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Abstract: Spectral proper orthogonal decomposition (SPOD) has seen renewed interest in recent years
due to its unique ability to decouple organised motion at different timescales from large datasets
with limited available information. This paper investigated the unsteady components of the flow
field within a simplified turbine centre frame (TCF) model by applying SPOD to experimental,
time-resolved flow speed data captured by particle image velocimetry (PIV). It was observed that
conventional methods failed to capture the two significant active bands in the power spectrum
predicted by preliminary hot wire anemometry measurements. Therefore, a modification to the
SPOD procedure, which employs subsampling of the time sequence recorded in the experiment to
artificially lower the PIV data acquisition frequency, was developed and successfully deployed to
analyse the TCF flow field. The two dynamically active bands were identified in the power spectra,
resulting in a closer match to the preceding analyses. Within these bands, SPOD’s ability to capture
spatial coherence was leveraged to detect several plausible coherent, fluctuating structures in two
perpendicular planes. A partial three-dimensional reconstruction of the flow phenomena suggested
that both bands were associated with a distinct mode of organised motion, each contributing a
significant percentage of the system’s total fluctuating energy.

Keywords: spectral proper orthogonal decomposition; spectral analysis; organised motion; experimental
fluid dynamics; particle image velocimetry; turbine centre frame

1. Introduction

In recent years, the improved availability of complex hardware and computational
capacity has made applying more demanding data-driven methods in experimental fluid
mechanics more feasible. It is a competitive and rapidly progressing space in which a
number of different methods vie for the limelight. The space-only formulation of proper
orthogonal decomposition (POD) [1] has long remained the default option, benefiting from
denser datasets due to improvements in high-speed imaging and simulation, which allowed
expanding its domain of possible applications to more complex turbulent flows and heat
transfer problems [2,3]. Other popular methods include dynamic mode decomposition
(DMD) [4] and its derivatives [5], wavelet analysis [6,7], and independent component
analysis (ICA) [8,9]. This work’s focus lied in spectral proper orthogonal decomposition
(SPOD), which has recently enjoyed more attention due to its unique capability to optimally
represent spatiotemporal coherence in flow data [10–12]. While the method is proven to be
a valuable tool mainly in rather idealised scenarios, its applications as an investigative aid
in exploring the dynamics of complex systems remain largely unexplored in the literature.

One such system, which, due to technical relevance, warrants closer examination, is
the turbine centre frame (TCF)—a single module connecting the low- and high-pressure
turbines of twin spool gas turbine engines, which forms the gas duct between the two sec-
tions, while also providing internal channels for hydraulics, the transfer of structural loads,
and cooling air exchange between the hub and the exterior of the engine. Contemporary
TCFs incorporate aggressive geometries to accommodate the rapidly diverging gas duct,
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complicating the design of the struts that house the service channels. Consequently, the
flow of cooling air through the structure, which maintains safe operating temperatures
of the TCF itself and is also supplied to the neighbouring turbine disks, is profoundly
complex: large pressure gradients and narrow channels produce high local flow speed
spikes, which result in a convoluted series of unsteady flow structures spanning the TCF’s
multiple internal cavities.

This paper documented the use of SPOD to process flow data acquired in a high-speed
particle image velocimetry (HSPIV) experiment on a simplified TCF model. The objective
was two-fold: first, to assess the utility of SPOD as a tool to detect yet-unknown coherent
structures in a complex fluid system, and second, if the first step proves a success, to obtain
a result with the potential for immediate technical application. The dynamics analysis can,
for instance, be used to gauge the performance of a numerical solver used to design a TCF
interior in an engineering context.

Sections 2 and 3 provide a brief overview of the theoretical framework of POD and
the fluids’ experimental setup, respectively. Section 4 details the necessary preliminary
steps to contextualise the modal decomposition results. This includes a discussion of the
topology of the mean flow through the model, as well as insights into the fluid system’s
dynamics obtained through hot wire anemometry. The results of an analysis of the exper-
imental data with conventional SPOD are presented in Section 5; as the base, the SPOD
algorithm was found to perform poorly with the available data. Section 6 proposes and
validates a modification, which involves the use of subsampling to lower the effective
data acquisition frequency of the input. The results obtained with the updated method are
presented thereafter.

2. Spectral Proper Orthogonal Decomposition

Modal decomposition produces a set of deterministic modes that capture dynamically
significant patterns in the energy distribution of stochastic data. One such technique,
known as spectral proper orthogonal decomposition, was the primary analytic instrument
employed in this work.

2.1. Background

POD is a family of decomposition algorithms that contains several distinct techniques.
Its inception lies in the work of Lumley [13,14], who first proposed the use of the Karhunen–
Loève (K-L) theorem as a tool for analysing turbulent flows. Though its initial formulation
was deliberately agnostic towards the nature of the kernel, the field was long dominated by
an exclusively spatial form of POD popularised by Sirovich [1], which produces spatially
orthogonal modes and, therefore, only represents spatial coherence. Our focus lied in
spectral proper orthogonal decomposition, which is geared specifically towards the opti-
mal representation of spatiotemporal coherence. The concept was coined by Picard and
Delville [15] and recently applied widely by Towne et al. [10], Schmidt et al. [11], Schmidt
and Colonius [16], and others. Note that this algorithm is distinct from the procedure by
the same name proposed by Sieber et al. [17].

The fundamental principle of POD lies in computing a set of deterministic functions
φ(z) that are the optimal representation of a zero-mean stochastic process {q(z; ξ)} with
respect to the inner product 〈· , ·〉 of the Hilbert spaceH that each realisation of q inhabits;
z ∈ Ω denotes a set of independent variables, whereas ξ parameterises the probability
space. The zero-mean property of q can be expressed as E{q(z; ξ)} = 0, with E{·} being
the expectation operator within the probability space.

The desired qualities of φ(z) ∈ H can be expressed through the maximisation problem:

λ =
E{|〈q(z; ξ), φ(z)〉|2}
〈φ(z), φ(z)〉 . (1)

(1) can be intuitively contextualised as an effort to optimise φ such that the expectation
value of the projection of the stochastic process onto a deterministic modal function is
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maximal. The expression is normalised to decouple λ from the magnitude of φ. The desired
functions can be shown to be the eigenfunctions of the Fredholm integral equation:∫

Ω
R(z, z′)φ(z′)dz′ = λφ(z) (2)

whose kernel is the two-point correlation tensor across Ω:

R(z, z′) = E{q(z; ξ)q∗(z′; ξ)}. (3)

The K-L theorem states that (2) is solved by a infinite set of functions {φk, λk}, k ∈ N,
which are mutually orthonormal (i.e., 〈φj, φk〉 = δjk) and can be ranked by the magnitude
of their eigenvalue, λ1 ≥ λ2 ≥ . . . ≥ 0. The eigenfunctions form an energy-optimal (proper)
basis for each realisation of q.

Space-only POD, as typically employed in statistical fluid mechanics, defines q(x, t)
as a finite set of fields of scalar (e.g., pressure, vorticity) or vector (e.g., velocity) properties,
i.e., snapshots of a fluid flow. These can be understood as independent realisations of
a stochastic process. The domain Ω of the statistical ensemble, therefore, consists of a
bounded control volume V ⊆ Rn, x ∈ V, and a temporal component. The definition of
the latter is quite elastic [18], though for most purposes, the temporal domain constitutes
discrete, uniformly sampled times tj.

In contrast, the objective that informs SPOD is to generalise the decomposition to
enable the detection of temporally coherent structures within the flow. This requires a
different definition of the stochastic ensemble q: instead of viewing individual snapshots as
a realisation, we considered a series of correlated snapshots. The inner product associated
withH is defined as

〈q1, q2〉x,t =

∞∫
−∞

∫
V

q∗2(x, t)W(x)q1(x, t)dx dt, (4)

where W is the weight tensor, which further specifies the properties of the norm. Under
these parameters, the kernel introduced in (3) becomes

R(x, x′, t, t′) = E{q(x, t)q∗(x′, t′)}W. (5)

However, the eigenmodes produced by (5) have some inconvenient properties; POD
only considers statistically stationary flows, which are unbound in time and, therefore, have
infinite energy in the space–time norm. One solution relies on the ergodicity assumption,
instead formulating a cross-correlation tensor, which only considers differences between
points in time:

R(x, x′, t, t′)→ R(x, x′, τ), (6)

with τ = t− t′. The cross-spectral density tensor S, which serves as the kernel of the SPOD,
is the Fourier transform of R:

S(x, x′, f ) =
∞∫
−∞

R(x, x′, τ)e−i2π f τ dτ (7)

We can construct the spectral eigenvalue problem:∫
V

S(x, x′, f )W(x′)ψk(x′, f )dx = λ( f )ψk(x, f ), (8)

to produce modes {ψk(x, f ), λk( f )}, which both satisfy the space–time eigenvalue problem
once transformed back into the time domain and maintain properties equivalent to space-
only POD modes. While these spectral eigenfunctions are frequency-dependent, they are
spatially orthonormal (〈ψj, ψk〉x = δjk) and serve as an optimal basis for Fourier modes of
the flow.
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In essence, spectral POD may be applied in fluid mechanics to decompose a statistically
stationary flow into a series of characteristic eddies [14], which oscillate at a single frequency
and optimally capture a space–time energy distribution.

2.2. Computational Algorithms for SPOD

In practice, the successful application of POD relies on algorithms that efficiently
perform modal decomposition from large amounts of discrete flow data, whether of ex-
perimental or numerical origin. A thoroughly documented spectral scheme termed batch
SPOD was presented by Schmidt and Towne [19]. For reproducing a functional SPOD
scheme, this work also benefited from the open SPOD repository generously provided by
Schmidt and the California Institute of Technology [20]. What follows briefly presents the
core data processing methods used in this work.

As discussed in Section 2.1, the individual realisations forming the basis of the statisti-
cal analysis must be time-resolved. While the definitive method of obtaining such data is to
run the same experiment multiple times, this approach is typically impractical, especially
when working with pre-existing sets of data generated for purposes other than SPOD.
Additionally, more complex experiments may be impossible to replicate with sufficient
precision to be considered the same process. An alternative solution is Welch’s method [21],
a spectral estimation technique in which a single long recording of an ergodic signal is
separated into blocks whose spectra are then evaluated statistically. Crucially, it can be
demonstrated that the spectral estimates computed with this method converge for an
increasing number of snapshots nt, unlike those directly evaluated from the time series.
Batch SPOD transplants this idea onto continuous recordings of flow data.

Consider a set of nt 2D flow data snapshots q(x, tj) with N = nxny discrete, equidistant
points in the control volume V, where each instance is a vector field representing the
instantaneous velocity distribution of the flow. For the purposes of POD, the exact nature
of the spatial grid is immaterial; it suffices to sequentially index each vector in the field
as uk

j , i.e., the velocity at the jth position and the kth time step. We first reorganised the
dataset: the x- and y-components of the velocity vectors were separated and each assembled
into an N × nt matrix. These were then vertically concatenated to produce U, an array
containing all input data for the decomposition. U was then sectioned into nblk blocks Um
of length nFFT. These blocks may overlap to a certain extent to decrease the variance of
the power spectral density (PSD) estimate, though in practice, overlaps larger than 50%
yield greatly diminishing returns as the independence of the realisations is increasingly
compromised [16,21].

The next step applies a row-wise discrete Fourier transform (DFT) to each block,
specifically the DFT algorithm known as the fast Fourier transform (FFT). This produces
a set of matrices Ûm ∈ Cn f×N , n f being the number of frequencies resolved by the FFT,
which now contain the transformed data sampled at discrete frequencies. SPOD solves
the eigenvalue problem (8) one frequency at a time, by rearranging the rows of Ûm into a
different set of n f data matrices X f ∈ CN×nblk , which groups the data from each block by
frequency. Given this, the cross-spectral density tensor is

S f = X f
∗W X f . (9)

(9) produces a small nblk× nblk tensor, for which the eigenvalue problem is computation-
ally inexpensive to solve. Consequently, modes (θm) f obtained in the eigendecomposition:

S f = (Θ Λ Θ−1) f (10)

must be transformed before interpretation in the physical flow domain:

Ψ f = (X Θ Λ−1/2) f =
[
ψ1 ψ2 · · · ψnblk

]
f

(11)

After assembly into 2D fields, the modes (ψm) f , represent characteristic eddies of the
flow that evolve coherently in time, i.e., oscillate at a single discrete frequency f .
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3. Experimental Approach

This section introduces the rig on which the experiments were conducted and briefly
details the equipment used for recording PIV and other experimental data.

3.1. TCF Model

The data used in this work were recorded on the TCF test rig assembly, located at the
University of Stuttgart’s Institute for Aerospace Thermodynamics. The setup is described in
detail by Köhler et al. [22]; we limit ourselves to briefly introducing the relevant elements.

The centrepiece of the rig was a machined PERSPEX® (acrylic glass) model of a TCF
ring segment (illustrated in Figure 1), the flow through which was examined by PIV. Its
geometry was scaled and simplified to improve optical access to the interior: curved
surfaces, such as the vane and hot gas duct walls, were generally approximated with
flat panels to avoid unnecessarily complex reflections. The block on the air inflow side
mimicked a segment of the hollow outer ring, which was connected to the hub cavity of the
inner ring on the opposite side of the hot gas duct by a symbolic load-carrying strut. The
strut was encased in a fairing, under which the cooling air passed between the cavities.

Figure 1. The TCF model and outlet diffusers.

Air for the experiment was taken from the environment, pumped into a plenum
chamber at a constant, adjustable mass flow rate and homogeneously seeded with droplets
of di-ethyl-hexyl-sebacate, which acted as the tracer particles for PIV. The air entered the
model through an elliptical inlet gap with a hydraulic diameter of dh = 26.9 mm, forming
an annular jet, passed through the model, and exited through five outlets, three of which
were situated around the tip cavity and two around the hub cavity. The flow conditions in
the model were adjusted by modulating the mass flow rate through the air supply duct
until the desired Reynolds number at the elliptical inflow gap was obtained.

The control volume of the experiment was the TCF model’s interior (hereafter referred
to as the fluid domain), shown in Figure 2. Its maximum dimensions were
400 mm× 500 mm× 430 mm. PIV was performed through the transparent walls of the
model, with the laser and camera installed outside at different positions. As 2D PIV only
captures the velocity distribution within a planar section of the control volume, measure-
ments were confined to a single plane at a time. The two relevant planes for this work were
Y00, the symmetry plane, and Z15, both highlighted in Figure 2; the latter derives its name
from being the XY plane situated at 15% along the z-length of the fluid domain.
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Figure 2. An isometric view of the fluid domain. The areas where the relevant planes intersect
the fluid domain are highlighted in colour: Y00 in blue; Z15 in violet. The orientation of the fluid
domain’s local coordinate system is shown at the tip of the hub cavity.

Figure 3 shows the Y00 and Z15 slices in more detail. As the camera field of view
(FOV) was limited, making it impossible to capture the entire domain in a single run, the
bottom of the hub cavity (highlighted in grey for each plane) was chosen as the focus area.

While measuring in Y00 is best suited to creating an overview of the dynamics, the
evaluation of Z15 allows for better understanding of the spatial characteristics of the flow
phenomena. Using the information from both angles, the modal behaviour can be partially
interpreted in 3D, which aids in the understanding of three-dimensional flow structures.

3.2. Measuring Equipment

The PIV method employed in this work was a high-speed 2D approach, in which
the laser and camera were triggered to produce double images at a prescribed frequency.
These images were interpreted by software, which matched the 32× 32 pixel interrogation
windows in two successive frames to produce vector fields representing the instantaneous
velocity distribution in the flow. The specifics of PIV are beyond the scope of this work;
while the choice of operating parameters affects the evaluation and will be discussed in
Section 5.1, we must accept that the raw images can be reliably processed into instantaneous
vector fields if the parameters are well chosen. For more technical insight, the statistical
background and application of PIV are explored thoroughly by Raffel et al. [23].

The laser employed in the PIV was an INNOSLAB IS200-2-L single-cavity green short-
pulse Tm:YLF unit manufactured by EdgeWave GmbH. The laser pulse frequency can be
adjusted up to a maximum of 10 kHz. The images were recorded with a Photron FASTCAM
SA-X2, which was triggered at the data acquisition frequency fs to produce two consecutive
images. This resulted in a maximum total of 5000 velocity snapshots per measurement.
The commercial software LaVision DaVis 10.2 was used for post-processing.
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Figure 3. The two measurement planes with overlaid mean flow speed distribution. Coordinate axes
are normalised by the major axis of the elliptical inflow slit D, and the velocity field is normalised by
the highest measured flow speed Umax. The areas in which HSPIV data were recorded, as well as the
locations of the hot wire anemometer probes are highlighted with markers 1 and 2 for the locations
xHW,1 and xHW,2 respectively. (a) Y00, evaluated from 8 Hz PIV. (b) Z15, evaluated from high-speed
PIV data.

Aside from PIV, a hot wire anemometer was deployed inside the fluid domain to record
1D velocities. The hardware used was an SVMtec GmbH SVM-4CTA-DAQ anemometry
system coupled with HWP10/90 10 µm gold-plated wolfram wire probes. The probe cali-
bration data suggested an error of roughly 1% in the detected velocity in the relevant range.

Due to its low bandwidth and storage requirements, the 1D signal can be written
at extremely high sampling frequencies for a long time, allowing highly resolved PSDs
to be obtained. The probe was inserted into the hub cavity at the base of the exhaust
funnel; measurements were conducted at different depths of insertion, as indexed in
Figure 3a, as well as different Reynolds numbers. The positions denoted by 1 and 2 were at
xHW = [60, 100]mm, respectively, as measured from the inner wall of the cavity.

4. Initial Analysis

While high-speed PIV is by far the most-powerful available tool for experimental
analysis of fluid systems, the necessary equipment is expensive and, therefore, in high
demand. Gathering information about the behaviour of the system in advance, using more
accessible methods, helps ensure the effective use of the equipment later on. At the same
time, obtaining similar results through functionally diverse avenues of analysis serves to
validate the involved methods.

In this section, several available sources of data were invoked to narrow down the spatial
locations and spectral range of the characteristic structures within the TCF model. This infor-
mation can be used to set the operational parameters of the PIV, such as the image acquisition
frequency, as well as hone the post-processing algorithms used to evaluate the recordings.

4.1. Mean Flow

The baseline for understanding the dynamics of any fluid system is examining the
time-averaged conditions. Fortunately, low-speed PIV data recorded at fs = 8 Hz are
abundant from previous investigations of the same model [22]. While these recordings
proved unhelpful in exploring the time evolution of the system, they were useful for gaining



Fluids 2023, 8, 184 8 of 20

an overview of the mean flow through the fluid domain. The time-averaged flow speed for
Re = 37,000 is presented in Figure 3a.

Köhler et al. [22] provide a comprehensive overview of the topology of the mean flow
field. The most-dominant structure in the fluid domain was a jet that remains attached
to the strut approximately halfway along the fairing, before separating, crossing the hub
cavity diagonally and impacting the inner wall in the bottom left corner, where a stagnation
area developed. At the same time, it featured sufficiently low velocities to be examined by
PIV. The anemometer probe locations and PIV windows detailed in Figure 3 were defined
to most-effectively capture it.

The mean flow in the transverse Z15 plane, as computed from PIV, is depicted in
Figure 3b. Unsurprisingly, the topology was largely symmetrical along the y-axis. It
was dominated by the footprint of the hub cavity jet, whose elliptical shape was owed
to the orientation of the plane; from comparisons with Figure 3a, we can infer that it
intersected the jet at an angle of roughly 45◦. Consequently, the section contained the
vertical component of the jet’s velocity vector. The most-energetic region was found at
x/D = 2, very close to the bottom wall; in fact, the jet already experienced significant
deflection this far downstream, as evidenced by the stagnation point and higher speed
outwash regions along the boundary of the camera window. Towards the top, the shape
split in two, where the flow separated around the central strut. The lowest flow speeds
were found in the shear layer on either side of the jet; beyond it, the field showed air
symmetrically moving slightly inwards at x/D = 1.2 before being deflected straight down
and finally outward by x/D = 1.8. This suggested the presence of larger vortical structures
that extended beyond the camera FOV.

4.2. Hot Wire Anemometry

As laid out in Section 3.2, a hot wire anemometer was used in the early stages of
the work to gather some information about the dynamics of the internal flow field with
a method that is well-understood, reliable, and simple to deploy. The main objectives for
this step were to identify dynamically active ranges in the PSD and establish that they are
robust towards changes in the Reynolds number. These data were used later as a direct
reference to validate the PSDs obtained through more sophisticated post-processing (see
Sections 5.2 and 6.2).

The data were recorded at every position and mass flow rate with a sampling frequency
of fs = 5 kHz for THW = 60 s. The three flow regimes that were investigated were
Rej = [37, 55.5, 74]× 103. We interpreted the data by performing a Fourier transform and
examining the resulting PSDs. Keeping with established practises in signal processing [21],
the PSD was constructed as the average of nblk blocks of length nFFT; a block size of
nFFT = 215 was selected as a suitable compromise between conclusive averaging and
sufficiently informative spectral resolution.

The results of this evaluation are presented in Figure 4. The PSDs at different flow
regimes Rej were grouped by position xHW,k; the raw spectra are each shown in grey along
with a smoothed spectrum, depicted in red, obtained by applying a Savitzky–Golay finite
impulse response filter (SGF) of order three with a frame length of 31 data points. The
SGF is based on low-order polynomial fits and the linear least-squares method and is
commonly used to smooth 1D data in signal processing and experimental applications such
as spectroscopy [24,25]. The filter is a convenient tool to identify trends in an otherwise
noisy spectrum, which establishes an overview of the flow dynamics; at the same time, the
spectral clarity in low frequency bands remains superior to simply evaluating the FFT with
smaller block sizes. The frequency axis was nondimensionalised as the Strouhal number
Sr = f D/U0 to ease the comparison of the data at different Reynolds numbers, where U0
is the nominal inlet flow speed.

As expected, the absolute amount of energy in the flow rose with increasing Reynolds
number regardless of position. As our primary concern was the shape of the spectrum, the
results at both positions were normalised to the highest detected amplitude for the sake of clarity.
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The initial analysis of the results was encouraging. At Re1, both Figure 4a,b feature a
pair of distinct peaks at roughly Sr = 0.014 and 0.07. A third peak emerged after an increase
in Reynolds number to Re2, though the general structure of the spectrum was preserved:
for xHW,1, we observed peaks at 0.012 and 0.149, as well as a broad elevation between 0.056
and 0.093. At Re3, the same pattern appeared at 0.012, 0.07–0.091 and 0.119. A very similar
structure was observed at xHW,2, where, for Re2, the three peaks were registered at 0.013,
0.07–0.084, and 0.131 before shifting to 0.012, 0.053–0.084, and 0.116 after an increase in
Reynolds number to Re3.

In summary, we concluded that, for Re ≥ 37,000, the system exhibited strong organ-
ised unsteady behaviour in the Sr = 0 to 0.2 range, which can be clearly separated from
broadband turbulence in the spectra derived from hot wire anemometry. In this range, the
general structure of the PSD was invariant to changes in Reynolds number when presented
in nondimensional space, which suggested stable oscillating behaviour. Peaks at higher
Strouhal numbers notably exhibited bigger shifts. The spectra did not differ significantly
based on the position of the probe, suggesting that the dominant motion was sufficiently
extensive to cover both examined locations. For future reference, the two frequency bands
in which the reference signal was most active at Re1 will be referred to as Band 1 between
Sr = 0.01 and 0.03 and Band 2 between Sr = 0.07 and 0.1.

(a) (b)

Figure 4. Normalised power spectra of 1D hot wire anemometer signals at different positions (see
Figure 3a). The black lines are the raw PSD interpreted with nFFT = 215, while the red lines are the PSD
smoothed with a 3rd-order SGF, computed over a window of 31 sample points. (a) xHW,1 = 60 mm.
(b) xHW,2 = 100 mm.

5. Conventional SPOD

Section 4.2 presents us with strong evidence for stable, coherent structures in the fluid
system, which was essential to justify further analysis. The combined anemometry data
also provided an estimate of the dynamically active range of the system, which we captured
with HSPIV.

5.1. Data Acquisition

A PIV experiment can be tailored to optimally resolve any system by adjusting several
process parameters. The first barrier is the successful evaluation of the images recorded
through PIV, which provides the instantaneous velocity fields that form the basis for all
further post-processing. The experiments showed that the maximum particle displacement,
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beyond which the DaVis cross-correlation algorithm failed to reliably converge, was reached
if the inflow Reynolds number meaningfully exceeded Re1 = 37,000. This flow regime was,
thus, chosen for the HSPIV measurements, as the analysis of anemometry data in Section 4.2
suggested that strong fluctuations were already present in the system at this point, and the
behaviour showed significant commonality with higher Reynolds number regimes.

However, while a high pulse frequency was necessary to produce the velocity fields,
single-pulse PIV at fs,max = 10 kHz would fill the camera’s internal storage after a mere
second of operation. Such a brief run would include too few cycles of the organised motion
in the system’s dynamically active range to be statistically meaningful. We, thus, opted for
simulated double-pulse operation to produce snapshots at fs = 500 Hz, which resulted in a
total of 5000 snapshots per measurement run, produced over a period of Ts = 10 s. This
approach maintained a time step of ∆t = 10−5 s between frames, which was necessary to
correlate the snapshots.

With this setup, four independent runs were performed in the Y00 plane, referred
to as Y00I through Y00IV, as well as a run in the Z15 plane. An additional Y00 recording
was performed with different parameters, that is a sampling frequency of fs = 125 Hz.
The rationale for this decision was that the resulting cutoff frequency fN = 62.5 Hz was
the lowest possible choice of fN that did not infringe upon the dynamically relevant
range. The immediately apparent drawback of this approach is that the laser must still fire
continuously at a rate of 10 kHz; the energy input would inevitably damage the TCF model
if it were subjected to it for too long, which limited the maximum measurement period to
Ts = 20 s. This setup can, therefore, only produce 2500 snapshots. It is henceforth referred
to as Y00125.

5.2. Evaluation

As with the anemometry data, we begin our discussion of the SPOD results with
spectral analysis. The individual measurements were characterised primarily by their
leading modes; the energy in the remaining modes was distributed near-uniformly across
the frequency spectrum and trailed the leading mode’s amplitude by roughly an order
of magnitude. We, thus, focused on the leading modes when discussing parallels and
differences between measurements.

Figure 5 shows the leading modes of the runs introduced in Section 5.1, as well as
the Strouhal number bands obtained from evaluating the hot wire data at Re1 in which
the reference exhibited increased activity. The filtered hot wire spectrum at xHW,1 and
Re1 was included as a prediction for the shape of the PSD distribution. For the sake of
simpler qualitative analysis, the spectra were normalised by the tallest detected peak in
each measurement. Additionally, in working with the PIV data, PSD information below
Sr = 0.01 was consistently chaotic and unrepeatable. This likely was a result of a very
small number of full cycles being included in the recording; consequently, these data were
excluded from the following analysis. Note that, due to the complexity of the signal, each
individual measurement was unlikely to produce the exact desired result. Instead, we
chose to evaluate the superposition of n = 5 measurements, as with n→ ∞, we expected
the cumulative spectrum to approach the reference.

The takeaways from Figure 5 are mixed. While it is encouraging that the dominant
peaks in all PIV-derived spectra occurred between Sr = 0.01 and Sr = 0.1, which matched
the reference, they failed to replicate the twin peak clusters around Sr = 0.02 and Sr = 0.08
present in the hot wire spectra. Instead, the tallest peaks of several measurements, including
Y00II, Z15, and notably, Y00125, were located between Sr = 0.03 and Sr = 0.06, a range in
which the reference displayed much lower amplitudes. Evidently, simply lowering fs did
not immediately yield favourable results.
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Band 1 Band 2

Figure 5. Normalised PSD of the SPOD solutions for the high-speed PIV experiments. The red line
represents a reference based on filtered hot wire data at xHW,1 and Re1.

6. S2POD

The results presented above failed to capture the dynamics identified in the reference.
The options for continued analysis with conventional SPOD were unpromising: an increase
in data acquisition frequency fs would inevitably lead to even poorer spectral resolution,
while the physical barrier of a maximum recording time Ts caused measurements with
decreased fs to produce less data overall. Faced with this dilemma, we propose a novel
preprocessing method termed spectral subsampling POD (S2POD).

6.1. Establishing Ideas

Section 2.2 introduced the idea of the subdivision of the data into blocks, then pro-
cessed separately using Welch’s method. To reduce the effective sampling frequency f ∗s ,
we created the blocks Um by subsampling the original sequence: assembling every other
frame into a block created a realisation of the process over the same length of physical time,
but halved the sampling frequency. We can increase the subsampling factor Csub further
until we obtain enough blocks to compute a statistically satisfactory number of modes with
f ∗s = fs/Csub.

Figure 6 demonstrates the subsampling method for a fictional scalar value at a single
point in the control volume,

∣∣uj
∣∣. The progression through time corresponded to the column

index k. For illustrative purposes, a low base sampling frequency was chosen.
Aside from the sample rate, the four sequences created by this method varied from the

original in several ways. We observed a shift in the absolute beginning and end times as a
result of the frames being discarded, though absolute time was irrelevant, as most further
computation occurred in the frequency domain. A distortion of the signal was avoided, as
we assumed that the base sampling frequency was much higher than the most-energetic
components of the flow; f ∗s can be lowered significantly before they begin approaching the
Nyquist limit fN.



Fluids 2023, 8, 184 12 of 20

t

∣∣∣uk
j

∣∣∣ Csub

m
=

1

m
=

2

t

m
=

3

t

m
=

4

Figure 6. A 1D demonstration of creating several realisations Um from a single sequence through
subsampling at Csub = 4. The line through the samples denotes a reconstruction of the continuous
signal rather than the ground truth.

This approach offers certain advantages. Selecting parameters for traditional SPOD
involves a compromise between the number of modes nblk and the frequency resolution,
characterised by nFFT, while the subsampling approach always yields the optimal frequency
resolution for a given set of data ∆ f = fs/nt. The decision was instead made between a
larger number of modes nblk = Csub and a broader frequency domain:

fN =
fs

2Csub
(12)

As this method is primarily geared towards applications where the sampling rate
is so high that frequency resolution in the dynamically active range is poor, the top end
of the spectrum rarely contains relevant information. Consequently, we traded a lower
fN for improved statistical convergence. However, it must be noted that realisations
created through subsampling were strongly correlated, and the variation of the system was,
therefore, largely captured by the leading mode.

A simple numerical simulation demonstrated the effectiveness of the procedure. Using
an SMAC Navier–Stokes solver [26], we computed snapshots of the flow around a cylinder
with the boundary conditions tuned to produce a Kármán vortex street at a cylinder
with a Reynolds number of Re = 100. The complete dataset, trimmed to only contain
fully developed flow, comprised 10,000 vector fields with ∆t = 0.02 s, i.e., sampled with
fs = 500 Hz.

Without subsampling, as seen in Figure 7a, the spectrum contained a single broad
peak at f = 0.2441 Hz—even with the balance shifted heavily towards the frequency
resolution, as nFFT was so large that the data yielded only three modes. The results were
drastically more favourable once subsampling was applied: Figure 7b shows a a clear peak
at f = 0.25 Hz, as well as a series of progressively weaker harmonics at f = 0.25n Hz,
n = 2, 3, . . . , which was consistent with the results obtained by other analyses of the
dynamics of the Kármán vortex street [27]. Simultaneously, nblk = 10 and low amplitudes
for the lesser modes showed the reliable statistical convergence of the process.

Of course, as a consequence of the method, fN dropped from 250 Hz to just 25 Hz.
However, as displayed in the PSD graphs, even a much lower limit still allowed us to draw
informative conclusions about the dynamics of the flow.

The plausibility of the result can be verified by estimating the main frequency of the
vortex shedding: Schlichting and Gersten [28] suggest that, for flows around a cylinder,
the Strouhal number Sr = f d/u∞ is correlated with the Reynolds number, which was
known to be Re = 100 in the simulation. Thus, with Sr ≈ 0.15, as well as cylinder diameter
d = 0.5625 m and u∞ = 1 m/s, we obtained f ≈ 0.2667 Hz for the main shedding frequency.
This aligned with the peaks observed in Figure 7.
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(a) (b)

Figure 7. Normalised power spectra of the numerical simulation of a Kármán vortex street. (a) No
subsampling, nFFT = 4096. (b) Csub = 10, nFFT = 1000.

Another issue to be addressed is the aliasing error, which inevitably contaminated
the downsampled signal. Signal components oscillating at frequencies exceeding the new
effective maximum frequency f ∗N can no longer be resolved by the Fourier transform. If left
unheeded, this would result in a higher overall noise background and artificially inflated
eigenvalues on secondary modes. A distortion of the downsampled signal was prevented
by applying a lowpass filter at f ∗N before breaking the data up into blocks, discarding the
energy contribution of the high-frequency components. This basic level of post-processing
was applied whenever subsampled data are discussed within this work.

6.2. Results

Having demonstrated the effectiveness of S2POD on a predictable, simulated system,
we shall attempt to improve upon the analysis presented in Section 5. The PSDs computed
through S2POD with Csub = 8 for the 500 Hz HSPIV measurements are showcased in
Figure 8. Y00125 is not included; any downsampling with Csub > 2 would reduce fN below
the acceptable threshold.

Figure 8 significantly improves upon Figure 5. We can identify several key differences.
A brief glance reveals that the noise background was substantially lower, even at low
frequencies. This was owed primarily to the improved spectral resolution, allowing for
a greater dynamic range. The energy distribution of the superimposed S2POD solutions
matched the hot wire reference spectrum very well. The highest observed peaks of each
measurement, with the exception of Y00I, fell within a ∆Sr = ±0.01 window of the dom-
inant peaks in the reference: Y00II and Z15 matched the identified bands very well at
Sr = 0.072 and Sr = 0.092, respectively. As a result, the trough between the two band
boundaries at Sr = 0.03 and Sr = 0.06, which failed to materialise in Figure 5, was clearly
identifiable. While the tallest peaks in Band 1 in the measurements fell somewhat higher on
the spectrum than the peak of the reference curve, this can be attributed to overall poorer
performance at low frequencies.

These positive findings allowed us to realise the key advantage SPOD offers over
conventional methods, i.e., the production of spatial modes that directly magnify the utility
of spectral analysis. To elaborate on the brief introduction given in Section 2.2, the modes
were spatial representations of the characteristic eddies, which the decomposition algorithm
identified as energy-optimal basis vectors of the original sequence. Each mode oscillated
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periodically at a specific Strouhal number; the PSD supplied information regarding which
frequencies and, consequently, which modes contained the highest energy content. We can,
thus, reconstruct a reduced-order model of the fluctuating component of the fluid system
by superimposing the leading mode at several peaks in the power spectrum.

Band 1 Band 2

Figure 8. Normalised PSD of the S2POD solutions for the high-speed PIV experiments. The red line
represents a reference based on filtered hot wire data at xHW,1 and Re1.

The decomposition algorithm produced the spatial modes at a random phase ϕ0. This
instantaneous slice frequently failed to convey the topology of the mode; it was, therefore,
preferable to inspect the modes at different phase shifts ∆ϕ. As we considered only the
absolute magnitude of the velocity, the period of the oscillation was reduced from 2π
to π, which we discretised into steps of π/3 for the visual presentation. Such a discrete
progression of each mode through their π-periodic cycle is presented in Figures 9–12.

The two dynamically active bands detected, through spectral analysis of each feature,
a geometrically distinct characteristic eddy, which repeatedly emerged at significant peaks.
Data in the Y00 and Z15 planes can be combined for a more complete phenomenological
description of the three-dimensional fluid flow.

Representative spatial modes for the first band are presented in Figures 9 and 10. The
Y00 section was characterised by two parallel lobes, which roughly followed the contour of
the annular jet with a clearly defined trough between them. While the bottom lobe, most
prominently visible at ∆ϕ = 2π/3, remained predominantly straight, the top lobe fanned
out and formed an identifiable stagnation area at the wall between x/D = 1.8 and 2.2.
Most importantly, the phase evolution of the structure was clearly alternating: the top and
bottom lobes swelled and receded periodically, one giving way to the other.

The Z15 section revealed a complementary image. For most of its cycle, the eigenmode
evolved within the jet’s outer layer, i.e., the tall elliptical structure between y/D = −0.2
and 0.2 that surrounded the core and featured the greatest mean flow speed gradient in the
domain. The mode’s cycle began with an elongated lobe stretching along the shear layer to
the right of the core; see Figure 10a. As the phase advanced, the lobe migrated upward and
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to the left, where it assumed a more compact, rounded shape at ∆ϕ = π/3. By ∆ϕ = 2π/3,
the lobe moved to the shear layer to the left of the core.

(a) (b) (c)

Figure 9. Normalised leading S2POD spatial eigenmode for Y00II at Sr = 0.029, evaluated at different
phase shifts; the overlaid isocontours represent the mean flow’s velocity distribution. The white
outlines highlight relevant flow structures. (a) ∆ϕ = 0. (b) ∆ϕ = π/3. (c) ∆ϕ = 2π/3.

(a) (b) (c)

Figure 10. Normalised leading S2POD spatial eigenmode for Z15 at Sr = 0.025, evaluated at different
phase shifts. (a) ∆ϕ = 0. (b) ∆ϕ = π/3. (c) ∆ϕ = 2π/3.

(a) (b) (c)

Figure 11. Normalised leading S2POD spatial eigenmode for Y00II at Sr = 0.094, evaluated at
different phase shifts. (a) ∆ϕ = 0. (b) ∆ϕ = π/3. (c) ∆ϕ = 2π/3.
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(a) (b) (c)

Figure 12. Normalised leading S2POD spatial eigenmode for Z15 at Sr = 0.112, evaluated at different
phase shifts. (a) ∆ϕ = 0. (b) ∆ϕ = π/3. (c) ∆ϕ = 2π/3.

Having gathered information about the spatial characteristics of the oscillations in
this frequency band in two perpendicular planes, we may attempt to reconstruct the
three-dimensional structure of the phenomenon at hand. Both spatial modes in Y00 and
Z15 exhibited decidedly directional motion surrounding the jet; while the analysis in Y00
consistently found elongated lobes moving perpendicular to the jet, emerging in the shear
layer and dissipating in it again after traversing the core, Z15 indicated that the dominant
motion in the cross-section plane was counterclockwise rotation throughout the shear
layer. These factors aligned with the suggested presence of a counterclockwise precessing
component of the jet, induced by the transition from an annular structure at the inflow
gap. Cafiero et al. [29], in their investigation of a three-dimensional turbulent jet, registered
precession at Strouhal numbers between 0.01 and 0.025; this aligned with the range detected
in our experiment.

The modes associated with the second band differed significantly from the patterns
discussed above. In Figure 11, the domain is split into two wide, staggered bands along the
core of the jet. The bands progressively expanded, achieving their maximum amplitude
at different ∆ϕ; while the top band was most prominent at ∆ϕ = 0, the bottom band
dominated at ∆ϕ = 2π/3. The corresponding structure in Z15 was found largely in
the shear layer, though it expanded into the core of the jet further than the lobes seen
in Figure 10. We can successfully match the lobe position in Z15, where the Y00 lobes
intersected the perpendicular plane, e.g., Figures 11a and 12a.

The most-notable difference from the previous three peaks was the directionality of
the time evolution. While the spatial patterns of the first band exhibited predominantly
rotary motion, modes in Band 2 exhibited cyclic growth parallel to it. This observation
helped substantiate the hypothesis that the higher frequency peaks belonged to a distinct
flow phenomenon from the previously discussed patterns.

7. Concluding Remarks

The focus of this work was an exploration of the utility of spectral proper orthogonal
decomposition (SPOD) as an instrument for primary analysis of complex flow fields and
the detection of organised motion therein. As an example of a largely unknown system,
with practical engineering applications in mind, an abstracted model of a radial slice of a
turbine centre frame (TCF) was selected to investigate its internal flow structures.

As a first measure of gauging the system’s dynamics, a hot wire anemometer was
deployed in the hub cavity. Spectral analysis of the 1D signal at various positions confirmed
the existence of organised motion outside of the range typically associated with turbulence
mechanisms in open jets, justifying further investigation with more sophisticated equip-
ment. Beyond that, the dominant unsteady structures were found to be stable throughout
the entire range of Reynolds numbers at which the experiment was conducted.
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The base procedure was found to perform poorly in scenarios where the sample rate
was high while the total length of the recorded sequence was short; this excess in time
resolution led to unnecessarily wide frequency ranges in spectral analysis, i.e., power
spectra that were dominated by broadband turbulence, while the regions of interest were
represented by only a few sample points. To remedy this shortcoming, a modification of
the batch SPOD algorithm was developed. Instead of conducting Welch averaging with
blocks split from the original sequence, the blocks were assembled by subsampling, i.e.,
assembling every nth frame into a series of new sequences with a lower effective sampling
frequency f ∗s = fs/n. This procedure achieved maximum possible spectral resolution at the
expense of a lower Nyquist frequency, which in most applications is a favourable trade-off.

Armed with S2POD and high-speed particle image velocimetry (PIV) data in two
perpendicular planes, we successfully identified two distinct flow phenomena:

1. A precessing structure in the shear layer surrounding the hub cavity jet, characterised
by counterclockwise motion at several peaks between Sr = 0.01 and 0.03.

2. A modulation of the jet’s flow speed at several peaks between Sr = 0.07 and 0.1.

This analysis suggested that the inclusion of subsampling successfully broadens the
applicability of SPOD. The dilemma between sampling frequency and recording time is
inherent to all PIV experiments, even though it can be amortised through more sophisticated
equipment in some cases. S2POD offers a way out without the need for hardware upgrades.
Similarly, existing experimental or numerical data may not have ideal parameters for
decomposition if they were originally recorded with different post-processing methods
in mind. ∆t tends to be very small, especially in numerical solutions, making it time-
consuming and expensive to compute for extended periods of physical time. Gaining
insight into the dynamics of such approaches through S2POD allows it to be tuned to
resemble real systems beyond matching time-averaged conditions.
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Abbreviations
The following abbreviations are used in this manuscript:

DFT Discrete Fourier transform

FFT Fast Fourier transform

FOV Field of view

(HS)PIV (High-speed) particle imagine velocimetry

K-L Karhunen–Loève

PSD Power spectral density

SGF Savitzky–Golay finite impulse response filter

(S2)POD (Spectral subsampling) proper orthogonal decomposition
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TCF Turbine centre frame

Latin Symbols

Csub Subsampling factor (-)

d Diameter (m)

D Major axis of elliptical inflow slit (m)

f Frequency (Hz)

H Hilbert space (-)

n Natural number, No. of data points (-)

N No. of spatial points (-)

q Vector function (-)

R Correlation tensor (-)

Re Reynolds number (-)

S Cross-spectral density tensor (-)

Sr Strouhal number (-)

t Time (s)

T Period, measurement duration (s)

u = [u, v, w] Cartesian velocity vector (m s−1)

U Reference flow speed (m s−1)

U Input data array (-)

V Control volume/spatial domain (-)

W Weight tensor (-)

x Spatial coordinates (m)

x, y, z Cartesian coordinates (m)

X Fourier coefficient matrix (-)

z Set of independent variables (-)

Greek Symbols

δ Kronecker delta (-)

∆ Delta operator or difference (-)

λ Eigenvalue (-)

Λ Eigenvalue matrix (-)

ξ Stochastic variable (-)

τ Time shift (s)

ϕ Phase (rad)

φ Eigenfunction (-)

Φ Eigenfunction matrix (-)

ψ Spectral eigenfunction (-)

Ψ Spectral eigenfunction matrix (-)

Ω Variable domain (-)

Subscripts

0 Nominal, initial

∞ Far-field condition

blk Block

f Frequency index

FFT No. of data points used in FFT

h Hydraulic diameter

HW Local hot wire coordinate system

max Maximum occurring value

N Nyquist

s Sampling
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t Time steps

x Related to x-axis

y Related to y-axis

Operators

E{·} Expectation operator (-)

· Expectation value

·̂ Fourier-transformed

·∗ Conjugate transpose, effective

〈· , ·〉 Inner product
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