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Epithelial tissues are crucial to maintaining healthy organization and
compartmentalization in various organs and act as a first line of defense
against infection in barrier organs such as the skin, lungs and intestine.
Disruption or injury to these barriers can lead to infiltration of resident or
foreign microbes, initiating local inflammation. One often overlooked aspect of
this response is local changes in tissue mechanics during inflammation. In this
mini-review, we summarize known molecular mechanisms linking disruption of
epithelial barrier function to mechanical changes in epithelial tissues. We consider
directmechanisms, such as changes in the secretion of extracellular matrix (ECM)-
modulating enzymes by immune cells as well as indirect mechanisms including
local activation of fibroblasts. We discuss how these mechanical changes can
modulate local immune cell activity and inflammation and perturb epithelial
homeostasis, further dysregulating epithelial barrier function. We propose that
this two-way relationship between loss of barrier function and altered tissue
mechanics can lead to a positive feedback loop that further perpetuates
inflammation. We discuss this cycle in the context of several chronic
inflammatory diseases, including inflammatory bowel disease (IBD), liver
disease and cancer, and we present the modulation of tissue mechanics as a
new framework for combating chronic inflammation.
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Introduction

Epithelial barrier tissues maintain a tight seal between the outside environment and
the inside of the body. Loss of barrier integrity leads to local activation of immune cells
and fibroblasts, which can remodel local ECM networks, the major determinants of
tissue mechanics. Over time, these structural and molecular changes result in tissue
stiffening (Barron and Wynn, 2011; Chrysanthopoulou et al, 2014; Curaj et al, 2020).
During acute inflammation, increased tissue stiffness can be beneficial for regeneration
and wound healing, for example, by enhancing immune cell activity and stimulating
immune cell migration and infiltration (Sridharan et al, 2019; Gaertner et al, 2022;
Millán-Salanova and Vicente-Manzanares, 2022; Nalkurthi et al, 2022). However,
during chronic inflammation, modifications in local ECM networks can become
permanent, leading to irreversible stiffening of the tissue and culminating in fibrosis
(Jeljeli et al, 2019; Velotti et al, 2020).

Pathologically stiff tissue can promote immune cell recruitment and activation via
mechanosensing pathways, leading to increased immune cell migration and
differentiation and activation of fibroblasts (Chen et al, 2020; Atcha et al, 2021;
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Chirivì et al, 2021; Jiang et al, 2022). Increased tissue stiffness also
results in epithelial cell depolarization, reduced cell-cell junctions
and increased migration (Discher et al, 2005; Aparicio-Yuste
et al, 2022). While in the short-term this may aid in wound
resealing, epithelial cells on stiff environments are less able to
maintain a tight barrier, creating a feedback loop between
increased barrier permeability and inflammation mediated by
changes in tissue mechanics (Figure 1). Such mechanical
feedback can ultimately disrupt organ function and presents a
major risk factor for cancer development. Here, we discuss the
molecular mechanisms that contribute to these feedback loops as
well as pathologies where such mechanical feedback can play a
role in disease progression.

Epithelial barrier disruption leads to
inflammation and local ECM
remodelling

Loss of barrier integrity leads to infiltration of microbes,
initiating a cascade of immune reactions whereby neutrophils
and monocytes are first recruited to the site of infection (Jenne
et al, 2018; Herrero-Cervera et al, 2022). These first responders not
only trigger inflammation by releasing cytokines and chemokines,
but also modify local extracellular matrix (ECM) structures by
secretion of neutrophil elastase (NE), cathepsins, gelatinases and
matrix metalloproteinases (MMPs; Delclaux et al, 1996; Ong et al,
2015; 2017; Medeiros et al, 2017). These enzymes promote the

FIGURE 1
Mechanosensory feedback loops during inflammation. Loss of barrier integrity results in infiltration of microbes that initiates acute inflammation.
Inflammation is led by neutrophils and macrophages, which release cytokines and chemokines and modify local extracellular matrix (ECM) structures by
secretion of ECM proteins and matrix metalloproteinases (MMPs). Activated immune cells also stimulate fibroblasts, which secrete, assemble and
physically remodel ECM networks, resulting in a stiffening of ECM networks. During chronic inflammation, pathologically stiff tissue can lead to
over-activation of immune cells via mechanosensing pathways, resulting in increased immune cell migration and differentiation. Increases in tissue
stiffness can also lead to epithelial cell depolarization, reduced cell-cell junctions and increased migration. While in the short-term this may aid in wound
resealing, epithelial cells on stiff environments are less able to maintain a tight barrier, creating a positive feedback loop between increased barrier
permeability and inflammation mediated by changes in tissue mechanics.
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degradation of ECM components such as collagen, laminin, elastin,
fibronectin and matrix bound glycoproteins (Ong et al, 2015; Xu
et al, 2020). Activated neutrophils release exosomes and Neutrophil
Extracellular Traps (NETs) rich in NE. NE-rich exosomes can bind
to the ECM via the integrin Mac1 and degrade Collagen-I
(Genschmer et al, 2019). NEs found in NETs have been shown
to degrade cartilage matrix synovium, resulting in synovial joint
injury (Carmona-Rivera et al, 2020). Collagenase and elastase
treatment in lung tissues causes a loss and shortening of ECM
fibers and decreases mechanical tissue stiffness by up to 50%
(Mariano et al, 2023). In addition to degrading local ECM
networks, neutrophils are also involved in tissue repair and scar
formation. In response to liver injury, neutrophils physically
transport existing ECM fibers to the wound site, leading to ECM
accumulation at the site of damage (Fischer et al, 2022).

Similar to neutrophils, macrophages also produce and secrete
various ECM-degrading enzymes (Sutherland et al, 2023). In
addition, macrophages ingest and degrade ECM structures by
integrin-mediated phagocytosis and receptor-mediated
endocytosis (McKleroy et al, 2013; Zhao et al, 2022). On the
other hand, macrophages also secrete ECM proteins including
fibronectin, laminin and versican, which can help to provide a
mechanical scaffold following injury and aid in the renewal of
tissue architecture (Tomlin and Piccinini, 2018). Exposure to
inflammatory cytokines including Transforming growth factor
beta (TGF-β), Interleukin (IL)-10 and IL-13 can stimulate
secretion of collagen-IV in macrophages (Schnoor et al, 2008).
Differentiation of macrophages to myofibroblasts results in the
production of fibrillar collagen during scar formation and ECM
remodelling (Simões et al, 2020). Both macrophages and neutrophils
are thus involved in degradation, production and remodeling of
ECM networks and are crucial to maintaining a proper balance
during homeostasis and regeneration.

When this balance is disturbed, for example, during chronic
inflammation, macrophages and neutrophils can activate fibroblasts,
which secrete, assemble and physically remodel ECM networks
(Jeljeli et al, 2019). Culturing fibroblasts in conditioned medium
fromM2-like macrophages causes an increase in Col5a1 and Col6a1
production, leading to the production of thinner and more aligned
collagen matrices. On the other hand, treating fibroblasts with
hybrid M1/M2-conditioned medium results in the production of
thicker, randomly oriented collagen networks. This suggests that
shifting the phenotype of macrophages can promote architectural
changes in the ECM via modulation of fibroblast activity (Witherel
et al, 2021). In addition to molecular signals, physical cues from the
microenvironment can also influence fibroblast-mediated ECM
remodeling. When fibroblasts treated with M1/M2 conditioned
medium are cultured on stiff substrates, they produce more
aligned collagen networks compared to when they are cultured
on softer hydrogels (Li and Bratlie, 2021). Fibroblasts also
regulate their own activity via autocrine signaling. For example,
during the inflammatory phase of myocardial infarction, activated
fibroblasts produce and assemble fibrin and fibronectin and begin
secreting TGF-β1, leading to a positive feedback loop of enhanced
fibroblast differentiation, collagen synthesis and macrophage
polarization. After reaching a stable state, a negative feedback
loop is initiated, reducing TGF-β1 expression and resulting in
completion of the mature scar (Curaj et al, 2020). Repeated

injury and scarring can lead to a build-up of stiff fibrotic tissue
that triggers fibroblasts to secrete more collagen, further driving the
cycle of ECM deposition (Liu et al, 2010). Interestingly, a number of
inflammatory conditions can also lead to tissue hypoxia, which, at
least in tumors, can stimulate fibroblast-mediated collagen
deposition and secretion of collagen-modifying enzymes
including prolyl and lysyl hydroxylases (Gilkes et al, 2013).
Together, these studies suggest that in various inflammatory
conditions, activation of immune cells and fibroblasts leads to the
reorganization of local ECM structures. During chronic
inflammation, this results in a build-up of ECM and stiffening of
the tissue, which can in turn stimulate immune cell activity via
various mechanosensitive pathways.

Immune cell activation by
mechanosensing pathways

The innate immune system forms the first line of defense against
pathogens entering the body. Leucocytes involved in the innate
immune response, or myeloid cells, including macrophages,
dendritic cells and mast cells, are adherent and contact-
dependent, making them sensitive to changes in tissue
mechanics. In particular, increased substrate stiffness, which is a
result of long-term chronic inflammation, leads to increased
immune cell activation and secretion of inflammatory cytokines.
Lipopolysaccharide (LPS)-Activated macrophages and bone-
marrow derived dendritic cells (DCs) both display enhanced
production of inflammatory cytokines when cultured on
mechanically stiff substrates as compared to soft hydrogels (Meli
et al, 2023). DCs cultured on stiff substrates also show increased
expression of glucose metabolism genes and an overall increase in
their glycolytic rate, suggesting that DCs are more metabolically
active on stiff substrates (Chakraborty et al, 2021). Mast cells, which
are implicated in pulmonary fibrosis, are also mechanosensitive.
Reseeding of healthy mast cells onto decellularized fibrotic lung
tissue leads to increased degranulation and secretion of histamine
and TGF-β1 compared to mast cells reseeded on healthy
decellularized lung. Mechanical stretching of mast cells can
produce a similar phenotype, further implicating mechanosensing
in this response (Shimbori et al, 2019). The regulation of immune
cell activity by increased substrate stiffness and mechanical stress is
mediated by various mechanosensitive pathways including Yes-
associated protein 1 (YAP) and Transcriptional coactivator with
PDZ-binding motif (TAZ). High substrate stiffness leads to
increased stress on the nuclear envelope, resulting in the
accumulation of nuclear YAP and activation of downstream
targets (Elosegui-Artola et al, 2017). In addition to YAP/TAZ
signaling, stretch-activated ion channels such as piezo type
mechanosensitive ion channel component 1 (PIEZO1) and
Transient Receptor Potential Cation Channel Subfamily V
Member 4 (TRPV4) are also involved in mechanosensing
responses (reviewed in Du et al, 2022). Together, these studies
suggest that immune cells involved in the innate immune
response are mechanosensitive and display pro-inflammatory
phenotypes in response to increased mechanical stiffness.

Cells involved in the adaptive immune response are also
mechanosensitive. In order to carry out their effector functions,
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naïve B cells and T cells must first be activated, or “primed,” by
antigen presenting cells (APCs) such as DCs. Increased stiffness of
substrates designed to mimic the APC cell surface has been shown to
facilitate the activation of B cells, T cells and Natural Killer (NK)
cells (Judokusumo et al, 2012; Comrie et al, 2015; Meng et al, 2020).
Similarly, increased stiffness of the actomyosin cortex of antigen
presenting DCs enhances T cell activation (Blumenthal et al, 2020).
Experiments using optical tweezers or fluid flow have demonstrated
that direct application of mechanical force on T cell receptors
(TCRs) can induce T cell activation (Kim et al, 2009; Li et al,
2010). Although adaptive immune cell activation is clearly
mechanosensitive, it is not clear how tissue stiffness influences
adaptive immune cell activity. Furthermore, B cell and T cell
priming typically occurs in lymph nodes, not in the inflamed
tissue. The relationship between tissue stiffness and adaptive
immune priming therefore remains an open question. However,
recent studies have suggested that T cell migration, along with the
migration of DCs and mast cells is increased on stiff environments
(Meng et al, 2020; Yu et al, 2021). This suggests that increased tissue
stiffness may enhance local immune activity by stimulating both
innate and adaptive immune cell migration. Increased mechanical
stiffness during inflammation not only affects immune cell activity
but can also have an impact on epithelial barrier integrity by directly
regulating epithelial cells.

Modulation of epithelial cell behavior
by mechanical cues

The maintenance of epithelial barrier integrity is most commonly
associated with tight junctions (TJs), which provide a tight seal at cell-
cell boundaries and prevent the passage of materials across the
epithelial layer. Recent work also suggests that adherens junctions
(AJs) play a major role in epithelial integrity, either directly through
mechanosensing pathways or by mediating TJ stability (Yap et al,
2018). A number of studies have demonstrated that both AJs and TJs
are mechanosensitive in response to in-plane stresses arising from
actomyosin contraction or external stretch, whereby moderate
amounts of tensile stress led to junction reinforcement, while very
high stresses cause epithelial tearing and rupture (Spadaro et al, 2017;
Acharya et al, 2018; Schwayer et al, 2019). In addition to in-plane
stresses, mechanosensing at cell-substrate adhesions can also affect
cell-cell junction integrity. The balance between cell-cell and cell-
substrate adhesions has been described as an “active wetting”
phenomenon (Gonzalez-Rodriguez et al, 2012; Beaune et al, 2014;
Pérez-González et al, 2019). For surfaces where cell-substrate
adhesion is low, for example, very soft substrates, cell-cell
adhesions dominate, leading to rounding and aggregation. This is
analogous to water droplet formation on a hydrophobic surface,
where liquid-substrate interactions are unfavorable and the surface
tension of the droplet dominates. On substrates where cell-substrate
adhesions are high, for example, on very stiff substrates, cell-substrate
adhesions dominate, causing the multicellular structure to spread, or
“wet” (Gonzalez-Rodriguez et al, 2012). Softer substrates therefore
favor stable junctions and a tight barrier, whereas a stiff substrate
favors more loosely attached cells and can also lead to dispersal into
individual cells (Gonzalez-Rodriguez et al, 2012; Pérez-González et al,
2019; Ilina et al, 2020). In addition to mechanical wetting/dewetting

resulting from the balance between cell-cell and cell-substrate
adhesions, molecular cross-talk between different adhesion
structures has also been shown to regulate cell-cell junction
integrity in a substrate stiffness-dependent manner (Haas et al, 2020).

In addition to stabilization of junction proteins, efficient wound
healing is a crucial aspect of tissue barrier maintenance.Wound healing
requires cell migration to rapidly infiltrate the wound and actomyosin
contraction to reseal the damaged area (Martin and Leibovich, 2005;
Rodrigues et al, 2019). Higher substrate stiffness leads to faster wound
closure mediated by increased collective migration speed and more
coordinated cell movements. On stiffer substrates, actomyosin
contraction slows down due to increased drag from the substrate,
while crawling migration is independent of the substrate mechanics
(Staddon et al, 2018; Ajeti et al, 2019). Other reports have suggested that
higher stiffness can increase collective migration speeds and correlation
in wound healing assays (Ng et al, 2012). It is likely that the dependence
on stiffness is biphasic and highly cell-type dependent. In addition to
elastic stiffness of tissues and cellular substrates, viscoelastic properties
of ECM networks also influence coordinated cell movements.
Crosslinking of collagen networks leads to increased network
stiffness and reduces viscoelasticity, resulting in reduced collective
migration (Murrell et al, 2011; Clark et al, 2022). Interestingly,
changes in tissue viscoelasticity have also recently been shown to
regulate collective cell behavior during development and cell
invasion (Barriga and Mayor, 2019; Elosegui-Artola, 2021; Elosegui-
Artola et al, 2023). Along with cell rearrangements to seal the wound,
increased cell division is required to repopulate the wounded area.
Substrate mechanics also regulates this process by modulating in-plane
stresses generated during the resealing response, which can stimulate
cell division (Zhang et al, 2003; Gudipaty et al, 2017; Donker et al, 2022).
Themechanisms underlying the regulation of epithelial cell division and
turnover in response to in-plane forces has been studied in several
contexts (reviewed in Ragkousi and Gibson, 2014). Taken together,
these studies indicate that increased substrate stiffness can perturb cell-
cell junctions and cell polarity and impair the wound healing response.
This suggests that the mechanical changes induced during
inflammation can feed back onto epithelial cell function, resulting in
further loss of barrier integrity.

Mechanosensing feedback loops in
chronic inflammatory diseases

Mechanical feedback loops are likely to play a role in a number
of chronic inflammatory diseases including IBD, liver disease and
cancer. IBD is characterized by a cycle of increased intestinal barrier
permeability and inflammation. Both immune cells and fibroblasts
participate in ECM deposition and reorganization in IBD, leading to
the onset of pathological tissue stiffening (Wang et al, 2022). Once
tissue stiffening has begun, additional feedback mechanisms drive
further tissue stiffening, leading to fibrosis and stricture formation
(Figure 2A). During intestinal fibrosis, mast cell infiltration and
degranulation leads to the release of large amounts of tryptase
through the PAR-2/Akt/mTOR pathway, which converts
fibroblasts into activated myofibroblasts. This results in
deposition of collagen and fibronectin to promote intestinal
fibrosis (Liu et al, 2021). Other recent work has suggested that
ubiquitin-specific protease 2 (USP2), which is upregulated in
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intestinal myeloid cells during IBD and mouse models of colitis,
increases the expression of collagen and alpha smooth muscle actin
(αSMA), leading to further ECM remodeling and tissue stiffening
(An et al, 2022). Collagen-I deposition in the intestine also activates
the YAP/TAZ pathway in epithelial cells through Fak/Src signaling
to initiate a regenerative cascade to induce a fetal-like state in the
colonic epithelium, where cells become more motile and prone to
reorganization compared to homeostatic conditions (Yui et al,
2018). Downstream effects of YAP/TAZ also induce the secretion
of IL-33 and IL-18 and lead to cytoskeletal re-organization
(Kobayashi et al, 2022). Together, these studies suggest that
mechanical reorganization of ECM networks during IBD can
drive further tissue stiffening, prolonged inflammation and
reduced barrier function.

The liver is also exposed to various external stresses arising from
dietary factors, exposure to gut microbe metabolites and alcohol and
drug use, leading to tissue damage and inflammation (Lang and
Schnabl, 2020; Yahoo et al, 2023). In the case of persistent
inflammation, increased accumulation of ECM results in the

replacement of healthy liver parenchyma with fibrotic scar tissue,
further driving mechanosensitive feedback pathways (Figure 2B;
Dhar et al, 2020). In mouse models of liver fibrosis, excess deposition
of collagen and fibronectin along with accumulation of αSMA-
expressing myofibroblasts leads to cirrhosis and increased
expression of ECM genes, which correlates with poor patient
prognosis (Wu et al, 2021). During this process, hepatic stellate
cells (HSCs) transdifferentiate into fibroblast-like cells that express
αSMA and secrete ECM components such as collagen-I and-III,
fibronectin and laminin, contributing to the development of fibrosis
(Friedman, 2008). HSCs also produce MMPs and Tissue Inhibitors
of Metalloproteinases (TIMPs) which are the major drivers of ECM
remodelling during hepatic fibrosis (Duarte et al, 2015). Chronic
overexpression of TIMPs prevents normal collagen remodeling,
leading to an increased collagen build-up that drives liver fibrosis
(Benyon and Arthur, 2021). The resulting altered biomechanical
environment can also drive liver tumorigenesis by activation of
integrin-β1 and focal adhesion kinase, leading to increased cell
proliferation (Schrader et al, 2011).

FIGURE 2
Mechanosensory feedback loops in chronic inflammatory diseases. (A) During Inflammatory Bowel Disease (IBD), a cycle of reduced intestinal
barrier function and chronic inflammation results in increased collagen deposition and secretion of tissue inhibitors ofmetalloproteinases (TIMPs) by local
activated fibroblasts, leading to stiffening of the underlying ECM and tissue fibrosis. (B) Persistent injury and inflammation in the liver results in the
differentiation of hepatic stellate cells (HSCs) into activated fibroblast-like cells which secrete collagen and TIMPs and express α-SMA. This results in
a replacement of the normal liver parenchymawith fibrotic scar tissue, eventually leading to fibrosis and cirrhosis. (C) The cross-talk between cancer cells
and stromal cells leads to the activation of cancer-associated fibroblasts (CAFs), which secrete ECM proteins and matrix remodelling enzymes that
contribute to increased stromal stiffness and invasion and metastasis. (D) Mechanochemical feedback during chronic inflammation involves various
mechanosensing pathways. (i) Increased substrate stiffness results in mechanical stress on the nucleus, which inhibits nuclear export of yes-associated
protein (YAP). In the nucleus, YAP acts as transcriptional coactivator to increase expression of downstream genes involved in cell proliferation and
migration. (ii) High substrate stiffness leads to increased integrin clustering, which activates downstream signal transduction pathways leading to
destabilization of cell-cell junctions. (iii) Mechanical stretching of the plasma membrane opens stretch-activated channels including PIEZO1 and TRPV4,
leading to an influx of Ca2+ ions and several downstream effects including changes in actin dynamics, cytokine release and cell proliferation. (iv)
Activation, or “priming”, of B cells and T cells involves heterotypic binding of membrane receptors between the B or T cell and an antigen presenting cell
such as a dendritic cell. Increased stiffness of the actomyosin cortex in the dendritic cell limits mobility of the membrane receptors, resulting in increased
mechanical stress on the B or T cell receptor, which enhances the activation process.
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Chronic inflammation is a risk factor for tumorigenesis and
cancer not only in the liver, but also in other tissues. The evolution
of the tumor microenvironment shares many similarities with
chronic inflammation, and tumors have been notably
characterized as “wounds that never heal” (Dvorak, 1986; Hua
and Bergers, 2019). One prominent feature of tumor progression is
the cross-talk between tumor cell behavior and the increased
stiffening of connective tissue surrounding the tumor (the
“stroma”; Figure 2C). High stromal stiffness can lead to
increased cytoskeletal activity and migration, reduced polarity
and epithelial-mesenchymal transition (EMT; Clark and
Vignjevic, 2015). Changes in stromal network architecture and
mechanics are mediated primarily by cancer-associated fibroblasts
(CAFs), which share many common features with activated
fibroblasts during chronic inflammation. CAFs display increased
secretion of cytokines, growth factors and matrix remodeling
enzymes as well as increased mechanical force production
(Sahai et al, 2020). Together, these factors drive changes in
ECM organization that contribute to increased stromal stiffness,
tumor invasion and metastasis. In addition, CAFs secrete proteases
that cleave and activate ECM-bound cytokines and cell adhesion
molecules, promoting increased migration of cancer cells and EMT
(Fiori et al, 2019). The mechanical properties of the tumor stroma
are also thought to contribute to immune escape mechanisms
during cancer and could interfere with cancer immunotherapy
(Denton et al, 2018; Ollauri-Ibáñez et al, 2021). Together, these
studies suggest that similar to chronic inflammatory diseases,
mechanosensory feedback loops can drive local tissue stiffening
and cancer progression.

Conclusion and outlook

Disruption of epithelial barrier tissues leads to local
inflammation and activation of immune cells and fibroblasts that
modify local ECM structures. Repeated injury or chronic
inflammation can lead to permanent ECM remodeling and tissue
stiffening, which can further exacerbate inflammation, excess
fibroblast activity and barrier disruption via various
mechanosensing pathways (Figure 2D). Altered tissue mechanics

represents a common and general feature of chronic inflammatory
diseases, despite differences in the molecular profiles of these
pathologies. Future translational studies aimed at modulating
tissue mechanics therefore have the potential to identify exciting
new therapeutic approaches with broad applications from chronic
inflammation to cancer.
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