPa);

p air pressure (hPa);

ps saturation vapor pressure (hPa);

ρ air density (kg/m3);

Rda dry air gas constant (J/kgK);

Rwv water vapor gas constant (J/kgK);

Tok outside air temperature (K).

And finally, the cut-in and cut-out air speeds of the wind turbine have to
be taken into account. If the air speed is above (cut-out) or below (cut-in) a
certain value, the output of the turbine will be zero:

Ptur bine =

(

Pw if vin ≤ vw ≤ vout

0 otherwise
(5.6)

where:

Ptur bine turbine power output (W);

vin cut-in air speed (m/s);
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vout cut-out air speed (m/s).

The cut-in and cut-out speed are dependent on the turbine specifications.

Energy Sources: Photovoltaic Panels Photovoltaic panels are a common
local generation means. We use the following formulation to model the
photovoltaic panel’s power output based on the work of Chen et al. [CGW12]:

Ppv = ηSI(1− 0.005(Toc − 25)) (5.7)

where:

Ppv photovoltaic power output. (W);

η panel efficiency (%);

S array area (m2);

I solar irradiation (W/m2);

Toc outside air temperature (°C).

The array area and panel efficiency depend on the configuration and
on the specifications of the photovoltaic panels. The solar irradiation and
outside air temperature depend on the location and weather. This model
assumes that the panels utilize a two-axis maximum power point tracker.
As a result, the surface of the panel is always perpendicular to the sunlight.
Therefore, the direct normal solar irradiance is used in the calculation of the
panel’s power output.

Energy Sources: Prosumers and DSO The final energy sources considered
in this work are the energy provided by neighboring prosumers and by
the DSO. These are both seen as energy providers independently of the
underlying technology used. For instance the prosumer could also have
photovoltaic panels or storage systems, while the DSO also has access to the
energy coming from the transmission infrastructure. For both, we need to
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define the cost of the energy, and the amount of energy available during a
given time slot. For prosumers, the available energy (kWh) is sampled from
a normal distribution:

X ∼ U[a,b] (5.8)

whereas the cost of the energy (€/kWh) is sampled from a Gaussian
distribution:

X ∼N (µ, σ2) (5.9)

As typical in practice, we assume that the DSO can always fulfill the
demand of the system. Though, the cost of energy from the DSOwill typically
be higher than those of prosumers, especially in times of high demand. As
for the cost of energy supplied by the DSO, this is modeled after the day-
ahead energy market prices for DSOs, which are then scaled to values more
representative of real-world end-user prices.

Energy Storage: Battery Energy storage provides for important flexibility
in complex smart energy systems. It can take many shapes and sizes, from
fly wheels, to rechargeable batteries, to hydroelectric dams. In this work,
residential energy storage in the form of household batteries is considered
as it is the most easy and likely to be deployed in an office building. The
battery should adhere to the following constraints, based on the definitions
by Chen et al. [CGW12]. If C(t) is the charge of the battery at time t, P c

t

the power charged to the battery, Pd
t the power discharged from the battery,

and η is the charging efficiency, then:
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Charge: C(t + 1) = C(t) +
∆tP c

t

η

Discharge: C(t + 1) = C(t)−
∆tPd

t

η

(5.10)

under the maximum charge and discharge limits:

0≤ P c
t ≤ P c,max

t

0≤ P c
t ≤ P c,max

t

(5.11)

energy storage limits:

Cmin ≤ C(t)≤ Cmax (5.12)

and the start and end limits:

C(tstar t) = C(t) = C(tend) (5.13)

where P c,max
t and Pd,max

t are the maximum charge rate and maximum
discharge rate respectively, Cmin and Cmax are the minimum and maximum
energy that the battery can store, and C(tstar t) and C(tend) represent the
charge of the battery at the beginning and end of the scheduling period.

Scheduling Policies The way devices operate varies depending on their
main function and user needs. This influences the way they are scheduled.
To represent this, we utilize the policies defined in [GDP+12]. This set of
policies is extended by us by including a battery policy. The policies are
then translated into scheduling constraints when solving the optimization
problem.

• Total Policy: defines the total amount of time a device di should be in
state si j. For example, for any device with a battery that needs to be
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recharged, this is the time it takes to fully charge it. The amount of
time is fixed, though it need not be continuous.

• Continuous Policy: similar to the total policy, if defines the total amount
of time a device di should be in state si j . The key difference being that
once the device is in state si j, it should remain in this state for the
given amount of time without interruptions.

• Repeat Policy: defines the amount of time a device di should be in state
si j with a certain periodicity. For example, a freezer that should be
scheduled repeatedly every hour to maintain the appropriate tempera-
ture.

• Multiple Policy: combines the continuous and repeat policies. This policy
is for devices that need to be in state si j for a certain number of times,
but should not be interrupted before a certain deadline once they enter
that state. For example, a printer can have multiple jobs to complete,
but cannot be interrupted while executing the job.

• Strict Policy: defines a schedule that is known ahead of time, determin-
ing exactly when device di should be in state si j, for every available
time slot. For example, a safety light that should be on from dusk
till dawn. It would not be acceptable to only turn the light on for 15
minutes every hour.

• Pattern Policy: similar to the strict policy, it defines ahead of time what
the expected usage of a device is. However, this policy does not offer
the possibility of the device to be controlled, it simply provides the
expected usage pattern.

• Sleep Policy: defines a no-op policy, during the entire specified period,
device di should be in state si j and should not be operated upon. For
example, this is useful when a device should be turned off for a period
of time in order to save energy.

• Battery Policy: indicates that a device di is able to act as short-term
energy storage, allowing for charging and discharging of energy. Ex-
amples of devices that can have the battery policy include stationary
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home energy storage devices, as well as connected electric vehicles.

The formal definitions for each policy, except for the battery policy which
we introduce for the purpose of our approach, can be found in [Deg14].

Uniform-cost Search The goal of our approach is to find the optimal
solution to the previously defined problem. Optimal in this case, refers to
the solution that minimizes the overall costs. The cost of the solution can be
defined in multiple ways, for example, as the total cost of electricity, or as
the carbon footprint associated with the energy consumption. To solve the
problem optimally, the state space has to be explored. The state space can
be interpreted as a weighted graph, where each node is a permutation of the
state space, edges represent the transformation from one state to another
and have an associated cost, the depth of the graph is equal to the number of
time slots. Uniform-cost search is an uninformed search algorithm used for
traversing graphs, finding the path with the lowest cost from the root node
to the destination node [RN10]. In the context of this work, uniform-cost
search expands the state space until either the optimal device schedule is
found, or no schedule is found. Algorithm 5.1 describes the uniform cost-
search algorithm, including the heuristics that are applied for this specific
problem.
The algorithm is initialized by creating an empty node and adding it to

the priority queue. Each node contains a permutation of states, and the
cost associated with being in this state. The priority queue ensures that the
node with the lowest cost is the first node in the queue. Next, the algorithm
continues looping through the queue until a solution has been found, or until
the queue is empty and no solution is found. In every iteration, the node
with the lowest cost is removed from the queue, and a check takes place to
verify if this node contains the solution. In case the node only contains a
partial solution, the next set of states are expanded. For each state in this
set, a new child node is created. Two heuristics are applied to reduce the
complexity of the search space. If the child node passes the heuristic checks,
it is added to the priority queue.
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Algorithm 5.1 Uniform-cost Search
1: procedure UniformCostSearch(problem)
2: initialNode← new(node) ◃ node.state = ;, node.cost = 0
3: queue← push(queue, initialNode) ◃ priority queue
4: visited← ;
5: while notEmpty(queue) do
6: node← pop(queue)
7: if goalReached(problem, node.state) then
8: return solution(node)
9: visited← insert(visited, node)

10: for newState in expand(problem, node.state) do
11: c← createChild(problem, node, newState)
12: if policiesViolated(c.state) then
13: continue
14: else if c.state not in queue or visisted then
15: queue← push(queue, c)
16: else if c.state in queue with higher cost then
17: queue← replace(queue, c.state, c)
18: else
19: continue
20: end for
21: end while
22: failure
23: end procedure

The first heuristic check is to determine whether the newly expanded
states violate any policies. If a policy is violated, the state is invalid and
should not be explored further. For example, a device with a sleep policy from
01:00 AM till 06:00 AM should not be scheduled during this given period. If
the device is scheduled during this period in the newly expanded state, then
the state violates the policy and therefore the child node is pruned from the
search space.

The second heuristic checks if there are partial solutions that have already
been explored and that have the same outcome (cost and number of time
slots) as the newly expanded state. In case the outcome is the same, but the
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cost is lower, the original node with the same outcome is replaced by the
newly created child node. In case the outcome of both nodes are identical,
the child node is pruned from the search space.

5.2.2 Design, Architecture, and Implementation

The cost optimization of smart grid enabled buildings requires the availabil-
ity of a wide variety of data sources. For example, the reliable prediction
of the renewable generation for the next day is based on the weather fore-
cast. Weather services vary considerably in terms of the predicted features
(radiation, temperature, wind, humidity, etc.), the spatial granularity, and
the temporal resolution. The micro-service architecture that we design and
propose enables the decoupling of the system’s components, where each
loosely coupled service adheres to the single responsibility principle [Bak17].
Furthermore, this architectural design promotes modularity, allowing ser-
vices to be easily replaced by alternative services, even at runtime [KMM18].
An example is replacing the weather forecast of provider A, by the forecasting
service of provider B, because provider B provides better local forecasts at an
increased resolution without affecting the overall operation of the system.

The proposed micro-service architecture is shown in Figure 5.8. It consists
of nine distinct micro-services, identified by the rounded rectangles. The
arrows indicate the inter-dependencies between them. Four of these services
depend on external components, which can be cloud services (e.g. DarkSky
for weather data), or data repositories (e.g. MongoDB for storing device
data). Communication between services is exclusively done via the REST
architectural style, as each REST service exposes a REST API that accepts
Hypertext Transfer Protocol (HTTP) requests. The Content-Type of each
HTTP response is application/json. The deployment of the micro-services is
handled by means of containerization, where each service is hosted within
individual Docker container. What follows next is a description of each
micro-service.
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Day Ahead Prices Service: requires an Energy Identification Code to identify
the energy market that is used, and a date for which the day ahead
prices should be retrieved. This service uses the cloud API provided by
the European Network of Transmission System Operators for Electricity
(ENTSO-E) transparency platform1 in order to obtain realistic and real-
time day ahead prices. The services returns the hourly day ahead prices
for the specified date.

Air Density Service: requires the temperature, air pressure, and dew point in
order to calculate the air density. This service implements the Herman
Wobus vapor pressure polynomial to calculate the saturation vapor
pressure at the dew point temperature, which can then be used to
calculate the pressure of dry air. Finally, the service returns the air
density for the given parameters.

Wind Turbine Power Output Service: requires the turbine’s blade radius, wind
speed, air density, and power coefficient to calculate the turbine’s power
output. This service also requires the cut-in and cut-out wind speed
of the turbine to be provided. Based on these parameters, the turbine
power output is given.

Weather Forecast Service: requires the latitude and longitude of the location
for which the weather forecast should be obtained. This service returns
the temperature, dew point, humidity, air pressure, and wind speed.
The weather service used in this work is DarkSky2, as it provides high
temporal resolution forecasts for our desired location.

Photovoltaic Panel Power Output Service: requires the direct normal solar ir-
radiance, temperature, area of the panel, and the efficiency of the
panel. The service assumes that a maximum power point tracker is
used. Based on the parameters provided to the service, the expected
power output is returned.

1ENTSO-E – data and information on wholesale energy generation, transmission, and
consumption, https://transparency.entsoe.eu/

2DarkSky – hyper-local weather information, https://darksky.net/
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Solar Radiation Service: requires the latitude and longitude of the location
for which the solar radiation should be collected. The solar irradiance
data is provided by the cloud API from Solcast1. This service returns
the direct normal irradiance, diffused horizontal irradiance, and global
horizontal irradiance.

Prosumer Generator Service: requires the latitude and longitude of the loca-
tion for which the data for simulated prosumers should be generated,
as well as the specifications of the available PV and/or wind turbine
resources. This service generates a list of energy sources which in-
cludes prosumers representing the neighboring buildings connected
to the smart grid. Each prosumer is able to deliver a certain amount
of energy for a certain cost during a certain period of time. Added
to this list of prosumers are the available renewable resources of the
building in question, as well as an energy source representing the
traditional power grid in case the energy provided by the renewables
and prosumers is insufficient to satisfy the demand.

Device Repository Service: returns the list of devices which should be sched-
uled, their power consumption in different states, as well as the policy
for each device. The devices, their power states and their policies are
stored in the document-oriented database MongoDB.

Scheduler Service: requires a list of energy sources (renewables, prosumers,
and grid), a list of devices to schedule, the initial charge of the battery,
as well as the algorithm that should be used. The modularity allows for
selecting among versions of the uniform grid-search problem algorithm.
The service returns the day ahead schedule of the devices with a 15
minute granularity, this predetermines the power state that each of
the devices should be in for every 15 minute interval. Some meta-data
on the performance of the algorithm is also included in the data that
is returned by this service.

1Solcast – global solar irradiance data and PV system power output data,
https://solcast.com/
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5.2.3 Data Structures

There are three critical JSON data structures that are used in our approach;
two which have to be provided to the scheduler, and one which is gen-
erated by the scheduler. First, a data structure with the available energy
sources should be provided to the scheduler. This structure is shown in
Listing 5.1, and contains the available energy sources, the amount of energy
they can provide during a given period of time, and the cost for consuming
the energy. The expression of the cost is flexible, it can be expressed in eco-
nomic terms, but it is also possible to express the cost in terms of the carbon
footprint of the energy source or any other meaningful totally ordered group.

[{

"start_time": "2021 -10 -20 T12 :00:00Z",

"duration": "01:00:00",

"energy_sources": [

{ "name": "turbine", "cost": 0.15,

"supply": 2.5 },

{ "name": "photovoltaic", "cost": 0.2,

"supply": 1.2 },

{ "name": "prosumer -1", "cost": 0.3,

"supply": 0.5 },

...

{ "name": "grid", "cost": 0.35,

"supply": 10 }

]

},

...

{

"start_time": "2021 -10 -20 T13 :00:00Z",

...

}]

Listing 5.1: An example of the data structure containing energy sources.
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The second data structure which should be provided to the scheduler is
the list of devices that are to be scheduled. This data structure is visible in
Listing 5.2 and contains each device, the states in which the device can be,
as well as the cost for being in that state, and the policies that are assigned
to the device. In this example, there is no cost associated with charging and
discharging the battery, though it is possible to assign a cost for these states
that represents the degradation of the battery.

[{

"name": "battery",

"id": "BATTERY",

"initial_state": 0,

"states": [

{ "id": 1, "name": "charging",

"cost": 0.0},

{ "id": 0, "name": "discharging",

"cost": 0.0}

],

"policies": [

{ "policy": "BATTERY",

"capacity": 4.0, "rate": 1.0 }

]

},

...

{

"name": "microwave",

...

}]

Listing 5.2: An example of the data structure containing devices.

The two previous data structures provide the scheduler with all the re-
quired information to solve the problem of finding an optimal schedule given
the constraints that are applied to the devices. Once the solution has been
found, the scheduler generates the third data structure: a schedule, which is
shown in Listing 5.3. The schedule includes the start and end times of the
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schedule, also known as the scheduling horizon. It also includes the cost
associated with executing this schedule. And finally, the schedule defines
for each device the state it should be in for any given point in time. In this
example, the fridge should be in state 0 (off) from 00:00, and in state 1 (on)
from 00:30. To maintain the temperature of the fridge, it should be turned
on regularly. This behavior is captured in the device policy of the fridge.

{

"start_time": "2021 -10 -20 T00 :00:00Z",

"end_time": "2021 -10 -21 T00 :00:00Z",

"cost": 15159,

"schedule" : [

{

"id": "FRIDGE",

"actions": [{

"time": "00:00",

"state": 0

},{

"time": "00:30",

"state": 1

},

...

]

},

...

{

"id": "BOILER",

...

}

]

}

Listing 5.3: An example of the data structure containing a schedule.
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Parallel Uniform-cost Search As the number of devices and/or the schedul-
ing horizon increase, the branching factor of the graph also increases. To
counteract this increase in complexity, which leads to execution times that
are too high for practical use of the system, a parallelized uniform-cost
search was designed. While the core of Algorithm 5.1 remains the same, a
number of important changes are made, Algorithm 5.2. Two global states
are maintained: the priority queue, and the visited list. Each thread also
maintains a local priority queue and visited list. When the local queue is
empty, the thread takes a node from the global queue and starts expand-
ing the state space while populating its local queue. Once the local queue
reaches a certain threshold, it is merged with the global queue, emptied, and
a new node is taken from the global queue. When a solution is found by a
thread, all other threads pause their work and synchronize their local queue
with the global queue. Next, the thread that found the solution checks the
global queue to verify there is no node with a lower cost. If indeed there is
no node with a lower cost, the solution is returned and all threads terminate.

5.2.4 Evaluation

To evaluate the quality and possibilities of the proposed architecture and
scheduling approach, we consider offices. The specific setup consists of
individual offices and a shared kitchen area, each with numerous devices.
Smart plugs are used to collect power data from the devices situated in the
offices and the kitchen area. This data is used to define the devices’ profiles
required by the scheduler. The renewables energy sources and energy storage
are modeled after commercially available products. Combined with real-
world weather data, the power output of the renewables is computed. The
device profiles and energy sources are then used as input for the scheduler.
Three different cases are considered; for each case we evaluate it with and
without the availability of energy storage. For each generated schedule,
the economic cost, the energy demand profile, and the battery charge are
analyzed.
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Algorithm 5.2 Parallel Uniform-cost Search
1: procedure UCS_Parallel(problem, threads)
2: initialNode← new(node)
3: globalQueue← push(queue, initialNode)
4: globalVisited← ;
5: solutionFound← False
6: for i← 1 to threads do ◃ Starts a new thread
7: queue← pop(globalQueue)
8: visited← ;
9: while not solutionFound do

10: node← pop(queue)
11: if goalReached(problem, node.state) then
12: synchronizeThreads(threads)
13: if peek(queue).cost > node.cost then
14: solutionFound← True
15: return solution(node)
16: Lines 11 to 23 from Alg. 5.1
17: if length(queue) ≤ thresholdA then
18: merge(globalQueue, queue)
19: queue← ;
20: queue← pop(globalQueue)
21: merge(globalVisited, visited)
22: visited← ;
23: end while
24: end for
25: failure
26: end procedure

Devices Two power states for each controllable device are considered.
These states are defined based on the historical power data of the devices.
The historical data was collected over a period of eight months, with measure-
ments taken every 10 seconds. The K-means clustering algorithm [Mac67] is
applied to specify the boundary between different power states based on the
power values and the density of the points. In this work, 8 different devices
are scheduled: a coffee machine, a fridge, a laptop, a microwave, a printer,
a display, a thin client, and a battery based energy storage device.
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As an example, Figure 5.9.(a) shows the historical power data and its
histogram for the display device. As is seen from the histogram, as well
as examined by the K-means inertia plot and elbow method [Ng12], the
optimum number of clusters for the data set is two. Figure 5.9.(b) shows
the clustering result highlighting the centroids of the clusters. The boundary
between the two clusters is placed between the two centroids. Table 5.5
shows the cluster centroids for different devices with K-means clustering
algorithm. S0 and S1 in this table, stand for two different power states.

Figure 5.9: Display device data. (a) Histogram of power data (b) Clustering
result of power data.

Each device needs to have a policy assigned to it in order for the scheduler
to understand the constraints under which to schedule it. An overview
of each device and the assigned policy is shown in Table 5.6. The coffee
machine and the fridge require the repeat policy, as these devices need to
be repeatedly turned on to maintain their temperature. The laptop uses
the total policy as it needs to be charged for a total amount of time. The
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Table 5.5: Centroids of the power states for different devices.
Device Power state S0 (watt) Power state S1 (watt)

Coffee Machine 22.48 2555.84
Fridge 0.05 50.8
Laptop 14.12 76.61

Microwave 4.3 1567.71
Printer 11.13 654.59
Display 0.63 36.36

Thin Client 0.07 10.52

microwave follows a predefined pattern based on the usage of this device
by the users; it is used more during lunch time. The printer has multiple
printing jobs that need to be performed, therefore it has a multiple policy.
The display and its associated thin client are only on during office hours, and
therefore require a strict policy. From the perspective of the scheduler, the
battery energy storage is just another device that can be scheduled, though
this device does not only consume energy, but can also return energy at a
later point in time. The energy storage is assigned the battery policy.
The total daily energy demand for these devices is approximately 15.6

kWh. The majority of this demand originates from the coffee machine, the
printer, and the microwave. The coffee machine needs to repeatedly reheat
water to maintain the required temperature, the printer has numerous large
printing jobs that need to be completed, and the microwave is used heavily
during lunch breaks.

Energy Sources and Storage For local energy generation, the building
has a single micro wind turbine, and a PV panel installation. The building
also has battery storage. The geographical location of the building affects
the energy sources, as the renewable energy generation is influenced by the
weather, and the prosumers are constructed based on the day-ahead energy
of the energy market. We choose as location Stuttgart, Germany.
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Table 5.6: Device policies as assigned to each device.
Device Policy

Coffee Machine REPEAT
Fridge REPEAT
Laptop TOTAL

Microwave PATTERN
Printer MULTIPLE
Display STRICT

Thin Client STRICT
Battery Energy Storage BATTERY

The wind turbine is modeled after a Sonkyo Energy Windspot 1.5, for
which the technical specifications are shown in Table 5.7. The power coeffi-
cient is derived from the specifications as the manufacturer does not provide
it explicitly. It should be noted that typically the specifications are optimistic,
and that in practice the power coefficient will be lower. However, for the
purpose of this evaluation the differences between theoretical and practical
performance are not of major importance. The cost of locally generated
wind energy is fixed at 0.08 €/kWh.

Table 5.7: Windspot 1.5 - technical specifications.
Rotor Swept Area 12.88 m2

Rated Power 1.5 kW
Rated Speed 12 m/s
Cut In Speed 3 m/s
Survival Speed 60 m/s

Power Coefficient 0.11
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For the PV panels, it is assumed that the building is equipped with two-axis
maximum power point tracking solar panel installation. The specifications
of the panels, as shown in Table 5.8, are based on the HiTech Solar 250Wp
Black 60 cells panel. The installation consists of 6 panels, with a total of 1.5
kW peak power, and an area of 9.9 m2. The cost is set to 0.06 €/kWh.

Table 5.8: HiTech Solar 250Wp - technical specifications.
Dimensions 1x1.65 m
Panel Area 1.65 m2

Cells 60
Technology Monocrystalline

Maximum Power 250 Wp
Panel Efficiency 15.30 %

As for the battery-based energy storage, the assumption is that the building
has a single battery storage installation. The assumed energy storage is based
on AlphaESS SMILE3. The technical specifications of the battery energy
storage are given in Table 5.9.

Table 5.9: SMILE3 - technical specifications.
Capacity 2.8 kWh

Charging/Discharging Current 60 A
Charging/Discharging Power 3000 W

Depth of Discharge 95 %

Both the prosumers and the grid are modeled using the day ahead prices of
the German electricity market, as published on the ENTSO-E Transparency
Platform. To model the grid, the hourly cost of energy is to be equal to
the hourly day-ahead prices as obtained from ENTSO-E. For the purpose of
this evaluation, we assume that the grid is always able to satisfy the energy
demand of the building, in case the renewables and prosumers are not
able to. The obtained grid prices are normalized between €0.40/kWh and
€0.60/kWh. The prosumers are also modeled based on the hourly day-ahead
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prices. It is assumed there are 10 different prosumers available at all time.
To introduce some variability, the hourly energy cost for each prosumer
is sampled from Equation 5.9, where µ = grid_price

1.5 and σ = 0.025. The
available energy for each prosumer is sampled from Equation 5.8, where
a = 0 and b = 1.

Results (Economic) Three distinct cases are considered in order to eval-
uate the economic benefits of scheduling devices with and without energy
storage in the presence of locally generated renewable energy. Each case
has a unique price signal, modeled on the day ahead prices of the German
electricity market. Furthermore, each case also has a unique renewable
energy profile which is dependent on the weather forecast for that day. The
renewable energy profile and the price signal for Case A (February 5th, 2022)
are shown in Figures 5.10a and 5.10b, respectively. Case A is a cloudy and
extremely windy day, especially after 14:00. The price signal for case A
shows that the price is relatively low until around 11:00. The prosumer
signal is the average price signal of the 10 available prosumers. Case B
(February 6th, 2022), as shown in Figures 5.10c and 5.10d, is a windy day
with some PV generation throughout the day. And finally, Case C (February
8th, 2022) is a sunny day with wind speeds below the cut-in wind speed of
the turbine, as can be seen in Figure 5.10e. The price signal is low for the
majority of the day, until approximately 16:00, as shown in Figure 5.10f.

The energy sources and their prices, as well as the list of devices, form the
input of the scheduler. In total, six schedules are generated. Two schedules
for each of the three cases, one with energy storage, and one without energy
storage. The values of energy sources do not change for each individual case,
the only change is the inclusion and exclusion of the energy storage. The
scheduling horizon is set to 24 hours, the length of each scheduling period
is set to 15 minutes, and the energy storage is empty at the start of the day.

Figure 5.11a, 5.11b, and 5.12a show the cumulative charge of the energy
storage device (battery), the cumulative cost, and the cost per period, for
case A. The cumulative charge is only applicable to the schedule with energy
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Figure 5.10: The renewable energy production and price signals for each of
the three considered cases.

storage. The remaining two figures visualize the results for both the schedule
with energy storage, and the schedule without energy storage. It is apparent
from Figure 5.11a that the optimal schedule, i.e. the schedule with the
lowest cost, does not charge or discharge the battery. The reason for this
behavior is the availability of cheap locally generated renewable energy
(wind) throughout the day. The final cumulative cost is identical for both
schedules, though the scheduling of devices is slightly different as can be seen
in Figure 5.12a, where the cost per period differs slightly from 18:00 onward.
This difference can be explained by the parallel nature of the algorithm used
by the scheduler, it is possible that the search space is explored in a different
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Figure 5.11: The cumulative battery charge and cumulative cost associated
with the generated schedules.
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Figure 5.12: The cost per period associated with the generated schedules.

order, though this clearly does not affect the goal of minimizing total cost.
The peaks in the cost per period graph are caused by the fridge and coffee
machine repeatedly turning on and off with a certain periodicity.
The schedules for case B clearly exhibit different behavior when com-

pared to case A. Figure 5.11c demonstrates this, the battery is charged in
the beginning of the day, and is not discharged until the end of the day.
When looking at the availability of locally generated renewable energy, and
the price signal, it becomes clear why case B behaves in such way. Until
approximately 19:00 there is sufficient renewable energy available to meet
most of the demand. Simultaneously, the price signal remains high after
17:00. Therefore, the battery is charged in the early hours of the day, as
cheap locally generated renewable energy is available, and is discharged
after 19:00, as the renewable energy generation is not sufficient, and the
price signal as high.
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For case C, as visible in Figure 5.11e, the charge of the battery fluctuates
between 00:00 and 09:00, after which it is fully charged, and remains fully
charged until 19:00. From Figure 5.11f one notices that the cumulative costs
of the schedule which includes the battery are significantly lower. These
savings are obtained after 19:00, when the price signal is high and there is
no renewable energy available, as visible in Figure 5.12c.

An overview of the economic costs associated to each of the 6 schedules is
shown in Table 5.10. The price signal and availability of locally generated
renewable energy greatly affect the potential economic benefits of utilizing
energy storage. Regardless of these factors, the scheduler is always able to
find the optimal schedule, whether this includes utilizing energy storage or
not.

Table 5.10: Overview of economic savings.
Case Battery? Cost (€) Cost Difference
A No 1.46 -
A Yes 1.46 -

B No 1.84 -
B Yes 1.69 -€0.15 (8.15%)

C No 2.12 -
C Yes 1.64 -€0.48 (22.64%)

Results (Performance) When optimizing energy it is important that the
system is fast enough to be used in the building and that it does not consume
more resources than it saves. To study this we perform the analysis on a
Dell PowerEdge R7425 server with two AMD EPYC 7551 2.0GHz 32-core
processors, 512GB of RAM, and read-optimized SSDs with a throughput of
560MB/s. The bottleneck of this test bed is the relatively low clock speed
of the AMD EPYC 7551, which limits the number of operations per second
when executing the uniform grid search.
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To evaluate the performance of the algorithms, a set of test cases is gen-
erated by varying numerous parameters. These parameters include: the
number of devices, scheduling horizon, number of threads, number of it-
erations, and algorithm variation. The number of devices ranges from 1
to 12. The scheduling horizon ranges from 2 hours to 24 hours, in 1 hour
increments. The number of threads ranges from 1 to 16. The number of
iterations is set to 10, and indicates how many times the same test case is run.
And finally, the algorithm variations include the original algorithm from the
work of Georgievski et al. [GDP+12], a variation of the original algorithm
that minimizes memory operations, and the parallel algorithm proposed in
this work. The original algorithm was modified to support battery device
policy and the multitude of micro-services. The result is 27.600 test cases.
Due to the high dimensionality of the resulting data, it is not possible to

visualize all of the results in their entirety. Therefore, we focus on a number
of specific cases which characterize the general performance of the approach.
Figure 5.13a shows the mean performance when scheduling 8 devices with
a varying scheduling horizon going from 2 to 24 hours. This case is selected
because the scheduling problem is complex. The time it takes to find the
optimal schedule (scheduling duration) is measured in minutes. It is clear
that the memory-optimized and parallel algorithms perform considerably
better than the original algorithm. The more complex the search space
(the broader the scheduling horizon), the more pronounced the difference
becomes. At the 24 hour scheduling horizon, the original algorithm (30
minutes) is 2.9 times slower compared to memory-optimized (10.2 minutes),
and 4.7 times slower compared to parallel (6.2 minutes) with 4 threads.
Figure 5.13b shows the same results as the previous figure, except the

original algorithm is excluded, and the results for the varying thread count
parameters are added. This highlights the performance differences between
number of threads. The memory-optimized and parallel (1 thread) algo-
rithms have identical performance (10.2 minutes at 24:00 hours scheduling
horizon), as is expected due to the fact that the parallel algorithm is de-
rived from the memory-optimized one. Increasing the thread count from 1
to 2, improves the performance by a factor of 1.4 (7.2 minutes at 24:00).
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(a) 8 devices, 24 hours. (b) 8 devices, 24 hours, excluding original.

(c) 4 devices, 6 hours. (d) 1 to 8 devices, 24 hours.

Figure 5.13: Performance of the variations of the uniform grid search algo-
rithm.

When increasing the thread count to 3 or 4, the performance improves by
a factor of 1.6 (6.2 minutes at 24:00) for both cases when compared to
the memory-optimized results. This is due to the implementation of the
concurrent priority queue. As this implementation requires synchronization
when adding and removing nodes to the queue, acquiring the lock becomes
the bottleneck.
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In Figure 5.13c, the case of 4 devices and a 06:00 hour scheduling horizon
is considered. This case is selected because complexity-wise it is the opposite
of the previous one: the search space is small. When the search space is
small, the overhead of synchronizing 4 threads becomes larger than the time
it takes for the single threaded variations of the algorithm to find the solution.
This is clearly visible at 03:00, where the parallel algorithms (with 4 threads)
requires 15 milliseconds to complete, while parallel (with 1 thread) requires
only 2 milliseconds. In practice, the search space is typically more complex,
and a difference of 13 milliseconds is negligible in the broader perspective
of the system’s execution time.

In the three preceding cases the number of devices is fixed. Figure 5.13d
(logarithmic y-axis) demonstrates the effect of increasing the device count,
and therefore increasing the search space. The complexity does not change
significantly when adding the 4th and 5th devices, this is due to the policy
that is assigned to these devices. Some policies (such as pattern, strict, and
idle) only minimally increase the search space. When ignoring the 4th and
5th devices, as the number of devices increases, the scheduling duration
increases exponentially.

(a) 8 devices, 24 hours. (b) 8 devices, 24 hours, parallel algorithm only.

Figure 5.14: Thread counts vs. performance.

To clearly illustrate the bottleneck problem caused by the locking mecha-
nism of the queue, the number of devices is reduced to 6, the thread is set
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to range from 1 to 16, and the scheduling horizon is fixed at 24:00 hours.
Figure 5.14a visualizes the mean scheduling duration in milliseconds with
varying thread counts. The original algorithm (red dashed line) is included
for reference. For this particular scheduling problem, it is clear that 3 threads
provides the fastest scheduling duration. As the thread count grows beyond
3, the synchronization mechanism in the queue becomes the bottleneck. In
addition, Figure 5.14b shows the standard deviation for each thread count
obtained after 10 iterations.

5.2.5 Discussion, Limitations and Outlook

Previously, Georgievski et al. demonstrated the concept of scheduling de-
vices against a price signal in order to decrease energy cost in an office
building [GDP+12]. The present work expands on that experience and
improves upon it in multiple ways. First of all, by adding real time modeling
of renewable energy generation, as well as the inclusion of energy storage.
Second, the modeling of energy sources is supported by a loosely coupled,
modular micro-service architecture which enables the system to adapt to
different service providers. Furthermore, real world data is used for the
scheduled devices, and for the prediction of renewable energy generation.
And finally, significant performance enhancements are made by introducing
a parallel uniform cost-search algorithm.
From the economic perspective, the inclusion of energy storage coupled

with device scheduling can result in significant cost savings. However, as
shown by the presented results, this depends greatly on the price signal and
on the availability of locally generated renewable energy. For example, when
sufficient amounts of energy are generated throughout the day, the battery
is not scheduled to charge, as charging is not free and the number of charge
cycles of a battery is limited. Therefore, in the worst case, the economic
benefit of adding energy storage is null on a daily basis. Nevertheless, in
several cases conditions are beneficial for energy storage, for example when
price signals fluctuate and the locally generated renewable energy is not
sufficient to meet the demand, then there are significant cost savings to
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be made. The results show cost savings of up to 8.15% per day, going as
high as 22.64% under the more favorable conditions. While the evaluation
focuses on the economic perspective, the algorithm is agnostic with regards
to the costs. In other words, instead of providing a list of energy sources and
their cost expressed in euros per kWh, one could provide instead the cost
expressed as grams of CO2 equivalent emissions per unit of power (gCO2eq
per kWh) to improve the sustainability rather then the economic costs.

From the performance perspective, the memory optimizations and paral-
lelization of the uniform cost-search algorithm result in significant perfor-
mance gains. The original algorithm requires up to 30 minutes to schedule
8 devices with a scheduling horizon of 24 hours. The memory optimizations
alone reduce this time to 10 minutes. Further gains are made by parallelizing
the uniform-cost search algorithm, completing the scheduling in 6.2 minutes
with 4 threads. It is also possible to spread the load over multiple machines
using distributed agents, where each agent solves a part of the problem.
However, accessing the shared resources requires synchronization, and there-
fore needs to be executed sequentially. This sequentially executed section
of the algorithm becomes the bottleneck. The bottleneck is a manifestation
of Amdahl’s law [Amd07], which in the context of parallel programming
describes that the maximum possible speed-up is disproportionately limited
by the sequential section of the application.

Finding the optimal solution to a scheduling problem is a time consuming
task. In our approach, the scheduler operates on 15 minute intervals with a
scheduling horizon of 24 hours. Decreasing the size of the intervals, expand-
ing the scheduling horizon, and increasing the number of scheduled devices
all exponentially increase the complexity of the problem. To counteract
these limitations, the scheduling problem can be divided into sub-problems,
which are solved individually and later combined into one schedule. While
the local schedules are optimal, the global schedule is likely not to be.
The energy consumption associated with the schedule generation is not

included in the economic evaluation since it is negligible, as we compute next.
The time it takes to solve the scheduling problems is in the order of several
minutes. The system only needs to be available during this time period.
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The execution of the schedule can be performed by a simple embedded
device. As per the performance evaluation, the scheduling of 8 devices
requires at most 6.2 minutes when using 4 parallel threads. The 32-core
AMD EPYC 7551 CPU is responsible for the majority of the system’s power
consumption. Assuming each of the 4 parallel threads utilizes 100% of
their allocated CPU core, the overall CPU utilization is 12.5%. According to
the SPECpower_ssj2008 benchmarks [Spe], this would equate to a power
consumption of 100W. Therefore, generating the schedule requires 0.01
kWh. We can conclude that the cost of the energy consumption of the system
itself is insignificant with respect to the overall economic savings.
From a system architectural point of view, we proposed a micro-service

architecture that encapsulates the three critical components in several micro-
services. This enables the system to leverage the real time data provided
by weather services and the ENTSO-E transparency platform to generate
realistic price signals on the fly. Furthermore, a performance-oriented version
of the uniform cost-search algorithm is proposed, which parallelizes the
search for the optimal schedule. The performance evaluation shows that this
parallel algorithm decreases the time to find the optimal schedule by a factor
of 4.7 compared to the previous approach. And finally, this work evaluates
the economic benefits of including local energy storage in the scheduling
problem.

5.3 Summary

In this chapter, our focus has shifted in this chapter from smart data centers
to smart buildings. The treatment has highlighted that many parallels exist
between the two. In both cases sustainability is an important driver behind
the need for smartness and intelligent decision making. The ability to
control the building and influence its environment through IoT-enabled
devices is required to achieve the desired level of control. And, as we
have seen in the previous chapter, IoT devices also play a critical role in
the real-time monitoring of data centers. Furthermore, the IoT platform
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developed in the case of the Bernoulliborg is nearly identical to the one used
in Chapter 4 for the monitoring of data centers. This is not a coincidence,
as the system for monitoring data centers is an adaptation of the system
deployed in the Bernoulliborg. The underlying concepts and protocols are
identical, though a number of core technologies have been superseded by
more suitable alternatives. While the focus in this chapter was on scheduling
appliance loads, the scheduling of loads is also important in the context of
data centers. Though, in data centers it is typically application workloads
that are scheduled on servers. Generally, these workloads are split into
deferrable and non-deferrable workload types. This distinction can also be
made in buildings, where some loads can be deferred, such as turning on
the washing machine, and others cannot, such as turning on lights in an
occupied room.
Where the Bernoulliborg is considered, we have demonstrated in a very

practical manner the benefits of smartness, but also emphasized the selection
of sensors and actuators that are necessary to achieve the required level
of control and optimization. The results show that the annual economic
savings are significant, up to €658, and energy savings of up to 80% were
also observed. The service-oriented architecture combined with AI planning,
activity recognition, and the IoT paradigm was essential to obtain these
savings. Furthermore, the majority of building occupants had a positive
response to the experiments that were performed. We also investigated the
scheduling of device loads in an office environment while considering renew-
able energy generation and energy storage, as well as varying price signals.
For this purpose, we developed a parallel uniform-cost search algorithm that
significantly outperforms traditional uniform-cost search by speeding up the
search by 4.7 times. Each of the subsystems of our proposed architecture
was encapsulated in a micro-service. Our evaluation included eight devices,
two renewable energy source, and one energy storage device. By optimally
scheduling the device loads based on the given constraints we were able to
obtain up to 22.64% economic savings. While the area of application has
changed in this chapter from data centers to buildings, the techniques and
tools that we have used are highly related and relevant in both domains.
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Conclusions and Outlook

Data centers are steadily growing in size and number, and their overall envi-
ronmental footprint is increasing correspondingly. This trend conflicts with
modern policy making, which is focused on sustainability and on achieving
climate goals. The use of IoT in data centers for monitoring, and subsequently
to support optimization, is a promising method to improve the efficiency of
data centers. In this thesis, we looked at data centers through the lenses
of IoT and data-driven approaches. We also extended our research to the
domain of office building optimization. In Chapter 1, we identified numer-
ous challenges regarding these research topics and defined corresponding
research questions. In the following sections, we will reflect on each of our
research questions and how the present work answers them.

In Section 6.1, we discuss research questions RQ1 and RQ2 , which are
both related to sustainable data centers. Next, in Section 6.2, we shift our
focus to the monitoring of smart data centers and review research questions
RQ3 and RQ4 . The final two research questions, RQ5 and RQ6 , are
related to smart buildings and are discussed in Section 6.3. And finally, we
provide our vision on possible future research directions in Section 6.4.
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6.1 Sustainable Data Centers

As sustainability is becoming increasingly important in modern society, the
need for sustainable data centers is pressing. Understanding which actions
can be taken to increase the data center’s efficiency is an important step
towards sustainability. This leads us to our first research question:

RQ1 – What measures can be implemented by a data center
operator to increase the level of efficiency and sustainability of
their data center, and which of these measures are implemented in
practice today?

We addressed research question RQ1 in contribution C1 . Through
our interviews with key personnel from 7 data centers, we investigated the
adoption of 23 best practices which can be implemented to increase the
efficiency and sustainability. Almost all data centers follow the best practices
for storage and networking. The majority of the cooling, thermal, and air
management practices are also implemented in practice. Though, liquid
cooling is only used in one data center. Only slightly more than half of the
energy efficiency practices are used. None of the data centers use automated
lighting solutions in combination with occupancy sensors to reduce their
energy footprint. Furthermore, none of the data centers use on-site power
generation which can reduce conversion losses and allows for the re-use of
the generated heat. The area of green practices is where most improvements
can be made; none of the data centers implemented all of the green practices.
Specifically, none of the data centers use reclaimed water, and only a few
utilize water-side or air-side economizers. The re-circulation of cooling
water and the use of renewable resources is also severely lacking.

Additionally, we emphasized the use of immersion cooling as a measure
to increase efficiency and sustainability. Where traditionally air-cooled data
centers have a PUE between 1.1 and 2.9, immersion-cooled data centers
yield significant improvements with PUEs ranging from 1.02 to 1.04. Other
benefits of immersion cooling are a significantly higher power density, allow-
ing for more computational capacity per cubic meter. The operational costs
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are also reduced due to the absence of internal fans. While retrofitting an
existing data center with immersion cooling is not practical or cost efficient,
designing a new data center with immersion cooling in mind promises to
significantly increase the data center’s efficiency.

To summarize, there is a multitude of measures available that can be taken
by data center operators to increase the level of efficiency and sustainability
of their data center. We have shown that in practice not all of these mea-
sures are implemented, and that particularly the area of green practices has
significant room for improvement. Once a given measure is implemented,
its effectiveness on the data center needs to be evaluated. This brings us to
the next research question:

RQ2 –How can the effect of policy changes in a data center, such as
the implementation of best practices, be measured in a standardized
manner?

We addressed research question RQ2 in contribution C2 . Data center
metrics play a critical role in evaluating the state of the data center and
monitoring the effect of policy changes. By developing a taxonomy of data
center metrics, we obtained an overview of 136 metrics across 9 categories.
For each metric we reported their unit, optimization objective, optimal
value, and at which level of the data center they operate. Furthermore, we
have analyzed the relationships between metrics, specifically focusing on
metrics that re-use existing metrics or are derived from other metrics. Energy
efficiency metrics are heavily depended upon each other, with many of these
metrics re-using other energy efficiency metrics. The green metrics category
also contains a number of inter-metric relationships, but more crucially it is
clear that there is a lack of green metrics focused on recycling and renewable
energy sources. Where thermal and air management metrics are concerned,
the relationships are not so much between the metrics, but between the
input parameters of the metrics, 9 of these metrics depend on the same 6
input parameters.
We also uncovered numerous issues and challenges. First of all, there

is no metric that encapsulates all aspects of a data center, nor are there
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metrics that specifically enable the comparison of data centers. In practice,
PUE is used for comparisons, though the PUE metric was never intended
for this purpose and has numerous flaws that prevent fair comparisons. For
example, PUE is heavily influenced by the IT load, the geographical location,
and the weather. Other issues include the challenge of defining what work
in the data center is useful work, as many metrics depend on this notion
of usefulness. Furthermore, co-location data centers have the additional
challenge of not being able to evaluate metrics that depend on data collected
from IT equipment due to a lack of access. We also identified the need for
IoT-driven in-detail monitoring of data centers to enable the continuous
evaluation of metrics.

In short, the effect of policy changes can be measured through a plethora
of standardized data center metrics that are available to be used at different
levels of the data center. However, one has to be cognizant of the inter-
relationships and weaknesses of the chosen metrics, as the flaws that exist
within one metric are not necessarily overcome when it is re-used in another
metric.

6.2 Monitoring of Smart Data Centers

The amount of data that can be collected through the use of IoT-assisted mon-
itoring is truly astounding. In fact, the transmission of such vast quantities
of data has a negative impact on the networking bandwidth. To overcome
this problem, we posed the following research question:

RQ3 – How can the traditional network architecture of a data
center be leveraged to support IoT-based real-time monitoring while
simultaneously reducing the processing load and bandwidth con-
sumption associated with monitoring?

We addressed research question RQ3 in contribution C3 . By analyz-
ing the data generation potential of real-time server monitoring in data
centers we have quantified that the impact on the network is significant.
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Our experiments demonstrated that each server can continuously generate
monitoring data at 92.2 kilobyte per second. Assuming Google’s Dallas data
center consisting of 9090 server racks has a density of 25 server per rack,
we extrapolate the total bandwidth consumption to be 167.62 gigabit per
second. Thus, we proposed an edge-based approach, taking advantage of
the data center’s network architecture. By co-locating an edge gateway with
the ToR switch in every rack, we can process the data at the edge, reducing
the bandwidth requirement to 18 megabit per second for 25 server per rack,
or 47 megabit per second for 64 servers per rack. Furthermore, we see clear
parallels between the proposed edge gateway and IoT hubs, especially when
edge gateways are also utilized to connect to external hardware sensors.

There is a multitude of freely available open-source IoT hubs. Initially, we
selected 20 IoT hubs and, based on 5 parameters, we reduced our selection
to the 4 highest scoring systems: Home Assistant, Domoticz, openHAB,
and ioBroker. We analyzed the architecture of each system and extracted
a generic IoT hub architecture based on the commonalities. The parallels
between the edge gateway and generic IoT hub are immediately apparent.
We defined 17 use cases to extract 13 features that are required to support all
of the use cases. Almost all of the four systems support each feature, though
some systems rely on 3rd party plugins. We also subjected each system to 34
criteria ranging from popularity and community to performance and support.
Our results present Home Assistant as the victor, though the results are more
nuanced. While Home Assistant offers a well rounded experience, Domoticz
provides an uncomplicated setup, ioBroker has excellent performance, and
openHAB as strong scores across the board.

To conclude, we leverage the network architecture of a data center by co-
locating edge gateways with the ToR switches which allow the processing of
monitoring data to take place at the edge, reducing the bandwidth consump-
tion as well as the latency. Furthermore, IoT hubs are perfect candidates to
be co-located with the ToR switches, as they offer the functionality that is
required to process data and monitor the data centers. By investigating 4 IoT
hubs in detail, we uncovered the strengths and weaknesses of each system,
assisting in the selection process. While the approach we presented is feasible
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in traditional data centers, co-location data centers face the challenge of
not having access to the IT equipment. Thus, we reach our fourth research
question:

RQ4 – With which precision is it possible to monitor servers of a
co-location data center while not having access to the operating
system or the internals of the server chassis?

We addressed research question RQ4 in contribution C4 . We moni-
tored 13 metrics of 164 servers in a data center, which resulted in a data set
consisting of 2.5 billion data points. To replicate the conditions of monitoring
in a co-location data center, our aim was to monitor the CPU utilization and
temperature of servers using only measurement taking external to the server,
such as power consumption and the temperature difference between the
inlet and outlet air. This would enable privacy-preserved monitoring. In our
approach we used linear regression model with polynomial features, as we
observed near linear correlations between metrics. By training and evalu-
ating 10,470 different models using k-fold cross validation we determined
that we can determine the CPU utilization with an error between 7.35% and
8.14% by only using power consumption and the temperature difference
as inputs to the model. Similarly, the CPU temperature can be determined
with an error between 3.17◦C and 3.84◦C . And finally, we modeled the
outlet temperature using power consumption and inlet temperature as input
parameters and obtained an error between 1.07◦C and 1.25◦C .
In conclusion, we can monitor the CPU utilization and CPU temperature

of servers with the given degree of precision despite using only the data
collected externally to the server. Therefore, we do not require access to the
operating system or server chassis. Our approach relies on IoT devices to
measure and monitor the required external parameters, such as the power
consumption, as well as the inlet and outlet air temperatures.
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6.3 From Smart Data Center to Smart Building

Next, we shift our attention to smart buildings. Simply deploying IoT sensors
and actuators in a building does not inherently create an environment that
is able to intelligently respond to the behavior of its occupants. Yet IoT does
play an important role in both smart building and smart data centers alike.
This brings us to the next research question:

RQ5 – What role does the IoT paradigm have in enabling intel-
ligent responses to activities taking place in office buildings, and
which similarities and differences exist between IoT architectures
for offices and data centers?

We addressed research question RQ5 in contribution C5 . We deployed
a multitude of IoT devices in an office building, including passive infrared
sensors, light intensity sensors, smart plugs, and even our own custom soft-
ware that transforms workstations into virtual sensors. While the intelligent
responses were primarily enabled by activity recognition and AI planning,
the input data required for both these processes was supplied by IoT de-
vices. Therefore, it is critical that the data supplied by the IoT sensors is
accurate and timely. However, in our deployment in the restaurant area, we
encountered multiple interference issues with two types of sensor networks.
The microwave in the social corner area was also causing interference when
in use. Identifying these sources of interference and deciding on the type
of network, wireless or wired, is an important part of the IoT deployment
process. Despite these challenges, we observed energy savings of up to
75.5% in the offices and social corner, and up to 89% in the restaurant.

Throughout the thesis, we have illustrated a number of different archi-
tectures. First, we proposed the edge gateway architecture for data center
monitoring. Next, we defined a generic IoT hub architecture, followed by a
service-oriented architecture for collecting, processing, and storing server
monitoring data. We also developed an architecture for smart buildings,
with additional services that enable intelligent control. And finally, we used
a micro-service architecture to collect weather data, solar radiation data,
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and day ahead energy prices from cloud services to be used in the generation
of device load schedules. There are many obvious similarities between these
IoT-oriented architecture for data centers and offices. For example, in both
domains there are many different types of sensors and actuators, and thus
there is a need to standardize the integration with different sensor tech-
nologies. The storage and processing of data, as well as responding to state
changes is important in both cases. A key difference is in the types of sensors
and actuators that can be found in each domain. While in the office domain
it is typically physical sensors, such as motion sensors, light sensors, and
smart plugs, in the data center domain the majority of the sensors are de-
fined in software by monitoring agents deployed on IT equipment. Another
important difference is in the scheduling of loads in each domain. In the
office domain, the loads are typically from a single device, such as a fridge, a
coffeemaker, or a microwave. In the data center domain it is also possible to
schedule loads, but these loads are typically workloads or processes running
on a server. It is possible to consolidate multiple workloads on a single server,
to defer their execution, or even to move workloads on a geographical scale.

In summary, while IoT devices on their own do not provide an overarching
sense of intelligence or smartness, the combination of IoT with techniques
such as activity recognition and AI planning does enable the building to
intelligently respond to activities occurring within it. There are also many
similarities in the IoT architectures found in data centers and offices, though
there are significant differences in the types of sensors that can be found in
each domain, as well as in the way loads can be scheduled. The concept of a
smart grid increases the complexity of load scheduling problems, especially
when you include varying price signals, the generation and storage of energy,
and scheduling constraints for each device. This leads us to the sixth and
final research question:

RQ6 –How can devices in an office building be scheduled optimally
considering the availability of renewable energy, energy storage,
neighboring prosumers, varying price signals, and different schedul-
ing constraints, while ensuring timely schedule generation?
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We addressed research question RQ6 in contribution C6 . We defined
an optimization problem for the optimal scheduling of device loads given
the scheduling constraints for each device, price signals from the grid and
neighboring prosumers, renewable energy generation, and the availability
of energy storage. Optimality in this case means reducing the economic
costs to the minimum necessary to satisfy the user’s needs. We developed an
extension of the uniform-cost search algorithm which is able to parallelize
the task of finding the optimal solution to the optimization problem in order
to speed up the search process. Furthermore, a micro-service architecture
was designed to collect data from cloud services and to integrate with the
BMS. We then used real-world data for the evaluation of our approach. The
evaluation focused on the difference between schedules that use energy
storage, and schedules that do not. When using energy storage, savings
between 8.15% and 22.64% were observed. Furthermore, the optimization
and parallelization of the algorithm has reduced the search time from 30
minutes to 6.2 minutes.

To reflect on the research question, parallel uniform-cost search enables us
to find the optimal load schedule for devices given constraints, price signals,
energy generation, and energy storage. Furthermore, the parallelization of
the search task enables the timely generation of the device load schedule.

6.4 Outlook

IoT-driven approaches for data centers and buildings are the subjects of
active research. It is therefore not surprising that the topics discussed in this
thesis are open to be researched further. We highlight a number of specific
research directions that the present work opens to further investigation. First
of all, more research, and especially data, is required to evaluate the effect
of particular best practices on the efficiency of the data center. A cost-benefit
analysis of each best practice would greatly assist with the selection and
implementation of practices. Though, this would require sensitive data to be
made publicly available. Where data center metrics are concerned, there is a
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clear need for a metric or multiple metrics that enable the fair comparison of
data centers. Presently, the PUE metric is misused for this purpose, as PUE
was only ever developed to be used for comparisons of a single data center
with itself over time. Furthermore, most green metrics focus on reducing and
reusing resources while there is a clear lack of metrics focused on recycling
and renewables.

A practical evaluation of IoT-based data center monitoring encompassing
the entire facility is necessary. The challenge lies in the fact that data
centers are critical components of the ICT infrastructure, making facility-
wide experiments difficult. This is a challenge we also faced in our own
research. One way to counter this problem is through the use of simulators.
There are simulators for workload scheduling and virtual machine placement,
but there is a lack of simulators that are able to capture the data center in
its entirety. Especially where environmental conditions and cooling systems
are concerned. Additionally, data center metrics could be tightly integrated
with such a simulator. We also foresee research opportunities in generalizing
the models we developed for monitoring co-location data centers in order to
include other CPU types, and even GPUs.
Where smart building and smart grids are concerned, the inclusion of

electric vehicles in the device load scheduling problem would be interest-
ing, as electric vehicles are essentially mobile energy storage systems which
can be charged and discharged according to unique scheduling constraints.
Another interesting direction is to perform the scheduling in the domain
of data centers, where workloads can be scheduled instead of device loads.
One can envision a HPC cluster where users specify the constraints of their
computational jobs, or where jobs are characterized automatically and con-
straints are assigned accordingly. The jobs can then be scheduled based on
the available resources and price signals in order to minimize a given cost
function. Regardless, it seems inevitable that data centers have to become
increasingly more sustainable, and that IoT and data-driven approaches will
play a central role in this process.
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Data centers are a fundamental part of  modern society, as they ensure 
that today’s ICT services are available and responsive. The current trends 
show that data centers are increasing in size, which corresponds with 
an increase in their already significant energy footprint. As governments 
around the globe struggle to achieve their desired sustainability goals, 
the need for efficient and sustainable data centers is urgent.  The 
Internet of  Things (IoT) paradigm plays an important role in increasing 
the efficiency and sustainability of  buildings. The smart home and 
office domains demonstrate the successful application of  IoT in 
order to achieve energy savings through continuous monitoring and 
optimization of  the building environment. Extending these techniques 
to the data center domain promises to bring the smartness previously 
seen in homes and offices to the data center. However, there are 
challenges that need to be overcome before the concept of  a smart 
and optimized data center becomes a reality. In this thesis, a number of  
these challenges are addressed from a data-driven and IoT point of  view.
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