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SUMMARY 

In recent years, it has been unanimously recognized that a “one size fits all” approach 

cannot be applied to cancer patient management, due to the extreme inter-individual 

variability and intra-tumor heterogeneity. For these reasons, prevention, diagnosis, 

prognosis and treatment interventions are based on the analysis of several parameters. 

Readily available information like family history and lifestyle or environmental factors 

are integrated with quantitative data including, among others, gene and protein 

expression, which require high expertise and costly procedures to be generated. Given 

the complexity, non-linearity and high dimensionality of these data, classical statistical 

approaches may be insufficient to confidently identify patterns correlating e.g. with 

treatment response or patient survival. In addition, the advances in computing hardware 

performance together with the increasing quality and quantity of high-throughput data, 

have boosted the interest in artificial intelligence (AI) application to oncology. In 

particular, machine learning (ML) and deep learning (DL) methods have shown 

unprecedented potential when applied to a wide variety of data, ranging from medical 

imaging to multi-omics datasets. In particular, ML is a subset of AI methods designed 

to make decisions on unseen samples based on the experience gained on training data. 

DL is a subfield of ML based on artificial neural networks, algorithms designed to 

resemble human cognition, and can be used to solve tasks too challenging for classic 

ML algorithms. 

In this work, the development and application of AI-based classification frameworks to 

generate case-specific predictions in three use-cases is described. Different levels of 

complexity are considered, upscaling from pathway-specific data generated from cell 

lines to patient biopsies and full transcriptome profiles. Each of the presented 

approaches showcase the potential of ML/DL pipelines in aiding and informing clinical 

decision making. The first two approaches focus on the cellular process of apoptosis, 

the main cell death modality often deregulated in cancer. Targeting this pathway in 

otherwise resistant tumors may represent a promising treatment strategy if appropriate 

patient selection is performed. To reach this goal, the baseline expression of key 

regulators was analyzed to identify signatures predictive for treatment efficacy or 

correlated with patient prognosis.  

In the first study, a data-driven modelling pipeline was devised to predict the response 

of melanoma cell lines to a novel apoptosis inducing treatment strategy. The protein 
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expression of 19 key apoptosis regulators was quantified in 16 melanoma cell lines 

together with responses to IZI1551, a hexavalent tumor necrosis factor (TNF)-related 

apoptosis-inducing ligand (TRAIL) receptor agonist, in combination with the inhibitor 

of apoptosis (IAP) antagonist Birinapant. These data were used to train a pattern 

recognition framework for predicting case-specifically synergistic behaviors and 

identifying putative responders. When challenged to predict the response of tumor cell 

spheroids and cells isolated from melanoma metastases, the classifier achieved >80% 

accuracy, demonstrating its potential as a prototype tool for patient selection.  A similar 

modelling approach was used to prognosticate progression free survival (PFS) of 

advanced melanoma patients based on the expression of nine apoptosis regulators. After 

immunohistochemical staining of tissue micro arrays constructed from tumor biopsies, 

the markers expression was assessed both digitally and manually. Surprisingly, high 

expression of the pro-apoptotic proteins Bax, Bak and Smac correlated with worse 

prognosis, and this trend was further validated at mRNA level in an independent 

melanoma cohort. A supervised classifier was built based on the expression of the three-

proteins signature and achieved an AUC>0.79 discriminating long term (PFS>12 

months) vs. short term survivors (PFS<12 months). These results highlighted a 

counterintuitive correlation between the expression of pro-apoptotic proteins and 

prognosis of patients treated with chemotherapy. While the first two studies focused on 

a limited number of proteins related to a specific pathway of interest, the third 

classification framework presented here aims at identifying breast cancer patients likely 

to experience disease progression or recurrence, based on their full transcriptome 

profiles. Two of the largest and best annotated publicly available datasets (TCGA and 

METABRIC) were identified as suitable candidates to train and test a DL pipeline based 

on generative adversarial networks (GAN). This approach addresses the common 

problem of data scarcity in clinical datasets, where the amount of variables far 

outnumbers the patients, generating synthetic individuals to enrich the original training 

data. Moreover, taking advantage of the generalization capability of this method, high 

stratification performance was achieved without any prior patient selection, which is a 

typical limitation of established prognostic tests currently in use. 

In conclusion, this work demonstrates how different AI-based methods driven by 

domain knowledge can assist translationally relevant tasks such as patient selection for 

novel treatment strategies, prognostication of survival based on biomarker signatures 

and identification of high risk patients.  
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ZUSAMMENFASSUNG 

In den letzten Jahren wurde einstimmig anerkannt, dass ein “one size fits all” Ansatz 

nicht auf das Management von Krebspatienten angewendet werden kann. Grund dafür 

sind die sehr starke, interindividuelle Variabilität und Heterogenität von Tumoren. 

Deswegen wurden in Prävention, Diagnose, Prognose und Behandlung heutzutage 

verschiedene Faktoren berücksichtigt. Diese reichen von leicht verfügbaren 

Informationen wie Lebensstil, Umfeld oder Familiengeschichte bis hin zu quantitativen 

Daten, wie unter anderem Gen- und Proteinexpression. Da diese Daten sehr komplex, 

nicht-linear und hochdimensional sind, reichen klassische, statistische Ansätze oft nicht 

aus, um Muster zu erkennen, welche z.B. mit dem Ansprechen auf die Behandlung oder 

dem Überleben des Patienten korrelieren. Fortschritt in Rechenleistung und verbesserte 

Qualität und Quantität von Hochdurchsatzdaten haben das Interesse an künstlicher 

Intelligenz (KI) zur Anwendung in der Onkologie gesteigert. Speziell maschinelles 

Lernen (ML) ist eine KI-Methode, die entwickelt wurde, um Entscheidungen bei 

unbekannten Daten auf Grundlage der Erfahrung von bekannten Trainingsdaten zu 

treffen. Dabei ist Deep Learning (DL) eine Untergruppe der ML-Algorithmen basierend 

auf künstlichen, neuronalen Netzwerken. Diese ähneln menschlicher Wahrnehmung und 

können für Aufgaben genutzt werden, die zu anspruchsvoll für klassische ML-

Algorithmen sind. 

In dieser Arbeit wird die Entwicklung and Anwendung von KI-basierter Klassifizierung 

beschrieben, um fallspezifische Vorhersagen in drei verschiedenen Anwendungsfällen 

zu treffen. Diese beinhalten das Hochskalieren von pfadspezifischen Daten aus 

Krebszelllinien, die Biopsie von Patienten und vollständige Transkriptomprofile. Jeder 

dieser Anwendungsfälle zeigt das Potential der ML/DL Analysen, klinische 

Entscheidungen zu unterstützen. Die ersten beiden Ansätze konzentrieren sich auf die 

zellulären Prozesse der Apoptose, der wichtigste Zelltodmechanismus, der bei 

Krebszellen oft dereguliert ist. Zielt man auf diesen Prozess in sonst resistenten 

Tumoren, könnte dies eine vielversprechende Behandlungsstrategie darstellen, falls eine 

passende Auswahl des Patienten durchgeführt wurde. Außerdem wurde die 

Grundexpression der wichtigsten Regulatoren analysiert, um Korrelationen mit dem 

Überleben von Patienten zu identifizieren, welche mit Apoptose-induzierenden 

Medikamenten behandelt wurden, wie z.B. Chemotherapeutika. In der ersten Studie 

wurde eine datengesteuerte Pipeline entwickelt, um die Antwort von Melanomzelllinien 
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auf eine neuartige Behandlung zur Apoptoseinduktion vorherzusagen. Die 

Proteinexpression von 19 Schlüsselregulatoren der Apoptose wurde in 16 

Melanomzelllinien quantifiziert und genutzt, um die synergistische Antwort auf 

IZI1551, ein hexavalenter tumor necrosis factor (TNF)-related apoptosis-inducing 

ligand (TRAIL) Rezeptor Agonist, in Kombination mit Birinapant, dem Antagonist des 

Inhibitors der Apoptose (IAP) vorherzusagen. Dies gelang mit 81.25 prozentiger 

Genauigkeit. Für die Vorhersage der Antwort bei Tumorzell-Sphäroiden und isolierten 

Zellen aus Melanommetastasen erreichte der Klassifikator eine Genauigkeit von über 

80%, was das Potential zur Patientenauswahl demonstriert.  Ein ähnlicher Ansatz wurde 

genutzt um folgenfreies Überleben (PFS) von fortgeschrittenen Melanompatienten auf 

Grundlage von neun Apoptose Proteinen zu prognostizieren. Diese neun Marker wurden 

durch Micro Arrays aus Tumorbiopsien isoliert und durch immunhistochemische 

Färbung digitalisiert und manuell quantifiziert. Hohe Expression der pro-apoptotischen 

Proteine Bax, Bak und Smac korrelierte mit einer schlechten Prognose. Dieser Trend 

wurde zusätzlich auf mRNA Ebene in einer unabhängigen Melanomkohorte bestätigt. 

Ein überwachter Klassifikator wurde auf Grundlage der Expression der drei Proteine 

entwickelt und erreichte bei der Vorhersage von verlängertem Überleben (PFS > 12 

Monate) eine AUC > 0.79. Dies hebt eine kontraintuitive Korrelation zwischen der 

Expression von pro-apoptotischen Proteinen und der Prognose von Patienten, die durch 

Chemotherapie behandelt wurden, hervor. Während sich die ersten beiden Studien auf 

eine beschränkte Anzahl an Proteinen eines bestimmten Pfads konzentriert haben, nutzt 

dritte Klassifikationsnetzwerk komplette Transkriptomprofile. Dadurch sollen 

Brustkrebspatienten erkannt werden, bei denen ein Fortschreiten oder Wiederauftreten 

der Krankheit wahrscheinlich ist. Zwei der größten und am besten kommentierten, 

öffentlichen Datensätze wurden als geeignete Kandidaten befunden, um eine DL-

Pipeline zu trainieren und testen. Diese Pipeline basiert auf generative, generischen 

Netzwerken (GAN). Dieser Ansatz verdeutlicht das allgemeine Problem von 

Datenknappheit in klinischen Datensätzen, in denen die Anzahl der Variablen um 

einiges größer ist als die Anzahl der Patienten. Das Erzeugen von künstlichen 

Individuen hilft dabei, die originalen Trainingsdaten zu vergrößern. Nutzt man 

außerdem die Fähigkeit zur Generalisierung dieser Methode, erreicht man eine hohe 

Schichtungsleistung ohne vorherige Patientenauswahl, was eine typische Limitierung in 

aktuell etablierten Prognosetests ist.  
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Zusammengefasst demonstriert diese Arbeit wie verschiedene KI-basierte Methoden, 

angetrieben durch Fachwissen, wichtige Aufgaben wie Patientenauswahl für neuartige 

Behandlungen, Prognose von überlebensbasierten Biomarkersignaturen und 

Identifizierung von Hochrisikopatienten unterstützen kann. 
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1 INTRODUCTION 

The introduction of this thesis is structured to provide a comprehensive background for 

the three original publications presented in Section 2. Firstly, the basic concepts of 

Artificial Intelligence (AI) and its integration in the field of medical research are 

discussed (Section 1.1). Since the main focus of this work is the development and 

application of binary classifiers to cancer patient data, the subsequent sections delve 

into the categorization and evaluation of these specific algorithms (Section 1.1.1, 1.1.2). 

Given the challenges posed by limited data availability in clinical settings, common 

techniques to handle data scarcity, such as feature selection, dimensionality reduction, 

and data augmentation, aiming to optimize algorithm performance, are described in 

Section 1.1.3. Two disease settings were selected as use cases for the three research 

articles presented in this thesis: melanoma and breast cancer. Section 1.2 reports 

mechanisms of melanoma formation and progression, along with information about 

staging and state-of-the-art treatment strategies. In this context, the controlled cell death 

pathway of apoptosis is introduced (Section 1.3) as a suitable druggable target to 

eliminate cancer cells. Breast cancer pathophysiology and patient management are 

illustrated in Section 1.4, with a particular focus on multi-gene expression signatures for 

patient prognostication. Finally, Section 1.5 states the objectives of this thesis, focused 

on the development of AI-based classifiers aimed at assisting clinical decision making. 

1.1 Artificial Intelligence 

The term “Artificial Intelligence” (AI) was coined by John McCarty, who in his 

proposal for the 1956 Dartmouth College Conference theorized that any aspect of 

learning could be simulated and executed by a machine (McCarthy et al., 2006). 

McCarty and colleagues believed that human prerogatives such as solving problems or 

learning through experience could be transferred to automatic calculators if opportunely 

programmed. The concept of “thinking machines” was not completely new, but 

formalized a few years earlier by Alan Turing: if a machine was capable of holding a 
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conversation without being distinguished from a human being, this could be defined as 

“thinking” (Turing, 1950). The very first successful implementation of such a concept 

was a program able to play the game checkers, developed by Christopher Strachey in 

1951 (Strachey, 1952).  

The field has drastically progressed over the past seventy years thanks to the availability 

of cheaper and higher-performance computing hardware, advanced machine learning 

(ML) methods and amount of data generated in different fields. The oversimplified 

concept of these technologies is that an algorithm can be trained on a set of data and use 

this experience to solve specific tasks that may be either too repetitive or too complex 

for a human. AI finds currently application in numerous domains, such as marketing 

and financial services, e-commerce, facial recognition, autonomous driving vehicles and 

many more. Recently, the increasing availability and routine acquisition and 

digitalization of cancer patients data has encouraged the repurposing and application of 

AI techniques to medicine and in particular to oncology (Wallis, 2019). The type of data 

related to cancer patients is diverse, complex and large. Imaging (e.g. radiology or 

pathology), -omics data (e.g. genomics, transcriptomics) together with companion 

clinic-pathological and follow-up information need appropriate processing techniques in 

order to be analyzed and address specific questions. Different AI algorithms have 

shown their potential when applied to cancer detection and diagnosis, subtype 

classification, treatment optimization, identification of new therapeutic targets, drug 

discovery and drug repositioning (Elemento et al., 2021). 

Despite the increasing academic and private sector interest for AI applications to 

oncology, with more than 5,500 articles published in 2022, the adoption of these 

technologies in clinical practice remains still limited. According to a review carried out 

in 2020, 64 AI-based algorithms or devices were approved by the US Food & Drugs 

Administration (FDA), only 6 of which applied to cancer diagnostics. The main 

obstacles to the implementation of such methods into the clinics include transparency of 

the software, security of the data and the underlying bias of the data the models are fed 

with. Moreover, the regulation of the use and maintenance of such technologies 

represents a critical point (Benjamens et al., 2020). 

1.1.1 Categorization of machine learning algorithms 

ML is the process by which a machine learns to perform a particular task and improve 

from experience. The learning process is defined by algorithms aimed at extracting 
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patterns from representative examples (or training data) and subsequently using them to 

make decisions on previously unseen data (or test data). Depending on the type of data 

and the task that the algorithm has to solve, ML methods can be divided into three broad 

categories: (i) supervised learning (SL), (ii) unsupervised learning (UL) and (iii) 

reinforced learning (RL) (Figure 1.1-1) (Shao et al., 2022). In cancer research, several 

studies have applied these techniques, even though mostly retrospectively (Eckardt et 

al., 2021), to diverse types of data including gene and protein expression, methylation 

data, copy number alterations, mutations and, more recently, images (Liñares-Blanco et 

al., 2021). ML models have found several promising applications in cancer diagnosis 

and early detection. Other tasks include tumor classification and staging or treatment 

response predictions (Bertsimas and Wiberg, 2020). 

SL algorithms are used to generate predictions and solve either classification or 

regression tasks. Classification algorithms are trained on a set of previously labeled data 

to predict the category of unlabeled data of a test set (e.g. low vs. high risk patient, 

benign vs. malignant sample). Random Forest (RF) and Support Vector Machines 

(SVM) are among the most widely used, especially when applied to gene expression 

data. In contrast, regression algorithms are used to predict a continuous real variable 

(e.g. survival times or level of expression of a specific gene). Popular methods are, 

among others, linear regression and K-nearest neighbors (Liñares-Blanco et al., 2021). 

While supervised models aim at predicting a specific discrete or continuous outcome, 

UL’s goal is identifying underlying structures in unlabeled data. Clustering is the most 

common unsupervised task addressed in cancer research, with K-means and hierarchical 

clustering among the most used. (Bertsimas and Wiberg, 2020). These methods can be 

used to identify groups of patients with specific clinical outcomes belonging to clusters 

(or subtypes) generated from genomic data (Awada et al., 2021). Finally, RL algorithms 

are the least commonly used in the field. These models are trained to take decisions in a 

specific sequence and are based on a penalty/reward system. For example, in a precision 

medicine setting, these models can learn to indicate the dose adjustment of a drug that 

may induce toxicity or anti-tumor response, and can be rewarded or penalized 

depending on the clinical outcome and the severity of the adverse effects. Therefore, the 

model learns to indicate interventions over a certain period of time that maximize the 

long-term reward (Eckardt et al., 2021).  

Deep learning (DL) is a subset of ML techniques based on deep artificial neural 

networks (DNN) (Figure 1.1-1). A DNN is constructed of interconnected neurons 
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organized in consecutive layers and can be used to solve classification tasks. The first 

layer, or input layer, is presented with a sample together with its class. The information 

is then passed to the first hidden layer and subsequently to multiple other layers, which 

in turn manipulate the input several times. Each layer has the task of encoding features 

relevant for the classification. This information is ultimately transferred to the last layer 

of the architecture, or output layer, that generates a prediction. During the training 

process, the network will adapt the weights and thresholds given to certain features in 

order to generate the best predictions for the known set of data. In addition, during the 

learning process, the algorithm also learns which features should be placed on which 

layer to optimize the performance. Based on these parameters, a test sample will be 

evaluated by the different layers of the network and will be assigned to a class (Tran et 

al., 2021). Convolutional neural networks (CNN) are deep neural networks that take 

advantage of convolutional layers for features extraction. Other than representing the 

most popular architectures used for image analysis in cancer diagnosis, CNNs also 

showed satisfactory performance when analyzing unstructured data such as gene 

expression or proteomics data (Bhinder et al., 2021). DL has also recently become the 

major framework of natural language processing (NLP). NLP systems handle, augment 

and transform free texts into computable representations (Yim et al., 2016). Applied to 

the healthcare environment, clinical NLP (cNLP) algorithms were used for example to 

extract timelines (e.g date of surgery or treatment) or cancer phenotypes from pathology 

and radiology reports. Consequently, the digitalized information is readily available for 

integration with -omics data or additional clinical records. This process not only reduces 

the time required for manual annotation of clinical datasets, but ensures that information 

recorded in text form is not neglected when automated predictive or prognostic tools are 

employed (Savova et al., 2019). 

Since the focus of this thesis is the development and application of binary ML and DL 

classifiers, the following sections will present the most relevant techniques to evaluate 

and optimize the performance of these particular algorithms. 

 

Figure 1.1-1: The taxonomy of AI. 

Venn diagram representing the 

relationships between artificial 

intelligence, machine learning, deep 

learning and their sub-categories. 
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1.1.2 Evaluating a binary classifier 

In order to evaluate the performance of a binary classifier or compare algorithms, 

different metrics can be computed. Here, the most widely used parameters in the 

biomedical field are presented. The first and simplest one is accuracy, calculated as the 

number of correct predictions divided by the total number of predictions. In some cases, 

the overall accuracy may not well represent the model performance, especially in case 

of imbalanced classes. In this case, the construction of a confusion matrix can offer 

better insight into the model performance. A binary classifier can produce four possible 

outcomes: correct positive prediction (true positive [TP]), a correct negative prediction 

(true negative [TN]), an incorrect positive prediction (false positive [FP]) or an incorrect 

negative prediction (false negative [FN]). The confusion matrix is a 2×2 table in which 

the columns represent the actual classes and the rows the predicted classes, and it is 

populated by the four aforementioned values (Figure 1.1-2A). Sensitivity ([SN] or true 

positive rate), and specificity ([SP] or true negative rate), are two of the metrics 

calculated from the confusion matrix values and are useful to evaluate the ability of a 

model to identify TPs and avoid FNs or identify TNs and avoid FPs respectively and are 

calculated as follows (Bishop, 2006): 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) 

Translated into clinical terms, using a simple example of a pipeline predicting if a 

patient will experience cancer recurrence or not, a high SN indicates that the classifier is 

particularly good at identifying real high-risk patients. Conversely, high SP indicates 

that the prognostic test is well suited for identifying low-risk patients (Trevethan, 2017). 

Additionally, it is possible to calculate SN and SP of a binary classifier at different 

classification thresholds. Considering an oversimplified example, one could infer if a 

patient belongs to the high risk or low risk class based on the value of a single 

continuous variable. SN and 1-SP can be calculated at each decision boundary and 

plotted as a receiver operating characteristic (ROC) curve (Figure 1.1-2B). ROC curves 

are popular representations of overall model performance and the different threshold 

results can be summarized by the area under the curve (AUC). As the name suggests, 

the AUC is a single scalar value calculated as the area underneath the ROC curve. This 

value can range from 0 to 1, with 1 representing a perfect classifier and 0.5 a random 

classifier. The analysis of ROCs has been widely used to assess the performance of 
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cancer diagnostic, prognostic and predictive classifiers (Moi et al., 2018; Weiss et al., 

2003). 

 

Figure 1.1-2: Common metrics for the evaluation of binary classifiers.A Confusion matrix of a 

hypothetical binary classifier aimed at discriminating high vs low risk patients. B Receiver operating 

characteristic (ROC) curve of a classifier (blue line) generated using sensitivity and specificity values 

computed at different classification thresholds. The area under the ROC curve (AUC) is commonly used 

to summarize the model performance. 

1.1.3 Handling data scarcity 

Medical and -omics datasets are often characterized by a high number of variables (e.g. 

thousands of genes) and small sample size (e.g. a few hundred patients). While several 

supervised classifiers have the potential to be applied to such datasets to solve different 

tasks, these models were originally not designed to cope with a high amount of 

irrelevant or redundant variables, which degrade model accuracy (Saeys et al., 2007). 

Moreover, limited training data and imbalanced datasets (e.g. the majority of patients 

experience recurrence in a cohort) make the training of the model difficult, causing 

overfitting and poor generalization (Abu-Mostafa, 1989; Bansal et al., 2022). The 

challenge of high dimensionality is commonly tackled using feature selection methods, 

dimensionality reduction (Janecek and Gansterer, 2008) or data augmentation (Yousefi 

et al., 2019).  

1.1.3.1 Feature selection 

Feature selection aims at selecting subsets of informative variables from high-

dimensional datasets to improve model performance and reduce computing times. 

Supervised feature selection techniques are applied when the classes of the samples are 

known and can be divided into three categories depending on their interaction with the 

classifier. Univariate filter techniques (e.g. t-test, analysis of variance- [ANOVA] or 

information gain-based) assess the importance of each feature individually, usually 
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providing a relevance score from which the top scoring features can be selected. The 

main disadvantage of these univariate methods is that the interdependency of the 

different features is ignored, thereby retaining possibly redundant variables. To 

circumvent this problem, multivariate methods that consider these dependencies (e.g. 

correlation-based), can be used at the expense of higher computational complexity. Both 

univariate and multivariate filter selections are performed before using the classifier, 

making them independent from the modelling algorithm. Conversely, wrapper methods 

select features iteratively training and testing a specific classifier and evaluating its 

performance at each iteration with different subsets of variables. Compared to univariate 

filter methods, wrappers always take into account feature dependencies, but, since the 

variables are selected to obtain the best performance with a specific classifier, the 

identified subsets may be suboptimal when transferred to other models. These methods 

are usually computationally expensive since the classifier is recursively challenged and 

are more prone to overfitting. The third class is represented by embedded techniques, 

where the selection of an optimal subset of features is built into the classifier itself (e.g. 

random forest, support vector machines) (Saeys et al., 2007). Feature selection methods 

have been applied to a large variety of -omics data, including transcriptomics (Díaz-

Uriarte and Alvarez de Andrés, 2006; Guyon et al., 2002), proteomics (Shi et al., 2021) 

and metabolomics (Grissa et al., 2016) to improve model performance. 

1.1.3.2 Dimensionality reduction 

Alternatively, the attribute space can be reduced using dimensionality reduction. Instead 

of discarding features, these techniques combine the initial set of features into new 

attributes, losing only a small amount of information contained in the original dataset. 

The most widely used technique is principal component analysis (PCA, Figure 1.1-3A, 

B), which produces linear combinations of all original features into a new set of 

attributes, called principal components (PC), ordered by the amount of variance that 

they explain (Jollife and Cadima, 2016). Usually, a relatively small number of PCs, 

compared to the initial number of features, is sufficient to capture most of the variance 

of the initial dataset, therefore reducing the dimensionality of input data that classifiers 

have to process (Shi et al., 2021). The main disadvantage of PCA, compared to feature 

selection methods, is the difficulty of interpreting the contribution of an attribute to the 

linear combinations, making a ranking of features based on their importance not 

accessible (Janecek and Gansterer, 2008). PCA followed by classification has been 
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successfully applied e.g. to gene expression data for patient classification (Hsu et al., 

2014) or multi-omics data for cancer subtyping (Hira et al., 2021).  

Linear discriminant analysis (LDA) is closely related to PCA since it also aims at 

identifying linear combinations that explain the variance of the initial dataset (Figure 

1.1-3C). Differently from PCA, LDA considers the class of each sample to compute 

linear discriminants (LD), axes of a new orthogonal space, that maximize the separation 

between the classes whilst minimizing the variability within each class. While 

commonly listed as a dimensionality reduction algorithm, LDA finds wide application 

in supervised classification problems, since the linear decision boundary computed with 

a training dataset can be used to predict the class of new unseen samples. In cancer 

research, LDA was applied for generating e.g. diagnosis, subtyping, and risk group 

predictions (Huang et al., 2009; Ni et al., 2020; Tapak et al., 2019). 

 

Figure 1.1-3: Graphical representation of PCA and LDA projections.A Scatter plot representing a 

hypothetical dataset composed of n = 16 patients and m = 2 variables. B Principal component analysis 

(PCA) does not consider the category labels and aims to find a lower dimensional representation of the 

initial dataset maximizing the variance. A principal component (black arrow) is a new axis onto which the 

original data points are projected. C Linear discriminant analysis (LDA) aims to maximize the separation 

between the categories to find a lower dimensional discriminative representation of the initial dataset. A 

linear discriminant (black arrow) is a new axis onto which the original data points are projected. 

1.1.3.3 Re-sampling 

Class imbalance is a problem related to data scarcity. Biomedical datasets can be 

composed of a high number of samples belonging to one category, or majority class, 

and only a few samples representing a second, underrepresented category, or minority 

class. When applied to these datasets, AI methods have the tendency to generate 

predictions geared towards the majority class, reducing the contribution of the minority 

class towards the class definition (Tasci et al., 2022). Although no universal solution 

exists to address this issue, several strategies can be used to alleviate the imbalance 

ratio. Among these, the most common ones are data-level methods based on re-

sampling, which aims at either increasing the sample size of the minority class (over-
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sampling) or decreasing the sample size of the majority class (under-sampling). In the 

first case, samples from the minority class are randomly duplicated and added to the 

training dataset. In the latter, random samples are excluded to reduce the majority class 

instances. While under-sampling raises the problem of discarding potentially relevant 

information excluding samples, over-sampling comes with the potential of overfitting. 

The synthetic minority oversampling technique (SMOTE) may reduce overfitting, 

generating new samples through interpolation of several data points from the minority 

class. The second popular group of approaches is cost-sensitive learning. These 

techniques require a model to be adapted, so that the classifier is more heavily penalized 

when a sample from the minority class is misclassified. Even though cost-sensitive 

methods show good performance, their use is limited by the complexity of the 

implementation and the optimal definition of a penalty score (Gnip et al., 2021). Re-

sampling methods have been widely applied to medical imaging dataset balancing, e.g. 

for enhancing glioblastoma prognosis or glioma grading from radiological images (Liu, 

Hall, et al., 2017; Suárez-García et al., 2020), or RNA-seq datasets, for example for 

improving breast cancer subtyping (Yu, Wang, et al., 2020). 

1.1.3.4 Data augmentation 

The objective of data augmentation is increasing the amount of samples creating 

slightly modified copies of the original or generating new synthetic ones (Shorten and 

Khoshgoftaar, 2019). This concept is intuitive when applied to images. For example, to 

increase the number of pictures in a dataset, it is possible to flip, rotate, scale, translate 

or add noise to them. A classifier exposed to such an increased training set may perform 

better in a canonical cross validation approach, but may fail to achieve satisfactory 

performance when exposed to new unseen test samples. The lack of generalization 

ability can be explained by the fact that the model training has been highly affected by 

similar images that share common underlying patterns, that may not be present in the 

new test set. In the clinical environment, especially when dealing with unstructured data 

(e.g. gene or protein expression datasets) the acquisition of new samples to expose the 

model to a wider variety of training instances may be unfeasible. Therefore, generative 

models can be employed to generate synthetic samples and enrich scarce training 

datasets. Generative adversarial networks (GAN) are DL-based generative models able 

to produce new samples starting from a random noise vector. GANs are widely used in 

virtual image generation and were recently employed to produce synthetic medical 

images (e.g. computer tomography and magnetic resonance images), electronic health 
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records and -omics data. The concept of GAN was introduced in 2014 by Goodfellow et 

al. (Goodfellow et al., 2014). A GAN consists of two artificial neural networks, called 

the generator and the discriminator, competing with each other. The generator produces 

new synthetic samples taking a random noise vector as input (Aldausari et al., 2022). 

These samples are then passed to the discriminator, which tries to distinguish real from 

fake samples. The process proceeds reiteratively until the generator produces fake 

samples that cannot be distinguished from real ones by the discriminator (Figure 

1.1-4A). The ability to selectively generate samples belonging to a particular class or 

category was achieved with the development of the conditional GAN (CGAN) (Mirza 

and Osindero, 2014). In a CGAN, the discriminator expects from the generator to 

produce samples belonging to a specific class, penalizing not only the generation of 

unrealistic samples, but also the presence of features not belonging to a specific 

category (Figure 1.1-4B). An extension of this concept is the auxiliary classifier GAN 

(AC-GAN), published in 2016 (Odena et al., 2016). In this architecture, the 

discriminator is not aware of the class of the generated samples, and has the additional 

task to predict the category itself (Figure 1.1-4C). Such a trained discriminator lends 

itself to be used as a standalone classifier in a transfer learning setting (Saha and 

Sheikh, 2021). The Wasserstein GAN (WGAN) was presented in 2017 to improve 

training stability and quality of the output. In this implementation, the discriminator has 

an additional “critic” task which assigns a score representing the distance between the 

distribution of the fake samples compared to the distribution of the real training data 

(Arjovsky et al., 2017).  

 

Figure 1.1-4: Evolution of GAN architectures. A The original (also known as “vanilla”) GAN 

implementation and the WGAN architectures aim at generating high quality synthetic images. B CGAN is 

used to generate samples belonging to a specific class. C The prediction of the class of generated samples 

is an additional task of the ACGAN architecture. 
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Several other GAN architectures were developed to address specific problems. Cycle-

GAN was developed to generate paired images from two different but related domains, 

such as magnetic resonance imaging (MRI) and computed tomography (CT) scans. 

Wolterink et al. used paired CT and MRI images of brain tumors to generate the 

missing image of patients that underwent only one of the two diagnostic procedures 

(Wolterink et al., 2017). medGAN is an extension of the original implementation able 

to generate electronic health records, which include both continuous and discrete 

variables (e.g. stage or treatment information) (Choi et al., 2017). Applied to single-cell 

RNA-seq, an implementation of the CGAN was developed to generate distinct immune 

cell types (Marouf et al., 2020). 

In this thesis, two disease settings were used as use cases for the application of AI-based 

classifiers. In the next sections, malignant melanoma and breast cancer will be 

introduced, discussing unmet clinical needs that ML and DL algorithms can contribute 

to tackling.  

1.2 Melanoma 

Cutaneous melanoma originates from melanocytes, the pigment-producing cells of the 

skin. When these cells are exposed to ultraviolet (UV) radiation, they can accumulate 

mutations that lead to uncontrolled proliferation and apoptosis evasion (Broussard et al., 

2018). Despite accounting for only 1% of all skin cancers, melanoma is the cause of 

60% of all cutaneous malignancies related deaths (Vera et al., 2022). In addition to UV 

exposure, other factors such as genetic predisposition, number of congenital and 

acquired melanocytic nevi, genetic and family history, play a role in melanoma 

development (Leonardi et al., 2018). When detected in its early stage, melanomas are 

surgically removed and patients usually do not experience further complications, with 

5-year survival rates of over 95% (Keung and Gershenwald, 2018). However, 

melanoma rapidly metastasizes and when diagnosed in its advanced stage the survival 

rate after 5 years decreases to less than 20% (Sandru et al., 2014). One of the major risk 

factors for melanoma development is exposure to UV radiation. Even a few episodes of 

severe sunburns may double the risk of developing melanoma (Weinstock et al., 1989). 

Moreover, excessive amounts of melanocytic nevi, especially if acquired later in life, 

represent an indicator for potential melanoma development (Batistatou et al., 2007). 

Given the nature of the major risk factors, prevention and regular screenings are crucial 

to avoid the onset of the disease. Melanoma diagnosis is largely carried out by direct 
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observation of the skin lesion usually aided by a dermoscope. The clinician assesses the 

presence of morphological traits such as asymmetry, irregular borders, color variations, 

diameter and elevation of the surface of the nevi. In addition, several studies have 

shown the potential of DL in recognizing malignant lesions (Navarrete-Dechent et al., 

2018) reaching human expert-level diagnosis performance (Han et al., 2018). 

1.2.1 Staging 

Melanoma staging is based on four systems. The Clark scale and the Breslow thickness 

describe how deeply the cancer has grown into the skin layers. The Clark scale has five 

levels which refer to the main layers of the skin that are affected by the disease. A level 

1 melanoma, or melanoma in situ, involves only the epidermis, the outer level of the 

skin, while a level 5 melanoma has completely invaded the dermis reaching the 

underlying fat level that also contains the blood vessels. Instead, the Breslow thickness 

is measured in millimeters (mm) from the skin surface to the deepest point of the tumor. 

This value is also integrated into the TNM (Tumor, Node, Metastasis) system, which 

considers thickness, ulceration and spread of malignant cells to lymph nodes and to 

other organs. Finally, the clinical staging integrates this information into a 0 to IV 

staging system. Stage 0 represents an in situ lesion while Stage IV describes a cancer 

spread to lymph nodes and other tissues and body sites which commonly include lungs, 

liver or brain (Keung and Gershenwald, 2018). 80% of melanomas are diagnosed at 

Stage I, meaning that the cancer has reached 2 mm of thickness but has not spread to 

lymph nodes or distant organs. Notably, the majority of melanoma-related deaths occur 

in patients diagnosed with localized tumors. This suggests that among these patients 

exist a subpopulation of individuals at high-risk of recurrence or metastases who may 

benefit from more frequent screenings after the excision. Therefore, prognostication 

based on the clinical staging only, may not be sufficient for adequate patient 

management (LeQuang, 2022). Gene Expression Profiling (GEP) can improve 

prognostication and involves the analysis mRNA panels. Encouragingly, these tests 

have shown great potential in identifying early stage patients at higher risk of 

experiencing metastases or disease progression. Several of these prognostic tests are 

currently available (e.g. Decision-Dx Melanoma, Melagenix, Merlin) but none are 

routinely used in the clinics (Bollard et al., 2021). 
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1.2.2 Driver mutations 

Melanoma is one of the cancers with the highest mutational burden (Shao et al., 2020) 

with hundreds of genes mutated in a single tumor (Scatena et al., 2021). The two most 

frequent alterations are activating mutations in B-rapidly accelerated fibrosarcoma 

(BRAF) and neuroblastoma RAS viral oncogene homolog (NRAS). These mutations are 

found in about 50% and 20% of melanomas, respectively (Liu and Sheikh, 2014). Both 

genes encode for proteins implicated in the mitogen-activated protein kinase (MAPK) 

pathway, and constitutively active BRAF and NRAS promote cell growth and proliferation. 

In addition, as a consequence of NRAS mutation, the phosphoinositide 3-kinase (PI3K) 

pathway can be hyperactivated, promoting proliferation and survival. A similar effect is 

achieved through the loss of phosphatase and TENsin homolog (PTEN), a negative 

regulator of the PI3K pathway implicated in the development of 30-60% of melanomas 

(Milella et al., 2015). Additionally, NRAS can be hyperactivated as a consequence of 

neurofibromin (NF)-1 mutations (present in 10-15% melanomas) (Mehnert and Kluger, 

2012). Melanogenesis and melanocyte cell division are also promoted by mutations in c-

KIT, which encodes a tyrosine kinase transmembrane receptor modulating both the 

PI3K and the MAPK pathways. Additional genes reported to be implicated in 

melanoma development are tumor protein 53 (TP53), telomerase reverse transcriptase 

(TERT), Ras-related C3 Botulinum Toxin Substrate 1 (RAC1), cyclin-dependent kinase 

inhibitor 2A (CDKN2A), cyclin-dependent kinase 4 (CDK4) (Scatena et al., 2021).  

1.2.3 Management 

As mentioned above, surgical removal of the tumor may be curative in the majority of 

cases when performed in the early stage of the disease. Once melanoma metastasizes, 

metastasectomy may be performed, followed by other treatment interventions. Until 

recently, chemotherapy has been the only treatment option for metastatic melanoma. In 

particular, dimethyltriazeno-imidazol carboxamide (DTIC) or dacarbazine is the only 

FDA approved monochemotherapy since 1974. DTIC is processed in the liver 

generating its metabolite 3-methyl-(triazen-1-yl)imidazole-4-carboxamide (MTIC), 

which can alkylate the DNA and therefore induce mutations and prevent DNA 

replication (Liu and Sheikh, 2014). Even though no substantial survival improvement is 

observed and new therapeutic options are nowadays available, chemotherapy remains 

the only treatment option in poorly funded healthcare environments and in case of 

refractory, progressive or relapsed melanomas (Domingues et al., 2018). The 

management scenario changed drastically from 2011 with the approval of new treatment 
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approaches. In particular, tumors harboring BRAF activating mutations can be treated 

with kinase-inhibiting drugs such as the BRAF inhibitors vemurafenib and dabrafenib. 

These drugs lead to improved clinical response rates and prolonged survival, but the 

advantage may be limited by acquired resistance mechanisms. Combination treatments 

with dual specificity mitogen-activated protein kinase inhibitors (MEK- inhibitors), 

such as trametinib and cobimetinib, have shown potential to circumvent this limitation 

(Davis et al., 2019). About 50% of patients do not qualify for targeted therapies but can 

be considered for treatment with immune checkpoint inhibitors, targeting the cytotoxic 

T-lymphocyte antigen 4 (CTLA-4) and programmed death protein 1 (PD-1) in order to 

activate T-cells. Antibodies against CTLA-4 or PD1 stimulate the immune response by 

preventing binding of ligands suppressing T-cell activation present on dendritic cells 

(B7) and melanoma cells (PD-L1/2) (Heppt et al., 2016). Immunotherapy showed 

improved overall and progression free survival compared to chemotherapy, reaching 

unprecedented efficacy when combining CTLA-4 and PD-1 blockade (Switzer et al., 

2022). Despite these advantages, check point inhibitors are expensive, have shown 

satisfactory response in only limited subsets of patients and a significant portion of 

individuals experienced severe side effects. Taking all of these into account, finding 

biomarkers related to prognosis or predictive for patient response emerges as a priority, 

together with the identification of novel treatment options. One promising therapeutic 

target is the apoptosis pathway, since its deregulation contributes to melanoma 

progression and cell death evasion mechanisms (Broussard et al., 2018). 

1.3 Apoptosis 

Apoptosis is a highly regulated and conserved form of programmed cell death essential 

for development and aging as a homeostatic mechanisms to regulate cell populations in 

tissues (Elmore, 2007). In addition, cells may commit to apoptosis in response to 

several stimuli or stress signals, such as, among others, viral or bacterial infection, DNA 

damage, hypoxia or metabolic stress. After its first discovery by Carl Vogt in 1842, who 

reported cell death in the notochord and adjacent cartilage of metamorphic toads, many 

studies collected evidence of the involvement of this process in different organisms and 

tissues (Clarke and Clarke, 1996). Only over one century after its first report, Kerr and 

colleagues named the process apoptosis (from Ancient Greek: ἀπόπτωσις, falling off), 

formally defining the mechanism as “controlled cell deletion” (Kerr et al., 1972). Cells 

dying by apoptosis show characteristic morphological features, such as rounding and 
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shrinking followed by chromatin condensation and DNA fragmentation. Afterwards, 

cell membrane blebbing is followed by the disruption of the cell into apoptotic bodies, 

smaller vesicles which are subsequently eliminated by phagocytes responding to the 

“Find me” and “Eat me” signals (Ravichandran, 2010). During the entire process the 

membrane remains intact, avoiding the release of damage-associated molecular patterns 

(DAMPs) and therefore limiting immunogenic or inflammatory responses. 

Apoptosis exerts a key role in preventing cancer. Many tumorigenic stresses such as 

uncontrolled proliferation or DNA damage can trigger apoptosis and contribute to 

eliminating aberrant cells. Cancer cells can evade apoptosis in a variety of ways, 

including upregulation of apoptosis inhibitors, downregulation of pro-apoptotic proteins 

or loss of tumor suppressive function of sensor proteins. Understanding the complex 

interplay of apoptosis regulators and considering their expression patterns can help 

identifying points of intervention to restore susceptibility to cell death. Therefore, 

apoptosis represents a desirable target for treatment interventions (Lopez and Tait, 

2015). 

The apoptotic machinery can be activated by intra- or extracellular signals triggering the 

intrinsic or mitochondrial pathway such as oxidative stress, irradiation, or treatment 

with cytotoxic drugs (Figure 1.3-1). The intrinsic pathway converges on the 

mitochondrial outer membrane permeabilization (MOMP), an event which is tightly 

regulated by the interplay of the members of the B-cell lymphoma 2 (Bcl-2) family of 

proteins. Alternatively, the extrinsic or death receptor (DR) pathway is activated when 

extracellular ligands such as TNF (tumor necrosis factor), Fas-L (fibroblast associated 

surface antigen ligand) or TRAIL (TNF-related apoptosis-inducing ligand) bind to the 

extracellular domain of the type 1 TNF receptor (TNFR1), Fas (also called CD95/Apo-

1) and TRAIL receptors 1/2 (TRAIL-R1/2), respectively (Jan and Chaudhry, 2019). 

Both signaling cascades converge on the activation of initiator and effector cysteine-

dependent aspartate-directed proteases (caspases) expressed as inactive zymogens 

(procaspases). Initiator caspases (e.g. Caspase 8 and Caspase 9) are monomers activated 

after recruitment and dimerization on activation platforms. These in turn cleave dimeric 

effector caspases (e.g. Caspase 3 and Caspase 7), forming active heterotetramers 

(Lavrik et al., 2005). Activated executioner caspases subsequently cleave hundreds of 

different target proteins (e.g. Poly (ADP-ribose) polymerase [PARP] and lamin), 

ultimately leading to cell death (Taylor et al., 2008).  
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1.3.1 Apoptosis intrinsic pathway 

As stated above, cells can activate the intrinsic apoptosis pathway in response to 

different apoptotic stimuli. The signaling cascade is regulated by the interplay of the 

Bcl-2 family of proteins, represented by pro-apoptotic and pro-survival (or anti-

apoptotic) proteins, each containing at least one of four Bcl-2 homology (BH) domains. 

As a consequence of upstream death inducing signals, “activator” BH3-only pro-

apoptotic proteins are upregulated (such as Bcl-2-interacting mediator of cell death 

[Bim] or p53-upregulated modulator of apoptosis [PUMA]) or activated through 

cleavage (BH3-interacting domain death agonist [Bid] to form the active, truncated 

tBid). The activators can bind and activate the pore-forming proteins Bcl-2-associated X 

protein (Bax) or Bcl-2 antagonist/killer (Bak). As a result of this binding, Bax and Bak 

undergo a conformational change that allows the formation of oligomers forming 

macropores in the outer mitochondrial membrane. While Bak is anchored to the 

mitochondrial outer membrane (MOM) (Brouwer et al., 2014), Bax mainly resides in 

the cytosol of non-apoptotic cells and translocates to the MOM to be activated 

(Czabotar et al., 2014). To antagonize this process, pro-survival Bcl-2 family proteins 

such as Bcl-2; B cell lymphoma extra large (Bcl- xL); B cell lymphoma W (Bcl-w); 

Bcl-2-related isolated from fetal liver 1 (Bfl-1), and myeloid cell leukaemia 1 (Mcl-1), 

bind and sequester activators and pore forming proteins. Additional BH3-only proteins 

known as “sensitizers” (e.g. Bcl-2-associated agonist of cell death [Bad], activator of 

apoptosis harakiri (Hrk) and Noxa [Latin for ‘damage’]) can indirectly promote 

apoptosis by inhibiting anti-apoptotic Bcl-2 proteins.  

The balance between pro-apoptotic and anti-apoptotic Bcl-2 family proteins is crucial 

for determining whether a cell will execute MOMP and diverse stimuli can influence 

the abundance and activity of key regulators. For example, genotoxic damage (induced 

by ionizing radiation or treatment with cytotoxic chemotherapies) induces the activation 

of the transcription factor p53, increasing the transcription of Bax, PUMA and Noxa 

whilst repressing Bcl-2. Similarly, Bim and Bax mRNA levels are elevated as a 

consequence of high expression of the oncogene MYC (Fairlie and Lee, 2021).  

As a result of MOMP, proteins residing in the intermembrane space including second 

mitochondria-derived activator of caspases (SMAC), serine protease OMI and 

cytochrome-c are released in the cytosol. Cytochrome-c forms an heptameric complex 

together with apoptotic protease activating factor-1 (APAF-1) and deoxyadenosine 

triphosphate/adenosine triphosphate, which serves the role of activation platform for  
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Figure 1.3-1: Schematics of TRAIL-induced apoptosis. Following TRAIL binding to TRAIL-R1/2, the 

receptors trimerize allowing the formation of the DICS. Pro-Caspase 8 is recruited and activated within 

this complex and can subsequently cleave and activate effector Caspase 3, executing cell death. In type II 

cells, an additional level of signal amplification involves mitochondria. Caspase 8 cleaves Bid, which in 

turn activates pore-forming proteins Bax and Bak, resulting in the release of Smac and Cytochrome C 

from mitochondria. Cytochrome C forms an activation platform for Pro-Caspase 9 together with APAF-1 

and dATP/ATP. Activated Caspase 9 cleaves and activates executioner caspases, IAPs and pro- and anti-

apoptotic family members provide additional levels of regulation of the signalling pathway. Several 

compounds have been developed to target IAPs and anti-apoptotic Bcl-2 proteins and induce apoptosis, 

alone or in combination with TRAIL (grey boxes). Schematics adapted from the original designed by 

Gavin Fullstone. 

Pro-Caspase 9. While bound to the apoptosome, active Caspase 9 cleaves and activates 

the executioner caspases driving apoptosis. Caspase 9 and effector caspases activation 

can be blocked by the X-linked inhibitor of apoptosis protein (XIAP) which is in turn is 

inhibited by SMAC and OMI, released during MOMP. In addition, Caspase 3, can 

cleave both Pro-Caspase 9 and self-cleaved Caspase 9 (p35/p12) into the p37/p10 and 

p35/p10 forms, respectively, originating a positive feedback loop through the removal 

of the high affinity domain for XIAP (Denault et al., 2007; Wu et al., 2016). While 

XIAP directly inhibits caspase activity, cellular inhibitor of apoptosis 1 and 2 (cIAP1/2) 

are also able to bind caspases and influence cell fate. cIAP1/2 may promote 

ubiquitination through their really interesting new gene (RING) domains and 

subsequent proteasomal degradation of caspases. Alternatively, the two proteins can 

promote survival contributing to the activation of nuclear factor 'kappa-light-chain-
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enhancer' of activated B-cells (NF-κB) and mitogen-activated protein kinase (MAPK) 

signaling (Sharma et al., 2017).  

1.3.2 Apoptosis extrinsic pathway 

The second branch of the apoptotic pathway, known as the extrinsic pathway, involves 

the activation of cell surface death receptors. Death receptors possess a death domain 

(DD) on their cytoplasmic side that allows the recruitment of additional proteins and the 

formation of the death-inducing signaling complex (DISC). In particular, when 

stimulated with TRAIL, TRAIL-R1 and TRAIL-R2 oligomerize and undergo a 

conformational change that exposes their DDs (Figure 1.3-1). The adaptor molecule 

FAS-associated death domain (FADD) contains a DD at the C-terminus and a death 

effector domain (DED) at the N-terminus. FADD binds the receptors via homotypic 

interactions of the respective DDs and, through its DED, recruits Pro-Caspase 8 to the 

DISC, binding its DED1. Further Pro-Caspase 8 monomers are then recruited at the 

DISC through DED2-DED1 homotypic interactions, forming filaments that facilitate 

the dimerization and subsequent auto catalytic cleavage of Pro-Caspase 8. The resulting 

active Caspase 8 heterotetramer is released into the cytosol and can cleave and activate 

Caspase 3 and 7 (Dickens et al., 2012). In addition to further Pro-Caspase 8 molecules, 

cellular FLICE-like inhibitory protein (cFLIP, FADD-like interleukin-1β-converting 

enzyme [FLICE]) can be recruited at the DISC. cFLIP also contains two DEDs and can 

modulate the activation of Pro-Caspase 8 binding at the DISC. The isoform cFLIP short 

(cFLIPS) lacks the protease domain and disrupts Pro-Caspase 8 filaments, thereby 

preventing Pro-Caspase 8 activation. The long isoform of cFLIP instead (cFLIPL) 

promotes Caspase 8 catalytic activity but was shown to inhibit extrinsic apoptosis when 

expressed in high amounts (Hughes et al., 2016). 

The intrinsic and extrinsic pathways cross-talk through Caspase 8. Cells able to achieve 

sufficient effector caspases activation by Caspase 8 after DR stimulation are termed 

Type I and can execute apoptosis independently of the mitochondrial pathway. Type II 

cells instead require a second level of amplification and rely on Caspase 8 cleaving Bid 

into tBid, its active and truncated form, subsequently engaging the intrinsic pathway 

(Scaffidi et al., 1998). 
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1.3.3 Mechanisms of resistance 

Resisting cell death is one of the hallmarks of cancer and tumor cells show a variety of 

mechanisms to limit or evade apoptosis (Hanahan and Weinberg, 2011). The extrinsic 

pathway can be impaired by reducing the surface expression of death receptors. This 

can be achieved for example by downregulating the expression of a receptor (e.g. CD95 

in leukemia or neuroblastoma cells) or impairing the transport of TRAIL-Rs to the cell 

membrane from the endoplasmic reticulum (e.g. in colon carcinoma cells). In addition, 

epigenetic changes such as hypermethylation of gene promoters can reduce the 

expression of death receptors (Fulda, 2010). The intrinsic pathway can be impaired by 

upregulating anti-apoptotic Bcl-2 proteins or down-regulating pro-apoptotic ones. In the 

first case, various mechanisms, including copy number amplification, enhanced 

transcription or reduction of microRNAs suppressing pro-survival Bcl-2 protein 

expression can favor cell survival. The expression of pro-apoptotic proteins such as 

PUMA, Noxa and Bax is reduced as a consequence of p53 loss. In addition, it was 

reported in various tumors that Bim, PUMA or Noxa expression can be silenced either 

by promoter methylation or deletion. Additionally, the levels of the apoptosome 

components can be lowered through epigenetic silencing or inhibitory phosphorylation 

of APAF-1 and ubiquitination and proteasome-dependent degradation of cytochrome-c 

(Lopez and Tait, 2015). Moreover, increased expression of IAPs can inhibit apoptosis. 

In particular, XIAP and cIAP1 are translated via an internal ribosome entry site (IRES) 

which allows their production despite the breakdown of translation initiation factors 

from active caspases (Fulda, 2010). 

1.3.4 Targeting apoptosis in cancer therapy 

Many anti-cancer therapies are aimed at eliciting apoptosis in indirect ways. 

Chemotherapeutic drugs can induce cell death by causing DNA damage or cell cycle 

arrest, however cancer cells can be insensitive to these treatments or develop resistance. 

In addition, normal cells also suffer from the toxicity of these drugs, resulting in 

patients experiencing side effects (Pan et al., 2016). However, the mechanistic insights 

into apoptotic signaling that accumulated over the last three decades allowed the 

development of therapeutic strategies aimed at inducing cell death by directly targeting 

the regulators of apoptosis. These include BH3 mimetics, inhibiting anti-apoptotic Bcl-2 

family members, SMAC-mimetics, antagonizing IAPs, and death-receptor agonists, 

triggering the extrinsic pathway (Lopez and Tait, 2015).  
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1.3.4.1 BH3 mimetics 

BH3 mimetics are small molecules that mimic the binding of BH3-only pro-apoptotic 

proteins to anti-apoptotic Bcl-2 family members. The first small molecule designed to 

bind Bcl-2, Bcl-xL and Bcl-w was ABT-737 (Oltersdorf et al., 2005), which initially 

proved its potential as a single agent against lymphoma and small cell lung carcinoma 

cell lines. The promising results encouraged the development of its orally bioavailable 

successor ABT-263 (navitoclax) which, despite the response rates observed in chronic 

lymphocytic leukemia, caused thrombocytopenia in platelets caused by Bcl-xL 

inhibition (Tse et al., 2008). ABT-199 (venetoclax) circumvented this problem by 

selectively inhibiting Bcl-2, reaching an overall response rate of 79% in the phase I 

study including chronic lymphocytic leukemia patients (Roberts et al., 2016; Souers et 

al., 2013). However, treatment with venetoclax was reported to cause tumor lysis 

syndrome, especially in patients with high tumor burden, which was attenuated with a 

different dose schedule (Davids et al., 2018). Resistance to Bcl-2/Bcl-xL inhibitors is 

often associated with the expression levels of Mcl-1, which was additionally shown to 

be frequently amplified in several cancer types (Wertz et al., 2011; Zack et al., 2013). 

The Mcl-1 inhibitors VU661013 and S63845 showed synergistic effects with ABT-199 

in venetoclax-resistant xenograft models of acute myeloid leukemia (Prukova et al., 

2019), suggesting that the combination or sequential treatment with different BH3-

mimetics may result in improved responses. Analyzing the expression levels of Bcl-2 

family proteins and BH3 profiling can help identifying the addiction of cancer cells to a 

specific anti-apoptotic protein and aid predicting the response to this increasing number 

of therapeutic candidates (Carneiro and El-Deiry, 2020; Fraser et al., 2019; Lopez and 

Tait, 2015). 

1.3.4.2 SMAC mimetics 

IAP proteins are overexpressed in several cancer types, with high expression correlating 

with poor patient survival (Fulda and Vucic, 2012). Three members of the IAP family 

are well characterized for their roles in preventing apoptosis. XIAP can prevent caspase 

activation by binding to Caspase 3, 7 and 9. cIAP1 and cIAP2 do not directly bind 

caspases, but can induce pro-survival responses ubiquitylating the components of the 

canonical and non-canonical NF-κB signaling pathways (Yu, Lin, et al., 2020). SMAC 

mimetics are small molecules that mimic the IAP-Binding Motifs or natural IAPs 

antagonists, such as SMAC or OMI. These molecules can bind to XIAP preventing 

caspase inhibition and promote cIAPs auto-ubiquitylation and proteasomal degradation 
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(Morrish et al., 2020). Birinapant (TL32711) is one of the most clinically progressed 

SMAC mimetic. It has higher affinity for cIAP1 than cIAP2 and XIAP and this 

characteristic may contribute to its good tolerability (Condon et al., 2014). As a single 

agent, birinapant showed high anti-tumor efficacy in preclinical studies including 

ovarian, colorectal, skin cancer and head and neck squamous cell carcinoma (Benetatos 

et al., 2014; Eytan et al., 2016; Krepler et al., 2013). Clinical trials with patients 

affected by advanced solid tumors or lymphoma, acute myeloid leukemia and ovarian 

cancer, did not show significant clinical responses but highlighted the good safety 

profile, suggesting the potential of this drug for combination treatments (Amaravadi et 

al., 2015; Frey et al., 2014; Noonan et al., 2016). Birinapant is currently tested in 

combination with anti PD-1 immunotherapy in solid tumors (Amaravadi et al., 2015) 

and with radiation therapy in head and neck cancer patients (NCT03803774). 

Additional compounds such as LCL161 and Debio have also progressed into the clinic. 

Similar to Birinapant, they promote cIAP1 degradation whilst exhibiting a lower 

affinity for cIAP2 and XIAP but still exhibit limited clinical efficacy. The on-target 

effect and the potential to synergize with other drugs (e.g. immunotherapy) makes this 

class of molecules attractive therapeutic candidates for cancer treatment (Morrish et al., 

2020). 

1.3.4.3 TRAIL receptor ligands 

The extrinsic apoptotic pathway is triggered by the activation of DRs, transmembrane 

proteins members of the TNF receptor superfamily (Green and Llambi, 2015). In 

particular, TRAIL-R1/2 are activated by TRAIL, a transmembrane trimeric glycoprotein 

that can be cleaved and released as a soluble ligand. Various cells of the immune 

system, amongst them natural killer cells, T cells, natural killer T cells, dendritic cells 

and macrophages, express TRAIL to modulate immune responses (Falschlehner, 

Schaefer, et al., 2009). TRAIL has gained attention due to its ability of selectivity 

killing cancer cells while sparing normal ones in preclinical studies (Falschlehner, 

Ganten, et al., 2009), avoiding liver toxicity and pro-inflammatory responses observed 

with Fas ligand (CD95 agonists) and TNF, respectively. In the early 2000s, recombinant 

human TRAIL and agonistic monoclonal antibodies against TRAIL-R1/2 started to be 

evaluated in the clinic, unfortunately with limited success (Carneiro and El-Deiry, 

2020). Recombinant TRAIL did not show significant activity in clinical trials due to 

short half-lives, limited ability to induce receptor clustering, binding to decoy receptors 

and lack of biomarkers to inform patient selection (Ashkenazi, 2015). Subsequently, 
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agonist monoclonal antibodies against TRAIL-R1 and TRAIL-R2 were engineered 

towards longer half-lives and higher order of receptor clustering. These constructs 

showed significant preclinical activity but limited clinical efficacy, in particular when 

administered as single agents. Several strategies have been developed to improve 

TRAIL’s therapeutic activity. First, the generation of single-chain variants (scTRAIL) 

by fusion of the extracellular part via short peptide linkers avoids the dissociation of the 

homotrimer. Moreover, fusing TRAIL to antibody fragments, such as the fragment 

crystallizable (Fc) part of human immunoglobulin G1 (IgG1) can further increase its 

half-life. Additionally producing dimeric scTRAIL fusion proteins with higher valency 

results in higher receptor clustering (Hutt et al., 2017). A representative example of a 

construct incorporating these characteristics is the hexavalent Fc-scTRAIL receptor 

agonist IZI1551. The agonist consists of two scTRAIL monomers with a single glycine 

residue as linker to connect three protomers, fused to the C-terminus of a human IgG1 

Fc region. The two monomers are covalently linked via disulfide bonds in the Fc region, 

forming the hexavalent dimer. It was shown that the increased receptor clustering 

induced by hexavalent TRAIL-receptor agonists caused more potent induction of 

apoptosis signaling and increased cytotoxicity against cancer cells. (Hutt et al., 2018). 

Another hexavalent TRAIL construct, ABBV-621, is currently under evaluation in 

clinical trials as single agent or in combination therapies (NCT04570631, 

NCT03082209).  

1.4 Breast cancer  

Breast cancer is the most frequent malignancy across women, with 2.1 million new 

cases diagnosed worldwide in 2018 and 626,679 deaths caused by the disease (Bray et 

al., 2018). When the cancer is still confined to the breast or has spread only to the 

axillary lymph-nodes, it is curable in 70-80% of the patients. Conversely, the metastatic 

disease can only be treated to manage the symptoms and prolong survival. Breast cancer 

originates in the functional units of the breast called duct lobular units. Depending on 

the site of origin, two histological subtypes can be distinguished: invasive ductal 

carcinoma, and invasive lobular carcinoma developing from their in situ counterparts 

named ductal carcinoma in situ and lobular carcinoma in situ, respectively. Both 

invasive subtypes can invade the surrounding breast tissues and spread to other parts of 

the body, most frequently to the bones, liver, lungs and brain (Harbeck et al., 2019). 

The exact mechanism of breast cancer initiation is still debated, but two main models 
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were reported to contribute to cancer formation and progression. According to the 

clonal evolution model, a population of cells start to accumulate mutations and undergo 

epigenetic changes and the “fittest” cancer cells are selected and proliferate. In the 

cancer stem cell model the precursor cancer cells are responsible for the disease 

initiation and progression (Bombonati and Sgroi, 2011). Independent of the initiation 

mechanism, at the molecular and histological level, breast cancer is a highly 

heterogenous disease. Several classification methods have been developed to categorize 

the tumors in subtypes and therefore streamline patient management. 

1.4.1 Prognostic factors and subtyping 

Surrogate intrinsic subtypes are the most common categorization method for breast 

cancer classification and have been shown to be informative for prognostication and 

treatment planning. The subtyping is based on several factors including the status of 

three specific receptors, the histological grade and proliferation characteristics. The 

status of three main markers is universally recognized as indispensable for the 

appropriate management of the patients and is routinely tested at diagnosis: the 

expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal 

growth factor receptor 2 (HER2). The expression is assessed by immunohistochemistry 

(IHC) on formalin-fixed paraffin-embedded (FFPE) tissue samples obtained from pre-

surgical biopsies. Tumors expressing ER and/or PR are defined hormone receptor-

positive; while tumors not expressing any of the three markers are termed triple-

negative, with the latter being the most aggressive (Waks and Winer, 2019). The 

histological grade is assessed according to the Elston- and Ellis- modified Scarff–

Bloom–Richardson system, which considers the percentage of tubule formation, the 

degree of nuclear pleomorphism and the mitotic count of the tumor. The three 

parameters are summarized in a three class grading system demonstrated to be a reliable 

prognostic factor representing tumor aggressiveness (Elston and Ellis, 1991). The Ki67 

index is also measured by IHC and quantifies the proportion of proliferating cells in 

breast cancer. Even if no international consensus for scoring and thresholding has been 

reached yet, it has shown prognostic value in ER- positive, HER2-negative tumors 

(Zhang et al., 2021).  

An increasing body of literature suggests that classic IHC based signatures are in some 

cases less informative compared to novel gene expression signature (GES) (Wang et al., 

2021). The Prediction Analysis of Microarray 50 (PAM50) is a 50-gene signature 
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initially proposed in 2010 that classifies tumors into four intrinsic molecular subtypes. 

The least aggressive is the luminal A subtype, followed by luminal B (expressing ER), 

human HER2-enriched and basal-like (without ER expression), the most aggressive. 

These subtypes were associated with specific relapse-free and overall survival 

outcomes, allowing the identification of a subset of patients at high risk of experiencing 

disease progression or recurrence (Kensler et al., 2019).  

1.4.2 Gene expression signatures and patient management 

Currently, four GES are available on the market and integrated into the clinical decision 

process, depending on the availability of the required analysis infrastructure and 

national reimbursement regulations. First generation tests are performed directly by the 

companies owning the technology. OncotypeDX (Genomic Health Inc., Redwood City, 

CA, USA) and Mammaprint (Agendia BV, Amsterdam, The Netherlands) are a 21- and 

a 70-GES respectively, belonging to this category. Both are prognostic for risk of early 

relapse in early stage ER-positive, HER2-negative tumors with 0 to 3 involved lymph 

nodes. Instead, second generation tests can be performed locally on dedicated devices. 

Similar to the previous two methods, Endopredict (Myriad Genetics Inc, Salt Lake City, 

UT, USA) and Prosigna (NanoString Technologies, Seattle, WA, USA) are 

recommended for ER-positive, HER2-negative tumors, but include tumor extension and 

the degree of spread to regional lymph nodes as parameters. Moreover, second 

generation tests are prognostic not only for early, but also late recurrence. When 

anatomo-pathological criteria are not conclusive, GES can aid in identifying individuals 

for whom chemotherapy may be beneficial, whilst avoiding adverse effects of 

unnecessary treatments for low risk patients (Foulon et al., 2020). Despite surgery 

representing the first or second line of treatment for early stage patients with 

undetectable metastases, the removal of the primary tumor can be preceded 

(neoadjuvant) or followed (adjuvant) by systemic chemotherapeutic treatment. Planning 

neoadjuvant or adjuvant interventions at this stage is often informed by the results of 

GES-based tests. In addition to chemotherapy, endocrine therapy is administered to 

block the effect of estrogen in ER positive tumors. In triple-negative and HER2 positive 

tumors, neoadjuvant therapy is always administered before surgery. In case pathological 

complete response is not achieved, systemic therapy can be prolonged.  

Advanced breast cancer is generally uncurable, especially when distant metastases are 

present, but several treatment schedules were developed to treat the symptoms and slow 
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cancer progression. Luminal-like (HER2 negative, ER and/or PR positive) tumors are 

treated with endocrine therapy alone or in combination with cycline dependent kinase 

(CDK) 4/6 inhibitors. For triple negative tumors, chemotherapy is the main therapeutic 

option unless immune cells expressing PD-L1 are detected, suggesting the use of 

immunotherapy. In case of rapid disease progression, chemotherapy represents the last 

line of treatment for both subtypes. For HER2 positive tumors, anti-HER2 agents are 

continuously administered independently from progression, together with 

chemotherapy. Despite the steps forward in patients management, the overall survival of 

patients with distant metastases rarely exceeds 2-3 years, therefore avoiding late 

diagnosis and identifying patients at high risk of recurrence remains a priority (Harbeck 

et al., 2019). 

1.5 Aim of the thesis 

Despite the advances in prevention, diagnosis and management, cancer has been the 

cause of death for approximately ten million patients worldwide in 2020. While the 

number of new cancer diagnoses increases every year, mortality has followed an 

opposite trend over the last two decades. Early diagnosis, new treatment options and 

prognostic tools have improved patient handling, supported by technologies capable of 

producing immense amount of data. While the role of AI in clinical practice is a matter 

of heated debate, ML and DL technologies are widely incorporated into diverse 

domains of oncology research. They have proven their ability of processing high 

dimensional data and the potential for assisting in decision making. In this thesis, three 

translationally relevant problems were tackled applying ML and DL-based pipelines to 

datasets of increasing complexity.  

First, it was tested if apoptosis protein expression profiles were sufficient to predict the 

response of melanoma cell lines to the TRAIL-receptor agonist IZI1551 in combination 

with Birinapant. Hereby, cell death measurements and expression data of nineteen 

apoptosis regulators were used to train a prototype classification framework, 

subsequently tested for its predictive potential in two validation settings, using 3D 

tumor spheroids and cells derived from patient biopsies. Finally, an in silico clinical 

trial was designed to assess the response of a wider cohort of melanoma patients to the 

proposed combination treatment. 

Expression data from apoptosis regulators were also collected in the second study, 

aimed at predicting the survival of metastatic melanoma patients treated with DTIC. 
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While new targeted therapies and immunotherapies have improved melanoma patient 

management, chemotherapy is still in use as last line of treatment of in poorly funded 

healthcare environments. Therefore, the identification of signatures prognostic for these 

groups of patients remains of high relevance. The expression of nine key proteins of the 

intrinsic apoptosis pathway was estimated by digital analysis of tissue micro arrays 

stained by immunohistochemistry and integrated into a dataset with follow-up 

information. Survival analyses were conducted to identify potential correlations with 

patient prognosis and independently validated in a separate cohort. Finally, a classifier 

was trained to discriminate long and short-term survivors and to compare the prognostic 

potential of the full protein panel against the putative biomarker signature.  

In the last study, DL and GAN architectures were used to analyze full transcriptome 

profiles of breast cancer patients. The identification of high-risk patients is crucial when 

planning adjuvant or neoadjuvant treatment interventions, especially to avoid the side 

effects of unnecessary treatments for low-risk patients and the costs related to the 

therapy. Classical ML algorithms may be inadequate for the analysis of high-

dimensional and imbalanced datasets, in particular when the number of features largely 

surpasses the number of samples. Gene expression datasets are usually affected by these 

limitations, but data augmentation methods can circumvent these problems creating new 

synthetic samples and enriching training datasets. In this work, the applicability of 

generative algorithms originally designed for image analysis to mRNA expression data 

was tested. To address the need of generally applicable prognostic tools, a GAN-based 

classifier was developed to identify high and low-risk patients. The data were retrieved 

from two independent publicly available datasets to test robustness and transferability. 

Finally, the classifier was compared to classical clinical biomarkers and an established 

GES for its stratification capability. 
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2.1.1 Abstract 

Second generation TRAIL-based therapeutics, combined with sensitizing co-treatments, 

have recently entered clinical trials. However, reliable response predictors for optimal 

patient selection are not yet available. Here, we demonstrate that a novel and 

translationally relevant hexavalent TRAIL receptor agonist, IZI1551, in combination 

with Birinapant, a clinically tested IAP antagonist, efficiently induces cell death in 

various melanoma models, and that responsiveness can be predicted by combining 

pathway analysis, data-driven modelling and pattern recognition. Across a panel of 16 

melanoma cell lines, responsiveness to IZI1551/Birinapant was heterogeneous, with 

complete resistance and pronounced synergies observed. Expression patterns of TRAIL 

pathway regulators allowed us to develop a combinatorial marker that predicts potent 

cell killing with high accuracy. IZI1551/Birinapant responsiveness could be predicted 

not only for cell lines, but also for 3D tumour cell spheroids and for cells directly 

isolated from patient melanoma metastases (80-100% prediction accuracies). 

Mathematical parameter reduction identified 11 proteins crucial to ensure prediction 

accuracy, with x-linked inhibitor of apoptosis protein (XIAP) and procaspase-3 scoring 

highest, and Bcl-2 family members strongly represented. Applied to expression data of 

a cohort of n = 365 metastatic melanoma patients in a proof-of-concept in silico trial, 

the predictor suggested that IZI1551/Birinapant responsiveness could be expected for 

up to 30% of patient tumours. Overall, response frequencies in melanoma models were 

very encouraging, and the capability to predict melanoma sensitivity to combinations of 

latest generation TRAIL-based therapeutics and IAP antagonists can address the need 

for patient selection strategies in clinical trials based on these novel drugs. 

2.1.2 Introduction 

The immune system can eliminate cancer cells by activating cell surface apoptosis-

inducing death receptors, such as tumour necrosis factor-related apoptosis-inducing 

ligand receptors 1 and 2 (also known as death receptors 4 and 5 (DR4/5)). Many cancer 

cells, including melanoma, over-express these TRAIL-Rs, possibly due to an additional 

role these receptors can play in supporting cellular proliferation and invasion by 

autonomous TRAIL/TRAIL-R signalling (von Karstedt et al., 2015). Developing 

TRAIL-based therapeutics has been a highly active but only moderately successful 

translational research field for many years, but recent progress in designing superior 

TRAIL-based biologics and an improved mechanistic understanding of drug-induced 
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TRAIL-sensitization now provide novel avenues for new anti-cancer therapies (Von 

Karstedt et al., 2017). Latest generation TRAIL-derived therapeutics overcome 

limitations of previous formulations by significantly improving TRAIL receptor 

oligomerisation and activation by higher valency, and by exerting significantly 

prolonged serum half-lives. Highly promising variants are hexavalent fusion proteins 

that couple two single-chain TRAIL trimers and that outperform soluble human TRAIL 

and TRAIL-R-targeting antibodies (Gieffers et al., 2013; Hutt et al., 2017; Morgan-

Lappe, 2017). Cellular inhibitor of apoptosis proteins (cIAPs) 1 and 2 can prevent 

TRAIL-induced cell death by recruiting components of the linear ubiquitin chain 

assembly complex (LUBAC) to aggregated TRAIL-Rs. The activitiy of LUBAC 

promotes pro-survival signalling and suppresses both apoptosis and necroptosis 

signalling cascades (Lafont et al., 2017). Synthethic IAP antagonists, such as Birinapant 

(TL32711), BV6 or LCL-161, therefore potently sensitize cells to TRAIL-induced 

caspase-8 activation and apoptosis (Benetatos et al., 2014; Fulda and Vucic, 2012). IAP 

antagonists bind to cIAPs and cause conformational changes that allow dimerisation of 

cIAP RING domains, auto-ubiquitylation and subsequent proteasomal degradation 

(Darding et al., 2011). In cells capable of activating caspase-8, the cleavage of the Bcl-2 

family protein Bid initiates the formation of Bax/Bak pores in the outer mitochondrial 

membrane, followed by activation of downstream caspases-9, -3, -7 and subsequent cell 

death (Taylor et al., 2008). Birinapant also binds to and inhibits x-linked inhibitor of 

apoptosis protein (XIAP), a major antagonist of caspases-9, -3 , -7 that is also involved 

in upstream regulation of cell death signalling, with nM affinity (Allensworth et al., 

2013; Holcik and Korneluk, 2001; Vucic, 2018).  Inducing apoptosis through the 

TRAIL pathway can proceed without the need for transcriptional responses or protein 

neo-synthesis, processes required for cell death induction by the majority of cytotoxic 

therapeutics. This suggests that pre-treatment amounts of proteins regulating apoptotic 

TRAIL signalling might suffice to derive predictors for treatment responsiveness.  

Especially in highly heterogeneous cancers, such malignant melanoma, predictive 

markers and validated companion diagnostic tests developed from such markers will be 

necessary to identify those patients likely to respond to treatment (Caberlotto and 

Lauria, 2015; Goossens et al., 2015). The incidence of cutaneous melanoma continues 

to rise rapidly (Whiteman et al., 2016). While chemotherapy-based treatments provide 

little benefit for patients with metastatic melanoma, more recent treatment options such 

as targeted immuno-therapeutics, BRAFV600 and MEK inhibitors, and combinations 
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thereof in many cases can prolong survival or, less frequently, induce lasting disease 

remission (Domingues et al., 2018; Hogan et al., 2018). However, substantial numbers 

of patients do not qualify for these treatments or experience disease relapse, so that 

additional treatment options, for example those building on TRAIL-based therapeutics 

and IAP antagonists, can be attractive alternatives should it become possible to reliably 

predict treatment responsiveness.  

Here we can report that expression profiles of TRAIL pathway regulators can serve to 

predict responsiveness to the combination of IZI1551, a prototypical example of a 

translationally relevant latest generation TRAIL-based biologic (Hutt et al., 2017), and 

Birinapant (TL32711), a well-characterised example for a translationally relevant IAP 

antagonist (Benetatos et al., 2014). Across a diverse and heterogeneous melanoma cell 

line panel, 3D multi-cellular tumour spheroids and melanoma cells isolated from patient 

metastases, we achieved >80% prediction accuracy. A proof of concept in silico trial 

based on a cohort of 365 metastatic melanoma patients indicates that 

IZI1551/Birinapant responsiveness could be expected for up to 30% of tumours.  

2.1.3 Materials and methods 

2.1.3.1 Materials 

TL32711 (Birinapant) was obtained from Active Biochem, Germany. IZI1551 was 

produced and purified as described before (Hutt et al., 2017). QVD-OPh was bought 

from Selleckchem, Germany. cIAP1 and cIAP2 recombinant proteins, required to 

determine absolute expression amounts in melanoma cells, were bought from R&D, 

Germany.  

2.1.3.2 Melanoma cell lines and freshly isolated melanoma cells 

Melanoma cell lines SkMel5 (ATCC; HTB-70), Malme 3M (ATCC; HTB-64), SkMel2 

(ATCC; HTB-68), SkMel147 (Memorial Sloan Kettering Cancer Center; NY), 

WM3060 (Wistar; WC00126), WM1791c (Wistar; WC00086), MeWo (ATCC; HTB-

65), Mel Juso (DSMZ; ACC74), WM1366 (Wistar; WC00078), WM115 (ATCC; CRL-

1675), WM35 (Wistar; WC00060), WM3211 (Wistar, WC00045), WM793 (Wistar, 

WC00062), WM852 (Wistar, WC00065), WM1346 (Wistar, WC00121), and WM3248 

(Wistar, WC00081) were purchased from ATCC (Mannasas, VA, USA), DSMZ 

(Braunschweig, Germany) or the Wistar Institute (Philadelphia, PA, USA). Six cell 

lines carried activating BRAF mutations (WM35, WM793, WM3248, WM115, 
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SkMel5, and Malme 3M), six cell lines NRAS mutations (WM1366, WM1346, 

SkMel147, SkMel2, Mel Juso, WM3060), one cell line a CDK4 mutation (WM1791c), 

one cell line carried a c-KIT mutation (WM3211), one cell line carried both NRAS and 

BRAF mutations (WM852) and one cell line was BRAF/NRAS/c-KIT/CDK4 wildtype 

(MeWo). All cell lines were purchased as authenticated STR-profiled stocks directly 

from the vendors. Freshly isolated melanoma cells (M10, M20, M32, M34, M45) were 

obtained from metastases and prepared for experiments by the Department of 

Dermatology, University of Dresden, Germany. Two metastases carried BRAF 

activating mutations (M10 and M45), while three carried activating NRAS mutations 

(M20, M32, and M34). Further materials (M51_1, M52_2 and M54) were obtained for 

extended validation (M54, BRAF/NRAS wildtype; M51_1, M51_2 carried BRAF 

activating mutations). Cell isolates were obtained as part of routine resections at 

University Hospital Dresden, under the auspices of the local Ethics Committee (ethical 

approval number EK335082018). Informed consent was obtained from all subjects. 

Cells were maintained in RPMI-1640 (Thermo Fisher Scientific, Germany) 

supplemented with 10% (v/v) FBS Brazil One (PAN Biotech, Germany) at 37˚C and 

5% CO2. Mycoplasma testing was regularly conducted. 

2.1.3.3 Culturing of 3D spheroids 

Cells were harvested and diluted to the concentration of 104 cells/mL in RPMI-

1640/10% FBS with the addition of 0.24% Methyl Cellulose (Sigma Aldrich, 

Germany). 250 cells per drop were placed into the lid of a Petri dish filled with PBS.  

Spheroids were incubated for 10 days at 37˚C and 5% CO2. The medium was 

exchanged every other day. Slower growing Malme 3M cells and freshly obtained 

metastatic melanoma cells (M34) were seeded at 500 cells per drop and incubated for 

two weeks.  

2.1.3.4 Flow cytometry 

Semi high-throughput cell death measurements. Cells were washed, trypsinised and 

stained with propidium iodide (PI, Sigma Aldrich, Germany) at 1.33 µg/mL for 10 

minutes. The measurements were performed on a high throughput flow cytometer (BD 

LSRII SORP) using the 488 nm laser for excitation, while emission was recorded at 617 

nm. Flow cytometry data were analysed using Cyflogic v. 1.2.1 (CyFlo Ltd, Finland). 

All experiments were performed in triplicates and in n = 3 independent repeats.  
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Annexin V-GFP or APC / PI staining. Cells were harvested and washed in PBS and 

Annexin V Binding buffer (Biolegend, Germany). Cells were stained with Annexin V-

APC (Biolegend, Germany) (0.1%) or Annexin V-GFP (made in-house, 0.1%) and PI 

(Biolegend, Germany) (1 µg/mL). Measurements were conducted on a BD FACS Canto 

II flow cytometer using 561 nm excitation (emission from 600 to 620 nm) (PI) or 640 

nm excitation (emission from 655 to 685 nm) (APC). Alternatively, measurements were 

conducted with a MacsQuant flow cytometer using 488 nm excitation (emission from 

655-730 nm (PI), and emission from 500-550 nm (GFP)). Flow cytometry data were 

analysed either with the BD FACS Diva software (BD Biosciences, USA) or with 

Flowing software (Turku Centre for Biotechnology, Finland).  

TRAIL receptor measurements. Cells were harvested and blocked in ice-cold PBA 

buffer (1 x PBS, 0.25 % BSA and 0.02 % Sodium Azide). Surface death receptors were 

probed with the following antibodies for 1 h at 4°C: mouse anti-TRAIL R1/TNFRSF 10 

A (1:100, R&D Systems), mouse anti-TRAIL R2/TNFRSF 10B (1:100, R&D Systems), 

mouse anti-TRAIL R3/TNFRSF 10C (1:100, R&D Systems) mouse anti-TRAIL 

R4/TNFRSF 10D (1:100, R&D Systems), purified mouse IgG1 (1:100, R&D Systems) 

and purified mouse IgG2b (1:100, R&D Systems). Secondary goat anti-mouse FITC 

conjugated antibody (1:50, Dako, Biozol, Germany) was added for 45 min at 4°C. Cells 

were analysed in a MacsQuant flow cytometer using 488 nm excitation (emission was 

recorded at 500-550 nm). The surface expression of death receptors was calculated by 

calibration against quantification beads (QIFIKIT, Biozol, Germany), comparing the 

mean FITC signal of cells to calibration signals. Data were analysed with Flowing 

Software.  

2.1.3.5 Western blot analysis 

Protein quantification. Cells were trypsinised, washed in PBS, centrifuged and lysed in 

lysis buffer (150 mM NaCl, 1 mM EDTA, 20 mM TRIS, 1% Triton x-100, pH=7.6) 

with addition of phosphatase inhibitor (PhosSTOP, 20x, Roche, Germany) and protease 

inhibitor cocktails (cOmplete, 20x, Roche, Germany). Spheroids were additionally 

sonicated. The total protein concentration was determined with Bradford assay. 20 µg of 

protein were resolved on Nu-PAGETM 4-12% Bis-Tris Midi gels (Invitrogen, Thermo 

Fisher Scientific, Germany) at 200 V, 400 mA for 40 min, followed by transfer to 

nitrocellulose membranes using an iBlot device (Invitrogen, Thermo Fisher Scientific, 

Germany). The membranes were blocked in 0.5x Blocking Solution (Roche, Germany) 

for 1 h at room temperature. The following primary antibodies were used for overnight 
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incubations at 4°C: mouse anti-Apaf-1 (1:1000; BD Transduction Laboratories), rabbit 

anti-Bak (1:1000; CST), rabbit anti-Bax (1:1000, CST), mouse anti-Bcl2 (1:1000; BD 

Transduction Laboratories) rabbit anti-Bcl-xL (1:1000, CST), mouse anti-Bid (1:1000, 

BD Transduction Laboratories), rabbit anti-Caspase 3 (1:1000; CST), mouse anti-

Caspase 8 (1:1000; CST), rabbit anti-Caspase 9 (1:1000, CST), rabbit anti-cIAP1 

(1:1000, Abcam), rabbit anti-cIAP2 (1:1000, Abcam), mouse anti-cFLIP (1:500, 

Abcam), mouse anti-cFLIP (1:500, Enzo), mouse anti-Cytochrome C (1:1000, BD 

Transduction Laboratories), rabbit anti-FADD (1:1000, Santa Cruz), rabbit anti-Mcl1 

(1:1000, CST), mouse anti-PARP (1:1000, BD Transduction Laboratories), mouse anti-

SMAC/DIABLO (1:1000, BD Transduction Laboratories), mouse anti-XIAP (1:1000, 

BD Transduction Laboratories), mouse anti-XIAP (1:1000, CST), mouse anti-actin 

(1:10000, CST). Subsequently, membranes were washed 3 x 10 min in TBST and 

incubated with secondary antibody (goat anti-rabbit IRDye 680 (1:10000) or goat anti-

mouse IRDye 800 (1:5000) (LI-COR Biosciences) for 15 min at room temperature, 

followed by 10 min washing with TBST. Signals were captured on an Odyssey LiCor 

Imaging System. The quantification of proteins was performed on raw 16 bit images 

using Odyssey V3.0 software (LI-COR Biosciences). The intensities of the fluorescent 

signals were corrected for loading.  

2.1.3.6 Data processing and analysis for predictor identification 

All data processing and analysis was performed using a customised version of a 

previously developed pipeline (Rožanc et al., 2019). The script was developed for 

MATLAB 2017b (The Mathworks, UK), equipped with the statistical toolbox. Prior to 

statistical analysis, protein data were mean-centered and scaled, dividing by the 

respective standard deviation. A principal component analysis (PCA) was performed on 

the standardised dataset and the PCs with an eigenvalue >1 were used for subsequent 

analyses. Linear discriminant analysis (LDA) was applied to objectively assess the 

accuracy of response class separation in the space defined by the first six PCs. Then, 

leave-one-out cross-validation (LOOCV) was applied iteratively to the 16-cell line 

panel to assess predictive capacity. For each iteration, data from 15 cell lines were used 

as a training set to define the PC space, and one test cell line was subsequently 

positioned according to its protein expression profile. LDA was then applied to 

determine if the test cell line was placed in the correct responsiveness sub-space. The 

response of 3D grown and patients-derived primary cell lines was predicted with the 

same workflow, using the predictor obtained from the data set of the 16-cell lines panel. 
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The optimal predictive protein subset (reduced predictor) was determined using the 

Select attributes panel of the WEKA workbench (Version 3.8.2, (Frank et al., 2004)). A 

ranking of the proteins was obtained using the CorrelationAttributeEval attribute 

evaluator with Ranker search method and 10-fold cross-validation mode. This attribute 

selection method evaluates the merit of each protein individually by calculating the 

Pearson’s correlation between the individual protein and the responsiveness class. The 

attribute selection step was performed using the proteins quantified in the 2D cell lines 

panel. The complete prediction pipeline was iteratively applied taking into account the 

first six PCs, and removing the protein with the lowest rank at each iteration. Statistical 

analyses not described above were performed with GraphPad Prism 7 (GraphPad 

Software). 

2.1.3.7 In silico trial 

The protein expression patterns of the melanoma cell line panel were used to estimate 

the protein expression profiles in melanoma tumours of 472 patients for which 

transcriptome data are deposited in the cancer genome atlas melanoma cohort (TCGA-

SKCM). Normalised mRNA expression data (Upper Quartile normalised Fragments per 

Kilobase of transcript per Million mapped read, log2(FPKM-UQ+1)) generated by the 

Genomic Data Commons (GDC-NIH) were downloaded from the UCSC-XENA 

browser (Available at: https://xena.ucsc.edu/. Accessed: 4th February 2019). Data 

interpolation was performed using Point-to-point curve creation in GraphPad Prism 7 

(GraphPad Software). Standard curves were generated using minimum and maximum 

values of protein expression range (cell line panel) and TCGA-SKCM back transformed 

mRNA expression data. For response predictions, PCA was applied to the data for the n 

= 11 predictor proteins in the cell lines dataset, followed LDA-based definition of 

responsiveness and resistant subspaces, and subsequent positioning of n = 365 TCGA 

derived melanoma metastases in the PC space according to their estimated protein 

values.  
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2.1.4 Results 

2.1.4.1 IAP antagonist Birinapant sensitizes a subset of melanoma cell lines to 

apoptosis induced by the 2nd generation TRAIL-based biologic IZI1551 

To study the responsiveness and the response heterogeneities of melanoma cells to 

IZI1551, a novel and translationally relevant hexavalent TRAIL receptor agonist (Hutt 

et al., 2017), to the IAP antagonist TL32711/Birinapant, a compound currently 

evaluated in clinical trials (Fulda, 2015), or combinations thereof, we employed a 

diverse set of sixteen cell lines (see materials and methods). For each cell line, cell 

death was determined at 15 treatment conditions, using semi-high throughput flow 

cytometry. Cell lines varied in their response to the treatments, ranging from high 

resistance to high sensitivity (Figure 2.1-1A). Many cell lines responded synergistically 

to the combination treatment (synergistic responders; WM1366, SkMel5, SkMel2, 

Malme3M, Mel Juso, WM3060, WM115, WM35, SkMel147, WM793, WM1346, 

WM3248), as determined using Webb’s fractional product method, whereas others 

(WM3211, MeWo, WM1791c, WM852 cells) failed to do so (low responders) (Figure 

2.1-1B).  

Birinapant had on-target activity in both synergistic responders and low responders, 

since cIAP1 protein amounts were efficiently and rapidly lost upon single agent and 

combination treatments (Figure 2.1-1C). Neither single nor combination treatment 

induced detectable amounts of TNFα secretion (Supplementary Figure 2.1-1), a 

response to IAP antagonists that in rare cases can contribute to autocrine cell death 

induction (Krepler et al., 2013). The amounts of XIAP remained largely unchanged, 

except for the combination treatment in synergistically responding Mel Juso cells 

(Figure 2.1-1C). XIAP is a known caspase-3 substrate (Deveraux et al., 1999), and 

correspondingly caspase inhibitor Q-VD-OPh restored XIAP amounts, indicating that 

IZI1551/Birinapant induces apoptosis in responder cell lines such as Mel Juso (Figure 

2.1-1C). This was further supported by the processing of procaspases 8 and 3, and by 

the caspase-dependent cleavage of Bid and PARP in Mel Juso cells (Figure 2.1-1D). In 

poorly responding MeWo cells, instead, PARP cleavage was modest and detectable 

only as a transient pulse (Figure 2.1-1D, E). In line with these observations, caspase 

inhibitor Q-VD-OPh prevented IZI1551 and IZI1551/Birinapant induced cell death in 

Mel Juso cells and other synergistic responders, such as SkMel2 and Malme 3M 

(Figure 2.1-1E). 
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Figure 2.1-1: IAP antagonist Birinapant sensitizes a subset of melanoma cell lines to IZI1551-

induced apoptosis. A Melanoma cell lines respond heterogeneously to single and combination treatment 

of IZI1551 and Birinapant. Cells were treated for 72 h followed by flow cytometric determination of cell 

death (propidium iodide positivity). Data shown are means from n = 3 independent experiments. B 

Synergy scores for treatment combinations, as calculated by Webb’s fractional product method. C 

Treatment-induced changes in IAP amounts, analyzed by Western blotting. Actin served as loading 

control. Asterisks indicate unspecific bands. Representative results from n = 3 independent experiments 

are shown. D Apoptotic signalling was studied 24 h after single and combination treatment with IZI1551, 

Birinapant and QVD OPh (30 µM). Actin served as a loading control. Representative results from n = 3 

independent experiments are shown. E Melanoma cell lines die by apoptosis upon combination treatment. 
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Cell lines were treated with 1 nM IZI1551, 1 µM Birinapant, with or without 30 µM QVD OPh. Cells 

were stained with PI and Annexin V-APC and analysed by flow cytometry. Shown are mean values + SD 

of three independent experiments. 

Taken together, these results show that Birinapant sensitizes a subset of human 

melanoma cell lines to cell death induced by IZI1551, a 2nd generation TRAIL-based 

therapeutic, and that apoptosis appears to be the primary cell death modality in 

synergistic responders.  

2.1.4.2 Expression patterns of apoptosis proteins allow predicting 

IZI1551/Birinapant responsiveness 

The combination of IZI1551/Birinapant can induce apoptotic cell death without the 

need for protein neo-synthesis. We therefore next explored if baseline expression 

amounts of apoptosis proteins carry information on the responsiveness of melanoma cell 

lines to the combination of IZI1551/Birinapant. Pre-treatment amounts of 19 key pro- 

and anti-apoptotic players that regulate the apoptotic TRAIL signalling pathway were 

determined by quantitative immunoblotting at high dynamic range or, for death 

receptors, by cell surface staining (Figure 2.1-2A; Supplementary Figure 2.1-2). 

Expression patterns varied considerably between the proteins and across the cell lines. 

To explore possible correlations between protein expression patterns, we conducted a 

principal component analysis (PCA). A total of six principle components (PCs), all with 

an eigenvalue >1 and thus fulfilling the Kaiser criterion (Kaiser, 1960), were required to 

capture approximately 80% of the data variance (Figure 2.1-2B), highlighting that pre-

treatment expression patterns were highly heterogeneous. Similarly, the associated 

weight coefficients indicated that individual proteins contributed heterogeneously to the 

first six PCs, without obvious positive or negative correlations between pro- and anti-

apoptotic proteins (Figure 2.1-2C). A visualisation of the cell line positions within the 

space defined by the first three PCs correspondingly failed to identify visually distinct 

clusters of cell lines (Figure 2.1-2D). In conclusion, these data demonstrate high 

expression heterogeneity between proteins and between the cell lines.  

Interestingly, colour coding the cell lines according to synergistic or low responsiveness 

indicated that synergistically responding and poorly responding cell lines occupy 

distinct regions within the plotted space (Figure 2.1-2E). Linear discriminant analysis 

(LDA) confirmed this visual impression, with 14/16 cell lines (88%) correctly separated 

into their respective response categories. These results, therefore, indicate that even 

though apoptosis protein expression is highly heterogeneous across the cell lines, the 
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Figure 2.1-2: Expression patterns of apoptosis proteins separate resistant from synergistically 

responding cell lines.  A Baseline expression of pro- and anti-apoptotic proteins of the TRAIL pathway. 

Circles summarize 684 quantifications, and circle sizes represent relative expression amounts of the 

proteins between cell lines. Protein amounts are provided in Supplementary Table 2.1-1. B Percentage 

of the variance of the original dataset explained by PCs. PCs with an eigenvalue >1 were retained for 

further analysis. Accumulated “variance explained” is plotted in black. C Weight coefficient table. Bars 

represent the contributions of the respective proteins to the different PCs. D Cell lines positioned in a 

multidimensional space according to their individual protein expression profiles. The PC space shown 

was defined by the first three PCs. Circle sizes decrease with distance from the observer to aid in 3D 

visualization. E Colour coding indicates responsiveness of cell lines to IZI1551/Birinapant (orange = low 

response; blue = synergistic response). Table insert indicates accuracy of spatial segmentation between 

low and synergistic responders. 
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Figure 2.1-3: Expression patterns of apoptosis proteins allow predicting IZI1551/Birinapant 

responsiveness. A Simplified 2D schematic showing the workflow for determining prediction accuracy 

by combined PCA/LDA/LOOCV. Following PCA, an LDA separates the PC space into areas for 

synergistic responsiveness and low responsiveness. A cell line of unknown responsiveness (empty circle) 

is then placed into the segmented PC space according to its protein expression profile, with the 

positioning serving as the response prediction. Experimental responsiveness data served to validate 

predictions. B 2D projection of LOOCV results for the 16 cell lines. The responsiveness of the test cell 

line was predicted (blue for synergistic, orange for low responsive). The empty circle represents the test 

cell line being placed into the PC space. Circle sizes decrease with distance from the observer to aid 3D 

visualization. Table insert summarises prediction accuracy. 

expression patterns nevertheless carry information on the capability to respond 

synergistically to the combination of IZI1551/Birinapant. We next tested if the protein 

expression patterns would be sufficient to predict responsiveness or resistance to 

IZI1551/Birinapant in melanoma cell lines. To this end, we performed leave-one-out 
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cross-validation (LOOCV) based on the approach described above. PCAs were 

conducted for sets of 15 cell lines, followed by LDAs to define the hyperspace regions 

of responsiveness and resistance. Missing cell lines were subsequently positioned into 

the LDA-segmented PC spaces according to their individual expression patterns of 

apoptosis regulators. If the tested cell line positioned into the correct response region, 

the prediction was considered successful (Figure 2.1-3A). Overall, LOOCV was 

sufficient to correctly predict the responsiveness of 13 out of 16 cell lines (81%) 

(Figure 2.1-3B), indicating that the measured protein panel allows predicting 

responsiveness to IZI1551/Birinapant on a case-by-case basis with high accuracy. 

2.1.4.3 Responses to IZI1551/Birinapant can be predicted for 3D growth conditions 

We next studied if responsiveness to IZI1551/Birinapant can be predicted for cells 

grown as multi-cellular tumour spheroids (MCTS). While more demanding as a cell 

culturing method, spheroids provide the advantage of higher microenvironmental 

complexity at nevertheless well-controlled experimental conditions (Vörsmann et al., 

2013). Protein quantification from spheroids of five cell lines able to form MCTS 

demonstrated that the transition from 2D cell culture to 3D spheroid culture 

substantially affected protein expression patterns (Figure 2.1-4A, B, Supplementary 

Figure 2.1-3). A number of pro- as well as anti-apoptotic proteins were considerably 

downregulated, such as Bid, Bcl-2, Procaspase 3, FADD and Mcl-1. cFLIP and TRAIL-

R1, instead, appeared to accumulate, and a number of other proteins changed 

heterogeneously in their expression amounts across spheroids of different cell lines 

(Figure 2.1-4B). While a reductionist reasoning based on individual protein changes 

would intuitively suggest that IZI1551/Birinapant responsiveness of 3D MCTS should 

differ from 2D cultures, the combined complexity of altered protein expression prevents 

drawing conclusions prior to experimental validation. We therefore used the PCA/LDA-

based approach to generate testable predictions on MCTS responsiveness. Positioning 

the MCTS forming cell lines into the PC space according to their respective pathway 

proteome revealed that their coordinates differed substantially from their 2D cultivated 

counterparts (Figure 2.1-4C). Interestingly, despite the substantial changes in relative 

protein amounts, all cell lines were predicted to remain within their respective response 

class (Figure 2.1-4C), color-coded open circles). To test these in-silico predictions, we 

measured cell death in spheroids treated with IZI1551, Birinapant or the combination 

thereof. Indeed, the predictions could be confirmed for all five cell lines, with SkMel2, 
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Figure 2.1-4: Responses to IZI1551/Birinapant can be predicted for 3D growth conditions.  

A Quantification of pro- and anti-apoptotic proteins in cell lines grown as MCTS (red and green, 

respectively). Circles summarize 285 quantifications and circle sizes represent mean protein quantities 

determined from at least n = 3 independent experiments. Protein amounts are provided in Supplementary 

Table 2.1-1. B Heatmap showing the fold change in protein expression between 3D and 2D culture. 

Black colour indicates absence in either 2D or 3D conditions. C Positioning of cell lines grown in 3D in 

the PC space defined by 2D cultured cell lines. Empty circles indicate positions of cell lines grown in 3D. 

Arrows indicate the change of position in the PC space caused by altered protein expression between 2D 

to 3D growth conditions. Circle colours reflect expected responsiveness (blue) or resistance (orange), 

based on the LDA segmented PC space. The circle size decreases with distance from the observer to aid 

3D visualization. D Experimental validation of MCTS responsiveness to IZI1551/Birinapant treatment. 



Predicting TRAIL/IAP antagonist responses 

   45 

MCTS of cell lines were treated with IZI1551 (1 nM) and Birinapant (1 µM) or their combination for 24 

h. Cell death was measured by flow cytometry (PI uptake). Data show means of n = 3 measurements. 

WM1366, Mel Juso and Malme 3M responding to the combination treatment of 

IZI1551/Birinapant, and MeWo cells remaining resistant in the 3D growth scenario 

(Figure 2.1-4D). TNFα was not secreted upon growth in 3D or in response to the 

treatments, as tested for Mel Juso and MeWo cells (not shown). Overall, we therefore 

conclude that a PCA/LDA-based prediction framework, parameterised with protein 

expression and treatment responsiveness data from 2D cell cultures, is sufficient to 

predict responses to IZI1551/Birinapant for 3D spheroid growth conditions. 

2.1.4.4 Responses to IZI1551/Birinapant can be predicted for melanoma cells 

freshly isolated from metastases 

For a translationally more relevant setting, we next tested if IZI1551/Birinapant 

responses can be predicted for melanoma cells freshly isolated from metastases. 

Following quantification of apoptosis regulatory proteins (Figure 2.1-5A, 

Supplementary Figure 2.1-4), cells were positioned into the PC space. Predictions 

were generated as described above and cells were colour coded according to their 

expected IZI1551/Birinapant responsiveness. M10, M20, M32, and M45 cells were 

predicted to respond to IZI1551/Birinapant combination treatment, whereas M34 cells 

were expected to respond poorly (Figure 2.1-5B). Validation experiments confirmed 

the predictions on high responsiveness of M10, M32 and M20 cells and poor 

responsiveness of M34 cells (Figure 2.1-5C). We therefore conclude that high 

predictions accuracies can also be achieved for cells freshly isolated from clinical 

materials.  

2.1.4.5 A reduced predictor maintains performance and estimates response 

prevalence to IZI1551/Birinapant in metastatic melanoma 

The framework to predict responsiveness to IZI1551/Birinapant builds on an otherwise 

unbiased selection of nineteen regulators known to be involved in canonical apoptosis 

signal transduction for this treatment combination. We next determined the contribution 

of the individual protein variables towards accurate predictions. To do so, we used the 

attribute selection feature of the WEKA workbench (Frank et al., 2004) to compute the 

“merit” of each protein, based on the protein expression profiles and the responsiveness 

data of the melanoma cell line panel. From this, we obtained a ranking of protein 

variables according to the degree of association with treatment responsiveness (in 

sequence of decreasing merit: XIAP, Procaspase 3, Cytochrome C, Mcl-1, cIAP1, Bax, 
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Figure 2.1-5: Responses to IZI1551/Birinapant can be predicted for cells isolated from melanoma 

metastases. A Quantification of apoptosis regulatory proteins in cells derived from melanoma metastases. 

Red coloured circles represent pro-apoptotic and green circles anti-apoptotic proteins. Circles summarize 

285 quantifications, and circle sizes represent mean protein quantities determined from at least n = 3 

independent experiments. Protein amounts are shown in Supplementary Table 2.1-1. B Positioning of 

melanoma cells from patient metastases in the PC space defined by 2D cultured cell lines. Empty circles 

indicate positions of patient cells. Circle colours reflect expected responsiveness (blue) or resistance 

(orange), based on the LDA segmented PC space. The circle size decreases with distance from the 

observer to aid 3D visualization. C Experimental validation of primary melanoma cell responsiveness to 

IZI1551/Birinapant treatment. Cells were treated as indicated for 24 h. Cell death was measured by flow 

cytometry (PI uptake). Heat maps show the mean of n = 3 independent experiments. 
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Bid, Bcl-xL, Smac, FADD, Bak, cIAP2, TRAIL-R1, Procaspase 9, Apaf-1, TRAIL-R2, 

Procaspase 8, cFLIP and Bcl-2). We then iteratively performed predictions for the cell 

line panel, with the protein with the lowest merit removed upon each iteration.  

Performance was largely maintained (14/16 correct predictions for the cell line panel) 

when limiting the predictor to the eleven proteins with the highest merit (Figure 

2.1-6A). The reduced predictor correctly determined treatment responsiveness in 4/5 

MCTS growth scenarios and in 4/5 biopsy-derived fresh melanoma cells (Figure 

2.1-6B, C). Further validation of the reduced predictor was conducted using nine 

additional and independently analysed samples, including three 2D and six 3D growth 

scenarios. Also in these samples prediction accuracies of approx. 80% were achieved 

(Figure 2.1-6D-F, Supplementary Figure 2.1-5). Overall, we noted strong influences 

of XIAP and procaspase-3, direct interactors and regulators of type I signalling 

competency during extrinsic apoptosis (Aldridge et al., 2011; Wilson et al., 2009), and 

various members of the Bcl-2 family in the predictor (Figure 2.1-6A). The ability to 

predict responsiveness to IZI1551/Birinapant in cell lines and ex vivo cultures raises the 

question if responses can be expected in patients, and if so, how frequent such responses 

might be. We therefore estimated the clinical response prevalence under the assumption 

that favourable drug pharmacokinetics and pharmacodynamics allow both drugs to 

reach their targets. Expression profiles of predictor variables were deduced from 

transcriptome data of metastatic melanoma patients (n = 365, TCGM-SKCM cohort, 

Supplementary Table 2.1-2) by mapping to protein expression ranges measured 

experimentally. Following positioning into the LDA segmented PC space defined by the 

predictor, 111 out of 365 patients were expected to respond to treatment (Figure 

2.1-6G). The expectation of approx. 30% responders needs to be interpreted in the 

context of predictor accuracy. The 80% prediction accuracy achieved in the cell line 

panel is composed of a predictor sensitivity of 92% and a specificity of 75%, so that the 

predictor strength lies in recalling true positives. Taken together, these results 

demonstrate that highly accurate predictions can be made for IZI1551/Birinapant 

responsiveness with a reduced set of input variables, and that in up to 30% of clinical 

cases an on target responsiveness could be expected, as estimated from a representative 

cohort of metastatic melanoma patients. 
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Figure 2.1-6: A reduced predictor maintains performance and estimates response prevalence to 

IZI1551/Birinapant in metastatic melanoma. A Ranking of variables in a reduced predictor, as 

obtained by computed merit. B and C Responsiveness predictions and prediction accuracies for MCTS 

growth scenarios and for metastatic melanoma cells isolated from patients. The PC space is shown as a 

two-dimensional projection. Filled circles represent training data from the melanoma cell line panel. Open 

circles highlight positions of MCTS (B) or cells isolated from melanoma metastases (C). D Quantities of 

apoptosis regulators in additional validation samples. Circle sizes represent relative protein amounts. 

Protein amounts are listed in Supplementary Table 2.1-1. Western blots are shown in Supplementary 

Figure 2.1-5. E Validation samples positioned in the PC space obtained by the reduced predictor. Color-
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coding indicates responsiveness. Table inserts display accuracy of spatial segmentation and prediction 

accuracy. F Experimental responsiveness of validation samples. Cells were treated as indicated for 24 h. 

Cell death was measured by flow cytometry (PI uptake). Heat maps show the mean of n = 3 independent 

experiments.  G Estimation of response prevalence in a hypothetical trial. Estimated protein expression 

profiles of metastatic melanoma patients (n = 365) were used to predict responsiveness (blue, n = 111) or 

resistance (orange n = 254) to IZI1551/Birinapant combination treatment. 3D graphs show arrangement 

of predicted responders and non-responders in the predictor space. 

2.1.5 Discussion  

Here, we report that protein expression signatures of TRAIL pathway regulators can 

serve to predict responsiveness to the combination of IZI1551 and Birinapant, targeted 

therapeutics with high translational relevance (Fulda and Vucic, 2012; de Miguel et al., 

2016). High accuracies for response predictions were achieved for melanoma cell lines, 

for 3D multi-cellular melanoma spheroids and for cells newly isolated from melanoma 

metastases (approx. 80% prediction accuracy). Protein prioritization resulted in a 

reduced marker that, when applied in a proof of concept in silico trial, suggests that 

IZI1551/Birinapant responsiveness could be expected in up to 30% of tumours in 

patients with metastatic melanoma. 

Previous TRAIL-based therapeutics were tested in translational settings and performed 

unsatisfactorily (de Miguel et al., 2016). Among the reasons for limited efficacy of 

TRAIL-R agonistic antibodies in the clinic were short serum half-lives and the 

requirement for immune cell-mediated, Fcγ-dependent clustering of therapeutic 

antibodies to induce efficient TRAIL-R1/R2 oligomerisation and caspase-8 activation 

(Wilson et al., 2011). 2nd generation TRAIL-based therapeutics address these 

problems, for example by increased valency and by using Fc regions as dimerization 

and half-life extension modules (Gieffers et al., 2013; Hutt et al., 2017; de Miguel et al., 

2016). IZI1551, consisting of two tri-valent single-chain TRAIL fragments cross-linked 

via the Fc part of an IgG antibody, is a prototypical example for this principle and 

potently induces apoptosis in vivo in cells moderately responsive to traditional TRAIL-

based therapeutics (Hutt et al., 2017). However, in many cases sensitizing co-treatments 

are required to ensure efficient apoptosis induction following TRAIL-R1/R2 activation. 

IAP antagonists are potent sensitizers to extrinsic apoptosis (Fulda, 2015), suppressing 

the formation of LUBAC and the associated initiation of pro-survival signalling. IAP 

antagonists also sensitize to apoptosis induced by intrinsic cytotoxic stimuli, such as 

genotoxic therapeutics in pancreatic, colon and brain cancer (Crawford et al., 2018; 

Dineen et al., 2010; Ziegler et al., 2011), where cIAPs likely impair caspase-8 binding 

and activation on cytosolic ripoptosomes (Feoktistova et al., 2011; Tenev et al., 2011).  
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While both 2nd generation TRAIL-R1/R2 agonists as well as IAP antagonists are 

currently tested in clinical trials (NCT03082209, (Fulda, 2015; Morgan-Lappe, 2017)), 

currently no studies test their combination. In addition, validated biomarkers predictive 

of treatment responsiveness do not exist for TRAIL-based therapeutics, IAP antagonists 

or the combination of both. The lack of reliable molecular markers to predict responses 

to TRAIL might indeed have contributed to the poor performance of TRAIL based 

therapeutics in the clinical setting, since no patient selection could be performed 

(Lemke et al., 2014). The absence of response predictors for IAP antagonists likewise 

affects current clinical trials based on this class of therapeutics (Fulda, 2015). Notably, 

for both TRAIL-R1/R2 agonists as well as for IAP antagonists, the expression amounts 

of their direct molecular targets, i.e. TRAIL-R1/R2 amounts and cIAP proteins, appear 

insufficient to derive response biomarkers (Fulda, 2015; Wagner et al., 2007; Zakaria et 

al., 2016). This indicates that treatment efficacy is determined further downstream 

within the signal transduction network and/or too complex to be captured by traditional 

or reductionist biomarker discovery approaches.  

With IAP antagonists removing the apical suppression of extrinsic apoptosis induction, 

we hypothesized that the expression amounts of key regulatory proteins of the TRAIL 

signal transduction network can serve to predict responsiveness. Indeed, predictions on 

IZI1551/Birinapant responses, based on the expression patterns of key TRAIL pathway 

regulators, were highly accurate. Being able to predict responsiveness also in a micro-

environmentally more complex 3D setting and in cells newly isolated from patients 

indicates that concerns about using continuously cultured cell lines to develop a 

predictor for IZI1551/Birinapant responsiveness can be alleviated, possibly because 

protein expression alone is sufficient to derive treatment responsiveness. Complex 

genetic characterisations and careful selection of cell line and in vivo models might 

however be warranted for studies on treatment scenarios that are highly dependent on 

disease-relevant mutations, and accordingly the genetic representation of the disease 

(Fang and Eglen, 2017; Garman et al., 2017; Luebker et al., 2017).  

We initiated our study using 19 proteins considered key regulators of 

IZI1551/Birinapant induced signal transduction. We could reduce this panel to an 11 

protein signature which, compared to traditional biomarkers, still seems rather large. 

However, this likely reflects the complexity of apoptosis signal transduction and 

regulation, as well as the disease heterogeneity observed in melanoma. The 

development of complex protein quantity-based biomarkers for routine clinical 
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application still faces major technological challenges (Panis et al., 2016; Petricoin et al., 

2002). Traditional immunohistochemical analyses of tumour biopsies typically provides 

insufficient dynamic range and limited calibration possibilities to derive reliable 

quantitative data. Alternative approaches, such as reverse phase protein arrays and mass 

spectrometric analyses of clinical specimen can overcome these hurdles, but are difficult 

to embed into routine pathology and laboratory workflows in the clinical environment. 

To take intra-tumour cell-to-cell heterogeneity into account, an aspect likely crucial to 

refine our predictor in a translational setting, technology such as mass cytometry could 

provide the possibility to capture multiplexed protein markers at the single cell level 

(Spitzer and Nolan, 2016).  However, this technology is difficult to apply to tissue 

specimen. Developments in the field of high dynamic range fluorescence-based analysis 

of FFPE materials, coupled to multiplexing technologies that allow re-staining of tissue 

slices (Gerdes et al., 2013; Schubert et al., 2006), might more conveniently and 

routinely allow obtaining quantitative protein expression data, especially where entire 

cellular proteomes are not required.  

It is noteworthy that none of the melanoma models studied lacked TRAIL-R1/R2 or 

caspase-8 expression, and TRAIL-Rs or caspase-8 amounts did not appear crucial to 

predict responsiveness. The amounts of these proteins therefore possibly do not limit 

IZI1551/Birinapant responsiveness in melanoma. A recent study in models of non-

small-cell lung cancer and pancreatic ductal adenocarcinoma interestingly indicates that 

cancer cells might become addicted to TRAIL receptor expression, with autonomous 

TRAIL-R signalling contributing to disease progression (von Karstedt et al., 2015). 

Additionally, proliferating cells might rely on a cell death-independent role of caspase-8 

in contributing to chromosome alignment during mitosis (Liccardi et al., 2019). In the 

predictor, the expression of XIAP and caspase-3 strongly contributed to accurate 

response predictions. Both proteins play crucial roles in controlling cellular life/death 

decisions during apoptosis execution (Rehm et al., 2006; Taylor et al., 2008). XIAP 

additionally holds in check the “type I” link by which caspase-8 can activate caspase-3 

(Aldridge et al., 2011; Jost et al., 2009; Wilson et al., 2009). However, kinetically the 

mitochondrial route still seems preferred in cells capable to die by type I signalling 

(Aldridge et al., 2011), most likely due to the strong amplification of apoptosis 

signalling by Bcl-2 family-dependent mitochondrial outer membrane permeabilisation 

and apoptosome formation. Indeed, various Bcl-2 family members, such as Mcl-1, Bax, 

Bid, Bcl-xL and Bak, display prominently in the predictor. Mcl-1 and Bcl-xL negatively 
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regulate Bax/Bak pore formation, while Bid is a primary substrate of both caspase-8 and 

caspase-3, with truncated Bid inhibiting Mcl-1 and Bcl-xL, and activating Bax and Bak 

(Hantusch et al., 2018). Taken together, the interplay of caspases-3, XIAP and Bcl-2 

family members, initiated by non-limiting amounts of TRAIL receptors and caspase-8, 

appears to play a central role in melanoma cell death upon exposure to 

IZI1551/Birinapant.  

Taken together, this study represents a successful proof-of-concept for developing a 

stratification marker for malignant melanoma in response to a novel, clinically relevant 

combination treatment based on a 2nd generation hexavalent TRAIL variant (IZI1551) 

and a representative IAP antagonist, Birinapant. This can form the basis for future 

translational and clinical studies in which combination treatments of 2nd generation 

TRAIL-based therapeutics and IAP antagonists will be tested and for which optimal 

patient selection strategies are required. 
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2.1.7 Supplementary material 

 

Supplementary Table 2.1-1: Protein data obtained from melanoma cell lines and cells isolated from 

metastases. 

  

DR4 

[cell surface 

antigen density] 

DR5 

[cell surface 

antigen density] 

FADD 

[µM] 

Procaspase 8 

[µM] 

Bid 

[µM] 

Bax 

[µM] 

WM1366 3655 1086 0.044 0.049 0.141 0.310 

SkMel5 311 374 0.184 0.028 0.190 0.257 

SkMel2 18 1145 0.213 0.303 0.197 0.237 

Malme 3M 148 6593 0.230 0.305 0.183 0.240 

WM3211 0 8017 0.384 0.224 0.064 0.155 

MeWo 132 642 0.415 0.136 0.115 0.192 

WM1791c 398 4675 0.088 0.040 0.097 0.170 

Mel Juso 269 209 0.263 0.080 0.192 0.296 

WM3060 65 6366 0.171 0.051 0.081 0.213 

WM115 160 3656 0.159 0.159 0.068 0.160 

WM35 127 2347 0.088 0.058 0.061 0.232 

SkMel147 2689 7976 0.294 0.125 0.074 1.823 

WM793 213 12188 0.148 0.161 0.052 1.467 

WM852 2532 7889 0.131 0.122 0.022 0.391 

WM1346 5638 4987 0.379 0.246 0.078 1.088 

WM3248 4680 7299 0.102 0.207 0.075 1.442 

3D WM1366 13361 0 0.016 0.089 0.101 0.098 

3D SkMel2 56479 7 0.049 0.059 0.091 0.250 

3D Malme 200 4000 0.048 0.058 0.089 0.492 

3D Mel juso 4968 0 0.016 0.027 0.043 0.434 

3D MeWo 0 10000 0.043 0.012 0.012 0.431 

M10 2730 3369 0.035 0.087 0.047 0.435 

M20 561 1047 0.052 0.132 0.040 0.764 

M32 6797 3981 0.046 0.039 0.067 0.291 

M34 478 2267 0.039 0.053 0.038 0.293 

M45 528 651 0.053 0.122 0.040 0.573 

3D M10   0.026  0.027 1.606 

3D M32   0.016  0.026 0.629 

3D M34   0.013  0.018 0.585 

M51_1   0.046  0.066 0.422 

M51_2   0.028  0.039 0.848 

M54 2D   0.043  0.044 0.747 

3D M51_1   0.032  0.054 0.379 

3D M51_2   0.045  0.228 0.803 

3D M54   0.026  0.039 0.509 
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  Bak [µM] 

Cytochrome C 

[µM] 

SMAC 

[µM] 

Apaf-1 

[µM] 

Procaspase 9 

[µM] 

Procaspase 3 

[µM] 

WM1366 0.467 3.860 0.278 0.091 0.002 0.199 

SkMel5 2.420 5.239 0.534 0.262 0.007 0.146 

SkMel2 0.764 5.451 0.240 0.234 0.007 0.301 

Malme 3M 0.944 7.565 0.364 0.402 0.005 0.251 

WM3211 0.865 4.342 0.105 0.287 0.003 0.212 

MeWo 0.725 5.045 0.136 0.396 0.003 0.194 

WM1791c 1.032 2.895 0.320 0.464 0.004 0.161 

Mel Juso 4.784 8.539 0.348 0.212 0.009 0.318 

WM3060 2.778 3.657 0.198 0.686 0.014 0.289 

WM115 0.622 4.336 0.108 0.440 0.006 0.288 

WM35 1.222 3.837 0.143 0.228 0.013 0.377 

SkMel147 0.403 6.618 0.288 0.113 0.014 0.404 

WM793 0.468 9.289 0.111 0.052 0.005 0.426 

WM852 0.349 1.479 0.095 0.089 0.024 0.146 

WM1346 0.662 8.711 0.232 0.157 0.027 0.608 

WM3248 0.726 11.420 0.135 0.293 0.018 0.243 

3D WM1366 0.564 5.579 0.076 0.300 0.012 0.099 

3D SkMel2 1.887 10.453 0.231 0.314 0.004 0.165 

3D Malme 1.020 10.533 0.165 0.174 0.003 0.130 

3D Mel juso 1.201 20.377 0.120 0.206 0.004 0.132 

3D MeWo 2.485 9.128 0.088 0.368 0.002 0.115 

M10 1.899 10.348 0.095 0.290 0.004 0.173 

M20 2.869 6.829 0.791 0.246 0.006 0.175 

M32 2.445 6.509 0.463 0.229 0.004 0.242 

M34 1.096 5.119 0.102 0.229 0.002 0.098 

M45 1.466 7.574 0.207 0.265 0.002 0.147 

3D M10 0.937 18.787 0.165   0.081 

3D M32 0.633 2.787 0.190   0.065 

3D M34 3.674 2.249 0.060   0.079 

M51_1 1.021 16.753 0.281   0.211 

M51_2 1.930 11.460 0.638   0.114 

M54 2D 0.952 3.249 0.267   0.128 

3D M51_1 1.453 14.838 0.405   0.187 

3D M51_2 1.469 9.813 0.408   0.156 

3D M54 1.393 2.804 0.378   0.137 
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  cFLIP [µM] 

cIAP1 

[µM] 

cIAP2 

[µM] 

Bcl-2 

[µM] 

Bcl-xL 

[µM] 

Mcl-1 

[µM] 

XIAP 

[µM] 

WM1366 0.041 0.035 0.017 0.139 0.164 0.081 0.049 

SkMel5 0.087 0.037 0.031 2.270 0.138 0.067 0.070 

SkMel2 0.130 0.070 0.064 0.184 0.076 0.040 0.052 

Malme 3M 0.165 0.029 0.033 0.135 0.089 0.036 0.044 

WM3211 0.104 0.025 0.018 0.356 0.068 0.030 0.046 

MeWo 0.127 0.018 0.019 2.385 0.072 0.030 0.046 

WM1791c 0.093 0.046 0.075 0.155 0.091 0.046 0.041 

Mel Juso 0.089 0.068 0.043 3.272 0.120 0.050 0.066 

WM3060 0.129 0.062 0.049 0.301 0.099 0.062 0.055 

WM115 0.155 0.074 0.067 0.224 0.050 0.055 0.061 

WM35 0.134 0.056 0.053 1.092 0.095 0.047 0.045 

SkMel147 0.215 0.035 0.095 0.570 0.308 0.042 0.075 

WM793 0.270 0.025 0.044 0.223 0.253 0.075 0.068 

WM852 0.240 0.026 0.052 0.133 0.117 0.055 0.051 

WM1346 0.118 0.018 0.066 0.152 0.546 0.111 0.063 

WM3248 0.356 0.029 0.062 0.186 0.136 0.076 0.063 

3D WM1366 1.164 0.009 0.011 0.211 0.046 0.039 0.065 

3D SkMel2 0.577 0.039 0.010 0.283 0.056 0.020 0.046 

3D Malme 3.156 0.029 0.007 0.083 0.019 0.008 0.034 

3D Mel juso 1.147 0.020 0.013 0.254 0.039 0.015 0.041 

3D MeWo 0.374 0.029 0.040 0.705 0.050 0.011 0.041 

M10 0.129 0.027 0.020 0.944 0.137 0.074 0.058 

M20 0.130 0.041 0.014 0.005 0.088 0.034 0.049 

M32 0.121 0.041 0.016 0.013 0.259 0.200 0.044 

M34 0.077 0.027 0.014 0.002 0.083 0.038 0.032 

M45 0.084 0.058 0.030 1.850 0.096 0.020 0.090 

3D M10  0.030   0.089 0.037 0.064 

3D M32  0.018   0.254 0.032 0.115 

3D M34  0.011   0.154 0.012 0.195 

M51_1  0.008   0.113 0.052 0.052 

M51_2  0.009   0.154 0.055 0.033 

M54 2D  0.010   0.147 0.060 0.090 

3D M51_1  0.004   0.092 0.035 0.032 

3D M51_2  0.005   0.178 0.037 0.044 

3D M54  0.006   0.083 0.023 0.089 
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Supplementary Table 2.1-2: Patient demographics and 

clinical information of the metastatic SKCM-TCGA sub-

cohort (n = 365 patients). 

Patients demographics and clinical information 

Age at diagnosis (years)     

      Mean 56.2 

      Median 56 

      Range 15 - 87 

Gender Value % 

      Female 136 37.26 

      Male 229 62.74 

Ethnicity Value % 

      White (non-Hispanic or Latino) 342 93.70 

      White (Hispanic or Latino) 7 1.92 

      White (ethnicity not reported) 4 1.10 

      Asian 5 1.37 

      Black or African American 1 0.27 

      Not reported 6 1.64 

Disease stage at initial diagnosis Value % 

      Stage 0 - II 164 44.93 

      Stage III - IV 165 45.21 

      Not reported 36 9.86 

Clark level at initial diagnosis Value % 

      I - III 83 22.74 

      IV - V 159 43.56 

      Not reported 123 33.70 

Overall survival from initial diagnosis (months) 

      Median 80.6 

      Range 2.6 - 357.1 
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Supplementary Figure 2.1-1: Cell lines MeWo and Mel Juso do not secrete TNF-α when treated 

with IZI1551, Birinapant or their combination. A Titration of recombinant standard TNF-α using 

Human TNF-α DuoSet ELISA. B Cell lines MeWo and Mel Juso do not secrete TNF-α. 3D MeWo and 

Mel Juso were treated with 1 µM IZI1551, 1 µM Birinapant or their combination for 24 h. Hela cells were 

exposed to 15 s 30 mJ UVB and treated for 24 h with 10 ng/mL IL-1 for the production of TNF-α that 

served as a positive control.  100 µl of each supernatant was tested for TNF-α secretion. C Histogram of 

the data presented in B. 
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Supplementary Figure 2.1-2: Apoptosis proteins are heterogeneously expressed in melanoma cell 

lines. Intracellular pro- and anti-apoptotic proteins were detected by western blotting at high dynamic 

range. Actin served as loading control. Representative 8 bit converted images are shown from at least  

n = 3 repeat experiments. Death receptors were measured by surface staining and flow cytometry. Bars 

show mean of antigen density (TRAIL-R1,TRAIL-R2) per cell + SD from n = 3 repeat experiments. 

 

Supplementary Figure 2.1-3: Protein expression in melanoma MCTS. Cell lines grown as MCTSs 

were analysed for intracellular pro- and anti-apoptotic protein expression by western blotting. Actin 

served as loading control. Representative 8 bit converted images are shown from at least n = 3 repeat 

experiments. Death receptors were measured by surface staining and flow cytometry. Bars show mean of 

antigen density (TRAIL-R1, TRAIL-R2) per cell + SD from n = 3 repeat experiments. 
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Supplementary Figure 2.1-4: Protein expression in melanoma cells isolated from patient 

metastases. Intracellular pro- and anti-apoptotic protein expression was determined by western blotting. 

Actin served as loading control. Representative 8 bit converted images are shown from at least n = 3 

repeat experiments. Death receptors were measured by surface staining and flow cytometry. Bars show 

mean of antigen density (TRAIL-R1, TRAIL-R2) per cell + SD from n = 3 repeat experiments. 

 

 

 

Supplementary Figure 2.1-5: Protein expression in additional melanoma samples, as required for 

further validation of the reduced predictor.Intracellular pro- and anti-apoptotic protein expression was 

determined by western blotting. Actin served as loading control. Representative 8 bit converted images 

are shown.   
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2.2 Low expression of pro-apoptotic proteins Bax, Bak and 

Smac indicates prolonged progression-free survival in 

chemotherapy-treated metastatic melanoma 

Role of Bax, Bak and Smac in melanoma prognosis 

The following manuscript was published in Cell Death and Disease in 2020 and 

licensed under a Creative Commons Attribution 4.0 International License 

(http://creativecommons.org/licenses/by/4.0/). To facilitate reading, the manuscripts 

were reformatted and the figures positioned in the corresponding result subsections.  
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2.2.1 Abstract 

Despite the introduction of novel targeted therapies, chemotherapy still remains the 

primary treatment for metastatic melanoma in poorly funded healthcare environments or 

in case of disease relapse, with no reliable molecular markers for progression free 

survival (PFS) available. Since chemotherapy primarily eliminates cancer cells by 

apoptosis, we here evaluated if the expression of key apoptosis regulators (Bax, Bak, 

Bcl-2, Bcl-xL, Smac, Procaspase-9, Apaf-1, Procaspase-3 and XIAP) allows 

prognosticating PFS in stage III/IV melanoma patients. Following antibody validation, 

marker expression was determined by automated and manual scoring of 

immunohistochemically stained tissue micro arrays (TMAs) constructed from 

treatment-naïve metastatic melanoma biopsies. Interestingly and counter-intuitively, 

low expression of the pro-apoptotic proteins Bax, Bak and Smac indicated better 

prognosis (log-rank p<0.0001, p=0.0301 and p=0.0227 for automated and p=0.0422, 

p=0.0410 and p=0.0073 for manual scoring). These findings were independently 

validated in the TCGA metastatic melanoma cohort (TCGA SKCM) at transcript level 

(log-rank p=0.0004, p=0.0104 and p=0.0377). Taking expression heterogeneity between 

the markers in individual tumor samples into account allowed defining combinatorial 

Bax, Bak, Smac signatures that were associated with significantly increased PFS 

(p=0.0002 and p=0.0028 at protein and transcript level, respectively). Furthermore, 

combined low expression of Bax, Bak and Smac allowed predicting prolonged PFS 

(>12 months) on a case-by-case basis (ROC AUC=0.79). Taken together, our results 

therefore suggest that Bax, Bak and Smac jointly define a signature with potential 

clinical utility in chemotherapy-treated metastatic melanoma. 

2.2.2 Introduction 

Melanoma, an aggressive neoplasm originating from the malignant transformation of 

melanocytes, rapidly metastasizes if not surgically removed at an early stage. While 

novel and costly targeted treatment options and immunotherapies have significantly 

improved the management of metastatic disease (Domingues et al., 2018; Heppt et al., 

2016; Margolin, 2016), patients in poorly funded healthcare environments still rely on 

chemotherapy as the primary first line treatment. Likewise, chemotherapy remains in 

frequent use as a 2nd or last line treatment option in otherwise refractory or in recurrent 

disease. Even though treatments based on the DNA alkylating agent dacarbazine have 

been the chemotherapeutic standard of care for metastatic melanoma for more than 30 
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years, chemotherapy may benefit only few patients (Gupta et al., 2017; Lui et al., 

2007). The median survival of patients treated with dacarbazine-based chemotherapy 

lies in the range of 6-9 months (Atkins et al., 2008; Bedikian et al., 2006; Middleton et 

al., 2000) with no reliable molecular markers available that would allow to identify 

those patients in which disease progression is substantially delayed and which therefore 

might have benefited from this treatment.  

Apoptosis is the main cell death mechanism by which the body tries to eliminate 

transformed and therefore potentially cancerous cells. Apoptosis likewise is the primary 

cell death modality induced by dacarbazine and other DNA alkylating agents. DNA 

alkylation induces the intrinsic apoptosis pathway, as was shown experimentally in 

various melanoma model systems (Anvekar et al., 2012; Sanada et al., 2007). Pro- and 

anti-apoptotic Bcl-2 family members, such as Bax, Bak and Bcl-2, Bcl-xL, respectively, 

regulate the mitochondrial apoptosis signaling hub (Czabotar et al., 2014). Activated 

Bax and Bak form pores in the outer mitochondrial membrane, leading to the release of 

pro-apoptotic factors, such as Smac, into the cytosol (Tait and Green, 2010). 

Subsequently, the execution phase of apoptosis is initiated, during which proteases such 

as initiator caspase-9 and effector caspase-3 are activated in an Apaf-1 dependent 

manner. These proteases then rapidly execute apoptotic death, but can be inhibited by 

the anti-apoptotic protein XIAP, which itself is targeted by Smac (Hellwig et al., 2011). 

Impaired apoptosis signaling is a hallmark of cancer (Hanahan and Weinberg, 2011), 

based on which it is reasonable to assume that melanoma cells are highly apoptosis 

resistant. Indeed, experimental studies suggest that melanoma cells either are highly 

chemoresistant or acquire resistance and thereby evade apoptotic cell death (Lev et al., 

2004; Soengas and Lowe, 2003). However, it is less clear if perturbed expression of 

apoptosis regulators is indeed associated with patient prognosis in the clinical scenario. 

Various studies immunohistochemically assessed individual apoptosis regulators as 

potential protein biomarkers for melanoma progression and patient survival (Anvekar et 

al., 2011; Charles and Rehm, 2014). Unfortunately though, the majority of studies lack 

controls and validation information that would support the specificity of the used 

reagents and staining protocols. Not surprisingly, results obtained so far remained 

largely inconclusive or even contradictory (Charles and Rehm, 2014). Additionally, 

apoptosis regulators at key signaling hubs frequently act cooperatively and redundantly, 

so that it can be speculated that single molecule makers might not be sufficiently robust 

for clinical use.  
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In this study, we therefore assessed the expression of nine apoptosis regulators (Bax, 

Bak, Bcl-2, Bcl-xL, Smac, Procaspase-9, Apaf-1, Procaspase-3 and XIAP) in metastatic 

melanoma tissues by IHC, using antibodies that passed rigorous validation. 

Interestingly, low expression of Bax, Bak and Smac associated with prolonged PFS, a 

finding confirmed at transcriptional level in an independent cohort. Combining Bax, 

Bak and Smac expression with a pattern recognition approach allowed predicting 

individual patient PFS with high accuracy. Taken together, our results identified a 

putative combinatorial prognostic signature with potential clinical utility for 

chemotherapy treated metastatic melanoma. 

2.2.3 Materials and Methods 

2.2.3.1 Ethics approval and consent to participate 

The use of the patient cohort was approved by the Medical Ethical Committee and 

Institutional Review Board (OG032) of the University Hospitals of KU Leuven 

(reference number ML10659) and by the UZ Leuven Biobank (reference number 

S56609).  

2.2.3.2 Antibodies 

The following antibodies were used for immunoblotting and immunohistochemistry. A 

rabbit polyclonal beta Actin antibody (Santa Cruz Biotechnology; sc-81178); Apaf-1 

(Cell Signalling; D5C3), Bak (Abcam; ab32371), Bax (Millipore; ABC11), Bcl-2 

(Dako; MO887), Bcl-xL (BD labs; 610212), Procaspase-3 (Cell Signalling; 9662), 

Procaspase-9 (Cell Signalling; 9502), Smac (Cell Signalling; 2954), XIAP (BD labs; 

610762). 

2.2.3.3 Cell culturing 

For antibody validation, the following human cancer cell lines were used: A375, HCT-

116, HCT-116 (Bax/Bak)-/-, HCT-116 Smac-/-, HCT-116 XIAPo/-, HeLa, Jurkat Casp-9-/-

, MCF-7, PM-WK, Preyer, SK-Mel-94. Cell lines were obtained from ATCC, DSMZ or 

provided by colleagues (Prof Martin Leverkus, University of Heidelberg; Prof Richard 

Youle, National Institutes of Health, USA; Prof Richard Vogelstein, The Johns Hopkins 

University School of Medicine, USA; Prof Ingo Schmitz, University of Braunschweig, 

Germany; Prof Sebastian Wesselborg, University of Düsseldorf, Germany; Prof Maria 

Soengas, National Cancer Research Centre, Spain) and described before (Cummins et 

al., 2004; Geserick et al., 2008; Kohli et al., 2004; Samraj et al., 2006; Soengas et al., 
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2001; Wang and Youle, 2012). Cell lines were cultured in RPMI-1640 medium (Sigma-

Aldrich) or DMEM (Lonza, Slough, UK) supplemented with 4 mM L-glutamine, 4.5 g/l 

glucose, 10% (w/v) heat-inactivated fetal bovine serum (Sigma-Aldrich), 100 U/ml 

penicillin and 100 µg/ml streptomycin (Sigma-Aldrich). Cells were grown at 5% CO2 

and 37○C.  

2.2.3.4 Immunoblotting 

For whole cell extracts, cells were collected at 400 g for 3 min and washed with 

phosphate-buffered saline. Cells were re-suspended in lysis buffer (62.5 mM Tris-HCl, 

pH 6.8, 10% (v/v) glycerin, 2% (w/v) SDS, 1 mM phenylmethylsulfonyl fluoride, 1 

μg/ml pepstatin A, 1 μg/ml leupeptin, and 5 μg/ml aprotinin) and heated at 95°C for 20 

min. Protein content was determined with the Pierce Micro-BCA protein assay (Pierce, 

Northumberland, UK). An equal amount of protein (20 μg) was loaded onto SDS-

polyacrylamide gels. Proteins were separated at 100 V for 2.5 h and then blotted to 

nitrocellulose membranes (Protean BA 83; 2 μm; Schleicher & Schuell) in transfer 

buffer (25 mM Tris, 192 mM glycine, 20% methanol (v/v), and 0.01% SDS) at 18 V for 

60 min. The blots were blocked with 5% non fat dry milk in TBST (15 mM Tris-HCl, 

pH 7.5, 200 mM NaCl, and 0.1% Tween 20) at room temperature for 1 h. Membranes 

were incubated with the primary antibodies at room temperature for 2 h or overnight at 

4○C. Membranes were washed with TBST three times for 5 min and incubated with 

peroxidase-conjugated secondary antibodies (Jackson Laboratories) for 1 h. Blots were 

washed and developed using the enhanced chemiluminescence detection reagent 

(Millipore, Ireland). 

2.2.3.5 Preparation of cell pellets for IHC 

Cells were grown to a confluence of 50-75%. Cells were then detached and suspended 

in 10% phosphate-buffered formalin at room temperature and fixed for 4-6 hours. Fixed 

cells were centrifuged at 500 x g for 3 min, washed once with 1x PBS and pelleted 

again. A 1% agarose solution was prepared in 1x PBS and cooled down to 40°C in a 

water bath. The cell/agarose mixtures were transferred into plugs and let solidify. The 

agarose plugs were processed into paraffin blocks using standard tissue processing. Cell 

pellet samples (typically 0.6 mm in diameter) were then used for analysis.  

2.2.3.6 Tissue Micro Arrays (TMAs) 

TMAs of formalin fixed paraffin-embedded (FFPE) tumor samples derived from 74 

melanoma patients treated with Dacarbazine (alone or in combination with Cisplatin or 
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Carboplatin), were generated. The TMA contained duplicate cores obtained from 14 

primary melanomas, 62 metastatic melanomas and adjacent normal tissue. 

Demographics, clinical and follow-up information were available for the entire cohort. 

A total of n = 58 samples, representing untreated metastatic melanoma patients, were 

analyzed for this study (Table 1). 

2.2.3.7 Immunohistochemistry 

IHC staining on formalin-fixed, paraffin-embedded (FFPE) cell pellets and tissue 

microarrays (TMA) was performed using an automated IHC platform (Link-48, Dako, 

Glostrup, Denmark) according to the manufacturer’s instructions.  Sections (4 µm in 

thickness) were deparaffinised and antigen retrieval was performed at 95°C for 15 min 

in appropriate buffer (high pH buffer, pH 9.0; low pH buffer, pH 6.0) using the PT-Link 

module (Dako, Glostrup, Denmark). A polymer-based detection system (EnVision Flex, 

Dako) was used with Permanent Red as the chromogen, resulting in a red colour 

endpoint that contrasted well with brown melanin. Sections were counterstained with 

haematoxylin. Positive and negative controls (omission of the primary antibody and 

replacement with the IgG-2a isotype control, mouse-ab18443; IgG isotype control, 

rabbit-ab208334, Abcam, Cambridge, UK) were included in each run. In addition, a 

Haematoxylin and Eosin (H&E) staining was performed for all slides of the TMAs, 

enabling pathologists to check for TMA core integrity, quality, and tumour content.  

2.2.3.8 Core quality assessment 

A pathological review of the H&E stained sections and TMA blocks was conducted to 

define the quality of individual tissue cores and to assess the percentage of tumour 

tissue in each core. Each core was individually observed to determine if there were any 

tissue artifacts (poorly fixed tissue, folded tissue, no tumour present, no tissue present, 

foreign material introduced at embedding, poor tissue microscopic details) or staining 

artifacts (knife marks across section, holes, clumps of stain precipitate, air bubbles) 

which would have compromised either the manual or automated image analysis. All 

quality assessments were independently validated by a second pathologist. Cores with 

compromising artifacts or with insufficient percentage of tumour cells were excluded 

from further analyses. 

2.2.3.9 Manual and automated scoring 

IHC materials were first viewed at low power to judge overall quality and distribution 

of staining. Subsequently, staining frequency (total % stained cells) and staining 
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intensity (intensity of stained cells; 0 = no staining, 1+ = weak staining, 2+ = moderate 

staining, 3+ = strong staining) were determined. Histoscores (H-Scores) were then 

calculated as follows: 

H-Score = 1 × %cells 1+ + 2 × %cells 2+ + 3 × %cells 3+ 

The manual scoring was performed on images acquired with the Aperio ScanScope XT 

slide scanner (Aperio Technologies, Vista, CA) used at 20x magnification with a 

maximum pixel resolution of 0.5 µm. ImageScope analysis software (Aperio 

Technologies, Vista, CA) was used for viewing and analysing digital images. Aperio 

Spectrum software was used to generate individual tissue spot images for automated 

analysis. The Colour Deconvolution algorithm (Aperio Technologies) was used to 

obtain quantitative values for Average Positive Intensity (API) (average intensity of 

pixels positively stained, graded from 0, 1, 2, 3) and Total Percent Positive (TPP) 

(percentage of positive stained area in relation to total area of the core). Histoscores 

were calculated as described above. 

2.2.3.10 Survival analysis 

Progression free survival (PFS) was calculated as the time between the surgery that 

procured the sample and the date of disease progression or of a new metastatic event in 

a different location. Pathologist’s and automated H-Score were used to separate patients 

with high (above median) and low (below median) expression of each marker protein 

included in this study. In case more than one tissue core with satisfactory quality was 

available for a single patient, the average H-Score was considered. Log-rank testing was 

used to compare the two groups over a follow-up time of 36 months. Log-rank testing 

for trends was used when comparing three groups. Kaplan-Meier survival curves were 

generated and compared using GraphPad Prism (version 4.03). For analysis of data 

stored in the cancer genome atlas (TCGA),  normalized mRNA expression data (Upper 

Quartile normalized Fragments per Kilobase of transcript per Million mapped read, 

log2(FPKM-UQ+1)) generated by the Genomic Data Commons (GDC-NIH) were 
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downloaded from the UCSC-XENA browser 1  (Goldman et al., 2019). The SKCM 

cohort, unlike other TCGA datasets, contains mainly metastatic samples (Liu et al., 

2018) (370 out of 477), some of which were collected a long time after initial diagnosis 

of the primary melanoma (Akbani et al., 2015). In order to correlate mRNA expression 

to progression of metastatic disease, the “new tumour event free survival” was 

calculated as the time between sample collection and the first new tumour event (in case 

of multiple new tumour events during the follow-up time) or, in case of no new tumour 

events, death. If a new tumour event was reported before the date of sample collection, 

the patient was excluded from the sub-cohort. Follow-up data and associated clinical 

records were downloaded from Broad GDAC Firehose (Broad Institute TCGA Genome 

Data Analysis Center, 2016) (new tumor event time from initial diagnosis) and UCSC-

XENA browser (Goldman et al., 2019) (overall survival from initial diagnosis), 

respectively. Sample collection information are available through the GDC data portal2 

(Grossman et al., 2016) (time from initial diagnosis to sample collection). Since 

treatment information are not routinely available for all deposited metastatic melanoma 

cases, we downselected the cohort to stage III/IV melanoma patients diagnosed with 

metastatic melanoma before 2010,  to ensure that chemotherapy-based treatment options 

would have been the standard first line of treatment (n = 79 patients). An optimized chi-

square based cut-off was determined to divide patients with high and low BAX, BAK1 

and DIABLO (Smac) mRNA amounts, and the two groups were compared by log-rank 

test. The cut-off for each marker was obtained by selecting the cohort separation that 

resulted in the highest chi-squared value with the function survdiff of the library 

survival in R (version 3.4.0). Median cut-off based results are reported in 

Supplementary Figure 2.2-4. Log-rank test for trend was used when comparing three 

groups. Kaplan-Meier survival curves were generated and compared using GraphPad 

Prism (version 4.03). 

  

 

 

1 UCSC Xena Functional Genomics Browser: https://xena.ucsc.edu/ 

2 GDC Data Portal: https://portal.gdc.cancer.gov/ 
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2.2.3.11 Data driven modelling and pattern recognition 

A data-driven modelling approach based on a previously published method (Passante et 

al., 2013) was developed to predict patients’ PFS using H-Scores generated by 

automated image analysis as input. The pipeline was developed for MATLAB (version 

2016a, The Mathworks, UK), equipped with the statistical toolbox. Prior to the analysis, 

patients with a complete protein panel (n = 50) were divided into two PFS categories: 

PFS >12 months (n = 17) and PFS<12 months (n = 33). After standardization of the 

initial dataset, a principal component analysis (PCA) was performed and the principal 

components (PC) with an eigenvalue >1 were considered for subsequent analyses. The 

patients were positioned in the 3D space defined by the first three PCs according to the 

scores computed by PCA, and linear discriminant analysis (LDA) was used to test the 

class segmentation accuracy. To evaluate the predictive potential of the framework, 

leave one out cross validation (LOOCV) followed by LDA was applied iteratively to the 

dataset, using 49 patients as training set and one patient as test at each iteration. LDA 

was also applied to a dataset reduced to three proteins (Bax, Bak and Smac), skipping 

the initial dimensionality reduction step. PCA and LDA were performed using the 

functions pca and classify, respectively. The predictive performance of the two 

classification models was compared by computing the area under the curve (AUC) with 

the function perfcurve. 

2.2.4 Results 

2.2.4.1 Low expression of pro-apoptotic proteins Bax, Bak and Smac correlates 

with increased progression free survival (PFS) in chemotherapy-treated metastatic 

melanoma 

Genotoxic chemotherapy based on DNA-alkylating agents such as dacarbazine induces 

intrinsic apoptosis, preferentially in proliferating cells such as cancer cells. Intrinsic 

apoptosis is governed by the family of Bcl-2 proteins and the subsequent signalling 

network of the apoptosis execution phase. We therefore tested key players of this 

apoptosis signalling modules as potential prognostic markers in metastatic melanoma. 

In total, we analysed the expression of six pro-apoptotic (Bax, Bak, Smac, Procaspase-

9, Apaf-1, Procaspase-3) and three anti-apoptotic proteins (Bcl-2, Bcl-xL, XIAP) in 

metastatic melanoma samples spotted on tissue micro arrays (TMAs). Only treatment 

naïve samples from metastases were used for subsequent analyses. Information such as 

patient demographics, histopathology and staging, treatment and follow-up are provided 

as Supplementary Table 2.2-1 and are summarized in Table 2.2-1. Following 
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comprehensive antibody validation (Supplementary Figure 2.2-1A-D), IHC stains for 

n = 58 tumour metastases matching the inclusion criteria were analysed from the TMAs. 

Only tissue samples passing independent pathologist quality control for tissue integrity 

and staining artifacts were considered for subsequent analyses (Supplementary Table 

2.2-2). TMAs scans were then used to generate mark-up images of the tissue cores, 

followed by automated quantification of staining intensities (see methods). The dynamic 

range of the staining intensities allowed to confidently define quartiles of negative, low, 

medium and high staining for protein expression (see Figure 2.2-1A for examples for 

Bax, Bak and Smac). From these, H-Scores were calculated for each tumour sample 

(Figure 2.2-1B), thereby allowing comparison to best practice manual scoring (see 

Figure 2.2-2). To test if protein expression amounts and patient prognosis correlate, we 

Table 2.2-1: Summary of demographics and clinical information of the patients included in the 

study. 

Characteristics 

Gender Value % 

Male 30 51.7 

Female 28 48.3 

Age at surgery (years) Value % 

<65 44 75.9 

≥ 65 and < 75 8 13.8 

> 75 6 10.3 

Metastatic melanoma location Value % 

Distant skin site 10 17.2 

Distant organ 17 29.3 

Distant lymph node 28 48.3 

Distant subcutaneous site 3 5.2 

Metastasis Stage Value % 

M1a 8 13.8 

M1b 8 13.8 

M1c 42 72.4 

Primary melanoma type Value % 

Cutaneous 46 79.3 

Mucosal 1 1.7 

Ocular 2 3.4 

Unknown 9 15.5 

Treatment Value % 

Dacarbazine 3 5.2 

Dacarbazine, Cisplatin 54 93.1 

Dacarbazine, Carboplatin 1 1.7 

Overall survival t0 = sample collection t0 = chemotherapy start 

Median (range) in months 19 (2-126) 11 (0-87) 

Progression-free survival t0 = sample collection t0 = chemotherapy start 

Median (range) in months 10 (1-100) 4 (0-83) 
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performed survival analyses for all nine apoptosis regulatory proteins. Kaplan-Meier 

curves representing progression free survival (PFS) from the date of sample 

procurement showed that low amounts of pro-apoptotic proteins Bax, Bak and Smac 

significantly correlated with better prognosis (Figure 2.2-1C). With the exception of 

Procaspase-9, which associated with better prognosis in this analysis, none of the other 

proteins (Bcl-2, Bcl-xL, Apaf-1, XIAP and Procaspase-3) individually correlated with 

better or worse prognosis (Supplementary Figure 2.2-2). Overall, these results 

surprisingly indicate that low amounts of apoptosis inducing proteins Bax, Bak and 

Smac are linked to a better prognosis in chemotherapy treated metastatic melanoma.  

 

Figure 2.2-1: Low expression of pro-apoptotic proteins Bax, Bak and Smac correlates with 

increased progression free survival (PFS) in chemotherapy-treated metastatic melanoma. A Tissue 

cores stained by IHC for Bax, Bak and Smac. Representative original (left panels) and mark-up images 

(right panels) of cores with low, medium and high expression of the three proteins are shown. The mark-

up images were quantified to compute automated H-Scores. Table insert shows cohort information. B 

Distribution of H-Scores across the analysed melanoma tissue cores. Only stained cores that passed the 

quality control were retained for subsequent analyses (Bax n = 100 cores from 52 patients, Bak n = 100 

cores from 51 patients, Smac n = 104 cores from 53 patients,). C Survival analysis based on H-scores for 

Bax, Bak and Smac. Median H-Scores were used as cut-off to separate the patients with high (red line) 

and low (blue line) expression of each protein. Log-rank test was used to compare the Kaplan-Meier 

curves for progression free survival from the date of sample procurement.  
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2.2.4.2 Manual scoring confirms association of low Bak, Bax and Smac protein 

expression with improved PFS 

To further validate our findings, we next conducted best-practice manual scoring of the 

stained TMAs. H-scores for all marker candidates were obtained from two independent 

pathologists, both blinded to patient PFS. Plotting H-Scores obtained by automated 

analysis against manual H-Scores, we noted that manual scores strongly clustered at 

values of approximately 200, whereas automated scoring provided higher granularity 

across the entire dynamic range (Figure 2.2-2A, Figure 2.2-1B, Supplementary Table 

2.2-2). This highlights that manual scoring appears limited in differentiating within the 

range of medium staining intensities and frequencies. Nevertheless, median separation 

of patient samples based on manual H-Scores provided survival curves for Bax, Bak 

and Smac staining that were very similar to those obtained by automated scoring 

(Figure 2.2-2B). In contrast, the manual scores for all other proteins failed to separate 

patients with high and low PFS (Supplementary Figure 2.2-3). These results therefore 

demonstrate that the Bax, Bak and Smac signatures are robust enough to also be 

captured in routine manual IHC-based biomarker discovery workflows.  

 

Figure 2.2-2: Manual scoring confirms association of low Bak, Bax and Smac protein expression 

with improved PFS. A Correlation between automated and manual H-Scores. Manual scores were 

obtained from two independent pathologists blinded to patient follow up. Correlation was analysed using 

Spearman's rank correlation coefficient. B Median H-Scores were used as cut-off to separate the patients 

with high (red line) and low (blue line) expression of each protein. Log-rank test was used to compare the 

Kaplan-Meier curves for progression free survival from the date of sample procurement. 
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2.2.4.3 Combined low expression of Bax, Bak and Smac is a combinatorial marker 

candidate for improved progression free survival 

During apoptosis, Bax and Bak form pores in the outer mitochondrial membrane, 

leading to Smac release into the cytosol. Due to the significant correlation of the single 

proteins with PFS and their direct relationship within the apoptosis signal transduction 

cascade, we checked if combinations of the three markers could improve 

prognostication of PFS. For the n = 50 patients for which H-Scores for Bax, Bak and 

Smac were available, we noted that combined low or high staining for all three markers 

was restricted to subsets of the tumour samples (Figure 2.2-3A). We therefore divided 

the cohort into three groups of combined high expression, heterogeneous expression and 

combined low expression. PFS-based survival analysis of the three groups demonstrated 

that patients harbouring tumours with combined low expression of Bax, Bak and Smac 

showed significantly improved PFS, extending beyond 36 months for 50% of this 

subgroup (Figure 2.2-3B). In contrast, when only one or two markers where expressed 

in low amounts, PFS improved only slightly (median PFS = 10 months vs. 8.5 months 

when all three markers were highly expressed) (Figure 2.2-3B). Overall, this shows that 

Bax, Bak and Smac could jointly define a signature that strongly associates with PFS, 

with combined low expression indicating improved PFS. 

 

Figure 2.2-3: Combined low expression of Bax, Bak and Smac is a combinatorial marker candidate 

for improved progression free survival. A Expression profiles based on the H-Scores of Bax, Bak and 

Smac (blue: automated H-Score below median, red: above median) in n = 50 patients. B Survival analysis 

for the cohort based on the expression profiles shown in a. Log-rank test for trend was used to compare 

three Kaplan-Meier curves representing patients with low Bax, Bak and Smac H-Scores (blue) vs. mixed 

and high expression (black and red, respectively).  

2.2.4.4 TCGA SKCM-based analysis validates the prognostic Bax, Bak, Smac 

signature 

To independently validate the prognostic potential of Bax, Bak and Smac expression, 

we analysed transcriptome data of n = 79 metastatic melanoma patients from the 

TCGA-SKCM cohort (Table 2.2-2). The survival analysis revealed that low BAX, 

BAK1 and DIABLO (SMAC) mRNA amounts significantly correlate with better 

prognosis  (Figure 2.2-4A).  As  previously  observed  at  protein  level,  the  expression   
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Table 2.2-2: Patient demographics and clinical information of the metastatic SKCM-TCGA sub-

cohort. 

Characteristics 

Age at diagnosis (years) 

      Mean 55.5 

      Median 55 

      Range 18 - 87 

Gender Value % 

      Female 32 40.51 

      Male 47 59.49 

Ethnicity Value % 

      White (non-Hispanic or Latino) 79 100 

Disease stage at initial diagnosis Value % 

      Stage III 68 86.08 

      Stage IV 11 13.92 

Overall survival from initial diagnosis (months)  

      Mean 35.1 

      Range 2.6 - 175.2 

Overall survival from sample procurement (months) 

      Mean 15.9 

      Range 1.1 - 64.9 

 

 

 

Figure 2.2-4: TCGA SKCM-based analysis validates the prognostic Bax, Bak, Smac signature. 

Independent validation of the prognostic signature at transcriptome level in the SKCM-TCGA metastatic 

sub-cohort. A Survival analysis in the SKCM-TCGA sub-cohort (n = 79 patients diagnosed with stage III 

or IV metastatic melanoma before 2010). An optimized chi-square based cut-off was determined to divide 

patients with high (red) and low (blue) normalised BAX, BAK1 and DIABLO (Smac) expression 

(log2(FPKM-UQ+1)). Kaplan-Meier curves (follow-up from sample procurement) were compared by log-

rank test. B mRNA amounts for BAX, BAK1 and DIABLO (Smac) (blue: mRNA level below cut-off, red: 

mRNA level above cut-off). C Survival analysis in the metastatic TCGA-SKCM sub-cohort based on the 

expression profiles in Fig. 4b. Log-rank test for trend was used to compare three Kaplan-Meier curves 

representing patients with combined low BAX, BAK1 and DIABLO (Smac) expression (blue), combined 

high expression (red) or with mixed expression (black).  
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pattern between BAX, BAK1 and DIABLO was heterogeneous across the cohort (Figure 

2.2-4B). Patients with low tumour mRNA amounts across all three markers had a 

significantly better prognosis than patients in which at least one marker was highly 

expressed (Figure 2.2-4C). Taken together, these results recapitulate in an independent 

cohort the trends observed at protein level, confirming the prognostic potential of Bax, 

Bak and Smac as a combinatorial marker in chemotherapy-treated metastatic melanoma.  

2.2.4.5 Pattern recognition allows predicting patient prognosis 

We next applied a data-driven pattern recognition approach to study if the Bax, Bak, 

Smac signature would be sufficiently strong to predict patient PFS from protein 

expression profiles (Passante et al., 2013). First, H-Scores from automated TMA 

analysis for all marker candidates were subjected to a principal component analysis 

(PCA) (applied to the 50 patient samples for which the complete nine protein panel was 

available). Patient tumours were positioned into a 3D space defined by the first three 

principal components (PCs) and colour-coded to represent high or low PFS (PFS>12 

months and PFS<12 months). Visually inspecting the scatter plot, we noticed a 

tendency of patients with high or low PFS to occupy distinct sub-regions of the PC 

space (Figure 2.2-5A). To objectively assess the quality of this segregation, we applied 

linear discriminant analysis (LDA).  LDA segmentation encouragingly separated 72% 

of the patients into their correct prognosis sub-space. Next, we tested if these patterns 

were sufficiently strong to also predict the PFS category on a case-by-case basis. To do 

so, we performed leave one out cross validation (LOOCV). At each iteration, the PFS 

category of one patient was predicted after using the remaining 49 patients as a training 

set that defined the PCA subspaces for high and low PFS. The panel of nine apoptosis 

regulatory proteins allowed to correctly predict high or low PFS in 74% of patients. 

Since our previous survival analyses (Figure 2.2-1) showed that only Bax, Bak and 

Smac consistently correlated with PFS, we likewise tested if a similarly good or even 

better performing classifier can be derived from those three markers alone. Indeed, 

cluster segmentation and prediction accuracy tended to improve to 80% and 78% 

accuracy, respectively (Figure 2.2-5B). In conclusion, as highlighted by the comparison 

of receiver operating characteristic (ROC) curves (Figure 2.2-5C), classification based 

on the Bax-Bak-Smac signature alone is sufficient to obtain high prediction accuracies 

for patient PFS, whereas the remaining protein markers do not carry meaningful 

information to improve these predictions. Overall, this strengthens the evidence for low 

Bax, Bak and Smac expression being associated with better prognosis in metastatic 
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melanoma and points out a route by which pattern recognition allows generating 

predictions for patient prognosis.  

 

Figure 2.2-5: Pattern recognition allows predicting patient prognosis. A A principal component 

analysis was performed on the H-Scores of nine apoptotic proteins. To provide a visualization of the 

spatial clustering, patients samples were positioned in a 3D scatter plot defined by the first three principal 

components and colour-coded according to their PFS time (red < 12 months, n = 33; blue > 12 months, n 

= 17). Linear discriminant analysis (LDA) correctly segmented 72% of the patients. Leave One Out Cross 

Validation (LOOCV) combined with LDA predicted the correct class for 74% of the patients. B 3D 

scatter plot showing the spatial clustering of patients with short and long PFS based on the H-Scores for 

Bax, Bak and Smac. LDA correctly segmented 80% of the patients and LOOCV-LDA achieved 78% 

prediction accuracy. C Comparison of the performance of the two classifiers shown in a and b. The 

receiver operating characteristic curves (ROCs) and respective areas under the curve (AUC) are shown. 

2.2.5 Discussion 

Apoptosis is the major cell death modality by which anti-cancer therapies eliminate 

malignant neoplastic cells. In this study, we assessed if proteins that regulate the two 

major apoptosis decision hubs, namely the apoptotic engagement of mitochondria and 

the terminal execution phase of apoptosis (Taylor et al., 2008), alone or in combination 

can serve to prognosticate PFS in metastatic melanoma patients undergoing 

dacarbazine-based chemotherapy. We found that low rather than high expression of the 

pro-apoptotic proteins Bax, Bak and Smac correlates with higher PFS, and that these 

three proteins in combination can serve as a combinatorial prognostic marker with a 

promising AUC of 0.79.   

Due to the central role of apoptosis in tumour cell elimination, the finding that low 

expression of pro-apoptotic proteins correlated with better prognosis in metastatic 

melanoma contradicted our expectations. However, counter-intuitive relationships 

between the expression patterns of apoptosis inducers or anti-apoptotic genes or 

proteins were reported previously. For example, high expression of Bax was found to 

correlate with an increased risk for relapse in childhood acute lymphoblastic leukaemia 

(Hogarth and Hall, 1999). High expression of Bax, measured as transcript and protein 

amounts, respectively, has also been associated with poor prognosis in acute myeloid 
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leukaemia and non-Hodgkin lymphoma (Bairey et al., 1999; Köhler et al., 2002). 

Similarly, studies in which high expression of the Bax antagonist Bcl-2 has been 

reported to correlate with better prognosis can be found for colorectal, breast, glioma, 

gastric and non small cell lung cancer (Ichim and Tait, 2016; Inada et al., 1998; Labi 

and Erlacher, 2015; McDonald et al., 2002; Meterissian et al., 2001; Renouf et al., 

2009; Vargas-Roig et al., 2008). Bax and Bcl-2 are the best characterized members of 

the Bcl-2 protein family, which controls mitochondrial engagement in apoptosis signal 

transduction (Hantusch et al., 2018; Kale et al., 2018), whereas Bak has been less 

thoroughly studied. Bak functions as a Bax-like protein and upon activation likewise is 

able to form pores in the outer mitochondrial membrane, thereby triggering apoptosis 

execution (Hantusch et al., 2018; Kale et al., 2018). Links between low Bak expression 

and an improved outcome have not been reported in metastatic melanoma so far, but 

reduced BAK mRNA amounts were associated with better overall survival in 

hepatocellular carcinoma (Kong et al., 2018). Similarly, a counter-intuitive prognostic 

value of Smac has not yet been reported in melanoma, but high expression was found to 

correlate with early local disease recurrence in cervical cancer (Arellano-Llamas et al., 

2006). It needs, however, be stated that in reverse a large body of literature associates 

high expression of pro-apoptotic or a low expression of anti-apoptotic genes or proteins 

with better outcome, as would intuitively be expected (see e.g. (Baekelandt et al., 2000; 

Dobrzycka et al., 2010; Endo et al., 2009; Grzybowska-Izydorczyk et al., 2010; Jeong 

et al., 2008; Kupryjańczyk et al., 2003; Leverkus and Gollnick, 2006; Luo et al., 2015; 

Ma et al., 2019; Pluta et al., 2011; Del Poeta et al., 2003; Seok et al., 2007)). Overall, it 

therefore appears that signatures indicative of apoptosis competency or resistance need 

to be interpreted or studied within the specific disease setting and context. For example, 

it was suggested that expression patterns indicative of high apoptosis responsiveness 

may correlate with poor outcome if dormant, stem-like cancer cells that may reside 

within tumor tissues re-populate tumors and promote further spread and progression of 

the disease after the bulk population of cells has been eliminated by apoptosis-inducing 

therapy (Ichim and Tait, 2016; Labi and Erlacher, 2015). In line with this, apoptotic cell 

loss can drive the proliferation of surrounding cells, for example through caspase-

dependent prostaglandin signaling and secretion of other proliferation stimulating 

factors from dying cells (Huang et al., 2011; Zhao et al., 2018). These signaling 

processes indeed might be of relevance in melanoma treatment responsiveness and 

disease relapse (Donato et al., 2014).  
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Since apoptosis resistance is a hallmark of cancer (Hanahan and Weinberg, 2011), it 

nevertheless appears puzzling that reduced expression of apoptosis drivers correlates 

with better prognosis in a treatment scenario that is clearly geared towards apoptosis 

induction. In addition to the above line of thoughts, the very high mutation burden of 

cutaneous melanoma (Lawrence et al., 2013) might provide the basis for an additional 

explanation. While unfavorable expression of key apoptosis regulators in many cases 

may cause apoptotic cell death to be suppressed during cell transformation, tumor 

development and disease progression, and as such could be considered causative for the 

disease, such low basal apoptosis susceptibilities might nevertheless be overcome by 

elevated apoptosis-inducing stress in chemotherapy settings. In contrast, where low 

apoptosis susceptibility is not causative for the disease (and hence protein expression 

profiles would indicate “normal” susceptibility), other alterations and mutations might 

drive the development and progression of the disease. Many of these could prevent 

therapy-induced stress signals to be channeled towards apoptosis induction. Indeed, low 

expression of Bax and Bak might be linked to disease progression in earlier stages of 

melanoma. While Bax protein expression tends to be higher in melanoma tissues than in 

benign nevi (Tang et al., 1998), low expression of Bax within primary superficial-

spreading melanoma was associated with poor prognosis and therefore could indicate a 

role in disease development and progression (Fecker et al., 2006). Similar findings were 

reported for Bak expression in the same study. Also in stage IIa melamoma, low Bax 

and Bak protein expression was associated with poor prognosis, with the majority of 

such patients developing metastatic disease (Tchernev and Orfanos, 2007). Taken 

together, these prior reports combined with our findings therefore suggest that low 

expression of pro-apoptotic players could be causative for early stage tumor formation 

and melanoma disease progression by lowering basal apoptosis susceptibility, and that 

this reduced susceptibility can be overcome once pro-apoptotic stress is elevated 

externally, for example by dacarbazine-based chemotherapy. It will be interesting to see 

if similar relationships can also be found in other cancer (sub)types in the future. 
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2.2.7 Supplementary material 

 

The clinical information and IHC datasets are available as digital supplementary 

material at: https://www.nature.com/articles/s41419-020-2309-3#Sec21. Direct links are 

provided below. 

Supplementary Table 2.2-1: Patient demographics, histopathology and staging, treatment and 

follow-up information of the cohort. 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41419-020-2309-

3/MediaObjects/41419_2020_2309_MOESM6_ESM.xlsx 

Supplementary Table 2.2-2: IHC digital and manual image analysis results and cores quality 

control.  

https://static-content.springer.com/esm/art%3A10.1038%2Fs41419-020-2309-

3/MediaObjects/41419_2020_2309_MOESM7_ESM.xlsx 
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Supplementary Figure 2.2-1: Antibody validation. Commercially available antibodies for all markers 

to be studied were tested for specificity by Western blotting and by IHC on cell line pellets. Only results 

for antibodies passing quality assessment are shown. In Western blotting experiments, cell lines with 

known high or low/absent expression of the marker of interest were compared. Antibodies were required 

to yield single or clearly dominant specific bands at reported apparent molecular weights of marker 

proteins and/or their splice variants. IHC-based validation were required to clearly differentiate between 

cell line pellets with high or low/absent expression of the markers and to yield homogeneous staining 

across the isogenic populations. Subsequently, stained full face tissue sections were assessed by 

pathologists before staining protocols were approved for TMA stainings. A Validation results for anti-
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apoptotic Bcl-2 family members Bcl-2 and Bcl-xL; B Validation results for pro-apoptotic Bcl-2 family 

members Bax and Bak; C Validation results for Smac and its antagonist XIAP; D Validation results for 

Apaf-1 and the zymogens of caspases-9 and -3.  

 

Supplementary Figure 2.2-2: Survival analysis for the cohort based on automated H-Score of Bcl-2, 

Bcl-xL, XIAP, Apaf-1, Procaspase-9 and Procaspase-3. Survival analysis based on automated H-

Scores for Bcl-2, Bcl-xL, XIAP, Apaf-1, Procaspase-9 and Procaspase-3. Median H-Scores were used as 

cut-off to separate the patients with high (red line) and low (blue line) expression of each protein. Log-

rank test was used to compare the Kaplan-Meier curves for progression free survival from the date of 

sample procurement. 

 

Supplementary Figure 2.2-3: Survival analysis for the cohort based on manual H-Score of Bcl-2, 

Bcl-xL, XIAP, Apaf-1, Procaspase-9 and Procaspase-3. Survival analysis based on manual H-Scores 

for Bcl-2, Bcl-xL, XIAP, Apaf-1, Procaspase-9 and Procaspase-3. Median H-Scores were used as cut-off 

to separate the patients with high (red line) and low (blue line) expression of each protein. Log-rank test 

was used to compare the Kaplan-Meier curves for progression free survival from the date of sample 

procurement. 
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Supplementary Figure 2.2-4: Survival analysis in the metastatic TCGA-SKCM sub-cohort. Survival 

analysis based on BAX, BAK1 and DIABLO (Smac) mRNA expression. Median normalized mRNA 

amount (log2(FPKM-UQ+1)) was used as cut-off to separate the patients with high (red line) and low 

(blue line) expression of each transcript. Log-rank test was used to compare the Kaplan-Meier curves for 

progression free survival from the date of sample procurement. 
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2.3 Applying GAN-based data augmentation to improve 

transcriptome-based prognostication in breast cancer 

Data augmentation for improved breast cancer prognostication 

The following manuscript was submitted to PLOS Computational Biology in October 

2022 and is in revision at the date of submission of this dissertation. A preprint version 

is available on medRxiv and licensed under a Creative Commons Attribution 4.0 

International License (http://creativecommons.org/licenses/by/4.0/).  
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2.3.1 Abstract 

Established prognostic tests based on limited numbers of transcripts can identify high-

risk breast cancer patients yet are approved only for individuals presenting with specific 

clinical features or disease characteristics. Deep learning algorithms could hold 

potential for stratifying patient cohorts based on full transcriptome data, yet the 

development of robust classifiers is hampered by the number of variables in omics 

datasets typically far exceeding the number of patients. To overcome this hurdle, we 

propose a classifier based on a data augmentation pipeline consisting of a Wasserstein 

generative adversarial network (GAN) with gradient penalty and an embedded auxiliary 

classifier to obtain a trained GAN discriminator (T-GAN-D). Applied to 1244 patients 

of the METABRIC breast cancer cohort, this classifier outperformed established breast 

cancer biomarkers in separating low- from high-risk patients (disease specific death, 

progression or relapse within 10 years from initial diagnosis). Importantly, the T-GAN-

D also performed across independent, merged transcriptome datasets (METABRIC and 

TCGA-BRCA cohorts), and merging data improved overall patient stratification. In 

conclusion, GAN-based data augmentation therefore allowed generating a robust 

classifier capable of stratifying low- vs high-risk patients based on full transcriptome 

data and across independent and heterogeneous breast cancer cohorts. 

2.3.2 Introduction 

Breast cancer is the tumor with the highest incidence in women, accounting for 2.3 

million new diagnoses and 685,000 deaths worldwide in 2020. According to the World 

Health Organization, nearly eight million patients were diagnosed with breast cancer in 

the five years before 2020, making it the most prevalent tumor disease worldwide 

(WHO, 2021). In current clinical practice, the expression of estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) is 

determined by immunohistochemistry (IHC), with the expression patterns defining to 

which molecular subtype (luminal A, luminal B, HER2 positive or enriched and triple-

negative breast cancer) individual tumors belong. Prognosis differs between these 

subtypes, and subtyping informs treatment plans in patients in which surgical resection 

of the tumor alone is insufficient (Yersal and Barutca, 2014). However, substantial 

response heterogeneities to the current standard of care treatments can be observed in 

populations of breast cancer patients (Turashvili and Brogi, 2017), highlighting the need 

for additional prognostic markers that could serve to identify high risk patients that 
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could instead benefit from alternative treatments or for which the burden from 

inefficient standard of care treatments could be avoided (Cardoso et al., 2016).  

Various multi-gene activity tests based on transcript abundance have been developed to 

assist in the clinical management of breast cancer  (e.g. Oncotype DX (Syed, 2020), 

MammaPrint (Van’t Veer et al., 2002; van de Vijver et al., 2002), Prosigna (Bernard et 

al., 2009; Xia et al., 2019), OncoMasTR (Buus et al., 2020)) and received regulatory 

approval as prognostic tests (Ross et al., 2008). Despite the prognostic value of these 

assays, their use is restricted to only subsets of patients with specific clinical 

characteristics (e.g. cancer stage, receptor or lymph node status, tumor size, menopause 

state, age group) (Jensen et al., 2018; Kelly et al., 2018; Yao et al., 2022). It would 

therefore be desirable if more generally applicable prognostic tests based on 

transcriptome data could be developed.  

The rapid advances in high-throughput sequencing technologies make tumor 

transcriptome data from larger patient cohorts increasingly available. The accessibility 

of -omics databases and companion clinical information now also encourages the 

application of deep learning (DL) methods to the oncology field, with the aim of 

learning and extracting features within large scale data that are not readily accessible by 

classical statistical and pattern recognition approaches. It is hoped that from DL-based 

methods tools can be developed that can aid in further advancing cancer diagnosis, 

prognosis or predicting treatment efficacy in the future (Tran et al., 2021).  

DL algorithms such as convolutional neural networks (CNN) were originally applied for 

image analysis but could be successfully repurposed to take non-image objects as input, 

such as RNA-seq data (Sharma et al., 2019). One of the major pitfalls when applying 

DL models to transcriptome datasets is the typical imbalance between the number of 

quantified mRNAs (high) and the number of patients (low), which can lead to 

overfitting when solving classification tasks (Liu and Gillies, 2016). In addition, low 

numbers of samples or patients that represent one category (e.g. good prognosis) come 

at the risk of capturing patterns that are not robust when applied to larger populations 

(Barandela et al., 2004).  Feature selection strategies (Raghu et al., 2017), under- and 

over-sampling (Chawla et al., 2011) are three strategies that may help mitigating effects 

arising from imbalanced source data. An alternative strategy lies in novel data 

augmentation approaches, such as generative adversarial networks (GANs), by which 

source datasets can be enriched with artificially generated additional data. GANs are 

typically applied to imaging data and are composed of two subnetworks, the generator 
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and the discriminator. While the former produces synthetic images, the latter is 

challenged to discriminate fake vs. real images. Reiterating this process, the generator 

learns to produce images with features that can no longer be separated from the real 

images by the discriminator, with these generated images then enriching the source 

dataset (Goodfellow et al., 2014). In comparison to other generative models, GANs are 

currently preferred due to their computational speed and the quality of the generated 

images (Shorten and Khoshgoftaar, 2019). In addition, they exhibit a lower risk of 

overfitting classifiers and are less susceptible to the impact of non-pertinent image 

features (such as brightness) when enriching training data with synthetic images 

(Bowles et al., 2018). For example, GANs have been applied in the medical field to 

generate synthetic magnetic resonance, computed tomography or positron emission 

tomography images (Li et al., 2021). Aside from image-data, different GAN 

implementations were also successfully applied to transcriptome data for cancer 

diagnosis (Wei et al., 2021; Xiao et al., 2021), staging (Kwon et al., 2021) and 

subtyping (Yang et al., 2021).  

The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, 

hereafter MB) (Mukherjee et al., 2018) and The Cancer Genome Atlas 3  – Breast 

Invasive Carcinoma (TCGA-BRCA, hereafter TCGA) cohorts represent two of the 

largest and most exhaustively annotated breast cancer datasets, including, in addition to 

mRNA expression data, features such as patient demographics, cancer staging, receptor 

statuses, and follow-up information such as survival times. Despite not being directly 

interoperable due to different sequencing technologies, these datasets can serve as use 

cases to test new DL-based prognostication approaches.  

In this study, we therefore set out to develop a prognostication framework that used the 

trained discriminator of a GAN architecture as a standalone classifier and compared its 

performance to classical breast cancer biomarkers and a classical CNN.  

 

 

3 The Cancer Genome Atlas Program – National Cancer Institute: 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga 
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2.3.3 Materials and methods 

2.3.3.1 Data integration 

The METABRIC (MB) dataset was used to develop the prototype network 

implementation. Transcriptome data (median Z-scores), overall survival (OS), disease 

specific survival (DSS) and associated clinical records were downloaded from 

cbioportal.org (Cerami et al., 2012; Gao et al., 2013). The dataset was integrated with 

locoregional and distant recurrence information retrieved from Rueda et al. (Rueda et 

al., 2019) and Risk of Recurrence – Proliferation (ROR-P) scores reported by Xia et al 

(Xia et al., 2019). Clinical records, OS, DSS and progression free interval (PFI) of the 

validation TCGA-BRCA cohort (TCGA) were integrated from cbioportal.org (Cerami 

et al., 2012; Gao et al., 2013) and Liu et al. 2018 (Liu et al., 2018), respectively. To 

merge the mRNA expression data of the two cohorts, normalized transcriptome datasets 

were downloaded using the R package MetaGxBreast (Gendoo et al., 2019). The 

transcript amounts were rescaled as described by Gendoo et al. (Gendoo et al., 2019) so 

that the 2.5 percentile corresponds to -1 and the 97.5 percentile corresponds to +1.  

Subsequently, transcripts overlapping between the two cohorts and with quantitative 

information missing in not more than five patients were retained, resulting in transcripts 

for m = 14042 genes. The R script used to download and rescale the datasets is available 

in the Zenodo repository (Guttà et al., 2022). 

2.3.3.2 Inclusion criteria and category definition 

Both cohorts were filtered to exclude normal-like subtype samples (Sweeney et al., 

2014; Troester et al., 2018; Xia et al., 2019) and patients for which less than 10 years of 

follow-up time from diagnosis were available. Low and high risk categories were 

defined according to published clinical records(Bernard et al., 2009; Xia et al., 2019) as 

follows: 

- high risk patients:  

o MB cohort: disease specific death, locoregional or distant recurrence 

event recorded before 10 years from initial diagnosis;  

o TCGA cohort: disease specific death, progression, local recurrence or 

distant metastases before 10 years from initial diagnosis. 

- low risk patients: none of the above-mentioned events recorded before 10 years 

from initial diagnosis. 
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In total, 1248 patients of the MB cohort (n = 567 high risk, n = 681 low risk) and 165 

patients of the TCGA cohort (n = 132 high risk, n = 33 low risk) satisfied the inclusion 

criteria. Four patients from each cohort were excluded after merging due to insufficient 

expression data.  

2.3.3.3 Survival analysis and accuracy 

Log-rank testing was used to compare predicted low vs high risk patients over a follow-

up time of 10 years. Kaplan-Meier (KM) survival curves were computed using 

GraphPad Prism 8 (GraphPad Software, San Diego, CA). The area between the curves 

(ABC) displayed on the KM graphs for the pooled predictions was calculated as 

follows:  

o Low risk AUC minus Predicted low risk AUC; 

o Predicted low risk AUC minus Predicted high risk AUC; 

o Predicted high risk AUC minus High risk AUC. 

The ABCs values are shown on the graphs in the abovementioned order top to bottom. 

The AUC was computed using GraphPad Prism 8 (GraphPad Software, San Diego, 

CA). 

Univariate and multivariate hazard ratios were calculated using the function coxph from 

the R’s library survival (v. 3.4.0, https://www.r-project.org/).  

2.3.3.4 GAN architecture 

The architecture was based on a Wasserstein (Arjovsky et al., 2017) GAN (Goodfellow 

et al., 2014) with gradient penalty (Gulrajani et al., 2017) and an auxiliary classifier 

(Odena et al., 2016) as a variant of a conditional GAN implementation (Mirza and 

Osindero, 2014), yielding a AC-WGAN-GP architecture. The Wasserstein loss was 

implemented to reduce vanishing gradients and mode collapse (Kodali et al., 2017) in 

the early phases of the training when the discriminator outperformed the generator. 

Stability was improved by exchanging the weights clipping approach described in 

Arjovsky et al. (Arjovsky et al., 2017), with the gradient penalty described in Gulrajani 

et al. (Gulrajani et al., 2017). To create a conditional GAN, an auxiliary classifier 

network was implemented (Odena et al., 2016), resulting in a more stable training 

process and reduced mode collapse compared to the standard conditional GAN 

approach, supplying labels to both discriminator and generator (Kodali et al., 2017). A 

z-vector of size 250 was fed as input for the generator. Following good training practice 

(Radford et al., 2015), strided convolutions with step size 2, batch normalization and 
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LeakyRELU as activation function were used. Since using batch normalization in the 

discriminator and/or the ADAM optimizer led to an unstable training process, batch 

normalization (Ioffe and Szegedy, 2015) was only used in the generator, and RMSprop 

was selected as the activation function. A shallow network consisting of two layers in 

both the discriminator and the generator led to the most stable training process, due to 

the smaller number of trainable parameters compared to deeper networks. 

Hyperparameters were tuned empirically, selecting 1000 epochs for the training process. 

Three “discriminator-only” training runs were performed before each full network 

training run, and the generated pictures were subsequently smoothed with a final 

convolution layer with one filter and stride size of 1. The GAN architecture generated 

expression data of size 144x144 when using the entire transcriptome dataset of the MB 

cohort alone (m = 18543 genes) and 120x120 when merging the MB and TCGA cohorts 

(m = 14042 genes). In the latter setting, expression profiles with less than 14,440 

transcripts were filled with random values, leading to better convergence. The resulting 

trained GAN Discriminator (T-GAN-D) was then used as an independent classifier to 

discriminate low and high risk patients. The Python code and the input files used to 

generate the predictions are available in the Zenodo repository (Guttà et al., 2022). 

2.3.3.5 CNN architecture 

As the performance of the CNN implemented as the GAN’s discriminator showed 

satisfactory performance, a similar architecture was used as a benchmark classifier. 

Batch normalization was employed to ensure shorter training periods and RELU was 

used as the activation function. A fixed training length of 1250 epochs was set due to 

the limited sample size and to generate comparable iterations.  

The accuracy of both classifiers was calculated dividing the number of correct 

classifications by the total number of classifications performed. 

2.3.4 Results 

2.3.4.1 The METABRIC and BRCA-TCGA cohorts lend themselves as use cases 

for data augmentation and development of prognostication classifiers 

One of the major challenges of machine learning applied to -omics data and companion 

medical records is the imbalance between the high amounts of variables compared to 

the limited number of patients available.  Even in the case of breast cancer, one of the 

most frequent and widely studied malignant neoplasms, this limitation is apparent in the 

two major public transcriptome datasets, namely the MB cohort (n = 1904 patients, m =  
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Figure 2.3-1: MB and TCGA patient demographics and survival. A Patients demographics of the MB 

subcohort. B Patients demographics of the TCGA subcohort. C Overall and D relapse-free, progression-

free or disease specific survival of the MB and TCGA cohorts. E Kaplan Meier curves comparing low vs 

high risk patients of the MB and F the TCGA cohorts. 

18543 transcripts) and the TCGA cohort (n = 1101 patients, m = 20532 transcripts). 

This imbalance is exacerbated for prognostic analyses that require long-term (10 years) 

follow-up information and the application of further exclusion criteria (see methods), 

reducing cohort sizes to n = 1248 and n = 165, respectively (Figure 2.3-1A, B). Both 

cohorts behaved notably different, with patients in the MB cohort on average having an 

overall substantially better prognosis in overall survival and relapse-free, progression-

free or disease specific survival (Figure 2.3-1C, D). This is likely attributable to the 

MB dataset largely consisting of stage I and stage II patients (89.5% of patients with 

reported disease stage at diagnosis), whereas stage III and IV patients are more 

prominent in the TCGA dataset (40.4% of individuals with available disease stage at 

diagnosis). Despite these differences, the high risk subgroups of both cohorts showed 
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comparable median survival times (MB = 31.9 months [Figure 2.3-1E], TCGA = 26.3 

months [Figure 2.3-1F]). Due to the limited sizes of these cohorts, they lend themselves 

as suitably challenging use-cases for applying and testing data augmentation for 

improving prognostication. In particular, we set out to implement a classifier based on a 

data augmentation network for improved patient stratification in the MB cohort, to 

subsequently validate robustness and transferability by integrating the independent 

TCGA cohort.  

2.3.4.2 A trained GAN discriminator robustly identifies low and high risk breast 

cancer patients 

To tackle the problem of data scarcity, we implemented a GAN architecture to augment 

transcriptomic data of the MB cohort and tested the performance of a trained 

discriminator in stratifying breast cancer patients. First, individual patient transcriptome 

profiles were rescaled and converted into arrays of pixels (Figure 2.3-2A i) in order to 

use these images as an input for the GAN. Independent of these true patient data, the 

generator created images representing the transcript profiles of synthetic hypothetical 

patients together with their category (low or high risk) (Figure 2.3-2A ii). After being 

exposed to a fraction of the real transcriptome images and associated categories, its 

adversary, the discriminator network then tried to distinguish fake from real 

transcriptome images for high or low risk patients (Figure 2.3-2A iii). Reiterating this 

training process over 1000 epochs, the generator learned to create realistic synthetic 

transcriptome images for high and low risk categories, which then could be used to 

augment the original MB cohort data. Associated characteristics of this process 

(discriminator loss, discriminator class loss, generator loss) are shown in 

Supplementary Figure 2.3-1. Using this approach, the discriminator learned to identify 

features relevant for the risk category definition, aided by the synthetic profiles that 

enriched the real training data at each epoch. The trained GAN discriminator (T-GAN-

D) resulting from this process then was used as a standalone classifier to categorize 

images from the test fraction of the cohort into the high or low risk categories (Figure 

2.3-2A iv), thus prognosticating patient outcome.  

We first implemented and tested the T-GAN-D for its prognostic capability using 

follow-up and mRNA expression data of the prototyping MB cohort, consisting of n = 

1248 individuals and m = 18543 genes. Within this cohort, we independently cross-

validated (CV) five-fold with randomly composed training data. Kaplan-Meier curves 
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Figure 2.3-2: The T-GAN-D robustly stratifies low and high risk breast cancer patients. A 

Workflow of the data processing, including the schematics of the generator network and its adversary, the 

discriminator network. Together these result in an AC-WGAN-GP architecture. After the conversion of 

patient transcriptome profiles into images, 4/5 of the MB dataset was used to train the GAN’s 

discriminator. After 1000 epochs, the trained discriminator was used as a standalone classifier to separate 

the remaining 1/5 patients of the dataset into low and high risk categories. B Kaplan-Meier curves 

separating low vs. high risk patients as predicted with the T-GAN-D (iteration 1 of the 5-fold CV shown 

as representative). C Kaplan-Meier curves generated pooling the category predictions obtained for all 

patients of the MB dataset after five independent CV runs. D Separation of low vs. high risk patients 

predicted with a classical CNN on the same subset used in B and E comparison obtained pooling the 

predictions of five independent CV runs. The area between the curves (ABC) between Low risk (blue 

dashed line) and Predicted low risk (solid blue line), Predicted low risk and Predicted high risk (solid red 

line), Predicted high risk and High risk groups (dashed red line) are shown top to bottom in D and E. 
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and log rank testing for each run yielded significant class separations in 4 out of 5 

iterations (Figure 2.3-2, Supplementary Figure 2.3-2A). Pooling the results so that 

each patient of the MB dataset was present once in the survival analysis, the T-GAN-D 

separated high and low risk patients with high statistical significance (p-value = 2.71E-

12) (Figure 2.3-2C). To obtain a reference performance baseline, a classical CNN was 

challenged with the same task, using the same training and test sets for each iteration. 

The CNN yielded class separations with a p<0.05 in only two out of five iterations 

(Figure 2.3-2D, Supplementary Figure 2.3-2B). In the pooled comparison, the CNN 

performed well yet failed to outperform the T-GAN-D in separating low vs. high risk 

patients (Figure 2.3-2E, Supplementary Table 2.3-1). These results therefore 

demonstrate that the reiterative learning process of a GAN to train its discriminator and 

use it as an independent classifier provides a more robust and slightly improved patient 

stratification than a classical DL approach. 

2.3.4.3 Introducing and independent cohort improves MB patient classification 

A common limitation of predictors and classifiers is their limited robustness and 

transferability to independent datasets. This might arise from overfitting or overtraining 

within the initial cohort but also from heterogeneity and batch effects between source 

datasets. For validating our approach further, we therefore merged the mRNA 

expression data of the MB and TCGA cohorts, which originally were quantified with 

bead-based microarray technology (Illumina Human V3) or RNA-Seq (Illumina HiSeq) 

platforms respectively (Craven et al., 2021), by rescaling the expression of transcripts 

overlapping between the two cohorts (m = 14042). We then retrained the discriminator 

using the entire TCGA data plus a fraction of the MB data from the merged dataset and 

generated predictions on an independent subset of MB patients (Figure 2.3-3A), using 

five-fold cross-validation. The T-GAN-D again separated patients into low and high-

risk categories with high statistical significance (Figure 2.3-3B, Supplementary 

Figure 2.3-3A). The CNN trained and tested with the same data performed similarly 

well (Figure 2.3-3C, Supplementary Figure 2.3-3B). The T-GAN-D trained on the 

merged and reduced dataset also showed improved accuracy when compared to all 

settings where both a CNN or the GAN were trained on the full or reduced MB dataset 

alone (Supplementary Table 2.3-1, Supplementary Table 2.3-2). Therefore, in our 

setting, rescaling and converting transcriptome profiles into images was sufficient to 

successfully merge the two cohorts without the need for further preprocessing steps and 

allowed to stratify patients into high and low risk classes. 
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Figure 2.3-3: Introducing the independent TCGA cohort improves MB patient classification.  

A Schematic representing the training strategy: rescaled data from the entire TCGA cohort were merged 

with 4/5 of the MB cohort to train the T-GAN-D, which was subsequently used to predict the risk class of 

the remaining 1/5 of MB patients. The process was iterated 5 times. B Kaplan-Meier curves based on the 

pooled predictions of the T-GAN-D trained on both cohorts. C Kaplan-Meier curves separating low vs. 

high risk patients predicted with the CNN that was trained after merging the MB and the TCGA cohorts. 

The area between the curves (ABC) between Low risk (blue dashed line) and Predicted low risk (solid 

blue line), Predicted low risk and Predicted high risk (solid red line), Predicted high risk and high risk 

groups (dashed red line) are shown top to bottom in B and C. 

2.3.4.4 The T-GAN-D outperforms classical outcome predictors and accurately 

stratifies early stage patients into risk categories 

We next compared the performance of CNN and GAN based classifications to other 

established clinical markers in breast cancer. These included a scoring system based on 

a multi-transcript signature (Risk-of-recurrence - proliferation, [ROR-P]), estrogen 

receptor status (ER), human epidermal growth factor receptor 2 status (HER2), and 

progesterone receptor status (PR). Likewise, tumor staging was included, yet was 

available for only 911 out of 1248 patients of the MB cohort. The hazard ratios (HR) 

obtained from a univariate analysis were comparable for ROR-P, HER2 or tumor 

staging as classifiers, and similar HRs were also obtained for the CNN and T-GAN-D 

classifiers developed from only the MB transcriptome dataset (Figure 2.3-4A). 

Interestingly, the T-GAN-D classifier resulting from the merged cohort data returned a 

mean HR>2.0 (+/- 0.4), thereby surpassing all other markers. This feature was even 

more pronounced in a multivariate analysis including ER, HER2 and PR biomarkers 

(Figure 2.3-4B). When reducing the MB cohort to those patients for which staging 

information was available, HRs based on staging and T-GAN-D were comparable 

(Figure 2.3-4C). To test whether both classifiers might be redundant, we performed a 
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T-GAN-D based survival analysis within the tumor stage I and stage II subcohorts, 

which dominate the MB dataset. T-GAN-D based classification allowed separating high 

and low risk patients within both tumor stages (Figure 2.3-4D, E), indicating non-

redundancy of the T-GAN-D classification to tumor staging information.  

Taken together, these results show that training through data augmentation can enhance 

the prognostic performance of DL classifiers, and in this case surpasses individual 

classical biomarkers. In addition, the T-GAN-D performed well in prognostication of 

early stage breast cancer cases.  

 

Figure 2.3-4: The T-GAN-D outperforms classical biomarkers after merging the MB and TCGA 

cohorts and significantly stratifies early stage MB patients. A Comparison of the hazard ratios (Cox 

model, univariate) of a multi-transcript signature (ROR-P) and established prognostic biomarkers (ER, 

HER2, PR) vs. the CNN and the T-GAN-D before and after cohort merging. B Multivariate Cox hazard 

ratio of the T-GAN-D compared to ROR-P and receptor status and (C) disease stage. (D) Kaplan -Meier 

curves of Stage I and (E) Stage II patients stratified by the T-GAN-D into low and high risk categories. 

2.3.4.5 The T-GAN-D stratifies TCGA patients despite these being scarcely 

represented  

After observing that introducing TCGA patients into the training set of the T-GAN-D 

did not degrade, but improved the stratification of MB patients, we tested the 

performance of the classifier on the smaller TCGA dataset. To do this, we trained the 

discriminator using the entire MB data plus a fraction of the TCGA data from the 
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merged dataset and generated predictions on an independent subset of TCGA patients 

(Figure 2.3-5A), using five-fold cross-validation. The T-GAN-D correctly predicted 

78% of the cases (Figure 2.3-5B, Supplementary Figure 2.3-4, Supplementary Table 

2.3-3).  In contrast, when trained on the MB dataset alone, the T-GAN-D was not able 

to separate high and low risk patients (Figure 2.3-5C, Supplementary Figure 2.3-4), 

achieving an overall accuracy of only 43% (Supplementary Table 3). Therefore, the 

addition to the training set of a comparably small number of TCGA patients (n = 129) to 

the larger MB cohort (n = 1244) was sufficient to drastically improve the performance 

of the T-GAN-D predicting TCGA patient outcome. This demonstrates that even if the 

training set is largely dominated by patients belonging to one cohort, the introduction of 

a limited number of samples of a second, differently balanced dataset appears sufficient 

to possibly capture relevant patterns that contribute to achieving improved prognostic 

performance. 

 

Figure 2.3-5: The T-GAN-D stratifies TCGA patients despite these being scarcely represented in 

the merged training set. A Schematic representing the training strategy: rescaled data from the entire 

MB cohort were merged with 4/5 of the TCGA cohort to train the T-GAN-D, which was subsequently 

used to predict the risk class of the remaining 1/5 of TCGA patients. The process was iterated 5 times. B 

Stratification of the TCGA patients by T-GAN-D trained on the merged dataset and C the MB dataset 

alone. Kaplan-Meier curves were generated pooling the predictions of all iterations of the 5-fold CV. The 

area between the curves (ABC) between Low risk (blue dashed line) and Predicted low risk (solid blue 

line), Predicted low risk and Predicted high risk (solid red line), Predicted high risk and High risk groups 

(dashed red line) are shown top to bottom in B and C. 
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2.3.5 Discussion 

The increasing availability and routine acquisition of large scale genomic data 

encourage the repurposing and application of AI to the field of oncology in order to 

identify novel means for improved and personalized prediction of prognosis (Wallis, 

2019). In this study, we developed a DL-based tool to stratify high vs. low risk breast 

cancer patients according to full transcriptome profiles. Using the MB and TCGA 

cohorts as use cases, we converted expression data into images and used the trained 

discriminator of our GAN architecture as a standalone prognostic classifier. Our results 

show that the T-GAN-D performed better than classical outcome predictors and 

maintained robust performance when merging the two cohorts.  

AI has already been applied to breast cancer based on different classes of data, to inform 

diagnosis, treatment planning and prognosis (Jia et al., 2021; Zhang et al., 2020). For 

example, pattern recognition and data augmentation proved to be promising approaches 

to assist in generating accurate diagnoses from mammography images (Desai et al., 

2020; McKinney et al., 2020).  Transcriptome data were also employed to develop ML-

based analysis pipelines for breast cancer subtyping, diagnosis, patient stratification and 

identification of altered pathways (Liñares-Blanco et al., 2021), and these techniques 

may improve the accuracy of cancer prognosis in the future. However, shortcomings 

must be taken into account, as applicable also to currently available breast cancer 

datasets. When dealing with low sample size - high dimension datasets such as the MB 

and TCGA cohorts, common DL classification algorithms such as neural networks may 

be prone to overfitting (Liu, Wei, et al., 2017). Multi-gene signatures based on the 

expression of a lower number of transcripts may circumvent this problem, but are 

applicable only to subsets of patients with specific clinical characteristics (Jensen et al., 

2018; Kelly et al., 2018; Ross et al., 2008; Yao et al., 2022). To tackle these problems, 

we aimed at developing a more universally applicable algorithm that takes advantage of 

GAN’s data augmentation and generalizing capability. In our training strategy, the T-

GAN-D was exposed not only to a subset of original data, but also to the synthetic 

patients generated by the generator in each epoch. This approach for the augmentation 

of training data was demonstrated before to aid a discriminator in learning hidden 

features and correlations (He et al., 2015; Shams et al., 2018). When compared to a 

classic CNN, the T-GAN-D showed comparable, yet slightly improved performance. 

Other GAN implementations have been applied to the MB or TCGA cohorts in the past, 

addressing different aims such as the generation of missing data (Arya and Saha, 2022), 
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the identification of multi -omics signatures (Kim et al., 2018) and prognostication (Hsu 

and Lin, 2020). While showing encouraging results, these prior works limited the follow 

up time to 5 years and focused on death events only. Besides considering longer follow 

up times, the inclusion of progression or recurrence events in the class definition can be 

considered a more exhaustive assessment of a patient´s risk category, since OS or DSS 

alone may be insufficient especially in early stage screenings (Kourou et al., 2015). In 

addition, short follow up times were shown to affect the prognostication performance of 

ML algorithms leading to low sensitivity, mostly due to the insufficient occurrence of 

recurrence or death events (Boeri et al., 2020).  

We demonstrated that the conversion of transcriptome profiles into images allowed the 

integration of independent transcriptome datasets. To date, the majority of gene 

expression databases cannot be directly integrated due to different sequencing 

technologies, protocols or batch effects, with the consequence of producing merely 

qualitative results in a meta-analysis fashion or unveiling evidences that remain cohort-

specific (Carnielli et al., 2018). To test if our conversion strategy could allow a 

straightforward integration of heterogenous datasets, we challenged the T-GAN-D in 

assessing the risk category of MB patients, training the network with a subset of MB 

patients plus the entire TCGA cohort. Introducing patients belonging to a different 

cohort improved the performance of the classifier, which in our case outperformed 

established clinical biomarkers and a published ROR-P signature (Xia et al., 2019) in  

uni- and multi-variate analyses. The T-GAN-D classifier also stratified early stage 

breast cancer patients into low and high risk groups, even though no additional factors 

such as treatment regimens, age, subtype or other clinical features were considered 

when composing the training datasets. Early stage patients expected to experience 

recurrence or progression may benefit from more frequent screenings, yet it remains to 

be assessed if the transcriptome-based classifier operates independently of or correlates 

with other established risk factors. 

High accuracy in predicting the risk class of the smaller and imbalanced TCGA cohort 

was achieved when training the T-GAN-D with a subset of TCGA patients plus the 

whole MB dataset. Classical ML algorithms (SVM and random forest, among others) 

were also shown to benefit from the combination of TCGA RNA-Seq and MB 

microarray data, which in a previous study improved 5 years OS prognostication 

(Dubourg-Felonneau et al., 2018), but lead to misleadingly high accuracy due to highly 

imbalanced classes. Taken together, our results suggest that the T-GAN-D remains 
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robust when merging cohorts differently balanced between positive and negative 

outcomes, and that the network is still able to capture relevant risk patterns when one 

cohort is heavily underrepresented in the training dataset. Therefore, our classification 

framework may allow the integration of new, smaller datasets, lending itself as a 

suitable prototype for generating prospective personalized outcome predictions for 

scarce de novo data. 

In conclusion, our proof-of-concept study represents an avenue for developing a 

scalable data augmentation-based tool that could be a stepping stone towards 

individualized prognosis in the future. Molecular high throughput techniques are 

increasing in quality, resolution and amount of data produced and are more and more 

commonly captured in clinical research and diagnostic environments. It was estimated 

that within the next decade, between 2 and 40 exabytes of genomic data will be 

generated every year (Stephens et al., 2015), with large quantities being related to 

human health and disease. GAN-based approaches therefore could become a 

meaningful approach to exploit such data for the benefit of patients. In addition, -omics 

domains other than transcriptomics likewise have the potential to enter the clinical arena 

as part of routine analytical practice, including proteome, metabolome or lipidome data. 

Such data classes can readily be integrated with clinical-pathological information 

(Karczewski and Snyder, 2018), and could be processed with the assistance of GAN 

based approaches to improve patient-tailored interventions or prognostication. 

2.3.6 Data availability 

Transcriptome data (median Z-scores), OS, DSS and associated clinical records of the 

METABRIC cohort were downloaded from cbioportal.org. Locoregional and distant 

recurrence records and ROR-P scores of the MB cohort were retrieved from Rueda et al. 

2019 (DOI: 10.1038/s41586-019-1007-8) and Xia et al. 2019 (DOI: 10.1038/s41467-

019-13588-2) respectively. Clinical records, OS, DSS and PFI of the TCGA-BRCA 

cohort were integrated from cBioportal.org and Liu et al. 2018 (DOI: 

10.1016/j.cell.2018.02.052). Curated METABRIC and BRCA-TCGA expression data 

were downloaded using the MetaGxBreast R package (Gendoo et al. 2019, DOI: 

10.1038/s41598-019-45165-4). The input files and scripts used to generate the results 

are available in the Zenodo repository (DOI: 10.5281/zenodo.7151831). 
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2.3.8 Supplementary material 

Supplementary Tables: Accuracy and Log-rank P value of each CV iteration and pooled category 

predictions for all experimental settings. 

Supplementary Table 2.3-1: MB risk class prediction (Figure 2.3-2, Supp. Figure 2.3-2). 

 T-GAN-D CNN 

Run no. Accuracy 
Log-rank P 

value 
Accuracy 

Log-rank P 

value 

1 61.2% 6.96E-05 55.2% 0.1424 

2 62.0% 1.89E-05 66.0% 7.77E-09 

3 62.0% 0.0003 55.6% 0.0444 

4 58.2% 0.0076 56.6% 0.0667 

5 55.0%% 0.0995 55.8% 0.0570 

Mean accuracy and pooled Log-

Rank P value 
59.7% 2.71E-12 57.9% 9.41E-09 

 

Supplementary Table 2.3-2: MB risk class prediction (Figure 2.3-3, Supp. Figure 2.2-3). 

 T-GAN-D  

(trained on MB + TCGA) 

CNN  

(trained on MB + TCGA) 

Run no. Accuracy 
Log-rank P 

value 
Accuracy 

Log-rank P 

value 

1 64.5% 1.59E-07 57.3% 0.0317 

2 60.2% 4.40E-05 64.3% 3.13E-07 

3 57.8% 0.0004 61.4% 0.0001 

4 63.5% 1.47E-06 58.2% 0.0023 

5 62.7% 0.0009 61.0% 0.0005 

Mean accuracy and pooled Log-

Rank P value 
61.7% < 1E-15 60.5% < 1E-15 

 

Supplementary Table 2.3-3: TCGA risk class prediction (Figure 2.3-5, Supp. Figure 2.3-4). 

 T-GAN-D  

(trained on MB + TCGA) 

T-GAN-D  

(trained on MB) 

Run no. Accuracy 
Log-rank P 

value 
Accuracy 

Log-rank P 

value 

1 78.8% 0.1455 39.4% 0.1970 

2 75.0% 0.2526 65.6% 0.2035 

3 81.3% 0.3514 40.6% 0.5831 

4 81.3% 0.1116 46.9% 0.3030 

5 75.0% 0.0103 21.9% 0.4676 

Mean accuracy and pooled Log-

Rank P value 
78.3% 0.0623 42.9% 0.3497 
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Supplementary Figure 2.3-1: AC-WGAN-GP loss functions. A Loss functions of the discriminator 

identifying real vs fake patients and B risk category. C Loss function of the generator. Loss functions 

were computed over 1000 training epochs. 

 

Supplementary Figure 2.3-2: Kaplan-Meier curves generated with the risk categories predicted in 

the CV iterations not shown in Figure 2.3-2. The prototyping MB cohort with all available 

transcriptomic data was used to compare the patient stratification obtained with the A T-GAN-D and B a 

classic CNN. 
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Supplementary Figure 2.3-3: Kaplan-Meier curves of individual CV iterations pooled in Figure 

2.3-3. A fraction of the MB and the full TCGA cohorts were integrated to train A the T-GAN-D and B the 

CNN. After rescaling both datasets and filtering out the genes not available in both cohorts the risk class 

of the MB patients was predicted. 
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Supplementary Figure 2.3-4: Kaplan-Meier curves of individual CV iterations pooled in Figure 

2.3-5.  The T-GAN-D was trained A on the merged dataset and B on the MB dataset alone. After 

rescaling both datasets and filtering out the genes not available in both cohorts the risk class of the TCGA 

patients was predicted. 
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3 DISCUSSION 

3.1 Artificial Intelligence: a technological and social phenomenon 

The work presented in this thesis positions itself in the rapid changing field of AI. 

While the interest for data-driven automated tools has been limited to the research 

environment for a long time, AI recently forced its way in the mainstream news. On the 

30th of November 2022 the attention of the general public was captured by the release of 

a new chatbot, named ChatGPT, developed by the AI research and deployment 

company OpenAI4 . Within just one week from its release, over one million users 

interacted with the virtual interlocutor, generating mixed reactions. On the one side, 

enthusiastic comments highlighted the high quality and level of detail of the 

conversations, reported as “human-like”. To reach such performance, the natural 

language processing (NLP) model was trained by human trainers using both supervised 

and reinforcement learning. The chatbot does not only interact with the user providing 

information on specific topics, but can write or debug code and generate texts, like 

poems, song lyrics or assays, even emulating a specific style. Most importantly, 

ChatGPT is stateful, meaning that it can remember previous statements from the same 

conversation and proceed interacting with the user in a logical manner. Such a powerful 

technology raised great interest but also serious ethical concerns. Elon Musk referred to 

ChatGPT as “scary good”5 to the point that even the concept of creativity itself may 

 

 

4 https://openai.com/blog/chatgpt/%5C/ 

5 https://fortune.com/2022/12/11/elon-musk-history-with-chatgpt-maker-openai-as-told-by-the-ai-chatbot-

itself/ 
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need to be redefined6 . Despite several limitations still to be addressed, the release of 

ChatGPT raised the awareness of the general public towards AI. NLP and several other 

AI-based technologies have already penetrated the clinical environment with mixed 

success, attracting tech firms (e.g. Google and Microsoft), pharmaceutical companies 

(e.g. Roche) and several startups (Davenport and Kalakota, 2019) in a market that 

reached in 2020 a worth of over 29 billion USD7. For example, IBM’s Watson has been 

recently featured in the news for its “Oncology Expert Advisor” project, aimed at 

providing personalized treatment indications based on patient electronic health records 

and clinical databases. Despite the high expectations of the developers, the NLP model 

did not perform satisfactorily when tested in the clinics: Watson was reported to achieve 

very high accuracy when solving diagnostic tasks (90-96%) but obtained inconsistent 

percentages of concordance (49-83%) with human experts when dealing with time-

dependent information like therapy timelines (Strickland, 2019). Even though NLP 

models still show substantial limitations applied to the medical domain, several devices 

and software based on different AI paradigms were developed and FDA approved. To 

date, 521 AI/ML-enabled medical devices are authorized and marketed in the US, 75% 

of which are used to analyze radiology images, whilst -omics-oriented technologies lag 

behind 8. A historic milestone was set in 2021 by “Paige Prostate”, the first approved 

digital pathology-based tool to detect prostate cancer from patient biopsies. The fact that 

the majority of marketed AI-based technologies are currently geared towards images is 

not surprising. In order to perform satisfactorily, the algorithms need sufficient training 

data and digitalized medical images are routinely generated in the clinics. The interest 

for AI applied to image analysis has also been fueled by the advances in the algorithm 

designs and the use of graphical processing units. A revolutionary event has been the 

 

 

6 https://www.vox.com/future-perfect/2022/12/15/23509014/chatgpt-artificial-intelligence-openai-

language-models-ai-risk-google 

7 https://www.gminsights.com/industry-analysis/precision-medicine-

market?utm_source=prnewswire.com&utm_medium=referral&utm_campaign=Paid_prnewswire 

8 https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-

machine-learning-aiml-enabled-medical-devices 
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2012 ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2015), 

where a CNN halved the error rate of the previous winner of the image classification 

contest (Krizhevsky et al., 2012), approaching human-like recognition abilities. With 

such a result, the potential of DL ended in the spotlights, capturing the attention not 

only of the AI experts, but of the entire technology industry 9, making CNNs the new 

“workhorse for image classification” (Bhinder et al., 2021). In addition to image 

acquisition technologies, novel high-throughput platforms can generate high 

dimensional -omics datasets (e.g. whole-exome, whole-genome and targeted panels; 

transcription profiles from microarrays, RNA-seq, methylation profiles). Since the early 

2000s various ML learning approaches have been used to analyze separate molecular 

datasets and progressed in order to integrate multi-omics data (Bhinder et al., 2021). 

The availability of both data and algorithms, together with the combined efforts of 

experts from different knowledge domains, produced a rise in life science publications 

related to AI from 596 in 2010 to 12,422 in 2019 (Benjamens et al., 2020). Currently, at 

least one diagnostic or predictive AI/big data-based study is published per week, 

claiming equal or greater accuracy than humans (Davenport and Kalakota, 2019). This 

thesis places itself in this rapidly evolving scenario, in which AI strongly gained the 

general public’s attention. In particular, this work aimed at developing ML frameworks 

to solve prognostic or predictive classification tasks. Different ML paradigms were used 

to analyze data representing increasing levels of complexity, ranging from the 

expression of a limited number of markers in melanoma cell lines to full transcriptome 

profiles of breast cancer patients. 

3.2 Apoptosis-based data-driven models accurately predict 

treatment outcome and melanoma patient prognosis 

The first two studies presented in this dissertation focused on melanoma as a case study. 

Two different but complementary problems were addressed: prediction of treatment 

outcomes and prognostication. The skin represents an ideal organ for the development 

of novel AI-based approaches. Compared to other malignancies, obtaining samples 

 

 

9 https://www.economist.com/special-report/2016/06/23/from-not-working-to-neural-networking 
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from primary tumors and loco-regional metastases requires less invasive procedures, 

given the accessibility of the organ. Moreover, the introduction of novel targeted and 

immunotherapies in 2011 fostered the research of biomarkers and response signatures to 

predict treatment responses. (Vera et al., 2022). Advances in sequencing technologies 

improved the decision making, identifying those patients bearing the BRAF V600 

mutation. In these cases, treatment with BRAF and MEK inhibitors achieved high 

response rates (Ascierto et al., 2012; Caunt et al., 2015). More recently, immune 

checkpoint inhibitors entered the clinics improving overall survival at the expense of 

severe adverse effects (Livingstone et al., 2020). Unfortunately, the benefits of targeted- 

and immune-therapies can be transient with the cancer acquiring resistance (Gide et al., 

2018; Kakadia et al., 2018), therefore identifying novel therapeutic options is still a 

priority. In chapter 2.1 it was shown that targeting the apoptosis pathway with the 

TRAIL receptor agonist IZI1551 in combination with the Smac mimetic birinapant in a 

panel of melanoma cell lines represents a promising treatment strategy to induce cell 

death. Nevertheless, the responses were highly heterogenous with 12 out of 16 probed 

cell lines exhibiting synergistic responses. Therefore, a predictive pipeline was 

developed to identify case-specifically responders and non-responders based on the 

expression of 19 apoptosis proteins, representing the key regulators of the intrinsic and 

the extrinsic pathway. The framework consisted of a dimensionality reduction step 

performed through PCA, followed by LDA to separate the two classes. Even though in 

other settings these two algorithms may be considered redundant, PCA prior to LDA 

circumvents the problem of small datasets with features outnumbering samples. 

Applying PCA to the initial dataset reduces the number of variables while retaining the 

majority of the variance of the initial dataset (Yang and Yang, 2003). Similar PCA plus 

LDA pipelines were implemented to classify breast cancer vs. normal samples from the 

expression of 34 differentially expressed proteins (Liang et al., 2010) or hepatocellular 

carcinoma vs. healthy donors from intense label-free surface-enhanced Raman 

scattering spectra of serum samples (Gurian et al., 2021). To test the generalization 

capability of the pipeline, the LDA classifier trained with the expression patterns of the 

cell lines grown in 2D was challenged to discriminate responders and resistant samples. 

To do this, the protein expression of five cell lines grown in 3D and of cells derived 

from five melanoma metastases was measured and fed into the model in a transfer 

learning fashion, obtaining 100% and 80% classification accuracy respectively. These 

results confirmed that the patterns identified in cell lines were sufficiently robust to be 



Discussion 

   115 

transferred to independent test samples and held true in higher scale settings. In 

addition, this demonstrated that the selected cell line panel was diverse enough to 

capture the heterogeneity of real-world patient profiles (Bhinder et al., 2021). 

Comparable prediction performance was obtained after ranked feature selection, 

reducing the number of markers to 11 with XIAP scoring first. A pivotal role of XIAP 

in the response to a similar combination treatment was reported in breast cancer cell 

lines that developed TRAIL resistance. In this case, birinapant restored sensitivity due 

to its activity towards XIAP (Morrish et al., 2020). The reduced marker panel was 

additionally used to estimate the response rates of metastatic melanoma patients from 

their mRNA expression profiles retrieved from the TCGA repository. Thirty percent of 

patients were predicted as putative responders, a result in line with the ABBV-261 (also 

known as eftozanermin alfa) phase I clinical trial response rates. Similarly to IZI1551, 

ABBV-261 contains six TRAIL-R binding sites per molecule to maximize receptor 

clustering. In a first-in-human phase 1 study (NCT03082209), ABBV-261 was 

administered as a monotherapy to colorectal and pancreatic cancer patients showing 

acceptable safety and anticancer activity. In the dose optimization cohort, stable disease 

was recorded in 42% and partial response in 6% of patients respectively (LoRusso et al., 

2022). The recorded response rates confirm the potential of hexavalent TRAIL receptor 

agonist-based interventions and highlight the need for tools allowing the selection of 

those patients more likely to respond to the treatment. In conclusion, the first study 

described the successful implementation of a binary classifier to identify responders to 

IZI1551 and birinapant combination treatment. This tool could serve as a prototype for 

the development of apoptosis-based frameworks to identify potential responders.  

A similar data-driven modelling approach was described in chapter 2.2 to classify long- 

vs short-term melanoma survivors from the expression of nine regulators of the intrinsic 

apoptosis pathway. Combining digital image analysis, survival analysis and pattern 

recognition, a putative prognostic signature for metastatic melanoma based on the 

expression of Bax, Bak and Smac was identified. Prognosis assessment of melanoma 

patients relied on morphological features and follow-up of the primary tumor for a long 

time (Gershenwald et al., 2017). These parameters are often insufficient to identify 

potential high-risk individuals, with two out of three patients dying from melanoma 

even though being initially diagnosed with stage I or II disease (Morton et al., 2014). 

Therefore, signatures indicative of increased risk of recurrence or relapse can improve 

patient handling, especially for those individuals who do not qualify for or developed 
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resistance to novel targeted or immune therapies. In these cases, chemotherapeutic 

agents like DTIC are still in use, even if improvements in terms of disease progression 

and survival were observed only in a limited subset of patients (Guida et al., 2018). In 

order to identify a prognostic signature informative for advanced stage patients treated 

with chemotherapy, the expression of nine apoptosis proteins was quantified from 

biopsies of 58 patients assembled in TMAs. Following extensive antibody validation, an 

automated imaging pipeline was fine tuned to quantify protein abundances from the 

immunohistochemically stained tissue sections. The H-Scores generated by the digital 

pipeline correlated well with pathologists’ visual evaluation and provided higher 

granularity across the entire dynamic range. In the clinical practice, quantitative scoring 

of IHC samples is not routinely performed. Typically, a trained expert performs a 

qualitative evaluation of the tissue cores often with diagnostic rather than quantitative 

purpose. Visual quantitative scoring is time consuming, therefore is rarely performed on 

large scale studies, it is influenced by the experience level of the observer and has 

limited dynamic range. Digital image analysis overcomes these limitations, producing 

fast, objective and highly reproducible quantifications (Ram et al., 2021). Based on the 

H-Scores, survival analyses revealed that high expression of the proapoptotic proteins 

Bax, Bak and Smac significantly correlated with reduced PFS. These trends were 

further validated at transcript level in the independent TCGA-SKCM cohort. These 

results may seem counter-intuitive, given the assumption that apoptosis represents an 

obstacle to cancer development and high expression of pro-apoptotic proteins should 

facilitate cancer cells elimination. This may not always be the case, since an increasing 

body of literature showed that apoptosis may drive oncogenesis in certain conditions 

and that elevated expression of anti-apoptotic or reduced expression of pro-apoptotic 

proteins correlates with favorable prognosis (Castillo Ferrer et al., 2021). For example, 

high expression levels of Bcl-2 correlated with good prognosis in colorectal and breast 

cancer (Huang et al., 2017; Vargas-Roig et al., 2008), while high expression of Bax 

correlated with poor outcome in acute myeloid leukemia (Kulsoom et al., 2018). In 

addition, overexpression of Caspase-3 was reported in various cancers and was 

associated with shortened overall survival in several disease settings (Hu et al., 2014), 

suggesting noncanonical oncogenic roles (Boudreau et al., 2019). Given the results of 

the survival analysis, it can be speculated that chemotherapy treatment could exert a 

more potent effect on those tumors driven by lower apoptosis susceptibility, while being 

insufficient to induce cell death in tumors driven by other alterations that reduce 



Discussion 

   117 

treatment efficacy through other mechanisms. Finally, the PCA plus LDA framework 

was adapted to take as input the H-Scores generated by the digital imaging pipeline. The 

expression of the nine markers was sufficient to correctly classify 74% of the patients 

into long- and short-term survivors (PFS > 12 months and PFS < 12 months, 

respectively). The classification performance was further improved when reducing the 

input to Bax, Bak and Smac expression, without performing dimensionality reduction 

prior to LDA, achieving an AUC = 0.79. Taken together, these results point towards the 

integration of classification methods as an additional module for IHC digital image 

analysis pipelines. Albeit the number of markers in this study was limited to nine, novel 

multiplex IHC (mIHC) have the capability of measuring tens of biomarkers at the same 

time. These technologies require less material compared to classical IHC, that allows 

the detection of only one marker per slide, thereby retaining additional information such 

as colocalization and relative spatial distribution of different markers. Multiplex IHC 

relies on full image digitalization and can be coupled with DL techniques aimed at 

discovering hidden combinations of features impossible to be captured by the human 

eye, that can be correlated with clinical outcomes (Van Herck et al., 2021). The 

reliability of primary antibodies against specific antigens plays a crucial role in mIHC 

and the protocols have to be finely optimized to preserve the epitopes between staining 

cycles. High-throughput proteomic technologies such as mass spectrometry (MS) can 

circumvent these limitations. MS was successfully applied to FFPE tissue sections, 

yielding results comparable to fresh or frozen specimens (Fowler et al., 2011). As a 

result, millions of long-term stored FFPE cancer samples associated with long-term 

follow-up information could be potentially analyzed with in-depth proteomic methods 

(Coscia et al., 2020). In order to retain the spatial information, laser capture 

miscrodissection of FFPE tissues can be coupled with MS and applied to sample voxels 

as small as 10 μm × 50 μm × 50 μm (equivalent to the protein content of 10 cells with a 

radius of ∼8 μm), allowing high-resolution, in-depth proteome tissue mapping (Nwosu 

et al., 2022).  

In summary, the two data-driven models presented here were successfully applied to 

apoptosis expression profiles to identify predictive and prognostic signatures. These 

proof-of-concept tools can potentially be extended to higher-dimensional data or 

embedded in quantification pipelines to assist case-specific clinical decision making. 
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3.3 Transcriptomic data-to-image conversion coupled with DL-

based classification improves breast cancer prognostication 

In the third study, the object of the analysis was not limited to a specific pathway, but 

upscaled to high-dimensional, full transcriptome datasets. A DL-based architecture was 

developed to identify low- and high-risk breast cancer patients according to their 

mRNA expression profiles. These were converted into arrays of pixels and used as input 

to train the discriminator of an AC-WGAN-GP architecture. The trained discriminator 

(T-GAN-D) was subsequently used as a standalone prognostic classifier, showing 

improved stratification when compared to routinely used clinical biomarkers. 

Breast cancer was identified as an ideal use case given the availability of public 

datasets, namely the METABRIC and the TCGA-BRCA. These are among the largest 

and best curated cancer cohorts and have been extensively used to test classic ML 

applications (Liñares-Blanco et al., 2021). However, when dealing with such low 

sample size - high dimension datasets, classic ML algorithms are prone to severe 

overfitting and may require additional steps such as feature selection or dimensionality 

reduction to decrease the number of input variables (Liu, Wei, et al., 2017). While 

feature selection may be useful in some settings (e.g. biomarker discovery) significant 

hidden multi-variable patterns may be lost when discarding variables. Similarly, 

combining variables through dimensionality reduction leads to some degree of loss of 

information (Jia et al., 2022). Deep neural networks can overcome this limitation since 

the extraction of discriminative features is embedded in the architecture itself. Thus, DL 

algorithms can outperform ML techniques when analyzing large-scale and noisy 

datasets (Janiesch et al., 2021). In addition, risk predictors based on the expression of a 

limited number of transcripts can circumvent these problems and have already entered 

the clinics. GES are generally used to inform patient managing decisions when 

anatomo-pathological criteria alone are not conclusive. In particular, patients predicted 

at high-risk of recurrence or progression may receive neoadjuvant or adjuvant 

chemotherapy, while low-risk patients are spared from the adverse effects of potentially 

unnecessary chemotherapy (Foulon et al., 2020).  Commercialized GES are approved 

for use in sub-cohorts of patients with specific characteristics (e.g. tumor subtype, stage 

at diagnosis, age, menopausal state), therefore more generalized prognostic tools are 

still needed. In order to benchmark the stratification potential of T-GAN-D, the low- 

and high-risk classes were defined using the same criteria of published ROR-P 

categories, a research-based implementation of the Prosigna GES (Xia et al., 2019). 



Discussion 

   119 

According to this classification system, patients are categorized as high-risk if they 

experience recurrence, progression, metastases or cancer-related death within ten years 

from initial diagnosis. Applied to the METABRIC cohort, T-GAN-D outperformed well 

established clinical biomarkers (ER, PR and HER2 expression) and ROR-P. The 

performance of the classifier was further improved by adding to the training dataset 

patients from the independent TCGA-BRCA cohort. Despite different sequencing 

technologies used to generate the data and the different composition of the TCGA 

cohort, skewed towards advanced stage cancers, the T-GAN-D was able to extract and 

generalize features that improved patient stratification. High accuracy in indicating 

high-risk patients was also obtained when predicting the class of the smaller and 

imbalanced TCGA-BRCA dataset, combining the METABRIC cohort for training. 

These results were achieved without any batch-effect correction or normalization 

procedure, usually required by classic ML methods (Wang et al., 2018). This indicated 

that, in this case study, the conversion of mRNA expression profiles into images was 

sufficient for the T-GAN-D to achieve satisfactory generalization. The potential of the 

prototype tool can still be explored in future validation studies with transfer learning 

approaches. To this end, the standalone trained classifier could be used to predict the 

risk class of unseen samples retrieved from smaller public datasets or implemented in 

prospective studies with de novo generated data. Moreover, it would be interesting to 

test the influence of the arrangement of pixels into the converted images. 

Transcriptomic data are unstructured, meaning that spatial relationships between the 

variables do not exist. Classical ML algorithms are generally used in this case, since the 

features are considered to be independent, and their order of appearance in the input 

feature vector is not relevant. Algorithms like GANs and CNNs do consider the order of 

neighboring pixels to extract patterns, therefore the element arrangement has an impact 

on determining a class. While CNNs were already applied to gene expression data 

(Mostavi et al., 2020), very few studies explored the possibility of organizing the pixels 

in a biological meaningful way. Two studies aimed at discriminating tumor from normal 

samples of the TCGA PanCancer dataset using CNN architectures. Transcripts were 

organized according to their location on the chromosomes (Lyu and Haque, 2018) or to 

their similarity computed with t-distributed stochastic neighbor embedding (t-SNE) and 

kernel PCA (kPCA) (Sharma et al., 2019) . Finally, multiple layers representing multi -

omics data may be embedded in a single image. A concept idea could be considering the 

transcriptomic data as an image in grayscale, but additional channels and -omics 
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domains may be added, for example red for genomics, green for proteomics and blue for 

metabolomics. This visionary example is clearly limited by the availability of matching 

data, number of samples and, last but not least, computing power. 

3.4 From the desk to the bedside: AI’s challenges and 

perspectives 

The application of AI to a plethora of oncology related tasks has proven immense 

potential in research studies. Therefore, the question is not anymore if, but when AI will 

be fully integrated into clinical practice (Bhinder et al., 2021). To reach this goal, 

several obstacles still need to be overcome, both technical, and, equally relevant, 

ideological. One of the main concerns regarding AI models is their interpretability. 

While basic ML models (e.g. linear regression), are fully explainable, advanced DL 

algorithms rely on several hidden layers of data interactions. This lack of transparency 

makes it almost impossible to identify those features contributing to an output definition 

(e.g. the risk class of a patient) (Shao et al., 2022). Novel model implementations have 

been employed aiming to alleviate the ”black box” effect, such as interpretable DL 

frameworks (Fortelny and Bock, 2020) or explanation techniques (Ribeiro et al., 2016). 

Improved interpretability contributes to increase the perceived level of trust of the user 

towards an algorithm, especially when a clinical decision needs to be informed by the 

model (Antoniadi et al., 2021). A second major limitation of AI algorithms is 

robustness. An algorithm’s training procedure relies inevitably on available training 

data and may underperform when applied to test cohorts of individuals representing 

different ethnicities, genders or even socioeconomic backgrounds (Obermeyer et al., 

2019). For example, publicly available datasets commonly used for testing and 

validating AI models in cancer, such as the TCGA datasets, are biased towards patients 

with European ancestry, who possess race-specific genomic aberrations and may not be 

suited to draw general conclusions (Yuan et al., 2018). The healthcare environment 

represents another layer of intrinsic bias, since prevention initiatives, access to novel 

therapeutics and more frequent follow-ups heavily influence patient outcomes (Shreve 

et al., 2022). While methods to identify sources of bias are currently being developed 

(Vokinger et al., 2021), the construction of inclusive, diverse, interoperable datasets 

represents theoretically the ideal solution. To this end, anonymization and 

pseudonymization systems compatible with automated multi-institution integration have 

been proposed to comply with the European General Data Protection Regulation (Forti, 

2021) and the United States’ Health Insurance Portability and Accountability Act 
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(Stadler, 2021). The use of these data protection techniques though, may increase the 

complexity of the models and impact their explainability (Kourou et al., 2021). While 

data protection laws are currently well defined, a specific legislation to regulate AI, ML 

and big data is still lacking. In particular, specific rules that regulate legal 

responsibilities and accountability for potentially harmful, AI-informed decisions need 

to be established in order to protect patient rights (Shreve et al., 2022). Another critical 

aspect that needs updated regulations is model monitoring and maintenance. Currently, 

the FDA does not allow any modification of an algorithm after approval, “locking” the 

models. On the one side, “locked” models are safer because no potentially deleterious 

features can be added. On the other hand, these models cannot be updated to integrate 

novel rules (e.g. the introduction of new treatment options or clinical practice patterns) 

potentially leading to a decay of performance over time. Therefore, in order to take full 

advantage of AI algorithms in the clinic, these should be object of quality assurance 

(QA) and quality improvement (QI) efforts comparable to existing hospital QI 

initiatives (Feng et al., 2022). In addition to technical and ethical reasons, AI is also 

treated with skepticism due to concerns about the healthcare workforce displacement. 

To date, considering also the limited implementation of AI in the clinical practice, no 

jobs were reported to be eliminated due to AI. It is extremely unlikely that any task 

involving direct patient contact and especially empathy can be automated and replaced 

by a machine, while jobs involving analysis of digital information, such as radiology or 

pathology, may be automated to a certain extent in the future. First, these professionals 

do not just “read” images, but interact with other physicians and synergize to provide 

the optimal care. In addition, the models need labelled data provided by humans and 

need constant training and update, especially when new imaging technologies enter the 

market. Taking all of this into account, in the near future AI will be a tool to assist 

decision making, but will not be a replacement for a human expert. On the contrary, it is 

possible that new professional profiles oriented at working with AI may be created 

(Davenport and Kalakota, 2019).  

In conclusion, even though concepts like “digital twins” (Björnsson et al., 2019) and the 

full integration of AI tools in the clinics are still at their dawn, the pivotal role of data-

driven oncology is universally recognized. The technology improves constantly and has 

proven its potential in several use-cases and environments and will slowly but steadily 

be implemented into the clinical practice. With all due respect to the skeptics, let the 

machines learn.  
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Abstract
Second generation TRAIL-based therapeutics, combined with sensitising co-treatments, have recently entered clinical trials.
However, reliable response predictors for optimal patient selection are not yet available. Here, we demonstrate that a novel
and translationally relevant hexavalent TRAIL receptor agonist, IZI1551, in combination with Birinapant, a clinically tested
IAP antagonist, efficiently induces cell death in various melanoma models, and that responsiveness can be predicted by
combining pathway analysis, data-driven modelling and pattern recognition. Across a panel of 16 melanoma cell lines,
responsiveness to IZI1551/Birinapant was heterogeneous, with complete resistance and pronounced synergies observed.
Expression patterns of TRAIL pathway regulators allowed us to develop a combinatorial marker that predicts potent cell
killing with high accuracy. IZI1551/Birinapant responsiveness could be predicted not only for cell lines, but also for 3D
tumour cell spheroids and for cells directly isolated from patient melanoma metastases (80–100% prediction accuracies).
Mathematical parameter reduction identified 11 proteins crucial to ensure prediction accuracy, with x-linked inhibitor of
apoptosis protein (XIAP) and procaspase-3 scoring highest, and Bcl-2 family members strongly represented. Applied to
expression data of a cohort of n= 365 metastatic melanoma patients in a proof of concept in silico trial, the predictor
suggested that IZI1551/Birinapant responsiveness could be expected for up to 30% of patient tumours. Overall, response
frequencies in melanoma models were very encouraging, and the capability to predict melanoma sensitivity to combinations
of latest generation TRAIL-based therapeutics and IAP antagonists can address the need for patient selection strategies in
clinical trials based on these novel drugs.

Introduction

The immune system can eliminate cancer cells by activating
cell surface apoptosis-inducing death receptors, such as
tumour necrosis factor-related apoptosis-inducing ligand
receptors 1 and 2 (also known as death receptors 4 and 5
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(DR4/5)). Many cancer cells, including melanoma, over-
express these TRAIL-Rs, possibly due to an additional role
these receptors can play in supporting cellular proliferation
and invasion by autonomous TRAIL/TRAIL-R signalling
[1]. Developing TRAIL-based therapeutics has been a
highly active but only moderately successful translational
research field for many years, but recent progress in
designing superior TRAIL-based biologics and an improved
mechanistic understanding of drug-induced TRAIL-sensi-
tisation now provide novel avenues for new anti-cancer
therapies [2]. Latest generation TRAIL-derived therapeutics
overcome limitations of previous formulations by sig-
nificantly improving TRAIL receptor oligomerisation and
activation by higher valency, and by exerting significantly
prolonged serum half-lives. Highly promising variants are
hexavalent fusion proteins that couple two single-chain
TRAIL trimers and that outperform soluble human TRAIL
and TRAIL-R-targeting antibodies [3–5]. Cellular inhibitor
of apoptosis proteins (cIAPs) 1 and 2 can prevent TRAIL-
induced cell death by recruiting components of the linear
ubiquitin chain assembly complex (LUBAC) to aggregated
TRAIL-Rs. The activitiy of LUBAC promotes pro-survival
signalling and suppresses both apoptosis and necroptosis
signalling cascades [6]. Synthetic IAP antagonists, such as
Birinapant (TL32711), BV6 or LCL-161, therefore potently
sensitise cells to TRAIL-induced caspase-8 activation and
apoptosis [7, 8]. IAP antagonists bind to cIAPs and cause
conformational changes that allow dimerisation of cIAP
RING domains, auto-ubiquitylation and subsequent pro-
teasomal degradation [9]. In cells capable of activating
caspase-8, the cleavage of the Bcl-2 family protein Bid
initiates the formation of Bax/Bak pores in the outer mito-
chondrial membrane, followed by activation of downstream
caspases-9, -3, -7 and subsequent cell death [10]. Birinapant
also binds to and inhibits x-linked inhibitor of apoptosis
protein (XIAP), a major antagonist of caspases-9, -3, -7 that
is also involved in upstream regulation of cell death sig-
nalling, with nM affinity [11–13]. Inducing apoptosis
through the TRAIL pathway can proceed without the need
for transcriptional responses or protein neo-synthesis, pro-
cesses required for cell death induction by the majority of
cytotoxic therapeutics. This suggests that pre-treatment
amounts of proteins regulating apoptotic TRAIL signalling
might suffice to derive predictors for treatment
responsiveness.

Especially in highly heterogeneous cancers, such
malignant melanoma, predictive markers and validated
companion diagnostic tests developed from such markers
will be necessary to identify those patients likely to respond
to treatment [14, 15]. The incidence of cutaneous melanoma
continues to rise rapidly [16]. While chemotherapy-based
treatments provide little benefit for patients with metastatic
melanoma, more recent treatment options such as targeted

immuno-therapeutics, BRAFV600 and MEK inhibitors, and
combinations thereof in many cases can prolong survival or,
less frequently, induce lasting disease remission [17, 18].
However, substantial numbers of patients do not qualify for
these treatments or experience disease relapse, so that
additional treatment options, for example those building on
TRAIL-based therapeutics and IAP antagonists, can be
attractive alternatives should it become possible to reliably
predict treatment responsiveness.

Here we can report that expression profiles of TRAIL
pathway regulators can serve to predict responsiveness to
the combination of IZI1551, a prototypical example of a
translationally relevant latest generation TRAIL-based bio-
logic [3], and Birinapant (TL32711), a well-characterised
example for a translationally relevant IAP antagonist [8].
Across a diverse and heterogeneous melanoma cell line
panel, 3D multi-cellular tumour spheroids (MCTS) and
melanoma cells isolated from patient metastases, we
achieved >80% prediction accuracy. A proof of concept in
silico trial based on a cohort of 365 metastatic melanoma
patients indicates that IZI1551/Birinapant responsiveness
could be expected for up to 30% of tumours.

Materials and methods

Materials

TL32711 (Birinapant) was obtained from Active Biochem,
Germany. IZI1551 was produced and purified as described
before (Hutt et al. 2017). Q-VD-OPh was bought from
Selleckchem, Germany. cIAP1 and cIAP2 recombinant
proteins, required to determine absolute expression amounts
in melanoma cells, were bought from R&D, Germany.

Melanoma cell lines and freshly isolated melanoma
cells

Melanoma cell lines SkMel5 (ATCC; HTB-70), Malme 3M
(ATCC; HTB-64), SkMel2 (ATCC; HTB-68), SkMel147
(Memorial Sloan Kettering Cancer Center; NY), WM3060
(Wistar; WC00126), WM1791c (Wistar; WC00086),
MeWo (ATCC; HTB-65), Mel Juso (DSMZ; ACC74),
WM1366 (Wistar; WC00078), WM115 (ATCC; CRL-
1675), WM35 (Wistar; WC00060), WM3211 (Wistar,
WC00045), WM793 (Wistar, WC00062), WM852 (Wistar,
WC00065), WM1346 (Wistar, WC00121) and WM3248
(Wistar, WC00081) were purchased from ATCC (Manna-
sas, VA, USA), DSMZ (Braunschweig, Germany) or the
Wistar Institute (Philadelphia, PA, USA). Six cell lines
carried activating BRAF mutations (WM35, WM793,
WM3248, WM115, SkMel5 and Malme 3M), six cell lines
NRAS mutations (WM1366, WM1346, SkMel147,
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SkMel2, Mel Juso, WM3060), one cell line a CDK4
mutation (WM1791c), one cell line carried a c-KIT muta-
tion (WM3211), one cell line carried both NRAS and
BRAF mutations (WM852) and one cell line was BRAF/
NRAS/c-KIT/CDK4 wildtype (MeWo). All cell lines were
purchased as authenticated STR-profiled stocks directly
from the vendors. Freshly isolated melanoma cells (M10,
M20, M32, M34, M45) were obtained from metastases and
prepared for experiments by the Department of Dermatol-
ogy, University of Dresden, Germany. Two metastases
carried BRAF activating mutations (M10 and M45), while
three carried activating NRAS mutations (M20, M32 and
M34). Further materials (M51_1, M52_2 and M54) were
obtained for extended validation (M54, BRAF/NRAS
wildtype; M51_1, M51_2 carried BRAF activating muta-
tions). Cell isolates were obtained as part of routine resec-
tions at University Hospital Dresden, under the auspices of
the local Ethics Committee (ethical approval number
EK335082018). Informed consent was obtained from all
subjects. Cells were maintained in RPMI-1640 (Thermo
Fisher Scientific, Germany) supplemented with 10% (v/v)
FBS Brazil One (PAN Biotech, Germany) at 37 °C and 5%
CO2. Mycoplasma testing was regularly conducted.

Culturing of 3D spheroids

Cells were harvested and diluted to the concentration of 104

cells/mL in RPMI-1640/10% FBS with the addition of
0.24% Methyl Cellulose (Sigma Aldrich, Germany). 250
cells per drop were placed into the lid of a Petri dish filled
with PBS. Spheroids were incubated for 10 days at 37 °C
and 5% CO2. The medium was exchanged every other day.
Slower growing Malme 3M cells and freshly obtained
metastatic melanoma cells (M34) were seeded at 500 cells
per drop and incubated for 2 weeks.

Flow cytometry

Semi high-throughput cell death measurements

Cells were washed, trypsinised and stained with propidium
iodide (PI, Sigma Aldrich, Germany) at 1.33 µg/mL for 10
min. The measurements were performed on a high
throughput flow cytometer (BD LSRII SORP) using the
488 nm laser for excitation, while emission was recorded at
617 nm. Flow cytometry data were analysed using Cyflogic
v. 1.2.1 (CyFlo Ltd, Finland). All experiments were per-
formed in triplicates and in n= 3 independent repeats.

Annexin V-GFP or APC/PI staining

Cells were harvested and washed in PBS and Annexin V
Binding buffer (Biolegend, Germany). Cells were stained

with Annexin V-APC (Biolegend, Germany) (0.1%) or
Annexin V-GFP (made in-house, 0.1%) and PI (Biolegend,
Germany) (1 µg/mL). Measurements were conducted on a
BD FACS Canto II flow cytometer using 561 nm excitation
(emission from 600 to 620 nm) (PI) or 640 nm excitation
(emission from 655 to 685 nm) (APC). Alternatively,
measurements were conducted with a MacsQuant flow
cytometer using 488 nm excitation (emission from 655 to
730 nm (PI), and emission from 500 to 550 nm (GFP)).
Flow cytometry data were analysed either with the BD
FACS Diva software (BD Biosciences, USA) or with
Flowing software (Turku Centre for Biotechnology,
Finland).

TRAIL receptor measurements

Cells were harvested and blocked in ice-cold PBA buffer (1 ×
PBS, 0.25% BSA and 0.02% Sodium Azide). Surface death
receptors were probed with the following antibodies for 1 h
at 4 °C: mouse anti-TRAIL R1/TNFRSF 10A (1:100, R&D
Systems), mouse anti-TRAIL R2/TNFRSF 10B (1:100,
R&D Systems), mouse anti-TRAIL R3/TNFRSF 10C
(1:100, R&D Systems) mouse anti-TRAIL R4/TNFRSF
10D (1:100, R&D Systems), purified mouse IgG1 (1:100,
R&D Systems) and purified mouse IgG2b (1:100, R&D
Systems). Secondary goat anti-mouse FITC conjugated
antibody (1:50, Dako, Biozol, Germany) was added for
45 min at 4 °C. Cells were analysed in a MacsQuant flow
cytometer using 488 nm excitation (emission was recorded
at 500-550 nm). The surface expression of death receptors
was calculated by calibration against quantification beads
(QIFIKIT, Biozol, Germany), comparing the mean FITC
signal of cells to calibration signals. Data were analysed
with Flowing Software.

Western blot analysis

Protein quantification

Cells were trypsinised, washed in PBS, centrifuged and
lysed in lysis buffer (150 mM NaCl, 1 mM EDTA, 20 mM
TRIS, 1% Triton x-100, pH= 7.6) with addition of phos-
phatase inhibitor (PhosSTOP, 20×, Roche, Germany) and
protease inhibitor cocktails (cOmplete, 20×, Roche, Ger-
many). Spheroids were additionally sonicated. The total
protein concentration was determined with Bradford assay.
20 µg of protein were resolved on Nu-PAGETM 4–12%
Bis–Tris Midi gels (Invitrogen, Thermo Fisher Scientific,
Germany) at 200 V, 400 mA for 40 min, followed by
transfer to nitrocellulose membranes using an iBlot device
(Invitrogen, Thermo Fisher Scientific, Germany). The
membranes were blocked in 0.5× Blocking Solution
(Roche, Germany) for 1 h at room temperature. The
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following primary antibodies were used for overnight
incubations at 4 °C: mouse anti-Apaf-1 (1:1000; BD
Transduction Laboratories), rabbit anti-Bak (1:1000; CST),
rabbit anti-Bax (1:1000, CST), mouse anti-Bcl2 (1:1000;
BD Transduction Laboratories) rabbit anti-Bcl-xL (1:1000,
CST), mouse anti-Bid (1:1000, BD Transduction Labora-
tories), rabbit anti-Caspase 3 (1:1000; CST), mouse anti-
Caspase 8 (1:1000; CST), rabbit anti-Caspase 9 (1:1000,
CST), rabbit anti-cIAP1 (1:1000, Abcam), rabbit anti-cIAP2
(1:1000, Abcam), mouse anti-cFLIP (1:500, Abcam),
mouse anti-cFLIP (1:500, Enzo), mouse anti-Cytochrome C
(1:1000, BD Transduction Laboratories), rabbit anti-FADD
(1:1000, Santa Cruz), rabbit anti-Mcl1 (1:1000, CST),
mouse anti-PARP (1:1000, BD Transduction Laboratories),
mouse anti-SMAC/DIABLO (1:1000, BD Transduction
Laboratories), mouse anti-XIAP (1:1000, BD Transduction
Laboratories), mouse anti-XIAP (1:1000, CST), mouse anti-
actin (1:10000, CST). Subsequently, membranes were
washed 3 × 10 min in TBST and incubated with secondary
antibody (goat anti-rabbit IRDye 680 (1:10000) or goat
anti-mouse IRDye 800 (1:5000) (LI-COR Biosciences) for
15 min at room temperature, followed by 10 min washing
with TBST. Signals were captured on an Odyssey LiCor
Imaging System. The quantification of proteins was per-
formed on raw 16 bit images using Odyssey V3.0 software
(LI-COR Biosciences). The intensities of the fluorescent
signals were corrected for loading.

Data processing and analysis for predictor
identification

All data processing and analysis were performed using a
customised version of a previously developed pipeline [19].
The script was developed for MATLAB 2017b (The
Mathworks, UK), equipped with the statistical toolbox.
Prior to statistical analysis, protein data were mean-centred
and scaled, dividing by the respective standard deviation. A
principal component analysis (PCA) was performed on the
standardised dataset and the PCs with an eigenvalue >1
were used for subsequent analyses. Linear discriminant
analysis (LDA) was applied to objectively assess the
accuracy of response class separation in the space defined
by the first six PCs. Then, leave-one-out cross-validation
(LOOCV) was applied iteratively to the 16-cell line panel to
assess predictive capacity. For each iteration, data from 15
cell lines were used as a training set to define the PC space,
and one test cell line was subsequently positioned according
to its protein expression profile. LDA was then applied to
determine if the test cell line was placed in the correct
responsiveness sub-space. The response of 3D grown and
patients-derived primary cell lines was predicted with the
same workflow, using the predictor obtained from the data
set of the 16-cell lines panel. The optimal predictive protein

subset (reduced predictor) was determined using the Select
attributes panel of the WEKA workbench (Version 3.8.2
[20]). A ranking of the proteins was obtained using the
CorrelationAttributeEval attribute evaluator with Ranker
search method and 10-fold cross-validation mode. This
attribute selection method evaluates the merit of each pro-
tein individually by calculating the Pearson’s correlation
between the individual protein and the responsiveness class.
The attribute selection step was performed using the pro-
teins quantified in the 2D cell lines panel. The complete
prediction pipeline was iteratively applied taking into
account the first six PCs, and removing the protein with the
lowest rank at each iteration. Statistical analyses not
described above were performed with GraphPad Prism 7
(GraphPad Software).

In silico trial

The protein expression patterns of the melanoma cell line
panel were used to estimate the protein expression profiles
in melanoma tumours of 472 patients for which tran-
scriptome data are deposited in the cancer genome atlas
melanoma cohort (TCGA-SKCM). Normalised mRNA
expression data (Upper Quartile normalised Fragments per
Kilobase of transcript per Million mapped reads, log2
(FPKM-UQ+1)) generated by the Genomic Data Commons
(GDC-NIH) were downloaded from the UCSC-XENA
browser (Available at: https://xena.ucsc.edu/. Accessed: 4
February 2019). Data interpolation was performed using
Point-to-point curve creation in GraphPad Prism 7
(GraphPad Software). Standard curves were generated using
minimum and maximum values of protein expression range
(cell line panel) and TCGA-SKCM back transformed
mRNA expression data. For response predictions, PCA was
applied to the data for the n= 11 predictor proteins in the
cell lines dataset, followed by LDA-based definition of
responsiveness and resistant subspaces, and subsequent
positioning of n= 365 TCGA derived melanoma metas-
tases in the PC space according to their estimated protein
values.

Results

IAP antagonist Birinapant sensitises a subset of
melanoma cell lines to apoptosis induced by the
2nd generation TRAIL-based biologic IZI1551

To study the responsiveness and the response hetero-
geneities of melanoma cells to IZI1551, a novel and trans-
lationally relevant hexavalent TRAIL receptor agonist [3],
to the IAP antagonist TL32711/Birinapant, a compound
currently evaluated in clinical trials [21], or combinations
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thereof, we employed a diverse set of sixteen cell lines (see
materials and methods). For each cell line, cell death was
determined at 15 treatment conditions, using semi-high

throughput flow cytometry. Cell lines varied in their
response to the treatments, ranging from high resistance to
high sensitivity (Fig. 1a). Many cell lines responded
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synergistically to the combination treatment (synergistic
responders; WM1366, SkMel5, SkMel2, Malme3M, Mel
Juso, WM3060, WM115, WM35, SkMel147, WM793,
WM1346, WM3248), as determined using Webb’s frac-
tional product method, whereas others (WM3211, MeWo,
WM1791c, WM852 cells) failed to do so (low responders)
(Fig. 1b).

Birinapant had on-target activity in both synergistic
responders and low responders, since cIAP1 protein
amounts were efficiently and rapidly lost upon single
agent and combination treatments (Fig. 1c). Neither single
nor combination treatment induced detectable amounts of
TNFα secretion (not shown), a response to IAP antago-
nists that in rare cases can contribute to autocrine cell
death induction [22]. The amounts of XIAP remained
largely unchanged, except for the combination treatment
in synergistically responding Mel Juso cells (Fig. 1c).
XIAP is a known caspase-3 substrate [23], and corre-
spondingly caspase inhibitor Q-VD-OPh restored XIAP
amounts, indicating that IZI1551/Birinapant induces
apoptosis in responder cell lines such as Mel Juso
(Fig. 1c). This was further supported by the processing of
procaspases 8 and 3, and by the caspase-dependent clea-
vage of Bid and PARP in Mel Juso cells (Fig. 1d). In
poorly responding MeWo cells, instead, PARP cleavage
was modest and detectable only as a transient pulse
(Fig. 1d, e). In line with these observations, caspase
inhibitor Q-VD-OPh prevented IZI1551 and IZI1551/
Birinapant induced cell death in Mel Juso cells and other
synergistic responders, such as SkMel2 and Malme 3M
(Fig. 1e).

Taken together, these results show that Birinapant sen-
sitises a subset of human melanoma cell lines to cell death
induced by IZI1551, a 2nd generation TRAIL-based ther-
apeutic, and that apoptosis appears to be the primary cell
death modality in synergistic responders.

Expression patterns of apoptosis proteins allow
predicting IZI1551/Birinapant responsiveness

The combination of IZI1551/Birinapant can induce
apoptotic cell death without the need for protein neo-
synthesis. We therefore next explored if baseline expres-
sion amounts of apoptosis proteins carry information on
the responsiveness of melanoma cell lines to the combi-
nation of IZI1551/Birinapant. Pre-treatment amounts of
19 key pro- and anti-apoptotic players that regulate the
apoptotic TRAIL signalling pathway was determined by
quantitative immunoblotting at high dynamic range or, for
death receptors, by cell surface staining (Fig. 2a; Sup-
plemental Fig. 2). Expression patterns varied considerably
between the proteins and across the cell lines. To explore
possible correlations between protein expression patterns,
we conducted a PCA. A total of six principle components
(PCs), all with an eigenvalue >1 and thus fulfilling the
Kaiser criterion [24], were required to capture approxi-
mately 80% of the data variance (Fig. 2b), highlighting
that pre-treatment expression patterns were highly het-
erogeneous. Similarly, the associated weight coefficients
indicated that individual proteins contributed hetero-
geneously to the first six PCs, without obvious positive or
negative correlations between pro- and anti-apoptotic
proteins (Fig. 2c). A visualisation of the cell line positions
within the space defined by the first three PCs corre-
spondingly failed to identify visually distinct clusters of
cell lines (Fig. 2d). In conclusion, these data demonstrate
high expression heterogeneity between proteins and
between the cell lines.

Interestingly, colour coding the cell lines according to
synergistic or low responsiveness indicated that syner-
gistically responding and poorly responding cell lines
occupy distinct regions within the plotted space (Fig. 2e).
LDA confirmed this visual impression, with 14/16 cell
lines (88%) correctly separated into their respective
response categories. These results, therefore, indicate that
even though apoptosis protein expression is highly het-
erogeneous across the cell lines, the expression patterns
nevertheless carry information on the capability to
respond synergistically to the combination of IZI1551/
Birinapant.

We next tested if the protein expression patterns would
be sufficient to predict responsiveness or resistance to
IZI1551/Birinapant in melanoma cell lines. To this end, we
performed LOOCV based on the approach described above.
PCAs were conducted for sets of 15 cell lines, followed by
LDAs to define the hyperspace regions of responsiveness
and resistance. Missing cell lines were subsequently posi-
tioned into the LDA-segmented PC spaces according to
their individual expression patterns of apoptosis regulators.
If the tested cell line positioned into the correct response

Fig. 1 IAP antagonist Birinapant sensitises a subset of melanoma
cell lines to IZI1551-induced apoptosis. a Melanoma cell lines
respond heterogeneously to single and combination treatment of
IZI1551 and Birinapant. Cells were treated for 72 h followed by flow
cytometric determination of cell death (propidium iodide positivity).
Data shown are means from n= 3 independent experiments.
b Synergy scores for treatment combinations, as calculated by Webb’s
fractional product method. c Treatment-induced changes in IAP
amounts, analysed by Western blotting. Actin served as loading con-
trol. Asterisks indicate unspecific bands. Representative results from n
= 3 independent experiments are shown. d Apoptotic signalling was
studied 24 h after single and combination treatment with IZI1551,
Birinapant and Q-VD-OPh (30 µM). Actin served as a loading control.
Representative results from n= 3 independent experiments are shown.
e Melanoma cell lines die by apoptosis upon combination treatment.
Cell lines were treated with 1 nM IZI1551, 1 µM Birinapant, with or
without 30 µM Q-VD-OPh. Cells were stained with PI and Annexin V-
APC and analysed by flow cytometry. Shown are mean values+ SD
of three independent experiments.
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region, the prediction was considered successful (Fig. 3a).
Overall, LOOCV was sufficient to correctly predict the
responsiveness of 13 out of 16 cell lines (81%) (Fig. 3b),

indicating that the measured protein panel allows predicting
responsiveness to IZI1551/Birinapant on a case-by-case
basis with high accuracy.

Fig. 2 Expression patterns of apoptosis proteins separate resistant
from synergistically responding cell lines. a Baseline expression of
pro- and anti-apoptotic proteins of the TRAIL pathway. Circles sum-
marise 684 quantifications, and circle sizes represent relative expres-
sion amounts of the proteins between cell lines. Protein amounts are
provided in Supplemental Table 1. b Percentage of the variance of the
original dataset explained by PCs. PCs with an eigenvalue >1 were
retained for further analysis. Accumulated “variance explained” is
plotted in black. c Weight coefficient table. Bars represent the

contributions of the respective proteins to the different PCs. d Cell
lines positioned in a multidimensional space according to their indi-
vidual protein expression profiles. The PC space shown was defined by
the first three PCs. Circle sizes decrease with distance from the
observer to aid 3D visualisation. e Colour coding indicates respon-
siveness of cell lines to IZI1551/Birinapant (orange= low response;
blue= synergistic response). Table insert indicates accuracy of spatial
segmentation between low and synergistic responders.
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Responses to IZI1551/Birinapant can be predicted
for 3D growth conditions

We next studied if responsiveness to IZI1551/Birinapant
can be predicted for cells grown as MCTS. While more
demanding as a cell culturing method, spheroids provide the
advantage of higher microenvironmental complexity at
nevertheless well-controlled experimental conditions [25].
Protein quantification from spheroids of five cell lines able
to form MCTS demonstrated that the transition from 2D cell
culture to 3D spheroid culture substantially affected protein
expression patterns (Fig. 4a, b, Supplemental Fig. 3). A
number of pro- as well as anti-apoptotic proteins were
considerably downregulated, such as Bid, Bcl-2, Procaspase
3, FADD and Mcl-1. cFLIP and TRAIL-R1, instead,
appeared to accumulate, and a number of other proteins
changed heterogeneously in their expression amounts
across spheroids of different cell lines (Fig. 4b). While a
reductionist reasoning based on individual protein changes
would intuitively suggest that IZI1551/Birinapant respon-
siveness of 3D MCTS should differ from 2D cultures, the
combined complexity of altered protein expression prevents
drawing conclusions prior to experimental validation. We
therefore used the PCA/LDA-based approach to generate
testable predictions on MCTS responsiveness. Positioning
the MCTS forming cell lines into the PC space according to
their respective pathway proteome revealed that their
coordinates differed substantially from their 2D cultivated
counterparts (Fig. 4c). Interestingly, despite the substantial
changes in relative protein amounts, all cell lines were
predicted to remain within their respective response class
(Fig. 4c, colour-coded open circles). To test these in silico
predictions, we measured cell death in spheroids treated
with IZI1551, Birinapant or the combination thereof.
Indeed, the predictions could be confirmed for all five cell
lines, with SkMel2, WM1366, Mel Juso and Malme 3M
responding to the combination treatment of IZI1551/Bir-
inapant, and MeWo cells remaining resistant in the 3D
growth scenario (Fig. 4d). TNFα was not secreted upon
growth in 3D or in response to the treatments, as tested for

Mel Juso and MeWo cells (not shown). Overall, we there-
fore conclude that a PCA/LDA-based prediction frame-
work, parameterised with protein expression and treatment
responsiveness data from 2D cell cultures, is sufficient to
predict responses to IZI1551/Birinapant for 3D spheroid
growth conditions.

Responses to IZI1551/Birinapant can be predicted
for melanoma cells freshly isolated from metastases

For a translationally more relevant setting, we next tested if
IZI1551/Birinapant responses can be predicted for mela-
noma cells freshly isolated from metastases. Following
quantification of apoptosis regulatory proteins (Fig. 5a,
Supplemental Fig. 4), cells were positioned into the PC
space. Predictions were generated as described above and
cells were colour coded according to their expected
IZI1551/Birinapant responsiveness. M10, M20, M32 and
M45 cells were predicted to respond to IZI1551/Birinapant
combination treatment, whereas M34 cells were expected to
respond poorly (Fig. 5b). Validation experiments confirmed
the predictions on high responsiveness of M10, M32 and
M20 cells and poor responsiveness of M34 cells (Fig. 5c).
We therefore conclude that high predictions accuracies can
also be achieved for cells freshly isolated from clinical
materials.

A reduced predictor maintains performance and
estimates response prevalence to IZI1551/
Birinapant in metastatic melanoma

The framework to predict responsiveness to IZI1551/Bir-
inapant builds on an otherwise unbiased selection of nine-
teen regulators known to be involved in canonical apoptosis
signal transduction for this treatment combination. We next
determined the contribution of the individual protein vari-
ables towards accurate predictions. To do so, we used the
attribute selection feature of the WEKA workbench [20] to
compute the “merit” of each protein, based on the protein
expression profiles and the responsiveness data of the
melanoma cell line panel. From this, we obtained a ranking
of protein variables according to the degree of association
with treatment responsiveness (in sequence of decreasing
merit: XIAP, Procaspase 3, Cytochrome C, Mcl-1, cIAP1,
Bax, Bid, Bcl-xL, Smac, FADD, Bak, cIAP2, TRAIL-R1,
Procaspase 9, Apaf-1, TRAIL-R2, Procaspase 8, cFLIP and
Bcl-2). We then iteratively performed predictions for the
cell line panel, with the protein with the lowest merit
removed upon each iteration. Performance was largely
maintained (14/16 correct predictions for the cell line panel)
when limiting the predictor to the eleven proteins with the
highest merit (Fig. 6a). The reduced predictor correctly
determined treatment responsiveness in 4/5 MCTS growth

Fig. 3 Expression patterns of apoptosis proteins allow predicting
IZI1551/Birinapant responsiveness. a Simplified 2D schematic
showing the workflow for determining prediction accuracy by com-
bined PCA/LDA/LOOCV. Following PCA, an LDA separates the PC
space into areas for synergistic responsiveness and low responsive-
ness. A cell line of unknown responsiveness (empty circle) is then
placed into the segmented PC space according to its protein expression
profile, with the positioning serving as the response prediction.
Experimental responsiveness data served to validate predictions. b 2D
projection of LOOCV results for the 16 cell lines. The responsiveness
of the test cell line was predicted (blue for synergistic, orange for low
responsive). The empty circle represents the test cell line being placed
into the PC space. Circle sizes decrease with distance from the
observer to aid 3D visualisation. Table insert summarises prediction
accuracy.
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scenarios and in 4/5 biopsy-derived fresh melanoma cells
(Fig. 6b, c). Further validation of the reduced predictor was
conducted using nine additional and independently analysed

samples, including three 2D and six 3D growth scenarios.
Also in these samples prediction accuracies of approxi-
mately 80% were achieved (Fig. 6d–f, Supplemental
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Fig. 5). Overall, we noted strong influences of XIAP and
procaspase-3, direct interactors and regulators of type I
signalling competency during extrinsic apoptosis [26, 27],
and various members of the Bcl-2 family in the predictor
(Fig. 6a). The ability to predict responsiveness to IZI1551/
Birinapant in cell lines and ex vivo cultures raises the
question if responses can be expected in patients, and if so,
how frequent such responses might be. We therefore esti-
mated the clinical response prevalence under the assump-
tion that favourable drug pharmacokinetics and
pharmacodynamics allow both drugs to reach their targets.
Expression profiles of predictor variables were deduced
from transcriptome data of metastatic melanoma patients
(n= 365, TCGM-SKCM cohort, Supplemental Table 2) by
mapping to protein expression ranges measured experi-
mentally. Following positioning into the LDA segmented
PC space defined by the predictor, 111 out of 365 patients
were expected to respond to treatment (Fig. 6g). The
expectation of approximately 30% responders needs to be
interpreted in the context of predictor accuracy. The 80%
prediction accuracy achieved in the cell line panel is com-
posed of a predictor sensitivity of 92% and a specificity of
75%, so that the predictor strength lies in recalling true
positives. Taken together, these results demonstrate that
highly accurate predictions can be made for IZI1551/Bir-
inapant responsiveness with a reduced set of input variables,
and that in up to 30% of clinical cases an on target
responsiveness could be expected, as estimated from a
representative cohort of metastatic melanoma patients.

Discussion

Here, we report that protein expression signatures of
TRAIL pathway regulators can serve to predict

responsiveness to the combination of IZI1551 and Bir-
inapant, targeted therapeutics with high translational
relevance [7, 28]. High accuracies for response predic-
tions were achieved for melanoma cell lines, for 3D
multi-cellular melanoma spheroids and for cells newly
isolated from melanoma metastases (approximately 80%
prediction accuracy). Protein prioritisation resulted in a
reduced marker that, when applied in a proof of concept
in silico trial, suggests that IZI1551/Birinapant respon-
siveness could be expected in up to 30% of tumours in
patients with metastatic melanoma.

Previous TRAIL-based therapeutics were tested in
translational settings and performed unsatisfactorily [28].
Among the reasons for limited efficacy of TRAIL-R
agonistic antibodies in the clinic were short serum half-
lives and the requirement for immune cell-mediated, Fcγ-
dependent clustering of therapeutic antibodies to induce
efficient TRAIL-R1/R2 oligomerisation and caspase-8
activation [29]. 2nd generation TRAIL-based therapeutics
address these problems, for example by increased valency
and by using Fc regions as dimerisation and half-
life extension modules [3, 4, 28]. IZI1551, consisting of
two tri-valent single-chain TRAIL fragments cross-linked
via the Fc part of an IgG antibody, is a prototypical
example for this principle and potently induces apoptosis
in vivo in cells moderately responsive to traditional
TRAIL-based therapeutics [3]. However, in many cases
sensitising co-treatments are required to ensure efficient
apoptosis induction following TRAIL-R1/R2 activation.
IAP antagonists are potent sensitisers to extrinsic apop-
tosis [21], suppressing the formation of LUBAC and
the associated initiation of pro-survival signalling. IAP
antagonists also sensitise to apoptosis induced by intrinsic
cytotoxic stimuli, such as genotoxic therapeutics in
pancreatic, colon and brain cancer [30–32], where cIAPs
likely impair caspase-8 binding and activation on cyto-
solic ripoptosomes [33, 34].

While both 2nd generation TRAIL-R1/R2 agonists as
well as IAP antagonists are currently tested in clinical
trials (NCT03082209 [5, 21]), currently no studies test
their combination. In addition, validated biomarkers pre-
dictive of treatment responsiveness do not exist for
TRAIL-based therapeutics, IAP antagonists or the com-
bination of both. The lack of reliable molecular markers to
predict responses to TRAIL might indeed have con-
tributed to the poor performance of TRAIL-based ther-
apeutics in the clinical setting, since no patient selection
could be performed [35]. The absence of response pre-
dictors for IAP antagonists likewise affects current clin-
ical trials based on this class of therapeutics [21]. Notably,
for both TRAIL-R1/R2 agonists as well as for IAP
antagonists, the expression amounts of their direct mole-
cular targets, i.e. TRAIL-R1/R2 amounts and cIAP

Fig. 4 Responses to IZI1551/Birinapant can be predicted for 3D
growth conditions. a Quantification of pro- and anti-apoptotic pro-
teins in cell lines grown as MCTS (red and green, respectively). Cir-
cles summarise 285 quantifications and circle sizes represent mean
protein quantities determined from at least n= 3 independent experi-
ments. Protein amounts are provided in Supplemental table 1. b
Heatmap showing the fold change in protein expression between 3D
and 2D culture. Black colour indicates absence in either 2D or 3D
conditions. c Positioning of cell lines grown in 3D in the PC space
defined by 2D cultured cell lines. Empty circles indicate positions of
cell lines grown in 3D. Arrows indicate the change of position in the
PC space caused by altered protein expression between 2D to 3D
growth conditions. Circle colours reflect expected responsiveness
(blue) or resistance (orange), based on the LDA segmented PC space.
The circle size decreases with distance from the observer to aid 3D
visualisation. d Experimental validation of MCTS responsiveness to
IZI1551/Birinapant treatment. MCTS of cell lines were treated with
IZI1551 (1 nM) and Birinapant (1 µM) or their combination for 24 h.
Cell death was measured by flow cytometry (PI uptake). Data show
means of n= 3 measurements.
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proteins, appear insufficient to derive response biomarkers
[21, 36, 37]. This indicates that treatment efficacy is
determined further downstream within the signal

transduction network and/or too complex to be
captured by traditional or reductionist biomarker dis-
covery approaches.
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With IAP antagonists removing the apical suppression of
extrinsic apoptosis induction, we hypothesised that the
expression amounts of key regulatory proteins of the
TRAIL signal transduction network can serve to predict
responsiveness. Indeed, predictions on IZI1551/Birinapant
responses, based on the expression patterns of key TRAIL
pathway regulators, were highly accurate. Being able to
predict responsiveness also in a micro-environmentally
more complex 3D setting and in cells newly isolated from
patients indicates that concerns about using continuously
cultured cell lines to develop a predictor for IZI1551/Bir-
inapant responsiveness can be alleviated, possibly because
protein expression alone is sufficient to derive treatment
responsiveness. Complex genetic characterisations and
careful selection of cell line and in vivo models might,
however, be warranted for studies on treatment scenarios
that are highly dependent on disease-relevant mutations,
and accordingly the genetic representation of the disease
[38–40].

We initiated our study using 19 proteins considered
key regulators of IZI1551/Birinapant induced signal
transduction. We could reduce this panel to an 11 protein
signature which, compared to traditional biomarkers, still
seems rather large. However, this likely reflects the
complexity of apoptosis signal transduction and regula-
tion, as well as the disease heterogeneity observed in
melanoma. The development of complex protein
quantity-based biomarkers for routine clinical application
still faces major technological challenges [41, 42]. Tra-
ditional immunohistochemical analyses of tumour biop-
sies typically provides insufficient dynamic range and
limited calibration possibilities to derive reliable quanti-
tative data. Alternative approaches, such as reverse phase
protein arrays and mass spectrometric analyses of clinical
specimen can overcome these hurdles, but are difficult to
embed into routine pathology and laboratory workflows
in the clinical environment. To take intra-tumour cell-to-

cell heterogeneity into account, an aspect likely crucial to
refine our predictor in a translational setting, technology
such as mass cytometry could provide the possibility
to capture multiplexed protein markers at the single cell
level [43]. However, this technology is difficult to apply
to tissue specimen. Developments in the field of
high dynamic range fluorescence-based analysis of FFPE
materials, coupled to multiplexing technologies that
allow re-staining of tissue slices [44, 45], might
more conveniently and routinely allow obtaining quanti-
tative protein expression data, especially where entire
cellular proteomes are not required.

It is noteworthy that none of the melanoma models
studied lacked TRAIL-R1/R2 or caspase-8 expression,
and TRAIL-Rs or caspase-8 amounts did not appear
crucial to predict responsiveness. The amounts of these
proteins therefore possibly do not limit IZI1551/Bir-
inapant responsiveness in melanoma. A recent study
in models of non-small-cell lung cancer and pancreatic
ductal adenocarcinoma interestingly indicates that cancer
cells might become addicted to TRAIL receptor expres-
sion, with autonomous TRAIL-R signalling contributing
to disease progression [1]. Additionally, proliferating
cells might rely on a cell death-independent role
of caspase-8 in contributing to chromosome alignment
during mitosis [46]. In the predictor, the expression
of XIAP and caspase-3 strongly contributed to accurate
response predictions. Both proteins play crucial roles
in controlling cellular life/death decisions during apop-
tosis execution [10, 47]. XIAP additionally holds in
check the “type I” link by which caspase-8 can activate
caspase-3 [26, 27, 48]. However, kinetically the mito-
chondrial route still seems preferred in cells capable
to die by type I signalling [26], most likely due to the
strong amplification of apoptosis signalling by Bcl-2
family dependent mitochondrial outer membrane per-
meabilisation and apoptosome formation. Indeed, various
Bcl-2 family members, such as Mcl-1, Bax, Bid, Bcl-xL
and Bak, display prominently in the predictor. Mcl-1
and Bcl-xL negatively regulate Bax/Bak pore formation,
while Bid is a primary substrate of both caspase-8
and caspase-3, with truncated Bid inhibiting Mcl-1
and Bcl-xL, and activating Bax and Bak [49]. Taken
together, the interplay of caspases-3, XIAP and Bcl-2
family members, initiated by non-limiting amounts of
TRAIL receptors and caspase-8, appears to play a central
role in melanoma cell death upon exposure to IZI1551/
Birinapant.

Taken together, this study represents a successful
proof of concept for developing a stratification marker for
malignant melanoma in response to a novel, clinically
relevant combination treatment based on a 2nd generation
hexavalent TRAIL variant (IZI1551) and a representative

Fig. 5 Responses to IZI1551/Birinapant can be predicted for cells
isolated from melanoma metastases. a Quantification of apoptosis
regulatory proteins in cells derived from melanoma metastases. Red
coloured circles represent pro-apoptotic and green circles anti-
apoptotic proteins. Circles summarise 285 quantifications, and cir-
cle sizes represent mean protein quantities determined from at least
n= 3 independent experiments. Protein amounts are shown in
Supplemental table 1. b Positioning of melanoma cells from patient
metastases in the PC space defined by 2D cultured cell lines. Empty
circles indicate positions of patient cells. Circle colours reflect
expected responsiveness (blue) or resistance (orange), based on the
LDA segmented PC space. The circle size decreases with distance
from the observer to aid 3D visualization. c Experimental validation
of primary melanoma cell responsiveness to IZI1551/Birinapant
treatment. Cells were treated as indicated for 24 h. Cell death was
measured by flow cytometry (PI uptake). Heat maps show the mean
of n= 3 independent experiments.
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IAP antagonist, Birinapant. This can form the basis
for future translational and clinical studies in
which combination treatments of 2nd generation TRAIL-

based therapeutics and IAP antagonists will be tested and
for which optimal patient selection strategies are
required.
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Low expression of pro-apoptotic proteins Bax,
Bak and Smac indicates prolonged progression-
free survival in chemotherapy-treated metastatic
melanoma
Cristiano Guttà1, Arman Rahman2,3, Claudia Aura2,3,4, Peter Dynoodt2,5, Emilie M. Charles4,6,7, Elodie Hirschenhahn4,6,7,
Jesuchristopher Joseph2,6, Jasper Wouters 2,5,8,9, Ciaran de Chaumont2,6, Mairin Rafferty2, Madhuri Warren4,
Joost J. van den Oord5, William M. Gallagher2,3 and Markus Rehm 1,6,7,10,11

Abstract
Despite the introduction of novel targeted therapies, chemotherapy still remains the primary treatment for metastatic
melanoma in poorly funded healthcare environments or in case of disease relapse, with no reliable molecular markers
for progression-free survival (PFS) available. As chemotherapy primarily eliminates cancer cells by apoptosis, we here
evaluated if the expression of key apoptosis regulators (Bax, Bak, Bcl-2, Bcl-xL, Smac, Procaspase-9, Apaf-1, Procaspase-3
and XIAP) allows prognosticating PFS in stage III/IV melanoma patients. Following antibody validation, marker
expression was determined by automated and manual scoring of immunohistochemically stained tissue microarrays
(TMAs) constructed from treatment-naive metastatic melanoma biopsies. Interestingly and counter-intuitively, low
expression of the pro-apoptotic proteins Bax, Bak and Smac indicated better prognosis (log-rank p < 0.0001, p= 0.0301
and p= 0.0227 for automated and p= 0.0422, p= 0.0410 and p= 0.0073 for manual scoring). These findings were
independently validated in the cancer genome atlas (TCGA) metastatic melanoma cohort (TCGA-SKCM) at transcript
level (log-rank p= 0.0004, p= 0.0104 and p= 0.0377). Taking expression heterogeneity between the markers in
individual tumour samples into account allowed defining combinatorial Bax, Bak, Smac signatures that were
associated with significantly increased PFS (p= 0.0002 and p= 0.0028 at protein and transcript level, respectively).
Furthermore, combined low expression of Bax, Bak and Smac allowed predicting prolonged PFS (> 12 months) on a
case-by-case basis (area under the receiver operating characteristic curve (ROC AUC)= 0.79). Taken together, our
results therefore suggest that Bax, Bak and Smac jointly define a signature with potential clinical utility in
chemotherapy-treated metastatic melanoma.

Introduction
Melanoma, an aggressive neoplasm originating from the

malignant transformation of melanocytes, rapidly metastasises

if not surgically removed at an early stage. Although novel
and costly targeted treatment options and immu-
notherapies have significantly improved the management
of metastatic disease1–3, patients in poorly funded
healthcare environments still rely on chemotherapy as the
primary first-line treatment. Likewise, chemotherapy
remains in frequent use as a second- or last-line treatment
option in otherwise refractory or in recurrent disease.
Even though treatments based on the DNA-alkylating
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agent dacarbazine have been the chemotherapeutic stan-
dard of care for metastatic melanoma for > 30 years,
chemotherapy may benefit only few patients4,5. The
median survival of patients treated with dacarbazine-
based chemotherapy lies in the range of 6–9 months6–8,
with no reliable molecular markers available that would
allow to identify those patients in which disease pro-
gression is substantially delayed and which therefore
might have benefited from this treatment.
Apoptosis is the main cell death mechanism by which

the body tries to eliminate transformed and therefore
potentially cancerous cells. Apoptosis likewise is the pri-
mary cell death modality induced by dacarbazine and
other DNA-alkylating agents. DNA alkylation induces the
intrinsic apoptosis pathway, as was shown experimentally
in various melanoma model systems9,10. Pro- and anti-
apoptotic Bcl-2 family members, such as Bax, Bak and
Bcl-2, Bcl-xL, respectively, regulate the mitochondrial
apoptosis signalling hub11. Activated Bax and Bak form
pores in the outer mitochondrial membrane, leading to
the release of pro-apoptotic factors, such as Smac, into the
cytosol12. Subsequently, the execution phase of apoptosis
is initiated, during which proteases such as initiator
caspase-9 and effector caspase-3 are activated in an Apaf-
1-dependent manner. These proteases then rapidly exe-
cute apoptotic death, but can be inhibited by the anti-
apoptotic protein XIAP, which itself is targeted by Smac13.
Impaired apoptosis signalling is a hallmark of cancer14,
based on which it is reasonable to assume that melanoma
cells are highly apoptosis resistant. Indeed, experimental
studies suggest that melanoma cells either are highly
chemoresistant or acquire resistance and thereby evade
apoptotic cell death15,16. However, it is less clear if per-
turbed expression of apoptosis regulators is indeed asso-
ciated with patient prognosis in the clinical scenario.
Various studies immunohistochemically assessed indivi-
dual apoptosis regulators as potential protein biomarkers
for melanoma progression and patient survival17,18.
Unfortunately though, the majority of studies lack con-
trols and validation information that would support the
specificity of the used reagents and staining protocols. Not
surprisingly, results obtained so far remained largely
inconclusive or even contradictory17. Additionally, apop-
tosis regulators at key signalling hubs frequently act
cooperatively and redundantly, so that it can be specu-
lated that single molecule makers might not be sufficiently
robust for clinical use.
In this study, we therefore assessed the expression of

nine apoptosis regulators (Bax, Bak, Bcl-2, Bcl-xL, Smac,
Procaspase-9, Apaf-1, Procaspase-3 and XIAP) in meta-
static melanoma tissues by immunohistochemistry (IHC),
using antibodies that passed rigorous validation. Inter-
estingly, low expression of Bax, Bak and Smac associated
with prolonged progression-free survival (PFS), a finding

confirmed at transcriptional level in an independent
cohort. Combining Bax, Bak and Smac expression with a
pattern recognition approach allowed predicting indivi-
dual patient PFS with high accuracy. Taken together, our
results identified a putative combinatorial prognostic
signature with potential clinical utility for chemotherapy-
treated metastatic melanoma.

Materials and methods
Ethics approval and consent to participate
The use of the patient cohort was approved by the

Medical Ethical Committee and Institutional Review
Board (OG032) of the University Hospitals of KU Leuven
(reference number ML10659) and by the UZ Leuven
Biobank (reference number S56609).

Antibodies
The following antibodies were used for immunoblotting

and immunohistochemistry. A rabbit polyclonal beta
Actin antibody (Santa Cruz Biotechnology; sc-81178);
Apaf-1 (Cell Signalling; D5C3), Bak (Abcam; ab32371),
Bax (Millipore; ABC11), Bcl-2 (Dako; MO887), Bcl-xL
(BD labs; 610212), Procaspase-3 (Cell Signalling; 9662),
Procaspase-9 (Cell Signalling; 9502), Smac (Cell Signal-
ling; 2954), XIAP (BD labs; 610762).

Cell culturing
For antibody validation, the following human cancer cell

lines were used: A375, HCT-116, HCT-116 (Bax/Bak)−/−,
HCT-116 Smac−/−, HCT-116 XIAPo/−, HeLa, Jurkat
Casp-9−/−, MCF-7, PM-WK, Preyer, SK-Mel-94. Cell
lines were obtained from ATCC, DSMZ or provided by
colleagues (Professor Martin Leverkus, University of
Heidelberg; Professor Richard Youle, National Institutes
of Health, USA; Professor Richard Vogelstein, The Johns
Hopkins University School of Medicine, USA; Professor
Ingo Schmitz, University of Braunschweig, Germany;
Professor Sebastian Wesselborg, University of Düsseldorf,
Germany; Professor Maria Soengas, National Cancer
Research Centre, Spain) and described before19–24. Cell
lines were cultured in RPMI-1640 medium (Sigma-
Aldrich) or Dulbecco's Modified Eagle Medium (DMEM;
Lonza, Slough, UK) supplemented with 4 mM L-glutamine,
4.5 g/l glucose, 10% (w/v) heat-inactivated fetal bovine
serum (Sigma-Aldrich), 100 U/ml penicillin and 100 µg/ml
streptomycin (Sigma-Aldrich). Cells were grown at 5%
CO2 and 37˚C.

Immunoblotting
For whole cell extracts, cells were collected at 400 g for

3 min and washed with phosphate-buffered saline. Cells
were re-suspended in lysis buffer (62.5 mM Tris-HCl, pH
6.8, 10% (v/v) glycerine, 2% (w/v) sodium dodecyl sulfate
(SDS), 1 mM phenylmethylsulfonyl fluoride, 1 μg/ml
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pepstatin A, 1 μg/ml leupeptin, and 5 μg/ml aprotinin)
and heated at 95 °C for 20min. Protein content was
determined with the Pierce Micro-BCA protein assay
(Pierce, Northumberland, UK). An equal amount of pro-
tein (20 μg) was loaded onto SDS-polyacrylamide gels.
Proteins were separated at 100 V for 2.5 h and then
blotted to nitrocellulose membranes (Protean BA 83;
2 μm; Schleicher & Schuell) in transfer buffer (25 mM Tris,

192mM glycine, 20% methanol (v/v), and 0.01% SDS) at
18 V for 60min. The blots were blocked with 5% non-fat
dry milk in Tris-buffered saline with Tween 20 (TBST)
(15 mM Tris-HCl, pH 7.5, 200 mM NaCl, and 0.1% Tween
20) at room temperature for 1 h. Membranes were incu-
bated with the primary antibodies at room temperature
for 2 h or overnight at 4˚C. Membranes were washed with
TBST three times for 5 min and incubated with
peroxidase-conjugated secondary antibodies (Jackson
Laboratories) for 1 h. Blots were washed and developed
using the enhanced chemiluminescence detection reagent
(Millipore, Ireland).

Preparation of cell pellets for IHC
Cells were grown to a confluence of 50–75%. Cells were

then detached and suspended in 10% phosphate-buffered
formalin at room temperature and fixed for 4–6 h. Fixed
cells were centrifuged at 500 × g for 3 min, washed once
with 1 × PBS and pelleted again. A 1% agarose solution
was prepared in 1 × PBS and cooled down to 40 °C in a
water bath. The cell/agarose mixtures were transferred
into plugs and let solidify. The agarose plugs were pro-
cessed into paraffin blocks using standard tissue proces-
sing. Cell pellet samples (typically 0.6 mm in diameter)
were then used for analysis.

Tissue microarrays (TMAs)
TMAs of formalin-fixed paraffin-embedded (FFPE)

tumour samples derived from 74 melanoma patients
treated with Dacarbazine (alone or in combination with
cisplatin or carboplatin), were generated. The TMA
contained duplicate cores obtained from 14 primary
melanomas, 62 metastatic melanomas and adjacent nor-
mal tissue. Demographics, clinical and follow-up infor-
mation were available for the entire cohort. A total of n=
58 samples, representing untreated metastatic melanoma
patients, were analysed for this study (Table 1).

Immunohistochemistry
IHC staining on FFPE cell pellets and tissue microarrays

(TMA) was performed using an automated IHC platform
(Link-48, Dako, Glostrup, Denmark) according to the
manufacturer’s instructions. Sections (4 µm in thickness)
were deparaffinised and antigen retrieval was performed
at 95 °C for 15min in appropriate buffer (high pH buffer,
pH 9.0; low pH buffer, pH 6.0) using the PT-Link module
(Dako, Glostrup, Denmark). A polymer-based detection
system (EnVision Flex, Dako) was used with Permanent
Red as the chromogen, resulting in a red colour endpoint
that contrasted well with brown melanin. Sections were
counterstained with haematoxylin. Positive and negative
controls (omission of the primary antibody and replace-
ment with the IgG-2a isotype control, mouse-ab18443;
IgG isotype control, rabbit-ab208334, Abcam, Cambridge,

Table 1 Summary of demographics and clinical
information of the patients included in the study.

Characteristics

Gender Value %

Male 30 51.7

Female 28 48.3

Age at surgery (years) Value %

< 65 44 75.9

≥ 65 and < 75 8 13.8

> 75 6 10.3

Metastatic melanoma location Value %

Distant skin site 10 17.2

Distant organ 17 29.3

Distant lymph node 28 48.3

Distant subcutaneous site 3 5.2

Metastasis stage Value %

M1a 8 13.8

M1b 8 13.8

M1c 42 72.4

Primary melanoma type Value %

Cutaneous 46 79.3

Mucosal 1 1.7

Ocular 2 3.4

Unknown 9 15.5

Treatment Value %

Dacarbazine 3 5.2

Dacarbazine, Cisplatin 54 93.1

Dacarbazine, Carboplatin 1 1.7

Overall survival t0= sample

collection

t0= chemotherapy

start

Median (range) in months 19 (2–126) 11 (0–87)

Progression-free survival t0= sample

collection

t0= chemotherapy

start

Median (range) in months 10 (1–100) 4 (0–83)
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UK) were included in each run. In addition, a Haema-
toxylin and Eosin (H&E) staining was performed for all
slides of the TMAs, enabling pathologists to check for
TMA core integrity, quality and tumour content.

Core quality assessment
A pathological review of the H&E-stained sections and

TMA blocks was conducted to define the quality of
individual tissue cores and to assess the percentage of
tumour tissue in each core. Each core was individually
observed to determine whether there were any tissue
artifacts (poorly fixed tissue, folded tissue, no tumour
present, no tissue present, foreign material introduced at
embedding, poor tissue microscopic details) or staining
artifacts (knife marks across section, holes, clumps of
stain precipitate, air bubbles), which would have com-
promised either the manual or automated image analysis.
All quality assessments were independently validated by a
second pathologist. Cores with compromising artifacts or
with insufficient percentage of tumour cells were exclu-
ded from further analyses.

Manual and automated scoring
IHC materials were first viewed at low power to judge

overall quality and distribution of staining. Subsequently,
staining frequency (total % stained cells) and staining
intensity (intensity of stained cells; 0= no staining, 1+=
weak staining, 2+=moderate staining, 3+= strong
staining) were determined. Histoscores (H scores) were
then calculated as follows:

Hscore ¼ 1 ´%cells 1þ þ 2 ´%cells 2þ þ 3 ´%cells 3þ

The manual scoring was performed on images acquired
with the Aperio ScanScope XT slide scanner (Aperio
Technologies, Vista, CA) used at × 20 magnification with
a maximum pixel resolution of 0.5 µm. ImageScope
analysis software (Aperio Technologies, Vista, CA) was
used for viewing and analysing digital images. Aperio
Spectrum software was used to generate individual tissue
spot images for automated analysis. The Colour Decon-
volution algorithm (Aperio Technologies) was used to
obtain quantitative values for average positive intensity
(average intensity of pixels positively stained, graded from
0, 1, 2, 3) and total percent positive (percentage of positive
stained area in relation to total area of the core).
Histoscores were calculated as described above.

Survival analysis
PFS was calculated as the time between the surgery that

procured the sample and the date of disease progression
or of a new metastatic event in a different location.
Pathologist’s and automated H score were used to sepa-
rate patients with high (above median) and low (below

median) expression of each marker protein included in
this study. In case more than one tissue core with satis-
factory quality was available for a single patient, the
average H score was considered. Log-rank testing was
used to compare the two groups over a follow-up time of
36 months. Log-rank testing for trends was used when
comparing three groups. Kaplan–Meier survival curves
were generated and compared using GraphPad Prism
(version 4.03). For analysis of data stored in the cancer
genome atlas (TCGA), normalised mRNA expression data
(upper quartile normalised Fragments per Kilobase of
transcript per million mapped reads, log2(FPKM-UQ+
1)) generated by the Genomic Data Commons (GDC-
NIH) were downloaded from the UCSC-XENA brow-
ser25,26. The SKCM cohort, unlike other TCGA data sets,
contains mainly metastatic samples27 (370 out of 477),
some of which were collected a long time after initial
diagnosis of the primary melanoma28. In order to corre-
late mRNA expression to progression of metastatic dis-
ease, the ‘new tumour event free survival' was calculated as
the time between sample collection and the first new
tumour event (in case of multiple new tumour events
during the follow-up time) or, in case of no new tumour
events, death. If a new tumour event was reported before
the date of sample collection, the patient was excluded
from the sub-cohort. Follow-up data and associated
clinical records were downloaded from Broad GDAC
Firehose29 (new tumour event time from initial diagnosis)
and UCSC-XENA browser25,26 (overall survival from
initial diagnosis), respectively. Sample collection infor-
mation are available through the GDC data portal30,31

(time from initial diagnosis to sample collection). As
treatment information are not routinely available for all
deposited metastatic melanoma cases, we downselected
the cohort to stage III/IV melanoma patients diagnosed
with metastatic melanoma before 2010, to ensure that
chemotherapy-based treatment options would have been
the standard first line of treatment (n= 79 patients). An
optimised chi-square-based cutoff was determined to
divide patients with high and low BAX, BAK1 and DIA-
BLO (Smac) mRNA amounts, and the two groups were
compared by log-rank test. The cutoff for each marker
was obtained by selecting the cohort separation that
resulted in the highest chi-squared value with the function
survdiff of the library survival in R (version 3.4.0). Median
cutoff-based results are reported in Supplementary Fig. 4.
Log-rank test for trend was used when comparing three
groups. Kaplan–Meier survival curves were generated and
compared using GraphPad Prism (version 4.03).

Data-driven modelling and pattern recognition
A data-driven modelling approach based on a previously

published method32 was developed to predict patients’
PFS using H scores generated by automated image
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analysis as input. The pipeline was developed for
MATLAB (version 2016a, The Mathworks, UK), equipped
with the statistical toolbox. Prior to the analysis, patients
with a complete protein panel (n= 50) were divided into
two PFS categories: PFS > 12 months (n= 17) and PFS <
12 months (n= 33). After standardisation of the initial
data set, a principal component analysis (PCA) was per-
formed and the principal components (PC) with an
eigenvalue > 1 were considered for subsequent analyses.
The patients were positioned in the 3D space defined by
the first three PCs according to the scores computed by
PCA, and linear discriminant analysis (LDA) was used to
test the class segmentation accuracy. To evaluate the
predictive potential of the framework, leave one out cross
validation (LOOCV) followed by LDA was applied itera-
tively to the data set, using 49 patients as training set and
one patient as test at each iteration. LDA was also applied
to a data set reduced to three proteins (Bax, Bak and
Smac), skipping the initial dimensionality reduction step.
PCA and LDA were performed using the functions pca
and classify, respectively. The predictive performance of
the two classification models was compared by computing
the area under the curve (AUC) with the function
perfcurve.

Results
Low expression of pro-apoptotic proteins Bax, Bak and
Smac correlates with increased PFS in chemotherapy-
treated metastatic melanoma
Genotoxic chemotherapy based on DNA-alkylating

agents such as dacarbazine induces intrinsic apoptosis,
preferentially in proliferating cells such as cancer cells.
Intrinsic apoptosis is governed by the family of Bcl-2
proteins and the subsequent signalling network of the
apoptosis execution phase. We therefore tested key
players of this apoptosis signalling modules as potential
prognostic markers in metastatic melanoma. In total, we
analysed the expression of six pro-apoptotic (Bax, Bak,
Smac, Procaspase-9, Apaf-1, Procaspase-3) and three
antiapoptotic proteins (Bcl-2, Bcl-xL, XIAP) in metastatic
melanoma samples spotted on TMAs. Only treatment-
naive samples from metastases were used for subsequent
analyses. Information such as patient demographics, his-
topathology and staging, treatment and follow-up are
provided as Supplementary Table 1 and are summarised
in Table 1. Following comprehensive antibody validation
(Supplementary Fig. 1A–D), IHC stains for n= 58 tumour
metastases matching the inclusion criteria were analysed
from the TMAs. Only tissue samples passing independent
pathologist quality control for tissue integrity and staining
artifacts were considered for subsequent analyses (Sup-
plementary Table 2). TMAs scans were then used to
generate mark-up images of the tissue cores, followed by
automated quantification of staining intensities (see

methods). The dynamic range of the staining intensities
allowed to confidently define quartiles of negative, low,
medium and high staining for protein expression (see Fig. 1a
for examples for Bax, Bak and Smac). From these, H scores
were calculated for each tumour sample (Fig. 1b), thereby
allowing comparison with best practice manual scoring
(see Fig. 2). To test if protein expression amounts and
patient prognosis correlate, we performed survival ana-
lyses for all nine apoptosis regulatory proteins.
Kaplan–Meier curves representing PFS from the date of
sample procurement showed that low amounts of pro-
apoptotic proteins Bax, Bak and Smac significantly cor-
related with better prognosis (Fig. 1c). With the exception
of Procaspase-9, which associated with better prognosis in
this analysis, none of the other proteins (Bcl-2, Bcl-xL,
Apaf-1, XIAP and Procaspase-3) individually correlated
with better or worse prognosis (Supplementary Fig. 2).
Overall, these results surprisingly indicate that low
amounts of apoptosis-inducing proteins Bax, Bak and
Smac are linked to a better prognosis in chemotherapy-
treated metastatic melanoma.

Manual scoring confirms association of low Bak, Bax and
Smac protein expression with improved PFS
To further validate our findings, we next conducted best

practice manual scoring of the stained TMAs. H scores for
all marker candidates were obtained from two indepen-
dent pathologists, both blinded to patient PFS. Plotting
H scores obtained by automated analysis against manual
H scores, we noted that manual scores strongly clustered
at values of ~ 200, whereas automated scoring provided
higher granularity across the entire dynamic range
(Fig. 2a, Fig. 1b, Supplementary Table 2). This highlights
that manual scoring appears limited in differentiating
within the range of medium staining intensities and fre-
quencies. Nevertheless, median separation of patient
samples based on manual H scores provided survival
curves for Bax, Bak and Smac staining that were very
similar to those obtained by automated scoring (Fig. 2b).
In contrast, the manual scores for all other proteins failed
to separate patients with high and low PFS (Supplemen-
tary Fig. 3). These results therefore demonstrate that the
Bax, Bak and Smac signatures are robust enough to also
be captured in routine manual IHC-based biomarker
discovery workflows.

Combined low expression of Bax, Bak and Smac is a
combinatorial marker candidate for improved PFS
During apoptosis, Bax and Bak form pores in the outer

mitochondrial membrane, leading to Smac release into
the cytosol. Owing to the significant correlation of the
single proteins with PFS and their direct relationship
within the apoptosis signal transduction cascade, we
checked if combinations of the three markers could
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improve prognostication of PFS. For the n= 50 patients
for which H scores for Bax, Bak and Smac were available,
we noted that combined low or high staining for all three
markers was restricted to subsets of the tumour samples
(Fig. 3a). We therefore divided the cohort into three
groups of combined high expression, heterogeneous
expression and combined low expression. PFS-based
survival analysis of the three groups demonstrated that
patients harbouring tumours with combined low expres-
sion of Bax, Bak and Smac showed significantly improved
PFS, extending beyond 36 months for 50% of this sub-
group (Fig. 3b). In contrast, when only one or two mar-
kers where expressed in low amounts, PFS improved only

slightly (median PFS= 10 months vs. 8.5 months when all
three markers were highly expressed) (Fig. 3b). Overall,
this shows that Bax, Bak and Smac could jointly define a
signature that strongly associates with PFS, with com-
bined low expression indicating improved PFS.

TCGA-SKCM-based analysis validates the prognostic Bax,
Bak, Smac signature
To independently validate the prognostic potential of

Bax, Bak and Smac expression, we analysed tran-
scriptome data of n= 79 metastatic melanoma patients
from the TCGA-SKCM cohort (Table 2). The survival
analysis revealed that low BAX, BAK1 and DIABLO

Fig. 1 Low expression of pro-apoptotic proteins Bax, Bak and Smac correlates with increased progression-free survival (PFS) in
chemotherapy-treated metastatic melanoma. a Tissue cores stained by IHC for Bax, Bak and Smac. Representative original (left panels) and mark-
up images (right panels) of cores with low, medium and high expression of the three proteins are shown. The mark-up images were quantified to
compute automated H scores. Table insert shows cohort information. b Distribution of H scores across the analysed melanoma tissue cores. Only
stained cores that passed the quality control were retained for subsequent analyses (Bax n= 100 cores from 52 patients, Bak n= 100 cores from 51
patients, Smac n= 104 cores from 53 patients). c Survival analysis based on H scores for Bax, Bak and Smac. Median H scores were used as cutoff to
separate the patients with high (red line) and low (blue line) expression of each protein. Log-rank test was used to compare the Kaplan–Meier curves
for progression-free survival from the date of sample procurement.

Guttà et al. Cell Death and Disease          (2020) 11:124 Page 6 of 12

Official journal of the Cell Death Differentiation Association



(SMAC) mRNA amounts significantly correlate with
better prognosis (Fig. 4a). As previously observed at
protein level, the expression pattern between BAX,
BAK1 and DIABLO was heterogeneous across the
cohort (Fig. 4b). Patients with low tumour mRNA
amounts across all three markers had a significantly
better prognosis than patients in which at least one
marker was highly expressed (Fig. 4c). Taken together,
these results recapitulate in an independent cohort the
trends observed at protein level, confirming the

prognostic potential of Bax, Bak and Smac as a com-
binatorial marker in chemotherapy-treated metastatic
melanoma.

Pattern recognition allows predicting patient prognosis
We next applied a data-driven pattern recognition

approach to study if the Bax, Bak, Smac signature would
be sufficiently strong to predict patient PFS from protein
expression profiles32. First, H scores from automated
TMA analysis for all marker candidates were subjected to

Fig. 3 Combined low expression of Bax, Bak and Smac is a combinatorial marker candidate for improved progression-free survival.
a Expression profiles based on the H scores of Bax, Bak and Smac (blue: automated H score below median, red: above median) in n= 50 patients.
b Survival analysis for the cohort based on the expression profiles shown in a. Log-rank test for trend was used to compare three Kaplan–Meier
curves representing patients with low Bax, Bak and Smac H scores (blue) vs. mixed and high expression (black and red, respectively).

Fig. 2 Manual scoring confirms association of low Bak, Bax and Smac protein expression with improved PFS. a Correlation between
automated and manual H scores. Manual scores were obtained from two independent pathologists blinded to patient follow-up. Correlation was
analysed using Spearman’s rank correlation coefficient. b Median H scores were used as cutoff to separate the patients with high (red line) and low
(blue line) expression of each protein. Log-rank test was used to compare the Kaplan–Meier curves for progression-free survival from the date of
sample procurement.
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a PCA (applied to the 50 patient samples for which the
complete nine protein panel was available). Patient
tumours were positioned into a 3D space defined by the
first three PCs and colour-coded to represent high or low
PFS (PFS > 12 months and PFS < 12 months). Visually
inspecting the scatter plot, we noticed a tendency of
patients with high or low PFS to occupy distinct sub-
regions of the PC space (Fig. 5a). To objectively assess the
quality of this segregation, we applied LDA. LDA seg-
mentation encouragingly separated 72% of the patients
into their correct prognosis sub-space. Next, we tested if
these patterns were sufficiently strong to also predict the
PFS category on a case-by-case basis. To do so, we per-
formed leave one out cross validation (LOOCV). At each
iteration, the PFS category of one patient was predicted
after using the remaining 49 patients as a training set that
defined the PCA subspaces for high and low PFS. The
panel of nine apoptosis regulatory proteins allowed to
correctly predict high or low PFS in 74% of patients. Since
our previous survival analyses (Fig. 1) showed that only
Bax, Bak and Smac consistently correlated with PFS, we
likewise tested if a similarly good or even better per-
forming classifier can be derived from those three markers
alone. Indeed, cluster segmentation and prediction accu-
racy tended to improve to 80% and 78% accuracy,

respectively (Fig. 5b). In conclusion, as highlighted by the
comparison of receiver operating characteristic (ROC)
curves (Fig. 5c), classification based on the Bax-Bak-Smac
signature alone is sufficient to obtain high prediction
accuracies for patient PFS, whereas the remaining protein
markers do not carry meaningful information to improve
these predictions. Overall, this strengthens the evidence
for low Bax, Bak and Smac expression being associated
with better prognosis in metastatic melanoma and points
out a route by which pattern recognition allows generat-
ing predictions for patient prognosis.

Discussion
Apoptosis is the major cell death modality by which

anticancer therapies eliminate malignant neoplastic cells. In
this study, we assessed if proteins that regulate the two
major apoptosis decision hubs, namely the apoptotic
engagement of mitochondria and the terminal execution
phase of apoptosis33, alone or in combination can serve to
prognosticate PFS in metastatic melanoma patients under-
going dacarbazine-based chemotherapy. We found that low
rather than high expression of the pro-apoptotic proteins
Bax, Bak and Smac correlates with higher PFS, and that
these three proteins in combination can serve as a combi-
natorial prognostic marker with a promising AUC of 0.79.
Owing to the central role of apoptosis in tumour cell

elimination, the finding that low expression of pro-
apoptotic proteins correlated with better prognosis in
metastatic melanoma contradicted our expectations.
However, counter-intuitive relationships between the
expression patterns of apoptosis inducers or antiapoptotic
genes or proteins were reported previously. For example,
high expression of Bax was found to correlate with an
increased risk for relapse in childhood acute lympho-
blastic leukaemia34. High expression of Bax, measured as
transcript and protein amounts, respectively, has also
been associated with poor prognosis in acute myeloid
leukaemia and non-Hodgkin lymphoma35,36. Similarly,
studies in which high expression of the Bax antagonist
Bcl-2 has been reported to correlate with better prognosis
can be found for colorectal, breast, glioma, gastric and
non small cell lung cancer37–43. Bax and Bcl-2 are the
best-characterised members of the Bcl-2 protein family,
which controls mitochondrial engagement in apoptosis
signal transduction44,45, whereas Bak has been less thor-
oughly studied. Bak functions as a Bax-like protein and
upon activation likewise is able to form pores in the outer
mitochondrial membrane, thereby triggering apoptosis
execution44,45. Links between low Bak expression and an
improved outcome have not been reported in metastatic
melanoma so far, but reduced BAK mRNA amounts were
associated with better overall survival in hepatocellular
carcinoma46. Similarly, a counter-intuitive prognostic
value of Smac has not yet been reported in melanoma, but

Table 2 Patient demographics and clinical information of
the metastatic SKCM-TCGA sub-cohort.

Characteristics

Gender Value %

Female 32 40.51

Male 47 59.49

Ethnicity Value %

White (non-Hispanic or Latino) 79 100

Disease stage at initial diagnosis Value %

Stage III 68 86.08

Stage IV 11 13.92

Age at diagnosis (years)

Mean 55.5

Median 55

Range 18–87

Overall survival from initial diagnosis (months)

Mean 35.1

Range 2.6–175.2

Overall survival from sample procurement (months)

Mean 15.9

Range 1.1–64.9
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Fig. 4 TCGA-SKCM-based analysis validates the prognostic Bax, Bak, Smac signature. Independent validation of the prognostic signature at
transcriptome level in the SKCM-TCGA metastatic sub-cohort. a Survival analysis in the SKCM-TCGA sub-cohort (n= 79 patients diagnosed with stage
III or IV metastatic melanoma before 2010). An optimised chi-square-based cutoff was determined to divide patients with high (red) and low (blue)
normalised BAX, BAK1 and DIABLO (Smac) expression (log2(FPKM-UQ+ 1)). Kaplan–Meier curves (follow-up from sample procurement) were
compared by log-rank test. b mRNA amounts for BAX, BAK1 and DIABLO (Smac) (blue: mRNA level below cutoff, red: mRNA level above cutoff).
c Survival analysis in the metastatic TCGA-SKCM sub-cohort based on the expression profiles in Fig. 4b. Log-rank test for trend was used to compare
three Kaplan–Meier curves representing patients with combined low BAX, BAK1 and DIABLO (Smac) expression (blue), combined high expression (red)
or with mixed expression (black).

Fig. 5 Pattern recognition allows predicting patient prognosis. a A principal component analysis was performed on the H scores of nine
apoptotic proteins. To provide a visualisation of the spatial clustering, patients samples were positioned in a 3D scatter plot defined by the first three
principal components and colour-coded according to their PFS time (red < 12 months, n= 33; blue > 12 months, n= 17). Linear discriminant analysis
(LDA) correctly segmented 72% of the patients. Leave One Out Cross Validation (LOOCV) combined with LDA predicted the correct class for 74% of
the patients. b 3D scatter plot showing the spatial clustering of patients with short and long PFS based on the H scores for Bax, Bak and Smac. LDA
correctly segmented 80% of the patients and LOOCV-LDA achieved 78% prediction accuracy. c Comparison of the performance of the two classifiers
shown in a and b. The receiver operating characteristic curves (ROCs) and respective areas under the curve (AUC) are shown.

Guttà et al. Cell Death and Disease          (2020) 11:124 Page 9 of 12

Official journal of the Cell Death Differentiation Association



high expression was found to correlate with early local
disease recurrence in cervical cancer47. It needs to, however,
be stated that in reverse a large body of literature associates
high expression of pro-apoptotic or a low expression of
antiapoptotic genes or proteins with better outcome, as
would intuitively be expected (see e.g., ref. 48–59). Overall, it
therefore appears that signatures indicative of apoptosis
competency or resistance need to be interpreted or studied
within the specific disease setting and context. For example,
it was suggested that expression patterns indicative of high
apoptosis responsiveness may correlate with poor outcome
if dormant, stem-like cancer cells that may reside within
tumour tissues re-populate tumours and promote further
spread and progression of the disease after the bulk
population of cells has been eliminated by apoptosis-
inducing therapy42,43. In line with this, apoptotic cell loss
can drive the proliferation of surrounding cells, for
example, through caspase-dependent prostaglandin sig-
nalling and secretion of other proliferation stimulating
factors from dying cells60,61. These signalling processes
indeed might be of relevance in melanoma treatment
responsiveness and disease relapse62.
As apoptosis resistance is a hallmark of cancer63, it

nevertheless appears puzzling that reduced expression of
apoptosis drivers correlates with better prognosis in a
treatment scenario that is clearly geared towards apop-
tosis induction. In addition to the above line of thoughts,
the very high mutation burden of cutaneous melanoma64

might provide the basis for an additional explanation.
Although unfavourable expression of key apoptosis reg-
ulators in many cases may cause apoptotic cell death to be
suppressed during cell transformation, tumour develop-
ment and disease progression, and as such could be
considered causative for the disease, such low basal
apoptosis susceptibilities might nevertheless be overcome
by elevated apoptosis-inducing stress in chemotherapy
settings. In contrast, where low apoptosis susceptibility is
not causative for the disease (and hence protein expres-
sion profiles would indicate “normal” susceptibility), other
alterations and mutations might drive the development
and progression of the disease. Many of these could
prevent therapy-induced stress signals to be channelled
towards apoptosis induction. Indeed, low expression of
Bax and Bak might be linked to disease progression in
earlier stages of melanoma. Although Bax protein
expression tends to be higher in melanoma tissues than in
benign nevi65, low expression of Bax within primary
superficial-spreading melanoma was associated with poor
prognosis and therefore could indicate a role in disease
development and progression66. Similar findings were
reported for Bak expression in the same study. Also in
stage IIa melamoma, low Bax and Bak protein expression
was associated with poor prognosis, with the majority of
such patients developing metastatic disease67. Taken

together, these prior reports combined with our findings
therefore suggest that low expression of pro-apoptotic
players could be causative for early stage tumour forma-
tion and melanoma disease progression by lowering basal
apoptosis susceptibility, and that this reduced suscept-
ibility can be overcome once pro-apoptotic stress is ele-
vated externally, for example by dacarbazine-based
chemotherapy. It will be interesting to see if similar
relationships can also be found in other cancer (sub)types
in the future.
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