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Abstract

The identification of molecules in the interstellar medium (ISM), circumstellar spheres and
low-temperature exoplanet atmospheres is a major challenge in astrophysics and is mainly
based on highly accurate rotational and rovibrational infrared reference spectra. One way
to determine these reference spectra is through ab initio calculations, since they allow for an
efficient simulation of a wide range of conditions, including extremely low pressure and tem-
perature.
In this thesis, a new realization of rovibrational configuration interaction (RVCI) theory

for the calculation of rovibrational infrared spectra via configuration interaction theory has
been developed and implemented to allow for the calculation of these reference spectra. The
approach is based on a multi-mode expansion of the multi-dimensional potential energy sur-
face (PES) and dipole moment surface (DMS), vibrational self-consistent field (VSCF) and
vibrational configuration interaction (VCI) theory. A direct product between vibrational ba-
sis functions (VCI wave functions) and rotational basis functions is used. Thus, in contrast
to the previously introduced rotational configuration interaction (RCI), the interaction be-
tween rotational and vibrational bands is taken into account. This is done with high accuracy
by including the higher order term of the inverse effective moment of inertia tensor µ for the
rotational term and the Coriolis coupling term in theWatsonHamiltonian. Moreover, a new
rotational basis called molecule specific rotational basis (MSRB) is introduced.
The convergence behavior of several different series expansionswithinRVCI theory showed

very individual effects for the five parameters investigated. If the maximum total angular mo-
mentum quantum number Jmax or the vibrational basis set is not sufficiently converged, large
artifacts occur. Efficient ways to detect and avoid these issues are presented. The CI space in
the VCI calculations is another crucial parameter in terms of quantitative convergence. It was
found that the best indicator for convergence of the coupling strength is the spectral separation
between the vibrational bands. For the two quasi-degenerate vibrational modes of H2CS the
0th order Coriolis coupling is significant, while the 1st order terms show only small changes.
Compared to the Coriolis coupling terms, the rotational terms require a one order higher µ-
tensor expansion for the same accuracy. The 1st order introduces at most energy shifts for
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entire progressions of 5 cm−1. The changes induced by the 2nd order terms are more than
one order of magnitude smaller. Since the absence of higher order coupling terms does not
cause artifacts in the spectrum, an insufficient convergence is hard to detect in the resulting
spectra.
The calculation for the first paper in this thesis relied on a number of approximations, that

could be removed in the further course of this thesis. Most of these approximations did not
drastically affect the spectra of ketenimine, as there are onlyminor changes in the spectrumup
to 2900 cm−1. Above that, however, the ν1 band and the coupling between ν8 + ν12 and ν11

show that the quality of the quantum number assignment, the consideration of the coupling
and the consistency of the intensities improved significantly over the last three years. The
new calculations also revealed an interesting turnaround progression in this region. The line
broadening study using propynal as a benchmark molecule gives evidence for the assumption
that for molecules with 6− 10 atoms there is no need to consider sophisticated beyond Voigt
profiles, as they are used for small molecules (N2, H2O, CH4, NH3, etc). The reason for this
is that the higher mass and the larger moment of inertia tensor lead to a higher rovibrational
state density. Therefore, the variation between different broadening profiles is negligible.
At the end of this thesis, several runtime optimizations are analyzed. The parallelization

shows an almost perfect scaling in the number of CPU cores for the precalculations and the
intensity calculation. In addition, the precalculations of the vibrational integrals save about
a factor of 8 in total computation time. The contraction of the MSRB coefficients and the
RVCI coefficients results in a total reduction of computational time of 50% for H2CS and
97% for ketenimine.
The current implementation of the RVCI theory in MOLPRO is capable of calculating

rovibrational infrared and Raman spectra for up to 10 atoms, up to room temperature and
over a broad spectral range. However, combining all these features together requires large
computational resources. A list of optimizations to increase the computational efficiency is
presented in theoutlook. Moreover, a numberofpossible additional functionalities andmeth-
ods to increase the robustness of the code are provided.
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Zusammenfassung

Die Identifizierung von Molekülen im interstellaren Medium, in zirkumstellaren Scheiben
und in den Atmosphären kalter Exoplaneten ist eine große Herausforderung in der Astro-
physik und basiert hauptsächlich auf hochgenauen Rotations- und Rotationsschwingungs-
Referenzspektren. Eine Möglichkeit, diese Referenzspektren zu bestimmen, sind ab initio-
Berechnungen, da sie eine effiziente Simulation eines breiten Bereichs von Bedingungen (ein-
schließlich extrem niedriger Drücke und Temperaturen) ermöglichen.
In dieser Arbeit wurde eine neue und besonders effiziente Implementierung der Rota-

tionsschwingungskonfigurationswechselwirkungstheorie für die Berechnung von Infrarot-
Rotationschwingungsspektren entwickelt, umdie Berechnung dieserReferenzspektren zu er-
möglichen. Der Ansatz basiert auf Normalkoordinaten und einer Mehrmodenentwicklung
der mehrdimensionalen Potential- und Dipolmomentflächen sowie Schwingungs-Selbst-
konsistentes-Feld-Verfahren und Schwingungskonfigurationswechselwirkungstheorie. Dabei
wird ein direktes Produkt zwischen Schwingungsbasisfunktionen und Rotationsbasisfunk-
tionen verwendet. So kann im Gegensatz zu der zuvor eingeführten Rotationskonfigura-
tionswechselwirkungstheorie die Wechselwirkung zwischen Rotations- und Vibrationsban-
den berücksichtigt werden. Dies geschieht mit hoher Genauigkeit, indem die Terme höherer
Ordnung des inversen effektiven Trägheitsmomenttensors µ für den Rotationsterm und die
Coriolis-Kopplung imWatson Hamiltonian berücksichtigt werden. Darüber hinaus werden
eine neue Rotationsbasis namens Molekülspezifische Rotationsbasis (MSRB) und eine neue
Art der Zuweisung von Rotationsschwingungsquantenzahlen eingeführt.
Das Konvergenzverhalten verschiedener Entwicklungen für die Rotationsschwingungs-

konfigurationswechselwirkungstheorie (RVCI) zeigte sehr individuelle Effekte für die fünf
untersuchten Parameter. Wenn die maximale Gesamtdrehimpulsquantenzahl Jmax oder die
Größe der Schwingungsbasis nicht ausreichend konvergiert, treten besonders große Arte-
fakte auf. Es werden effiziente Methoden zur Erkennung und Vermeidung dieser Pro-
bleme vorgestellt. Auch die Größe des Schwingungsbasissatzes ist ein entscheidender Para-
meter für die Konvergenz des Spektrums. Der beste Indikator für die Konvergenz bezüglich
dieses Parameters und für die Stärke der Kopplung ist der spektrale Abstand zwischen den
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Schwingungsbanden. Für die beiden quasi-entarteten Schwingungsmoden von H2CS ist die
Coriolis-Kopplung nullter Ordnung sehr entscheidend, während die Terme erster Ordnung
nur geringe Änderungen verursachen. Im Vergleich zu den Coriolis-Kopplungstermen er-
fordern die Rotationsterme eine um eine Ordnung höhere µ-Tensorentwicklung für die glei-
cheGenauigkeit. Die ersteOrdnung führt für ganze Progressionen zuEnergieverschiebungen
vonhöchstens 5 cm−1. Die durchdieTermeder zweitenOrdnunghervorgerufenenÄnderun-
gen sind um mehr als eine Größenordnung geringer. Da das Fehlen von Kopplungstermen
höherer Ordnung keine Artefakte im Spektrum verursacht, ist eine unzureichende Konver-
genz in den resultierenden Spektren sehr schwierig zu erkennen.
Die Berechnungen für die erste Veröffentlichung in dieser Dissertation beruhten auf einer

Reihe von Näherungen, die im weiteren Verlauf dieser Arbeit entfernt werden konnten. Die
meisten dieser Näherungen hatten kaum Auswirkungen auf die Spektren von Ketenimin, da
sie bis 2900 cm−1 nur zu geringfügigen Änderungen des Spektrums führten. Oberhalb dieser
Grenze zeigen jedoch die ν1-Bande und die Kopplung zwischen ν8 + ν12 und ν11, dass sich
die Qualität der Quantenzahlzuordnung und die Konsistenz der Intensitäten in den letzten
drei Jahren deutlich verbessert haben. Die neuen Berechnungen zeigen auch eine interessante
turnaroundProgression in diesemBereich. Die Studie zur Linienverbreiterung unterVerwen-
dung von Propynal als Anwendungsmolekül bestätigte die Annahme, dass für Moleküle mit
6 − 10 Atomen keine Notwendigkeit besteht, beyond Voigt-Profile zu verwenden, wie sie für
kleine Moleküle (N2, H2O, CH4, NH3, etc.) benutzt werden. Der Grund dafür ist, dass die
höhere Masse und der größere Trägheitstensor zu einer hohen Schwingungszustandsdichte
führen, wodurch die genaue Form des Verbreiterungsprofil weniger relevant wird.
Am Ende dieser Arbeit werden verschiedene Laufzeitoptimierungen analysiert. Die Pa-

rallelisierung zeigt eine nahezu perfekte Skalierung in der Anzahl der CPU-Kerne für die
Vorberechnungen der Schwingungsintegrale und für die Intensitätsberechnung. Darüber
hinaus sparen die Vorberechnungen der Schwingungsintegrale etwa einen Faktor von 8

an Gesamtrechenzeit ein. Die Kontraktion der MSRB-Koeffizienten mit den RVCI-
Koeffizienten führt zu einer Gesamtrechenzeitreduktion von 50% für H2CS und 97% für
Ketenimin.
Die derzeitige Implementierung der RVCI-Theorie inMOLPRO ist in der Lage, Infrarot-

und Raman-Spektren für bis zu 10 Atome, von T = 0K bis zu Raumtemperatur und über
einen weiten Spektralbereich zu berechnen. Die Kombination all dieser Eigenschaften er-
fordert jedoch große Rechenressourcen. Im Ausblick wird daher eine Liste von Optimierun-
gen zur Steigerung der Recheneffizienz vorgestellt. Darüber hinaus wird eine Reihe von
möglichen zusätzlichen Funktionalitäten und Methoden zur Erhöhung der Robustheit des
Programms aufgelistet.

vi



Danksagung

In den letzten vier Jahren haben mich viele Menschen in vielfältiger Weise unterstützt und
dazu beigetragen, diese Arbeit zu ermöglichen. Ihnenmöchte ich nun an dieser Stelle meinen
Dank aussprechen. Als Erstes möchte ich mich bei Prof. Dr. Guntram Rauhut bedanken.
Er hat mir nicht nur diese Promotion ermöglicht, sondern mich auch fachlich und beim
Schreiben der zahlreichen Berichte und Paper viel gelehrt. Besonders froh bin ich darüber,
dass er mir die Freiheiten gelassen hat, unsere Forschung in Richtung astrophysikalischer An-
wendungen voranzutreiben und er mir meine Reise in die USA ermöglichte.
Mein Dank gilt auch Prof. Dr. Ronny Nawrodt als Mitberichter und Prof. Dr. Jo-

hannes Kästner als Prüfungsausschussvorsitzender, die beide ohne Zögern und auf sehr un-
kompliziert Weise bereit waren, diese Aufgaben zu übernommen.
Darüber hinaus danke ich Prof. Dr. Laura Kreidberg, Dr. Iouli Gordan und Prof. Dr.

Heather A. Knutson für Ihre Gastfreundschaft und dafür, dass ichmeine Ergebnisse in Ihren
Arbeitsgruppen präsentieren durfte. Der Studienstiftung des deutschen Volkes danke ich für
die finanzielle Unterstützung in den letzten drei Jahren und für die Möglichkeit, in die USA
zu reisen.
Auch einige Arbeitskollegen möchte ich nicht unerwähnt lassen. So habe ich die enge

Zusammenarbeit mit Sebastian Erfort sehr genossen. Von ihm habe ich nicht nur viel über
Rotationen und Schwingungen gelernt, sondern auch somanches beim Bouldern. Ein weite-
rer, ehemaliger Zimmerkollege, mit dem ich viele gesellige Stunden verbracht habe, istMoritz
Schneider. Ich kennewenig andereMenschen,mit denen ich so gut über Themen diskutieren
kann, egal ob wir einer Meinung waren oder nicht. Von Dr. Benjamin Ziegler habe ich nicht
nur die Phrase “UmGotteswillen! Wie konnte das jemals funktionieren?” zu schätzen und zu
fürchten gelernt, sondern auch viele Kniffe in Fortran. Mit Dr. Taras Petrenko verbinde ich
viele, sehr gesellige Stunden, auch wenn er meistens eine Spur aus Kekskrümeln hinterlassen
hatte. Unserem ehemaligen Post Doc Dr. Benjamin Schröder möchte ich dafür danken, dass
er mich an seinem allumfassenden Wissen zu Rotationsschwingungsspektren hat teilhaben
lassen undDr. TinaMathea für die schöne Zeit und die angenehmeArbeitsatmosphäre. Den
Abschluss dieser Runde aus ehemaligen Arbeitskollegen darf Dennis Dinu bereiten. Auch

vii



wenn die Zeit mit ihm in Stuttgart nur sehr kurz war, so war sie doch sehr intensiv und bleibt
mir überaus positiv in Erinnerung.
Ebenfalls in meinem Universitätsalltag, wenn auch nicht in Form von Arbeitskollegen,

haben mich einige weitere Personen begleitet. Als Erstes möchte ich Juliane Heitkämper und
Tizian Wenzel für manch mächtig munteres Mensa-Mahl merci mitteilen. Meinem ehemali-
gen Betreuer während der Bachelorarbeit, Dr. Nicolai Lang, möchte ich besonders herzlich
dafür danken, dass er meine Frage “Hast du kurz Zeit?” stets bejahte, obschon er wusste, dass
ich damit seine Abendplanung über denHaufen geworfen hatte. Ich schätze an dir nicht nur,
dass du mir geduldig, die abstraktesten physikalischen Zusammenhänge wieder und wieder
erklärt hast, sondern auch, dass du mich dazu ermutigt hast, die Forschungsreise in die USA
anzutreten. Für viele musikalische und kulinarische Stunden, so wie einige der wichtigsten
Unterhaltungen inmeinem Leben kurz vor Beginn der Promotion danke ich Dr. Daniel Diz-
darevic. Darüber hinaus möchte ich Dr. Johannes Reiff danken für 9 Jahre in denen wir uns
durch Praktikumsprotokolle, Übungsblätter und die Masterarbeit gekämpft haben.
Nun möchte ich drei ganz besonderen Männern danken, die mich in den letzten fünf

Jahren, weniger in meiner fachlichen als vielmehr in meiner persönlichen Entwicklung un-
terstützt haben. Beginnen möchte ich mit Mario Zinßer. Er ist ein schier unerschöpflicher
Quell positiver Energie und schafft es immer, in allem das Gute zu sehen. Dies hat mir in vie-
len schwierigen Phasenmeiner Promotion, aber auch darüber hinaus sehr geholfen. Auch du
hast mich dazu ermutigt, die Reise in die USA anzutreten und vielleicht warst du mit deiner
Reise nachHawaii sogar einweiteresMal eineQuelle der Inspiration. Wirwaren in den letzten
Jahrennicht nur gemeinsamaufderWildspitze, inHawaii (mit einem Jeep), beimKletternund
Ski fahren, sondern haben auch so manche persönliche Herausforderung gemeistert. Trotz-
dem glaube ich, dass unser mit Abstand größtes Abenteuer noch vor uns liegt.
Auch wenn das zeitliche Zusammenfallenmit meiner Promotion ein Zufall war, so hat mir

Dr. Manfred Schrode in den letzten fünf Jahren maßgeblich mit meiner Persönlichkeitsent-
wicklung geholfen. Fast noch wichtiger ist aber, dass er mir das Handwerkszeug gegeben hat,
um diesen Prozess in Zukunft alleine weiterführen zu können und dafür möchte ich mich
an dieser Stelle in aller Form bedanken. Auch wenn mein nächster Dank über die Maßen
exzentrisch wirken mag, geht dieser an Elon Musk. Die Entwicklung der Falcon 9 und Star-
shipRaketen und das zugehörige Raumfahrtprogramm hatte auch den Zweck, dieMenschen
zu motivieren und ihnen etwas zu geben, worauf sie sich freuen können, weil es im Leben
nicht nur darum gehen kann, Probleme zu lösen. Das größte Abenteuer in der Geschichte
der Menschheit hat dies definitiv bei mir bewirkt.
Zu guter Letzt möchte ich mich bei meiner Familie bedanken. Gabi Tschöpe undMichael

Tschöpe, ihr habtmich in den 13 Jahrenmeiner akademischenAusbildung auf demWeg vom
mittelmäßigen Realschüler zum Dr. rer. nat. immer bedingungslos unterstützt und dafür

viii



bin ich euch unendlich dankbar. Meinem Bruder Matthias Tschöpe bin ich nicht nur dafür
dankbar, dass er mich an seinem Wissen über theoretische Informatik und künstliche Intel-
ligenz hat teilhaben lassen. Ich bin dir auch dafür dankbar, dass du den Mut hattest, mit
mir zahlreiche Projekte in Angriff zu nehmen, sei es handwerklicher Art (unsere Jahrhundert-
Betonage imStickoder die selbst-geschweißtenGartentore) oder automobilerArt (die Fahrten
an der Nordschleife). Zuletzt möchte ichDr. Andreas Tschöpe danken. Du bist für mich seit
langem ein Vorbild, weil du der erste in unserer Familie warst, der promoviert hat, du trotz-
dem einer der bodenständigstenMenschen geblieben bist, den ichmir vorstellen kann und du
mich damals ermutigt hast, diese Promotion hier anzutreten.

ix



x



Peer-reviewed publications

This cumulative dissertation summarizes results that have been published in

(I) Martin Tschöpe, Benjamin Schröder, Sebastian Erfort and Guntram Rauhut High-
Level Rovibrational Calculations on Ketenimine. Frontiers in Chemistry, Section As-
trochemistry, 8, 623641 (2021)

Copyright: Reprinted from Ref. [1], Copyright 2021, CC-BY 4.0.

Contributions: M.T.: Implementation (RVCI), Simulation, Data curation, Visualiza-
tion, Formal analysis (partially), Project administration (partially), Writing – original
draft sectionsAbstract, Theory andComputationalDetails, Results, Discussion andSum-
mary (partially), Writing – review & editing (partially)
B.S.: Formal analysis (partially), Writing – original draft sections Introduction, Discus-
sion and Summary (partially), Writing – review & editing (partially)
S.E.: Conceptualization, Methodology, Implementation (RCI), Writing – review &
editing (partially)
G.R.: Project administration (partially), Funding acquisition, Resources, Writing – re-
view & editing (partially)

DOI: https://doi.org/10.3389/fchem.2020.623641

(II) Martin Tschöpe andGuntramRauhutConvergence of series expansions in rovibrational
configuration interaction (RVCI) calculations. The Journal of Chemical Physics, 157,
234105 (2022)

Copyright: Reprinted from [2], with the permission of AIP Publishing,

Contributions: M.T.: Methodology, Implementation, Simulation, Data curation, Vi-
sualization, Writing – original draft sections Theory (RVCI), Computational Details,
Results, Discussion and Summary andWriting – review & editing (partially)
G.R.: Project administration, Funding acquisition,Writing–original draft sectionsAb-
stract, Introduction, Theory (PES and VCI) andWriting – review & editing (partially)

DOI: https://doi.org/10.1063/5.0129828

xi

https://doi.org/10.3389/fchem.2020.623641
https://doi.org/10.1063/5.0129828


(III) Martin Tschöpe and Guntram Rauhut A theoretical study of propynal under interstel-
lar conditions and beyond, covering low-frequency infrared spectra, spectroscopic constants,
and hot bands. Monthly Notices of the Royal Astronomical Society, 520, 3345–3354
(2023), Issue 3

Copyright:Reprintedwith the permission fromRef. [3]. Copyright 2023,OxfordUni-
versity Press.

Contributions: M.T.: Methodology, Implementation, Simulation, Data curation, Vi-
sualization, Writing – original draft andWriting – review & editing (partially)
G.R.: Project administration, Funding acquisition, Resources,Writing – review& edit-
ing (partially)

DOI: https://doi.org/10.1093/mnras/stad251

(IV) Martin Tschöpe and Guntram Rauhut Spectroscopic Characterization of Diazophos-
phane – A Candidate for Astrophysical Observations. The Astrophysical Journal, 949, 1
(2023)

Copyright: Reprinted from Ref. [4], Copyright 2023, CC-BY 4.0.

Contributions: M.T.: Methodology, Implementation, Simulation, Data curation, Vi-
sualization, Project administration,Writing–original draft andWriting– review&edit-
ing (partially)
G.R.: Funding acquisition, Resources, Writing – review & editing (partially)

DOI: https://doi.org/10.3847/1538-4357/acc9ad

xii

https://doi.org/10.1093/mnras/stad251
https://doi.org/10.3847/1538-4357/acc9ad


Other publications by the author, not included in this thesis:

(V) Erfort, S., Tschöpe, M., & Rauhut, G. Toward a fully automated calculation of rovi-
brational infrared intensities for semi-rigid polyatomic molecules. J. Chem. Phys. 152,
244104 (2020)

DOI: https://doi.org/10.1063/5.0011832

(VI) Erfort, S., Tschöpe, M., Rauhut, G., Zeng, X., & Tew, D. P. Ab initio calculation of
rovibrational states for non-degenerate double-well potentials: cis–trans isomerization of
HOPO. J. Chem. Phys. 152, 174306 (2020)

DOI: https://doi.org/10.1063/5.0005497

(VII) Erfort, S.,Tschöpe, M., & Rauhut, G. Efficient and automated quantum chemical cal-
culation of rovibrational nonresonant Raman spectra. J. Chem. Phys. 156, 124102
(2022)

DOI: https://doi.org/10.1063/5.0087359

(VIII) Dinu, D. F., Tschöpe, M., Schröder, B., Liedl, K. R., & Rauhut, G. Determination of
spectroscopic constants from rovibrational configuration interaction calculations. J. Chem.
Phys. 157, 154107 (2022)

DOI: https://doi.org/10.1063/5.0116018

xiii

https://doi.org/10.1063/5.0011832
https://doi.org/10.1063/5.0005497
https://doi.org/10.1063/5.0087359
https://doi.org/10.1063/5.0116018


The results of this thesis have also been presented in the following talks and conferences:

(I) Martin Tschöpe, Benjamin Schröder, Sebastian Erfort, Guntram Rauhut,High-Level
Rovibrational Calculations on Ketenimine.
Online presentation at 75th International Symposium onMolecular Spectroscopy
virtual, June 2021

(II) Martin Tschöpe, Adaptable High-Level Rovibrational Calculations.
Seminar presentation, invited by Prof. Laura Kreidberg
Max-Planck-Institute, APEx, Heidelberg, Germany
March 2022

(III) Martin Tschöpe, Adaptable Infrared Line List Calculation for Medium Sized
Molecules
Seminar presentation, invited by Dr. Iouli E. Gordon
Harvard-Smithsonian Center for Astrophysics, Boston, Massachusetts, USA
April 2022

(IV) Martin Tschöpe, Guntram Rauhut, Efficient and Automated Ab Initio Calculation of
Infrared Spectra forMedium SizedMolecules.
Poster presentation at Exoplanet IV conference
Las Vegas, Nevada, USA
May 2022

(V) Martin Tschöpe, Adaptable Infrared Line List Calculation for Medium Sized
Molecules.
Serveral presentations in different groups, invited by Prof. Heather A. Knutson
California Institute of Technology, Pasadena, California, USA
May 2022

(VI) Martin Tschöpe, Adaptable Infrared Line List Calculation for Medium Sized
Molecules.
Online seminar presentation, invited by Prof. Sara Seager
Massachusetts Institute of Technology, virtual
July 2022

(VII) Martin Tschöpe, Sebastian Erfort, GuntramRauhut, Efficient and Automated Ab Ini-
tio Simulation of Rovibrational Infrared Spectra forMedium-SizedMolecules.
Poster presentation at 58th Symposium on Theoretical Chemistry
Heidelberg, Germany, September 2022

xiv



Contents

Abstract iii

Zusammenfassung v

Danksagung vii

Peer-reviewed publications xi

Contents xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Delimitation to other program parts in Molpro . . . . . . . . . . . . 4
1.2.2 Delimitation to rovibrational theory literature . . . . . . . . . . . . . 7
1.2.3 Delimitation to other rovibrational software . . . . . . . . . . . . . . 7

2 Theory 11
2.1 Watson Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Vibrational term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Rotational term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Coriolis coupling term . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.4 RVCI Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Infrared Intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Raman Intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Line Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Natural linewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.2 Doppler broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.3 Pressure broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xv



2.4.4 Voigt broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Results 47
3.1 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Total angular momentum . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 VCI space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.3 Vibrational basis set size . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.4 Coriolis coupling term order . . . . . . . . . . . . . . . . . . . . . . 54
3.1.5 Rotational term order . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.6 Influence of NSSWs . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Ketenimine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Line broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Runtime optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 Precalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.3 Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.4 RVCI Coefficient Threshold . . . . . . . . . . . . . . . . . . . . . . 77

4 Summary and Conclusion 81

5 Outlook 85
5.1 Runtime and memory savings . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Additional functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Abbreviations 93

List of Figures 95

List of Tables 97

Bibliography 99

Publication 1: High-Level Rovibrational Calculations on Ketenimine 111

Publication 2: Convergence of series expansions in rovibrational configu-
ration interaction (RVCI) calculations 127

xvi



Publication 3: A theoretical study of propynal under interstellar con-
ditions and beyond, covering low-frequency infrared spectra, spectro-
scopic constants, and hot bands 139

Publication 4: Spectroscopic characterization of diazophosphane - a candi-
date for astrophysical observations 151

Declaration of Authorship 161

xvii



xviii



1
Introduction

Choosing a subject for a PhD is a difficult decision and above all it depends on personal pref-
erences. Section 1.1 describes, from my subjective perspective, why my topic is so important
and motivating these days. The Section 1.2 addresses the scope of the thesis. Since a PhD
thesis is build upon previous research, it is important to precisely define the border between
the previous status quo and the own new research. This will be given in Subsec. 1.2.1 and
1.2.2, along with a short overview what distinguishes the approach in this thesis from other
rovibrational research groups in Subsec. 1.2.3.

1.1 Motivation

The question of whether places outside the solar system are habitable has long preoccupied
mankind [5–9]. Themost promising extraterrestrial places are planets orbiting other stars and
their moons (exoplanet (EP) and exomoon (EM))[9–13]. Over the last three decades more
than 3500 systems with altogethermore than 5000 confirmed EPs and about 3000 candidates
were found [14]. In contrast to that, so far no EM has been confirmed, although there were
several promising candidates [15–17], therefore the subsequent discussion focuses on EPs.
After the planets are discovered, the usual procedure is to study them in more detail. Param-
eters like the radius of the planet, the mass, the mean distance to the star (semi-major axis)
and the calculated average temperature on the planet are determined [14, 18, 19]. The latter

1
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depends on the one hand on the distance to the star. On the other hand it depends on the
existence and the composition of the atmosphere. More atmospheric greenhouse gases cause
higher temperatures, as can be seen onVenus in a very extremeway. This is one of the reasons,
why the investigation of exoplanet atmosphere (EPA) is very important for the habitability of
planets beyond earth. Other reasons are, that the atmosphere protects the surface of a planet
against radiation and meteorites. Hence, EP research relies heavily on the spectroscopy inves-
tigation of the atmospheres and therefore also accurate reference spectra. Due to the tempera-
ture of EPA, microwave and infrared (IR) spectroscopy are widely used. For very hot planets,
there is a significant number of electronic excitations that also allow spectroscopy in the visible
or ultraviolet wavelengths.

There are many different methods to detect EPs, but not all of them allow for a subsequent
analysis of the atmosphere [20]. Only 3% of the planets are detected by the direct imaging
method (DIM) [14, 21], meaning that the planet is far enough away from the star and the re-
solving power of the telescope is high enough to distinguish the star and the planet on images.
With this method an analysis of the atmosphere is in principle possible. In this case emission
spectroscopy can be used. There are also indirectmethods to detect exoplanets, where the planet
and the star are too close to spatially resolve them, but only the influence of the planet on the
host star can be detected [20]. One indirect detection method, that also allows for an analysis
of the atmosphere is for example the transit method (TM). It can be applied, when coinci-
dentally the star, the EP and the observer are in a straight line. In that case there is a primary
eclipse (earth - planet - star) that can be used for detection via absorption spectroscopy. The
opposite case is called secondary eclipse (earth - star - planet), which can be used for emission
spectroscopy [22]. Another detection method that contributed to the majority of the detec-
tions in the early days of EP discovery (between 1990 and 2010) is the radial velocity method
(RVM) [14, 21]. It uses the fact that the star and planet orbit around their common center of
gravity. This causes a red and blue shift of the star, that can be detected and yields for example
the mass of the EP. However, it does not provide any information about the EPA. The most
promising methods for the investigation of EPA are therefore the DIM and the TM.

In general, a larger planet yields a higher signal-to-noise ratio (SNR) of the atmospheric
signals due to the larger volume causing scattering or emission (depending on the detection
method). For this reason, atmospheres have been detected in most cases for Jupiter-like and
Neptune-like planets, some have been found for super-Earth planets [23], but no EPA detec-
tion has been successful for Earth-sized EPs [24–27], like for example rocky planets. However,
this is mainly due to two experimental limitations. The first is that for Earth-like planets, the
majority of the shading effect during the eclipse is due to the core shadow and not due to the
atmosphere. The core of the planet simply reduces all the light from the star (called a flat trans-
mission spectrum) [28–30], without anymeasurable spectral signature. In contrast, an atmo-
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sphere shows a frequency dependent dimming, i.e. spectral features, due to the absorption
lines of the molecules in the atmosphere. Therefore measuring the atmosphere of a rocky, icy
or watery planet simply requires a better telescope. The second experimental limitation, that
prevents the detection of Earth-like EPA is a systematic observational bias in theTM,meaning
that the SNR is higher when the planet is closer to the star [22]. Therefore the vast majority
of planets observed by TM are closer to their star, than the distance betweenMercury and the
Sun [14]. Hence, the stellar pressure is strong and in most cases stronger than the gravity of
small planets and therefore these planets can not hold their atmosphere. This effect is known
as photoevaporation-driven atmosphere loss/mass loss and is related to the explanation of the
small planet radius gap [31, 32]. Since, better telescopes allow to apply the TM to EP further
away from their host star, these planets should be able to protect their atmosphere against the
stellar pressure, even if these planets are relatively light. This means that the reason, why the
majority of the EPAs discovered so far are around gas giants is that they are the easiest targets
to probe newmethods.

However, the future EP and EPA research strives to smaller and colder planets, as can be
seen in the following: In 2001 the first detection of a chemical substance (sodium) in an EPA
was achieved for the hot Jupiter HD 209458 b, which has a diameter of about 1.35 times that
of Jupiter and it orbits its star on a very narrow orbit (about 1/8 of the distance Mercury-
Sun). As a result, a year on the planet lasts only 3.5 Earth days and the surface temperature
is about 1000K [33]. Many organic compounds are destroyed at such high temperatures.
After that, a number of other molecules such as, water, carbon monoxide, carbon dioxide,
methane, ozone were also detected on other hot Jupiters [34, 35]. In addition, the limit for
the lightest planet where an atmosphere could be detected was lowered from the hot Jupiter
HD 209458 b with 220 times the mass of Earth to Neptune-sized planets (HAT-P-11b, 23
times the mass of Earth) [36] to super-Earths (55 Cancri e, 8 Earth masses) [37]. Another
super-Earth with a detected atmosphere is K2-18b with 8.6 Earth masses [38]. This planet is
also in the habitable zone, making its atmospheric detection even more groundbreaking [38],
since organic compounds can exist there.

The results mentioned above show that enormous progress has been made in this field in
the last two decades. Within the community it seems to be common sense that the next step
is the investigation of these atmospheres in respect to biological relevant molecules [39–41].
There are different definitions and an ongoing discussion about how to properly define these
gases. Deciding which molecules are suitable for this task is a very difficult interdisciplinary
challenge. The contribution that spectroscopists canmake is primarily to provide highly accu-
rate reference spectra. To summarize this task a bit more precisely: We need to provide highly
accurate reference spectra for temperatures up to 370K (upper end of the habitable zone) for a
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large number of relatively small molecules (typically 13 atoms at most [40]) with a potentially
high abundance in the atmosphere.
However, the detection of these gases is still in the distant future because it requires a com-

pletely new type of space-based telescopes [42, 43], using either a starshade/coronagraph (e.g.
NewWorlds Mission, LUVOIR or Terrestrial Planet Finder-C) or an optical interferometer
(e.g. Large Interferometer For Exoplanets (LIFE) orTerrestrial Planet Finder-I) [44–47]. This
is also the reason why it is a relatively new and small field of research and therefore there is not
yet a consensus on which molecules to study [39–41]. Fortunately, there is a related field
of research where biologically relevant molecules have already been found, albeit under very
different conditions. In the interstellar medium (ISM) and in circumstellar shells more than
200molecules have been detected [48–50]. These regions represent a wide chemical diversity,
from rather stable to highly reactive species, from simple diatomics (e.g. CO, N2 andOH), to
simple organicmolecules such asmethanol (CH3OH; [51]) and up to even larger compounds
such as polycyclic aromatic hydrocarbons (PAHs; [52]) and fullerenes (C60; [53]). For this
reason, the ISM and circumstellar shells are a very interesting test case for the detection of bi-
ologically relevant molecules in EPs. In this context, complex organic molecules (COMs; [54])
are of particular interest. These are molecules with 6 or more atoms, including at least one
carbon molecule. Such compounds are thought to be important building blocks for biologi-
cally relevant molecules [55–57]. Two examples of such COMs are ketenimine and propynal.
Both of them were studied in the course of this PhD [1, 3].

1.2 Scope of the Thesis

Since a dissertation builds on previous research, it is important to clearly define the boundary
between the previous state of the art and the own new research. This will be done in Sub-
sec. 1.2.1 and 1.2.2, along with a brief overview of what distinguishes the approach in this
thesis from other rovibrational research groups in Subsec. 1.2.3.

1.2.1 Delimitation to other program parts inMolpro

The rovibrational configuration interaction (RVCI) theory developed in the context of this
thesis and the according algorithms is at the very end of a long sequence of theoretical meth-
ods. Hence, the question appears which of these methods should and need to be explained
in this thesis. The overview of the program structure in Fig. 1.1 allows for a rough under-
standing of the different subprograms. The black arrows guide the main information flow.
However, the illustration is by no means complete, as there are many more minor dependen-
cies. The main information within this graphic is encoded in the color of the boxes. The
algorithms in the red boxes are not explained at all, but only some computational details are
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Figure 1.1: Overview of the program structure with the level of detail for the explanations within this thesis. Algorithms
in red boxes are not explained, but sometimes computational details are given. The yellow boxes denote algorithms that
are briefly discussed, program parts in the green boxes will be explained in more detail and the algorithm in the blue box
in the bottom represents the main content of the thesis.
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mentioned. For example the specific electronic structure theory method and the correspond-
ing basis set, will be given for some of the calculations. The details behind it are not necessary
for the understanding of the rest of the thesis. The same holds true for the geometry optimiza-
tion algorithms. The harmonic frequency calculation is to a certain extent important for the
understanding because it yields the coordinate system. However, this will be explained along
with the surface calculation. The fitting of the potential energy surface is a non-trivial and
crucial part in the code. However, to understand the RVCI theory, it is sufficient to know
that the grid representation is replaced by analytical functions, to save computational time.
For the algorithms in the yellow boxes, the basic ideas will be explained. This is because the
design decisionmade there affects the latter calculations, namely the choice of the coordinates
and multi-mode expansion in the surface calculation and the basis set for the vibrational con-
figuration interaction (VCI) program depends on the vibrational self-consistent field (VSCF)
program. The VCI theory and rotational configuration interaction (RCI) theory in green re-
quire a more detailed explanation. They provide the basis functions for the RVCI theory (in
blue), which is the main topic of this thesis.
VCI theory is briefly described in this thesis, but since the vibrational theory is the primary

research object of the Rauhut Group for the last decades, there aremany theses from previous
PhD students, that are more suited to give a deeper understanding. Another reason why I
want to keep the VCI theory very short. For the RVCI theory, I derived all equations again, if
they were identical to the RCI theory (such as for the partition functions, rotational integrals
or in parts for the intensity calculation) or the equations were derived by me for the first time.
For most of theMOLPRO program it is easy to drawing a clear line betweenmy ownwork

and the previous status quo. However, the transition between theRCI implementation of Er-
fort andmyRVCI program ismore involved andwill be explained in the following: The calcu-
lation of the partition functions and theRCI are both implemented byErfort. In contrast, the
calculation and diagonalization of the RVCI matrix, including all higher order µ-tensor cou-
pling terms (Coriolis-coupling and rotational terms), is mywork. The rigid rotor basis (RRB)
and the Wang basis (WB) were introduced decades ago in the literature and implemented in
MOLPRO by Erfort. The molecule specific rotational basis (MSRB) was introduced and im-
plemented by me in the course of this PhD. The assignment of the k and ν quantum number
only occurred in the RVCI program and the two algorithms (leading coefficient method and
partial trace method) were implemented by me. The same holds true for the two assignment
algorithms for the rovibrational irrep (based on the rovibrational wave function and based on
a partial trace on the rovibrational basis functions).
The infrared intensity calculations for RCI were the work of Erfort. The necessary ad-

justments for the RVCI intensities and the introduction of the intensity calculations with the
MSRBwere done within this thesis. The different broadening profiles were introduced byme
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and later combined by Erfort in the DAT2GRAPH program. For the hot bands, Erfort in-
troduced the vibrational transition moment integrals and I did the rest of the programming.
The majority of runtime optimization was implemented by me (see Section 3.4), besides, a
symmetry optimization for the rotational integrals.

1.2.2 Delimitation to rovibrational theory literature

There are a number of books and publications on the subject of rovibrational spectroscopy.
Usually several assumptions aremade at the beginning (choice of coordinate origin, space fixed
or molecule fixed coordinate system, internal or normal coordinates, grid based calculations
or the use of fit functions, Taylor series expansion ormulti-mode expansion, RRBorWB etc).
Only if many of these assumptions match with the own implementation and additionally the
derivation is as close as possible to equations, which can be programmed later, there is a sub-
stantial benefit of following this literature. For the MOLPRO software, a comparison with
the book of Bunker and Jensen [58] is most suitable. It also uses the Eckard conditions, the
transition between space-fixed and molecule-fixed coordinates is also described by means of
Wigner rotation matrix elements, and normal coordinates and equivalent rotations are used
to determine the rotational irreps and thus the nuclear spin statistical weights (NSSW). In ad-
dition, intensities are addressed fairly detailed. However, neither the multi-mode expansion
and nor a specific vibrational basis set is selected. Thus, the expressions for the vibrational
integrals cannot be simplified at an early point in the analytic calculation, and thus the deriva-
tion is also terminated early. Moreover, the rotational integrals are not even computed in the
RRB. The Wigner 3-J symbols are introduced as a general concept, but the calculation of in-
dividual elements is not included. Hence, they were also self-derivated and then compared
with the tabulated results in the appendix of [59]. There is various literature about partition
functions, but little about the actual and efficient implementation. The same is true for the
assignment of quantum numbers and rovibrational irreps. Most literature either refers to un-
coupled systems, or uses the Hose-Taylor theorem [60], which is a rather academic but not
very practical approach. (If the leading coefficient is smaller than 0.5, then an unambiguous
assignment is not possible.) The issues regarding runtime optimization are either analogous
to other places in the code, whichmakes similar methods possible (parallelization, thresholds)
or so specialized that there is also no literature about them.

1.2.3 Delimitation to other rovibrational software

Over the last decades a number of quantum chemical programs describing nuclear motions
appeared. Of course, it is not possible to present all the groupsworking on this topic, but some
of them will be introduced. For example Bowman and Carter et al. did some early work on
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the VSCF and VCI theory and developed theMULTIMODE software [61, 62]. However,
since they focus on a different accuracy regime and usually do not calculate complete rovibra-
tional spectra, but some selected lines for smallJ it is not really comparable toMOLPRO [63].
Carrington et al. developed a lot of different, out of the box approaches [64–66]. However,
a comparison toMOLPRO is also difficult, since it is not a software package, but more a set
of independent algorithms. Furthermore, the focus is more on innovative, academic prob-
lem solving than on broad applicability. In contrast, the groups of Mátyus and Császár et al.
developed the software packagesGENUISH andMARVEL [67–70]. The former is an ab ini-
tio program using internal coordinates and it also allows for the calculation of rovibrational
spectra. The latter is an empirical software, that relies on high quality experimental data. In
addition to that there are some very successful programsmaking use of fitting amodel Hamil-
tonian. One example is the SPFIT/SPCAT program introduced by Pickett et al. [71, 72]. An-
other example is PGOPHER, which was invented by Western [73]. Moreover, the methods
of Stanton and Franke et al. [74] rely on VPT2 using a large effective model Hamiltonian.

A group that has so far specialized in a low number of small molecules (e.g. water, methane
and ozone), but with a very high accuracy demand is Tyuterev et al. [75–77]. Over decades
they successively improve the quality of their potential energy surface (PES) with more and
more experimental results. Since MOLPRO is a pure ab initio program, allowing for the
simulation of molecules for which no or only scarce experimental data exist, this is again
not really a suitable comparison. However, one of the members of the latter group devel-
oped its own more generalized software [78]. Similarities to MOLPRO are the use of the
Born-Oppenheimer approximation and therefore the use of a PES and dipolemoment surface
(DMS). Moreover, it is in principle an ab initio method relying on a non-empirical effective
Hamiltonian, that exploits symmetry properties. The basic idea is to combine the Van Vleck
perturbation theory (also known as contact transformation) with the polyad scheme. Both the
contact transformation and the new method of Ref. [78] apply a series of unitary transfor-
mations on the nuclear motion Hamiltonian. However, the former results in an expansion
of the Hamiltonian in a power series and the latter uses an expansion in the polyad scheme.
Furthermore, the approach of Ref. [78] does also allows for an empirical corrections, if this is
requested.

The program TROVE [79] was developed by Yurchenko, Thiel and Jensen and is since
then extensively used by Yurchenko, Yachmenev and Tennyson [80–83] for calculations for
their EXOMOL [84] database. Similarities to MOLPRO are again the use of the Born-
Oppenheimer approximation and hence of an electronic PES and DMS. Moreover, they use
a variationally computed eigenvector matrix. In principle they use an ab initio approach that
can be refined using semi-empirical PES, an empirical basis set correction [85] or similarmeth-
ods [86]. However, there are much more differences: For example, in TROVE, the rovibra-
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tional Hamiltonian is represented by a Taylor series expansion in terms of linearized coordi-
nates around the non-rigid reference configuration that is treated explicitly on a grid. In con-
trast,MOLPRO relies on an analytic respresentation of the PES and DMS in terms of poly-
nomials or B-splines, represented in normal coordinates, a multi mode expansion and VCI
theory.
A particular good comparison is possible for H2CS, which was calculated with both ap-

proaches [81, 87]. In TROVE, the kinetic energy operator was terminated after the 6th order
and the PES after the 8th order. However, this cannot be directly compared with our values
because the 8th order Taylor series contains different terms than our 4th ordermulti-mode ex-
pansion. Inboth cases there are termswhich arenot included in the othermethod. Yachmenev
et al. control the size of the vibrational basis set by the polyad number P and its maximum
value Pmax. Then they define a function that defines how important the different vibrational
modes are for the convergence. For example, for H2CS they define

P = nCS + 2(nCH1 + nCH2) + nH1CS + nH2CS + nτ < Pmax (1.1)

This means for example that the level of excitation nCH1 of the C−H1 stretching mode is
weighted twice as much as the level of excitation nCS for the C− Smode, due to the prefactor
2. In contrast, in MOLPRO the selection of the vibrational basis functions in the rovibra-
tional code is either set manually via a user input or giving by an upper energetic bound.
This shows that although there are a large number of methods for calculating rovibrational

infrared spectra, they are so different that the theory has to be recalculated from scratch each
time, besides the basics already developed decades ago and summarized for example in [58, 59,
88, 89], as mentioned above.
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2
Theory

The goal of this thesis is to calculate rovibrational spectra. Therefore we need to determine
two quantities: 1. The frequencies νi,f (i for initial state, f for final state) and 2. the intensi-
ties Ii,f of each transition. This means that in a first step, the rovibrational state energies and
wave functions need to be determined. This is done by using the Schrödinger equation, de-
termining a Hamiltonian that describes the rovibrational problem, choosing a rovibrational
basis set, building up the corresponding matrix and diagonalizing it. The second quantity
that is needed for the spectrum is a measurement for the strength of the transition. This is the
intensity for IR spectra and the differential cross-sections for Raman spectra.
As mentioned in Subsec. 1.2.1, there is a long series of programs and algorithms in the

MOLPRO software that is required before the rovibrational calculations can be done. How-
ever, for the understanding of the RVCI theory that is developed in the course of this thesis, it
is sufficient to explain the basics about the surface calculation (PES, DMS and polarisability
surface (PS)), VCI and RCI theory. This is done while introducing theWatsonHamiltonian.

2.1 WatsonHamiltonian

There are many different ways to describe the nuclear motion of molecules. Many of them
are using the Born-Oppenheimer approximation to separate the nuclear motion and the elec-
tronic motion, making use of the different time scale of these processes and yielding a PES

11
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term in the Hamiltonian. Determining the Euler angles and applying the Eckart conditions
allows to separate the rotational and the vibrational motion as much as possible. The vibra-
tional motion of the cores corresponds to a physical angular momentum and is not due to
the choice of the coordinate system. Therefore, a complete decoupling is not possible. The
Coriolis coupling term describes this effect. In a second step, the different vibrational modes
can now also be separated as far as possible. For this purpose, the potential is approximated
quadratically in the vicinity of the minimum. This harmonic approximation allows then to
set up and diagonalize the Hessian matrix. The resulting eigenvalues are proportional to the
harmonic frequencies and the eigenvectors correspond to the so-called normal coordinates qi,
which are used in the following. Combining these steps leads to theWatsonHamiltonian [90]

HW =
1

2

∑
αβ

(Jα − πα)µαβ(Jβ − πβ)−
1

8

∑
α

µαα − 1

2

3N−6∑
i=1

∂2

∂q2i
+ V (q1, . . . , q3N−6). (2.1)

Here µ denotes the inverse of the effective moment of inertia tensor, Jα the total angular
momentum, the indices α and β correspond to the Cartesian coordinates {x, y, z}, πα de-
scribes the vibrational angular momentum and N is the number of atoms. Hence, there are
M = 3N − 6 vibrational modes, since we only consider non-linear molecules. This results
inM normal coordinates, which span the potential energy surface (PES) V (q1, . . . , qM ). The
Watson Hamiltonian can be split in the following three parts

1. Vibrational term (subsection 2.1.1)

Hvib =
1

2

∑
αβ∈{x,y,z}

παµαβπβ − 1

8

∑
α∈{x,y,z}

µαα − 1

2

M∑
i=1

∂2

∂q2i
+ V (q1, . . . , qM )

2. Rotational term (subsection 2.1.2)

Hrot =
1

2

∑
αβ∈{x,y,z}

JαµαβJβ

3. Coriolis coupling term (subsection 2.1.3)

Hcc = −1

2

∑
αβ∈{x,y,z}

(
Jαµαβπβ + παµαβJβ

)
HW = Hvib +Hrot +Hcc.
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2.1.1 Vibrational term

TheWatson Hamiltonian for non-rotating molecules has the form [90]

Hvib =
1

2

∑
αβ∈{x,y,z}

παµαβπβ − 1

8

∑
α∈{x,y,z}

µαα − 1

2

M∑
i=1

∂2

∂q2i
+ V (q1, . . . , qM ). (2.2)

For didactic reasons it is most useful to start with the PES term

V (q1, . . . , qM ). (2.3)

This is due to the fact that it relies on a multi-mode expansion, which is also used for another
part of the Watson Hamiltonian. Since the calculation of an equidistant grid is not compu-
tationally feasible for large molecules, an expansion that is truncated after a certain order is
an intuitive solution for this issue. In addition, it is advantageous to use difference surfaces,
since this leads to decreasing contributions for the higher order terms, which is essential for
the convergence of the expansion. ATaylor expansion and amulti-mode expansion are closely
related in that sense, that they consist of the same terms, but their assignment to the specific
expansion orders is differently.
The PES described by a multi-mode expansion is given by

V (q1, ..., qM ) =

M∑
i

Vi(qi) +

M∑
i<j

Vij(qi, qj) +

M∑
i<j<k

Vijk(qi, qj , qk) + . . . (2.4)

Vi(qi) = V 0
i (qi)− V0 (2.5)

Vij(qi, qj) = V 0
ij(qi, qj)−

M∑
r∈{i,j}

Vr(qr)− V0 (2.6)

Vijk(qi, qj , qk) = V 0
ijk(qi, qj , qk)−

∑
r<s

r,s∈{i,j,k}

Vr(qr, qs)−
∑

r∈{i,j}

Vr(qr)− V0. (2.7)

To determine the PES, ab initio electronic structure theory is used to determine energies
along the required directions. While a naive implementation of the surface calculation for
one molecule is relatively straight forward, the generalization over all symmetry groups and
many molecules is very demanding. Furthermore, the efficient calculation, using an iterative
construction of the surfaces, a multi-level scheme, screening, parallelization, symmetry prop-
erties turns the implementation into a very challenging undertaking. The determination of
the grid representation of the PES is done in MOLPRO in the XSURF program [91–94].
Subsequently, the grid representation is transformed into an analytical representation, such
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as polynomials or B-splines. This accelerates the later determination of the integrals within
the vibrational calculations. Within MOLPRO this is done in the POLY program, with a
very efficient Kronecker product fitting [95]. It should be noted that the property surfaces,
i.e. the dipole moment surface (DMS) and polarisability surface (PS), are constructed in the
same way.

The first part in Eq. (2.2) describes the vibrational angular momentum (VAM) term

HVAM =
1

2

∑
αβ∈{x,y,z}

παµαβπβ (2.8)

including the vibrational angular momentum operator [90]

πα := −i
∑
kl

ζαklql∂qk , (2.9)

which consists of the Coriolis-ζ constants [90]

ζαlk :=

N∑
j=1

(
Ljk × Ljl

)
α
= −ζαkl. (2.10)

Thereby L denotes the transformation matrix formmass-weighted elongation vectors in nor-
mal coordinates. Moreover, the Coriolis-ζ constants fulfill the relation ζαkk = 0. The VAM
term also includes the inverse of the effective moment of inertia tensor µ, which is defined as

µαβ := (I ′)−1
αβ , I ′αβ := Iαβ −

M∑
k,l,m=1

ζαlkζ
β
mkqlqm. (2.11)

The µ-tensor is also represented in a multi-mode expansion

µαβ := µ0αβ +

M∑
k=1

µαβ(qk) +

M∑
k=1

k−1∑
l=1

µαβ(qk, ql) + . . . (2.12)

describing the inverse effective moment of inertia tensor in terms of difference surfaces. Em-
pirical studies have shown that this expansion converges faster than the multi-mode expan-
sion for the PES. For example, most semi-rigid molecules require a 4Dmulti-mode expansion
for the potential to converge, while the 0th order µ-tensor terms are sufficient for the VAM
terms [96].
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The second term in Eq. (2.2) describes the Watson correction term

1

8

∑
α∈{x,y,z}

µαα. (2.13)

It is a purequantummechanical term, i.e. it has no classical equivalent. For the later vibrational
calculations, this term can be combined with the PES. It corresponds to a mass-dependent
pseudo-potential.
The third part of Eq. (2.2)

1

2

M∑
i=1

∂2

∂q2i
(2.14)

describes the main contribution of the kinetic energy operator. In the analogy to classical
mechanics, this term corresponds to the kinetic energy of the vibrational modes.
In general, there are many different methods to solve the vibrational problem, such

as VMP2, VMP4 [97], VPT2 [98], VSCF [99], VCI [100, 101], VMCSCF [102], VM-
RCI [103], VCC[104, 105], etc. In the following two of these methods will be described
briefly, since they are used in the course of this thesis.

vibrational self-consistent field theory

Thevibrational self-consistent field (VSCF) theory is the vibrational equivalent to theHartree-
Fock theory in electronic structure theory. It is a variational method relying on a mean-field
approximation. Hence, it does not consider correlation effects and is therefore only used to
provide optimized vibrational basis functions for the subsequent VCI calculation. TheVSCF
implementation inMOLPRO allows to use

• either distributedGaussianbasis functions, which are local, but not pairwise orthogonal

• or harmonic oscillator basis functions, which are pairwise orthogonal, but global func-
tions.

A linear combination of these basis functions yields onemode wave functionsφnI
aa (qa), which

are calledmodals. In the following, nIa denotes the quantum number for the normal coordi-
nate qa and the full set of occupation numbers is given by I = (nI1, . . . , n

I
M ). Based on that,

the VSCF wave functions are given by Hartree-product of modals

ϕVSCFI (q1, . . . , qM ) =

M∏
a

φnI
a

a (qa). (2.15)
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Within the later derivation of the RVCI theory it will be necessary to understand the VSCF
wave functions, but the specific choice for the VSCF basis functions will not be important.
The reason for that is the following: The rovibrational integrals can be separated in vibrational
and rotational integrals. While the latter are completely independent of any vibrational wave
functions, the former are obviously not. Moreover, all operators in the later calculations can
be decomposed in sums and products of the position operators qdi and the momentum op-
erators ∂i. Hence, they are acting only on one coordinate and therefore allow to separate the
calculation in one dimensional integrals. It should be noted, that coupling between different
vibrationalmodes is still considered due tomulti-dimensional polynomial coefficients and the
corresponding summations introduced in the polynomial expansion. However, this individ-
ual treatment of one dimensional integrals requires to consider the one mode wave functions
which are modals.

vibrational configuration interaction theory

Analogously to VSCF theory, VCI theory does also rely on the variational principle, but in
contrast no mean field approach is used. Therefore, it allows to consider correlation effects
between different modes. As a consequence, the resulting transition frequencies are much
more accurate. The basic idea is to use the Schrödinger equation, the Watson Hamiltonian
and the VSCF wave functions as VCI basis functions to build up the correlation matrix. The
diagonalization of this matrix yields the vibrational state energies and wave functions

∣∣ϕVCI
Ĩ

〉
=
∑
I

cĨI
∣∣ϕVSCFI

〉
=
∑
I

cĨI

∣∣∣∣∣
M∏
a

φnI
a

a

〉
. (2.16)

The
∣∣ϕVSCFI

〉
wave functions will be referred to as configurations in the following. It should

be noted that the used VCI implementation used relies on state specific, symmetry-blocked
matrices relying on prescreening. This means for every vibrational state of interest a VCI ma-
trix is built iteratively by adding more basis functions of the same irreducible representation.
Then only one eigenpair is determined by a special algorithm [106]. Prior to the prescreening,
the number of considered configurations spanning the configuration interaction (CI) space is
limited by three quantities:

• LEVEX determines the largest quantum number within one mode, i.e. 0 → 1, 0 → 2,
0 → 3, …The default is LEVEX = 5.

• CITYPE defines the maximum number of simultaneous excitations with respect to the
differentmodes, i.e. Singles, Doubles, Triples, …and thus determines the kind of calcula-
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tions, i.e. VCIS, VCISD, VCISDT, …The default is CITYPE = 5, VCI(5) if a 4D surface
is used.

• CIMAX is the maximum excitation level (maximum sum of quantum numbers) of con-
figurations within the limits of LEVEX and CITYPE. The default is CIMAX = 15.

The coupling through the Watson Hamiltonian is usually stronger between configurations
with similar quantum numbers or transition frequencies. For the later RVCI calculations
it is important to keep in mind, that the VCI wave functions

∣∣∣ϕVCI
Ĩ

〉
are solutions for the

Schrödinger equationwith the vibrationalWatsonHamiltonianHvib. For this reason, they are
an excellent choice for the vibrational part in a product ansatz for the RVCI basis functions.

Rovibrational wave functions

Since the vibrational part of the RCI and RVCI basis functions consists of VCI wave func-
tions, the former can be introduced now. The main difference between RCI and RVCI the-
ory is that the former does not consider coupling terms between different vibrational modes.
As a consequence, the resulting RCI wave functions are only a linear combination of differ-
ent k values (z-component of the total angular momentum), but not a linear combination of
different vibrational states. This can be seen in the following comparison:∣∣ϕVCI

Ĩ

〉
=
∑
I

cĨI
∣∣ϕVSCFI

〉
(2.17)∣∣∣ΦRCI

J,r,Ĩ

〉
:=
(∑

k

cJ,r,Ĩk |J, k⟩
) ∣∣ϕVCI

Ĩ

〉
=
(∑

k

cJ,r,Ĩk |J, k⟩
)(∑

I

cĨI
∣∣ϕVSCFI

〉)
(2.18)∣∣∣ΨRVCI

J,r,Ĩ

〉
:=
∑
k, ˜̃I

cJ,r,Ĩ
k, ˜̃I

|J, k⟩
∣∣∣ϕVCI˜̃I

〉
=
∑
k, ˜̃I

cJ,r,Ĩ
k, ˜̃I

|J, k⟩
∑
I

c
˜̃I
I

∣∣ϕVSCFI

〉
(2.19)

The RVCI wave functions are also a linear combination of different vibrational states and
therefore allow to consider inter-vibrational state coupling. In the upper equations, the ro-
tational basis functions are for example provided by the primitive rigid rotor basis functions
(also called symmetric top basis functions). However, this can be any pure rotational wave
function, which will be discussed later.

2.1.2 Rotational term

A vibrational
∣∣ϕ′′vib〉 and rotational |ϕ′′rot⟩ basis function can be combined in a direct product

|Φ′′⟩ =
∣∣ϕ′′vib〉 |ϕ′′rot⟩. In the following, an abstract vibrational basis function will be denoted∣∣ϕ′′vib〉 while a specific basis function such as a VCI wave functions will be denoted

∣∣∣ϕVCI
Ĩ

〉
.

The same holds for the rotational basis function with |ϕ′′rot⟩ denoting the general form and
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|J ′′, k′′⟩ denoting the rigid rotor basis (RRB). Moreover, the initial states are marked with a ′′

and the final states with a ′, since this is sufficient for the distinctions. However, the specific
form of the vibrational basis requires more information. Therefore, different indices are used
to distinguish the initial and final state.

It should also be mentioned that it is very difficult to find a notation that makes sense for
both the derivation of the eigenstates and the derivation of the intensities. Furthermore, the
notation should not contradict the usual conventions of the literature from the vibrational
spectroscopy community nor the literature from the rotational spectroscopy. This was not
always possible, but was attempted to the best of our ability.

The rotational term can be written as

Hrot =
1

2

∑
αβ∈{x,y,z}

JαµαβJβ. (2.20)

Using the direct product basis yields

〈
Φ′∣∣Hrot

∣∣Φ′′〉 =1

2

∑
αβ∈{x,y,z}

〈
ϕ′vib
∣∣ 〈ϕ′rot∣∣ JαµαβJβ ∣∣ϕ′′vib〉 ∣∣ϕ′′rot〉 = (2.21)

1

2

∑
αβ∈{x,y,z}

〈
ϕ′vib
∣∣µαβ ∣∣ϕ′′vib〉 〈ϕ′rot∣∣ JαJβ ∣∣ϕ′′rot〉 . (2.22)

This is due to the fact that the effective inverse moment of inertia tensor operator µ has no
effect on the rotational basis functions and total angular momentum operators Jα, Jβ have
no effect on vibrational basis functions. Therefore we can split the analysis in two parts: The
vibrational integral and the rotational integral.

Vibrational Integrals

The study of similar vibrational integrals for the VAM terms has been presented in a previous
thesis in the Rauhut group by Neff [107]. However, the vibrational basis corresponded to
the VCI basis and not to the VCI wave functions. For the sake of completeness and a better
understanding, it will be startedwith the vibrational integrals, as they appear inVCI andRCI.
(Note, that this exact term is not determined in VCI theory, since the VAM terms have an
additional πα operator.) After that, the equations will be derived in the form in which they
appear in RVCI.
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If we use Eq. (2.12) and consider the vibrational integral of Eq. (2.22) it yields:

〈
ϕ′vib
∣∣µαβ ∣∣ϕ′′vib〉 = µ0αβ

〈
ϕ′vib
∣∣ϕ′′vib〉+ M∑

k=1

〈
ϕ′vib
∣∣µαβ(qk) ∣∣ϕ′′vib〉

+

M∑
k=1

k−1∑
l=1

〈
ϕ′vib
∣∣µαβ(qk, ql) ∣∣ϕ′′vib〉+ . . . (2.23)

Without an assumptions about the basis functions, it is not possible to simplify this expres-
sion. For VCI theory it follows〈

ϕVSCFI

∣∣µαβ ∣∣ϕVSCFJ

〉
=

µ0αβ
〈
ϕVSCFI

∣∣ϕVSCFJ

〉︸ ︷︷ ︸
=δI,J

+

M∑
k=1

〈
ϕVSCFI

∣∣µαβ(qk) ∣∣ϕVSCFJ

〉

+

M∑
k=1

k−1∑
l=1

〈
ϕVSCFI

∣∣µαβ(qk, ql) ∣∣ϕVSCFJ

〉
+ . . . (2.24)

Using that the VCI basis functions are described by the VSCF wave functions, consisting of
modals (see Eq. (2.15)) yields

µ0αβδI,J +

M∑
k=1

〈
M∏
a

φnI
a

a

∣∣∣∣∣µαβ(qk)
∣∣∣∣∣
M∏
a

φnJ
a

a

〉

+

M∑
k=1

k−1∑
l=1

〈
M∏
a

φnI
a

a

∣∣∣∣∣µαβ(qk, ql)
∣∣∣∣∣
M∏
a

φnJ
a

a

〉
+ . . . (2.25)

This can be simplified by using the orthonormality of thewave functions, that are not effected
by an operator

µ0αβδI,J +

M∑
k=1

〈
φ
nI
k

k

∣∣∣µαβ(qk) ∣∣∣φnJ
k

k

〉∏
i ̸=k

〈
φnI

i

i

∣∣∣φnJ
i

i

〉
(2.26)

+

M∑
k=1

k−1∑
l=1

〈
φ
nI
l

l

∣∣∣ 〈φnI
k

k

∣∣∣µαβ(qk, ql) ∣∣∣φnJ
k

k

〉 ∣∣∣φnJ
l

l

〉 ∏
i̸={k,l}

〈
φnI

i

i

∣∣∣φnJ
i

i

〉
+ . . . (2.27)

Note, that there is no summation over VCI coefficients, as these are VCI integrals of VCI basis
functions, not wave functions.
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There are some changes if compared with an RCI calculation. Using Eq. (2.18) adds two
sums over the VCI wave functions. However, since the implementation is limited to a 0th or-
der µ-tensor these sums vanish due to the orthonormality of the VCIwave functions resulting
in a very simple integral〈

ϕRCII

∣∣µαβ ∣∣ϕRCIJ

〉
=
〈
ϕRCII

∣∣µ0αβ ∣∣ϕRCIJ

〉
= µ0αβδI,J (2.28)

In contrast, within RVCI theory, these integrals are much more involved. This is due to

1. the higher order terms

2. the different basis functions, and

3. the fact that the selected configurations for left and right wave functions are no longer
identical.

In the previous calculations it was assumed that the modals are ground state based. However,
in the most general case, they can be optimized for each vibrational state and therefore they
are not orthonormal to each other.
Inserting theVCIwave functions for the vibrational part of theRVCI basis functions yields

〈
ϕRVCI
Ĩ

∣∣µαβ ∣∣ϕRVCIJ̃

〉
= µ0αβ

N ′
conf∑

I=1

cĨI
〈
ϕVSCFI

∣∣(Nconf∑
J=1

cJ̃J
∣∣ϕVSCFJ

〉)

+

M∑
k=1

N ′
conf∑

I=1

cĨI
〈
ϕVSCFI

∣∣µαβ(qk)

(
Nconf∑
J=1

cJ̃J
∣∣ϕVSCFJ

〉)

+

M∑
k=1

k−1∑
l=1

N ′
conf∑

I=1

cĨI
〈
ϕVSCFI

∣∣µαβ(qk, ql)

(
Nconf∑
J=1

cJ̃J
∣∣ϕVSCFJ

〉)
, (2.29)

with the number of selected configurationsNconf. Replacing theVCIbasis functions byVSCF
wave functions and using the overlap integrals SIJ

a :=
〈
φnI

a
a

∣∣∣φnJ
a

a

〉
yields

µ0αβ

∑
I,J

cĨIc
J̃
J

〈∏
a

φnI
a

a

∣∣∣∣∣∏
a

φnJ
a

a

〉
︸ ︷︷ ︸

=
∏

a S
IJ
a

+
∑
k,I,J

cĨIc
J̃
J

〈∏
a

φnI
a

a

∣∣∣∣∣µαβ(qk)
∣∣∣∣∣∏

a

φnJ
a

a

〉
︸ ︷︷ ︸
=

〈
φ

nI
k

k

∣∣∣∣µαβ(qk)

∣∣∣∣φnJ
k

k

〉∏
a ̸=k S

IJ
a
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+
∑

m<k,I,J

cĨIc
J̃
J

〈∏
a

φnI
a

a

∣∣∣∣∣µαβ(qk, ql)
∣∣∣∣∣∏

a

φnJ
a

a

〉
︸ ︷︷ ︸

=

〈
φ

nI
k

k φ
nI
l

l

∣∣∣∣µαβ(qk,ql)

∣∣∣∣φnJ
k

k φ
nJ
l

l

〉∏
a̸={k,l} S

IJ
a

(2.30)

Theµ-tensor integrals are already implemented inMOLPRO. Thereforewe use the follow-
ing notation of Ref. [107]

X
nI
kn

J
k

kg =
〈
φ
nI
k

k

∣∣∣ qgk ∣∣∣φnJ
k

k

〉
(2.31)

to yield

〈
φ
nI
k

k

∣∣∣µαβ(qk) ∣∣∣φnJ
k

k

〉
=

Npoly∑
g=1

p
(k)
g,αβX

nI
kn

J
k

kg (2.32)

〈
φ
nI
k

k φ
nI
l

l

∣∣∣µαβ(qk, ql) ∣∣∣φnJ
k

k φ
nJ
l

l

〉
=

Npoly∑
g=1

Npoly∑
h=1

p
(k,l)
gh,αβX

nI
kn

J
k

kg X
nI
l n

J
l

lh . (2.33)

Here, Npoly describes the maximum order of the polynomial, p(k)g,αβ describes a one dimen-
sional expansion coefficient for an analytic description of the µ-tensor. In two dimensions it
is given by p(k,l)gh,αβ . By combining the equations (2.30) and (2.33) it follows:

µ0αβ

∑
I,J

cĨIc
J̃
J

∏
a

SIJ
a +

∑
k,I,J

cĨIc
J̃
J

∑
g

p
(k)
g,αβX

nI
kn

J
k

kg

∏
a̸=k

SIJ
a

+
∑

l<k,I,J

cĨIc
J̃
J

∑
g

∑
h

p
(kl)
gh,αβX

nI
kn

J
k

kg X
nI
l n

J
l

lh

∏
a̸={k,l}

SIJ
a (2.34)

This shows that the vibrational integral of the rotational term can be implemented based
on existing integrals and summation.

Rotational Integrals

After determining the vibrational integral of the rotational term, it is necessary to derive the
rotational integral 〈

ϕ′rot
∣∣ JαJβ ∣∣ϕ′′rot〉 . (2.35)
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At first, a rotational basis has to be chosen. The simplest basis is the rigid rotor basis (RRB)
|J, k⟩ fulfilling the relations

J2 |J, k⟩ = J(J + 1) |J, k⟩ (2.36)
Jz |J, k⟩ = k |J, k⟩ (2.37)

(2.38)

The angular momentum ladder operator

J± |J, k⟩ =
√

J(J + 1)− k(k ± 1) |J, k ± 1⟩ with J± = Jx ± iJy. (2.39)

can be very helpful for the determination of the rotational integrals.

Another very common basis is the Wang basis that appears in different variants. Instead of
the quantumnumber k ∈ {−J, . . . ,+J} theWangbasis uses the parity τ of k and the absolute
value ofK = |k|. MOLPRO uses the version introduced in Ref. [108]

τ :=

0 for k < 0

1 for k ≥ 0
(2.40)

σ :=

0 for τ = 0

Kmod 3 for τ = 1
(2.41)

|J0τ⟩ =

|J0⟩ for τ = 0

0 for τ = 1
for K = 0 (2.42)

|JKτ⟩ = iσ√
2

(
|JK⟩+ (−1)J+K+τ |J −K⟩

)
for K ̸= 0 (2.43)

Since it is a linear combination it is also calledWang combination.

Both types of basis functions are available inMOLPRO, but the analytical integrals are only
implemented for RRB and the integrals in theWang basis (WB) are determined by adding the
different rigid rotor terms. This is the reason, whywewill only use the RRB for the derivation
of equations.

Using the RRB gives 〈
J ′, k′

∣∣ JαJβ ∣∣J ′′, k′′
〉
, (2.44)

which has only non-vanishing values for J ′ = J ′′ due to the selection rules. Since α, β ∈
{x, y, z} there are 15 different combinations of operators, that need to be considered. By using
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Eqs. (2.36)-(2.39) it follows

⟨J, k| J2
z |J, k⟩ = k2 (2.45)

⟨J, k| J2
x |J, k⟩ = ⟨J, k| J2

y |J, k⟩ (2.46)

=
1

2

[
J(J + 1)− k2

]
(2.47)

⟨J, k| JxJy |J, k⟩ = −⟨J, k| JyJx |J, k⟩ (2.48)

= − i

2
k (2.49)

⟨J, k ± 1| JxJz |J, k⟩ = ∓i ⟨J, k ± 1| JyJz |J, k⟩ (2.50)

=
1

2
k
√

J(J + 1)− k(k ± 1) (2.51)

⟨J, k ± 1| JzJx |J, k⟩ = ∓i ⟨J, k ± 1| JzJy |J, k⟩ (2.52)

=
1

2
(k ± 1)

√
J(J + 1)− k(k ± 1) (2.53)

⟨J, k ± 2| J2
x |J, k⟩ = −⟨J, k ± 2| J2

y |J, k⟩ (2.54)
= ∓i ⟨J, k ± 2| JxJy |J, k⟩ (2.55)
= ∓i ⟨J, k ± 2| JyJx |J, k⟩ (2.56)

= −1

4

√
J(J + 1)− k(k ± 1)

√
J(J + 1)− (k ± 1)(k ± 2) (2.57)

All integrals with two angular momentum operators not mentioned above vanish. As can be
seen, the elements of the total angular momentum operators are not commuting. However,
there is a simplification if the combined integral Eq. (2.22) (including the summation over
α, β) is considered. For example, Eq. (2.48) can be used together with the symmetry of µα,β
to show that

⟨J, k| JxJyµxy + JyJxµyx |J, k⟩ = (2.58)
⟨J, k| JxJyµxy − JxJyµyx |J, k⟩ = (2.59)
⟨J, k| JxJyµxy − JxJyµxy |J, k⟩ = 0 (2.60)

The vibrational basis is not explicitly given for the sake of simplicity. The resulting integral for
k′ = k′′ is

⟨J, k|Hrot |J, k⟩ =
1

2
⟨J, k| J2

xµxx + J2
yµyy + J2

zµzz |J, k⟩ (2.61)

=
1

2

{
1

2

[
J(J + 1)− k2

]
(µxx + µyy) + k2µzz

}
(2.62)
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and for the other non-vanishing cases

⟨J, k ± 1|Hrot |J, k⟩ =
1

2
⟨J, k ± 1| JxJyµxy + JyJzµyz + JzJxµzx + JzJyµzy |J, k⟩ (2.63)

=
1

4

√
J(J + 1)− k(k ± 1)(2k ± 1)(µxz ± iµyz). (2.64)

⟨J, k ± 2|Hrot |J, k⟩ =
1

2
⟨J, k ± 2| J2

xµxx + J2
yµyy + JxJyµxy + JyJxµyx |J, k⟩ (2.65)

=
1

8

√
J(J + 1)− k(k ± 1)

√
J(J + 1)− (k ± 1)(k ± 2)

× (µxx − µyy ± 2iµxy). (2.66)

2.1.3 Coriolis coupling term

The Coriolis coupling term can be written as

Hcc = −1

2

∑
αβ∈{x,y,z}

(
Jαµαβπβ + παµαβJβ

)
. (2.67)

Using the aforementioned separationbetween rotational and vibrational basis functions yields

〈
Φ′∣∣Hcc

∣∣Φ′′〉 = −1

2

∑
αβ∈{x,y,z}

〈
ϕ′vib
∣∣ 〈ϕ′rot∣∣ Jαµαβπβ + παµαβJβ

∣∣ϕ′′vib〉 ∣∣ϕ′′rot〉
=

1

2

∑
α

〈
ϕ′rot
∣∣ Jα ∣∣ϕ′′rot〉 〈ϕ′vib∣∣∑

β

µαβπβ
∣∣ϕ′′vib〉

+
1

2

∑
β

〈
ϕ′vib
∣∣∑

α

παµαβ
∣∣ϕ′′vib〉 〈ϕ′rot∣∣ Jβ ∣∣ϕ′′rot〉 . (2.68)

Note that both the µ and the πβ operators commutate with the Jα operator, since they act
on the vibrational basis and the Jα operator acts purely on the rotational basis. Moreover, the
µ operator also commutes with the πβ operator, as has been shown by Ref. [90]. However, it
was shown that the commutation does not hold if theµ tensor is expanded in amulti-mode ex-
pansion and truncated after a certain order. During the recent optimization of the VAM term
implementation in Ref. [109] this was not considered for the following reason: Considering
the commutator between πβ and all µ-tensor orders yields[ ∞∑

m

µ
(m)
αβ , πβ

]
= 0, (2.69)
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but for a truncation after the n-th order term it gives[
n∑
m

µ
(m)
αβ , πβ

]
= O(n+ 1). (2.70)

Thismeans that themissing contributions are either zero or correspond to a higher order term
and are therefore less important. In the course of this thesis these terms are explicitly derived,
thus allowing for an investigation of this issue.

Vibrational Integral

Compared to the rotational term, the rotational integrals in the Coriolis coupling term are
much simpler, since only a single angular momentum operator occurs. However, the vibra-
tional integral is much more involved, since the additional vibrational angular momentum
operator πα occurs. It requires to employ the definitions Eqs. (2.9), (2.10), (2.12).
The different orders of the multi-mode expansion are analyzed separately. As the 0th order

µ-tensor is only a scalar number, but not an operator, it yields

1

2

∑
αβ

〈
ϕ′vib
∣∣µ0αβπβ + παµ

0
αβ

∣∣ϕ′′vib〉 =∑
αβ

〈
ϕ′vib
∣∣µ0αβπβ ∣∣ϕ′′vib〉 , (2.71)

by swapping and renaming the α and β sums in the second term and utilizing the symmetry
of µ0αβ . In the following, the summation over α, β gives no further insights and is therefore
not explicitly given. Applying Eq. (2.9) gives

−i
∑
kl

ζαklµ
0
αβ

〈
ϕ′vib
∣∣ ql∂qk ∣∣ϕ′′vib〉 . (2.72)

Using the definition of the vibrational part of the RVCI basis functions Eq. (2.19) yields

−i
∑
kl

ζαklµ
0
αβ

∑
I,J

cĨIc
J̃
J

〈∏
a

φnI
a

a

∣∣∣∣∣ ql∂qk
∣∣∣∣∣∏

a

φnJ
a

a

〉
(2.73)

with VCI coefficients cĨI and cJ̃J . Since ζαkl vanishes when k = l, the two normal coordinates l
and k are unequal and therefore the integral can be split〈∏

a

φnI
a

a

∣∣∣∣∣ ql∂qk
∣∣∣∣∣∏

a

φnJ
a

a

〉
=
〈
φ
nI
l

l

∣∣∣ ql ∣∣∣φnJ
l

l

〉〈
φ
nI
k

k

∣∣∣ ∂qk ∣∣∣φnJ
k

k

〉 ∏
a̸={k,l}

SIJ
a (2.74)

with SIJ
a :=

〈
φnI

a
a

∣∣∣φnJ
a

a

〉
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It is helpful to define
∆

nI
kn

J
k

k,g :=
〈
φ
nI
k

k

∣∣∣ qgk∂qk ∣∣∣φnJ
k

k

〉
. (2.75)

analogously to Neff in Ref. [107]. The two non-trivial integrals in Eq. (2.74) can be given
this notation as 〈

φ
nI
l

l

∣∣∣ ql ∣∣∣φnJ
l

l

〉〈
φ
nI
k

k

∣∣∣ ∂qk ∣∣∣φnJ
k

k

〉
= X

nI
l n

J
l

l1 ∆
nI
kn

J
k

k0 (2.76)

For the 1D vibrational term in Eq. (2.68)

1

2

∑
αβ

〈
ϕ′vib
∣∣∑

r

µαβ(qr)πβ +
∑
r

παµαβ(qr)
∣∣ϕ′′vib〉 (2.77)

the µαβ(qr)πβ part will be considered first and afterwards it will be checked which additional
terms have to be added for παµαβ(qr).
Using Eq. (2.9) (2.19) again yields an integral of the form〈∏

a

φnI
a

a

∣∣∣∣∣µαβ(qr)ql∂qk
∣∣∣∣∣∏

a

φnJ
a

a

〉
. (2.78)

To separate this integral in different normal coordinates, a case analysis for the different labels
r, l, k is required. There are five different cases to be considered:

1. r = l = k, vanishes since ζαkk = 0

2. r = l ̸= k, yields:

〈
φnI

r
r

∣∣∣µαβ(qr)qr ∣∣∣φnJ
r

r

〉〈
φ
nI
k

k

∣∣∣ ∂qk ∣∣∣φnJ
k

k

〉
=

NPoly∑
a=1

p
(r)
a,αβX

nI
rn

J
r

r,(a+2)
∆

nI
kn

J
k

k,0 (2.79)

3. r ̸= l = k, vanishes since ζαkk = 0

4. r ̸= l ̸= k = n, yields:

〈
φnI

r
r

∣∣∣µαβ(qr)∂qr ∣∣∣φnJ
r

r

〉〈
φ
nI
k

k

∣∣∣ qk ∣∣∣φnJ
k

k

〉
=

−2

NPoly∑
a=1

p
(r)
a,αβ∆

nI
rn

J
r

r,a

X
nI
kn

J
k

k,1 (2.80)

5. r ̸= l ̸= k ̸= n, yields:〈
φnI

r
r

∣∣∣µαβ(qr) ∣∣∣φnJ
r

r

〉〈
φ
nI
l

l

∣∣∣ ql ∣∣∣φnJ
l

l

〉〈
φ
nI
k

k

∣∣∣ ∂qk ∣∣∣φnJ
k

k

〉
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=

NPoly∑
a=1

p
(r)
a,αβX

nI
rn

J
r

r,a

X
nI
l n

J
l

l,1 ∆
nI
kn

J
k

k,0 (2.81)

Determining the analytical expressions in terms of Neff’s notation requires a rather lengthy,
but straightforward derivation, especially later for the 2D terms.
Considering the commutated terms in Eq. (2.68) gives the same result for the 2nd case

(since
[
µαβ(qr), qr∂qk

]
= 0 for r ̸= k) and for the 5th case (since

[
µαβ(qr), ql∂qk

]
= 0 for

r, l, k pairwise distinct). However, the integral in the 4th case can be expressed by its non-
commutated integral plus an additional term:〈

φnI
r

r

∣∣∣ ∂qrµαβ(qr) ∣∣∣φnJ
r

r

〉
=
∑
a

p
(r)
a,αβaq

(a−1)
r +

〈
φnI

r
r

∣∣∣µαβ(qr)∂qr ∣∣∣φnJ
r

r

〉
(2.82)

Similarly to the 1D terms in Eq. (2.78), the 2D terms can be expressed as〈∏
a

φnI
a

a

∣∣∣∣∣µαβ(qr, qt)ql∂qk
∣∣∣∣∣∏

a

φnJ
a

a

〉
(2.83)

resulting in another case analysis. The modes r and t cannot be equal, since this would cor-
respond to the 1D µ-tensor. Moreover, l and k cannot be equal, due to ζαkk = 0. There are 7
cases left to distinguish:

1. r, t, l, k all pairwise distinct:〈
φnI

r
r φnI

t

t

∣∣∣µαβ(qr, qt) ∣∣∣φnJ
r

r φnJ
t

t

〉〈
φ
nI
l

l

∣∣∣ ql ∣∣∣φnJ
l

l

〉〈
φ
nI
k

k

∣∣∣ ∂qk ∣∣∣φnJ
k

k

〉
=

∑
a,b

p
(r,t)
ab,αβX

nI
rn

J
r

r,a XnI
tn

J
t

t,b

X
nI
l n

J
l

l,1 ∆
nI
kn

J
k

k,0 (2.84)

2. r = l (rest pairwise distinct):〈
φnI

r
r φnI

t

t

∣∣∣µαβ(qr, qt)qr ∣∣∣φnJ
r

r φnJ
t

t

〉〈
φ
nI
k

k

∣∣∣ ∂qk ∣∣∣φnJ
k

k

〉
=

∑
a,b

p
(r,t)
ab,αβX

nI
rn

J
r

r,(a+1)
XnI

tn
J
t

t,b

∆
nI
kn

J
k

k,0 (2.85)

3. t = l (rest pairwise distinct): Corresponds to the previous case by swapping r and t.
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4. r = k (rest pairwise distinct):〈
φnI

r
r φnI

t

t

∣∣∣µαβ(qr, qt)∂qr ∣∣∣φnJ
r

r φnJ
t

t

〉〈
φ
nI
l

l

∣∣∣ ql ∣∣∣φnJ
l

l

〉
=

−2
∑
a,b

p
(r,t)
ab,αβ∆

nI
rn

J
r

r,a XnI
tn

J
t

t,b

X
nI
l n

J
l

l,1 (2.86)

5. t = k (rest pairwise distinct): Corresponds to the previous case by swapping r and t.

6. r = l, t = k:〈
φnI

r
r φnI

t

t

∣∣∣µαβ(qr, qt)qr∂qt ∣∣∣φnJ
r

r φnJ
t

t

〉
= −2

∑
a,b

p
(r,t)
ab,αβX

nI
rn

J
r

r,(a+1)
∆nI

tn
J
t

t,b (2.87)

7. r = k, t = l: Corresponds to the previous case by swapping r and t.

For the discussion about the commutated term, there is no need to consider the 3rd, 5th or
7th case, because they can be reduced to other cases by switching the two coordinates of the
2D µ-tensor. The cases 1 and 2 commutate, as either all considered normal coordinates are
different, or it can be used that the qr operator commutates with µ(qr, qt).
However, the integral in the 4th case〈

φnI
r

r φnI
t

t

∣∣∣ ∂qrµαβ(qr, qt) ∣∣∣φnJ
r

r φnJ
t

t

〉
=
∑
a,b

p
(r,t)
ab,αβaq

(a−1)
r qbt +

〈
φnI

r
r φnI

t

t

∣∣∣µαβ(qr, qt)∂qr ∣∣∣φnJ
r

r φnJ
t

t

〉
(2.88)

and in the 6th case gives〈
φnI

r
r φnI

t

t

∣∣∣ qr∂qtµαβ(qr, qt) ∣∣∣φnJ
r

r φnJ
t

t

〉
=
∑
a,b

p
(r,t)
ab,αβq

a+1
r bqb−1

r X
nI
kn

J
k

k,1 +
〈
φnI

r
r φnI

t

t

∣∣∣µαβ(qr, qt)qr∂qt ∣∣∣φnJ
r

r φnJ
t

t

〉
. (2.89)

Rotational Integral

In comparison to the rotational term, the rotational integral in the Coriolis coupling term is
much simpler. Since there is never a product of angular momentum operators, there are only
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three cases to consider

⟨J, k| Jz |J, k⟩ = k (2.90)
⟨J, k ± 1| Jx |J, k⟩ = ±i ⟨J, k ± 1| Jx |J, k⟩ (2.91)

=
1

2

√
J(J + 1)− k(k ± 1) (2.92)

The resulting integrals of Eq. (2.68) are

⟨J, k|Hrot |J, k⟩ =
1

2
⟨J, k| Jz

∑
β

µzβπβ |J, k⟩ =
1

2
k
∑
β

µzβπβ (2.93)

for k′ = k′′ and for k′ = k′′ ± 1

⟨J, k ± 1|Hrot |J, k⟩ =
1

2
⟨J, k ± 1| Jx

∑
β

µxβπβ + Jy
∑
β

µyβπβ |J, k⟩ (2.94)

=
1

4

√
J(J + 1)− k(k ± 1)

∑
β

(µxβ ± iµyβ)πβ. (2.95)

2.1.4 RVCI Implementation

Combining all the information from the previous sections, it is possible to give an explicit
expression for the Watson Hamiltonian matrix elements. However, it is a very long equation
that does not provide any new insights. Moreover, there is no single place in the program code,
where this equation can be found, since the two types of vibrational integrals are precalculated
separately.

Instead, the structure of the RVCI matrix can be understood by considering the following
representation:

HWatson =
1

2

∑
αβ

JαµαβJβ︸ ︷︷ ︸
Hrot

RCI/RVCI

− 1

2

∑
αβ

(Jαµαβπβ + παµαβJβ)︸ ︷︷ ︸
Hcc

RVCI

+Hvib︸︷︷︸
VCI
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1st vib. state 2nd vib. state

H00
vib+H00

rot H01
rot ···

H10
rot H00

vib+H11
rot

... . . .


H00,10

cc +H00
rot H00,11

cc +H01
rot ···

H01,10
cc +H10

rot H01,11
cc +H11

rot
... . . .

 ···

H10,00
cc +H00

rot H10,01
cc +H01

rot ···
H11,00

cc +H10
rot H11,01

cc +H11
rot

... . . .


H11

vib+H00
rot H01

rot ···
H10

rot H11
vib+H11

rot
... . . .


... . . .


The outer block structure of the RVCI matrix is given by the vibrational basis functions and
the inner structure is defined by the rotational basis functions. The vibrational terms only
appear on the main diagonal. The Coriolis coupling terms contribute only for different vi-
brational modes and only if∆k ∈ {0,±1,±2}. Finally, the rotational terms are not restricted
by the vibrational basis, but they contribute only if ∆k ∈ {0,±1}. Thus, for larger J the
matrix is very sparse.

Quantum number assignment

After diagonalizing the RVCI matrix, assigning the quantum numbers is an important task.
J is a good quantum number and easy to assign because the block-diagonal structure in J

of the RVCI matrix is used. Therefore, each matrix contains only eigenstates for a particular
J . The quantum number k denoting the z component of the angular momentum and the
vibrational quantum number ν are not good quantum numbers. However, if the coupling
is moderate, these quantum numbers can be assigned approximately, which gives insight into
understanding the spectrum.
The rovibrational irrep of the eigenstate can be trivially assigned, if the block diagonal struc-

ture in the irrep is used. Since this was not done in the course of this thesis for several reasons,
the assignment of the irrep was an issue. The importance of this assignment arises from the
closely related NSSWs. At first, the rovibrational irrep was assigned by separately assigning
the k and ν quantum number of the eigenstate. This yields the rotational and vibrational ir-
rep, that can be combined using group theory to obtain the rovibrational irrep. This detour
based on two non-good quantum numbers was later revised by using the k and ν quantum
numbers of the basis functions instead of the resulting wave function, since these are good
quantumnumbers. This yields the rovibrational irrep of each basis function. Using the eigen-
vector coefficients gives one irrep that dominates the eigenvector, which is then assigned as the
rovibrational irrep of that state.
As mentioned before, although k and ν are not good quantum numbers, they can provide

considerable insights in moderately coupled regions of the spectrum. For this reason, two dif-
ferent methods for their assignment are implemented. The first method considers only the
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leading coefficient of the eigenvector and assigns the same quantum numbers to the eigen-
state as to the corresponding basis function. The secondmethod is related to the partial trace
as it is known, for example, from quantum information theory. For two finite dimensional
Hilbert spaces V (for the vibrational subspace) and R (for the rotational subspace) of sizeNvib

and Nrot resulting in a product space V ⊗ R the partial trace TrR over the rotational space
corresponds to a mapping V ⊗ R → V , i.e. the rotational space is traced out. Using a matrix
representation with matrix elements akl,ij (k corresponds to the initial vibrational basis, l to
the initial rotational basis, i to the final vibrational basis, j to the final rotational basis) it can
be written as

bk,i =

Nvib∑
j

akj,ij . (2.96)

This method is adapted for the eigenvectors. The summation of the eigenvector over the ro-
tational subspace returns the vibrational quantum number and the summation over the vi-
brational subspace returns the rotational quantum number. This significantly increases the
stability of the assignment compared to the leading coefficients, since it does not only rely on
a single coefficient.

Asymmetric top quantum numbers

Molecules can be classified depending on their moment of inertia tensor Iα in five groups:

1. Linear molecules: Ia << Ib = Ic

2. Spherical top molecules Ia = Ib = Ic

3. Symmetric top molecules

(a) Prolate symmetric top molecules Ia = Ib < Ic

(b) Oblate symmetric top molecules Ia < Ib = Ic

4. Asymmetric top molecules Ia < Ib < Ic

The axesa, b, c aremolecule fixed anddefinedby themoment of inertia tensor, with adenoting
the axis with the smallest moment of inertia and c denoting the axis with the largest moment
of inertia. This definition is particularly meaningful for asymmetric top molecules.
For asymmetric top molecules, the quantum number k ∈ {−J, . . . , 0, . . . ,+J} is usually

replaced by the two quantum numbers ka, kc ∈ {0, . . . ,+J}. This is due to the fact that
asymmetric topmolecules can often be described as near-prolate (Ia ≈ Ib < Ic) or near-oblate
(Ia < Ib ≈ Ic). It should be noted that all four molecules investigated in the course of this
thesis are near-prolate molecules. The names can be explained in the following way: The ka
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quantum number can be understood as the z component of the angular momentum, if the
(molecule fixed) a axis would correspond to the (space fixed) z axis. If the c axis is oriented in
a way that it corresponds to the z axis, than kc denotes the z component of the total angular
momentum. However, the main use of these quantum number are the simpler assignment of
the rovibrational irrep, as is discussed inRef. [58] and in themasters thesis of Schneider[110].
Examples for the conversion between quantum numbers k and ka, kc are given in Tab. 2.1.

Table 2.1: Transformation between the quantum numbers k and two asymmetric top quantum numbers ka and kc

J k ka kc
0 0 0 0

1 −1 0 1
1 0 1 1
1 1 1 0

2 −2 0 2
2 −1 1 2
2 0 1 1
2 1 2 1
2 2 2 0

Molecule specific rotational basis

In the course of this thesis a new rotational basis was invented to improve the quantum num-
ber assignment of ka and kc. This basis is calledMSRB and can be expressed as a linear combi-
nation of an arbitrary rotational basis function, e.g. the RRB or WB. The linear coefficients
are obtained as eigenvectors of an RCI calculation for the ground state. This results in the
rotational basis functions ∣∣ΦRCI

J,r′
〉
=
∑
k

cJ,r
′

k |J, k⟩ (2.97)

and yields the overall RVCI wave function∣∣ΨMSRB
J,r,v

〉
=
∑
r′,v′

cJ,r,vr′,v′

∑
k

cJ,r
′

k |J, k⟩
∣∣ΦVCI

v′
〉
. (2.98)

The calculation of theMSRB coefficients is very efficient, since the RCImatrix construction
and diagonalization is not time consuming. In contrast the additional summation needs to
be considered in the intensity calculation. However, this problem can be solved by contract-
ing the MSRB coefficients with the RVCI coefficients. The effects of this contraction on the
computational time is studied in Subsec. 3.4.3.
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2.2 Infrared Intensities

For a rovibrational IR spectrum intensities are the second quantity that needs to be calculated
besides the frequencies. In the following, only electric dipole transitions are derived. Hence,
neithermagnetic dipole transitions nor electric quadruple transitionswill be discussed. More-
over, the discussed selection rules are also only true for electric dipole transitions. However,
in the next section Raman transitions will also be derived.

The subsequent derivation is based on [58], who gives a more detailed introduction in this
topic. However, the vibrational integrals are not simplified in this literature, since this can-
not be donewithout loss of generality. By using the information aboutmulti-mode expansion,
VSCF modals and VCI wave functions, these integrals can be derived specifically for the ap-
proach in this thesis.

The starting point is the following expression derived by an integral over the absorption
coefficient for all transitions:

Iif =
2π2

3

NA
ϵ0hc

Q̃(T )νifSif, with Q̃(T ) =
exp(−E′′/kBT )[1− exp(−hcνif/kBT )]

Q
(2.99)

It consists of the Avogadro constant NA, the Boltzmann constant kB, the vacuum speed of
light c, the permittivity of vacuum, the wave number of the transition νif = (E′ − E′′)/hc,
the thermal occupation factor Q̃(T ) and the partition function

Q =
∑
w

gw exp{−Ew/kBT}. (2.100)

The summation over the different transitions occurs in the line strength

Sif =
∑

Φ′
int,Φ

′′
int

∑
A=X,Y,Z

|
〈
Φ′
int
∣∣µA ∣∣Φ′′

int
〉
|2 =

∑
Φ′

int,Φ
′′
int

∑
A=ξ,η,ζ

|
〈
Φ′
int
∣∣µA ∣∣Φ′′

int
〉
|2, (2.101)

with internalwave functionsΦint combining the electronic, vibrational, rotational andnuclear
spin contribution of the initial and final state. µA denotes the dipole moment operator and
the second equations describes the transition from space fixed coordinatesX,Y, Z tomolecule
fixed coordinates ξ, η, ζ . Moreover, a transformation between spherical andCartesian compo-
nents is required. Both steps together can be expressed by

µ
(1,±1)
s = [∓µξ + iµη]/

√
2 (2.102)

µ
(1,0)
s = µζ . (2.103)
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The superscript has the general form (ω, σ), withω denoting the order of the transition opera-
tor (e.g., 1 for electric dipole transitions and 2 for Raman transitions) and |σ| < ω as explained
in Section 2.1. This transformation can also be expressed in terms of Euler angles ϕ, θ, χ using
the rotational matrix elementsD(1)

σσ′(ϕ, θ, χ) as described in Ref. [59] by

µ
(1,σ)
s =

1∑
σ′=−1

[D
(1)
σσ′(ϕ, θ, χ)]

∗µ
(1,σ′)
m (2.104)

The approximation that the wave functions are separable in terms of their electronic, vibra-
tional, rotational, and nuclear spin contributions can be used to separate the line strength

Sif =
∑

Φ′
int,Φ

′′
int

1∑
σ=−1

|
〈
Φ′
int
∣∣µ(1,σ)s

∣∣Φ′′
int
〉
|2 (2.105)

in terms of a rotational integral

〈
Φ′
rot
∣∣D(1)∗

σσ′

∣∣Φ′′
rot
〉
=

J ′∑
k′=−J ′

J ′′∑
k′′=−J ′′

c
(J ′)∗
k′ c

(J ′′)
k′′

〈
J ′, k′,m′∣∣D(1)∗

σσ′

∣∣J ′′, k′′,m′′〉 , (2.106)

which yields for rigid rotor basis functions |J ′′, k′′,m′′⟩ the term〈
J ′, k′,m′∣∣D(1)∗

σσ′

∣∣J ′′, k′′,m′′〉 = (−1)k
′+m′√

(2J ′′ + 1)(2J ′ + 1)
(
J ′′ 1 J ′

k′′ σ′ −k′

) (
J ′′ 1 J ′

m′′ σ −m′

)
.

(2.107)
This describes a special case of theWigner-Eckart theorem, as described byRef. [59], using the
Wigner 3J-Symbols. TheWigner 3J-Symbols are defined via the Clebsch-Gordan coefficients.
The latter are used to describe a set of coupled angular momentum operators. Let, J = J1 +

J2 denote the total angular momentum of two coupled angular momenta J1, J2, with the
uncoupled representation

|J1k1⟩ |J2k2⟩ = |J1k1, J2k2⟩ (2.108)

and the coupled representation
|J1J2Jk⟩ . (2.109)

Then the Clebsch-Gordan coefficients are defined as the corresponding transformation coef-
ficients

|Jk⟩ =
∑
k1,k2

C(J1J2J ; k1k2k) |J1k1, J2k2⟩ (2.110)
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|J1k1, J2k2⟩ =
∑
J,k

C(J1J2J ; k1k2k) |Jk⟩ . (2.111)

TheWigner 3J-Symbols are defined as(
J1 J2 J3

k1 k2 k3

)
:= (−1)J1−J2−k3 1√

2J3 − 1
⟨J1k1, J2k2|J3 − k3⟩ . (2.112)

This representation is very helpful to identify vanishing integrals or to transform integrals via
permutation.
The vibrational integral 〈

Φ′
vib
∣∣µ(1,σ′)

m

∣∣Φ′′
vib
〉

(2.113)

cannot be simplified without further assumptions. For the rovibrational part of the integral,
this yields〈

Φ′
rovib
∣∣µ(1,σ)s

∣∣Φ′′
rovib
〉
= (−1)m

′√
(2J ′′ + 1)(2J ′ + 1)

(
J ′′ 1 J ′

m′′ σ −m′

)
×

J ′∑
k′=−J ′

J ′′∑
k′′=−J ′′

(−1)k
′
c
(J ′)∗
k′ c

(J ′′)
k′′

1∑
σ′=−1

〈
Φ′
vib
∣∣µ(1,σ′)

m

∣∣Φ′′
vib
〉 (

J ′′ 1 J ′

k′′ σ′ −k′

)
. (2.114)

Assuming a completely separable wave function results in three types of degeneracies:

• The nuclear spinwave functions can be orthonormalized
〈
Φ′
nspin

∣∣∣Φ′′
nspin

〉
= δΦ′

nspin,Φ
′′
nspin

.
Hence, the only non-vanishing contributions are for Φ′

nspin = Φ′′
nspin resulting in a nu-

clear spin statistical degeneracy factor gns. The latter can be determined as described
in Ref. [58]. It was implemented by Schneider in his Master’s thesis and will not be
covered in the PhD thesis.

• Another degeneracy concerns the electronic state quantum number. However, since in
this thesis only transitions within the electronic ground state are concerned, the corre-
sponding degeneracy prefactor is equal to 1.

• As themolecular energy does not depend on them′ quantumnumber if neither electric
nor magnetic fields are present, but the matrix element depends onm′ via the Wigner
3J-symbols, this degeneracy is considered by

ω∑
σ=−ω

J ′∑
m′=−J ′

J ′′∑
m′′=−J ′′

(
J ′′ 1 J ′

m′′ σ −m′

)2
= 1. (2.115)
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The resulting line strength (for transitions between the electronic ground state) is given by

Sif = gns(2J
′′ + 1)(2J ′ + 1)

∣∣∣∣∣
J ′∑

k′=−J ′

J ′′∑
k′′=−J ′′

(−1)k
′

× c
(J ′)∗
k′ c

(J ′′)
k′′

1∑
σ′=−1

〈
Φ′
vib
∣∣µ(1,σ′)

m

∣∣Φ′′
vib
〉 (

J ′′ 1 J ′

k′′ σ′ −k′

) ∣∣∣∣∣
2

(2.116)

The multi-mode expansion of the DMS

µα := µ0α +

M∑
k=1

µα(qk) +

M∑
k=1

k−1∑
l=1

µα(qk, ql) + . . . (2.117)

is analogously to the multi-mode expansion for the PES and the inverse effective moment of
inertia tensor µ in Eq. (2.12). (It should be noted, that it is an unfortunate coincidence in
literature that there are two completely independent quantities are both denoted as µ, which
is the dipole moment operator and the inverse effective moment of inertia.) Since integrals
between VSCF and VCI wave functions and a multi-mode tensor has been discussed before
(see Eq. (2.30)), only the results are presented:〈

Φ′
vib
∣∣µ(1,σ′)

m

∣∣Φ′′
vib
〉
= µ0α

∑
I,J

cĨIc
J̃
J

∏
a

SIJ
a

+
∑
k,I,J

cĨIc
J̃
J

〈
φ
nI
k

k

∣∣∣µα(qk) ∣∣∣φnJ
k

k

〉∏
a̸=k

SIJ
a

+
∑

l<k,I,J

cĨIc
J̃
J

〈
φ
nI
k

k φ
nI
l

l

∣∣∣µα(qk, ql) ∣∣∣φnJ
k

k φ
nJ
l

l

〉 ∏
a̸={k,l}

SIJ
a (2.118)

All variables are defined as in Subsec. 2.1.2. Using the polynomial coefficients for the DMS
expansion, the equation yields an expression, that can be implemented. Note that this subsec-
tion showed the derivation for the simplest rotational basis, which is the rigid rotor basis. For
the Wang-combinations there would be another summation over the two Wang coefficients.
For the MSRB, there would be an additional summation over the MSRB coefficients. How-
ever, for the derivation, these coefficients can be contracted with the RVCI coefficients c(J)k .
In this case, the meaning of the c(J)k coefficients in Eq. (2.116) changes, but the equations are
identical. Moreover, it should be noted that this contraction is actually implemented in the
code to save runtime (see Subsec. 3.4.3).
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2.3 Raman Intensities

The calculationofRaman intensities is also implemented inMOLPRO. TheRaman effect is a
two photon process with an additional virtual energy level, which is usually much higher than
the initial and the final level. The theorywill only be described very briefly, with a focus on the
difference to IR intensities, since most of the work was already done for the RCI calculations
and neither of the four publications of this thesis addresses Raman transitions.
Non-resonant Raman intensities can be determined by [111]

I ∝
64π4(ν + νif )

4

3c3

∑
AB

|Cif |2 (2.119)

with the Raman scattering radiation frequency ν and the correlation coefficients

CAB
if =

∑
j

[
µBijµ

A
jf

hc(νji − ν)
+

µAijµ
B
jf

hc(νjf + ν)

]
≈
〈
Φ′
rovib
∣∣αAB

∣∣Φ′′
rovib
〉
. (2.120)

The second equation denotes the polarization approximation[58]. This approximation is
valid if three conditions are fulfilled.

• The Born-Oppenheimer approximation is valid for the initial, the final and the virtual
states.

• Both, the initial and final states of the transition belong to the electronic ground state.

• There must be a large energetic separation between the virtual state and both the initial
and final states.

The transition moments of the electric dipole operator

µAij =
〈
Φ
(i)
int

∣∣∣µA∣∣∣Φ(j)
int

〉
, (2.121)

where i is the initial state, j is the virtual state, and f is the final state. Since the space-fixed
coordinate axes are used, the variables for Cartesian coordinates are denoted A andB instead
of α and β. The total internal wave functions

|Φint⟩ = |Φns⟩ |Φel⟩ |Φrovib⟩ (2.122)

are a product of the nuclear spin, electronic, and rovibrational wave functions.
Unlike the first-orderDMS tensor, the polarizability tensorα is a second-order tensor. Since

it is symmetric and has rank ω = 2, there are six independent elements. Analogous to the IR
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intensities, a transformation from space-fixed components to molecule-fixed components is
used. First, a spherical representation of the polarizability tensor α(ω,σ)

s with |σ| ≤ ω and
σ = k′′ − k′ is introduced (see Ref. [58] and Ref. [112])

α
(0,0)
s = − 1√

3
[αXX + αY Y + αZZ ] , (2.123a)

α
(2,0)
s =

1√
6
[2αZZ − αXX − αY Y ] , (2.123b)

α
(2,±1)
s =

1

2
[∓(αXZ + αZX)− i(αY Z + αZY )] , (2.123c)

α
(2,±2)
s =

1

2
[αXX − αY Y ± i(αXY + αY X)] . (2.123d)

Due to symmetry, all elements with ω = 1 vanish [59]. This simplifies Eq. (2.119) to

Rω :=
∑
AB

∣∣ 〈Φ′
int
∣∣αAB

∣∣Φ′′
int
〉∣∣2 = ω∑

σ̄=−ω

∣∣∣ 〈Φ′
int
∣∣α(ω,σ̄)

s
∣∣Φ′′

int
〉∣∣∣2. (2.124)

Similar to the IRderivation, theWigner rotationalmatrix elementsD(ω)
σ̄σ (Ω), withEuler angles

Ω = χ, ϕ, θ [59] can be used to obtain

α
(ω,σ̄)
s =

ω∑
σ=−ω

D
(ω)∗
σ̄σ (Ω)α

(ω,σ)
m . (2.125)

In contrast to IR transitions, there is noω = 1 term forRaman transitions, but an isotropic
Raman transition moment D(0)

σ̄σ for ω = 0 and anisotropic Raman scattering terms D(2)
σ̄σ for

ω = 2. This makes the final transition moment dependent on the experimental setup [113].

Analogous to the IRderivation, it is assumed that there are no external electric andmagnetic
fields, which results in a degeneracy in the m quantum number. Moreover, the |Φns⟩ wave
functions yield the degeneracy factor for the nuclear spin statistical weight gns[58, 88]. This is
described by a sum over degeneracy prefactors. As was derived in Ref. [114], it follows that

Rω =
∑

degenerate
states

ω∑
σ̄=−ω

∣∣∣∣∣
ω∑

σ=−ω

∑
v′′v′

〈
v′
∣∣α(ω,σ)

m
∣∣v′′〉∑

r′r′′

c
′∗
vrc

′′
vr

〈
r′
∣∣D(ω)∗

σ̄σ (Ω)
∣∣r′′〉 ∣∣∣∣∣

2

. (2.126)

As it was done for the IR calculations, the integrals are separated in a vibrational and ro-
tational part. While the vibrational part is computed numerically, the rotational parts can be
solved analytically [58].
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By using rigid-rotor basis functions |Jkm⟩ =̂
√

2J+1
8π2 DJ∗

mk it follows with the integrals of
three Wigner D functions from [59]:〈

J ′k′m′∣∣D(ω)∗(Ω)
σ̄,σ

∣∣J ′′k′′m′′〉
= (−1)σ̄−σ+m′′+k′′√

(2J ′′ + 1)(2J ′ + 1)
(

J ′′ ω J ′

m′′ σ̄ −m′

) (
J ′′ ω J ′

k′′ σ −k′

)
(2.127)

The strict Raman selection rule follows from this equation, since the 3J -symbols vanishes if
|∆J | ≤ ω. Hence, for the isotropic transition moment ω = 0 the selection rule results in
J ′ = J ′′, while for the anisotropic part it is less restrictive (∆J ∈ {0,±1,±2}). Eq. (2.127)
also results in a selection rule for k and two selection rules for the parity. For a more detailed
discussion see Ref. [58, 59, 113]. Evaluating Eq. (2.127) with the restrictions introduced by
the vanishingWigner 3J -symbols and ω = 0 (and therefore also σ = 0) yields〈

J ′k′m′∣∣D(0)∗
0,0

∣∣J ′′k′′m′′〉 = δJ ′′J ′δm′′m′δk′′k′ . (2.128)

This gives for the isotropic transition moment

R0 = gns
∑
m′′,m′

∣∣∣∣∣∣
∑
v′′,v′

〈
v′
∣∣α(0,0)

m

∣∣v′′〉∑
k′′,k′

c
′∗
kvc

′′
kv

〈
J ′k′m′∣∣D(0)∗

0,0

∣∣J ′′k′′m′′〉∣∣∣∣∣∣
2

(2.129)

= δJ ′′J ′gns(2J
′′ + 1)

∣∣∣∣∣∣
∑
v′′,v′

〈
v′
∣∣α(0,0)

m
∣∣v′′〉∑

k′′,k′

c
′∗
kvc

′′
kvδk′′k′

∣∣∣∣∣∣
2

, (2.130)

and for the anisotropic transition moment

R2 = gns(2J
′′ + 1)(2J ′ + 1)

∣∣∣∣ 2∑
σ=−2

∑
v′′,v′

〈
v′
∣∣α(2,σ)

m
∣∣v′′〉 ∑

k′′,k′

c
′∗
kvc

′′
kv(−1)k

′ ( J ′′ 2 J ′

k′′ σ −k′

) ∣∣∣∣2.
(2.131)

As mentioned above, the Raman intensities depend on the exact experimental setup. More
specifically, it is influenced by the polarization of the probe radiation (linear, circular, or natu-
rally polarized), the polarization of the detected radiation, the position of the detector, etc. In
general, the resulting intensity canbe described as a linear combinationofR0 andR2. Thiswas
elaborated in Ref. [113] and also discussed with respect to our implementation in Ref. [115].
However, without a specific application in this thesis, it is not meaningful to provide any ex-
periment specific equations. To avoid as much experimental dependence as possible, the Ra-
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man transition strengths are given in terms of differential absorption cross-sections

dσ

dΩ
=

(
π

ϵ0

)2
e−E′′/kBT

Q(T )
∆ν4R (2.132)

instead of intensities.

2.4 Line Broadening

The calculation of accurate line lists is very important for rovibrational infrared spectroscopy.
However, the observed spectral lines are broadened by various effects that obscure the details
of the underlying molecular motion. There are several types of line broadening that affect
rovibrational infrared spectra, including natural linewidth (see Subsec. 2.4.1), pressure broad-
ening (see Subsec. 2.4.3), Doppler broadening (see Subsec. 2.4.2), and Voigt broadening (see
Subsec. 2.4.4). These different types of broadening arise from different physical mechanisms
and have distinct effects on the observed spectra. Understanding the various types of line
broadening is important for accurate interpretation of rovibrational infrared spectra.

2.4.1 Natural linewidth

The most fundamental type of line broadening is the natural linewidth, as it is inevitable and
depends only on the life time of a state. It arises from the time-energy uncertainty relation

∆t∆E ≥ ℏ/2. (2.133)

∆E denotes the linewidth in units of energy, but it can also be given in units of cm−1, which is
denoted by∆ν̄. Moreover,∆t describes the life time of a quantummechanical state. ∆t spans
many orders of magnitude for different physical processes. For the three most interesting in
the course of this thesis exemplary numbers are presented in the following [116–118]:

• Electronic excitations; ν̄ ≈ 3× 104 cm−1;∆t ≈ 1× 10−8 s; ∆ν̄ ≈ 5× 10−4 cm−1

• Vibrational excitations; ν̄ ≈ 1× 103 cm−1;∆t ≈ 1× 10−3 s; ∆ν̄ ≈ 5× 10−9 cm−1

• Rotational excitations; ν̄ ≈ 1× 101 cm−1;∆t ≈ 1× 103 s; ∆ν̄ ≈ 5× 10−15 cm−1

Ofcourse, these numbers are only a rough reference point, and the actual transition energies
E and life times ∆t can cover a wide range for all three types of transitions. However, the
natural linewidth of vibrational and rotational transitions is much smaller than other types of
broadening, even at low pressure and low temperature. For this reason, the natural linewidth
will not be discussed in this thesis. As a final note, it should be mentioned that the natural
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linewidth broadening profile corresponds to a Lorentz profile, as it is also used for pressure
broadening. Thus, the algorithms implemented during this PhD allow for the simulation of
spectra with natural linewidth.

2.4.2 Doppler broadening

Doppler broadening is an important factor in rovibrational spectroscopy, causing spectral
lines to broaden due to temperature effects in a gas. The Doppler effect results from the rel-
ative motion between the molecule and the observer. It causes a shift in the frequency of
the radiation emitted or absorbed by the molecule. The superposition of spectral lines from
molecules with different velocities creates a statistical distribution that results in the broaden-
ing effect. The velocity profile ofmoleculeswithmassm in a gas at temperatureT corresponds
to a Maxwell-Boltzmann distribution. The standard deviation of the broadening is given by

σf =
f0
c

√
kBT

m
, (2.134)

with the Boltzmann-constant kB, the speed of light in vacuum c and the frequency of the
transition f0 without Doppler effect. Unlike the velocity, the line broadening profile for
the Doppler effect is described by a Gaussian function, with a full width at half maximum
(FWHM) of

∆f = 2
√

2 ln (2)σf =
f0
c

√
8 ln (2)kBT

m
. (2.135)

By using
∆f

f0
=

∆ν̄

ν̄0
(2.136)

it follows

∆ν̄(T ) =
ν̄0
c

√
8 ln (2)kBT

m
. (2.137)

Therefore, it is sufficient to know the temperature of the gas and themass of themolecule to
determine its Doppler broadening. An example for propynal (CHCCHO) at T1 = 10K and
T2 = 300K is provided to give a sense for the magnitude of the broadening effect. Moreover,
these values are later used in Section 3.3.

mH = 1 u, mC = 12 u, mO = 16 u
⇒ m = 2mH + 3mC + 1mO = 54 u

T1 = 10K, T2 = 300K
kB = 1.380 649× 10−23 J/K
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c = 2.997 924 58× 108m/s
ν̄0 = 300 cm−1

∆ν̄(T1) = 7.7× 10−6 cm−1

∆ν̄(T2) = 4.2× 10−5 cm−1

This shows that the temperature range covered in this thesis (T1 = 10 to T2 = 300K)
results in a Doppler width that spans less than one order of magnitude. This is in contrast to
the pressure broadening discussed later. Note, that an exemplary transition at 300 cm−1 was
assumed. The linear scaling in ν̄0 allows for the calculation of a dimensionless relative width

∆f

f0
=

∆ν̄

ν̄0
=

1

c

√
8 ln (2)kBT

m
, (2.138)

which is independent of the specific line position.

It should also be noted that the limitations of the experimental setup also lead to a broad-
ening effect. In many cases, a Gaussian profile is used to model this broadening. However,
since the specific FWHM of this effect crucially depends on the setup itself, there is no gen-
eral equation to determine the width. In contrast, experimentalists provide values for their
specific setup.

2.4.3 Pressure broadening

Considering pressure broadening is significantly more challenging than considering Doppler
broadening. The former results from collisions betweenmolecules, which can shift the energy
levels of the molecules and cause the spectral lines to broaden. Unlike Doppler broadening,
which is well-described by a Gaussian profile, pressure broadening exhibits a more complex
profile, including Lorentzian, Voigt, or related shapes, depending on the pressure and col-
lision cross-sections of the molecules involved [119, 120]. Due to the complex interplay of
molecular collisions, pressure broadening is muchmore difficult tomodel accurately, and pre-
cise measurements require careful consideration of the molecular properties and conditions
of the sample. In this thesis pressure broadening is modeled only by a Lorentz profile and, in
combination with temperature effects, by a Voigt profile.

The FWHM of the Lorentz profile is often referred to as γ, in contrast to the Gaussian
profile, where σ is used. This usually describes dimensionless quantities, in contrast to the
previously introduced∆ν̄, which describes the FWHM in units of wavenumbers. The width
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of the Lorentz profile in wavelength λ can be written as

∆λ =
λ2A

πc
n

√
2kBT

m
(2.139)

Its calculation requires knowledge of the scattering cross-section A and the particle number
density n. Similar to the temperature broadening, it also depends on themass of the molecule
m and the temperature T . The particle number densityn is defined by the number of particles
N and the gas volume V as follows:

n :=
N

V
=

p

kBT
(2.140)

The latter equation assumes an ideal gas with pressure p and Boltzmann constant kB . Com-
bining these equations yields

∆λ =
λ2A

πc

p

kBT

√
2kBT

m
=

λ2Ap

πc

√
2

kBTm
(2.141)

Replacing the transition wavelength λ through wavenumbers

λ =
1

ν̄
(2.142)

allows for the last transformation in the following derivation:

∆λ

λ
=

∆ν̄

ν̄
=

Ap

πc

√
2

kBTm
λ =

Ap

πc

√
2

kBTm

1

ν̄
(2.143)

Hence, the Lorentz width

∆ν̄ =
Ap

πc

√
2

kBTm
(2.144)

in units of wavenumbers is independent of the specific transition frequency. However, it re-
quires information about the cross-sections A, which can be determined experimentally or
theoretically. In principle, there are advancedmethods to simulate scattering cross-sections of
molecules. For several reasons, it was decided that a rough estimate ofAwould be sufficient:

1. The main result of this PhD is the calculation of accurate line list and bar plot spectra
and not on broadened spectra.

2. All research groups interested in highly accurate spectras use line lists and then apply
more sophisticatedmethods to account for line broadening (beyondVoigt profilemeth-
ods).
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3. However, it canbe helpful to give a rough estimate of the visual appearance of the broad-
ened spectra. The resulting spectra do not depend crucially on the exact width of the
profiles.

In some of the publications of this PhD, the cross-section A was estimated by a geometric
approximationof themolecule. Alternatively, a simpler and less accurate, but easily automated
method can be used. Since it is not so much the exact value of A that matters, but rather the
order of magnitude, the latter method is sufficient and will be demonstrated for the example
of propynal (HCCCHO). Propynal consists of three elements for which the atomic radii can
be found in Ref. [121]. There are several different ways to determine the radius of an atom
(empirical, via calculations, via bond lengths of different interaction types). In the following
example, the radii are approximated by a covalent single bond length, although not all bonds
in propynal are single bonds. This yields

rH = 0.32Å ; rC = 0.70Å ; rO = 0.63Å ;

AH = πr2H = 0.32Å2
; AC = 1.54Å2

; AO = 1.25Å2
;

A ≈ 2AH + 3AC + AO = 6.51Å2

As each molecule is treated individually, the geometry of the molecule is not taken into ac-
count, which is a crude approximation. However it allows for a robust and automated calcu-
lation.
In the following, one value is given for interstellar conditions (p1 = 3× 10−13 Pa), low

pressure laboratory conditions (p2 = 1Pa) and terrestrial conditions (p3 = 1× 105 Pa). Using
the same temperatures and values for the mass and physical constants yields

∆ν̄(p1, T = 10K) ≈ 7.0× 10−21 cm−1

∆ν̄(p2, T = 300K) ≈ 4.2× 10−9 cm−1

∆ν̄(p3, T = 300K) ≈ 4.2× 10−4 cm−1.

Hence, the pressure broadening in the ISM can be neglected, since it is many orders of
magnitude larger than the natural linewidth. At normal terrestrial conditions (300K and
1× 105 Pa) the pressure broadening is larger than the temperature broadening. However, the
difference is only one order of magnitude, and since the latter has a linear scaling in the fre-
quency of the transition, there is a break-even point at large frequencies (about 3000 cm−1).
Again, it should be noted that these are rough estimates to demonstrate the computational
approach, e.g. the ideal gas approximation is used and the scattering cross-section was deter-
mined with a very crude approximation.
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2.4.4 Voigt broadening

As discussed above, temperature effects can be considered using a Gaussian profile and pres-
sure effects can be considered using a Lorentz profile. For a more accurate description, both
effects should be considered together. This is possible by using a Voigt profile, which is ob-
tainedby a convolutionof aGaussian and aLorentzian. The resulting convolution integral has
no analytical result. However, there are many ways to either approximate or to determine the
Voigt profile numerically, e.g. via the real part of the Faddeeva-function [122] or the pseudo-
Voigt approximation. The FWHM of the Voigt profile can be approximated by the FWHM
of the Gaussian function∆ν̄G and the FWHM of the Lorentzian∆ν̄L using

∆ν̄V ≈ ∆ν̄L
2

+

√
∆ν̄2L
4

+ ∆ν̄2G (2.145)

In general the three different line shapes are very similar. Themaindifferences are that a pure
Gaussian profile is wider, the Lorentz profile is narrower and the Voigt profile is somewhere
in between, depending on the ratio of∆ν̄L and∆ν̄G. A more detailed discussion is provided
in Section 3.3.
These three types of line broadening are implemented in MOLPRO. It should be men-

tioned, that the most recent implementation in MOLPRO in terms of the DAT2GRAPH
program was introduced by Erfort in a refactoring project. In contrast, the work and achieve-
ments in this thesis concern the implementation of the Lorentz profile, and an efficient eval-
uation of the Voigt profile, since it is very time consuming. Furthermore, it was necessary to
implement a runtime optimization for the Voigt profile in terms of a discretization in the fre-
quency axis and precalculating the Voigt profile. Furthermore, it falls within the scope of this
thesis to perform an optimization to achieve the best possible broadening width values for a
comparison with experiments.
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3
Results

As this is a cumulative thesis, a large part of the results can already be found in the attached
publications. Nevertheless, there are some results that could not be presented in the publica-
tions and that will be elaborated in the context of this thesis. Here, the four different publi-
cations are considered more as a rough reference point to present further work that was done
during the PhD. Thus, for example, from a didactic point of view, it makes more sense to
discuss the second publication first, since Ref. [2] is about the convergence of different series
expansions for the RVCI theory. The publication mainly used various metrics to study the
convergence quantitatively. In contrast, this thesis mainly shows qualitative differences in the
spectra. Five different parameters are considered with respect to their convergence behavior.
An incomplete convergence for the different parameters leads to very individual phenomena
in the spectrum. This is useful for subsequent users to quickly see which parameters have not
yet converged sufficiently.
After that, the content of the chronologically first publicationRef. [1]will be discussed and

updated. Thismeans that essentially the same spectral ranges are presented again, butwith the
most recent calculations. Since the original publication is already 3 years old, this is useful for
two reasons. First, it shows the progress that has beenmade in the course of this PhD. On the
other hand, some interpretations and assumptions about the limitations of the program at
that time, can now be confirmed or disproved. The publication about propynal [3] is the only
one that used line broadening. For this reason, this publication is taken as an opportunity to
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present and compare the different forms of line broadening implemented. After that, a small
selection of runtime optimizations are presented, based on Ref. [4] and calculations for the
other molecules.
In this thesis four different molecules have been studied. Three of them have a high astro-

physical relevance, either because they have been found in the ISM (ketenimine, propynal) or
because a synthesis has recently been achieved which suggests that this molecule could exist
in the envelope of an asymptotic giant branch (AGB) star (diazophosphane). The first two
are also considered to be a complex organic moleculess (COMs), which makes them particu-
larly interesting from a biological point of view. Moreover, all thesemolecules are near-prolate
asymmetric top molecules with point groups C2v or Cs.

3.1 Convergence analysis

The second publication in the context of this thesis [2] discusses the convergence of different
series expansions for RVCI theory. As a benchmark molecule, H2CS is used. It is a 4 atomic
molecule with point group C2v, that is a near-prolate asymmetric top (κ = −0.993) with two
different NSSWs (1 and 3). (For more details see Ref. [2].) The paper mainly used different
metrics to investigate the convergence behavior quantitatively. In contrast, this thesis mainly
shows qualitative differences in the spectra. Five different parameters are considered in terms
of their convergence behavior, with each of them showing a very individual phenomenon in
the spectrum if not sufficiently converged. After that, the influence of the NSSWs on the
spectrum of H2CS will be discussed briefly.
Before discussing the first convergence parameter, a brief discussion about bands and band

headswill be given for didactic reasons. In spectroscopy, there aremanyways to classify differ-
ent bands. One is by the number of band heads. There are headless bands, single head bands
and double head bands [123]. However, the latter case is relatively rare, so the subsequent dis-
cussion focuses on the first two. The typical P- and R-branches of a two atomic homonuclear
molecule with a gradually increasing and decreasing intensity on both sides of the band are
a good example for a headless band. In contrast, there are many examples in the converged
spectrum ofH2CS (e.g. the red band in the bottom of Fig. 3.1) where progressions only grad-
ually decrease in intensity in one direction. For the other direction, a sudden end or an abrupt
edge of the band is visible. This edge is called band head. A part of the reason for this effect
can be understood by analyzing the quantum numbers of each transition of these bands. For
example the aforementioned red progression consists of the lines (starting at the band head):

• J ′′ = 5, k′′a = 5, k′′c = 0 → J ′ = 6, k′a = 6, k′c = 0

• J ′′ = 6, k′′a = 5, k′′c = 1 → J ′ = 7, k′a = 6, k′c = 1
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Figure 3.1: Influence of the convergence behavior of Jmax on the visual appearance of the rovibrational infrared spec‐
trum. The example shows H2CS in the strongly coupled region of the quasi degenerate vibrational modes ν4 and ν6 at
989.4cm−1 and 989.5cm−1, respectively. In addition, there is another fundamental band ν3 at 1060.2cm−1. The
vibrational basis set includes up to second overtones and threefold combination bands up to 5000cm−1, the µ‐tensor
was considered up to 2nd order for the rotational terms and 1st order for Coriolis coupling terms and the VCI space was
set to its current default value levex=5 citype=5 and cimax=15. The red progression used as an example to describe
band heads. (See text.)
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• J ′′ = 7, k′′a = 5, k′′c = 2 → J ′ = 8, k′a = 6, k′c = 2

• J ′′ = 8, k′′a = 5, k′′c = 3 → J ′ = 9, k′a = 6, k′c = 3

• J ′′ = 9, k′′a = 5, k′′c = 4 → J ′ = 10, k′a = 6, k′c = 4

• ...

In this case the quantum number ka is fixed (corresponding to the z-component for the near-
prolate molecule H2CS) and the quantum number kc as well as the total angular momentum
J increase for each line in the band. This also explains the reason for the band head, since
there cannot be a line with J ′′ = 4, k′′a = 5, k′′c = −1, since the quantum number kc cannot
be negative.

3.1.1 Total angular momentum

Within the publication [2], the convergence of the spectrumwith respect to the total angular
momentumnumber J was not discussed. This is due to the fact that an improper convergence
is easy todetect, easy to solve, and anunacceptable approximationbecause of the large artifacts,
shown in Fig. 3.1. The calculation obtained with Jmax = 20 shows an artificial second band
head. Since this is always the case, it seems relatively easy to detect when Jmax is not converged.
However, the following situations can make the convergence decision more involved:

• Strong bands can overlap the tail of weaker bands, as can be seen between 950 and
1050 cm−1. This makes it difficult to spot the artifacts. In this case a color coding with
respect to the quantum numbers ν, ka or kc can be very helpful.

• There are bands with increasing line density towards one direction, which is followed
by a turnaround of the band. For example, the lines in an R-branch are expected to
have an increasing frequency for increasing the quantum numbers ka, kc. However, for
asymmetric top molecules, this progression can turnaround, as is for example discussed
in Ref. [124] and in this thesis in Section 3.2. To distinguish these bands from Jmax

artifacts, the calculations can be repeated with an increased Jmax. However, this can be
very time consuming and therefore it is more advisable, to either reduce Jmax during
plotting. This makes the artifacts worse if Jmax was not converged sufficiently and has
no influence on turnaround progressions. Alternatively, all lines that involve a J = Jmax

can be ploted in red, to identify these transitions quickly.

• Last but not least, there are also bands in strongly coupled regions that rapidly decrease
in intensity without a turnaround or an increase in line density. This can also be misin-
terpreted as an insufficient convergence of Jmax. The analysis can be done analogously
to the previous case.
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Figure 3.2: Influence of the convergence behavior of the VCI space on the visual appearance of the rovibrational infrared
spectrum. The example shows H2CS in the strongly coupled region of the three overtones and three combination bands of
the vibrational modes ν3, ν4 and ν6. The vibrational basis set includes up to second overtones and threefold combination
bands up to 5000cm−1, the µ‐tensor was considered up to 2nd order for the rotational terms and 1st order for Coriolis
coupling terms and Jmax = 45.
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As mentioned before, the artifacts induced by a Jmax that was chosen to small are signifi-
cant and are therefore not a suitable compromise to save computational time. Nevertheless, it
should be noted that there are cases where a small number of bands have very slowly converg-
ing tails.

3.1.2 VCI space

Another important parameter for the convergenceof the rovibrational spectra is the configura-
tion interaction space (CI space) of the VCI calculation. Since H2CS is a fairly rigid molecule
the default CI space (levex=5 citype=5 and cimax=15) is sufficient. Hence, this parameter
was also not discussed in Ref. [2]. However, larger molecules such as ketenimine and propy-
nal crucially depend on the convergence of the CI space. This is not only in terms of energies
but also in terms of wave functions. For consistency reasons, this phenomenon will also be
discussed for H2CS, but with very small CI spaces. Fig. 3.2 shows that a slightly too small CI
space leads only to frequency and intensity shifts (middle vs. bottom). In this case, the VCI
wave functions are largely converged. In contrast, the effect of an insufficiently converged
VCI wave function can be seen in the top of Fig. 3.2. The artifacts are extreme and there is
little resemblance to the correct spectrum. Of course, forH2CS, theCI space had to be chosen
extremely small to yields such results. However, in the case of propynal this could also be seen
for a much larger CI space (levex=7 citype=6 and cimax=20). It should be noted that this
effect is also present in cases where the VCI energies are converged. Consequently, the VCI
energies are an insufficient indicator for the convergence of the correspondingwave functions.
A somewhat better indicator is, of course, provided by the VCI intensities. However, there
may be an error compensation within the VCI intensities, which can hide an insufficient con-
vergence of the wave functions. Further methods to overcome this problem are discussed in
Chapter 5.

3.1.3 Vibrational basis set size

One parameter that was analyzed in Ref. [2] is the size of the vibrational basis set. One of the
results was that this is a crucial parameter in terms of quantitative changes. In contrast, the
qualitative changes are much more subtle than for Jmax and for the CI space. When viewed
on a 400 cm−1 wide plot, there are hardly any changes visible. Therefore, Fig. 3.3 shows only
a more narrow snippet of 40 cm−1. The overall structure remains relatively unchanged re-
gardless if only 4 or 45 excited vibrational bands are considered. Considering the smaller pro-
gression reveals that some of the very dense bands in the upper spectrum split into wider pro-
gression, if more vibrational basis functions are used. A further increase in this respect will
result in shifts for these bands. Compared to the previously discussed parameters, an insuffi-
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Figure 3.3: Influence of the convergence behavior of the vibrational basis set size on the rovibrational spectrum. The
small basis set includes only the ground state and the four lowest vibrational fundamental modes. The medium basis set
of 15 vibrational states includes all fundamental bands, single overtones and combination bands up to 3000cm−1. In
the large basis set 45 vibrational states up to double excitations and threefold combination bands up to 5000cm−1 are
included. The example shows H2CS in a narrow spectral range of the strongly coupled region of the two quasi degenerate
vibrational modes ν4 and ν6 at 989.4cm−1 and 989.5cm−1, respectively. In addition, there is another fundamental
band ν3 at 1060.2cm−1. The vibrational basis set includes up to second overtones and threefold combination bands up
to subtle, the µ‐tensor was considered up to 2nd order for the rotational terms and 1st order for Coriolis coupling terms,
the VCI space was set to its current default value levex=5 citype=5 and cimax=15 and Jmax = 45.
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cient convergence in the size of the vibrational basis set is much more difficult to detect. So
far, the best practice for this task is increasing the number of vibrational basis functions and
visually comparing the spectra. However, it should be mentioned that usually the spectral
separation between different vibrational bands is a good indicator for the strength of the cou-
pling. This is also the reason, why the upper figure already yields a very decent approximation
for the actual spectrum, since all additional bands are at least 1000 cm−1 apart. In the large
basis set of 45 vibrational bands all vibrational bands up to 5000 cm−1 and up to threefold ex-
citations are already included. Therefore, the lowest additional band that could be considered
are threefold overtones and four mode combination bands. However, since normal coordi-
nates and the multi-mode expansion are best suited to describe small nuclear motions, these
higher vibrational bands will be described with less accuracy. Therefore, a trade-off has to be
found between a larger basis set with some less accurate bands and a smaller vibrational basis
set with only very precise bands. It should be mentioned that for larger molecules (e.g. six
or more atoms) the aforementioned criteria (vibrational modes up to 5000 cm−1 and up to
three mode excitations) can already lead to hundreds of vibrational modes. Since this is not
yet computationally feasible, more restrictive constraints are necessary. Therefore, the specific
choice of the vibrational basis set depends heavily on the specific molecule.

3.1.4 Coriolis coupling term order

A characteristic feature of H2CS is the particularly strong Coriolis coupling between the two
quasi-degenerate vibrational modes ν4 and ν6 at 989.4 cm−1 and 989.5 cm−1. In this sense, it
can be understood as an upper bound for the strength of this type of coupling. Fig. 3.4 shows
that the 0th order Coriolis coupling is very significant in this region. However, comparing
the 0th order Coriolis coupling with the 1st shows barely any difference on this wide spec-
tral range. This is analogously to the VAM terms, were the µ-tensor expansion is also almost
converged after the 0th order. The quantitative analysis in Ref. [2] has shown that the 1st or-
der still has a meaningful influence. However, because it shifts many progressions by a small
amount and it does not influence the intensity particularly strongly, it is difficult to see in the
spectrum. Nevertheless, Fig. 3.4 demonstrates that already the 0th order can be a very decent
approximation. It shows that missing coupling terms do not lead to artifacts in the spectrum.
This is in contrast to an insufficiently converged CI space and in some sense also different to
the convergence behavior of Jmax. Thus, the absence of higher order coupling terms is much
more difficult to spot in the resulting spectra.
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Figure 3.4: Influence of the µ‐tensor expansion order of the Coriolis coupling term on the convergence behavior and the
visual appearance of the rovibrational infrared spectrum. The example shows H2CS in the strongly coupled region of the
two quasi degenerate vibrational modes ν4 and ν6 at 989.4cm−1 and 989.5cm−1, respectively. In addition, there is
another fundamental band ν3 at 1060.2cm−1. The vibrational basis set includes up to second overtones and threefold
combination bands up to 5000cm−1, theµ‐tensor was considered up to 2nd order for the rotational terms and 1st order
for Coriolis coupling terms, the VCI space was set to its current default value levex=5 citype=5 and cimax=15 and
Jmax = 45.
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Figure 3.5: Influence of the µ‐tensor expansion order of the rotational term on the convergence behavior and the visual
appearance of the rovibrational infrared spectrum. The example shows H2CS in a narrow spectral range of in the strongly
coupled region of the quasi degenerate vibrational modes ν4 and ν6 at 989.4cm−1 and 989.5cm−1, respectively. In
addition to that there is another fundamental band ν3 at 1060.2cm−1. The vibrational basis set includes up to second
overtones and threefold combination bands up to 5000cm−1, the µ‐tensor was considered up to 2nd order for the
rotational terms and 1st order for Coriolis coupling terms, the VCI space was set to its current default value levex=5

citype=5 and cimax=15.
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3.1.5 Rotational term order

In Ref. [2] it was found, that the rotational terms require a µ-tensor expansion that is one
order higher, than for the Coriolis coupling terms. This means, for example, that a 1st or-
der µ-tensor expansion in the Coriolis coupling terms results in an error that is equivalent to
the error induced by 2nd order rotational terms. It should be noted that the region around
990 cm−1 is an unusual special case for Coriolis coupling and is not entirely representative.
Furthermore, it was noted in the publication that a spectrum without 0th order rotational
terms (similar to Fig. 3.4 for the Coriolis coupling terms) would not make sense, since this
would be a pure vibrational spectrum. Consequently, Fig. 3.5 starts with the 0th order µ ten-
sor. Similar to the comparisonbetweendifferent vibrational basis set sizes, the overall structure
is already fairly similar to the reference calculation for the least computational demanding cal-
culation. For this reason, a smaller spectral range was chosen again (40 cm−1). A comparison
between 0th and 1st order terms shows shifts in the order of 2 to 6 cm−1 for four bands. The
strongest shift can be seen for a progression around 1035 cm−1 for 0th order, which moves
to 1041 cm−1 for the 1st order. The changes induced by the 2nd order terms are not visible
with this plot range. Note also that there are hardly any intensity shifts visible. Similar to the
Coriolis coupling terms, the absence of higher order terms does not produce any artifacts in
the spectrum, making it difficult to decide whether these terms are needed.

3.1.6 Influence of NSSWs

So far, this section has mainly focused on the convergence behavior of different parameters,
since this was the main topic of the second publication of this cumulative thesis. However, in
this last subsection the influence of the degeneracy induced by the nuclear spins (NSSW) on
the spectrum of H2CS will be briefly discussed. Since H2CS belongs to the C2v point group,
it has a total of four NSSWs, two of which are 1 and the other two are 3. In contrast, all other
molecules discussed in this thesis belong to the point groupCs. Therefore, they formally have
two NSSWs, but for symmetry reasons they have to be identical. Thus their influence on the
spectra is only a global prefactor. For this reason, H2CS is the only opportunity to discuss this
effect.
Fig. 3.6 shows the strongly coupled region, that was discussed earlier. However, each tran-

sition is colored with respect to the assigned NSSW. This works as follows: The point group
C2v has four different irreps. A1 and A2 have a NSSW of 1 and B1 and B2 have a NSSW of
3. Rovibrational infrared transitions are only allowed between A1 and A2 as well as between
B1 and B2. For this reason, the NSSW of the initial state and final state are equal, and there-
fore the coloring of the transition also encodes the irreps of the corresponding rovibrational
states (apart from parity). Except for the area around the two fundamental bands ν4 and ν6
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Figure 3.6: Influence of the NSSWs for the strongly coupled region of H2CS. The vibrational basis set includes up to
second overtones and threefold combination bands up to 5000cm−1, the µ‐tensor was considered up to 2nd order for
the rotational terms and 1st order for Coriolis coupling terms, Jmax = 45, the VCI space was set to its current default
value levex=5, citype=5 and cimax=15.

at 989.4 cm−1 and 989.5 cm−1 the effect of the NSSW can be seen very clearly. The intensity
of the blue bands increases monotonically towards the middle of the figure. The same holds
true for the orange progressions. However, due to the NSSWs the band intensities are alter-
nating. The very complex spectra of asymmetric topmolecules can be broken down intomore
intuitive patterns, by using a series of analyses like in this subsection this for the NSSWs.

3.2 Ketenimine

In the first paper [1], which was written in the course of this thesis, ketenimine (CH2CNH)
was studied. It is a 6 atomic molecule with the point groupCs. It is a near-prolate asymmetric
top (κ = −0.9981) with two NSSWs, both of which have a value of 24. (For more details
see Ref. [1].) When this paper was published, the RVCI part of theMOLPRO program was
relying on a number of approximations. For example, only the 0th order of µ-tensor for the
rotational term and the Coriolis coupling term had been implemented. For the calculations
performed in the course of this thesis, the expansion of the µ-tensor was increased to 2nd or-
der for the rotational terms and 1st order for the Coriolis coupling terms. Due to the lack
of optimization, it was also not yet possible to choose the size of the vibrational basis Nvib

and the total angular momentum J to be high at the same time. For this reason, the com-
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promise of Jmax = 70 and Nvib = 27 was used at that time. It has been shown that in such
cases the convergence of Jmax is more important than the consideration of some more high
vibrational states which themselves have no intensities butmay be needed for couplings. Nev-
ertheless,Nvib = 58 vibrational states could now be considered. The convergence of Jmax was
also reconsidered, but it was found that Jmax = 80 does not add any significant rovibrational
lines. Furthermore, due to the memory savings in the RVCI program and an optimization
by Mathea in her PhD on the VAM terms, it is now possible to include the 1D terms on the
diagonal of the VCI matrix. (The memory savings in RVCI are mainly indirect, since the cal-
culations can now be executed on more CPU cores). However, the effects of the higher order
VAM terms are hardly noticeable. Last but not least, there are a number of small changes,
such as default values for thresholds within the VCI andRVCI, the number of basis functions
in the VCI, adjustments due to a better understanding of converged VCI basis functions (see
also Section 3.1) and improvements in the code.
Furthermore, at that time the vibrational transition moments were implemented only for

the case that one of the two vibrational states is the ground state. This also means that the
transition moments between two excited vibrational transitions were not yet implemented.
On the one hand, this prevents the calculation of hot bandsi. On the other hand, it alsomeans
that the full RVCI eigenvector for the initial state cannot be considered when evaluating the
intensities. Instead, the eigenvector had to be restricted to the first 2J +1 elements belonging
to the vibrational ground state. This approximation has been shown to work relatively well
because, first, the initial rovibrational state always belongs to the vibrational ground state (as
long as no hot bands are considered) and thus the most important part (with the largest co-
efficients) is included. On the other hand, the vibrational ground state is usually only weakly
coupled with other vibrational states. Nevertheless, this limitation has now been removed,
and due to the introduction of thresholds and parallelization, no additional computational
time is required for the evaluation.
However, the major change compared to the earlier work concerns the quantum number

assignment. The introduction of theMSRB as well as the use of the partial trace method (see
Chapter 2) and the possibility that a set of quantum numbers ν and k can now be assigned
more than once, has led to a significantly improved assignment. The previous limitation on
the assignment, of these two bad quantum numbers resulted in two figures being shown for
each spectrum. The lower figure shows the result for the uncoupled system (calculated by
RCI), where the quantum numbers can be assigned unambiguously. Thus it was possible to
color code the vibrational quantum number ν. The upper figure, on the other hand, shows
the RVCI spectrum in a single color. It should be noted that virtually all other rovibrational

iA hot band is a band centered on a transition between two excited vibrational states, i.e. neither is the overall ground
state.
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Figure 3.7: Overview of the low frequency infrared spectrum of ketenimine. The lower figure corresponds to the original
Fig. 3 in [1] with a comparison between RVCI (a) and RCI (b) results. The upper figure provides most recent results of
a calculation for this thesis, with 58 instead of 27 vibrational basis functions, new quantum number assignment, higher
order coupling terms, etc (see text). Visible contributions are provided by the fundamental bands ν8 (464cm−1, CCN
in‐plane bend, light green), ν7 (691cm−1, CH2 wagging, purple), ν11 (876cm−1, torsion, light blue), ν6 (1007cm−1,
CNH bend, orange), ν5 (1123cm−1, CCN stretch, dark blue) as well as the combination band ν8 + ν12 (881cm−1 dark
green) and the overtone 2ν8 (927cm−1 yellow). The color transition between blue and green at 900cm−1 is explained
in the text.
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theory groups worldwide restrict themselves to displaying the spectrum in single color, i.e. the
quantum number ν is either not assigned at all or only the leading coefficient is considered.
However, the previously mentioned improvements in the assignment in the context of this
work make it possible to perform the color coding directly in the RVCI spectrum and still
obtain consistent results in the vast majority of cases.
Fig. 3.7 shows a comparison between an original figure of Ref. [1] (bottom) and the result

of themost recent calculation (top). First of all, the roughpositionof the vibrational bands has
remained largely the same. Since this is determined by the VCI calculation and the majority
of changes in the calculations are done for the RVCI calculations, this was to be expected.
Moreover, the shape of the progressions are essentially the same as those from theRVCIfigure,
but the color coding corresponds to that of the RCI figure. However, upon closer inspection,
some differences in the progressions can be identified. These are discussed in the enlarged Fig.
3.8 and 3.9 plots.
The low frequency spectrum in Fig. 3.8 shows that neither the additional vibrational states,

nor the higher order coupling terms influenced this region significantly. Moreover, the quan-
tum number assignment is very consistent, even in the challenging areas, like the strongest
coupling region around 425 cm−1 to 450 cm−1. An experienced spectroscopist can also see
the different progressions for different quantum numbers k for the ν8 mode. The only ma-
jor differences between the two RVCI calculations are the small artifacts around 435 cm−1

in the old calculations. In contrast, Fig. 3.9 shows a variety of changes compared to the old
calculations. The three most notable differences are as follows:

1. The fine structure of most modes are irregular/rugged in the older calculations. There
are several reasons for this phenomenon. By far the largest reason is unstable lines
[75, 125], that is rovibrational transitions related to (quasi-)degenerate rovibrational
states belonging to the same quantum number J . For this reason, the eigenvectors of
these states are not well defined and span a multidimensional subspace. Initially, an at-
tempt was made to solve this problem by introducing a specific orientation by orthogo-
nalizing and rotating the eigenvectors in a specific way. However, this did not lead to a
proper stabilization of the unstable lines. For this reason a perturbation algorithm was
introduced that creates a very small perturbation in the order of 1× 10−4 cm−1. This is
sufficient to lift the degeneracy numerically and thus prevent unstable lines. It should
also be noted, that increasing the number of coupling terms and vibrational basis func-
tions somewhat reduces the number of unstable lines. However, some of the unstable
lines could never be resolved with additional coupling, but only with the perturbation
algorithm. Other reasons for the irregular fine structure may be the aforementioned
ground state transitionmoments approximation and an insufficient convergence of the
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Figure 3.8: Low frequency infrared spectrum of ketenimine. The lower figure corresponds to the original Fig. 4 in [1] with
a comparison between RVCI (a) and RCI (b) results. The upper figure provides most recent results of a calculation for this
thesis, with higher order coupling terms, a new quantum number assignment, 58 vibrational basis functions, etc (see text).
The two lowest fundamental bands ν12 (406cm−1, CCN out‐of‐plane bend, VCI intensity 0.4km/mol, purple) and ν8
(464cm−1, CCN in‐plane bend, VCI intensity 19.8km/mol, light green) as well as small contributions of ν7 (691cm−1,
CH2 wagging, orange).
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Figure 3.9: Infrared spectrum of ketenimine in a strongly coupled region. The lower figure corresponds to the original
Fig. 5 in [1] with a comparison between RVCI (a) and RCI (b) results. The upper figure provides most recent results of a
calculation for this thesis, with higher order coupling terms, 58 instead of 27 vibrational basis functions, new quantum
number assignment, etc (see text). Significant contributions come from the fundamental bands ν7 (691cm−1, purple),
ν11 (876cm−1, blue), ν10 (980cm−1, red, barely visible) and ν6 (1007cm−1 orange), the combination band ν8 +
ν12 (880cm−1 dark green) and the overtone 2ν8 (927cm−1 yellow). The color transition between blue and green at
900cm−1 is explained in the text.
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VCI wave functions. However, the latter would usually be significantly stronger (see
also Section 3.1).

2. The overall structure of the green and blue bands ν8+ ν12 and ν11 changes significantly.
In Ref. [1] it was already noted that this region is very demanding for several reasons.
On the one hand, because the two modes are only separated by 4 cm−1. On the other
hand, because there are some additional vibrational bands, such as ν10 (three orders of
magnitude less intensity than ν6) and ν212 (more than five orders ofmagnitude less inten-
sity than ν6). A large variation in the intensities are numerically especially demanding.
Last but not least, the coupling between the bands ν8 + ν12 and ν11 requires a change
of 3 modes in the vibrational quantum number and therefore it was discussed in Ref.
[1] that the 1st and 2nd order rotational and Coriolis coupling terms could be needed.
The strong coupling between these two bands causes an inconsistent assignment of the
quantum number ν, which results in the color change between blue and green. Fur-
ther analysis has now shown a posteriori that the 1st order coupling terms are sufficient,
but the 0th order terms are not, and that no further vibrational states are needed (by
comparing different recent calculations).

3. The four largest peaks for the purple ν7 mode are degenerate to two peaks in the newer
calculation. The origin of this problem is relatively difficult to explain, since additional
coupling terms and vibrational basis functions should remove degeneracies, and not in-
troduce additional ones. Moreover, the fact that there is an energetic degeneracy also
means, that the origin of the phenomenon lies in the (ro-)vibrational energies (eigenval-
ues) and not in the eigenvectors or in the intensities. Thus, neither unstable lines nor
missing transition moments can explain this issue.

A final insight of Fig. 3.9 concerns the assignment of the vibrational quantum numbers.
There are some strongly coupled regions in the figure that show a consistent assignment of this
quantum number. However, the blue ν11 and the green ν8 + ν10 bands clearly demonstrate
the limitations of the current implementation. Compared to previous assignmentmethods, it
is already a success that even in this region the coloring is consistent within each progression.
Four relatively strong vibrational bands can be found in the spectral region from1950 cm−1

to 2150 cm−1. Nonetheless, the previous study has shown that there is a surprisingly low
amount of coupling. Considering the most recent results in Fig. 3.10, this is not due to the
absence of higher order coupling terms, but reflects the physical reality. Within this spectral
range, five additional vibrational bands are considered. All of them were excluded in the orig-
inal publication, since their intensity nearly vanishes (lower than 0.04 km/mol in comparison
to203 km/mol for ν3. In Fig. 3.10 some transitions are assigned to ν10+ν6 (blue) , ν11+ν5 (yel-
low) and ν37 (black). However, it is clear, that the assignment in this region is at least doubtful.
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Figure 3.10: Rovibrational spectrum of ketenimine in the region of the strongest fundamental band ν3 (2042cm−1, CCN
stretch, green). The lower figure corresponds to the original Fig. 6 in [1] with a comparison between RVCI (a) and RCI (b)
results. The upper figure provides most recent results of a calculation for this thesis, new quantum number assignment,
higher order coupling terms, etc (see text). In addition to the ν3 mode, the overtones 2ν10 (1955cm−1, purple) and
2ν6 (1975cm−1, orange), as well as the combination band ν5 + ν6 (2131cm−1, red) provide visible contributions this
spectral range. Additional bands only considered in the more recent calculation are ν10 + ν6 (1988cm−1, bright‐blue),
ν11 + ν5 (1999cm−1, yellow), ν10 + ν5 (2102cm−1, dark‐blue, not visible), ν7 + ν4 (2154cm−1, dark‐green, not
visible) and ν37 (2012cm−1, black)
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Figure 3.11: Rovibrational spectrum of ketenimine in the region of XH stretching fundamentals. The lower figure corre‐
sponds to the original Fig. 7 in [1] with a comparison between RVCI (a) and RCI (b) results. The upper figure provides most
recent results of a calculation for this thesis, new quantum number assignment, higher order coupling terms, etc (see text).
Three fundamental bands ν2 (3048cm−1, symmetric CH2 stretch, orange), ν9 (3133cm−1, anti‐symmetric CH2 stretch,
purple, barely visible) and ν1 (3315cm−1, NH stretch, light green) are shown, as well as the combination bands ν3 + ν5
(3042cm−1, blue) and ν3 + ν6 (3151cm−1, red). Comparison between RVCI (a) and RCI (b) results.
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Figure 3.12: Close up of the high energy infrared spectrum of ketenimine in a dot plot, instead of the previous bar plots.
In the region of XH stretching fundamentals. The fundamental band ν2 (3048cm−1, orange) and the combination band
ν3 + ν5 (3042cm−1, blue) are shown.

Therefore, an analysis for the details in this region is not provided. In summary, neglecting
the higher order µ-tensor terms and additional vibrational modes yields a reasonable approxi-
mation for this region.

In Ref. [1], another region with several nearby vibrational bands, but only weak coupling,
could be found between 3000 cm−1 and 3450 cm−1. However, by considering higher order
coupling terms, the band shapes for the two lowest vibrational transitions change drastically,
in Fig. 3.11. A very similar band shape with a compression of the lines followed by a sudden
end of the progression was also observed and analyzed in Ref. [3, 124]. Using a dot plot in-
stead of a bar plot and enlarging the region of interest shows that the progression does not
actually end (see Fig. 3.12). Instead, the R-branch turns around and has a decreasing fre-
quency for an increasing quantum number J , which would be the expected behavior for the
P-branch. In Ref. [3], this phenomenon was explained by the fact that the centrifugal dis-
tortion increases faster in the initial vibrational state than in the final vibrational state. As a
result, the rovibrational energies associated with the lower vibrational state also increase faster
than those associated with the upper vibrational state, leading to a decreasing frequency for
larger J (see Ref. [1] for details). Besides this unusual effect, several more differences occur
when comparing the original results of Ref. [1] and the more recent calculations in Fig. 3.11.
For example, the intensity ratios are different, which is due to changes in the VCI calcula-
tions. Moreover, the older calculation shows a small number of transitions sticking out of the
rest of the progressions (at 3050 cm−1 and 3360 cm−1). This behavior vanishes in the more



68 3.3. Line broadening

recent calculations due to the additionally considered vibrational transition moments. The
previously mentioned issue of an irregular fine structure, is again related to unstable lines and
therefore resolved by the perturbation algorithm.
In conclusion, many of the previously necessary approximations did not influence the spec-

tra drastically and yielded good results despite the early stage of implementation. For example,
in the regions shown in Fig. 3.8, 3.10 and around 3100 to 3450 cm−1, onlyminor changes ap-
pear. However, there is a number of improvements, which shows that the quality of theRVCI
results could be significantly increased within the last three years. This can be seen for exam-
ple in Fig. 3.11 between 3000 to 3100 cm−1. Moreover, an assumption stated in Ref. [1]
was confirmed, that is higher order µ-tensor terms are needed, when there are at least three
vibrationalmodes that differ between two vibrational states. This happens for example in the
coupling between ν8 + ν12 and ν11. Another interesting finding, which could only be solved
with the latest version of theRVCI implementation, was the turnaround progression between
3000 and 3100 cm−1.

3.3 Line broadening

In the previous sections, infrared rovibrational spectra were presented using bar plots with-
out line broadening. To compare different theoretical spectra, it is common to neglect any
line broadening, as this allows for a better analysis. However, to compare results with ex-
perimental groups, line broadening must be taken into account. There are many different
broadening profiles to consider the different broadening effects with very different accu-
racy. These range from relatively simple Lorentz and Gaussian profiles to Voigt and beyond
Voigt profiles [119, 126, 127]. Most of the more sophisticated methods are used for small
molecules(2 − 4 atoms), such as N2, O2, H2O[128], CO2[119], NH3, CH4[129] with low
rovibrational state density. For this reason, different types of line broadening were investi-
gated in the early stages of this PhD. However, only three different types of line broadening
are now implemented inMOLPRO, as mentioned in Section 2.4. This is due to the fact, that
larger molecules with a higher rovibrational state density are considered. Therefore, it should
be sufficient to use a relatively simple broadening model. This assumption is discussed and
verified in this section.
The environmental conditions considered in this work range from the ISM at T = 10K

and p = 1× 10−13 Pa up to terrestrial conditions at T = 300K and p = 1× 105 Pa. To
show the influence of different types of line broadening, the terrestrial conditions are much
more interesting. This is due to the extremely low pressure in the ISM. Therefore, there is
virtually no pressure broadening (described by a Lorentz profile) and additionally the Voigt
profile is almost identical to theGaussian profile (describing temperature effects). In contrast,
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for terrestrial conditions, the Voigt profile is dominated by pressure broadening, resulting in
only small contributions from the Gaussian profile. However, the FWHM between pressure
and Doppler broadening (responsible for temperature effects) is separated by only one order
of magnitude for terrestrial conditions, in contrast to 10 orders of magnitude for the ISM.
The study of line broadening is based on theRef. [3], i.e. propynal (CHCCHO) is used as a

benchmarkmolecule. It is a6 atomicmoleculewithpoint groupCs, with two identicalNSSWs
of gns = 4. Moreover, propynal is a near-prolate asymmetric topmolecule (κ = −0.990). (See
Ref. [3] for more details.)
Fig. 3.13 shows the lowest vibrational mode of propynal in a bar plot and with three dif-

ferent types of line broadening. A comparison of the Doppler broadening with the tem-
perature broadening shows almost identical cross sections with respect to the macrostruc-
ture. As is typical for a broadened spectrum, there are nearly degenerate transitions that
give rise to particularly strong single peaks that stand out from the progression. The only
difference between Doppler and temperature broadening is that the pattern of these out-
lier peaks is slightly different. This result is rather surprising, since the Lorentz FWHM of
∆ν̄L = 4.2× 10−4 cm−1 is more than one order of magnitude larger than the Gaussian
FWHM of∆ν̄G ≈ 2.8× 10−5 cm−1.
The wide spectral range and the fairly high rovibrational state density are the reasons why

the differences between the two profile shapes and widths are barely visible. More precisely,
the fact that the six atomic molecule propynal is relatively heavy (compared to H2, N2, H2O,
H2S, CH4, NH3, etc) and it has a large moment of inertia tensor results in the high rovibra-
tional state density. Since the difference between the profiles is only in the outer regions, but
these regions are dominated by the next line (due to the high state density), the differences are
not visible. Additionally, propynal is a near-prolate asymmetric top molecule. This results
in a very regular and systematic spectrum in contrast to H2O, H2S for example. This essen-
tially results in an envelope around the P- and R-branches. The only significant features are
the quasi-degenerate lines mentioned above. This has important implications for the further
development of theMOLPRO program:

• The series of rough approximations introduced in Section 2.4 is legitimate, since the
influence of the exact line width is often negligible.

• For molecules with 6− 10 atoms there is no need to consider very sophisticated broad-
ening algorithms. This is in contrast to other theoretical rovibrational groups, which
focus on 2− 4 atomic molecules with highly accurate semi-empirical PES.

• Hence, the three implemented broadening types already allow for a higher accuracy and
flexibility than is actually required for this type of molecules and calculations.
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Figure 3.13: Comparison between different types of line broadening for the lowest vibrational band of propynal. The
spectrum simulates a temperature of300K and a pressure of1× 105 Pa. The upper plot shows the spectrumwithout any
broadening. Pure pressure broadening is considered using a Lorentz profile with a FWHM of∆ν̄L = 4.2× 10−4 cm−1

and Doppler broadening is considered using a Gaussian profile with ∆ν̄G ≈ 2.8× 10−5 cm−1 (depending on the
exact line position) as was calculated in Section 2.4. To consider both effects together, a Voigt profile of width∆ν̄V =
4.3× 10−4 cm−1 was used. The computational details for the line list are identical to [3].
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Figure 3.14: Comparison between different types of line broadening for a small number of rovibrational lines of propy‐
nal. The spectrum simulates a temperature of 300K and a pressure of 1× 105 Pa. The upper plot shows the spec‐
trum without any broadening. Pure pressure broadening is considered using a Lorentz profile with a FWHM of∆ν̄L =
4.2× 10−4 cm−1 and Doppler broadening is considered using a Gaussian profile with ∆ν̄G ≈ 2.8× 10−5 cm−1

(depending on the exact line position) as was calculated in Section 2.4. To consider both effects together, a Voigt profile
of width∆ν̄V = 4.3× 10−4 cm−1 was used. The computational details for the line list are identical to [3].
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Since Doppler and temperature broadening yield almost identical spectra, it is not surprising
that the Voigt profile also yields the same result. As mentioned before, unlike the broadened
spectra, the bar plot allows to see the microstructure consisting of many progressions. This is
also the reason why line broadening is only used for comparisons with experiments and not
for the spectroscopic analyses as for example in Ref. [1, 4] and in Section 3.2.
Fig. 3.14 shows a very small spectral range of only 0.03 cm−1. It can be seen that the

difference between the Lorentz and the Gaussian broadened spectra is indeed very signifi-
cant. In addition, the Voigt profile yields a similar result to the pressure broadening. This
is to be expected, since the convolution of the Lorentz function with the very sharp Gaus-
sian peaks is similar to a convolution with a δ-distribution. Therefore, the profile should re-
main unchanged. The main conclusion from this figure is that the different types of broad-
ening are correctly implemented and that they behave as expected. In conclusion, the spectral
range shown in Fig. 3.14 is smaller than the expected accuracy of the rovibrational transition
frequencies. Therefore, the accuracy of the applied broadening is higher than what can be
achieved for the line positions.

3.4 Runtime optimizations

Runtime optimizations are critical for quantum chemical calculations in general and for the
simulation of rovibrational infrared spectra in particular. To tackle this challenge, quantum
chemists employ various optimization techniques such as parallelization, which allows the
workload to be distributed among multiple processor cores. Additionally, precalculations
such as contractions or the calculation of specific integrals that appear multiple times can
reduce the number of required calculations. Finally, sophisticated thresholds for the wave
function coefficients can be set to minimize the computational effort required to achieve a
desired level of accuracy. These optimizations enable more efficient and accurate simulations,
allowing the study of larger molecules.

3.4.1 Parallelization

One of the most common optimization methods in modern programming is parallelization
across multiple processor cores. Since on one hand the general idea is very clear and on the
other hand the implementation details are extremely specialized, this will be discussed only
briefly and the focus is on the resulting runtime savings. The most important points are that
CPU parallelization is used (in contrast to GPU parallelization) and that there are parts in the
code that will always run in serial and only for certain loops the parallelization will be used.
If the specific loop passes are independent and there is a sufficiently high number of loop
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Figure 3.15: Relative runtime in % normalized to the time for one CPU core. In the theoretical limit, there is no overhead,
i.e. the runtime scaling for n CPU cores corresponds to 1/n. Benchmark calculation on H2CS, with 45 vibrational basis
functions, Jmax = 45, the µ‐tensor was considered up to 2nd order for the rotational terms and 1st order for Coriolis
coupling terms, the VCI space is restricted to levex=5, citype=5 and cimax=15. For the calculation on 48 CPU cores,
an issue for the intensity (faint blue) runtime determination occurred. Since this makes that one data point unreliable, it
was excluded.

passes (ideally much larger than the number of CPU cores), than the different passes can be
distributed among the cores. The parallelization is implemented for,

• ... the precalculation of the vibrational integral
〈
ϕi ′vib
∣∣µαβ ∣∣ϕivib〉 of the rotational terms

(see also (2.22)). The loops over the left and right vibrational basis functions are com-
bined. Hence, if for example nvib = 45 vibrational basis functions are considered, than
nvib(nvib + 1)/2 = 1035 (for symmetry reasons only a triangle has to be calculated)
tasks are distributed among the CPU cores. This results in a very high parallelization
efficiency.

• ... the precalculation of the vibrational integral
∑

α

〈
ϕi ′vib
∣∣ παµαβ ∣∣ϕivib〉 of the Coriolis

coupling terms. Again, the loops over the left and right vibrational basis functions are
combined, resulting in a very high parallelization efficiency.
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• ... the build up and diagonalization of the RVCI matrices for the different quantum
numbers J . Hence, for a large number of CPU cores (> 8) the parallelization efficiency
is much lower, since there are only up to Jmax tasks to distribute. In the following ex-
ample for H2CS Jmax = 45 is lower than the maximum number of CPU cores, that was
considered. However, for large molecules Jmax can easily increase up to 100. Further
improvements are possible once the block-diagonal structure in the irreps is abused as
well.

• ... the intensity calculations. Again, two loops over vibrational states are combined. In
contrast to the precalculations, where the loops iterate over vibrational basis functions,
in this case the iteration is the assigned initial and final vibrational state. Note that the
number of initial vibrational states is 1, if hot bands are not considered. Therefore, a
high parallelization efficiency is given, if there are at least some hot bands.

• ... the determination of the vibrational transition moments. The aforementioned loop
combination was applied again. However, this part of the program usually takes less
than 1 % of the total calculation time. For this reason, and because of the low accu-
racy of measuring short time intervals (< 5 s), they will not be analyzed in the further
discussion.

For the benchmark calculations it was necessary to chose a small molecule with low mem-
ory demands. Otherwise the use of up to 48CPU cores would not be feasible. For this reason,
H2CS with nvib = 45 vibrational basis functions, Jmax = 45, 2nd order µ-tensor for the rota-
tional terms and 1st order for Coriolis coupling terms was considered. A larger value for Jmax

and nvib would have been beneficial for the parallelization, but unrealistic and unnecessary for
such a small molecules. Hence, this can be understood as a lower bound for the parallelization
efficiency. In Fig. 3.15 the two types of precalculations (dark and bright green) nearly reach
the maximum possible efficiency, with 158 s (rotational term) and 383 s (Coriolis term) for
the single core calculations and 4.5 s and 10.1 s for the 48 core calculations. As mentioned
before, the parallelization efficiency is the lowest for the build up and diagonalization of the
RVCI matrices (especially for more than 8 CPU cores) and significantly better for the deter-
mination of the intensities (bright blue). A problem in the runtime tracking for the 48 core
intensity calculation, is the reason that there is one data point missing. The pink curve in Fig.
3.15 shows the overall parallelization efficiency of the RVCI. The exact numbers show that a
48 core calculation requires about 5.3% of the time for a single core calculation. In contrast,
the theoretical limit would be 1/48 = 2.1%. This shows that the parallelization is already very
efficient, even though the molecule is relatively small.
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Table 3.1: Wall clock times of different parts in the RVCI program with precalculations tPrecalc and without precalculations
tInitial

Program part tInitial [s] tPrecalc [s]
MSRB determination: 9.8 9.2
Precalculation rotation terms: — 158.1
Precalculation Coriolis terms: — 382.6
RVCI energies: 26915.4 3155.5
Vib. trans moments: 22.5 22.4
Infrared intensities: 4842.6 4857.1
RVCI-Total: 31842.7 8562.5

Note: Single core benchmark calculation for H2CS with nvib = 45 vibrational basis functions, Jmax = 45, 2nd order
µ-tensor for the rotational terms and 1st order for Coriolis coupling terms. Calculation was performed during implemen-
tation of the precalculation, hence calculation times can differ frommost recent version of the code.

3.4.2 Precalculations

The first runtime optimization introduced in the course of this PhD is related to precalcula-
tions of vibrational integrals for the RVCI matrix. As mentioned before, the rotational term
can be written as,

1

2

∑
αβ∈{x,y,z}

〈
ϕ′vib
∣∣µαβ ∣∣ϕ′′vib〉 〈ϕ′rot∣∣ JαJβ ∣∣ϕ′′rot〉 (3.1)

with a vibrational integral
〈
ϕ′vib
∣∣µαβ ∣∣ϕ′′vib〉 and a rotational integral ⟨ϕ′rot| JαJβ |ϕ′′rot⟩. In ad-

dition, the Coriolis coupling term is given by

1

2

∑
αβ∈{x,y,z}

〈
ϕ′vib
∣∣ παµαβ ∣∣ϕ′′vib〉 〈ϕ′rot∣∣ Jβ ∣∣ϕ′′rot〉 (3.2)

plus a commuted term. There is also a vibrational integral
〈
ϕ′vib
∣∣ παµαβ ∣∣ϕ′′vib〉 and a rotational

integral ⟨ϕ′rot| Jβ |ϕ′′rot⟩ for this term. The trivial way to implement this would be to calculate
the vibrational integrals for each of the Jmax different RVCI matrices. However, since these
integrals are independent of J , they are the same for all RVCI matrices. In Tab. 3.1, the run-
time savings are very large. About 86% of the computational time or about a factor of 8 can
be saved. The only disadvantage of this optimization is that two additional arrays have to to
be stored. However, they are much smaller than the RVCI coefficient array and the intensity
array. Therefore, this additional memory demand can be neglected.
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Table 3.2: Wall clock times of different parts of the program with contraction tContracted and without contraction tInitial

Program part tInitial [s] tContracted [s]
Precalculation terms: 4.5 4.4
RVCI energies: 3200.1 3251.6
Infrared intensities: 6312.6 1616.9
RVCI-Total: 9614.5 4969.8

Note: Single core benchmark calculation for H2CS (nvib = 25 vibrational basis functions, Jmax = 70, 0th order rota-
tional term, 0th order Coriolis coupling term). Since the calculations are performed during implementation, the times
can differ for most recent program version. 126 024 rovibrational states and 2 467 195 rovibrational transitions were cal-
culated, with 118 739 transitions being significant enough for printout (relative intensity larger than 1× 10−6).

Table 3.3: Wall clock times of different parts of the program with contraction tContracted and without contraction tInitial

Program part tInitial [s] tContracted [s]
Precalculation terms: 56.5 56.9
RVCI energies: 683.5 735.7
Infrared intensities: 248570.6 6672.2
RVCI-Total: 249313.4 7467.4

Note: Single core benchmark calculation for ketenimine (nvib = 22, Jmax = 50, 0th order rotational terms, 0th or-
der Coriolis coupling terms). 127 448 rovibrational states and 5 634 178 rovibrational transitions were calculated, with
459 017 transitions being significant.

3.4.3 Contraction

Analyseswithin this PhDhave shown thatneither the rigid rotorbasis (RRB)nor theWangba-
sis (WB) allow for an accurate quantumnumber assignment of k. For this reason themolecule
specific rotational basis (MSRB) was invented in the course of this PhD. Since the latter is a
linear combination of the RRB or the WB, an additional loop over the number of MSRB
coefficients occurs in the intensity calculation. More precisely, both the initial and the final
rovibrational state require this additional loop. Thus for a calculation with Jmax = 50 this
yields up to (2J + 1)2 = 10201 times more iterations over the innermost routines of the in-
tensity calculation and for Jmax = 70 it gives (2J + 1)2 = 19881 times more iterations.
However, it is possible to remove these additional loops. To do this, theMSRB coefficients

need to be contractedwith theRVCI coefficients. This effectivelymeans that theRVCI coeffi-
cients are transformed from theMSRB to theRRBorWB. Since similar contractionmethods
are already used inMOLPRO, the technical details will not be discussed here. However, the
amount of computational time saved will be quantified.
Two different benchmark calculations are provided, since the results are extremely sensi-

tive to the considered molecule. Note that an older version of the code was used to calculate
these timings, as there is no permanent keyword to switch between the uncontracted and the
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contracted versions of the program. For H2CS it can be seen in Tab. 3.2 that the calculation
of the RVCI energies and eigenvectors takes about 51 s or 1.6% more due to the additional
transformation at the end. However, the intensity calculation takes about 74% less time. For
the total RVCI computation time, this results in a saving of only about 50%. There are two
reasons for this: First, due to the small number of rovibrational transitions compared to the
number of rovibrational states, the energy calculations require an unusually large amount of
time. Second, it was found that the influence of the MSRB is smaller for H2CS compared to
ketenimine or propynal. This means that the vectors of the MSRB transformation have large
leading coefficients for H2CS. As a result, many of the iterations in the two additional loops
could be skipped. For ketenimine Tab. 3.3 shows that the energy and eigenvector calculation
time increases by 7.6%, but the intensities are determined 97% faster. Since for ketenimine
the intensity calculations dominate the total RVCI computation timemuchmore, the overall
savings are also much higher for ketenimine.

3.4.4 RVCI Coefficient Threshold

In quantum chemical calculations, it is a common phenomenon that time-consuming loops
over a large number of eigenvector coefficients occur. In most cases, only a minority of the
coefficients contribute to the majority of the final result. Therefore, it is common to skip the
loop pass if the coefficient is smaller than a certain threshold. Common examples of this are
during the calculation ofHamiltonianmatrix elements or intensities. In both cases, it is usual
that the coefficients occur in pairs, since both bra and ket contribute with a coefficient. In
this case, it is not obvious how to best apply the threshold. In the course of this thesis, three
different ways of applying the thresholds have been studied. This seems to be a rather small
detail, but it turned out that there is a large potential for runtime savings. Moreover, many of
the results can be generalized and used for different types of quantum chemical simulations.
Checking both coefficients individually with the same threshold will be called both coeffi-

cientsmethod (BCM). In the case of a small coefficient in the outer loop, this has the advantage,
that the entire inner loop can be skipped. However, there are two if statements that need to be
checked. If the skipping-ratio, i.e. the number of coefficients below the threshold divided by
the number of all coefficients, is not small enough, it produces a lot of unnecessary overhead
to check the if statements. Another disadvantage occurs when both individual coefficients
are a bit too large to be skipped, but the product is small enough to be skipped. However, this
is never checked with the BCM.
In contrast, the product only method (POM) applies the threshold to the product of the co-

efficients and not to the individual coefficients themselves. Since thismethod ismore selective,
it should be possible to choose a higher threshold, i.e. more calculations can be skipped. One
of the main advantages is, that in total more cases will be skipped, since the product of two
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Table 3.4: Comparison for the three different threshold methods.

Both Coefficients Product Only Hybrid
Threshold t [s] visual ntrans t [s] visual ntrans t [s] visual ntrans

1× 10−2 1013 7 50566 7158 7 55544 1012 7 55544
1× 10−3 1194 7 19874 7225 7 46820 1186 7 46820
1× 10−4 1561 ◦ 1842 7220 ◦ 29034 1525 ◦ 29034
1× 10−5 2140 ✓ 48 7197 ✓ 7073 2044 ✓ 7073
1× 10−6 2774 ✓ 0 7214 ✓ 850 2621 ✓ 850
1× 10−7 3399 ✓ 0 7276 ✓ 0 3184 ✓ 0
1× 10−8 3996 ✓ 0 7357 ✓ 0 3724 ✓ 0

Note: The total number of transitions is 86387.

coefficients will always be smaller than the individual coefficients. The other advantage is, that
the threshold will be checked only once, hence there are potentially less if statements. How-
ever, a major disadvantage is that, unlike with the BCM, the inner loop cannot be skipped
entirely. Therefore, in some cases it may actually require more if statement calls.
The hybrid method (HM) tries to combine the advantages of both previous methods. It

uses both a threshold on the first coefficient and a threshold on the product. The former has
the potential to skip the entire inner loop, asmentioned above. The only disadvantage ofHM
compared to POM is that there are two if statements instead of one in the POM.This should
only come into play when the skipping-ratio is extremely small.
Since these benchmarks were performed at an earlier stage of the PhD, the reference calcula-

tion uses a less time consuming parameter set, than the previous ones. For this reason, H2CS
with nvib = 25 vibrational basis functions, Jmax = 35, 1st order µ-tensor for the rotational
terms and 0st order for the Coriolis coupling terms was considered. To compare the results,
two different methods are used to judge whether the influence of the thresholds is reasonably
small. The first metric is the number of transitions that differ between the reference calcu-
lation without a threshold and the specific calculation with the threshold. This is denoted as
ntrans in Tab. 3.4. Note that transitions are only printed, if their strength is at least 1× 10−6 of
the strongest line in the spectrum. Moreover, there are 86387 transitions printed in total and
they are considered “different” if their change in intensity exceeds 1%. Thus, for a threshold of
1× 10−4 using the BCMyields a total of 1842 changing lines, i.e. 2.1% of the lines are changed
by the threshold. However, this metric is somewhat problematic, because it does not distin-
guish whether the 1% change in intensity is on a strong or a weak transition. This is solved
by the second metric, which is done by visual inspection of the spectra. Although this may
not seem very scientific and is not automated, it has the advantage of not being susceptible to
numerical noise. In the end, the goal was to provide a binary label of whether the system had
converged or not. However, it turned out that distinguishing between three different states
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reflects the reality much better. In Tab. 3.4 the symbol✓denotes no changes in the spectrum,
7 denotes significant changes and a ◦mark barely visible changes. In addition, Tab. 3.4 shows
the computation time in seconds for the three different methods. Each method converges at
about the same threshold, according to the visual inspection. This makes the analysis much
easier, since the quality of the spectra at a given threshold can be assumed to be roughly the
same for the different methods.
Tab. 3.4 shows that the BCM leads to a lower number of modified transitions than POM

for equal thresholds. This is to be expected since the product of the coefficients is always
smaller than the individual coefficient and therefore more loop passes are skipped. Moreover,
the POM and HM yield the same results in terms of ntrans, which could also be expected for
the same reason. The visual comparison shows that the large differences in ntrans between the
BCM and POM aremuch less significant, than they appear from the raw numbers. Themost
important result, however, is the runtime advantage of BCM and HM over POM.While the
POM saves about 5%, the other twomethods can save up to 80% of computational time with-
out losing too much accuracy. This is due to the fact that POM cannot completely skip the
entire inner coefficient loop, while BCM and HM can. The other important finding is, that
BCM is only slightly slower than the HM. This is despite the fact, that it leads to one order of
magnitude lower ntrans in the interesting threshold range between 1× 10−4 and 1× 10−6. In
conclusion, although the topic discussed in this subsection may seem unimportant, it could
be shown that there are significant runtime improvements possible by choosing the appropri-
ate method. Since similar methods are used for the build up of the RVCI matrix and the VCI
matrix, there is also a significant potential for generalization. Moreover, these results can be
improved by introducing sparse coefficient arrays. In this case, the if statements are applied
only once per coefficient, as opposed to many times in the intensity calculation.
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4
Summary and Conclusion

Anew implementation of rovibrational configuration interaction (RVCI) theory has been de-
veloped in this thesis for the determination of rovibrational energies and infrared intensities
using configuration interaction theory. The approach is based on a multi-mode expansion
of the multi-dimensional potential energy surface (PES) and dipole moment surface (DMS),
incorporating vibrational self-consistent field (VSCF) theory and vibrational configuration
interaction (VCI) theory. Unlike the previously developed rotational configuration interac-
tion (RCI), the new approach accounts for the interaction between rotational and vibrational
bands by using a direct product between vibrational and rotational basis functions. The rota-
tional and Coriolis coupling terms are implemented including the higher order terms of the
inverse effective moment of inertia tensor µ of the Watson Hamiltonian. In addition, a new
rotational basis function calledmolecule specific rotational basis (MSRB) is introduced to im-
prove the assignment of the quantum number k.

For the convergence of various series expansions for the RVCI theory H2CS is used as a
benchmark molecule. In contrast to Ref. [2], this work shows mainly qualitative differences
in the spectra. Five different parameters are considered in terms of their convergence behavior,
with some of them showing a very individual phenomenon in the spectrum if not sufficiently
converged. The calculations obtained with smaller Jmax show an artificial additional band
head. Since this is always the case when Jmax is not converged, it is relatively easy to detect in
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most cases. The artifacts caused by an improper convergence of Jmax are significant and are
therefore not a valid compromise to save computation time.
Larger molecules such as ketenimine and propynal depend critically on the convergence of

the CI space. This applies not only to the VCI energies but also to the wave functions. A
slightly too small CI space will only result in frequency and intensity shifts. In this case, the
VCIwave functions are largely converged. In contrast, the effect of an insufficiently converged
VCIwave function leads to extreme artifacts and there is almost no agreementwith the correct
spectrum. Consequently, the VCI energies are a weak indicator for the convergence of the
corresponding wave functions. A better indicator is provided by the VCI intensities.
The size of the vibrational basis set is a crucial parameter in terms of quantitative changes,

but the qualitative changes aremuchmore subtle than for Jmax and for theCI space. The over-
all structure remains relatively unchanged regardless if only 4 or 45 excited vibrational bands
are considered. A larger vibrational basis set leads to shifts for these bands, but an insufficient
convergence does not lead to artifacts and is therefore difficult to detect. Usually the spec-
tral separation between different vibrational bands is a good indicator for the strength of the
coupling.
A characteristic feature of H2CS is the particularly strong Coriolis coupling between two

quasi-degenerate vibrational modes. The 0th order Coriolis coupling is very significant in this
region. A comparison of the 0th order Coriolis coupling with the 1st order shows almost no
difference in the macrostructure. In contrast to the Coriolis coupling terms, the rotational
terms require a one order higher µ-tensor expansion. A comparison between the 0th and 1st
order rotational terms shows shifts for progressions of at most 5 cm−1. The changes induced
by the 2nd order terms are not visible on a 40 cm−1 wide plot range. Moreover, it should be
noted that there are hardly any intensity shifts visible. In addition, the absence of higher order
coupling terms does not cause artifacts in the spectrum. This is in contrast to an insufficiently
converged CI space or Jmax. Hence, a lack of higher order coupling terms is much more diffi-
cult to spot in the resulting spectra.
The first paper [1] written in the course of this thesis studied ketenimine (CH2CNH). The

calculation in that paper reliedon anumberof approximations, that couldbe removedover the
last years. Most of these approximations did not drastically affect the spectra. Except for the
regions at 800 to 950 cm−1 and 2900 to 3100 cm−1 there are only minor changes. However,
the quality of the quantum number assignment, the consistency of the intensities and the
consideration of coupling has improved significantly over the last three years. This can be
seen for the ν1 band and for the strong coupling between ν8 + ν12 and ν11. The latter two
bands also confirmed an assumption made in Ref. [1] that higher order µ-tensor terms are
only needed when at least three vibrationalmodes differ between two vibrational states. The
new calculations also revealed an interesting turnaround progression in this region.
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The line broadening study is based on theRef. [3] using propynal (CHCCHO) as a bench-
markmolecule. For small molecules (N2, H2O,CH4, NH3, etc) different broadening profiles
(for different broadening effects) have been invented, ranging from Lorentz and Gaussian
profiles to Voigt and beyond Voigt profiles. Since the RVCI theory is specialized for larger
molecules (6−10 atoms), it was assumed that themore sophisticated broadening profiles were
not needed. However, Lorentz, Gaussian, and Voigt profiles have been implemented during
this PhD project. Although the Lorentz FWHM is more than one order of magnitude larger
than the Gaussian FWHM under terrestrial conditions, a comparison of the Doppler broad-
ening with the temperature broadening shows almost identical cross sections for propynal.
The reason for this is that the high mass (compared to N2, H2O, CH4, NH3, etc) and the
larger moment of inertia tensor lead to the high rovibrational state density. This confirms the
assumption that for molecules with 6 − 10 atoms there is no need to consider sophisticated
broadening algorithms.
Four different types of runtime optimizations have been implemented and analyzed in this

thesis. The parallelization scales almost perfectly in the number of CPU cores for the two
types of precalculations and intensity calculation. Only the RVCI matrix build up and diag-
onalization saturates at 8 CPU cores for small molecules. The precalculations of vibrational
integrals save about 86% or a factor of 8 in total computation time. The contraction of the
MSRB coefficients and the RVCI coefficients result in a total computational time reduction
of 50% for H2CS and 97% for ketenimine. Lastly, a comparison between different implemen-
tations of the RVCI coefficient thresholds showed that the most efficient way is to check both
thresholds individually with up to 80% runtime savings.
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5
Outlook

To achieve the goal of predicting infrared reference spectra for 6-12 atomic biologically rele-
vant gases at room temperature for a broad spectral range, withMOLPRO, no additional fea-
tures are actually needed. Instead, themain problem lies in thememory requirements and the
runtime efficiency of the program. Thus, the calculation of the three applications presented
in this thesis was only achieved through compromises in one or more of the above aspects:
in some cases, 4-atomic molecules were calculated (which is on the edge what other research
groups can also calculate), or the spectral range had to be very small (see [3], 6 atoms but
only 0 to 350 cm−1). In addition, the focus was on low temperatures in the range from 10 to
200K as found in the interstellarmedium (ISM). These results are very valuable and useful for
the ISM community and offer many further applications in the future. However, the current
state of the program is still not quite performant enough to calculate largermolecules at higher
temperatures, mainly due to computational efficiency. Therefore, at first various methods to
improve the efficiency will be presented (see Section 5.1). Subsequently, a series of additional
functionalities will be introduced to make the program more universally applicable (see Sec-
tion 5.2). Last but not least, an outlook is given for a number of projects that were started as
part of this PhD but were not originally planned and therefore have not yet come to a final
conclusion (see Section 5.3).
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5.1 Runtime and memory savings

TheRVCImatrix has a block-diagonal structure in theJ quantumnumber, which is of course
exploited. In addition, there is another block-diagonal structure in the rovibrational irreps.
Exploiting this symmetry-based optimization requires the use of one of the two Wang bases
mentioned before. This rotational basis was implemented by Erfort. In this thesis, an algo-
rithm was implemented that swapped the rows and columns of the matrix to visualize this
block diagonal structure for the matrix build up and diagonalization. However, this was only
for testing purposes, to check if theWang combinations and theMSRB are implemented cor-
rectly. Based on this, it is now possible to actually exploit the block diagonal structure with
little effort. This would have several advantages: There are memory savings due to shorter
eigenvectors. ( For example, for C2 or CS symmetry by a factor of 2, for C2v symmetry by a
factor of 4, etc.) An equally important effect is the runtime savings: On the one hand, because
fewer matrix elements have to be calculated, on the other hand, because the diagonalization is
faster, and last but not least, because the vectors become shorter for the intensity calculations.
Another, and perhaps the most powerful way to save memory is to exploit sparsity in the

array that saves the RVCI eigenvector coefficients. This is allocated at full size prior to com-
puting the RVCI matrices and is one of the two most memory consuming arrays in RVCI,
along with the array storing the intensities and transitionmoments. Themain reasonwhy the
memory optimization is so crucial is that the parallelization can no longer be used in a mean-
ingful way due to the vast amount of memory required. For example, a calculation for a 6
atomic molecule, with a vibrational basis of about 100 states and Jmax = 100 requires in some
cases 150GB working memory. This only allows the computation to be done on 3-6 cores
instead of 48 cores otherwise. This is mainly a technical problem. The exploitation of sparsity
combined with parallelization and the static memory management of MOLPRO make this
task challenging. Since the array that stores all eigenvectors is allocated prior to setting up the
RVCImatrices for different J values in parallel and diagonalizing them, the knowledge of how
large the sparse eigenvector array has to be is missing during allocation. A possible solution
could be to write the eigenvectors temporarily in a sparse way on the disk and to read them
later again.
As mentioned before, there are two arrays which cause most of the total memory require-

ments. One of the two arrays stores the intensity and the transitionmoments. Since for asym-
metric top molecules only the selection rule for J is valid but not the rule for ka and kc, there
is an extremely high number of rovibrational transitions which are taken into account, but
only a small part of them has meaningful intensity. For instance, during the calculations for
DPNN, 1× 108 transitions were initially considered, although ultimately only 4× 105 tran-
sitions had a sufficiently high intensity of 0.1% relative to the most intense rovibrational line



Chapter 5. Outlook 87

in the spectrum. Concerning the 6 atomic propynal, 1.7× 108 transitions were first consid-
ered of which 1× 107 had a relative intensity higher than 0.001% (very conservatively cho-
sen). Moreover, for each transition, both the temperature-independent rovibrational transi-
tion moment and the intensity for each desired temperature are stored. Thus, an array size of
more than 1× 109 entries is achieved easily. However, by using the programwithin this PhD,
it has been shown that calculating and storing the transition moment without any intensities
is perfectly adequate and is also common in the community. To determine the temperature
dependent prefactor for the thermal occupation of the states and thus the intensities only the
partition function for the corresponding temperature is required. Thus, the size of the array
can be reduced to the number of transition moments. Furthermore, sparsity could be used
for this array as well, since a large amount of considered transitions has no meaningful inten-
sity. An easy solution for the abuse of sparsity is prevented by the fact that neither linked lists
nor dynamic memory management can be used in MOLPRO. A possible workaround is a
batch mode that occasionally prints the already calculated values and keeps only a part of the
array in the memory. However, this will cause minor printout problems for parallel calcula-
tions of the program, since the transitions will be printed in an unsorted way. Alternatively,
at first all sufficiently intensive transitions could be written on the disk, while the program is
in parallel mode. After all transitions have been calculated, the parallel mode is terminated,
the information is read again, sorted and printed in an ordered fashion.

While some successful attempts have been made for the rotational terms to save runtime,
this has not yet been done for the Coriolis coupling terms. The 0D µ-tensor coupling terms
are usually computed very quickly and probably do not need any optimization. As shown in
Ref. [2], the 1D µ-tensor terms for a 4 atomic molecule can still be computed in ≈ 50 s, but
the efficiency scales very poorly, so that even for such a small molecule the runtime for the 2D
terms increase to ≈ 1600 s. In the previously mentioned publication, H2CS was deliberately
chosen as it is a relatively strongly coupled molecule. For states with high assignment confi-
dence, the 2D terms, have shown average errors of only 0.2 cm−1. However, on average over
all states, the deviations are about 5.3 cm−1. Therefore, it would be useful to introduce an in-
termediate level between 1D and 2D terms, where prescreening is used to identify the largest
contributions of the 2D terms early on and only consider them in the calculation. Also, some
runtime critical if-statements in the innermost loops in the code (due to Kronecker δs in the
equations) could be removed together with one of the loops by loop-unrolling. The num-
ber of nested if-statements increases strongly with order, which is why this could be especially
important for the 2D terms. Another point for optimization is the threshold value used to de-
cide whether the product of the coefficients of the two VCI wave functions (initial and final
state) is large enough to calculate the Coriolis coupling term for this matrix entry. So far, this
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threshold is independent of whether 0D, 1D or 2D terms are calculated. As at other places in
the program code and e.g. with the rotational terms could be tightened for the higher orders.
A further small runtime optimization occurs in the intensity calculation whenWang com-

binations are used as the rotational basis. However, the integrals for the rotational part are
implemented for symmetric top basis functions. That is, the integral ⟨J ′, k′|D |J ′′, k′′⟩ (with
the DMS D) can be computed directly by an analytic expression. If a Wang combination
|J ′′, K ′′, τ ′′⟩ ∝ |J ′′, k′′⟩ ± |J ′′,−k′′⟩ is used, the integral must be evaluated four times (two
possibilities each for ⟨J ′, K ′, τ ′| and |J ′′, K ′′, τ ′′⟩). However, since there is a loop over the
RVCI basis functions anyway, there is the possibility of a contraction of the two Wang coef-
ficients with the RVCI coefficients. This could save up to a factor of four in runtime during
the intensity calculation.
An additional method that could potentially save runtime in the calculation of RVCI ener-

gies concerns the rotational integrals. These are generally calculated analytically and are there-
fore already relatively efficient. However, the same rotational integrals are calculated very of-
ten (especially for large J quantum numbers). In principle, these values could be calculated
once, stored in an array and then only read in. In contrast to the other methods presented
here, it is very difficult to estimate how big the runtime benefit is, since in this case the com-
putational effort must be weighed against the time required to read out an array.

5.2 Additional functionality

So far, there are some limitations in the implementationofRVCI. For example, onlymolecules
that are non-linear and with an asymmetric top moment of inertia tensor can be com-
puted. The modifications of algorithms for symmetric and spherical tops are mainly related
to changes in the assignment and are thus fairly localized. In addition, there are effects on
the selection rules, whereby this primarily results in runtime savings. In contrast, non-linear
molecules require changes in the Watson Hamiltonian, in the consideration of non-Abelian
point groups, in the assignment of quantum numbers, especially with respect to the l quan-
tum number, and last but not least in the selection rules. Some of these changes are already
partially implemented, but for the rovibrational code, most of it is still to come.
An essential feature of theMOLPRO program package is its ease of use compared to simi-

lar programs. It is crucial to set as many input parameters as possible automatically, without
the need for the user to understand all parts of the program. Since the RVCI program is a
very new part, it still requires relatively many user settings. So far the maximum total angu-
lar momentum Jmax has to be set manually. This could be determined automatically from
the convergence behavior of the partition function. Also, the order of the µ tensor for the
rotational and Coriolis coupling terms could possibly be set automatically by prescreening of
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the corresponding integrals. However, non-converged VCI wave functions are a bigger prob-
lem for the subsequent RVCI calculation. This leads to artifacts in the rotational vibration
spectra, as discussed in Chapter 4. The fact, that the VCI wave functions are sometimes not
converged is not surprising, since during the iterations of the VCI calculations so far there is
only a convergence check for the energy eigenvalues, but not for the eigenvectors. However,
this phenomenon can only be detected after the RVCI calculation is finished. In principle
there are different possible solutions, which shall not be discussed here. However, at the end
some key aspects will be to have at least amonitoring of the convergence behavior of the eigen-
vectors and an algorithm that automatically determines whether a rovibrational progression
contains artifacts.

Thedeterminationof the partition function is a relatively simple part of theprogram,which
leads for the isotopically pure spectra that we consider only to a global prefactor. However,
this prefactor becomes crucial when different isotopes or different molecules are represented
in a single spectrum. Moreover, the partition function is also of interest apart from line lists
and spectra, since it is an important thermodynamical quantity. As mentioned above, two
methods for its calculation have been implemented so far. In the first case, the separation
approximation or the rigid rotor approximation is used. Thereby, the VSCF modals can be
used to efficiently approximate vibrational energies up to an arbitrary level. The same is true
for the rotational energies using the RCI. Alternatively, the separation approximation can be
dropped and the RVCI energies can be used directly to calculate the partition function. Al-
though this removes an approximation, it does not necessarily lead to a more accurate result,
because the calculation of the RVCImatrices for high J is very time-consuming and therefore
the expansion has to be stopped earlier thanwith the RCI. Furthermore, the vibrational space
spanned by theVCIwave functions is significantly smaller compared to usingVSCFmodals in
the separation method. The solution here would be a hybrid method, which uses the RVCI
energies for low J values and vibrational frequencies and approximates the remaining part
with the separation approximation.

A final additional feature that is critical to the computation of line lists are uncertainties
or error estimates for the rovibrational energies and intensities. In well-known infrared (IR)
databases such asHITRAN [127, 130] and Exomol [84], the uncertainties are given for either
one or both quantities. This is of particular importance for the identification of molecules,
since it is preferable to skip uncertain lines rather than plotting them incorrectly in the spec-
trum. For the determination of uncertainties for the energy and intensities there are in prin-
ciple a number of possibilities, such as statistical approaches in which the calculations are run
several times and then the mean and standard deviation are determined for each line position
and strength. The use of learning algorithms is also conceivable. These can generalize e.g. for
one spectrum from a small number of labeled lines to all lines. Alternatively, they could be
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trained on a small number of molecules and then generalized to many molecules. Further-
more, uncertainties in the energies could be estimated using the residuals in the parameter
fitting (PFIT).

5.3 Miscellaneous

Last but not least, there are a number of projects thatwere startedwithin the frameworkof this
PhD, but were not originally planned and therefore have not yet come to a final conclusion.
The most important of these projects are briefly outlined here.
As alreadymentioned before, the parameter fitting (PFIT) program already provides values

for the rotational and all centrifugal distortion constants up to the sextic order. However, the
implementedGauss-Newton optimizer converges relatively unreliably and slowly. This could
be addressed by a more sophisticated optimizer. Also, a proper algorithm to reduce the num-
ber of states that are fitted is needed. This is also done in the SPFIT used by experimenters to
achieve better convergence. Currently, this task is solved by relying on the assignment thresh-
old and an iterative residuum cutoff, which is considered an interim solution. Once the PFIT
programprovides reliable values, the fittedHamiltonian could then be used to feed back infor-
mation to the RVCI program, to improve the quality of its results. For example, the quantum
number assignment could be improved, estimates for the uncertainties in the RVCI energies
could be made, unstable lines could be identified, or unconverged VCI wave functions could
be detected. Hence, the PFIT has the potential to accomplish much more tasks, than purely
fitting the spectroscopic constants.
The presence of unstable lines has already been addressed in Chapter 3. An algorithm to

solve the problem was also presented. However, this phenomenon is also described in the
works of the groups of Tennyson [125] and Tyuterev [75]. Since neither group follows our
approach, a comparison with their methods might be helpful and inspirational. So far, in
MOLPRO, a random minimal perturbation (of about 1× 10−3 cm−1) is applied to all rovi-
brational states to cancel the degeneracy. Although this has never caused problems before, it
does not seem to be a great solution. If there were an algorithm that detected the unstable
lines, this minimal perturbation could be applied much more selectively. For this reason, the
search for such an algorithm seems to be a very desirable goal.
One topic where a lot has been achieved within this PhD is the assignment of the k and ν

quantum numbers and for the irreps. The introduction of the MSRB, the use of the projec-
tion method instead of purely considering the leading coefficients, and an irrep assignment
based on the irrep of the RVCI basis functions instead of the detour via the bad k, ν quantum
number of the RVCI eigenvector has led to much more stable and consistent results. Nev-
ertheless, there are of course cases where the assignment of the k, ν quantum number does
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not work reliably. As mentioned above, the assignment of the irreps – and thus that of the
NSSW prefactor – has been decoupled from the assignment of the k and J quantum num-
bers. Thismakes it necessary to find outwhether there is really a practical benefit to improving
the assignment of k and J , or whether this is a purely academic problem.
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Abbreviations

AGB asymptotic giant branch

BCM both coefficients method

COM complex organic molecules

DIM direct imaging method

DMS dipole moment surface

EM exomoon

EP exoplanet

EPA exoplanet atmosphere

FWHM full width at half maximum

HM hybrid method

IR infrared

ISM interstellar medium

MSRB molecule specific rotational basis

NSSW nuclear spin statistical weights

PES potential energy surface

PFIT parameter fitting

POM product only method
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94 Abbreviations

PS polarisability surface

RCI rotational configuration interaction

RRB rigid rotor basis

RVCI rovibrational configuration interaction

RVM radial velocity method

SNR signal-to-noise ratio

TM transit method

VAM vibrational angular momentum

VCI vibrational configuration interaction

VSCF vibrational self-consistent field

WB Wang basis
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Calculations on Ketenimine
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Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart, Germany

From an astrochemical point of view ketenimine (CH2CNH) is a complex organic molecule

(COM) and therefore likely to be a building block for biologically relevant molecules. Since

it has been detected in the star-forming region Sagittarius B2(N), it is of high relevance

in this field. Although experimental data are available for certain bands, for some energy

ranges such as above 1200 cm−1 reliable data virtually do not exist. In addition, high-level

ab initio calculations are neither reported for ketenimine nor for one of its deuterated

isotopologues. In this paper, we provide for the first time data from accurate quantum

chemical calculations and a thorough analysis of the full rovibrational spectrum. Based on

high-level potential energy surfaces obtained from explicitly correlated coupled-cluster

calculations including up to 4-mode coupling terms, the (ro)vibrational spectrum of

ketenimine has been studied in detail by variational calculations relying on rovibrational

configuration interaction (RVCI) theory. Strong Fermi resonances were found for all

isotopologues. Rovibrational infrared intensities have been obtained from dipole moment

surfaces determined from the distinguishable cluster approximation. A comparison of the

spectra of the CH2CNH molecule with experimental data validates our results, but also

reveals new insight about the system, which shows very strong Coriolis coupling effects.

Keywords: ketenimine, ab initio calculations, Fermi resonances, rotational spectrum, VSCF/VCI theory,

rovibrational calculations

1. INTRODUCTION

More than 200 molecules have been detected in the interstellar medium (ISM) or circumstellar
shells (Müller et al., 2001, 2005; Endres et al., 2016; McGuire, 2018) presenting a chemical variety
from rather stable to highly reactive species such as radicals, carbenes, and molecular ions. In a
similar way, the size measured by the number of atoms varies substantially from simple diatomics
(e.g., CO, CN, and OH; Weinreb et al., 1963; Jefferts et al., 1970; Wilson et al., 1970), to carbon-
chain molecular species like cyanopolyynes (HCnN; Ohishi and Kaifu, 1998) and simple organic
molecules like methanol (CH3OH; Ball et al., 1970), up to still larger compounds like polycyclic
aromatic hydrocarbons (PAHs; Allamandola et al., 1989) and fullerenes (C60; Cami et al., 2010).
Within the context of astrochemistry molecules with 6 or more atoms are usually referred to
as complex molecules and when carbon is present also as complex organic molecules (COMs;
Herbst and van Dishoeck, 2009). Such compounds are thought to be important building blocks for
biologically relevant molecules (Woon, 2002; Theule et al., 2011; Ohishi, 2019) and accordingly,
much attention has been paid to the study of formation pathways for COMs (Herbst and van
Dishoeck, 2009; Öberg, 2016, and references therein).
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Examples of such COMs are the class of imines (R-C=NH).
They have been shown to be important intermediates for the
hydrogenation of CN moieties (Theule et al., 2011; Krim et al.,
2019). Recently, formation of imines has been reported for
radiative-processing of ices. Vasconcelos et al. investigated the
products from ion irradiation of N2-CH4 ice mixtures by in-
situ Fourier transform infrared spectroscopy (FTIR) and, among
others, methyleneimine was identified (Vasconcelos et al., 2020).
In a similar fashion, Carvalho and Pilling (2020) detected
ketenimine by FTIR spectroscopy upon irradiation of acetonitrile
ice with X-rays (6–2000 eV). Ketenimine (H2C=C=NH) is one
of only 4 imines which have been conclusively identified to
be present in the ISM (Godfrey et al., 1973; Kawaguchi et al.,
1992; Lovas et al., 2006; Zaleski et al., 2013). Using the 100 m
Green Bank Telescope Lovas and coworkers observed three
rotational transitions of ketenimine toward the star-forming
region Sagittarius B2(N) (Lovas et al., 2006). It is known that
temperatures in Sagittarius B2(N) vary between 40K in the
envelope and 300K in the hot dense core (Martín-Pintado et al.,
1996). Therefore, it could be possible that not only the rotational
spectrum of ketenimine can be detected with radio telescopes,
but also the rovibrational spectrum due to IR spectroscopy. Since
Sagittarius B2(N) is a star forming region, the question arises
whether ketenimine can be found in protoplanetary disks or even
exoplanet atmospheres. Considering the recent successes in this
field (Charbonneau et al., 2002;Mandell et al., 2013; Gandhi et al.,
2020) as well as the upcoming space telescopes JamesWebb Space
Telescope (JWST) and Atmospheric Remote-sensing Infrared
Exoplanet Large-survey (ARIEL) with high sensitivity in this
spectral range this is a feasible aim.

Given its importance as the simplest member of a larger
class of chemically interesting molecules (Alajarin et al., 2012),
ketenimine has been subject to a number of experimental
spectroscopic investigations which revealed a complex
rovibrational spectrum. The first spectroscopic investigation of
ketenimine was reported by Jacox and Milligan (1963). Infrared
transitions of the transient species were tentatively assigned
following the reaction of NH with acetylene in argon matrix. The
assignment was later confirmed and extended by Jacox (1979)
in an argon matrix-isolation study of the photoisomerization
of acetonitrile.

A gas phase rotational spectrum of ketenimine was obtained
by Rodler and coworkers using microwave spectroscopy (Rodler
et al., 1984). Ground-state rotational parameters of A0 =
201443.69, B0 = 9663.138, and C0 = 9470.127MHz
were determined from a fit to Watson’s S-reduced rotational
Hamiltonian (Watson, 1977) in the Ir representation. The latter
parameters show that ketenimine is a near-prolate asymmetric
top (asymmetry parameter κ = −0.998). Measurements of
Stark-splittings (Rodler et al., 1984) yielded the ground state
dipole moments aµ0 = 0.431(1)D and cµ0 = 1.371(6)D.
Rodler et al. later carried out a high-resolution analysis in the
4–7GHz region for the main as well as the ND isotopologue
revealing small splittings in the former case, due to the imino
inversion (Rodler et al., 1986). The latest study of the vibrational
ground state rotational spectrum of ketenimine was performed
by Degli Esposti at submillimeter wavelength (Degli Esposti

et al., 2014). In total, 297 line frequencies were analyzed yielding
spectroscopic parameters that allow for the accurate prediction
of rotational transitions up to 1 THz.

The rovibrational spectrum of ketenimine has been studied by
both, in low-resolution (August, 1986) as well as high-resolution
(Ito et al., 1990; Ito and Nakanaga, 2010; Bane et al., 2011a,b,c).
A gas phase spectrum of the ν̃3 = 2044 cm−1 CCN-stretching
vibration has been obtained by Ito et al. (1990) using FTIR
spectroscopy. Analysis of the spectrum revealed a complicated
structure due to several Coriolis-type interactions, which could
only be analyzed approximately due to missing information on
the perturbing states. Almost 20 years later Ito and Nakanaga
reported the observation of the CNH bending rovibrational
spectrum around ν̃6 = 1000 cm−1 using FTIR spectroscopy.
Again, strong Coriolis perturbations precluded a detailed analysis
of the ν6 state and only effective spectroscopic parameters for
individual Ka sub-bands were obtained. The latter values allowed
the ν10 (CH2 rocking) and ν11 (torsion) vibrations to be identified
as likely perturbers, based on their large contribution to the
vibration-rotation interaction constant αA

6 .
In a series of articles Bane and coworkers presented a

thorough experimental analysis of the low lying fundamental
bands of ketenimine (Bane et al., 2011a,b,c). The observed
bands encompass the out-of-plane and in-plane CCN bending
vibrations around ν̃12 = 409 and ν̃8 = 466 cm−1 (Bane
et al., 2011c), respectively, the CH2 wagging mode (ν̃7 =
693 cm−1; Bane et al., 2011b) and the CH2 rocking mode
(ν̃10 = 983 cm−1) as well as the strong CNH bending mode
ν6 (Bane et al., 2011a). Following the assignment of more than
6,000 rovibrational transitions and fitting of the spectrum, an
intricate system of Coriolis-coupled states was revealed whereby
all 5 observed states are coupled via Coriolis-coupling either
directly (e.g., a-axis Coriolis coupled ν12 & ν8) or indirectly.
The analysis required the inclusion of unobserved “dark states”
2ν8, ν8 + ν12, and 2ν12 which are also expected to be strongly
Coriolis-coupled amongst themselves. While the global fit to
Watson’s S-reduced Hamiltonian (Ir) reproduced the observed
rovibrational transition frequencies, Bane et al. noted that the
torsion fundamental ν11 around 880 cm−1 probably also adds to
the complex rovibrational coupling but considered inclusion of
this interaction intractable.

Theoretical work on the rotational and rovibrational
spectroscopy of ketenimine is rather scarce and either based
on limited ab initio methods (Kaneti and Nguyen, 1982; Brown
et al., 1985) or has been done only in support of dedicated
experimental investigations (Ito et al., 1990; Ito and Nakanaga,
2010; Bane et al., 2011c). In the latter case, the work of Bane
and coworkers (Bane et al., 2011c) provided the previously
most accurate predictions of the fundamental frequencies with
a root-mean-squared deviation of 11 cm−1. The results were
obtained from B3LYP/cc-pVTZ harmonic frequencies which
were uniformly scaled by a factor of 0.965. Given its possible
importance in astrochemical reaction networks and the strong
rovibrational couplings a more in-depth look at the rotational
and rovibrational spectroscopy of ketenimine appears desirable.

Recently, some of us reported on the implementation of a
new program for variational rovibrational calculations within the

Frontiers in Chemistry | www.frontiersin.org 2 January 2021 | Volume 8 | Article 623641
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MOLPRO package of ab initio programs (Erfort et al., 2020a).
The approach combines the well establishedMOLPRO capabilities
(Werner et al., 2020) of obtaining multidimensional potential
energy and dipole moment surfaces, comprehensive symmetry
information and the accurate determination of vibrational
wave functions with efficient calculation of partition functions,
rovibrational transition frequencies, and transition dipole matrix
elements in an almost black-box manner. Within this study
here, we report about high-level ab initio calculations based on
anharmonic potential energy surfaces obtained from explicitly
correlated coupled-cluster theory, which allows for a detailed
analysis of the (ro)vibrational spectra of the title compound.
Compared to previous work the rovibrational calculations have
been extended by pure rotational spectra, which is a newly
implemented feature in MOLPRO.

2. COMPUTATIONAL DETAILS

Geometries, harmonic frequencies and normal coordinates of
ketenimine (X1A′) and its Cs symmetric isotopologues were
computed at the level of frozen-core explicitly correlated
coupled-cluster theory, CCSD(T)-F12b, in combination with a
basis set of triple-ζ quality, i.e., cc-pVTZ-F12 (Adler et al.,
2007). Hartree-Fock energies were corrected by addition of the
complementary auxiliary basis set singles correction (CABS)
(Knizia and Werner, 2008).

n-mode expansions of the potential energy surface (PES) and
the dipole moment surface (DMS) being truncated after 4th
order were used in all calculations (Ziegler and Rauhut, 2018). A
multi-level scheme has been employed throughout (Pflüger et al.,
2005; Yagi et al., 2007), in which the 1D and 2D terms of the
PES were computed at the CCSD(T)-F12b/cc-pVTZ-F12 level,
while the explicitly correlated distinguishable clusters approach,
DCSD-F12b, in combination with a smaller cc-pVDZ-F12 basis
was used for the 3D and 4D terms. The 1D and 2D terms of
the DMS were computed at the conventional DCSD/cc-pVTZ-
F12 level and the 3D and 4D terms at the DCSD/cc-pVDZ-F12
level (Kats and Manby, 2013; Kats et al., 2015). In total about
170,000 ab initio points were used for representing the surfaces.
Efficient Kronecker product fitting was employed to transform
this grid representation into an analytical one consisting of 10
local B-splines per dimension (Ziegler and Rauhut, 2016).

Vibrational self-consistent field theory (VSCF) has been
used to determine one-mode wavefunctions (modals) based
on the Watson Hamiltonian (Watson, 1968). Vibrational
angular momentum terms (VAM) were not included within
the variational determination of the modals, but were added
a posteriori to the state energies (Neff et al., 2011). A
mode-dependent basis of 20 distributed Gaussians has been
used throughout for representing the modals. Subsequent
state-specific configuration-selective vibrational configuration
interaction calculations (VCI) were used for calculating accurate
state energies (Neff and Rauhut, 2009). The correlation space
contained single to 6-tuple excitations up to the 8th root
per mode and a maximum sum of quantum numbers of 15.
This resulted in about 4·106 Hartree products (configurations)

per irreducible representation. These calculations included
VAM terms based on a constant µ-tensor. Eigenvalues were
determined with our residuum based eigenvalue solver (RACE)
(Petrenko and Rauhut, 2017).

Within the calculation of the rovibrational spectra we also use
the Watson-operator (Watson, 1968)

HWatson =
1

2

∑

αβ

Jαµαβ Jβ −
1

2

∑

αβ

(Jαµαβπβ + παµαβ Jβ )+HVib,

(1)

where Jα denotes the total angular momentum operator, πα the
vibrational angular momentum operator and µαβ refers to an
element of the inverse effective moment of inertia tensor. The
summations over α and β run over the three molecule fixed
Cartesian space coordinates. The first term in Equation (1) gives
the kinetic energy of rotational motion and the second term
couples rotation and vibration and is referred to as Coriolis term.
All other terms of theWatson Hamiltonian are purely vibrational
operators and are thus summarized in the term denoted HVib.
Within rovibrational configuration interaction (RVCI) theory the
rovibrational wave functions are expanded in terms of products
of VCI wave functions and rotational basis functions (Erfort
et al., 2020a,b). The latter can be either primitive symmetric
top eigenfunctions or Wang combinations of symmetric top
functions (Wang, 1929; Špirko et al., 1985).

In the following, we will distinguish between rotational
configuration interaction (RCI) and rovibrational configuration
interaction (RVCI). RCI is an approximation, in which no
rovibrational interaction between different vibrational states is
considered. This corresponds to neglecting the second term, see
Equation (1), as well as all terms off-diagonal in the vibrational
quantum numbers, arising from the 1D and higher order
expansion of the µ-tensor (centrifugal distortion). Since every
RCI-matrix is thus constructed for a single VCI wave function,
the vibrational state identity can be trivially assigned for every
rovibrational state. In contrast, within RVCI all rovibrational
interactions are considered. As a consequence the only “good”
quantum number is the angular momentum quantum number
J and the parity of the rovibrational state. In this sense, RVCI
yields the physically meaningful results. However, we found
that a comparison of RVCI with the RCI results is helpful to
understand and visualize both the effects of Coriolis interaction
and intensity borrowing mechanisms in general. Again, it shall
be noted that for comparison with experiments only RVCI results
should be used.

The rovibrational intensities are calculated according to

I =
2π2

3

NA

ǫ0h2c2
e−E

′′/kBT(1− e−(E
′−E′′)/kBT)

Q(T)
(E′ − E′′)R2. (2)

In Equation (2), the first two prefactors contain only constants.
The next factor corresponds to the thermal distribution function,
with the temperature T, Boltzmann constant kB, the energy of the
lower state E′′ and the upper state E′ as well as the temperature
dependent partition function Q(T). For the latter, we use the
separability approximation Q = QvibQrot for several reasons.
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First, we are investigating a relatively low temperature regime
up to 300K, where the partition function converges quickly
with increasing excitation, such that errors in energies for high-
lying states have little influence. Second, we have shown in our
previous work (Erfort et al., 2020a), that for H2CO and H2CS the
differences between experimental Q(T) values and theoretically
approximatedQvibQrot values for the partition function are lower
than 2% up to 300K. In addition to that, the partition function
is the same global factor for every transition and since we are
primarily interested in relative intensities rather than in absolute
intensities, it is therefore not crucial for us. The last two factors
in Equation (2) correspond to the frequency of the transition
(E′− E′′) and the squared transition moment R2. The calculation
of the latter within RVCI has been outlined previously (Erfort
et al., 2020a). For ketenimine all nuclear spin statistical weights
show the values of 24.

Further approximations are used to limit the calculation times.
First of all, we are not considering hot bands. Due to relatively
low temperatures and absence of fundamentals with particularly
low energies, these bands have fairly low intensities and are
mainly hidden behind significantly more intense transitions
arising from the vibrational ground state. This is supported by
a comparison to the results of Bane and coworkers (Bane et al.,
2011c). Moreover, the inverse effective moment of inertia tensor
µ is expanded to the 0th order for the RVCI calculation. Within
these computations all fundamental bands, seven combination
bands (ν3 + ν5, ν3 + ν6, ν5 + ν6, ν6 + ν10, ν7 + ν8, ν7 + ν12,
and ν8 + ν12) and seven overtones (2ν6, 2ν7, 2ν8, 2ν10, 2ν12,
3ν8, and 3ν12) were simultaneously considered, giving in total
Nvib = 27 vibrational states (including the ground state). As
a convergence check we performed a calculation with angular
momentum quantum number of J ≤ 70 and one with J ≤ 100.
The VCI calculations were performed in parallel using 9 cores,
with a total computational time of 100 h. The required memory
for the subsequent serial RVCI treatment is less than 40GB. As an
example, the RVCI matrix for J = 70, with Nvib = 27 vibrational
states is of size (2J + 1)Nvib = 3, 807. Although, this is relatively
small in comparison to other rovibrational software, the results
are nevertheless very accurate. A possible reason for this lies in
the very accurate and compact vibrational basis, in the form of
VCI wavefunctions. Computational timings on a single CPU core
were about 83min for RVCI energies and about 14 h for RVCI
intensities for J ≤ 70. For the same upper bound of J there
were 3.81× 107 transitions considered and about 1.41× 106 of
them where found to be significant. For T = 300K the partition
function is converged to Q(T) = 2.05× 105 at J = 71.

3. RESULTS AND DISCUSSION

3.1. Geometrical Parameters, Rotational
Constants, and Dipole Moments
Geometrical parameters of the main ketenimine isotopologue
as well as two deuterated variants have been calculated and are
provided in Table 1. The parameters obtained from the Born-
Oppenheimer equilibrium geometry are denoted re. The only
experimental geometrical parameter available for comparison is a

mixed experimental-theoretical valence angle α(C2NH3) (Rodler
et al., 1986). From a semi-rigid bender analysis of the 91,8-
100,10 ground state rotational transition, Rodler and coworkers
determined a value of 115.4 ± 0.6◦ for α(C2NH3) which is in
excellent agreement with our optimized value of 114.76◦. To
account for vibrational effects ra and rg parameters have been
calculated. While the former correspond to parameters obtained
from atomic positions averaged over the VCI ground state
wavefunction, the latter are instantaneous inter-nuclear distances
calculated from an expectation value of the bond lengths
expanded in terms of the normal coordinates. As is typically
observed (Czakó et al., 2009; Dinu et al., 2020), both sets of
vibrationally averaged bond lengths differ substantially from each
other with the largest absolute difference of 0.0169Å observed
for r(NH3) in the main isotopologue. The CNH angle α(C2NH3)
shows a slightly larger vibrational effect compared to other
angles, in line with the inversion character of this coordinate.
The barrier to planarity (C2v) was computed to be 5249 cm−1

at the CCSD(T)-F12b/cc-pVTZ-F12 level and is thus too high
for tunneling effects in the fundamental modes to be of any
importance. The semi-rigid bender analysis (Rodler et al., 1986)
yielded a barrier height of 4700±200 cm−1 which compares well
with the present theoretical result. The imaginary frequency
characterizing the transition state amounts to i908 cm−1. Note
that there is no stationary point on the potential energy surface
for a planar structure of neutral ketenimine.

Calculated and experimental (Rodler et al., 1984, 1986)
rotational parameters for ketenimine isotopologues are
compared in Table 2. There, rotational parameters A, B,
and C obtained from the equilibrium geometry are denoted
by method re. Following the work of Czakó et al. (2009),
vibrationally averaged rotational parameters are approximated
from the expectation value of the µ-tensor (Watson, 1968) over
VCI wavefunctions. An n-mode expansion of the µ -tensor up
to 3D terms has been employed in these calculations. Since this
approach does not account for Coriolis coupling contributions
to the rotational parameters, these are added via a correction
based on Vibrational second-order perturbation theory (VPT2)
(Rauhut, 2015; Dinu et al., 2020). The final equation for the
rotational parameters Bα

v (α = a, b, c) within a vibrational state v
is thus given by

Bα
v ≈
〈µαα〉v

2
+

∑

k

2(Bα
e )

2

ωk

∑

l

(

ζα
kl

)2 3ω
2
k
+ ω2

l

ω2
k
− ω2

l

(

vk +
1

2

)

. (3)

In Equation (3), 〈µαα〉v is the expectation value of a diagonal
µ-tensor element evaluated over the VCI wavefunction for
state v. In the second term of Equation (3), constituting the
VPT2 Coriolis correction, Bα

e is the equilibrium rotational
constant with respect to rotation about an axis α, ωk are
harmonic vibrational frequencies and ζα

kl
are Coriolis constants

that describe the coupling of vibrations k and l via rotation
about the α-axis. Results obtained from Equation (3) for
the vibrational ground state are denoted either 〈µαα〉0 or
〈µαα〉0+VPT2 in Table 2, depending on whether the Coriolis
correction is included or not. Notice that in the evaluation of
〈µαα〉v the µ-tensor has been expanded up to 3D terms.
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TABLE 1 | Computed geometrical parameters of ketenimine and its deuterated isotopologues.

H2C=C=NH D2C=C=ND H2C=C=ND

Coord. re ra rg ra rg ra rg

r(C1H1) 1.0791 1.0829 1.0991 1.0823 1.0938 1.0818 1.0992

r(C1C2) 1.3135 1.3175 1.3205 1.3172 1.3203 1.3173 1.3204

r(C2N) 1.2284 1.2302 1.2335 1.2302 1.2336 1.2303 1.2335

r(NH3) 1.0174 1.0202 1.0371 1.0196 1.0318 1.0211 1.0316

α(C2NH3) 114.76 115.07 114.95 115.02

α(C1C2N) 174.05 174.10 174.08 174.10

α(H1C1C2) 119.88 119.73 119.78 119.75

TABLE 2 | Computed and experimental rotational constants in GHz.

Isotopologue Method A B C

H2C=C=NH re 201.08792 (−0.18%) 9.65878 (−0.05%) 9.47482 (+0.05%)

〈µαα〉0 201.79883 (+0.18%) 9.62993 (−0.34%) 9.43904 (−0.33%)

〈µαα〉0+VPT2 200.31173 (−0.56%) 9.62412 (−0.40%) 9.43309 (−0.39%)

Exp.a 201.44527 9.66315 9.47015

D2C=C=ND re 103.66119 8.05874 7.78830

〈µαα〉0 104.74983 8.03709 7.75996

〈µαα〉0+VPT2 103.35526 8.03232 7.75515

H2C=C=ND re 162.40310 (−0.51%) 9.03436 (+0.02%) 8.96746 (+0.06%)

〈µαα〉0 163.27301 (+0.02%) 9.00356 (−0.33%) 8.93460 (−0.31%)

〈µαα〉0+VPT2 162.21271 (−0.63%) 8.99879 (−0.38%) 8.92979 (−0.36%)

Exp.a 163.24242 9.03295 8.96219

aValues determined from fits to Watson’s S-reduced Hamiltonian (Rodler et al., 1984, 1986).

Where available, percentage deviations of calculated results with respect to experimental data is given in parentheses.

Inspection of Table 2 shows rather large deviations of the
Coriolis-corrected vibrationally averaged rotational parameters
of−0.56,−0.40, and−0.39%with respect to experimental results
(Rodler et al., 1984, 1986) for A0, B0, and C0, respectively.
In contrast, the calculated equilibrium rotational parameters
are in much better agreement with the experimental ground
state rotational parameters, which is mainly due to error
compensation. To confirm this, a geometry optimization at the
all-electron CCSD(T)-F12b level of theory in conjunction with a
cc-pCVTZ-F12 basis set (Hill et al., 2010) was carried out. This
yields equilibrium rotational parameters (in GHz) for the main
ketenimine isotopologue of 202.06657, 9.70127, and 9.51561
for Ae, Be, and Ce, respectively. Adding the corrections due
to vibrational averaging and Coriolis-coupling results in A0 =
201.290 38GHz (−0.08%), B0 = 9.666 61GHz (+0.04%), and
C0 = 9.464 40GHz (+0.04%), where deviations with respect to
the experimental results of Rodler et al. (1984, 1986) are given
in parentheses. The agreement of these corrected results with
the experimental ones is excellent, but it is well-known that
core correlation effects should not be considered without the
inclusion of high-level coupled-cluster terms, e.g., CCSDT(Q),
at the same time, because they often partly compensate each
other (Ruden et al., 2004; Meier et al., 2011; Puzzarini et al.,
2020). Moreover, rovibrational intensities as considered below

depend on several quantities and the impact of these additional
corrections might be different for the individual quantities.
Consequently, there is no unique answer, if the partial inclusion
of these corrections will lead to better results. In any case, the
inclusion of these high-level corrections is beyond the focus
of this study and we neither did account for core correlation
effects nor high-order coupled-cluster terms in the calculations
presented below.

Experimental high-resolution spectroscopic investigations
have revealed strong a-axis Coriolis coupling among the low
lying vibrational states of ketenimine, especially for the pair of
fundamentals ν8 and ν12 (Bane et al., 2011a,b,c). This can also be
shown by comparing rotation-vibration coupling constants α

β
i .

From the rotational constants presented by Bane et al. (2011a) αβ
i

can be approximated by α
β
i = B

β
0 −B

β
i . This yields 6185.3,−34.0,

and −13.4MHz for αA
12, α

B
12, and αC

12, respectively, and −2845.0,
−8.1, and −22.1MHz for αA

8 , αB
8 , and αC

8 , respectively. These
values should be compared to our theoretical VPT2 results of
444.5, −34.2, and −14.7MHz for αA

12, α
B
12, and αC

12, respectively,
and 2497.5,−9.3 and−22.7MHz for αA

8 , α
B
8 and αC

8 , respectively.
Following Papoušek and Aliev (1982), the latter values have been
corrected for the a-axis Coriolis resonance between ν12 and ν8 in
order to be comparable with the results of Bane and coworkers.
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TABLE 3 | Calculated dipole moments Eµ (in D) of ketenimine and its deuterated

isotopologues.

Eµe Eµ0

Isotopologue a
µe

c
µe | Eµe|

a
µ0

c
µ0 | Eµ0|

H2C=C=NH
a 0.5008 1.4056 1.4912 0.4587 1.3766 1.4510

H2C=C=ND 0.4643 1.4170 1.4912 0.4314 1.4028 1.4676

D2C=C=ND 0.4669 1.4162 1.4912 0.4394 1.3940 1.4616

aExperimental results (Rodler et al., 1984): aµ0 = 0.434(1), cµ0 = 1.371(6), and | Eµ0| =

1.438(6) D.

To this end, the corresponding (i, j) = (12, 8) or (8, 12) term in
the Coriolis contribution to α

β
i (cf. second term in Equation 3) is

replaced according to

(ζ β
ij )

2
3ω2

i + ω2
j

ω2
i − ω2

j

→−(ζ β
ij )

2 B
β
e (ωi − ωj)2

ωiωj(ωi + ωj)
.

We have also investigated whether symmetry allowed off-
diagonal contributions αAC

k
are important for ketenimine,

following the work of Aliev and Watson (1985), but found their
contribution to effective α̃

β
12 and α̃

β
8 after diagonalization of the

respective Bαβ
i matrices negligible.

While the B and C components are in excellent agreement
between experiment and theory, the A components show large
differences. Moreover, the differences between experiment and
theory for ν12 and ν8 are almost identical but of opposite
sign (−5740.8MHz for ν12 and 5342.5MHz for ν8). For
comparison, not accounting for Coriolis resonance yields
unphysical VPT2 values of −59021.2 and 61996.7 MHz for αA

8
and αA

12, respectively. Such effects are unambiguous indications
of strong Coriolis coupling. The preceding discussion clearly
shows that a simple treatment of the rotational problem and the
rovibrational couplings in ketenimine, based on e.g., Equation (3)
or VPT2, has to proceed with caution. A variational treatment
employing the exact rovibrational Hamiltonian automatically
includes all interactions necessary for a correct description of the
internal dynamics.

Calculated dipole moments of ketenimine and its
isotopologues are listed in Table 3. Our DMS yields equilibrium
dipole moments for the main ketenimine isotopologue of
aµe = 0.5008D and cµe = 1.4056D, where superscripts a
and c refer to the principal axis components of the dipole
vector Eµe. Symmetric H/D substitution results in a rotation
of the a- and c- axis around the b axis. As a consequence, the
components aµe and cµe of the dipole vector differ among
the ketenimine isotopologues but the total dipole moment
of | Eµe| = 1.4912D is unchanged. The situation is different
for the ground state dipole moments Eµ0 due to variations of
vibrational averaging effects. Overall, vibrational averaging
results in a lowering of both a- and c-axis components. The
non-deuterated isotopologue shows slightly larger effects due
to vibrational averaging, especially for the c-axis component.
Rodler et al. (1984) determined the dipole vector components of

the main isotopologue and from Stark shifts of the 202 ← 101
and 211 ← 110 rotational transitions. While the resulting
cµ0 = 1.371(6)D is in excellent agreement with our calculated
value of 1.3766D, a somewhat larger difference is observed
between the experimental aµ0 = 0.431(1)D and calculated
0.4587D. This difference is in part due to a geometric effect.
Using the optimized ae-CCSD(T)-F12b/CVTZ-F12 geometry,
equilibrium dipole moments of aµe = 0.4854D (−0.0154D) and
cµe = 1.4029D (−0.0027D) were obtained from DCSD/VTZ-
F12 calculations, where values in parentheses correspond to the
difference with respect to the values quoted in Table 3. Adding
the vibrational averaging correction yields an approximate
aµ0 ≈ 0.4433 D, closer to the experimental result. Again, the
influence of high-order coupled-cluster terms would be required
to further reduce the remaining error.

3.2. Vibrational Spectrum
The purely vibrational transitions of ketenimine and its
isotopologues are listed in Table 4. Clearly, for the deuterated
species the majority of experimental assignments is missing
and a comparison of the different experimental results for
H2CCNH shows that these results bear an uncertainty of
several wavenumbers.

Concerning the assignments for the non-deuterated
ketenimine, a huge difference of more than 80 cm−1 between
the computed and experimental values of Bane et al. (2011c)
can be seen for mode ν4. An analysis showed that this mode
shows a strong Fermi resonance with the overtone of ν7 and our
calculated value of 1350.9 cm−1 for 2ν7 agrees nicely with the
experimental value of 1355 cm−1. As our calculations clearly
assign the transition at 1435.9 cm−1 to the fundamental mode,
we believe that the experimental value of 1355 cm−1 belongs
to the 2ν7 overtone, which is the lower state of this Fermi pair.
The reason for this misassignment might be that the infrared
intensity of the overtone is much stronger than that for the
fundamental. A closer look at this particular resonance reveals
a peculiar feature. While the band intensity at the VSCF level
amounts to 3.42 km/mol for ν4 and 4.47 km/mol for 2ν7, almost
all intensity is transferred to the overtone within the VCI
calculations. This can be understood by comparison to a VPT2
based analysis that accounts for the Fermi resonance (Vázquez
and Stanton, 2007). Then, the intensities of the Fermi dyad in
question are predominantly determined by the mixed a-axis
transition dipole moments 〈aµ〉ν . The latter are obtained from
the eigenvector components C ν

ω of the Fermi resonance matrix

and the (deperturbed; dp) transition dipole moments 〈aµ〉dpω
evaluated over harmonic basis functions |ω〉 according to:

〈aµ〉ν4 = C ν4
ω4
· 〈aµ〉

dp
ω4 + C ν4

2ω7
· 〈aµ〉

dp
2ω7

= 0.78 · 0.033 D+ 0.62 · −0.044 D ≈ 0.002 D

and

〈aµ〉2ν7 = C 2ν7
ω4
· 〈aµ〉

dp
ω4 + C

2ν7
2ω7
· 〈aµ〉

dp
2ω7

= −0.62 · 0.033 D+ 0.78 · −0.044 D ≈ −0.055 D,
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TABLE 4 | Comparison of calculated VCI fundamental frequencies of H2C=C=NH and its deuterated isotopologues with experimental data.

H2C=C=NH D2C=C=ND H2C=C=ND

# Sym. Harm. VCI Int. Exp.a Exp.b Exp.c Exp.d Harm. VCI Int. Exp.d Harm. VCI Int.a Exp.d

ν1 A′ 3492.7 3315.4 10.9 3321.8 2563.0 2464.4 17.1 3177.1 3046.7 29.7

ν2 3177.0 3048.0 2.6 2325.3 2250.1 40.7 2246 2562.9 2467.4 20.1

ν3 2084.4 2041.8 281.9 2037 2043.6 2040 2044.1 1997.7 150.2 1998 2067.2 2027.7 287.0 2028

ν4 1440.3 1435.9 0.1 1355 1231.5 1207.2 0.7 1440.2 1424.7 3.4

ν5 1140.1 1122.5 16.9 1127 1124 944.4 921.7 23.3 921 1136.0 1120.4 11.7 1120

ν6 1045.1 1006.7 200.2 1000.2 1004 1000.2 1000 824.5 804.1 77.0 800 829.9 807.7 74.1 817

ν7 705.5 691.1 77.2 692.9 690 555.3 549.6 39.8 705.2 679.5 53.4 693

ν8 463.3 464.3 19.8 466.5 417.6 415.5 27.0 427.9 426.5 24.0

ν9 A” 3276.2 3132.5 0.2 2441.0 2359.3 0.0 3276.4 3131.4 0.2

ν10 1000.3 980.7 0.6 983.1 842.2 831.0 0.0 1000.4 979.2 0.1

ν11 904.6 876.0 29.6 872 872 666.2 653.7 27.9 648 752.2 731.4 19.1

ν12 405.8 405.7 0.4 409.0 351.4 349.4 0.2 400.8 399.4 0.2

Frequencies are given in cm−1 and infrared intensities in km/mol.
aExperimental gas phase values taken from Bane et al. (2011c,c,a).
bExperimental values taken from the compilation in Bane et al. (2011c).
cExperimental values taken from Ito et al. (1990) and Ito and Nakanaga (2010).
dExperimental Ar matrix values taken from Jacox and Milligan (1963) and Jacox (1979).

where the corresponding values have been inserted. As can
be seen from above equations, the efficient intensity stealing
results from a compensation of the signs of the eigenvectors
and the deperturbed transition dipole moments. The analysis
and composition of all observed resonances of the fundamental
modes of all isotopologues based on VCI calculations is
summarized in Table 5. For all other fundamental modes of the
non-deuterated molecule the agreement of the VCI calculations
with the experimental results is excellent and the maximum
deviation is no larger than 6.2 cm−1, which is within the
error bar of potential energy surfaces obtained from explicitly
correlated coupled-cluster theory (Rauhut et al., 2009). In order
to reduce this remaining error even further one would need
to incorporate a number of corrections within the electronic
structure calculations as for example high-order coupled-cluster
terms, core-correlation effects, relativistic contributions, etc.
(Ruden et al., 2004; Meier et al., 2011).

The results for the fully deuterated isotopologue, i.e.,
D2CCND are of the same quality as for H2CCNH and thus
the VCI results most likely provide reliable predictions for all
fundamentals. Most remarkably for this isotopologue are the very
strong intensities for ν3 and its resonance partners (cf. Table 5).
The results for H2CCND look more inconsistent than for the
other two isotopologues. While modes ν3 and ν5 are in excellent
agreement with the experimental results, the VCI results for
ν6 and ν7 deviate by 9.3 and 13.5 cm−1 from the experimental
reference data, respectively. According to our VCI calculation,
ν6 shows a weak Fermi resonance with the overtone of ν12
(due to its weak character it has not been listed in Table 5). As
such coupling pairs are sensitive with respect to environmental
effects as arising from the argon matrix, the deviation of
9.3 cm−1 may be explained this way. However, we consider
this rather unlikely, but suspect difficulties in pinpointing the
transition energies in the experiment, because Jacox reports

that overlapping parent molecule absorptions and unassigned
contributions of other products such as the partially deuterated
methyl cyanides complicate the assignment of other absorptions to
the partially deuterated ketenimines (Jacox, 1979). Note that for
all isotopologues, ν4 shows strong Fermi resonances, but with
different partners and in all cases the intensity of the overtone
is stronger than for the fundamental.

3.3. Rotational Spectrum
In Figure 1, our computed RVCI rotational spectrum of
ketenimine (Figure 1A) is compared with a simulated
experimental spectrum (Figure 1B) for a temperature of
T = 50 K. The latter spectrum has been calculated with
the SPCAT program (Pickett, 1991) using the spectroscopic
parameters of Degli Esposti et al. (2014) determined from the
submillimeter wave spectrum, while intensities are based on the
experimentally determined dipole moments in the vibrational
ground state (Rodler et al., 1984). Intensities are given relative
to the strongest line at T = 50 K, which corresponds to the
52,3 → 63,3 transition in both cases. Excellent agreement between
the RVCI and the experimental spectrum is observed. Only very
subtle frequency differences appear upon close inspection, which
occur mainly due to the difference of about 0.3GHz in the
employed A rotational constants (compare Table 2). The overall
shape of the spectrum, which is dominated by cR10 branch
progressions and the sharp cQ branches, is nicely reproduced by
the RVCI spectrum.

We have studied the temperature dependence of the ground
state rotational spectrum in the range 20 to 300K and results are
depicted in Figure 2. With increasing temperature the intensity
of the rotational transitions decrease by about a factor of 2
and the rather sharp cQ10 branches below 600 GHz broaden
significantly. While for T = 20K the cR10 transitions originating
in Ka = 1 states are the strongest up to 2 THz, with each
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TABLE 5 | Resonances of the fundamental modes of ketenimine and its isotopologues.

Molecule Mode Freq. Int. Composition

H2CCNH ν4 1435.9 0.1 41 (55.8%) 72 (35.2%)

1350.9 8.4 72 (53.3%) 41 (36.1%)

ν11 876.0 29.6 111 (59.6%) 81121 (36.7%)

880.5 18.6 81121 (57.1%) 111 (39.0%)

D2CCND ν4 1207.2 0.7 41 (69.9%) 61121 (21.4%)

1220.6 1.9 61121 (60.3%) 41 (25.6%)

ν3 1997.7 150.2 31 (49.1%) 4161 (24.8%)

2019.2 40.1 4161 (52.3%) 6281 (16.7%) 31 (13.3%)

2001.0 136.6 6281 (41.2%) 31 (42.0%)

ν1 2464.4 17.1 11 (65.0%) 61102 (27.5%)

2467.0 12.0 61102 (55.2%) 11 (37.2%)

H2CCND ν5 1120.4 11.7 51 (50.9%) 7181 (27.8%) 111121 (16.8%)

1108.1 8.1 7181 (64.4%) 51 (28.9%)

1133.6 4.8 111121 (77.1%) 51 (15.8%)

ν4 1424.7 3.4 41 (52.7%) 72 (28.5%)

1345.3 12.9 72 (57.8%) 41 (31.6%)

Frequencies are given in cm−1 and infrared intensities in km/mol.
1,2The superscripts denote the excitation levels of the individual modes.

FIGURE 1 | Rotational spectrum of ketenimine in its ground vibrational state for T = 50 K. Comparison of the theoretical RVCI results (A) obtained from Molpro and

(B) based on experimental results as determined by Degli Esposti et al. (2014) (see text for details).

increase in temperature the maximum shifts by one unit in
Ka. Furthermore, the effect of asymmetry splitting in Ka = 1
states are clearly visible. All these observations originate in the
Boltzmann distribution function resulting in a higher partition
function and a shift in the thermal distribution toward higher
Ka and J. The former is responsible for the emergence of higher
energy branches and the latter for the shifts in the maximum
for individual J-progressions, highlighting the importance of an
accurate determination of the partition function.

3.4. Rovibrational Spectrum
It is known that the rovibrational spectrum of ketenimine shows
many strongly coupled rovibrational bands in the energy regime
between 300 and 1200 cm−1 (Bane et al., 2011a,b,c). For this
reason, we want to give a broad overview over this area with
Figure 3. The figure shows the 5 fundamental bands ν5, ν6,
ν7, ν8, ν11, as well as the overtone 2ν8 and the combination
band ν12 + ν8. The comparison between RVCI and RCI spectra
allows for a better understanding of the coupling and resonance
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FIGURE 2 | Ground state rotational RVCI spectrum of ketenimine for different temperatures, (A) 20 K, (B) 50 K, (C) 100 K, (D) 200 K, (E) 300 K. Temperatures are

considered only in the occupation numbers and not in line broadening. For the sake of clarity, the intensity axis of adjacent sub-figures are downscaled by a factor of

two for increasing temperatures.

effects. Two examples for these couplings can be seen around 400
and 900 cm−1. Therefore these areas are displayed in separate
Figures 4 and 5 and will be discussed below. For the following
figures, we did not use any line broadening, since no direct
comparison with experimental results is depicted.

A good example for the strong Coriolis-coupling in this
system can be seen in Figure 4 between ν8 and ν12. The bottom
subplot (Figure 4B) shows the results of the RCI calculation,
where Coriolis-coupling is not considered. ν12 has about two

orders of magnitude less intensity then ν8, in line with the
band intensities obtained from VCI (cf. Table 4). The in-plane
CCN bending vibration ν8 clearly shows an A-type spectrum,
whereas the out-of-plane CCN bend ν12 shows the expected
B-type intensity pattern. Inclusion of Coriolis-coupling in the
upper subplot (Figure 4A) results in ν12 gaining about one order
of magnitude in intensity by intensity borrowing in the RVCI
calculation. The missing intensity in the stronger band is hard
to see, since the relative difference is smaller. Furthermore, ν12

Frontiers in Chemistry | www.frontiersin.org 9 January 2021 | Volume 8 | Article 623641



Tschöpe et al. High-Level Rovibrational Calculations on Ketenimine

FIGURE 3 | Overview of the low frequency range of the rovibrational spectrum of ketenimine. Comparison between RVCI (A) and RCI (B) results. Visible contributions

are provided by the fundamental bands ν8 (at 464.4 cm−1, CCN in-plane bend, in light green), ν7 (at 691.2 cm−1, CH2 wagging, in purple), ν11 (at 876.2 cm−1,

torsion, in light blue), ν6 (at 1007.1 cm−1, CNH bend, in orange), ν5 (at 1122.5 cm−1, CCN stretch, in dark blue) as well as the combination band ν8 + ν12 (at

880.7 cm−1 in dark green), and the overtone 2ν8 (at 927.3 cm−1 in yellow).

FIGURE 4 | The two lowest fundamental bands ν12 (at 405.7 cm−1, CCN out-of-plane bend, VCI intensity 0.4 km/mol, in purple) and ν8 (at 464.4 cm−1, CCN

in-plane bend, VCI intensity 19.8 km/mol, in light green) as well as small contributions of ν7 (at 691.2 cm−1, CH2 wagging, in orange). Comparison between RVCI (A)

and RCI (B).
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FIGURE 5 | Rovibrational spectrum of ketenimine of the fundamental bands ν7 (at 691.2 cm−1, in purple), ν11 (at 876.2 cm−1, in light blue), ν10 (at 980.7 cm−1, in red,

barely visible) and ν6 (at 1007.1 cm−1 in orange) and the combination band ν8 + ν12 (at 880.7 cm−1 in dark green), and the overtone 2ν8 (at 927.3 cm−1 in yellow).

Comparison between RVCI (A) and RCI (B) results.

can neither be assigned to an A-type nor a B-type band structure,
due to the lifting of the typical selection rules via Coriolis-
coupling. For the ν8 fundamental, the overall shape of an A-
type transition is retained. Both bands show a rather asymmetric
structure, with a supposed band center of the ν12 mode shifted
by about 20 cm−1 to lower energies and visible transitions well
below 350 cm−1. This is in contrast to ν8, where both branches
gain intensity toward higher energies, with an overlapping region
at about 470 cm−1. The high energy tails of the R-branch (around
530 cm−1) could also be influenced by the ν7 mode (orange in
Figure 4). However, we expect that effect to be small, since the
VCI energies of the two modes ν7 and ν8 are separated by more
than 200 cm−1.

A comparison with the experimental and simulated spectra of
Bane and coworkers (Figures 2A and B in Bane et al., 2011c)
shows in general good agreement for ν12 (Figure 4 as well as
in Supplementary Figure 1). This holds for both the number
of progressions and their distribution over the spectral range
from 330 to 410 cm−1. However, there seems to be a sudden
drop in intensity at 410 cm−1 that can not be found in our
calculated results. The slight shift of our RVCI-spectrum by about
4 cm−1 compared to experiment can be explained by our error
in the VCI energy of 3.3 cm−1 (cf. Table 4). Comparing the
spectra of Bane et al. for ν8 (Figures 2C and D in Bane et al.,
2011c) with ours (compare also in Supplementary Figure 2)
shows somewhat larger deviations. While the A-type P and R
branch structure is still recognizable in Figure 4, the spectra of
Bane et al. show a broader distribution of the Ka sub-bands
leading to the A-type band shape being partially obscured. It

should be mentioned that there are isolated peaks protruding
both bands (see Bane et al., 2011c). Tests have shown (see
Supplementary Figures 1–4) that such prominent peaks as well
as the above discussed differences in the intensity patterns
originate from line broadening. Since we do not use any
broadening, those protruding peaks cannot be expected in our
spectrum, but of course must appear in the experimental spectra.

In contrast to the previously considered modes, the CH2

wagging mode ν7 does not change its macroscopic shape due
to Coriolis coupling. As can be seen in Figure 5, the general
form of ν7 corresponds to a C-type transition of a near-prolate
asymmetric top molecule. The main difference due to RVCI
(in the top panel) is the splitting of the central Q-branches. In
comparison with the work of Bane et al. (Figure 2B in Bane
et al., 2011b), there are two small deviations besides the overall
good agreement (compare also in Supplementary Figure 3).
First, there is a small shift for the two high peaks in the
middle of the mode. Second, the experiment seems to show
a sudden drop in intensity between the middle (650 and
730 cm−1) and the outer parts of the progression (above 730
and 650 cm−1). As mentioned before, the distributed peaks
shown in the paper of Bane et al. (2011b), are caused by a
Gauss broadening of the experimental results and are therefore
not to be expected in our spectra. The possible coupling of
ν7 with higher energy modes (above 750 cm−1 in Figure 5)
is not shown in the simulated spectrum of Bane et al.
(2011b).

Another example of extensive rovibrational coupling occurs
between 780 and 970 cm−1 (see Figure 5). The reason for
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FIGURE 6 | Rovibrational spectrum of ketenimine in the region of the strongest fundamental band ν3 (at 2041.8 cm−1, CCN stretch, in green). Additionally, the

overtones 2ν10 (at 1955.0 cm−1, in purple), and 2ν6 (at 1975.1 cm−1, in orange), as well as the combination band ν5 + ν6 (at 2130.8 cm−1, in red) provide visible

contributions in this spectral range. Comparison between RVCI (A) and RCI (B) results.

this is the close proximity of three vibrational bands: one
fundamental band (ν11 at 876.2 cm−1, torsion, A′′ symmetry),
one combination band (ν8 + ν12 at 880.7 cm−1, A′′ symmetry)
and one overtone (2ν8 at 927.3 cm−1, A′ symmetry) within
50 cm−1. Additionally, there is a further “dark state” involved,
corresponding to the overtone of the out-of-plane CCN bending
mode (2ν8 at 809.6 cm−1, A′ symmetry). While the overtones
2ν12 and 2ν8 are strongly coupled to the combination band
ν8 + ν12 via a-axis Coriolis-coupling (ζ a

8,12 = −0.802), similar to
the correspondingly coupled fundamentals, the ν11 fundamental
has been shown to be in Fermi resonance with the combination
band (cf. Table 5). The resulting rovibrational coupling leads
to an almost complete loss of discernible band structure when
comparing the RCI (bottom panel) and the RVCI spectrum
(top panel). As a consequence, experimental assignment and
interpretation of this spectral region will be highly difficult
without reliable estimates of spectroscopic parameters obtained
from theory.

Figure 6 reveals only very weak Coriolis coupling between ν3
and 2ν6, respectively 2ν10. One reason for this is that the largest
non-vanishing ζ constants for ζα

3,6 and ζ α
3,10 correspond to b and

c direction, respectively. Hence the rotational constants along
the b and c direction have to be considered. Since they are a
factor of 20 smaller then the A rotational constant, the coupling
is significantly weaker. In addition to that, Coriolis coupling
between a fundamental band and the overtone of another band
requires at least the first order in the µ-tensor expansion.
Therefore, it is possible that in experiments a somewhat stronger

coupling occurs, even though it is unlikely due to the small
rotational constants. The only experimental results for this
mode have been presented by Ito et al. (1990). While a direct
comparison of spectra is ambiguous, due to relatively low
resolution and a contamination of the experimental probe, Ito et
al. do note signs of Coriolis perturbations in the fitted effective
spectroscopic parameters of the ν3 band.

Figure 7 shows the XH stretching fundamental region
between 3000 and 3500 cm−1. The corresponding fundamental
bands are the symmetric (ν2) and antisymmetric (ν9) CH2 stretch
vibrations and the NH stretching mode (ν1), in energetically
ascending order. Additionally, the ν3 + ν5 and the ν3 + ν6
combination bands provide a significant contribution to the
spectrum. All bands show the expected shapes of A-type (ν2,
ν3 + ν5, and ν3 + ν6), B-type (ν1), and C-type (ν9) transitions.
So far there were no experimental results published for any of
these bands. The comparison between RCI (bottom) and RVCI
results (top) gives no indications for substantial Coriolis coupling
among the fundamental bands. This is supported by taking the
corresponding Coriolis coupling constants into account, where
the largest (absolute) value is found for ζ c

2,9 ≈ 0.05. Due to the
restriction to a constant µ-tensor, no direct Coriolis coupling
between fundamentals νi and combination bands νj + νk is
included in the RVCI-matrix. While a strong interaction between
ν2 and ν3 + ν5 is unlikely because of very small ζ -constants
(|ζ b

2j| ≈ 0.003), such a coupling might be relevant for the ν9

fundamental due to the close by ν3 + ν6 combination band
and the substantial intensity difference. However, experimental
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FIGURE 7 | Rovibrational spectrum of ketenimine in the region of XH stretching fundamentals. Three fundamental bands ν2 (at 3048.0 cm−1, symmetric CH2 stretch,

in orange), ν9 (at 3132.5 cm−1, anti-symmetric CH2 stretch, in purple, barely visible) and ν1 (at 3315.4 cm−1, NH stretch, in light green) are shown, as well as the

combination bands ν3 + ν5 (at 3042.0 cm−1, in blue) and ν3 + ν6 (at 3151.1 cm−1 in red). Comparison between RVCI (A) and RCI (B) results.

observation of ν9 will be complicated by the fact that ν9
rovibrational transitions will most likely be hidden in between
the stronger ν3 + ν6 band. Overall the rovibrational transitions
in this spectral region have rather low intensity compared to
other spectral regions. The VCI band intensity of the strongest
vibrational transition ν1 (10.9 km/mol) is already a factor of
about 20 lower than the two strongest fundamental bands (cf.
Table 4).

3.5. Summary and Conclusions
The vibrational, rotational and rovibrational spectra of
ketenimine have been studied by high-level ab initio methods
for the first time. Based on a new series of almost black-box
algorithms being implemented in the MOLPRO package of
quantum chemical programs, it was possible to simulate and
analyze the complex rovibrational features of this near-prolate
asymmetric top molecule. Note, that the input information for
these calculations comprises just the molecular structure and the
call of the requested modules, which act in a highly optimized—
with respect to memory requirements and CPU time—and
automated manner. Agreement with available experimental data,
i.e., ground state rotational constants, vibrational band origins,
dipole moments or the rotational spectrum as a whole, was
found to be excellent or at least very good. Beside the reliable
reproduction of experimental reference data, many predictions
could be provided, which we consider a trustworthy guidance
for new experimental studies or astrochemical observations.
The occurrence of several Fermi resonances even for fairly low
lying transitions requested accurate potential energy and dipole

surfaces, which has been accomplished by explicitly correlated
coupled-cluster theory and the rather new distinguishable
clusters approximation. A proper description of these resonances
was found to be important for the subsequent rovibrational
calculations. For example, the strong Fermi resonance of mode
ν11 with the combination band ν8 + ν12 has significant impact
on the spectrum, but was not discussed in the experimental work
(Bane et al., 2011a). This example demonstrates the benefits, that
can arise from combined experimental and theoretical studies to
provide reliable reference data for astrophysical studies. Covering
a wide spectral range and identifying signature areas within
the spectrum are challenging goals in the future. Currently,
work is in progress to include coupling terms originating from
higher-order µ-tensor terms and hot bands.
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ABSTRACT

Rotational and rovibrational spectra are a key in astrophysical studies, atmospheric science, pollution monitoring, and other fields of active
research. The ab initio calculation of such spectra is fairly sensitive with respect to a multitude of parameters and all of them must be care-
fully monitored in order to yield reliable results. Besides the most obvious ones, i.e., the quality of the multidimensional potential energy
surface and the vibrational wavefunctions, it is the representation of the μ-tensor within the Watson Hamiltonian, which has a signifi-
cant impact on the desired line lists or simulated spectra. Within this work, we studied the dependence of high-resolution rovibrational
spectra with respect to the truncation order of the μ-tensor within the rotational contribution and the Coriolis coupling operator of the Wat-
son operator. Moreover, the dependence of the infrared intensities of the rovibrational transitions on an n-mode expansion of the dipole
moment surface has been investigated as well. Benchmark calculations are provided for thioformaldehyde, which has already served as a test
molecule in other studies and whose rovibrational spectrum was found to be fairly sensitive. All calculations rely on rovibrational configura-
tion interaction theory and the discussed high-order terms of the μ-tensor are a newly implemented feature, whose theoretical basics are briefly
discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0129828

I. INTRODUCTION

The identification of molecules in the interstellar medium
(ISM) is a grand challenge in astrophysics and is mainly based
on rotational and rovibrational infrared (IR) spectroscopy. Refer-
ence spectra for these molecules can either be measured in the
lab or obtained from simulations.1±3 While the former approach
may struggle with the extreme conditions needed to trap these
systems, the latter suffers from limited accuracy with respect to
experimental measurements. Yurchenko and Tennyson et al.,4±7

Tyuterev, Nikitin, and Rey,8±10 Bowman and Carter et al.,11,12

Carrington and co-workers,13,14 Császár et al.,15,16 Mátyus et al.,17,18

and other groups19 have studied the rovibrational spectra of many
molecules based on highly accurate (and refined) potential energy
surfaces using variational approaches with impressive agreement
with respect to experimental reference data as available in popu-
lar databases.2,3,20,21 Within this context, different strategies relying
on different Hamiltonians and coordinates have been followed up.
The latter range from polyspherical,22 different internal to normal
coordinates, while grid-based and analytical finite basis approaches

are used for determining the desired eigenpairs. Particular effort
has been put into techniques that efficiently extract Hamiltonians
from the potentials and refine these by experimental data in order to
increase the final accuracy.23 It is the occurrence of large amplitude
motions, which often require sophisticated techniques and Hamil-
tonians, while the Watson Hamiltonian is restricted to semi-rigid
molecules. A comparison by Cassam-Chenaï et al.24 of effective
Hamiltonians either being based on generalized perturbation theory
or on contact transformation techniques showed that the differ-
ence between the results of the investigated methods decreases as
the orders of the expanded Hamiltonians increase. Consequently,
our work here has a related focus. In contrast to the approaches
of the groups mentioned above,4±19 which try to avoid any limi-
tations, rovibrational spectra are also frequently simulated on the
basis of model Hamiltonians with parameters obtained from fits
to experimental transitions or from vibrational perturbation theory
(VPT).25,26 As our interest is in the investigation of semi-rigid
organic molecules in the interstellar medium (at low temperatures),
we employ the Watson Hamiltonian27 within the framework of
configuration interaction theory.
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In general, the ab initio calculation of rovibrational line lists
or the simulation of high-resolution infrared spectra of molecules
in the gas phase is a non-trivial task28±39 as many quantities need
to be monitored and controlled in order to yield reliable results. In
many approaches for the description of nuclear motions, this prob-
lem arises mainly from truncated series expansions of terms arising
in the Hamiltonian. In the following, we will exclusively focus on
theWatsonHamiltonian27 and the specific terms within it. Themost
obvious expansion, which is not bound to rovibrational calculations,
concerns the representation of the potential energy surface (PES).
This issue has repeatedly been discussed in the literature40,41 and,
thus, we take an n-mode expansion of the PES being truncated after
the four-mode coupling terms for granted, which guarantees a cer-
tain level of accuracy.42±44 Wewill not discuss this topic in any detail,
but, instead, we examined the convergence of the line intensities
with respect to the expansion order of the dipole moment surface
(DMS). However, our emphasis is on the expansion of the μ-tensor,
the inverse of an effective moment of inertia tensor,27 and, thus, on
all three quantities depending on it, i.e., we focus on the convergence
of state energies and rovibrational infrared intensities in dependence
of the μ-tensor expansion for the (a) vibrational angular momen-
tum (VAM) terms, (b) purely rotational contributions, and (c) the
Coriolis coupling terms. About a decade ago, we have studied the
dependence of purely vibrational transitions on a μ-tensor expan-
sion of the VAM terms for rigid molecules and within the context
of tunneling splittings as arising from double minimum potentials.45

The effect of neglecting Coriolis and related coupling terms has been
studied for different internal coordinates by Sarka et al.46 Moreover,
the dependence of the final results of a rovibrational study on the
size of the vibrational basis will be studied.

As a result of this benchmark study, we will provide a set of
recommendations in order to guide accurate rovibrational config-
uration interaction (RVCI) calculations. RVCI theory or its coun-
terpart for non-rotating molecules, i.e., vibrational configuration
interaction (VCI) theory,47±50 are appealing approaches for study-
ing (ro)vibrational spectra as they are, in principle, unlimited in
accuracy and can account for all sorts of resonances, e.g., Fermi51

or Darling Dennison resonances.52 This study is based on a fairly
new implementation of RVCI theory within a development ver-
sion of the MOLPRO suite of ab initio programs,53 which can deal
with any molecule belonging to an Abelian point group. We will
briefly recall the basic principles of this particular implementation,
which are necessary to understand the discussion of the bench-
mark calculations. We have restricted this study to calculations on
thioformaldehyde (H2CS, C2v), as this molecule has been used as a
benchmark molecule by several authors.4,5,54±57 Due to two quasi-
degenerate vibrational modes, which, however, belong to different
irreducible representations (irreps), the calculated spectrum was
found to be extremely sensitive with respect to the Coriolis coupling.
This and its limited size qualify this system for the investigations of
this study.

II. THEORY

A. Rovibrational energies

As mentioned above, our implementation of RVCI theory
relies on the Watson Hamiltonian27 making use of potential energy
surfaces V spanned by normal coordinates qi, i.e.,

H
1
2
∑
αβ

(Jα − πα)μαβ(Jβ − πβ) − 1
2
∑
i

∂
2

∂q2i
−

1
8
∑
α

μαα +V(q⃗), (1)

with α,β ∈ {x, y, z}, and Jα denoting a Cartesian component of the
angular momentum operator. The VAM operator πα is given as

πα = −i∑
jk

ζ
α
jkqj

∂

∂qk
, (2)

with ζαjk denoting the antisymmetric Coriolis ζ-constants. The
μ-tensor is represented by an n-mode expansion and can be
written as

μαβ = μ
(0)
αβ +∑

i

μ
(1)
αβ (qi) +∑

i<j

μ
(2)
αβ (qi, qj) + ⋅ ⋅ ⋅ , (3)

with

μ
(0)
αβ =

δαβ

I
(0)
αβ

= (I(0)αα )−1, (4)

where Iαβ is an element of the moment of inertia tensor and the
superscript (0) denotes its value at the reference geometry. At
positions given by elongations along the normal coordinates, the
μ-tensor reads

μαβ = I
′−1
αβ with I

′

αβ(q⃗) = Iαβ(q⃗) −∑
ijk

ζ
α
ikζ

β

jk
qiqj. (5)

With Eqs. (4) and (5), the first and second order terms of the n-mode
expansion of the μ-tensor can be written as

μ
(1)
αβ (qi) = I′−1αβ (qi) − μ(0)αβ , (6)

μ
(2)
αβ (qi, qj) = I′−1αβ (qi, qj) − ∑

k∈{i,j}

μ
(1)
αβ (qk) − μ(0)αβ . (7)

The evaluation of the individual terms of the μ-tensor essentially
takes no time since only the displaced geometry needs to be eval-
uated and no ab initio electronic structure calculations are required.
Likewise, the transformation of the grid representation of the tensor
to an analytical form using Kronecker product fitting is very fast.41

With that and assumingmonomials as basis functions, the respective
terms of the μ-tensor expansion can be written as

μ
(1)
αβ (qi) =∑

r

d
i,r
αβq

r
i , (8)

μ
(2)
αβ (qi, qj) =∑

rs

d
ij,rs
αβ q

r
iq

s
j , (9)

with di,rαβ and d
ij,rs
αβ denoting the respective coefficients. Using these

relations, any integrals arising from the μ-tensor can be evaluated
the same way as for the potential energy surface.

In the first step, we determine purely vibrational wave-
functions Φv,

∣Φv⟩ =∑
I

cI ∣ϕIv⟩ , (10)
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by solving the Schrödinger equation for non-rotating mole-
cules using configuration-selective VCI theory. For details, see
Refs. 58±60.

Switching now to RVCI theory, the Watson operator can be
written as

H =
1
2 αβ

∑μαβJαJβ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H rot

−

1
2 αβ

∑(Jαμαβπβ + παμαβJβ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H rv

+H vib, (11)

whereHvib denotes the purely vibrational part of theWatson Hamil-
tonian, which was used for determining Φv. Hrot is the rotational
contribution and Hrv is the well-known Coriolis coupling operator.
Due to the n-mode expansion, the latter term cannot be simplified,
because the VAM operator does not commute with respect to the
individual μ-tensor terms. Using the ansatz

∣Ψ rovib.⟩ =∑
rv

crv∣Φr⟩ ∣Φv⟩ (12)

for the rovibrational wavefunction, the corresponding rovibrational
Hamiltonian matrices need to be set up. For the rotational basis
functions, we use a linear combination of Wang combinations61

being termed molecule specific rotational basis (MSRB). To obtain
the MSRB wave functions, the pure rotational problem is solved
[denoted rotational configuration interaction (RCI)]. Hence, for
every value of J, a matrix of size (2J + 1) describing the vibrational
ground state needs to be determined and diagonalized. The resulting
eigenvectors serve as rotational basis functions for the subsequent
RVCI calculations. For details, see Ref. 56.

It is important to note that within the VCI approach, a very
large number of Hartree products (configurations) are screened to
determine the vibrational wavefunctions Φv in a compact form,
while only a very limited number of these vibrational state functions
need to be used in the rovibrational calculations.62±64 The number of
these functions to be included is a matter of this investigation. For-
mally, for two rovibrational basis functions, distinguished by ′ and ′′,
the arising matrix elements for the rotational and Coriolis coupling
terms can be written as

⟨v′∣μαβ∣v′′⟩ ⟨Jk′m′∣ JαJβ∣ Jk′′m′′⟩ (13)

and

⟨v′∣μαβπβ∣v′′⟩ ⟨Jk′m′∣ Jα∣ Jk′′m′′⟩ . (14)

While the integrals for ⟨v′∣μαβ∣v′′⟩ are straightforward to
evaluate [see Eqs. (8) and (9)], the vibrational contribution to the
Coriolis coupling terms [cf. Eq. (14)] is more intricate and explicit
expressions are provided in the Appendix. Since the vibrational
integrals in (13) and (14) are independent of J, they do not have
to be recalculated for the different RVCI matrices, but can be
precalculated.

It is the truncation of the expansion of the μ-tensor within these
integrals and the importance of the individual orders, which is the
subject of this study here. The rotational contributions in Eqs. (13)
and (14) can be solved analytically, as has repeatedly been shown in
the literature once rigid rotor functions or their linear combinations
have been employed.65

As a multitude of RVCI matrices has to be evaluated, these
can be distributed among the available processors, and thus, very
efficient parallelization schemes can be exploited.

B. Intensities

Rovibrational infrared line intensities can be computed accord-
ing to

I =
2π2NA

3ε0h2c2
e−E

′′/kT(1 − e−(E′−E′′)/kT)
Q(T) (E′ − E′′)R. (15)

The prefactor contains only natural constants, a temperature-
dependent factor with the thermal occupancies of the initial and
final states with energies E′′ and E′, respectively, the rovibrational
partition function Q(T), the energy difference (E′ − E′′) of the
transition, and the square of the transition moment, R.

A separability approximation for the partition function has
been used within our calculations, i.e.,

Q = Q vibQ rot, (16)

which was found to work very well for thioformaldehyde.56 Within
the calculation of the vibrational partition function, state energies
were simply approximated by the sum of modal energies. The rota-
tional partition function requires the calculation of nuclear spin sta-
tistical weights, gns, in order to account for degeneracies. These were
obtained from the Landau±Lifshitz formula corrected by Jonas.66,67

The computationally most demanding and sensitive contribution is
the square of the transition moment, R, which in case of a rigid rotor
basis is given by

R = gns(2J′′ + 1)(2J′ + 1)
RRRRRRRRRRRR

1

∑
σ=−1

(−1)σ∑
v′′v′
⟨v′′∣μ(1,σ)m ∣v′⟩

×∑
k′′k′
(−1)k′′(C′′vJk)∗C′vJk⎛⎝

J
′′ 1 J

′

k
′′

σ −k
′

⎞
⎠
RRRRRRRRRRRR
2

. (17)

The (2J + 1) prefactors arise from the energetic degeneracy with
respect to them quantum number and the Wigner 3-j symbols from
the transformation of the dipole moment from the molecule-fixed to
the space-fixed coordinate system. The coefficients CvJk are obtained
by the diagonalization of the RVCI matrices. The vibrational dipole

moment integrals in spherical tensor form μ
(1,σ)
m are obtained by the

Cartesian components and can easily be precomputed. As the dipole
moment is also expanded in terms of an n-mode expansion, the
transition moment depends on the corresponding expansion order,
which has been investigated in this work.

C. Computational details

The equilibrium geometry of H2CS, the harmonic frequen-
cies, and the corresponding normal coordinates have been deter-
mined by explicitly correlated coupled-cluster theory including sin-
gle and double excitations and a perturbative treatment of the triple
excitations, CCSD(T)-F12a.68 An orbital basis set of triple-ζ qual-
ity, i.e., cc-pVTZ-F12, as provided by Peterson et al.,69 has been
used in these calculations. Corresponding JKFIT and OPTRI aux-
iliary basis sets have been employed throughout this work.70 The
exponent for the Slater-type frozen geminals was chosen to be 1.0.71
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The 3C(FIX) ansatz was used within the initialMP2-F12 calculations
and the complementary auxiliary basis set (CABS) singles correction
was added to the total energies.68,72

The multidimensional PES was represented by an n-mode
expansion being truncated after the four-mode coupling terms.73

A multi-level scheme74 has been used to reduce the computational
effort, i.e., the 1D and 2D contributions have been determined at
the same level of electronic structure theory as the harmonic fre-
quencies, while a smaller basis set of double-ζ quality has been used
for the 3D and 4D terms. Conventional coupled-cluster theory, i.e.
coupled-cluster with single, double and perturbative triple excita-
tions [CCSD(T)] in combination with aug-cc-pVQZ (1D and 2D)
and aug-cc-pVTZ (3D and 4D) basis sets has been employed to com-
pute the corresponding dipole moment surface. The symmetry has
been exploited twofold, within the electronic single point calcula-
tions and the individual terms of the n-mode expansion.42 The grid
representations of the surfaces were transformed to an analytical
sum-of-products representation of nine monomials per mode using
Kronecker product fitting.41

Vibrational wavefunctions have been determined in a varia-
tional manner from state-specific configuration-selective vibrational
configuration interaction theory (VCI).58±60 A symmetry-adapted
basis of Hartree products (configurations) has been generated from
ground-state based vibrational self-consistent field (VSCF) one-
mode wavefunctions (modals), i.e., linear combinations of mode-
specific distributed Gaussians. A constant μ-tensor has been used
within the VSCF iterations. The correlation space within the VCI
calculations has been restricted by up to quintuple excitations, a
maximal sum of vibrational quantum numbers of 15, and a maximal
excitation per mode up to the sixth root. A residuum based eigen-
value solver (RACE) has been used to determine the eigenenergies
of predefined states. VAM terms were accounted for with zeroth
order terms of the μ-tensor.45 For details of our VCI program, see
Refs. 58±60.

In the RVCI calculations, the total angular momentum opera-
tor J has been set to amaximum value of Jmax = 45 for the calculation
of the rovibrational states. As mentioned before, the partition func-
tion relies on separability approximation Q = QvibQrot. Considering
sums of modal energies up to ≈10 593 cm−1 yields Qvib ≈ 1.025. Fur-
thermore, the required rotational energies converged at Jmax = 54
and yields Qrot ≈ 5951.992. In total, this results in a partition func-
tion of Q ≈ 6100.290. Note that, in contrast to our previous work
published in Ref. 56, this value differs by ≈0.1%, due to a change
in convergence thresholds. For the calculation of the partition func-
tion and the intensities, the temperature has been set to T = 300 K.
During the calculation of the rotational terms, the expansion of the
μ-tensor has been varied between zeroth and third order. Contrar-
ily, within the Coriolis coupling terms, the maximal expansion order
of the μ-tensor was 2. The number of vibrational basis functions
(VCI states) was varied between 16 and 67, whereas the number of
rotational basis functions has always been set to 2J + 1, which is the
maximum number of rotational basis functions that can be consid-
ered. As mentioned before, the rotational basis functions (MSRB)
are a linear combination of Wang combinations. For the calculation
of intensities, all rovibrational states are considered, which fulfill the
selection rule ΔJ ∈ {0,±1} and which show a thermal population of
the lower state of at least 0.1%. However, hot bands have not been
considered as the lowest vibrational mode is at νi ≈ 990 cm

−1.

All calculations have been performed with the MOLPRO
program package.53

III. BENCHMARK CALCULATIONS

The goal of the benchmark calculations is the determination of
the impact of different simulation parameters and to set the level of
accuracy in perspective to the required computation time. All calcu-
lations refer to the rovibrational infrared spectrum of thioformalde-
hyde. In the following, the influence of a number of parameters on
this spectrum shall be studied, namely, (1) the order of the inverse
effective moment of inertia tensor μ for the rotational terms, (2)
the μ-tensor order for the Coriolis Coupling terms, (3) the multi-
mode expansion order of the dipole moment surface (DMS), and (4)
the size of the vibrational basis set. Besides these parameters, many
others may be studied, like the accuracy of the electronic structure
theory, the expansion order of the potential energy surface, or the
expansion order of the μ-tensor in the VAM terms. However, most
of them have been investigated before.45,60

All test calculations presented below are compared to reference
calculations, in which every parameter is set to its largest level (see
above), i.e., the rotational terms include third order μ-tensor contri-
butions and Coriolis coupling includes up to second order terms of
the μ-tensor expansion. For the DMS, the n-mode expansion was
truncated after fourth order and the number of vibrational basis
functions was set to 67 (see below).

A. Rotational and Coriolis coupling terms

In the first step, the influence of the rotational and the Cori-
olis coupling terms shall be studied. For the rotational terms, the
μ-tensor expansion is varied in the range between zeroth order and
third order. In contrast to that, the Coriolis coupling studies do
not start with zeroth order, but with completely neglecting Corio-
lis coupling. This is reasonable as one already yields a rovibrational
spectrum without considering these termsÐdue to the considered
rotational term.

Rovibrational states from different calculations are compared
by searching for matching sets of assigned quantum numbers. A
complete set of quantum numbers consists of the vibrational quan-
tum number ν, the total angular momentum quantum number J,
and the z-component of the angular momentum k, respectively, ka
and kc for asymmetric top molecules. While J is a good quantum
number, this does not hold for ν and k. Hence, the validity of com-
paring different rovibrational calculations depends crucially on the
quantum number assignment. To account for this effect, two dif-
ferent metrics are used in this comparison. The first is the mean
absolute deviation (MAD) of all states, while the second only consid-
ers the subset of states that have an assignment confidence A > 0.5
in both calculations. This is done in a two-step process. At first,
the final rovibrational wave functions are projected on the differ-
ent vibrational basis functions and the rotational basis functions.
The maximum value yields the confidence for the assignment of the
vibrational quantum number, Av, and the assignment confidence
for the rotational quantum number, Ar. The minimum of these
two values corresponds to A. For being able to assign local quan-
tum numbers to these states, a value of 0.5 is required.75 By using
these two metrics, it is possible to separate the effects of wrongly
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FIG. 1. Mean absolute deviation (MAD) of the state energies for different orders of
the μ-tensor expansion. Red lines show the impact of the Coriolis coupling terms
and blue lines show the dependence on the rotational terms. The results of the
statistics, in which only states with a quantum number assignment confidence
A > 0.5 are considered, are displayed in dark colors and solid lines, while the
statistics for all states is presented in faint colors and dashed lines. The other
benchmark parameters are set to their highest values, i.e., the number of vibra-
tional basis functions is Nvib = 67, while the dimension of the DMS is irrelevant as
intensities are not considered.

assigned states from actual shifts in the state energies up to a certain
extent. It should be noted that there is also a correlation between the
assignment confidenceA and the coupling strength. This means that
purely focusing on the statistics of the subset of filtered states would
systematically undervalue the strongly coupled states.

The impact of these terms on the accuracy of the calculation is
shown in Fig. 1. Clearly, all four lines show a nearly linear decline
in this logarithmic plot, which has to be expected for a converging
expansion. Furthermore, the subset that fulfills the conditionA > 0.5
has a consistently lowerMAD than the full set of compared states. By
increasing the μ-tensor expansion order, this deviation also increases
significantly from a factor of about 2.5 for the lowest order, up to a
factor of about 25 for the highest order. The exact numbers for the
MADs can be seen in Tables I and II. In general, the rotational terms
require a μ-tensor order, which is about one order higher than the
corresponding Coriolis coupling terms for a comparable accuracy.

TABLE I. Calculation times t for the evaluation of the rotational terms, mean absolute
deviation (MAD) of all calculated states ΔE

MAD
all

, as well as the MAD ΔE
MAD
filter

for the
subset with quantum number assignment confidence A > 0.5. The Coriolis coupling
term uses a μ-tensor expansion up to second order. The number of vibrational basis
functions (VCI states) is set to Nvib = 67.

μ-tensor t (s) ΔEMAD
all ( cm−1) ΔEMAD

filter ( cm−1)
0D 10.9 152.25 72.64
1D 21.1 25.37 5.04
2D 22.2 1.66 0.07
3D 29.0 ⋅ ⋅ ⋅

a
⋅ ⋅ ⋅

a

aReference calculation.

TABLE II. Calculation times t for the evaluation of the Coriolis coupling terms, mean
absolute deviation (MAD) of all calculated states ΔE

MAD
all

, as well as the MAD ΔE
MAD
filter

for the subset with quantum number assignment confidence larger than 0.5. The rota-
tional term uses μ-tensor terms up to third order and the number of vibrational basis
functions (VCI states) is set to Nvib = 67.

μ-tensor t (s) ΔEMAD
all ( cm−1) ΔEMAD

filter ( cm−1)
None 0.0 120.50 46.07
0D 4.2 22.27 1.36
1D 48.2 5.31 0.17
2D 1617.2 ⋅ ⋅ ⋅

a
⋅ ⋅ ⋅

a

aReference calculation.

In addition to the MADs, the aforementioned tables also contain the
central processing unit (CPU) times.

It should be noted that the times presented in Tables I and II are
not the CPU times for a complete RVCI calculation, but only for the
corresponding precalculations described in Sec. II A. For the rota-
tional terms, there is only a moderate increase in CPU time due to
efficient prescreening of the VCI wavefunction coefficients as well as
contraction of integrals. In contrast to this, Coriolis coupling terms
show a near exponential increase in computation time. One reason
for this is the intrinsically higher complexity of these terms due to the
additional πα operator [cf. Eq. (2)], which results in a larger number
of different cases that have to be considered. Another reason is that
the Coriolis coupling terms have not yet been fully optimized with
respect to the CPU time in our implementation so far. Since compu-
tation times for the precalculations depend crucially on the number
of selected VCI configurations, the determined trends can only be
generalized to molecules with a roughly similar number of configu-
rations (Hartree products). For H2CS, the most viable strategy is to
set the μ-tensor order of the rotational terms to its maximum and
to choose the μ-tensor order for Coriolis coupling depending on the
desired accuracy and available computational resources. This will be
discussed in more detail, in Sec. III D.

B. Vibrational basis size

A crucial parameter in configuration interaction methods is the
number and proper selection of basis functions. Our implementa-
tion of RVCI relies on a direct product of vibrational and rotational
basis functions. While the latter has an upper limit of meaningful
basis functions that depends on J and is equal to (2J + 1), the num-
ber of the former, i.e., VCI wavefunctions, is, in principle, unlimited
and, therefore, the subject of study in this section.

In Sec. III A, two types of metrics have been used to evaluate
the accuracy of the different expansion orders of the μ-tensor. These
are the MAD of all calculated states and the subset of states with a
quantum number assignment confidence of A > 0.5. Since the qual-
ity of the assignment is very poor for a rather small set of vibrational
basis functions, the unfiltered metric becomes meaningless. For this
reason, the MAD for the filtered subset ΔEMAD

filter serves as the main
metric in this section. Furthermore, the median for the same subset
of filtered states is used as it is less sensitive to any outliers.

An almost linear trend with a small negative slope for the MAD
(red line) is shown in the logarithmically scaled Fig. 2. One rea-
son for the slow convergence can be seen by comparing the median

J. Chem. Phys. 157, 234105 (2022); doi: 10.1063/5.0129828 157, 234105-5

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

FIG. 2. Deviation of RVCI state energies from the reference calculation for dif-
ferent vibrational basis set sizes. The red line describes mean absolute deviation
(MAD) and the green line describes the median. States where the quantum num-
ber assignment confidence A is lower than 0.5 are not shown, because for small
numbers of vibrational states, inconsistent assignments of the states make the
statistics meaningless. The other benchmark parameters are set to its highest
values; i.e., the μ-tensor order for the rotational term is set to 3 and for Coriolis
coupling, the μ-tensor order is 2. The dimension of the DMS is again not relevant
as intensities are not considered.

and MAD in Fig. 2. The median, ΔEMedian
filter , which roughly shows

a quadratic behavior, is consistently a factor of about 7 lower than
ΔEMAD

filter , except for the last two basis set sizes, where the deviation
increases to roughly a factor of 50. Hence, there is a number of
outliers that dominate the overall results in the statistics.

In comparison to the results of Sec. III A, where an accu-
racy of ΔEMAD

filter ≤ 5 cm−1 could be reached with low computational
effort, only the second largest vibrational basis set can meet this level
of accuracy. The corresponding CPU times are listed in Table III.
Note that this table shows the total CPU times of both, the VCI
and RVCI calculations, instead of the run time for the precalcula-
tions only. This is due to the fact that the size of the vibrational
basis influences all time demanding steps within VCI and RVCI
theory, while the selected μ-tensor order almost exclusively influ-
ences the precalculation times. In summary, it can clearly be seen
that achieving convergence in the vibrational basis size is much
more demanding with respect to the CPU time than achieving con-
vergence for the coupling terms. For this reason, it is particularly
difficult and likewise important to find a good tradeoff between
accuracy and computation times. This, for example, is in contrast
to the less critical choice of the truncation of the μ-tensor expansion
in the rotational terms with regard to the CPU time. Besides this,
we found it to be important that all VCI wavefunctions being used
in the RVCI calculations need to be tightly converged with respect
to the correlation space in the underlying VCI calculations, which
is not necessarily the case for high lying overtones or combina-
tion bands. As a consequence, modals with large quantum numbers
should be employed in the generation of the Hartree products, i.e.,
the basis of the VCI wavefunctions, which render these calculations
expensive.

TABLE III. Total VCI and RVCI computation times t for different vibrational basis set
sizes, mean absolute deviation (MAD), ΔE

MAD
filter

, and median, ΔE
Median
filter

, for all cal-

culated states, with quantum number assignment confidence larger than 0.5. The
rotational term employs a μ-tensor expansion up to third order and the Coriolis
coupling operator contains up to second order μ-tensor contributions.

No. vib. states t (s) ΔEMAD
filter ( cm−1) ΔEMedian

filter ( cm−1)
16 171.1 86.2 15.2
26 416.8 63.7 11.5
34 747.8 40.2 6.9
42 1111.2 25.7 3.6
47 1818.9 20.7 2.9
55 2263.6 10.2 0.7
61 3000.2 5.3 0.1
67 4189.0 ⋅ ⋅ ⋅

a
⋅ ⋅ ⋅

a

aReference calculation.

C. Dipole moment surface expansion

Secs. III A and III B focused on parameters influencing the
RVCI energies directly and the intensities, which depend on the
transition energies [cf. Eq. (15)], indirectly. In contrast to that, this
section studies the impact of the expansion order of the dipole
moment surface (DMS) on the resulting intensities. The metrics
used here, which are directly related to the metrics for the transi-
tion energies, are the relative MAD for intensity changes, ΔIMAD

all ,
in the full set of relevant transitions and ΔIMAD

filter , which is defined
analogously for the subset of transitions, in which both states of
the transition have an assignment confidence larger than A > 0.5.
The term relevant transition is used as the total number of pos-
sible transitions has been reduced to those, which show sufficient
intensity. For example, when Jmax = 45 and 67 vibrational states
are considered, there are about 1.47 ⋅ 107 transitions fulfilling the
selection rule ΔJ ∈ {−1, 0,+1} and the condition νi ≤ 7000 cm−1.
A check for the thermal occupation of at least 0.1% for the lower
rovibrational states reduces this to 6.6 ⋅ 106 transitions. Consider-
ing only transitions, which have an intensity ratio of at least 10−7,
relative to the strongest line in the spectrum and filtering transitions
with unambiguously assigned states leads to the final number of
44 768 transitions. Including the filter for an assignment confidence
of A > 0.5 reduces the number of transitions only slightly to 39 866.
For this reason, the difference between the two metrics must be
expected to be small.

Similar to the μ-tensor expansion (cf. Fig. 1), Fig. 3 shows a fast
convergence in dependence on the order of the DMS. The result-
ing error, ΔIMAD

all , is reduced by more than two orders of magnitude
when the order of the surface is increased by 2. The exact num-
bers are given in Table IV. Comparing the two different metrics, i.e.,
ΔIMAD

all and ΔIMAD
filter , shows no significant difference. There are two

reasons for this behavior: (1) As the DMS has no impact on state
energies, the assignment of any states is entirely independent from it.
Consequently, any misassigned states do not affect the relative con-
sideration of the spectrumwith respect to different expansion orders
of the DMS. (2) Furthermore, as mentioned before, the set of tran-
sitions with sufficient intensity and without ambiguously assigned
states leads to a set of states with most of them showing a large
assignment confidence (∼89%). Hence the differences of the two
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FIG. 3. Relative MAD of the intensities for different orders of multimode expan-
sion for the DMS. The results of a statistics, where only states with quantum
number assignment confidence A > 0.5 are considered, are displayed in a solid
red line and dots, while the statistics for all states is presented in a blue and
dashed line. The other benchmark parameters are set to its highest values; i.e., 3D
μ-tensor for rotational terms and 2D μ-tensor for Coriolis coupling, and the number
of vibrational basis functions is Nvib = 67.

lines in Fig. 3 are hardly visible and, thus, only onemetric is provided
in Table IV.

In contrast to the previous tables, Table IV does not compare
the computation time for the different orders of the expansion. This
is due to negligible CPU times of about 6 s for this part of the
code and, thus, for H2CS, the calculation of the vibrational transi-
tion moments requires almost no time in comparison to other parts.
Consequently, for this molecule, the calculation essentially is inde-
pendent of the order of the DMS expansion. The most prominent
reasons for that are a very effective prescreening on the prod-
ucts of the VCI wave function coefficients and the low number
of configurations in the VCI wave functions as obtained from our
configuration-selective implementation of VCI theory.

D. Influence on spectra

The previous studies revealed the influence of the different
approximations on the different metrics. In this section, the impact

TABLE IV. Mean absolute deviation (MAD) of the percentage change in intensities
for all calculated states, ΔI

MAD
all

, for different expansion orders of the dipole moment
surface. The number of vibrational basis functions is set to Nvib = 67. The rotational
term uses third order μ-tensor and the Coriolis coupling term uses a second order
μ-tensor expansion.

DMS order ΔIMAD
all (%)

1D 10.66
2D 1.43
3D 0.04
4D ⋅ ⋅ ⋅

a

aReference calculation.

shall be demonstrated by a visual comparison of the respective spec-
tra and scatter plots. Moreover, we do not focus on the variation of
a single parameter, but rather three different levels of accuracy are
introduced.

Since there are two parameters that were found to be not crit-
ical with respect to the overall computation time, i.e., the μ-tensor
expansion order for the rotational terms and the expansion order
of the dipole moment surface, they will be set to the reference val-
ues, i.e., 2 and 3. In contrast to that, the expansion order of the
μ-tensor within the Coriolis coupling terms is set to 0 for the low
accuracy calculation, 1 for the medium accuracy, and 2 for the high
accuracy. In addition to that, for low accuracy, the vibrational basis
corresponds to all VCI states, which have a frequency lower than or
equal to 4200 cm−1 and have a sum of vibrational quantum num-
bers not exceeding 3. This corresponds to the 42 vibrational states
in Table III. For the medium accuracy, the frequency threshold was
set to 5700 cm−1, which corresponds to 61 VCI states. The results
with high accuracy were achieved by using a frequency threshold of
7000 cm−1 resulting in 67 vibrational modes.

The results of the three calculations are shown in Fig. 4 for a
small region of about 3.5 cm−1. It shows a progression belonging to
a strong coupling region involving the three fundamental bands ν4,
ν6, and ν3. The differences between the three simulations in that plot
are visible in terms of a shift in the whole progression. In addition
to that the spacing within the lines of the progression has changed.

FIG. 4. Narrow section of the rovibrational spectrum of H2CS in dependence on dif-
ferent levels of accuracy. The selected area covers a part of the tail of the strongly
coupling region, between three fundamental bands [ν4 at 989.4 cm−1 with B1 sym-
metry, ν6(B2) at 989.5 cm−1 and ν3(A1) at 1060.2 cm−1]. Low accuracy calculation
(a) employs Nvib = 42 vibrational basis functions and zeroth order μ-tensor expan-
sion for Coriolis coupling. Medium accuracy (b) uses Nvib = 61 with first order
μ-tensor in Coriolis coupling and for high accuracy, (c) Nvib = 67 is employed with
second order μ-tensor in Coriolis coupling.
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The reason for that is a change in the centrifugal distortion, which
could be expected as the impact of the Coriolis coupling terms has
changed.

Another way to investigate the influence of different levels of
accuracy is by analyzing scatter plots. For this reason, all transitions
of two different calculations are compared pairwise when all quan-
tum numbers match and the resulting plot is shown in Fig. 5. The
red dots show the difference between the calculations with low and
high accuracy and the blue dots show the same for the calculations
with medium and high accuracy. The figure reveals several aspects:
(1) the deviations in the transition frequencies are about two orders
of magnitude smaller than the deviation in the intensities. However,
both errors decrease substantially when increasing the accuracy of
the calculation, i.e., considerations of the blue points instead of the
red ones in Fig. 5. (2) In the majority of compared transitions the
lack of accuracy leads to an underestimation of the frequency, but
rarely to an overestimation. For the intensity on the other hand,
there is no such general systematic effect. (3) Moreover, there are
no data points in blue for which the error for both the intensity and
frequency is high. Although the figure shows only the most interest-
ing section of the whole dataset, this statement also holds true for the
latter. As a result of that, it is unlikely that there are many transitions
belonging to states, for which the assignment differs between the
calculation with medium and high accuracy, i.e., misassignments in
one of the calculations. In contrast to that, the comparison between
calculations with low and high accuracy shows data points

FIG. 5. Scatter plot for the relative deviations in frequencies and intensities for
different levels of accuracy. All rovibrational transitions of H2CS with J ≤ 45 orig-
inating in the vibrational ground state and ending either in the vibrational ground
state or in one of the fundamental bands are considered. Red dots denote the
differences between the calculations with low accuracy and high accuracy (refer-
ence) and blue dots denote the differences between the calculations with medium
accuracy and high accuracy.

with ≈35% error in intensity and ≈0.5% error in frequency.
A comparison of the energies of all three computational lev-
els with experimental data in terms of state lists is provided in
Table IV.

The computation time for the calculation with lowest accu-
racy amounts to t = 738 s, which is about 33% less in comparison
to the calculation in Table III with a vibrational basis set size of
42, which is due to the additional reduction in the order of the
μ-tensor expansion. For the medium and high accuracy calcula-
tions, the computation time increases to t = 1946 s and t = 4189 s,
respectively.

IV. SUMMARY AND CONCLUSIONS

The dependence of rovibrational transitions and their corre-
sponding intensities on the truncation orders of n-mode expansions
of the μ-tensor and dipole moment surfaces (DMS) has been studied
by benchmark calculations for thioformaldehyde. The explicit con-
sideration of high order terms, i.e., 2D, of the μ-tensor in the purely
rotational contributions to theWatson Hamiltonian was found to be
important in order to yield accurate results. However, these terms
do not constitute a computational bottleneck and, thus, there are
essentially no reasons to exclude these terms from standard calcula-
tions. Likewise conclusions hold true for the expansion terms of the
DMS within the calculation of rovibrational intensities. However, it
is an efficient prescreening, which is responsible for the efficiency
in these calculations. The inclusion of high-order Coriolis coupling
terms is much more demanding, and improved implementations
are needed to limit the computational effort. Work in that direc-
tion is currently in progress. 2D Coriolis coupling terms may still
be important for accurate calculations, but it needs to be kept in
mind that thioformaldehyde is a sensitive molecule with respect to
Coriolis coupling and, thus, it might be that for many molecules the
inclusion of 1D terms is sufficient. This needs to be verified by cal-
culations for other systems. The most crucial factor appears to be a
proper number of vibrational basis functions (VCI wavefunctions)
to be included in the RVCI calculations. Apparently, an inclusion of
the fundamental VCI transitions is not sufficient and a number of
overtones and combination bands need to be considered as well, but
these can be controlled by energetically upper limits and the exci-
tation patterns within the combination bands. Algorithms, which
predict important VCI states to be included, would be very beneficial
as general rules may fail for challenging molecules. Moreover, while
a good visual appearance of an overall spectrum can be achieved with
rather limited effort, the accurate calculation of line positions leads
to a fast increase in the CPU time demands. In general, relative devi-
ations with respect to intensities were found to be larger than for
energies. With this, the findings of this study can be used as an ini-
tial guess of input parameters for RVCI calculations, which need to
be optimized in dependence on the molecule to be studied and the
available computational resources.
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APPENDIX: CORIOLIS INTEGRALS

The Hartree product (configuration) of a vibrational wavefunc-
tion according to Eq. (10) is given by

ϕ
I
v =

3N−6

∏
i=1

φ
I
i(qi), (A1)

with φI
i(qi) denoting the one-mode wavefunctions (modals) and the

set of normal mode indices M ∈ {1, . . . , i, . . . , 3N − 6}. Using the
n-mode representation of the μ-tensor with the individual terms
expressed as shown in Eqs. (8) and (9), the Coriolis integrals⟨ϕIv∣παμαβ + μαβπβ∣ϕJv⟩ can be evaluated by the terms of different
order. The antisymmetry of the ζ-constants, i.e., ζαij = −ζ

α
ji and ζ

α
ii = 0,

and the symmetry of the μ-tensor reduce the number of contribut-
ing integrals to just some very few, which will be presented in the
following. For brevity, the sums over α and β, as well as prefactors,
e.g., the Coriolis ζ-constants, are neglected.

1. Zeroth order integrals

As μ(0)αβ is just a constant, the terms (παμ(0)αβ + μ
(0)
αβ πβ) of the

Coriolis coupling operator are identical and yield the integral

I
(0)
cc = 2⟨ϕIv∣qi ∂

∂qj
∣ϕJv⟩ . (A2)

Using the abbreviations,

Q
IJ
ia = ⟨φI

i ∣qai ∣φJ
i ⟩, (A3)

Δ
IJ
ia = ⟨φI

i ∣qai ∂

∂qi
∣φJ

i⟩, (A4)

δ
IJ
i...j = ⟨ ∏

k∈M/{i,...,j}

φ
I
k

RRRRRRRRRRRR
∏

k∈M/{i,...,j}

φ
J
k⟩, (A5)

with δIJij denoting a mode-reduced Kronecker-δ of two Hartree
products, and the zeroth order term can be computed as

I
(0)
cc = 2Q

IJ
i1Δ

IJ
j0δ

IJ
ij . (A6)

2. First order integrals

The two contributions of the first order term of the Coriolis
coupling operator, i.e.,

∑
k

⟨ϕIv∣παμ(1)αβ (qk) + μ(1)αβ (qk)πβ∣ϕJv⟩ , (A7)

do not necessarily commute and three different cases for I(1)cc must
be distinguished,

k = i ≠ j : 2∑
r

d
i,r
αβQ

IJ
i(r+1)Δ

IJ
j0δ

IJ
ij , (A8)

k ≠ i ≠ j = k :∑
r

d
j,r
αβQ

IJ
i1(2ΔIJ

jr + rQ
IJ
j(r−1))δIJij , (A9)

k ≠ i ≠ j ≠ k : 2∑
r

d
k,r
αβQ

IJ
i1Δ

IJ
j0Q

IJ
krδ

IJ
ijk. (A10)

Within the conditions, the indices i and j refer to the VAM-operator
πα and the index k to the μ-tensor expansion. The variable di,rαβ is
already defined in Eq. (8).

3. Second order integrals

A likewise expression can be derived for I(2)cc , which refers to

∑
kl

⟨ϕIv∣παμ(2)αβ (qk, ql) + μ(2)αβ (qk, ql)πβ∣ϕJv⟩ . (A11)

As μ(2)αβ (qk, ql) denotes a difference, cf. Eq. (7), the diagonal coeffi-
cients dkk,rαβ must be zero and, thus, always k ≠ l. The four different
cases, which need to be distinguished, are

k l

i ≠ ≠

j ≠ ≠

: 2∑
rs

d
kl,rs
αβ Q

IJ
i1Δ

IJ
j0Q

IJ
krQ

IJ
ls δ

IJ
ijkl, (A12)

k l

i = ≠

j ≠ ≠

: 2∑
rs

d
il,rs
αβ Q

IJ
i(r+1)Δ

IJ
j0Q

IJ
ls δ

IJ
ijl, (A13)

k l

i ≠ ≠

j = ≠

: ∑
rs

d
jl,rs
αβ Q

IJ
i1(2ΔIJ

jr + rQ
IJ
j(r−1))QIJ

ls δ
IJ
ijl, (A14)

k l

i = ≠

j ≠ =

: ∑
rs

d
ij,rs
αβ Q

IJ
i(r+1)(2ΔIJ

js + sQ
IJ
j(s−1))δIJij . (A15)
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It shall be noted here that the condition for arising integrals can be
generalized to any further high-order Coriolis coupling terms, but
in all these cases, just four integrals do not vanish, which refer to the
four cases of the 2D contributions.
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A B S T R A C T 

From an astrochemical point of view, propynal is a complex organic molecule. Moreo v er, it is a potential candidate for the 
formation of prebiotic propanal and propenal. Therefore, this molecule is of particular interest for astrochemical investigations. 
As it has been detected in the interstellar medium, it is of high rele v ance in this field of research. Although experimental data 
are available for the vibrational fundamental bands and rotational constants, experimental data for vibrational o v ertones and 

combination bands are scarce and fairly old. Additionally, high-level ab initio calculations are also not reported. In this work, 
we provide accurate quantum chemical calculations as well as a detailed analysis of vibrational and rovibrational properties 
for this molecule. The low-frequency spectrum up to 350 cm 

−1 has been studied for temperatures between 10 and 300 K . For 
the same temperature range, partition functions are provided. Furthermore, the impact of hot bands up to room temperature 
has been investigated. A comparison of our results with experimental data is provided for the rotational constants, geometrical 
parameters, and a rovibrational spectrum. The underlying potential energy surface within these calculations is based on explicitly 

correlated coupled-cluster theory and includes up to four-mode coupling terms within an n -mode expansion. The vibrational and 

rovibrational calculations rely on vibrational and rovibrational configuration interaction theories, respectively. 

Key words: molecular data – line: identification – infrared: general – radiation mechanism: general – ISM: general – ISM: lines 
and bands. 

1  I N T RO D U C T I O N  

The first molecule detected in the interstellar medium (ISM) was 
methylidyne (CH) in 1937 (Dunham 1937 ; Swings & Rosenfeld 
1937 ; McKellar 1940 ). Since then more than 200 molecular species 
have been detected in the interstellar and circumstellar media (M ̈uller 
et al. 2001 , 2005 ; Endres et al. 2016 ; McGuire 2018 ). One important 
subset of these is molecules with more than five atoms that contain 
at least one carbon atom. They are usually referred to as complex 
organic molecules (Herbst & van Dishoeck 2009 ) and they are 
thought to be important building blocks for biologically rele v ant 
molecules (Woon 2002 ; Theule et al. 2011 ; Ohishi 2019 ). Propynal 
falls into this class. Furthermore, as propynal is a potential candidate 
for the formation of prebiotic propenal (CH 2 CHCHO) and propanal 
(CH 3 CH 2 CHO), it is of particular interest for astrochemical inves- 
tigations (Irvine et al. 1988 ; Turner 1991 ; Hollis et al. 2004 ). The 
first detection of propynal in the ISM was by Irvine et al. ( 1988 ) and 
was followed by many more investigations in space (Turner 1991 ; 
Ohishi & Kaifu 1998 ; Hollis et al. 2004 ). 

Independent from astrochemical inv estigations, o v er the last 
decades, propynal has been studied by several groups, mostly by 
experimental methods. In an early work, Brand & Watson ( 1960 ) 
determined all vibrational fundamental bands and some additional 
ones of propynal and its singly deuterated isotopologues by means of 

� E-mail: rauhut@theochem.uni-stuttgart.de 

gas-phase infrared spectroscopy. These studies were refined by the 
same group (Brand, Callomon & Watson 1963 ) using near -ultra violet 
spectroscopy (see also Howe & Goldstein 1958 ) with a focus on the 
band at 382 nm . 

A study of 15 different propynal isotopologues beyond deuteration 
has been performed by Costain & Morton ( 1959 ). Roughly at the 
same time, King & Moule ( 1961 ) employed gas-phase infrared spec- 
troscopy in the region between 380 and 4000 cm 

−1 as well as Raman 
spectroscopy to measure the frequencies of the pure vibrational tran- 
sitions. To reach an even higher accuracy, the subsequent works used 
either double resonance laser measurements (Takami & Shimoda 
1976 ; Jones 1980 ) or direct current (DC) glow discharges (Jaman 
et al. 2011 ). While the previously mentioned publications focused 
more on gas-phase spectroscopy at room temperature, there are recent 
measurements of frequencies of the vibrational fundamental bands 
in amorphous propynal at T = 10 K and in the crystal phase at 
T = 125 K by Hudson & Gerakines ( 2018 ). In addition to that, the 
results of a simulation based on a potential energy surface (PES) 
obtained by density functional theory (DFT) for the aforementioned 
frequencies have been published by Margul ̀es et al. ( 2020 ). Ho we ver, 
it should be mentioned that this work mainly focuses on propynethial, 
which is the sulphur analogue of propynal. 

The first experimental determination of rotational constants was 
performed by Howe & Goldstein ( 1955 ) and later on refined 
by Winnewisser ( 1973 ). The latter determined all quadratic and 
quartic spectroscopic constants, but only two of the seven sextic 
parameters. Three decades later, McKellar et al. ( 2008 ) did not only 
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determine the rotational and centrifugal distortion constants with 
much higher accurac y, the y also calculated these constants for four 
different excited vibrational modes. The most recent publications on 
the spectroscopic constants of propynal are by Barros et al. ( 2015 ) 
using coherent synchrotron radiation Fourier transform spectrometry 
and by Jabri et al. ( 2020 ) determining also some octic centrifugal 
constants and investigating more excited vibrational bands. 

Within these studies, there are only three spectra that have been 
published for the undeuterated propynal. The first one is by King & 

Moule ( 1961 ) for a very broad spectral range of 400–3600 cm 

−1 . 
Nearly five decades later, McKellar et al. ( 2008 ) presented a high- 
resolution spectrum for 215 K at 580–730 cm 

−1 . The most recently 
published spectrum of propynal was again by McKellar ( 2010 ), in 
a re vie w article about high-resolution infrared spectroscopy with 
synchrotron sources. The section about propynal was based on earlier 
work of Robertson et al. ( 2009 ), showing a high-resolution spectrum 

at 80–410 cm 

−1 measured at the Australian synchrotron, which has 
been used as reference spectrum within this work. 

As mentioned earlier, the majority of these studies are based on 
laboratory experiment. The number of theoretical investigations and 
in particular ab initio calculations is v ery limited. Ov er the last 
decades, a multitude of different approaches for the simulation of 
vibrational and rovibrational spectra have been developed by the 
community (Rauhut 2004 ; Yachmenev et al. 2011 ; Carter, Bowman & 

Handy 2012 ; Wang & Carrington 2013 ; Yachmenev, Polyak & Thiel 
2013 ; Carter, Wang & Bowman 2017 ; Nikitin, Rey & Tyuterev 2017 ; 
Rey, Nikitin & Tyuterev 2017 ; Yurchenko et al. 2017 ; Ferenc & 

Matyus 2019 ; Sarka, Petty & Poirier 2019 ; Simmons, Wang & 

Carrington 2019 ; Smydke et al. 2019 ; Tobias et al. 2019 ; Tyuterev 
et al. 2019 ; Clark et al. 2020 ; Santa Daria, Avila & Matyus 2021 ; 
Tsch ̈ope et al. 2021 ). One of these approaches relies on the Watson 
Hamiltonian (Watson 1968 ) and subsequent vibrational configuration 
interaction (VCI; Bo wman, Christof fel & Tobin 1979 ; Christof fel & 

Bo wman 1982 ; Nef f & Rauhut 2009 ; Pfeif fer & Rauhut 2014 ; 
Schr ̈oder & Rauhut 2022 ) and rovibrational configuration interaction 
(RVCI; Erfort et al. 2020a ; Erfort, Tsch ̈ope & Rauhut 2020b , 2022 ) 
calculations. It allows for the efficient determination of rovibrational 
spectra for semirigid molecules, by using high-level PESs described 
in normal coordinates (Ziegler & Rauhut 2016 , 2018 , 2019 ). Limi- 
tations for this approach occur for floppy molecules and vibrational 
modes with large deflections, because the underlying expansions 
con verge slower , which makes the calculations less efficient. This 
approach, which is not bound to a model Hamiltonian, appears to be 
very suitable for our investigations for several reasons: (1) propynal 
is a semirigid system, (2) we focus on low temperatures, and (3) we 
are studying the spectra up to 350 cm 

−1 . 
In this study, we use a high-level multidimensional PES as well as 

VCI and RVCI calculations to determine the (ro)vibrational spectrum 

of propynal. We present data for the geometrical parameters and 
values for the partition functions between 10 and 300 K . Furthermore, 
we provide spectra considering pressure broadening, infrared stick 
spectra, and vibrational line lists. In addition to that we discuss 
the influence of hot bands on the simulated spectra for different 
temperatures and compare our rotational constants with experimental 
results. 

2  T H E O RY  

2.1 Ro vibrational ener gies 

Our implementation of RVCI theory is based on the Watson Hamil- 
tonian (Watson 1968 ), 

H = 
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which relies on the Born–Oppenheimer PES V expanded in terms of 
normal coordinates q i . Moreo v er, it depends on the Cartesian com- 
ponents of the angular momentum operator, J α , and the vibrational 
angular momentum (VAM) operator 

πα = −i 
∑ 

jk 

ζ α
jk q j 

∂ 

∂q k 
(3) 

with ζ α
jk denoting an element of the antisymmetric Coriolis ζ - 

constant tensor. α, β ∈ { x , y , z} denote Cartesian components. 
The Watson Hamiltonian can be split into the rotational term H rot , 
the Coriolis coupling term H rv , and the pure vibrational term H vib . 
The latter two depend on the inverse of the ef fecti ve moment of 
inertia tensor μ (Watson 1968 ). We are using an n -mode expansion 
(Bowman, Carrington & Meyer 2008 ) and an analytical sum-of- 
products representation by means of polynomials to describe the 
potential V and the μ-tensor. 

The rovibrational calculations rely on a two-step process. At first, 
VCI theory is used to solve the Schr ̈odinger equation for the non- 
rotating molecule with respect to H vib . This yields the vibrational 
energies and wavefunctions 

| � v 〉 = 

∑ 

I 

c I 
∣∣φI 

v 

〉
. (4) 

Within the VCI approach, a large number of Hartree products ∣∣φI 
v 

〉
(configurations) are screened to determine the vibrational 

wavefunctions | � v 〉 in a compact form (Mathea & Rauhut 2021 ; 
Mathea, Petrenko & Rauhut 2022 ). 

In the second step, RVCI theory is used with a direct product of 
the VCI wavefunctions and pure rotational basis functions | � r 〉 to 
solve the Schr ̈odinger equation for the Watson operator of rotating 
molecules (equation 1 ) and to determine the rovibrational state 
energies and wavefunctions 

| 
 rovib. 〉 = 

∑ 

rv 

c rv | � r 〉 | � v 〉 . (5) 

For | � r 〉 , we are using a molecule-specific rotational basis 
(MSRB), which is a linear combination of Wang combinations. It is 
determined by solving the Schr ̈odinger equation of the pure rotational 
part of the Watson Hamiltonian H rot and was introduced by Erfort 
et al. ( 2020b ). The diagonalization of the resulting RVCI matrix 
yields the desired wavefunctions. 

2.2 Intensities 

The rovibrational infrared line intensities, given by 

I = 

2 π2 N A 
3 ε0 h 

2 c 2 
e −E ′′ /kT (1 −e −( E ′ −E ′′ ) /kT ) 

Q ( T ) ( E 

′ − E 

′′ ) R, (6) 

depend on some mathematical and physical constants in the pre- 
factor as well as the thermal occupation of the specific rovibrational 
state, the energy difference ( E 

′ − E 

′′ ) between the two concerned 
states, and the square of the transition moment R . For the determina- 
tion of the partition function 

Q = 

∑ 

rv 

g rv e 
−E rv /k B T , (7) 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/3/3345/7000845 by U
niversitaet Stuttgart user on 24 February 2023



Simulated rovibrational spectrum of propynal 3347 

MNRAS 520, 3345–3354 (2023) 

all calculated rovibrational state energies E rv and the corresponding 
degeneracies g rv are used. This is in contrast to previous work, 
where we approximated the partition function by a separability 
approach. The degeneracies g rv = g ns (2 J + 1) depend on the nuclear 
spin statistical weights (NSSWs). For propynal, both irreducible 
representations A 

′ and A 

′′ yield the same value for the NSSWs of 
g ns = 4. 

3  C O M P U T  AT I O NA L  D E T  A I LS  

The equilibrium geometry, the harmonic frequencies, and hence the 
normal coordinates of propynal have been calculated by explic- 
itly correlated coupled-cluster theory including single and double 
excitations and a perturbative treatment of the triple excitations, 
CCSD(T)-F12b. For the calculation of the line lists and spectra, the 
frozen core approximation has been used within the calculation of the 
PES. This approximation relies on error compensation with respect 
to neglected contributions to the electronic energy, as for example 
high-order coupled-cluster terms, relativistic effects, diagonal Born–
Oppenheimer corrections, and core-correlation contributions. This 
usually leads to vibrational frequencies that match nicely with exper- 
imental results as can be seen in our results below. In contrast to that, 
all electron (ae) correlation calculations have been used to determine 
the rotational constants, since previous work has shown (Schneider & 

Rauhut 2023 ) that this impro v es the quality significantly. The orbital 
basis set used in these calculations has triple- ζ quality, i.e. cc-pVTZ- 
F12 (Peterson, Adler & Werner 2008 ) in case of the frozen core 
approximation, and cc-pcVTZ-F12 for the ae calculations. Within 
the latter coupled-cluster calculations, different exponents γ were 
used for the Slater geminal functions referring to core–core, core–
v alence, and v alence–v alence orbital pairs, i.e. 0.8, 1.7, and 2.2, as 
recommended by May & Manby ( 2004 ), while for the frozen core 
calculations a constant γ of 1.0 has been chosen. The complementary 
auxiliary basis set correction has been used to impro v e the Hartree–
Fock energies. 

An n -mode expansion truncated after the four-mode coupling 
terms was used to represent the multidimensional PES (Bowman 
et al. 2008 ). The level of electronic structure theory used to determine 
the 1D and 2D subsurf aces w as the same as for the calculation of 
the harmonic frequencies, while for the calculation of the 3D and 
4D subsurfaces the distinguishable clusters approximation, DCSD, 
was applied in combination with a double- ζ basis set. Such so-called 
multilevel schemes are described by Pflüger et al. ( 2005 ). The dipole 
moment surface was calculated by the corresponding conventional 
methods without explicit correlation. Run time savings due to 
symmetry were exploited for both, the electronic single point cal- 
culations and the different terms of the n -mode expansion (Ziegler & 

Rauhut 2018 ). A transformation of the grid representations of the 
surfaces to an analytical sum-of-products representation was applied 
to save computational time within the subsequent VCI calculations. 
Kronecker product fitting with nine monomials per mode was used 
for this purpose (Ziegler & Rauhut 2016 ). 

To determine vibrational wavefunctions, a state-specific configura- 
tion selective implementation of VCI theory has been used (Mathea & 

Rauhut 2021 ; Mathea et al. 2022 ; Schr ̈oder & Rauhut 2022 ). The 
basis functions for that are provided by means of Hartree products 
generated from one-mode wavefunctions (modals), which have been 
obtained from self-consistent field calculations for the vibrational 
ground state (GS). The correlation space was limited to a maximum 

of six different modes excited at the same time, the maximal sum 

of vibrational quantum numbers was set to 20, and a maximum 

excitation per mode up to the eighth root has been used. This resulted 

Table 1. Partition functions for propynal at different temperatures. 

T (K) Q 

9.375 506 
18.750 1433 
37.500 4054 
75.000 11 792 

150.000 40 812 
225.000 97 783 
300.000 195 486 

in about 2 × 10 7 configurations per irreducible representation. 
Diagonal elements of the VCI matrix included up to 1D terms of the 
μ-tensor expansion within the VAM terms, while the off-diagonal 
terms were limited to a constant μ-tensor. To determine the energy 
eigenvalues of predefined states, a residuum-based eigenvalue solver 
has been used (Petrenko & Rauhut 2017 ). 

The maximum value for the quantum number of the total angular 
momentum operator J was set to 95 within the RVCI calculations. 
Since the main focus of this paper is to study propynal under 
conditions similar to the ISM, we have chosen a temperature range 
from 10 to 300 K . The upper temperature bound was chosen to 
provide a reference spectrum for lab experiments. As mentioned 
earlier, the partition function was calculated based on RVCI state 
energies without using the separability approximation. The resulting 
partition functions for different temperatures are shown in Table 1 . 
For the calculations of the integrals arising from the rotational 
operator within the Watson Hamiltonian the order of the μ-tensor 
was set to 2. In contrast to that, a first-order μ-tensor has been used 
for the Coriolis coupling integrals. These choices were based on our 
previous findings (Tsch ̈ope & Rauhut 2022 ) and a similar analysis 
for propynal that was performed in the course of this study. 

As mentioned earlier, the rovibrational basis functions are direct 
products of VCI wavefunctions for the vibrational subspace and 
MSRB functions for the rotational subspace. The selection of VCI 
w avefunctions w as limited by a maximum transition frequency of 
1500 cm 

−1 and a maximum sum of vibrational quantum numbers of 
3. This yields N vib = 49 vibrational modes, which include the modes 
ν5 –ν12 in Table 2 and all transitions listed in Table 3 . The number of 
MSRB functions was set to N rot = 2 J + 1, which is the maximum 

number of rotational basis functions that can be considered. For this 
reason, the size of the largest matrix that had to be considered is N = 

(2 J + 1) N vib = 9359. The wall clock time for the combined VCI and 
RVCI calculations was ≈4.3 d on four central processing unit cores. 

The rovibrational intensity calculations considered ≈171 million 
transitions. The printout was filtered to ≈10.4 million transitions, 
which have an intensity of at least 10 −6 relative to the strongest 
transition in the spectrum for T = 300 K . In contrast to previous 
work, we also considered hot bands in the spectrum if the thermal 
occupation of the lower vibrational mode is high. For T = 300 K , 
this was fulfilled by the four modes ν9 , ν12 , 2 ν9 , and ν9 + ν12 . 

4  RESULTS  

4.1 Geometrical parameters 

Geometrical parameters of propynal are provided in Table 4 . The 
parameters denoted as r e are obtained from the Born–Oppenheimer 
equilibrium geometry. Vibrationally averaged geometrical parame- 
ters are given as r a and r g . The former can be obtained by averaging 
the atomic positions o v er the VCI GS wavefunction. The latter are 
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Table 2. Fundamental bands of propynal. Comparison between VCI results of this work and other theoretical and experimental data. Frequencies νi are 
given in cm 

−1 and infrared intensities I are given in km mol −1 . 

Mode Irrep νi I i Description 
This work a This work b Theory c Exp. d Exp. e Exp. f Exp. g Exp. h This work 

ν1 A 

′ 3330.8 3319.0 3332.1 3326.0 3335 – 3234 3212 36.5 H 2 –C stretch 
ν2 A 

′ 2862.9 2859.0 2769.1 2858.2 2869 – 2889 2914 42.1 H 1 –C stretch 
ν3 A 

′ 2121.1 2110.6 2159.7 2106.0 2125 – 2099 2092 52.1 C ≡C stretch 
ν4 A 

′ 1707.6 1701.9 1721.4 1696.9 1692 – 1666 1644 141.8 C = O stretch 
ν5 A 

′ 1390.9 1386.9 1432.5 1389.0 1398 – 1387 1394 9.0 H 1 –C = O rock 
ν6 A 

′ 944.4 939.8 940.8 943.7 950 – 952 959 95.3 C–C stretch 
ν7 A 

′ 659.8 650.9 675.4 650.0 691 651.3143 713 732 40.1 C ≡C–H 2 in-plane wag 
ν8 A 

′ 615.9 611.0 630.7 613.7 615 614.0146 624 631 3.0 C–C = O in-plane bend 
ν9 A 

′ 206.4 202.7 216.2 205.3 – – – – 5.1 C–C ≡C in-plane bend 
ν10 A 

′′ 985.2 980.9 988.2 981.2 990 – 989 1006 0.1 H 1 –C = O out-plane wag 
ν11 A 

′′ 699.1 692.6 757.8 692.7 669 692.7707 756 771 32.4 C ≡C–H 2 out-plane wag 
ν12 A 

′′ 260.0 255.9 279.1 260.6 – – – – 9.3 C–C ≡C out-plane bend 

MAD 

j – 5.2 2.9 30.3 Ref. d 13 – 32 46 – –

MAX 

j – 15.1 7.0 89.1 Ref. d 41 – 92 114 – –

a RVCI calculation based on ae PESs. 
b RVCI calculation based on frozen core PESs. 
c Calculated anharmonic frequencies values taken from Margul ̀es et al. ( 2020 ). 
d Experimental gas phase values taken from Brand et al. ( 1963 ). Used as reference for the calculation of MAD and MAX. 
e Experimental gas phase values taken from King & Moule ( 1961 ). 
f High-resolution (0 . 003 cm 

−1 ) experimental gas phase values taken from McKellar et al. ( 2008 ). 
g Experimental amorphous phase at T = 10 K , values taken from Hudson & Gerakines ( 2018 ). 
h Experimental crystalline phase at T = 115 K , values taken from Hudson & Gerakines ( 2018 ). 
i Infrared intensities obtained by VCI calculations based on a frozen core PES. 
j Mean absolute deviation (MAD) and maximum absolute deviation (MAX). 

instantaneous inter-nuclear distances calculated from an expectation 
value of the bond lengths expanded in terms of the normal coordi- 
nates. Similar to other studies (Czak ́o, M ́atyus & Cs ́asz ́ar 2009 ; Dinu 
et al. 2020 ), the two sets of vibrationally averaged bond lengths differ 
significantly from each other. The largest absolute difference can be 
found for r(C 3 H 2 ) of 0 . 0265 Å. By utilizing different isotopologues, 
the geometrical parameters can also be determined experimentally 
from GS rotational constants, as it was performed by Costain & 

Morton ( 1959 ). The molecular structures obtained by substitution ( r s ) 
agree well with our vibrationally averaged parameters r a although 
these values cannot be compared directly. 

4.2 Vibrational transitions 

A list of the purely vibrational transitions of propynal is given in 
Table 2 for the fundamental bands and in Table 3 for o v ertones 
and combination bands. There is only one theoretical and four 
experimental data sets for a comparison of the fundamental bands. 
For all other vibrational transitions, there are no theoretical data 
and just a very limited number of assigned experimental lines. In 
Table 2 , it can be seen that our calculations based on the frozen core 
approximation yield a mean absolute deviation (MAD) of 2 . 9 cm 

−1 

to the apparently most precise complete gas-phase experiments 
of Brand et al. ( 1963 ). This error bar is in the usual range of 
such calculations (see, for example, the work of Schr ̈oder & Rauhut 
2022 ). In contrast to that, the ae calculation has a significant larger 
MAD of 5 . 1 cm 

−1 . This is due to the lifting of the aforementioned 
error compensation with other approximations, mainly the high- 
order coupled-cluster terms. It is evident that the latter calculation 
o v erestimates the vibrational frequencies for all fundamentals. By 
comparing the frequencies for the single transitions instead of the 
MAD in Table 2 , it can be seen that in the majority of cases the 

deviation between our two calculations is smaller than 6 cm 

−1 . The 
results for the high-resolution gas-phase spectrum of McKellar et al. 
( 2008 ) show excellent agreement for the modes ν7 and ν11 when 
compared with our frozen core simulation. Ho we ver, the ν8 mode 
matches better with the ae result. 

Some of the combination bands and o v ertones, e.g. ν3 
9 , ν9 + 2 ν12 , 

and 2 ν9 + ν12 , showed a slow convergence with respect to the size 
of the VCI configuration space. For that reason, it was necessary to 
increase the maximum excitation per mode up to the eighth root. 

Among the vibrational modes under investigation there are only 
a small number of noticeable resonances. First of all, the ν2 mode 
at 2859 cm 

−1 shows a Fermi resonance with 2 ν5 . This resonance 
is stronger for the ae calculation, since the higher frequency of ν5 

and its o v ertone 2 ν5 decreases the energetic separation between two 
resonating vibrational modes. Neither an o v ertone nor a combination 
band arising from two different modes as listed in Table 3 shows any 
significant resonances. Ho we ver, there are two couples of threefold 
combination bands that resonate fairly significantly. Within the A 

′ 

symmetry subspace, ν9 + ν11 + ν12 at 1157 cm 

−1 resonates with ν7 

+ 2 ν10 at 1167 cm 

−1 . At a similar energy but in the A 

′′ symmetry 
subspace, it is 2 ν9 + ν11 at 1100 cm 

−1 and ν7 + ν9 + ν12 at 
1115 cm 

−1 . 
The comparison of our VCI results with the listed gas-phase 

transitions reveals very good agreement, although the experimental 
studies are about 60 yr old. Ho we ver, we do not agree with the 
assignment of King & Moule ( 1961 ) for the modes ν7 and ν11 at 
691 and 669 cm 

−1 , respectively. Instead, we support the reversed 
assignment, as it was introduced by Brand et al. ( 1963 ). The deviation 
between the two experimental groups is based on an MAD of 
13 cm 

−1 , about a factor of 4 larger than the deviation between our 
results and those of Brand et al. ( 1963 ). It should be mentioned that 
this statistics is dominated by the misassignment, since the largest 
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Table 3. Overtones and combination bands employed within RVCI calcula- 
tions. Frequencies νi are given in cm 

−1 and infrared intensities I are given in 
km mol −1 . 

Mode Irrep νi I 
This work Exp. a Exp. b This work 

2 ν11 A 

′ 1381.6 1298 1275 4.5 
2 ν7 A 

′ 1291.2 – 1340 8.5 
2 ν8 A 

′ 1220.7 – – 0.1 
2 ν12 A 

′ 512.1 – – 0.2 
2 ν9 A 

′ 408.6 – – 0.1 
3 ν9 A 

′ 618.9 – – 0.1 
3 ν12 A 

′′ 769.9 – – 0.0 
ν7 + ν8 + ν9 A 

′ 1468.1 – – 0.0 
ν6 + 2 ν12 A 

′ 1457.0 – – 0.0 
ν9 + ν10 + ν12 A 

′ 1442.8 – – 0.0 
2 ν8 + ν9 A 

′ 1424.8 – – 0.0 
ν6 + 2 ν9 A 

′ 1350.9 – – 0.0 
ν7 + ν8 A 

′ 1263.2 – – 0.5 
ν10 + ν12 A 

′ 1236.0 – – 0.2 
ν7 + 2 ν12 A 

′ 1167.7 – – 0.0 
ν9 + ν11 + ν12 A 

′ 1157.2 – – 0.1 
ν6 + ν9 A 

′ 1143.6 1153 – 0.3 
ν8 + 2 ν12 A 

′ 1127.1 – – 0.0 
ν7 + 2 ν9 A 

′ 1061.1 – – 0.0 
ν8 + 2 ν9 A 

′ 1021.1 – – 0.0 
ν11 + ν12 A 

′ 952.6 – – 4.0 
ν7 + ν9 A 

′ 854.1 – – 0.3 
ν8 + ν9 A 

′ 814.3 818 815 1.7 
ν9 + 2 ν12 A 

′ 721.4 – – 0.1 
2 ν8 + ν12 A 

′′ 1479.9 – – 0.0 
ν6 + ν9 + ν12 A 

′′ 1405.8 – – 0.0 
2 ν9 + ν10 A 

′′ 1390.2 – – 0.0 
ν7 + ν11 A 

′′ 1358.7 1330 – 0.0 
ν8 + ν11 A 

′′ 1303.6 – – 0.0 
ν11 + 2 ν12 A 

′′ 1214.0 – – 0.0 
ν6 + ν12 A 

′′ 1198.2 1210 – 0.2 
ν9 + ν10 A 

′′ 1183.8 – – 0.0 
ν7 + ν9 + ν12 A 

′′ 1115.1 – – 0.0 
2 ν9 + ν11 A 

′′ 1100.0 – – 0.0 
ν8 + ν9 + ν12 A 

′′ 1075.8 – – 0.0 
ν7 + ν12 A 

′′ 908.0 – – 0.0 
ν9 + ν11 A 

′′ 894.1 – – 0.0 
ν8 + ν12 A 

′′ 868.7 – – 0.0 
2 ν9 + ν12 A 

′′ 670.1 – – 0.2 
ν9 + ν12 A 

′′ 461.6 – – 0.0 

a Experimental gas phase values taken from Brand & Watson ( 1960 ). 
b Experimental gas phase values taken from King & Moule ( 1961 ). 

two errors between the two experiments of 41 and 24 cm 

−1 originate 
from that. The MAD is reduced to 8 . 6 cm 

−1 , if these two data points 
are remo v ed from the statistics. As must be e xpected, the results 
of Hudson & Gerakines ( 2018 ) show large environmental effects of 
the solid-state phase and therefore a larger deviation than the other 
experiments. Furthermore, our results match significantly better with 
the experiments than the results obtained from DFT calculations, 
which have an MAD of ≈30. This is mostly due to the use of more 
sophisticated electronic structure methods for the determination of 
the PES. 

The majority of the non-fundamental bands displayed in Table 3 
hav e neither e xperimental nor theoretical reference data for com- 
parison. Ho we ver, there are a few assigned transitions that can be 
compared. The only mode, which is in very good agreement with 
both experiments, is ν8 + ν9 . There are two modes with a deviation 
of about 10 cm 

−1 , namely ν6 + ν12 and ν6 + ν9 . Although the error 

Table 4. Computed geometrical parameters of propynal. Bond lengths 
are given in Å and angles are given in degree. The PES was cal- 
culated with explicitly correlated coupled-cluster methods CCSD(T)- 
F12b, using a cc-pVTZ-F12 basis set and frozen core approximation. 

Coord. r e r a r g r a s 

r(C 1 C 2 ) 1.4538 1.4579 1.4611 1.4444 
r(C 1 O) 1.2098 1.2123 1.2145 1.2144 
r(C 1 H 1 ) 1.1000 1.1073 1.1227 1.1057 
r(C 2 C 3 ) 1.2091 1.2089 1.2159 1.2091 
r(C 3 H 2 ) 1.0640 1.0554 1.0819 1.0552 
α(OC 1 C 2 ) 123.32 123.35 – 123.90 
α(HC 1 C 2 ) 115.07 114.84 – 113.92 

a Exp. values from Costain & Morton ( 1959 ). 

is slightly larger than for the fundamental bands, the assignment 
of these transitions is safe. This does not hold true for the other 
experimentally determined vibrational modes in Table 3 . First, the 
fact that mode ν7 + ν11 is assigned to the transition at 1330 cm 

−1 

would result in a surprisingly large error. Secondly, the strength of 
the line was labelled as medium in the original literature, while our 
results rev eal ne gligible intensity . Consequently , the origin of this 
peak remains unclear, as there are no other vibrational modes with 
A 

′′ symmetry and noticeable intensity in that area. In addition to that, 
the assignment of the o v ertone 2 ν11 that is mistaken for 2 ν7 in some 
of the references is difficult. This results from the aforementioned 
misassignment of the fundamental bands in King & Moule ( 1961 ). 
In contrast to that, Brand & Watson ( 1960 ) did not assign 2 ν7 , but 
misassigned 2 ν11 as well. Ho we v er, the y noted that the o v ertone 
is about 24 cm 

−1 lower than expected based on the fundamental 
band ν7 and in addition to that, they corrected the frequency of that 
fundamental band by 31 cm 

−1 in Brand et al. ( 1963 ). 

4.3 Rovibrational spectrum 

An o v erview of the ro vibrational spectrum of propynal in the range 
up to 350 cm 

−1 for a temperature of 100 K is given in Fig. 1 . A clear 
separation between the vibrational GS in black and the two lowest 
excited vibrational states ν9 (green) and ν12 (blue) can be seen. Since 
the next higher vibrational modes are the corresponding overtones 
2 ν9 and 2 ν12 , there is a distinct spectral separation towards higher 
energies. For that reason, the chosen spectral range appears to be very 
suitable for an individual investigation, especially for a study that 
focuses on low temperatures below 300 K . As the two vibrational 
fundamental bands belong to different irreducible representations, 
namely A 

′ and A 

′′ , they do not resonate directly, but interact only via 
rovibrational coupling. 

A more detailed analysis of the vibrational GS as well as a study 
of the temperature dependence of its spectrum can be found in 
Fig. 2 showing intensities in a stick spectrum and in the supplement 
material for the absorption cross-sections considering temperature 
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Figure 1. Overview of the rovibrational infrared stick spectrum of propynal 
at a temperature of 100 K . The vibrational GS and the modes ν9 and ν12 are 
plotted in black, green, and blue, respectively. The maximum total angular 
momentum quantum number is set to J = 95. For the sake of simplicity, hot 
bands are not shown. 

broadening. In addition to transitions from the vibrational GS to 
the vibrational GS that are shown in black, the figure also displays 
hot band transitions. The latter includes lines with initial and final 
vibrational quantum numbers corresponding to the modes ν9 , ν12 , 
2 ν9 , and ν9 + ν12 . The effect of hot bands starts to become noticeable 
at about 100 K . Below that temperature, ignoring hot bands is a decent 
approximation. For T = 100 K , only the two hot bands of modes ν9 

and ν12 need to be considered. In contrast to that for T = 300 K , 
all four vibrational modes contribute noticeably with the strongest 
reaching about one-third of the intensity of the GS. The shapes of the 
progressions for the different vibrational modes involved are very 
similar. 

For low temperatures, the progressions of the two vibrational 
modes ν9 and ν12 are spatially separated as can be seen in Fig. 3 , in 
analogy to the GS spectrum. A noticeable contribution of hot bands 
can be found at a temperature of 100 K . Both bands show a slightly 
asymmetric structure, due to intensity borrowing by the P-branch of 
ν12 towards the R-branch of ν9 . The high-energy tails at 300 cm 

−1 

of the R-branch of ν12 could be influenced by the 2 ν9 mode at 
408 . 6 cm 

−1 , which is the next higher vibrational mode. Ho we ver, as 
the VCI frequencies of the two modes are separated by more than 
100 cm 

−1 , we expect that effect to be small. 
For higher temperatures especially, it can be seen that the band 

centre for the transitions from the vibrational GS to ν9 (green) is 
offset in comparison to transitions from 9 1 to 9 2 (red). The reason for 
that is the significant shift in frequency of the cold band vibrational 
transition ν0 → 9 1 = 202 . 7 cm 

−1 in comparison to the frequency of 
the corresponding hot band ν9 1 → 9 2 = 205 . 9 cm 

−1 . In contrast to 
that, this effect is much less prominent for the ν12 mode (blue) at 
ν0 → 12 1 = 255 . 9 and its corresponding hot band at ν12 1 → 12 2 = 256 . 2 
(orange). It should be noted that even at higher temperatures, e.g. 
T = 300 K , all other hot bands (black) do not contribute significantly. 

An interesting feature in Fig. 3 for T = 300 K is the sudden drop 
in intensity for some of the 9 1 → 9 2 transitions. This is especially 
prominent at 223 cm 

−1 and also at 245 cm 

−1 . Although such a 
pattern can be found in simulations, when the maximum value of 
the total angular momentum J max is not sufficiently high, this is 
not the origin in this particular case. First of all, simulations have 
shown that this pattern is independent of J max . Secondly, by analysing 
the different progressions in the line lists, it can be seen that the 
progressions do not stop at this frequency. This is further investigated 
in Fig. 4 by only plotting this one particular hot band 9 1 → 9 2 and 
highlighting different progressions with different colours. It can be 
seen that the rovibrational frequencies increase up to 223 cm 

−1 and 
J ≈ 57. Hence, the rovibrational energies for the states belonging to 

Figure 2. Vibrational GS stick spectrum of propynal for different tempera- 
tures. For all transitions, the vibrational quantum numbers of the initial and 
final states are equal; e.g. transitions from the vibrational GS to the vibrational 
GS are drawn in black. Hot bands for different vibrational modes are given 
in different colours. Transitions of the vibrational state 9 1 are coloured blue, 
and transitions within 12 1 , 9 2 , and 9 1 + 12 1 are coloured red, green, and 
purple, respectively. The maximum total angular momentum was set to J = 

95. 
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Figure 3. Stick spectrum of propynal for the lowest excited vibrational bands 
for different temperatures. Transitions from vibrational GS to 9 1 and 12 1 are 
given in green and blue, respectively. Hot bands from 9 1 to 9 2 are given in 
red and transitions from 12 1 to 12 2 are coloured orange. All other hot band 
combinations are given in black and not significant even for T = 300 K . The 
maximum total angular momentum was set to J = 95. 

Figure 4. Progressions of propynal at T = 300 K for the hot band transition- 
ing from 9 1 to 9 2 . Black dots mark transitions fulfilling � J = J ′ − J ′′ ∈ { 0, 
−1 } . Hence, the remaining possible transitions are � J = 1 and are marked 
by a dot in one of the other colours. Highlighted in blue is the progression 
fulfilling K 

′ 
a = K 

′′ 
a = 0 and � K c = 1. Both the red and purple dots show 

progressions with K 

′ 
a = K 

′′ 
a = 1 and either � K c = −1 or � K c = 0. The 

maximum total angular momentum was set to J = 95. 

Figure 5. Infrared spectrum of the vibrational GS for propynal at T = 300 K . 
A Lorentz broadening profile for atmospheric pressure conditions was used. 
All calculated hot bands are included and the maximum total angular 
momentum was set to J = 95. 

ν9 increase faster than for 2 ν9 up to this value of J . After that, the 
frequencies decrease again, which shows that the rovibrational state 
energies belonging to the ν9 mode increase slower than for 2 ν9 . 

Although this study has its focus on producing reference spectra 
rele v ant for the ISM, we also intend to provide a comparison for 
laboratory experiments at room temperature. For the two spectral 
regions discussed earlier, this can be seen in Figs 5 and 6 . These 
spectra consider a pressure broadening via a Lorentz profile for a 
pressure of p = 1 bar , which is in contrast to the previously discussed 
stick spectra. Choosing a pure pressure broadening o v er a Voigt 
profile is a suitable approximation for a spectrum on the Earth, since 
the more accurate Voigt profile would be dominated by the Lorentz 
profile for T = 300 K and p = 1 bar . 

The spectra for the two previously mentioned regions of Figs 2 
and 3 shall be discussed first. After that, a comparison with an 
experimental spectrum is provided. In Fig. 5 , it can be seen that 
the narrow branch on the lhs between 3 and 25 cm 

−1 is significantly 
more intense than the wider branch between 25 and 80 cm 

−1 . This is 
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Figure 6. Infrared spectrum of propynal for the lowest excited vibrational 
states at T = 300 K . A Lorentz broadening profile for atmospheric pressure 
conditions was used. All calculated hot bands are included and the maximum 

total angular momentum was set to J = 95. 

in contrast to the stick spectrum for T = 300 cm 

−1 in Fig. 2 . It can 
be explained by the much higher line density in that region. A similar 
effect can be found at around 233 cm 

−1 in Fig. 6 , where a plateau 
can be observed. In contrast to that, based on Fig. 3 a significant drop 
in intensity could be expected at that point. This is due to the already 
decreased intensity of the R-branch of the mode ν9 and the hot band 
2 ν9 and the still fairly low intensity of the P-branch of ν12 and 
the hot band 2 ν12 . The o v erall v ery noisy structure of the spectrum 

originates in the fact that we did not include an additional broadening 
for a limited spectral resolution of the detector. By neglecting this 
effect, one yields a spectrum as it could be measured with infinite 
spectral resolution. 

A comparison between the measured high-resolution infrared 
spectrum provided by McKellar ( 2010 ) 1 based on Robertson et al. 
( 2009 ) and our computed results is shown in Fig. 7 . The low pressure 
of 66 . 6 Pa in the experiments leads to a small Lorentz broadening 
and therefore a very fine structure, which is difficult to analyse for 
such a wide spectral range. Ho we ver, the tail of the pure rotational 
spectrum on the left-hand side of the figure is clearly visible in both 
cases. This area appears to have more intensity in the experimental 
spectrum in comparison to the simulated one. This could be due to 
the fact that other experimental conditions besides the pressure, in 
particular the temperature, are not know to us. This limits a direct 
comparison and our ability to reproduce the experimental spectrum 

more precisely. Note that not only the intensity of the transitions 
depends on the temperature, but also the line broadening. Despite 
this limitation, the agreement between experiment and simulation 
is decent. Modes ν9 and ν12 are clearly visible and distinguishable 
in the spectral region 180–330 cm 

−1 , although some of the details 
are less prominent in comparison to Fig. 6 that uses a different 
broadening. An obvious difference between the two spectra in Fig. 7 
is the fine and extremely strong lines, which are due to water 
impurities in the experimental spectrum, as mentioned in McKellar 
( 2010 ). 

1 Reprinted from J. Mol. Spectrosc., 262, A. R. W. McKellar, High-resolution 
infrared spectroscopy with synchrotron sources, 1, 2010, with permission 
from Elsevier. 

Figure 7. Comparison between an experimental 1 (upper figure) and our 
computed infrared spectrum (lower figure) of propynal for the lowest excited 
vibrational states at T = 300 K . A Lorentz broadening profile was used. All 
calculated hot bands are included and the maximum total angular momentum 

was set to J = 95. 

4.4 Spectroscopic constants 

Apart from comparing line lists and the visual appearance of spectra, 
spectroscopic constants are another way to investigate the rovibra- 
tional characteristics of molecules. By using a model Hamiltonian, 
they allow us to condense large line lists into a small set of well- 
defined molecule specific constants. We used our recent imple- 
mentation in MOLPRO (Dinu et al. 2022 ) for determining rotational 
and centrifugal distortion constants. The so-called PFIT (parameter 
fitting) program relies on a non-linear least-squares fit exploiting 
a Gauss–Newton algorithm with an initial guess obtained from 

second-order vibrational perturbation theory (VPT2). For propynal, 
the majority of publications fa v our the A-reduced Hamiltonian o v er 
its alternative, the S-reduced Hamiltonian. Furthermore, we chose 
the I r orientation for this near-prolate asymmetric top molecule. We 
follow that choice and present our results for the PFIT method 
based on line lists obtained by RVCI calculations as well as 
results obtained by VPT2 calculations and a comparison with the 
results of different experimental groups in T able 5 . W e like to 
emphasize here that the force constants as needed in VPT2 theory 
are retrieved from the polynomial fit of the PES rather than by 
calculating a true quartic force field. To produce the RVCI line 
list, we used a PES relying on ae calculations, which is in contrast 
to the previous sections where the frozen core approximation was 
used. 

In general, our computed rotational constants B and C in Table 5 
match very well with experimental results. A key reason for this is 
the ae treatment, which decreases the relative error for those two 
constants by more than one order of magnitude in comparison to 
a frozen core calculation (Schneider & Rauhut 2023 ). In contrast 
to that, it decreases the agreement of the A constant slightly. 
This underlines the importance of high-quality electronic structure 
methods for the generation of the PES. For the B constant, the 
PFIT yields results much closer to the experiments than the VPT2 
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Table 5. Comparison of spectroscopic constants in MHz for the vibrational GS of propynal using Watson’s A-reduced Hamiltonian in 
the I r representation (1 σ uncertainty in parenthesis). Values obtained by PFIT or VPT2 calculations are given for all sextic constants. 
Numerical sensitive values with respect to the input parameters are marked with squared brackets. 

Parameter This work, PFIT 

a This work, VPT2 b Exp. c Exp. d Exp. e 

A 68 330 .330(1) 68 247 .00 68 035 .308(25) 68 035 .263(39) 68 035 .299(43) 
B 4826 .2323(1) 4823 .95 4826 .288 05(97) 4826 .293(6) 4826 .3014(73) 
C 4501 .1928(1) 4498 .57 4499 .526 95(95) 4499 .51(6) 4499 .5107(69) 

10 3 � J 1 .919 69(7) 1 .8758 1 .9179(11) 1 .913(4) 1 .917(12) 
10 1 � JK − 1 .563 03(2) − 1 .4821 − 1 .481 19(19) − 1 .480 44(39) − 1 .481 02(47) 

� K 8 .3284(1) 8 .7473 9 .0033(57) 8 .9926(87) 8 .99124(97) 
10 4 δJ 3 .5178(7) 3 .384 3 .3742(15) 3 .4564(12) 3 .458(14) 
10 2 δK 3 .189(4) 2 .553 3 .396(26) 3 .47(28) 3 .90(32) 
10 9 � J 7 .66(5) 6 .43 7 .54(21) – –
10 7 � JK − 1 .0(2) − 4 .1 − 8 .348(82) − 7 .11(48) − 7 .41(59) 
10 5 � KJ − 2 .08(1) − 0 .827 − 0 .824(11) − 0 .8264(12) − 0 .831(13) 
10 3 � K 1 .786(3) 2 .36 3 .19(15) 2 .36(6) –
10 9 φJ [1 .51(4)] [ 2 .27] – – –
10 8 φJK [6 .2(28)] [18 .0 ] – – –
10 5 φK [9 .29(41)] [10 .36] – – –

a Theoretical results of RVCI and PFIT calculations obtained by MOLPRO . 
b Theoretical results of VPT2 calculations based on a multidimensional ae PES. 
c Experimental coherent synchrotron radiation Fourier transform spectrometry values taken from Barros et al. ( 2015 ). 
d Experimental gas phase values taken from McKellar et al. ( 2008 ). 
e Experimental gas phase values taken from Winnewisser ( 1973 ). 

calculation. This is in contrast to the A constant. Ho we ver, for 
the C constant both theoretical methods produce a fairly similar 
deviation. A similar result can be found for the quartic constants. 
For three parameters, the VPT2 method yields better results and 
for two constants the PFIT based on RVCI line list is closer to the 
experiment. 

The different sets of experimental reference data were obtained 
from different numbers of fitting parameters for the sextic constants. 
Since the fitting processes for the individual constants are not inde- 
pendent, a change in the number of parameters influences the other 
constants as well. Ho we ver, for the quadratic constants A , B , and C 

this effect can be neglected without introducing substantial errors as 
they are several orders of magnitudes larger than the sextic constants. 
Even for the quartic constants, this effect is rather small. Ho we ver, for 
the sextic constants the different numbers of fitting parameters can 
be one reason for the deviation between the experiments. Since we 
decided to fit all parameters in our simulation, the results are again not 
completely comparable. Although the uncertainties for these values 
are higher – thus they are marked by squared brackets – we found it 
important to provide at least crude estimates for the last three sextic 
constants. 

By comparing the results of our two theoretical methods for the 
sextic constants, it can be seen that the deviation is larger than for 
the other constants. This is not surprising, since the absolute values 
of these parameters are much smaller and therefore they require a 
much higher accuracy for the state energies or transition frequencies. 
Ho we ver, for the majority of cases a good agreement between one 
of our theoretical methods and at least one of the experiments can 
be found: (a) The � K constants obtained by the VPT2 calculations 
and the measurements of McKellar et al. ( 2008 ) match nicely. (b) 
The results of the PFIT method for the � J constants are in good 
agreement with Barros et al. ( 2015 ). (c) The � KJ constant obtained 
by the VPT2 method agrees with all experimental v alues. Ho we ver, 
without any prior information and only one of the theoretical 
methods, it is hardly possible to predict reliable results for the sextic 
constants. 

5  C O N C L U S I O N S  

The rotational, vibrational, and rovibrational spectra of propynal 
have been studied by high-level ab initio methods for the first time. 
A multidimensional PES based on explicitly correlated coupled- 
cluster calculations and being represented by an n -mode expansion 
up to fourth order has been used within all calculations. VCI and 
RVCI theories have been used for the determination of rovibrational 
frequencies and intensities. The simulations rely on our previously 
published implementations in the MOLPRO package. 

Within this work, we were able to confirm previous experimental 
findings for the geometrical parameters. Moreo v er, we pro vided 
theoretical values for the transition frequencies of all vibrational 
fundamental bands. This allowed us to resolve a conflict in the 
assignment of the fundamentals ν7 and ν11 in previous publications. 
40 additional vibrational transition frequencies were determined, the 
majority of which are documented in literature for the first time. 
These calculations made it possible to confirm a Fermi resonance 
between ν2 and 2 ν5 . We also provided partition function values 
in a temperature range from interstellar conditions up to room 

temperature. Moreo v er, the low-frequenc y spectrum up to 350 cm 

−1 

has been analysed, which allowed us to study the temperature- 
dependent effect of hot bands for propynal. A comparison with an 
experimental infrared spectrum is provided for the spectral range of 
80–410 cm 

−1 including the vibrational modes ν9 and ν12 . Our spec- 
troscopic constants are in good agreement with the previously known 
experimental measurements for the quadratic, quartic, and a few of 
the sextic parameters. Ho we ver, it remains challenging to achieve 
the experimental accuracy for this particular rovibrational quantity. 
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Abstract

Quite recently, diazophosphane, HP−N≡N, was synthesized for the first time. This was accomplished by a
reaction of PH3 with N2 under UV irradiation at 193 nm. As these two molecules have been observed in different
astrophysical environments, as for example, in the circumstellar medium and, in particular, in the AGB star
envelope IRC+10216, the question arises whether HPN2 can be found as well. So far there is only the
aforementioned experimental work, but neither rotational nor rovibrational data are available. Hence, the lack of
accurate line lists, etc. to identify diazophosphane is the subject of this work, including a detailed analysis of the
rotational, vibrational, and rovibrational properties for this molecule. Our calculations rely on multidimensional
potential energy surfaces obtained from explicitly correlated coupled-cluster theory. The (ro)vibrational
calculations are based on related configuration interaction theories avoiding the need for any model
Hamiltonians. The rotational spectrum is studied between T = 10 and 300 K. In contrast, the partition
functions for HPN2 and DPN2 are given and compared for temperatures up to 800 K. In addition, more than 70
vibrational transitions are calculated and analyzed with respect to resonances. All these vibrational states are
considered within the subsequent rovibrational calculations. This allows for a detailed investigation of the infrared
spectrum up to 2700 cm−1 including rovibrational couplings and hot bands. The results of this study serve as a
reference and allow, for the first time, for the identification of diazophosphane, for example, in one of the
astrophysical environments mentioned above.

Unified Astronomy Thesaurus concepts: Computational methods (1965); Spectral line identification (2073);
Asymptotic giant branch stars (2100); Molecular data (2259); Molecular spectroscopic constants (2260); Infrared
spectroscopy (2285)

1. Introduction

Since the first molecule was detected in the interstellar
medium in 1937 (Dunham 1937; Swings & Rosenfeld 1937;
McKellar 1940) more than 200 molecular species have been
observed in the circumstellar or interstellar media (Müller et al.
2001, 2005; Endres et al. 2016; McGuire 2018). Two of these
molecules are molecular nitrogen (N2) and phosphane (PH3). It
was only in 2004, when Knauth et al. (2004) identified N2 in
the surroundings of HD 124314. Four years later, PH3 was
discovered simultaneously and independently by Agúndez
et al. (2008) and Tenenbaum & Ziurys (2008).

Quite recently, Lu et al. (2022) were able to synthesize
diazophosphane, HP−N≡N, for the first time. Moreover they
analyzed its vibrational fundamental bands at 10 K. They
obtained this species from the reaction of PH3 with N2 upon
irradiation with UV-light at 193 nm. Since both molecules and
the UV radiation are present in the circumstellar medium and can
even be found in the envelope of the same AGB star IRC+10216
(Cherchneff 2012; Agúndez et al. 2014), the question arises
whether HPN2 can be found under similar conditions as well. To
solve this question, highly accurate rotational, vibrational, and
rovibrational spectra are of particular importance.

Although there are some studies about HPN2 in the solid
state (Ghellab et al. 2019) or as a crystalline powder (Schnick
& Lücke 1992; Jacobs et al. 1997), these works refer to the

isomeric form of P = N(NH). In contrast to that, we focus on
the isomer HP−N≡N, which was so far only synthesized by Lu
et al. (2022), as mentioned before. These authors also provide
experimental frequencies for four of the six fundamental
vibrational modes as well as one overtone. Additionally, they
provide theoretical results for all fundamental bands and the
same overtone. Other than that, no simulations of HPN2 exist.
For this reason, the demand for line lists, microwave and
infrared spectra, geometrical parameters, partition functions,
etc. is largely unsatisfied. This issue will be tackled within
this work.
During recent decades, various approaches avoiding the need

for model Hamiltonians have been developed to investigate
rotational, vibrational, and rovibrational spectra by the groups
of Yachmenev et al. (2011) (Yachmenev et al. 2013;
Yurchenko et al. 2017; Clark et al. 2020), Nikitin et al.
(2017) (Rey et al. 2017; Tyuterev et al. 2019), Carter et al.
(2012) (Carter et al. 2017), Rauhut (2004) (Tschöpe et al.
2021), Smydke et al. (2019) (Ferenc & Matyus 2019; Tobias
et al. 2019; Santa Daria et al. 2021), and many more (Wang &
Carrington 2013; Sarka et al. 2019; Simmons et al. 2019).
Some of these are based on the seminal work of Watson
(1968), introducing the respective Hamiltonian. Subsequently,
vibrational configuration interaction (VCI) theory (Bowman
et al. 1979; Christoffel & Bowman 1982; Neff & Rauhut 2009;
Pfeiffer & Rauhut 2014; Schröder & Rauhut 2022) was
introduced for nonrotating molecules and after that rovibra-
tional configuration interaction (RVCI) theory (Erfort et al.
2020a, 2020b, 2022) for the simulation of rotating molecules.
These approaches rely on high-level potential energy surfaces
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(PESs) (Ziegler & Rauhut 2016, 2018, 2019) for the efficient
calculation of rovibrational line lists and spectra for semirigid
molecules. The two main limitations for these methods are, that
they lose much of their efficiency for vibrational modes with
large deflections, i.e., for floppy molecules. Hence this method
is very suitable for our application, since HPN2 is a semirigid
system.

In this work, we use high-level multidimensional PESs, VCI,
and RVCI calculations, as implemented in the MOLPRO
(Werner et al. 2020) package of ab initio programs, to determine
the rovibrational spectrum of diazophosphane. Moreover,
geometrical parameters as well as values for the partition
functions at temperatures between 10 and 800 K will be
presented. In addition, microwave and infrared spectra, vibra-
tional line lists, and spectroscopic constants will be provided
accompanied by a discussion about the influence of hot bands on
the simulated spectra at different temperatures. These calcula-
tions were carried out for both HPN2 and its deuterated
isotopologue, DPN2.

2. Theory

2.1. Rovibrational Energies

The implementation of VCI theory used in this work is based
on the Watson Hamiltonian for nonrotating molecules Hvib,
while the implementation of RVCI theory is based on the
Watson Hamiltonian for rotating molecules:
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The use of the Born–Oppenheimer approximation yields the
PES, V, depending on the normal coordinates qi. Equation (1)
also depends on the Cartesian components of the angular
momentum operator, Jα, and the vibrational angular momen-
tum (VAM) operator
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Thereby z a
jk corresponds to an element of the antisymmetric

Coriolis ζ-constant tensor, with Cartesian elements α, β ä {x,
y, z}. For the following discussion, it is favorable to split the
Watson Hamiltonian in the following three parts: the pure
vibrational term Hvib, the rotational term Hrot, and the Coriolis-
coupling term Hrv. The inverse of the effective moment of
inertia tensor is denoted by μ, see Watson (1968). Both, μ and
the potential V, rely on an n-mode expansion (Bowman et al.
2008) and an analytic sum-of-products representation being
obtained from efficient Kronecker product fitting (Ziegler &
Rauhut 2016). In order to obtain rovibrational energies and
intensities, a two-step process is used. First, the Schrödinger
equation for the Hamiltonian of a nonrotating molecule Hvib is
solved by VCI theory, yielding pure vibrational energies and
the corresponding wave functions:

∣ ∣ ( )å fF ñ = ñc . 3v
I

I v
I

To determine the vibrational wave functions |Φv〉 in a compact
form, an initially large number of Hartree products ∣f ñv

I

(configurations) is screened within a configuration-selective
VCI approach (Mathea & Rauhut 2021; Mathea et al. 2022).
Second, the Schrödinger equation for the Hamiltonian of

rotating molecules (see Equation (1)) is solved by RVCI
theory. The basis functions are provided by a direct product of
the VCI wave functions and pure rotational basis functions
|Φr〉. This yields rovibrational wave functions of the form:

| | | ( )åY ñ = F ñ F ñc . 4
rv

rv r vrv

Within this work, molecule-specific rotational basis (MSRB)
functions for |Φr〉 have been employed, as they allow for a
particular robust quantum number assignment. The MSRB is a
linear combination of Wang combinations (Špirko et al. 1985)
and is determined by solving the rotational Schrödinger
equation for the vibrational ground state (Erfort et al. 2020a).

2.2. Infrared Intensities

Rovibrational infrared line intensities can be obtained by
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They depend on a prefactor consisting of natural and physical
constants, the square of the transition moment R and a
temperature-dependent prefactor, describing the thermal occu-
pation of the rovibrational states involved in the transition. The
energies of the initial and final states are given by E″ and ¢E ,
respectively. The rovibrational partition function Q(T) depends
on the temperature and can be computed by

( ) ( )å= -Q T g e , 6E k T

rv
rv

rv B

where the summation considers all rovibrational states rv. Erv

denotes the corresponding energies and grv the corresponding
degeneracies. The latter is a product of the nuclear spin
statistical weight (NSSW) gns and the degeneracy factor 2J + 1
originating in the absence of electric and magnetic fields. Since
diazophosphane shows Cs symmetry, the two NSSWs are
identical, with a value of 36 for HPN2 and 54 for DPN2.

2.3. Computational Details

To determine the equilibrium geometry, the harmonic
frequencies as well as the corresponding normal coordinates
for diazophosphane, explicitly correlated coupled-cluster
theory including single and double excitations, and a
perturbative treatment of the triple excitations, CCSD(T)-
F12b has been used (Adler et al. 2007). Two PESs have been
calculated for each of the isotopologues. The first PES uses the
frozen core (fc) approximation, which relies on error
compensation with respect to neglected contributions to the
electronic energy, as for example, relativistic effects, diagonal
Born–Oppenheimer corrections, high-order coupled-cluster
terms, and core-correlation contributions. This error compensa-
tion usually leads to nicely matching vibrational frequencies in
comparison to experimental results. For this reason, this
approximation is often used to calculate rovibrational line
lists, spectra, and partition functions. The second PES was
obtained by all-electron (ae) correlation calculations, which
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explicitly account for core–core and core–valence interactions,
since the work of Schneider & Rauhut (2022) has shown, that
at least for the determination of spectroscopic constants this
approach leads to slightly better results. In most of our
analyses, we compare the results obtained from these two
different PESs to narrow the range where experimental values
could be expected.

While in the work of Lu et al. (2022), an orbital basis set of
triple-ζ quality, i.e., cc-pVTZ-F12 (Peterson et al. 2008) was
used, slightly larger orbital bases of quadruple-ζ quality, i.e.,
cc-pVQZ-F12 and cc-pcVQZ-F12, have been employed here.
The all-electron explicitly correlated coupled-cluster calcula-
tions require an adjustment of the different γ exponents for the
Slater geminal functions as recommended by May & Manby
(2004). Consequently, the core–core, core–valence, and
valence–valence orbital pair values were set to 0.8, 1.7, and
2.2, respectively. In contrast to that, a common exponent of
γ = 1.0 was used within the frozen core calculations.
Moreover, the complementary auxiliary basis set correction
was added to the total energies (Adler et al. 2007; Knizia &
Werner 2008).

All multidimensional PESs were represented by an n-mode
expansion truncated after the four-mode coupling terms
(Bowman et al. 2008). A multilevel scheme, as introduced by
Pflüger et al. (2005), has been used throughout the calculations.
More precisely, the 1D and 2D surfaces have been calculated at
the same level of accuracy that was used for the determination
of the equilibrium geometry and harmonic frequencies. In
contrast, for the 3D and 4D contributions, a smaller basis set of
triple-ζ quality has been used. A likewise multilevel scheme,
but being based on calculations using the distinguishable
clusters (DCSD) approximation (Kats & Manby 2013), has
been used for determining the dipole moment surface (DMS).
Runtime savings due to symmetry have been exploited
twofold: within the electronic single point calculations and
for the terms of the n-mode expansion (Ziegler & Rauhut 2018).
The grid representations of the multidimensional surfaces have
been transformed by Kronecker product fitting to an analytical
sum-of-products representation based on nine monomials
per mode.

Vibrational wave functions have been obtained from state-
specific configuration-selective VCI theory (Mathea & Rauhut
2021; Mathea et al. 2022; Schröder & Rauhut 2022). The basis
set used in these calculations is symmetry adapted and relies on
Hartree products (configurations) being generated from one-
mode wave functions (modals), which have been determined
from ground-state based vibrational self-consistent field (VSCF)
theory. A set of 18 mode-specific distributed Gaussians and a
constant μ-tensor has been used within the VSCF calculations.
The correlation space within the VCI calculations has been
restricted twofold: The maximum number of vibrational quantum
numbers was set to 15 and a maximum excitation per mode up to
the sixth root was used. Moreover, the maximum number of
simultaneously excited modes was chosen to be six, so there is
no restriction in this respect. All these values do not refer to the
ground state, but are relative to the leading configuration of the
vibrational state of interest. This resulted in about 3 × 104

configurations per irreducible representation and thus we
consider the final VCI results to be close to the full VCI limit.
A μ-tensor expansion up to first order was used for the diagonal
elements of the VCI matrix. In contrast, all other matrix elements
are limited to a constant μ-tensor. A residuum based eigenvalue

solver (RACE) has been employed for the determination of the
eigenenergies of predefined states (Petrenko & Rauhut 2017).
The RVCI calculations use a maximum angular momentum

number of =J 75max for the calculations of the line list and
=J 100max for the determination of the partition function. A

temperature range of 10–300 K has been chosen for the
rovibrational spectra, while the partition functions are provided
for temperatures up to 800 K. This covers the experimental
conditions of Lu et al. (2022; 10 K), terrestrial conditions for
further lab experiments and some astrophysical areas, for
example the outer regions of the circumstellar medium. The
latter have been determined from a sum of RVCI state energies,
i.e., no separability approximation has been used. For the
evaluation of the rotational integrals originating from the
Watson Hamiltonian, a second-order μ-tensor is used, while a
first order μ-tensor is used for the Coriolis-coupling contribu-
tions. Based on a similar convergence analysis as shown in our
previous work (Tschöpe & Rauhut 2022) these truncations of
the n-mode expansions appear to be justified.
The rovibrational basis functions are provided by a direct

product of VCI wave functions and molecule-specific rotational
basis (MSRB) functions (see Equation (4)), as explained in
detail by Erfort et al. (2020a). The basis set size for the
vibrational subspace was limited by two criteria: the maximum
vibrational transition frequency was chosen to be smaller than
5000 cm−1 and the maximum sum of vibrational quantum
numbers was set to be less than 4. This yields Nvib = 73
vibrational states for HPN2 and Nvib = 80 states for DPN2.
Since the maximum size of the rotational basis set is given by

+ =J2 1 151max for the calculation of rovibrational spectra,
the largest matrix is of size Nrovib = 12,080. For HPN2, the
resulting wall clock time for the combined VCI and RVCI
calculations was ≈33 hr on six CPU (central processing units)
cores. While the VCI calculations contributed less than 1% and
the calculation of the RVCI energies and wave functions about
15%, most of the time is spent for the calculation of the RVCI
intensities. For DPN2, longer calculation times by about 50%
were needed due to the larger number of vibrational basis
functions, which increases the CPU time in two ways: by a
larger number of rovibrational transitions and larger RVCI
wave function vectors. Within the RVCI calculations, ≈50
million transitions for HPN2 and ≈100 million transitions for
DPN2 have been considered. The printout was filtered to
≈161,000 and ≈404,000 transitions for HPN2 and DPN2,
respectively. The main selection criterion was an intensity of at
least 10−4 relative to the strongest transition in the spectrum for
T = 300 K.

3. Results and Discussion

3.1. Geometrical Parameters

Calculated geometrical parameters are presented in Figure 1.
Parameters obtained by Born–Oppenheimer equilibrium geo-
metries are denoted re. Since the equilibrium geometry is not
affected by deuteration, this column is not explicitly given for
DPN2. In addition, two different types of vibrationally
averaged geometrical parameters, ra and rg, are provided.
Averaging the atomic positions over the VCI ground-state
wave function yields the former. The latter uses the expectation
value of the bond lengths expressed in normal coordinates to
calculate instantaneous internuclear distances. It is well known
(Czakó et al. 2009; Dinu et al. 2020; Tschöpe et al. 2021;
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Tschöpe & Rauhut 2023) that these two approaches can yield
significantly different results. Compared to these previous
works, this effect is smaller for diazophosphane than for other
molecules. This is not surprising, as the largest differences
were observed for CH bond lengths (Tschöpe et al. 2021;
Tschöpe & Rauhut 2023), which are not present in diazopho-
sphane. However, the largest absolute difference between ra
and rg was again found for the bond involving hydrogen, i.e.,
Δ r(PH) = 0.008 Å. Comparing the results for HPN2 and
DPN2 shows, on the one hand, that obviously the bond length r
(PH) and r(PD), respectively, changes the most, but also that
the angle involving water α(N1PH1) changes only marginally.
Figure 1 also provides a comparison between calculations
based on a PES relying on the frozen core approximation (fc)
and another PES relying on all-electron (ae) correlation
calculations. The difference between fc and ae calculations
varies between 0.002 and 0.006 Å, with an expected and
systematic trend toward smaller bond lengths for the ae
calculations.

3.2. Partition Function

As mentioned before, the partition function has been
determined by direct summation. A temperature range between
10 and 800 K has been chosen in order to consider a variety of
astrophysical areas, the experimental conditions of Lu et al.
(2022), and terrestrial conditions for further lab experiments.
The results for both isotopologues of diazophosphane can be
found in Table 1 and in Figure 2. The double logarithmic plot
shows the same near-linear behavior as previously observed for
other molecules (Martin et al. 1992; Harris et al. 1998; Vidler
& Tennyson 2000). Up to a temperature of ≈300 K, the trend is
almost exactly linear. However, at 300 K, a small increase in
the slope arises. As discussed by Amyay et al. (2011), this
effect can be caused by an increased state density, e.g., due to
thermal occupation of excited vibrational bands, while a not
properly converged summation would lead to a decreasing
slope. The partition function for DPN2 is about a factor of 2.1
larger than for HPN2. The fact that the NSSWs of DPN2 are 1.5
times larger than for HPN2, explains some part of this effect.
Moreover, due to the higher mass of DPN2 the state energies
decrease and thus show higher occupations for a fixed
temperature, as can be seen from Equation (6).

3.3. Vibrational Transitions

Within our RVCI calculations, we considered 73 vibrational
states for HPN2 and 80 for DPN2. The results for the

fundamental bands and overtones for both isotopologues are
shown in Table 2. Results for combination bands are given in
the supplementary material. As has been explained before, we
provide a comparison between calculations based on a PES
relying on the frozen core (fc) approximation and an all-
electron (ae) correlation PES. As expected and previously
observed for other molecules, the deviations between fc and ae
results are smaller for fundamental bands than for overtones.
Moreover, the relative deviations in the intensities are relatively
small in most cases, except for 2ν2, for which the all-electron
calculation yields an approximately 50% higher intensity.
Comparing our simulated results with the experimental results
of Lu et al. (2022) shows a slightly better agreement with the
frozen core calculation frequencies. However, the standard
deviation is fairly high due to outliers and the small sample size
of only five transitions. Moreover, it should be considered that
Lu et al. (2022) used matrix spectroscopy, whereas our
simulations refer to the gas phase.
Comparing the frequencies of the fundamental bands of

HPN2 and DPN2 shows the expected strong deuteration effects
for the H−P stretching and bending modes. Note that ν1 is the
H−P stretching mode for HPN2 and ν2 is the N≡N stretching
mode. This is reversed for DPN2, which can easily be seen by
considering the intensities. Moreover, the H−P bending mode,
ν3, is shifted by about 220 cm−1 and loses about 50% of its

Figure 1. Computed Geometrical Parameters of Diazophosphane Bond lengths are given in Å and angles are given in degrees. Comparison between explicitly
correlated coupled-cluster surfaces CCSD(T)-F12b based on the frozen core (fc) approximation with a cc-pVQZ-F12 basis set and all-electron (ae) correlation
calculations with a cc-pcVQZ-F12 basis set. For DPN2, equilibrium geometries are not explicitly given since they are identical for both isotopologues.

Table 1
Partition Functions for HPN2 and DPN2 for Different Temperatures

T (K) Q

HPN2 DPN2

5 7.34 × 102 1.53 × 103

10 2.05 × 103 4.37 × 103

20 5.83 × 103 1.24 × 104

35 1.35 × 104 2.87 × 104

50 2.31 × 104 4.90 × 104

75 4.25 × 104 9.03 × 104

100 6.59 × 104 1.40 × 105

150 1.27 × 105 2.72 × 105

200 2.15 × 105 4.64 × 105

300 5.15 × 105 1.14 × 106

500 1.97 × 106 4.38 × 106

800 7.26 × 106 1.60 × 107

Note. RVCI calculations are based on a PES using the frozen core
approximation because it yields vibrational frequencies closer to potential
experimental results.
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intensity. All of these findings are in good agreement with the
analysis in Lu et al. (2022).

Since resonances are intrinsically accounted for in VCI
theory, an analysis of resonating states is straightforward and is
provided in our calculations once a configuration contributes
more than 10% to the state of interest. Among the considered
vibrational bands, there are only a small number of meaningful
resonances. Neither the fundamental bands nor the overtones
for HPN2 and DPN2 show any Fermi (Fermi 1931) or Darling–
Dennison (Darling & Dennison 1940) resonances. The only
coupling for an overtone of HPN2 can be found for 2ν2 and ν2
+ 2ν4 + 2ν5 at about 4030 cm−1. Moreover, the combination
band ν3 + ν5 shows a strong resonance with ν4 + ν5 + ν6 at
1375 cm−1 (see the supplementary material). However, since
neither of the two bands involved has a noticeable intensity,
experimental confirmation of the latter resonance is not
possible.

3.4. Rotational Spectrum

The pure rotational spectrum at a temperature of 300 K for
diazophosphane is provided by Figure 3. Hot bands are not
shown in this figure for two reasons: First, it allows for a better
analysis of the spectrum. Second, they will be discussed in
detail later on. The color coding in Figure 3 visualizes the
assigned Ka quantum number of the initial rovibrational state.
The first progressions between 5 and 25 cm−1 shown in dark
green correspond to Ka = 1, the orange progressions denote Ka

= 2, and so on. The color pattern repeats after the seventh
color, hence the dark green progressions at 125 and 150 cm−1

correspond to Ka = 8. The fact that each progression is given in
a single color shows that the assignment of the quantum
number Ka is consistent for the vibrational ground state.
Moreover, for each Ka value, the coloring allows us to identify
the thin but dense Q-branch in the center, the strong R-branch

Table 2
Vibrational Fundamental Bands and Overtones of Diazophosphane

HPN2 DPN2

Band Irrep ν I ν I

fc ae Ref. 1 fc ae fc

ν1 A′ 2315.2 2320.0 2322.1 35.7 37.2 2030.3 467.4
ν2 A′ 2030.0 2036.5 2022.7 469.9 471.3 1682.7 18.0
ν3 A′ 934.3 938.9 935.2 16.2 16.4 712.4 8.2
ν4 A′ 576.9 580.5 574.4 24.8 24.5 575.7 25.0
ν5 A″ 440.8 443.7 n.o. 1.9 1.9 433.8 1.9
ν6 A′ 354.0 356.5 n.o. 2.3 2.3 333.2 2.2
2ν1 A′ 4545.6 4555.1 n.o. 0.1 0.1 4029.6 3.1
2ν2 A′ 4030.8 4042.6 4045.4 2.2 3.2 3322.5 0.1
2ν3 A′ 1866.2 1874.6 n.o. 0.2 0.2 1424.4 0.1
2ν4 A′ 1135.6 1142.7 n.o. 0.0 0.0 1133.7 0.0
2ν5 A′ 880.3 886.0 n.o. 1.1 1.1 866.5 1.1
2ν6 A′ 705.7 710.7 n.o. 1.3 1.3 665.8 1.1
3ν3 A′ 2794.2 2806.1 n.o. 0.0 0.0 2134.9 0.0
3ν4 A′ 1675.6 1686.4 n.o. 0.2 0.2 1673.2 0.1
3ν5 A″ 1321.4 1329.9 n.o. 0.0 0.0 1299.7 0.0
3ν6 A′ 1061.5 1069.0 n.o. 0.0 0.0 1002.8 0.0

Note. Comparison between VCI results of HPN2 for the PES using the frozen core (fc) approximation and the all-electron (ae) correlation calculation. Frequencies ν
are given in cm−1 and infrared intensities I are given in km mol−1. Irreducible representations (irrep) are provided for each state.
References. (1) Experimental matrix spectroscopy by Lu et al. (2022).

Figure 2. The partition function of diazophosphane for different temperatures.

Figure 3. Vibrational ground-state stick spectrum of diazophosphane for 300
K. The color of the transitions are defined by the Ka quantum number of the
upper state. For the sake of clarity, hot bands are not shown. The maximum
total angular momentum was set to J = 75.
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at the rhs, and the much weaker P-branch at the lhs. However,
it should be noted that, for Ka = 1 and Ka > 11, only two
branches are clearly visible.

A study of the temperature-dependent effect of the spectrum
including hot bands is shown in Figure 4. The previously
discussed Figure 3 corresponds to the black transitions of the
bottom panel in Figure 4. In addition, this figure shows three
different hot bands (41 → 41, 51 → 51, 61 → 61) all given
in red.

Up to a temperature of 100 K, ignoring hot bands is a decent
approximation. At 200 K, the contribution of hot bands is about
one order of magnitude smaller than for the ground-state
transitions and is almost entirely driven by the 61 → 61

transitions. Moreover, even in cases where hot bands contribute
more strongly to the overall appearance of the rotational
spectrum, i.e., at 300 K, this does not lead to a shift in
intensities toward higher or lower frequencies. This is in
contrast to other molecules (Tschöpe & Rauhut 2023) and other
parts of the diazophosphane spectrum (see Section 3.6).

3.5. Rovibrational Spectrum

An overview of the rovibrational infrared spectrum of
diazophosphane for a temperature of 300 K and spectral range
up to 2700 cm−1 is provided in Figure 5. In contrast to
Figure 3, here the color coding refers to the vibrational states
involved. More precisely, for the transitions in orange, both the
initial and final vibrational quantum numbers correspond to the
vibrational ground state. The dark green lines denote vibra-
tional fundamental bands (e.g., ν6). First overtones (e.g., 2ν6)
and second overtones (e.g., 3ν6) are shown in yellow and light
green, respectively. As mentioned before, we have restricted
the RVCI configuration space to vibrational states up to a
maximum sum of quantum numbers of 3, i.e., third overtones
and combination bands of four different vibrational transitions
are not included. The fact that there is only one very weak
second overtone at 1650 cm−1 and the absence of strong
second overtones in Table 2 provide some evidence that this is
a good approximation. Further analysis shows that, in this
spectral region, the coupling between these higher overtones
and other strong vibrational bands is relatively weak compared
to the two or three mode combination bands, which are colored
pink and gray, respectively. Finally, all types of hot bands are
colored black.

As expected from Table 2, the ν2 mode is the most intense
vibrational transition by more than one order of magnitude.
Although ν2 and ν3 + 2ν4 have the same irreducible
representation ( ¢A ), their coupling within VCI theory is
virtually zero, but within RVCI theory it is noticeable. This
can also be seen by considering the intensities. VCI calcula-
tions yield an intensity of 469.9 km mol−1 for ν2 and 0.4 km
mol−1 for ν3 + 2ν4. In contrast to that, the RVCI results show a
little less than two orders of magnitude difference in the
intensities, see Figure 5. Moreover, there are several regions
that are sufficiently separated to allow for independent
investigations by different experiments.

A more detailed analysis of some spectral regions of the
infrared spectrum of diazophosphane is provided in Figure 6.
All of the strong bands shown in the different panels are
fundamental bands of this near-prolate asymmetric top
molecule. Since panel (a) shows two strong bands, all of the
six fundamental bands are covered within this figure. Neither of
the two vibrational modes in panel (a) can be assigned to a

typical asymmetric top band type. While the in-plane P−N≡N
bending mode ν6 shows a similarly strong change in the electric
dipole moment along the A- and B-axes, the dipole moment of

Figure 4. Vibrational ground-state stick spectrum of diazophosphane for
different temperatures. Transitions from the vibrational ground state to the
vibrational ground state are drawn in black. All hot band transitions are given
in red. The maximum total angular momentum was set to J = 75.
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the out-of-plane P−N≡N bending mode ν5 changes only along
the C-axis. However, the small spectral separation of the two
bands of less than 100 cm−1 and the fact that they belong to
different irreps lead to strong Coriolis-coupling and hence a
lifting of the typical selection rules.

The P−N stretching mode ν4 shows the expected A-type
spectrum. However, it is subject to intensity borrowing due to
coupling with the much weaker overtones 2ν5 and 2ν6. As
discussed in Tschöpe et al. (2021) and Tschöpe & Rauhut
(2023), this leads to the typical compression of the branch
facing the borrowing bands, i.e., toward higher energies, in this
case. Another typical example of an A-type pattern arises for
ν2, which was to be expected since it is assigned to the N≡N
stretching mode. Although there are combination bands
coupling with ν2, this leads to only a small asymmetry. The
H−P bending mode ν3 in panel (c) and H−P stretching mode
ν1 in panel (e) show the expected B-type intensity pattern.

3.6. Hot Bands

The influence of hot bands on the low-frequency region
below 600 cm−1 can be seen in Figure 7. Panel (a) shows the
vibrational ground-state spectrum and the fundamental modes
ν6 and ν5, while panel (b) shows ν4. At a temperature of 300 K,
there are three vibrational states with meaningful thermal
occupations, which are 41, 51, and 61. The hot bands of the pure
rotational spectrum were already briefly discussed in
Section 3.4. Considering the different transitions 41 → 41, 51

→ 51, and 61 → 61 individually allow for two results: (1) the
intensity pattern is mainly the same in all cases and (2) the
intensity ratios seems to be in accordance with the thermal
occupation ratios.

In contrast to that, the four transitions 0→ 61, 61 → 62, 51 →
51 + 61, and 41 → 41 + 61 at around 350 cm−1 show very
different intensity patterns. Especially, the 51 → 51 + 61 band
in pink is significantly shifted toward higher frequencies. This
effect is even more pronounced for the next higher fundamental
band at 440 cm−1, where all bands have a very unique visual
appearance due to the strong coupling. Moreover the 51 → 52

transition (pink) is at least as intense as the 61 → 51 + 61

transition (green), although the thermal occupation of 51 is
lower than for 61. Figure 7(b) highlights another common

phenomenon for hot bands, which is a significant shift in the
band center. In the case of the 41 → 42 band (yellow), the
transition is 20 cm−1 lower than for the fundamental transition
0 → 41.

Figure 5. Overview of the rovibrational infrared stick spectrum of diazopho-
sphane at a temperature of 300 K. Hot bands are colored black, the pure
rotational spectrum is given in orange, fundamental bands in dark green, first
overtones in yellow, second overtones in bright green (only visible at 1650
cm−1). Combination bands of two or three different vibrational transitions are
colored pink or gray, respectively. The maximum total angular momentum
quantum number is set to J = 75.

Figure 6. Infrared spectrum of the vibrational fundamental bands of
diazophosphane at a temperature of 300 K. The maximum total angular
momentum was set to J = 75. The modes ν6 (yellow) and ν5 (pink) are shown
in panel (a), mode ν4 (vibrant green) in (b), mode ν3 (hazy blue) in (c), mode ν2
(orange) in (d), and mode ν1 (green) in (e). The y-axis scale range for the
different figures varies.
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3.7. Spectroscopic Constants

Another way to analyze rovibrational characteristics besides
comparing line lists and the visual appearance of spectra are
spectroscopic constants. They allow to condense large line lists,
which are obtained by experiments or simulations, into a small
set of well-defined molecule-specific constants by using a
model Hamiltonian. Computationally, these rotational and
centrifugal distortion constants can be obtained byvibrational
perturbation theory (VPT). For this reason, the PESs of HPN2

and DPN2 have been transformed to a quartic force field to
obtain the force constants needed for VPT2 calculations. For
diazophosphane, we have chosen the A-reduced Hamiltonian
over its alternative, the S-reduced Hamiltonian similar to our
previous studies, see Dinu et al. (2022) and Tschöpe & Rauhut
(2023). Moreover, we followed the convention to use the Ir

orientation for this near-prolate asymmetric top molecule.
The results for HPN2 are given in Table 3 and, for DPN2,

they can be found in the supplementary material. Again, we
provide a comparison between calculations based on a PES
using the frozen core approximation and a PES obtained by all-
electron calculations. Since diazophosphane is a near-prolate
asymmetric top molecule, it has one very large rotational
constant, i.e., A, and two rather small ones being very similar in
size, B and C. The relative deviation between the fc and ae
results are about 0.5%, which is similar to the findings in
Schneider & Rauhut (2022). Although the quartic and
especially sextic constants are several orders of magnitude
smaller, the relative deviations are about the same as for the

rotational constants. In fact, in many cases, the difference is
about 0.1%. However, it should be mentioned that, for the
sextic constants, we do not expect that the small difference
between our two simulations reflects the error margin of our
method.

4. Summary and Conclusions

Within this work, high-level ab initio methods have been
used for the first time to investigate the rotational and
rovibrational spectra of diazophosphane. Explicitly correlated
coupled-cluster calculations have been used to determine
multidimensional PESs represented by an n-mode expansion
up to fourth order. For each of the two isotopologues (HPN2

and DPN2), two PESs were determined. The first one uses the
frozen core approximation relying on error compensation with
respect to neglected contributions within the electronic energies
and leads to vibrational frequencies that usually match nicely
with experimental results. The second PES uses all-electron
calculations, which have shown a better agreement for the
spectroscopic constants in the past (Schneider & Rauhut 2022;
Tschöpe & Rauhut 2023). To determine the vibrational and
rovibrational frequencies and intensities, VCI and RVCI theory
has been used. All simulations were performed with the
MOLPRO program package of ab initio programs.
Theoretical results for the geometrical parameters of the

equilibrium and vibrational averaging structures of HPN2 and
DPN2 have been provided. Moreover, theoretical values for the
partition functions within a temperature range between 10 and
800 K have been presented. In addition to that, we provided
line list for more than 70 vibrational bands, which show neither
Fermi nor Darling–Dennison resonances. However, it revealed
a strong resonance with a leading coefficient for the VCI wave
function of 0.71 for the combination bands ν3 + ν5 and ν4 + ν5
+ ν6 at 1375 cm−1 for HPN2. In contrast to HPN2, the
deuterated system shows even fewer resonances. The rotational
spectrum was also studied for temperatures between 10 and 300

Table 3
Spectroscopic Constants for the Vibrational Ground State of HPN2

Parameter ae fc

A [GHz] 254.46592 253.29347
B [GHz] 5.94814 5.91260
C [GHz] 5.80568 5.77117
ΔJ [kHz] 2.298 2.295
ΔJK [kHz] 126.733 125.805
ΔK [MHz] 19.120 19.061
δJ [Hz] 54.842 54.748
δK [kHz] 77.312 76.986
ΦJ [Hz] −0.002 −0.002
ΦJK [Hz] 0.432 0.430
ΦKJ [Hz] −134.311 −135.313
ΦK [kHz] −8.868 −9.050
fJ [mHz] −0.048 −0.049
fJK [Hz] 0.247 0.245
fK [Hz] 378.121 378.626

Note. Watson’s A-reduced Hamiltonian and Ir representation is used for the
VPT2 calculations. Comparison between results for the PES using the frozen
core (fc) approximation and the all-electron (ae) correlation calculation. The
rotational constants for the equilibrium geometry are Ae = 254.98012 GHz, Be

= 5.94287 GHz, and Ce = 5.80751 GHz within the fc approximation and Ae

= 256.16949 GHz, Be = 5.97837 GHz, and Ce = 5.84203 GHz for the ae
correlation calculations.

Figure 7. Infrared low-frequency stick spectrum of diazophosphane. This
spectral region is split in two panels for better visibility because the band
around 577 cm−1 is one order of magnitude stronger (see Figure 5) than the
band in panel (b). For transitions drawn in black the initial vibrational state is
the ground state. Hot bands for different vibrational transitions are given in
different colors. Transitions initiated from vibrational state 41, 51, and 61 are
colored yellow, pink, and green, respectively. The maximum total angular
momentum was set to J = 75.
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K, including hot bands. Moreover, we discussed the Ka quantum
number dependence of the progressions. The rovibrational
spectrum was analyzed with respect to the hot bands and
vibrational quantum numbers. Furthermore, a discussion of the
rovibrational infrared stick spectra was presented for all
fundamental bands of HPN2. Last, we provided the rotational
and centrifugal distortion constants obtained by VPT calculations
of the asymmetric top molecule. A comparison between results
based on the all-electron PES with results obtained by frozen
core calculations showed a relative deviation of about 0.5%.

These data should allow to guide observations of diazopho-
sphane in astrophysical environments, like, for example, AGB
star envelopes, as well as further laboratory studies. In
particular, the spectral region between 300 and 550 cm−1

appears to be fairly unique and thus characteristic for the
molecule’s identification.
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to our attention. We thank the Deutsche Forschungsge-
meinschaft (DFG;project Ra 656/23-3) and the Studienstif-
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berg through bwHPC and the DFG through grant No. INST
40/575-1 FUGG (JUSTUS 2 cluster). This publication was
funded by the German Research Foundation (DFG) grant
“Open Access Publication Funding/2023-2024/University of
Stuttgart” (512689491).
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