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Advancements in instrumentation support improved powered ankle prostheses 
hardware development. However, control algorithms have limitations regarding 
number and type of sensors utilized and achieving autonomous adaptation, 
which is key to a natural ambulation. Surface electromyogram (sEMG) sensors 
are promising. With a minimized number of sEMG inputs an economic control 
algorithm can be  developed, whereas limiting the use of lower leg muscles 
will provide a practical algorithm for both ankle disarticulation and transtibial 
amputation. To determine appropriate sensor combinations, a systematic 
assessment of the predictive success of variations of multiple sEMG inputs in 
estimating ankle position and moment has to conducted. More importantly, 
tackling the use of nonnormalized sEMG data in such algorithm development to 
overcome processing complexities in real-time is essential, but lacking. We used 
healthy population level walking data to (1) develop sagittal ankle position and 
moment predicting algorithms using nonnormalized sEMG, and (2) rank all muscle 
combinations based on success to determine economic and practical algorithms. 
Eight lower extremity muscles were studied as sEMG inputs to a long-short-term 
memory (LSTM) neural network architecture: tibialis anterior (TA), soleus (SO), 
medial gastrocnemius (MG), peroneus longus (PL), rectus femoris (RF), vastus 
medialis (VM), biceps femoris (BF) and gluteus maximus (GMax). Five features 
extracted from nonnormalized sEMG amplitudes were used: integrated EMG 
(IEMG), mean absolute value (MAV), Willison amplitude (WAMP), root mean square 
(RMS) and waveform length (WL). Muscle and feature combination variations 
were ranked using Pearson’s correlation coefficient (r > 0.90 indicates successful 
correlations), the root-mean-square error and one-dimensional statistical 
parametric mapping between the original data and LSTM response. The results 
showed that IEMG+WL yields the best feature combination performance. The 
best performing variation was MG + RF + VM (rposition = 0.9099 and rmoment = 0.9707) 
whereas, PL (rposition = 0.9001, rmoment = 0.9703) and GMax+VM (rposition = 0.9010, 
rmoment = 0.9718) were distinguished as the economic and practical variations, 
respectively. The study established for the first time the use of nonnormalized 
sEMG in control algorithm development for level walking.
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1. Introduction

Lower limb amputations include transtibial amputation, i.e., a 
surgical procedure to fully remove the lower limb below the knee, and 
ankle disarticulation, i.e., surgical removal of the foot at the ankle 
joint. The incidence rates of these interventions are high, reaching, 
e.g., over 11,500 cases alone in the UK each year (Isaacs-Itua and 
Sedki, 2018) and from 2003 to 2013, about half of those were 
transtibial amputations (Ahmad et al., 2016). Ascribed to a simple, low 
economic cost and robust design, energy storing and returning 
prostheses with elastic and damping characteristics (Brackx et al., 
2013) dominate the commercial lower limb prostheses market 
(Gehlhar et al., 2020). However, because of lack of mechanical power 
generation and autonomous adaptation they can only provide lower 
than normal gait speeds with high metabolic energy costs that leads 
to early fatigue (Vucina et al., 2005; Brackx et al., 2013; Xu et al., 2021). 
Central to these limitations is the absence of a sensory feedback to 
characterize user dependent needs (Tucker et al., 2015).

Current studies on powered prostheses, which devices overcome 
the indicated shortcomings and assist users’ gait at walking speeds 
close to normal (Nasr et al., 2021) do utilize several sensors including 
inertial measurement units (Culver et al., 2018; Shultz and Goldfarb, 
2018), pressure sensors (Attal et  al., 2018; Liu et  al., 2019), force 
sensors (Sup et al., 2008; Quintero et al., 2018; Lenzi et al., 2019), and 
mechanical sensors, e.g., load cells, position, velocity and current 
sensors (Huang et al., 2011; Spanias et al., 2018; Khademi and Simon, 
2021). However, such sensors can be energy demanding and feature 
latency in signal outputs for matching human motion resulting in 
compromised autonomous adaptation (Zhang et al., 2019). On the 
other hand, surface electromyograms (sEMG) can be  used in the 
assistive robotic system controllers (Huang et al., 2016; Ferris and 
Schlink, 2017; Spanias et al., 2018; Li et al., 2019; Hosseini et al., 2020; 
Yin et al., 2020; Hunt et al., 2021; Kyeong et al., 2022; Zhang et al., 
2023) gait classification (Huang et al., 2009; Varol et al., 2010; Miller 
et al., 2013; Liu et al., 2017; Khademi and Simon, 2021) and predicting 
lower limb joint kinetics and kinematics (Sepulveda et al., 1993; Zhang 
et al., 2012; Chen et al., 2018; Jephil et al., 2020; Zabre-Gonzalez et al., 
2021), which serve well the purpose of the autonomous adaptation. 
Asif et al. (2021) and Fleming et al. (2021) reported that biomimetic 
models, artificial neural networks, and support vector machines are 
widely used for such applications. However, there are several issues to 
take into account in using sEMG for such purpose one related to 
preprocessing or avoiding of that, and two related to the number of 
sensors to be utilized.

First, sEMG signals have complicated and random patterns, 
making real-time analysis difficult (Reaz et  al., 2006; Chowdhury 
et  al., 2013). Halaki and Ginn (2012) reported that amplitude 
normalization can make interpretation of raw sEMG more accurate 
for detecting muscle activation. However, the implementation of a 
real-time normalization imposes additional difficulties in determining 
the reference value and leads to an elevated computational cost as the 
necessary periodic calibration of such reference can take several 
minutes (Tanaka et al., 2022) and disrupt real-time use. Fluctuations 
across sEMG channels caused by muscle fatigue and variability in skin 
impedance can also obscure the reference value over longer periods 
of time (Scheme and Englehart, 2011; Khushaba et  al., 2014; 
Triwiyanto et  al., 2018; Ameri et  al., 2020) and make sEMG 
normalization unsuitable for real-time processing (Tanaka et al., 2022). 

One possibility could be  finding static reference values for each 
targeted muscle through some pre-testing such as a few minutes of 
stable walking at a certain condition and normalizing the sEMG 
signals to those references in the real-time implementation. In the 
amputee prosthesis users, this could be utilized before adding any 
control to the device provided that it can work passively. This can 
serve limiting the computation cost of normalization, which needs to 
be tested in new studies. However, prolonged walking has been shown 
to cause muscle fatigue (Chambers et al., 2019) and consequently 
decreased sEMG amplitudes (Schlink et al., 2021). More importantly, 
studies have shown variations in sEMG amplitudes with changes in 
walking speed (den Otter et  al., 2004), which may compromise 
accuracy of static reference values. Currently, the use of nonnormalized 
sEMG supported by feature extraction implementation is the plausible 
method to be utilized (Fleming et al., 2021). With the aim of achieving 
autonomous adaptation to improve the human-machine coordination 
performance in exoskeletons, Ma et  al. (2020) used time-domain 
features of sEMG of eight leg muscles collected from healthy subjects 
in order to estimate the knee joint angle by using a long short-term 
memory structure (LSTM). A similar approach was used by 
Foroutannia et al. (2022) to develop an LSTM architecture that utilizes 
time-domain features of leg muscles in the prediction of hip 
joint kinematics.

Second, sEMG signals can be contaminated by noise caused by 
cross talk and skin conductivity change, or artifacts originating at the 
skin-electrode interface, signal amplifiers, and external sources (De 
Luca et al., 2010). Therefore, using a large number of sEMG sensors 
may cause processing complexity (Hussain et al., 2020), complications 
in sensor setup design, and impose difficulty in daily use (Fleming 
et al., 2021). In different studies, the number of sEMG amplitudes 
utilized for predicting joint kinematics and kinetics varies from eleven 
(e.g., Huang et al., 2009, 2011; Du et al., 2013; Hargrove et al., 2013; 
Young et al., 2014; Spanias et al., 2016; Liu et al., 2017) to four (e.g., 
Hoover et al., 2012; Spanias et al., 2018). Zaffir et al. (2021) developed 
and compared different types of neural network models for estimating 
dorsiflexion for robotic ankle-foot orthoses with similar concerns of 
minimizing the number of muscle inputs and eliminating mechanical 
sensors. They utilized sEMG data of four leg muscles of healthy 
participants. Extracted time-domain features were used as inputs, and 
the best performance was shown by the LSTM neural network.

Third, the original cause of the amputation, the choice of surgical 
technique and factors such as residual limb length, shape, and 
subsequent muscle atrophy can affect muscle activity and, 
consequently, sEMG signals (Isakov et al., 1996; Smith, 2004; Tintle 
et al., 2010; Ranz et al., 2017). In transtibial amputation, the residual 
limb muscle availability gets compromised if the amputation is 
performed closer to the knee (Huang and Ferris, 2012), whereas most 
muscle mass remains intact in ankle disarticulation (Isaacs-Itua and 
Sedki, 2018).

Therefore, minimizing the number of sEMG muscle sources 
utilized in a joint kinematics and kinetics prediction algorithm will 
make the controller of a powered ankle prosthesis economic, and 
limiting the use of lower leg muscles will make it practical for both 
ankle disarticulation and transtibial amputation. Recently, 
we  developed neural network-based algorithms to predict ankle 
position and moment using all combinations of sEMG amplitudes of 
several lower leg muscles (Keleş and Yucesoy, 2020). This approach 
methodologically paved the way for achieving a user specific algorithm 
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development procedure as the most suitable sEMG variations that 
either minimizes the total number of sensors or those of lover leg 
muscles could be identified. However, the use of normalized sEMG 
exclusively impedes a real-time applicability. In addition, the number 
of available muscles limited to five restricts a versatile applicability, 
given the inter-individual differences of potential users. In the present 
study, the methodology is extended for competency by (i) utilizing 
nonnormalized sEMG signals coupled with feature extraction and (ii) 
making muscle input selection comprehensive via the usage of eight 
lower leg muscles.

The aims were to (1) implement our extended methodology for 
developing algorithms that predict sagittal ankle kinematics and 
kinetics during level walking using nonnormalized lower limb sEMG 
signals, and (2) rank the extensive range of muscle combination 
variations according to their success to facilitate a user specific 
selection of sensor inputs for economic and practical control 
algorithms that can be used in powered ankle prostheses.

2. Methods

2.1. Data utilized and summary of data 
collection procedures

Gait data are required for developing, training, and testing neural 
networks. For that purpose, sEMG amplitudes, sagittal ankle angle, 
and moment of level walking trials were acquired from the open 
access data by Lencioni et al. (2019). The data includes (I) trials of level 
walking at different speeds (0.3–2.3 m/s) collected from fifty able-
bodied subjects (25 males, 25 females, age range, 6–72 years, body 
mass: 18.2–110 kg, body height: 116.6–187.5 cm) and (II) in addition 
to joint kinematics and kinetics data also nonnormalized sEMG data 
of tibialis anterior (TA), soleus (SO), medial gastrocnemius (MG), 
peroneus longus (PL), rectus femoris (RF), vastus medialis (VM), 
biceps femoris (BF) and gluteus maximus (GMax), which were 
recorded simultaneously with motion capturing during the level 
walking trials. Ankle joint kinematics and kinetics data were recorded 
using a 9-camera motion capture system (SMART system, BTS, 
Garbagnate Milanese, Italy), total-body LAMB marker set and two 
force plates (Kistler, Winterthur, Switzerland). The sEMG amplitudes 
were recorded using an 8-channel wireless EMG recording system 
(ZeroWirePlus, Cometa, Bareggio, Italy) unilaterally on the dominant 
side with electrode locations in agreement with SENIAM (Hermens 
et al., 2000), using pre-amplified self-adhesive Ag-AgCl electrodes 
(Medtronic Kendall, USA, 24 mm electrode diameter, 10 mm active 
part diameter, bipolar configuration, 20 mm inter-electrode distance). 
sEMG amplitudes were band-pass filtered (10 Hz – 400 Hz) before 
sampling to reduce the aliasing effect, but not normalized. 
Synchronous data acquisition was managed by the proprietary 
software of the motion capture system.

In each experiment, the subjects were equipped with the LAMB 
total-body marker set, which includes retro-reflective markers (12 mm 
diameter) on lower limbs. As required by the LAMB protocol, 
additional markers were placed on the medial part of the lower limbs 
for the preliminary static calibration trial and were removed during 
the dynamic trials. Subjects were required to wear tight clothes or 
swimsuits and markers were attached on the skin above bony 
landmarks with double-sided adhesive tape.

For the level-ground walking task, subjects were initially asked to 
walk five trials at their natural speed. Then, they were asked to perform 
the following ten trials while progressively increasing (first 5 trials) or 
decreasing (latter 5 trials) their speed. No precise indications about 
gait speed or cadence in order not to induce gait alterations were given.

2.2. Neural network development

All neural networks to be developed feature the following: (1) The 
long-short term memory (LSTM) neural network architecture was 
used. LSTM is a deep learning method that is a form of the recurrent 
neural network model that can make predictions for time series in 
real-time (Kaushik et al., 2020; Yi et al., 2021). This architecture has 
been shown to be  highly efficient in sEMG-based human motion 
pattern recognition for identifying the user’s movement (Song et al., 
2020). (2) sEMG features, calculated over sEMG amplitudes of leg 
muscles, were used as LSTM inputs to predict ankle position and 
moment (see Figure 1 for a block diagram). A similar input integration 
into LSTM has been shown to be highly efficient in estimating joint 
angles (Ma et al., 2020; Zaffir et al., 2021; Foroutannia et al., 2022). 
Presently, two separate LSTMs were developed and trained for 
predicting ankle joint position and moment. The reason for not using 
a single LSTM with multiple outputs was (i) to reduce complexity so 
that LSTMs can be trained and tuned efficiently (Kendall et al., 2018; 
Crawshaw et al., 2020), (ii) to avoid possible overfitting, which can 
cause inaccurate predictions for new data (Rebuffi et al., 2017; Zhang 
and Yang, 2021) and (iii) to achieve a better computational 
performance (Rebuffi et al., 2017).

2.2.1. sEMG feature selection
sEMG features have been used widely as inputs for sEMG-based 

robotic controllers (Hudgins et  al., 1993; Chan and Green, 2007; 
Angkoon et al., 2009). Presently, five time-domain sEMG features that 
can be used efficiently in real-time applications (Phinyomark et al., 
2011) were tested and evaluated, which are: integrated EMG (IEMG), 
mean absolute value (MAV), Willison amplitude (WAMP), root mean 
square (RMS) and waveform length (WL). Their mathematical 
definitions are presented in Table 1. Since the window size to calculate 
sEMG features should be  less than 300 ms for real-time 
implementation (Phinyomark et  al., 2011), the window size was 
selected as 150 ms (Huang et al., 2011). To test the success of sEMG 
features, all possible combinations (in total 31) were studied: 5 single 
features (e.g., IEMG), 10 two feature combinations (e.g., IEMG+MAV), 
10 three feature combinations (e.g., IEMG+MAV + WAMP), 5 four 
feature combinations (e.g., IEMG+MAV + WAMP+RMS) and 1 five 
feature combination (i.e., IEMG+MAV + WAMP+RMS + WL). In 
order to determine the best performing sEMG feature variation, 
sEMG amplitudes of the muscle combination MG + BF + GMax were 
used based on the success of this muscle combination in ankle 
position and moment predictions (Keleş and Yucesoy, 2020).

2.2.2. Muscle selection
sEMG amplitudes of the eight lower extremity muscles included 

in the dataset were used: the TA, SO, MG, and PL in the lower leg and 
the RF, BF, VM, and GMax in the upper leg. To test the success of the 
use of sEMG amplitudes in neural networks inputs for the prediction 
of ankle position and moment, all possible combinations (in total 255) 
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were studied: 8 single muscles (e.g., TA), 28 two muscle combinations 
(e.g., TA + SO), 56 three muscle combinations (e.g., TA + SO+MG), 70 
four muscle combinations (e.g., TA + SO+MG + PL), 56 five muscle 
combinations (e.g., TA + SO+MG + PL + RF), 28 six muscle 
combinations (e.g., TA + SO+MG + PL + RF + BF), 8 seven muscle 
combinations (e.g., TA + SO+MG + PL + RF + BF + VM), and 1 eight 
muscle combination (i.e., TA + SO+MG + PL + RF + BF + VM + GMax).

The best performing variation including the minimum total 
number of muscle inputs is referred to as the economic variation. The 
variation performing better than the economic variation and including 
the minimum number of lower leg muscle inputs is referred to as the 
flexible variation. The best performing variation including the 
minimum total number of only upper leg muscles is classified as 
practical variation.

2.3. Neural network training

The open access data (Lencioni et al., 2019) contains 844 level 
walking trials at various walking speeds. Randomly selected 675 
datasets (80% of the total) were classified and used as training datasets, 
and the rest were classified and used as validation datasets. Both 
training and validation datasets contain the same range of walking 
speed data (0.3–2.3 m/s) which enabled the LSTMs to be trained and 
tested for a wide range of walking speeds. The feature extraction 
function outputs for the TA muscle are exemplified in Figure 2 (see 
Supplementary Document 1 for the remainder of the muscles). For 
each muscle within each dataset, the features were extracted and were 
used in the training and validation of LSTMs developed, which was 
done separately for ankle joint position and moment predictions. 

FIGURE 1

Block diagram of the LSTM structures for ankle position and moment prediction.

TABLE 1 Mathematical definition of the sEMG feature extraction 
methods.
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xn represents the sEMG signal in a segment n. N denotes the length of the sEMG signal. 
IEMG: sum of the absolute values of the signal in a sliding window. MAV: mean 
of the absolute values of the signal in a sliding window. RMS: square root of the 
average power of the sEMG amplitude in a sliding window. WL: the cumulative length of the 
sEMG amplitude within a sliding window. WAMP: total number of stages resulting from 
amplitude change between two adjacent points that exceed a defined threshold in a sliding 
window. Threshold value for WAMP is chosen as 50 mV (Phinyomark et al., 2011).
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LSTMs were trained within MATLAB, using the Adam optimizer 
because of its computational efficiency and its success in 
non-stationary data (Kingma and Ba, 2015). Trainings were stopped 
after 200 epochs (e.g., Zhang and Ma, 2023). The selection of the 
number of hidden units for joint position and moment predictor 
LSTMs was based on previous studies aiming at utilization of sEMG 
in joint kinetics and kinematics predictions (Kim et al., 2020; Bao 
et al., 2021), such that a range of 250 units was chosen for both. 200 
hidden units for joint position and 50 hidden units for joint moment 
predictor LSTMs were determined (Figure 1) as the outcome of a 
systematical variation of the number of hidden units within this range 
to yield the highest correlations for ankle position and moment 
changes in the sagittal plane.

2.4. Evaluation of the developed neural 
networks

Normal Q-Q plots for the residuals between original data and 
LSTM response were used to illustrate if the residuals follow a normal 
distribution. Two-way ANOVA for repeated measures (factors: %GC 
and muscle combination) was performed separately for joint position 
and moment predictions based on correlation coefficients. If 
significant main effects were found, Bonferroni post hoc tests were 
performed to further locate significant within-factor differences. 
One-way ANOVA was further used for temporal success assessment 
based on one-dimensional statistical parametric mapping (SPM) 
across the gait cycle (GC) using F-statistics (Pataky, 2010). Differences 
between the original data and estimated outputs were considered 
significant at p < 0.05.

To evaluate the outcome of the developed sEMG feature and muscle 
combinations (i.e., the best performing one out of all possible 31 sEMG 

feature combinations x all 255 possible muscle combinations) for joint 
position and moment predictions, the following were used: (1) Pearson’s 
correlation coefficient (r) between the original data and LSTM response 
was calculated. r = 0.90 was selected as a strong correlation threshold. A 
miscorrelation score was defined as the sum of deviation of correlation 
values from one. (2) Root-mean-square errors (RMSE) between the 
original data and LSTM response were calculated. An RMSE score was 
defined as the mean of position and moment RMSE values normalized to 
their respective peak value among all sEMG feature or muscle 
combinations. (3) SPM analysis was conducted to localize significantly 
different %GC points between the original data and LSTM response, total 
number of which are expressed as a percentage of the entire GC. An SPM 
Score was defined as the mean of those percentages for ankle position and 
moment predictions. (4) An overall error score was defined as the product 
of miscorrelation, RMSE, and SPM scores.

3. Results

3.1. sEMG feature selection

Table 2 shows the correlation coefficients, miscorrelation scores, 
RMSE values, RMSE scores, SPM results, and SPM scores of all sEMG 
feature combinations calculated over sEMG amplitudes of 
MG + BF + GMax and provides their ranking based on their overall 
error score.

The five feature combination (IEMG+MAV + RMS + WAMP+WL) 
shows a strong correlation (rposition = 0.9006 and rmoment = 0.9663) and 
ranks 19th amongst all.

Four feature combinations: Only IEMG+MAV + RMS + WL shows 
a strong correlation (rposition = 0.9095 and rmoment = 0.9747) and ranks 6th 
amongst all.

FIGURE 2

Mean and standard deviation of sEMG signals and its extracted features for the TA muscle. (A) the sEMG signals and the corresponding (B) IEMG, 
(C) MAV, (D) RMS, (E) WL and (F) WAMP features.
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TABLE 2 The comparison of the performance of sEMG feature variations utilizing the muscle combination MG + BF + GMax.

Rank sEMG feature variations Position 
correlation 

[r]

Moment 
correlation 

[r]

Position 
RMSE
[deg]

Moment 
RMSE

[Nm/kg]

Position 
SPM 

[%GC]

Moment 
SPM 

[%GC]

Miscorrelation 
score

Error 
score

SPM 
score

Overall 
error 
score

1 IEMG+WL 0.9006 ± 0.0831 0.9742 ± 0.0503 4.6781 ± 1.7030 0.1094 ± 0.0610 0.1000 0.0000 0.0626 0.8670 0.0500 0.0027

2 IEMG+MAV + RMS + WAMP 0.8948 ± 0.0879 0.9718 ± 0.0419 4.8151 ± 1.7124 0.1158 ± 0.0554 0.0600 0.1200 0.0667 0.9046 0.0900 0.0054

3 MAV + RMS + WAMP 0.8933 ± 0.1009 0.9732 ± 0.0406 4.8809 ± 1.6684 0.1129 ± 0.0478 0.0600 0.2500 0.0667 0.8998 0.1550 0.0093

4 IEMG+RMS + WL 0.9031 ± 0.1034 0.9710 ± 0.0750 4.6766 ± 1.7467 0.1154 ± 0.0725 0.0300 0.3300 0.0629 0.8898 0.1800 0.0101

5 IEMG 0.8955 ± 0.0848 0.9780 ± 0.0250 4.9175 ± 1.8937 0.1090 ± 0.0470 0.1500 0.2200 0.0633 0.8883 0.1850 0.0104

6 IEMG+MAV + RMS + WL 0.9095 ± 0.0785 0.9747 ± 0.0435 4.6147 ± 1.5559 0.1096 ± 0.0564 0.2000 0.2500 0.0579 0.8617 0.2250 0.0112

7 IEMG+MAV + WL 0.8962 ± 0.1013 0.9758 ± 0.0369 4.7377 ± 1.7184 0.1083 ± 0.0533 0.2100 0.2000 0.0640 0.8684 0.2050 0.0114

8 IEMG+RMS + WAMP 0.8940 ± 0.1038 0.9727 ± 0.0347 4.6181 ± 1.7669 0.1160 ± 0.0567 0.1400 0.2500 0.0667 0.8865 0.1950 0.0115

9 WAMP 0.8884 ± 0.0925 0.9763 ± 0.0263 4.9206 ± 1.6076 0.1109 ± 0.0447 0.1800 0.2200 0.0676 0.8959 0.2000 0.0121

10 RMS 0.8888 ± 0.0955 0.9757 ± 0.0255 5.0877 ± 2.0147 0.1142 ± 0.0460 0.1500 0.2700 0.0677 0.9245 0.2100 0.0132

11 WL 0.9006 ± 0.0830 0.9814 ± 0.0209 4.8743 ± 1.7730 0.1020 ± 0.0419 0.2400 0.3200 0.0590 0.8574 0.2800 0.0142

12 MAV + WAMP+WL 0.8860 ± 0.1081 0.9734 ± 0.0342 4.9387 ± 1.8112 0.1154 ± 0.0550 0.3200 0.1300 0.0703 0.9149 0.2250 0.0145

13 RMS + WAMP+WL 0.8987 ± 0.0965 0.9706 ± 0.0779 4.7733 ± 1.5983 0.1145 ± 0.0575 0.1900 0.3100 0.0653 0.8956 0.2500 0.0146

14 IEMG+MAV + RMS 0.9034 ± 0.0733 0.9800 ± 0.0269 4.7612 ± 1.6848 0.1076 ± 0.0467 0.0300 0.6100 0.0583 0.8680 0.3200 0.0162

15 RMS + WL 0.9023 ± 0.0742 0.9782 ± 0.0329 4.8670 ± 1.6755 0.1062 ± 0.0552 0.2300 0.4000 0.0597 0.8728 0.3150 0.0164

16 MAV + RMS + WL 0.8961 ± 0.1182 0.9671 ± 0.1330 4.8736 ± 1.8146 0.1122 ± 0.0724 0.3400 0.2000 0.0684 0.8964 0.2700 0.0166

17 MAV 0.8824 ± 0.1078 0.9758 ± 0.0251 5.1429 ± 2.0960 0.1147 ± 0.0462 0.1900 0.3200 0.0709 0.9317 0.2550 0.0168

18 IEMG+MAV 0.8885 ± 0.0885 0.9745 ± 0.0408 5.0225 ± 1.8550 0.1142 ± 0.0575 0.2000 0.3500 0.0685 0.9183 0.2750 0.0173

19 IEMG+MAV + RMS + WAMP+WL 0.9006 ± 0.1162 0.9663 ± 0.0627 4.5362 ± 1.8213 0.1204 ± 0.0689 0.1100 0.4900 0.0665 0.8956 0.3000 0.0179

20 WAMP+WL 0.8927 ± 0.0971 0.9665 ± 0.0743 4.7689 ± 1.6955 0.1196 ± 0.0634 0.0800 0.5600 0.0704 0.9148 0.3200 0.0206

21 MAV + RMS + WAMP+WL 0.8965 ± 0.0780 0.9567 ± 0.1015 4.8439 ± 1.6630 0.1252 ± 0.0792 0.1000 0.5400 0.0734 0.9434 0.3200 0.0222

22 RMS + WAMP 0.8776 ± 0.1066 0.9730 ± 0.0361 5.0264 ± 1.8036 0.1168 ± 0.0514 0.3900 0.2600 0.0747 0.9287 0.3250 0.0225

23 MAV + RMS 0.8765 ± 0.1068 0.9766 ± 0.0241 5.2271 ± 2.0433 0.1132 ± 0.0451 0.3000 0.4000 0.0734 0.9340 0.3500 0.0240

24 IEMG+MAV + WAMP+WL 0.8935 ± 0.1044 0.9605 ± 0.0849 4.6255 ± 1.6296 0.1275 ± 0.0670 0.1400 0.5700 0.0730 0.9313 0.3550 0.0241

25 IEMG+RMS 0.8952 ± 0.0880 0.9744 ± 0.0349 4.9570 ± 1.8372 0.1120 ± 0.0518 0.1800 0.6800 0.0652 0.9036 0.4300 0.0253

26 IEMG+RMS + WAMP+WL 0.8910 ± 0.0998 0.9709 ± 0.0290 4.8587 ± 1.8341 0.1202 ± 0.0493 0.6100 0.2100 0.0691 0.9257 0.4100 0.0262

27 IEMG+WAMP 0.8751 ± 0.1106 0.9705 ± 0.0461 5.0310 ± 1.9238 0.1155 ± 0.0601 0.5500 0.2200 0.0772 0.9241 0.3850 0.0275

28 MAV + WAMP 0.8827 ± 0.1034 0.9766 ± 0.0236 4.9713 ± 1.6828 0.1144 ± 0.0446 0.3600 0.5200 0.0703 0.9142 0.4400 0.0283

29 IEMG+WAMP+WL 0.8906 ± 0.1151 0.9619 ± 0.1234 4.8330 ± 1.7555 0.1214 ± 0.0713 0.6200 0.2300 0.0737 0.9278 0.4250 0.0291

30 MAV + WL 0.8924 ± 0.1383 0.9796 ± 0.0244 4.9329 ± 1.8115 0.1064 ± 0.0463 0.5900 0.5800 0.0640 0.8798 0.5850 0.0329

31 IEMG+MAV + WAMP 0.8768 ± 0.1085 0.9611 ± 0.0591 4.9993 ± 1.9492 0.1304 ± 0.0677 0.4800 0.5900 0.0811 0.9782 0.5350 0.0424

Grey shaded cells show the feature variations that do not provide strongly correlated position and moment predictions (i.e., r < 0.90). IEMG, integrated EMG; MAV, mean absolute value; WAMP, Willison amplitude; RMS, root mean square; WL, waveform length.

https://doi.org/10.3389/fnins.2023.1158280
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Keleş et al. 10.3389/fnins.2023.1158280

Frontiers in Neuroscience 07 frontiersin.org

Three feature combinations: 2 of 10 variations show strong 
correlations (rposition > 0.90 and rmoment > 0.97). IEMG+RMS + WL shows 
the strongest correlation (rposition = 0.9031 and rmoment = 0.9710) and 
ranks 4th amongst all variations.

Two feature combinations: 2 of 10 variations show strong 
correlations (rposition > 0.90 and rmoment > 0.97). IEMG+WL shows the 
strongest correlation (rposition = 0.9006 and rmoment = 0.9742) and ranks 
1st amongst all variations.

Single features: Only WL shows a strong correlation 
(rposition = 0.9006 and rmoment = 0.9814) and ranks 11th amongst all.

Results show that IEMG+WL yields the best position and moment 
prediction performance. SPM analysis of the IEMG+WL (Figure 3) 

showed that significant localized differences between the actual and 
estimated outputs are limited to 10 points (1–3%, 8–9%, 25–28%, and 
54% GC) for ankle position, whereas no significantly different points 
were localized for ankle moment.

3.2. Muscle selection

ANOVA (factors: %GC and muscle combination) showed 
significant main effects on joint position predictions, but no 
interaction. ANOVA (factors: %GC and muscle combination) showed 
significant main effects on joint moment predictions and a significant 

FIGURE 3

Temporal success assessment for IEMG+WL. The normal Q-Q plots for the residuals between original data and LSTM response for ankle (A) position 
and (B) moment. Mean and standard deviation of estimated NN response vs. original data for ankle (C) position and (D) moment, as a function of % 
stride. Statistical parametric mapping using F-statistics (SPM{F}) for ankle (E) position and (F) moment as a function of % stride shows values below the 
threshold (i.e., for p < 0.05, F*position = 9.26, F*moment = 9.36). IEMG abbreviates integrated EMG and WL abbreviates waveform length.
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interaction. Post hoc testing showed significant effects of muscle 
combination based on comparisons of correlation coefficients for (i) 
239 out of 465 combinations for joint position predictions, and (ii) 227 
out of 465 combinations for joint moment predictions.

Table 3 shows the correlation coefficients, miscorrelation scores, 
RMSE values, RMSE scores, SPM results, and SPM scores of best 
performing 30 muscle combinations determined utilizing the sEMG 
feature IEMG+WL followed by selected exclusively upper leg muscle 
combinations, and provides their ranking based on their overall error 
score (see Supplementary Document 2 for all variations).

The eight muscle combination (BF + MG + GMax+PL +  
RF + SO+TA + VM) shows strong correlation (rposition = 0.9205 and 
rmoment = 0.9695) and ranks 7th amongst all variations.

Seven muscle combinations: All variations show strong 
correlations (rposition > 0.90 and rmoment > 0.97). 
BF + MG + GMax+RF + SO+TA + VM shows the strongest correlation 
and ranks 4th amongst all variations (rposition = 0.9246 and 
rmoment = 0.9803).

Six muscle combinations: 26 of 28 variations show strong 
correlations (rposition > 0.90 and rmoment > 0.95). 
BF + MG + GMax+PL + RF + SO shows the strongest correlation and 
ranks 3rd amongst all variations (rposition = 0.9134 and rmoment = 0.9714).

Five muscle combinations: All variations show strong correlations 
(rposition > 0.90 and rmoment > 0.95). MG + GMax+PL + RF + TA shows the 
strongest correlation and ranks 17th amongst all variations 
(rposition = 0.9099 and rmoment = 0.9779).

Four muscle combinations: 66 of 70 variations show strong 
correlations (rposition > 0.90 and rmoment > 0.96). MG + GMax+PL + VM 
shows the strongest correlation and ranks 5th amongst all variations 
(rposition = 0.9101 and rmoment = 0.9725).

Three muscle combinations: 45 of 56 variations show strong 
correlations (rposition > 0.90 and rmoment > 0.96). MG + RF + VM shows the 
strongest correlation and ranks 1st amongst all variations 
(rposition = 0.9099 and rmoment = 0.9707).

Two muscle combinations: 21 of 28 variations show strong 
correlations (rposition > 0.90 and rmoment > 0.96). RF + TA shows the 
strongest correlation and ranks 11th amongst all variations 
(rposition = 0.9174 and rmoment = 0.9776).

Single muscles: 2 of 8 variations show strong correlations 
(rposition > 0.90 and rmoment > 0.97). PL shows the strongest correlation 
and ranks 69th amongst all variations (rposition = 0.9001 and 
rmoment = 0.9703).

Economic variation is PL which ranks 69th amongst all variations. 
SPM analysis (Figure 4) showed that significant localized differences 
between the actual and estimated outputs are limited to 1–3%, 
12–13%, 30–31%, and 97–100% GC for the position and, 45–53% and 
91–98% GC for the moment prediction.

Flexible variation is MG + RF + VM, which ranks the 1st amongst 
all variations. Table  3. further shows muscle variations with 
significantly different correlation coefficients compared to 
MG + RF + VM. SPM analysis (Figure  5) showed that significant 
localized differences between the actual and estimated outputs occur 
between 1–3% GC for the position and, 83–86% GC for the 
moment prediction.

Practical variation is GMax+VM, which ranks the 106th amongst 
all variations. Table  3. further shows muscle variations with 
significantly different correlation coefficients compared to 
GMax+VM. SPM analysis (Figure 6) showed that significant localized 

differences between the actual and estimated outputs occur between 
1–2%, and 89–95% GC for the position and 63–68% 74–91%, and 
99–100% GC for the moment prediction.

4. Discussion

Recent technological improvements in hardware development 
have advanced the field of lower limb prostheses (Azocar et al., 2018; 
Elery et  al., 2018; Lenzi et  al., 2018). However, an advanced 
autonomous adaptation is still required to achieve seamless and 
natural ambulation (Fleming et al., 2021). Therefore, studies focused 
on sEMG-based algorithms for prosthesis controllers have started to 
accumulate (Dawley et al., 2013; Wang et al., 2013; Huang et al., 2016; 
Spanias et  al., 2018). Recently, we  developed neural networks 
showing that ankle position and moment changes during level 
walking can be predicted by using normalized sEMG amplitudes of 
leg muscles (Keleş and Yucesoy, 2020). However, the use of 
normalized sEMG amplitudes was a limitation which is addressed in 
the present study.

Souza et al. (2014) indicated that neuromuscular control schemes 
merging timing-based approaches could advance prosthesis control. 
Since the action patterns of walking occur in a time series (Song et al., 
2020) and sEMG amplitudes show variability in time and are cyclic 
(Souza et al., 2014), in order to make accurate predictions of joint 
movement using data from past is essential. LSTM architecture 
contains a set of memory blocks (Ma et al., 2020) that can maintain its 
state over time (Greff et al., 2017), enabling the structure to remember 
the previous inputs (Song et al., 2020). Consequently, LSTM is widely 
used owing to its capability of generating accurate outputs for time 
series: the action patterns of walking occur in a time series (Song et al., 
2020), and LSTM generates outputs based on the inputs from the past 
(Greff et al., 2017), making it suitable for predicting joint kinematics 
and kinetics (Ma et al., 2020). Also, the sEMG feature extraction is 
used widely, where features are extracted within a sliding window and 
used as inputs to predict joint kinetics or kinematics (Bi et al., 2019; 
Gupta et al., 2020; Zhang et al., 2021; Chen et al., 2022; Rabe and Fey, 
2022; Truong et al., 2023). Previous studies have shown that using 
sEMG features as input (e.g., Spanias et al., 2015, 2018), the LSTM 
structure (e.g., Ren et al., 2022), and their combined implementations 
(e.g., Song et al., 2020) provide a successful prediction of intended 
motion. Although prediction of ankle position and moment was not 
sought after, these studies demonstrated that accurate predictions 
using time-domain sEMG features and LSTM is plausible. Therefore, 
an LSTM structure that predicts ankle position and moment during 
level walking using features extracted from nonnormalized sEMG 
amplitudes was implemented in the present study. Results showed that 
the developed LSTMs can predict ankle position and moment during 
level walking with up to 0.9292 and 0.9813 correlations, respectively. 
Note that, Huihui et al. (2018) reported an RMSE of 4.80° in ankle 
position prediction, whereas Hahn and O’Keefe (2008) reported an 
RMSE of 0.10 Nm/kg in ankle moment prediction. However, those 
authors utilized 5 and 7 muscles, respectively. Ma et  al. (2020) 
estimated the knee joint angle using 8 muscles with an RMSE of 4.60°, 
whereas Farmer et al. (2014) estimated the ankle joint angle using 3 
lower leg muscles and reported an RMSE of 5.40°. By utilizing only 
three muscles, the present LSTM structure yielded a compatible 
success with 4.5923° and 0.1072 Nm/kg RMSE.
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TABLE 3 The best performing 30 muscle combinations determined by utilizing the sEMG feature IEMG+WL.

Rank Muscle variations Position 
correlation 

[r]

Moment 
correlation 

[r]

Position 
RMSE [deg]

Moment 
RMSE [Nm/

kg]

Position 
SPM 

[%GC]

Moment 
SPM 

[%GC]

Miscorrelation 
score

Error 
score

SPM 
score

Overall 
error 
score

1 MG + RF + VM † 0.9099 ± 0.0711 0.9707 ± 0.0784 4.5923 ± 1.4815 0.1072 ± 0.0660 0.0300 0.0400 0.0597 0.8819 0.0350 0.0018

2 GMax+RF + SO 0.8978 ± 0.0884 0.9716 ± 0.0400 4.8759 ± 1.6262 0.1151 ± 0.0515 0.0500 0.0100 0.0653 0.9415 0.0300 0.0018

3 BF + MG + GMax+PL + RF + SO † 0.9134 ± 0.0938 0.9714 ± 0.0600 4.3291 ± 1.6537 0.1067 ± 0.0624 0.0700 0.0200 0.0576 0.8543 0.0450 0.0022

4 BF + MG + GMax+RF + SO+TA + VM † 0.9246 ± 0.0614 0.9803 ± 0.0270 4.1877 ± 1.5685 0.1012 ± 0.0514 0.1200 0.0000 0.0475 0.8182 0.0600 0.0023

5 MG + GMax+PL + VM † 0.9101 ± 0.0793 0.9725 ± 0.0753 4.5901 ± 1.6014 0.1085 ± 0.0601 0.1000 0.0000 0.0587 0.8869 0.0500 0.0026

6 BF + MG + GMax * † 0.9006 ± 0.0831 0.9742 ± 0.0503 4.6781 ± 1.7030 0.1094 ± 0.0610 0.1000 0.0000 0.0626 0.8991 0.0500 0.0028

7 BF + MG + GMax+PL + RF + SO+TA + VM * † 0.9205 ± 0.0788 0.9695 ± 0.0862 4.2841 ± 1.6202 0.1060 ± 0.0669 0.0100 0.1200 0.0550 0.8471 0.0650 0.0030

8 MG + GMax+RF + TA † 0.9123 ± 0.0730 0.9789 ± 0.0331 4.5078 ± 1.6104 0.1034 ± 0.0551 0.1100 0.0300 0.0544 0.8582 0.0700 0.0033

9 MG + GMax+PL + RF + SO+TA † 0.9267 ± 0.0548 0.9733 ± 0.0490 4.1133 ± 1.4718 0.1079 ± 0.0573 0.0500 0.1100 0.0500 0.8384 0.0800 0.0034

10 MG + GMax+TA * † 0.9164 ± 0.0670 0.9782 ± 0.0276 4.4843 ± 1.5643 0.1059 ± 0.0538 0.1200 0.0300 0.0527 0.8661 0.0750 0.0034

11 RF + TA * † 0.9174 ± 0.0689 0.9776 ± 0.0238 4.6396 ± 1.5971 0.1081 ± 0.0439 0.0300 0.1200 0.0525 0.8901 0.0750 0.0035

12 MG + SO+TA * † 0.9197 ± 0.0587 0.9769 ± 0.0373 4.4188 ± 1.6482 0.1072 ± 0.0529 0.1100 0.0500 0.0517 0.8651 0.0800 0.0036

13 BF + MG + GMax+PL + SO+TA † 0.9166 ± 0.0938 0.9760 ± 0.0529 4.3324 ± 1.6361 0.1070 ± 0.0595 0.0200 0.1400 0.0537 0.8559 0.0800 0.0037

14 BF + PL + RF + TA † 0.9161 ± 0.0757 0.9734 ± 0.0364 4.4649 ± 1.5828 0.1119 ± 0.0496 0.1000 0.0500 0.0552 0.8887 0.0750 0.0037

15 PL + SO+TA + VM * † 0.9216 ± 0.0615 0.9768 ± 0.0291 4.4417 ± 1.4206 0.1104 ± 0.0500 0.1200 0.0600 0.0508 0.8803 0.0900 0.0040

16 MG + PL + TA * † 0.9203 ± 0.0732 0.9757 ± 0.0498 4.3252 ± 1.5455 0.1083 ± 0.0599 0.1200 0.0700 0.0520 0.8605 0.0950 0.0043

17 MG + GMax+PL + RF + TA † 0.9099 ± 0.1285 0.9779 ± 0.0290 4.3088 ± 1.6608 0.1068 ± 0.0500 0.1200 0.0600 0.0561 0.8528 0.0900 0.0043

18 BF+ MG + RF + SO+TA + VM † 0.9169 ± 0.0831 0.9754 ± 0.0553 4.2226 ± 1.6019 0.1048 ± 0.0536 0.1400 0.0600 0.0539 0.8363 0.1000 0.0045

19 MG + GMax+PL + RF + SO+VM * 0.9136 ± 0.0699 0.9734 ± 0.0476 4.5057 ± 1.4465 0.1078 ± 0.0570 0.0900 0.1000 0.0565 0.8759 0.0950 0.0047

20 MG + GMax+RF + SO+TA † 0.9196 ± 0.0735 0.9725 ± 0.0524 4.3227 ± 1.5550 0.1090 ± 0.0558 0.0600 0.1500 0.0539 0.8631 0.1050 0.0049

21 BF + GMax+VM † 0.8904 ± 0.1091 0.9668 ± 0.0646 5.0332 ± 1.7615 0.1212 ± 0.0652 0.1300 0.0100 0.0714 0.9817 0.0700 0.0049

22 GMax+PL + RF * † 0.9068 ± 0.0759 0.9689 ± 0.0859 4.7873 ± 1.6091 0.1143 ± 0.0567 0.1700 0.0000 0.0622 0.9297 0.0850 0.0049

23 BF + MG + PL + RF * † 0.9102 ± 0.1012 0.9692 ± 0.1117 4.5424 ± 1.6870 0.1074 ± 0.0657 0.0800 0.1100 0.0603 0.8778 0.0950 0.0050

24 BF + MG + GMax+PL + VM * † 0.9097 ± 0.0738 0.9788 ± 0.0280 4.4883 ± 1.4887 0.1065 ± 0.0479 0.1000 0.1100 0.0558 0.8689 0.1050 0.0051

25 MG + GMax+RF + SO+VM 0.9119 ± 0.0676 0.9765 ± 0.0326 4.5431 ± 1.6573 0.1079 ± 0.0512 0.1000 0.1100 0.0558 0.8799 0.1050 0.0052

26 BF + RF + TA * † 0.9164 ± 0.0675 0.9744 ± 0.0406 4.5841 ± 1.5756 0.1124 ± 0.0485 0.0600 0.1500 0.0546 0.9023 0.1050 0.0052

27 BF + PL + SO+VM * † 0.9156 ± 0.0641 0.9649 ± 0.0927 4.5507 ± 1.4057 0.1183 ± 0.0742 0.0400 0.1600 0.0597 0.9231 0.1000 0.0055

28 MG + PL + RF + SO+TA * † 0.9212 ± 0.0628 0.9589 ± 0.1556 4.3659 ± 1.4639 0.1113 ± 0.0748 0.1600 0.0500 0.0600 0.8767 0.1050 0.0055

29 BF + MG + GMax+PL + SO+VM * † 0.9213 ± 0.0737 0.9748 ± 0.0422 4.2727 ± 1.5538 0.1077 ± 0.0564 0.0100 0.2400 0.0520 0.8530 0.1250 0.0055

30 BF + MG + VM * † 0.9201 ± 0.0675 0.9769 ± 0.0371 4.4867 ± 1.6031 0.1083 ± 0.0548 0.0300 0.2300 0.0515 0.8761 0.1300 0.0059

106 GMax+VM * 0.9010 ± 0.0805 0.9718 ± 0.0326 4.8927 ± 1.6140 0.1193 ± 0.0501 0.0900 0.2600 0.0636 0.9603 0.1750 0.0107

154 BF + GMax+RF + VM * † 0.9018 ± 0.0924 0.9659 ± 0.0898 4.8817 ± 1.6350 0.1186 ± 0.0637 0.3300 0.1100 0.0662 0.9564 0.2200 0.0139

247 RF + VM * † 0.9009 ± 0.0784 0.9712 ± 0.0451 4.8933 ± 1.6459 0.1181 ± 0.0551 0.3900 0.5800 0.0640 0.9555 0.4850 0.0296

Darker grey shaded cells show muscle variations that do not provide strongly correlated position and moment predictions (i.e., r < 0.90). Lighter gray hatched cells exemplify solely upper leg muscle variations that provide strongly correlated position and moment 
predictions (i.e., r > = 0.90). Based on significantly different correlation coefficients [r] (i.e., if any one of the position or moment correlations, or both are significantly different for a muscle variation), (*) and (†) indicate significantly different muscle variations from the 
flexible (MG + RF + VM) and practical (GMax + VM) muscle variations, respectively. TA: tibialis anterior, SO: soleus, MG: medial gastrocnemius, PL: peroneus longus, RF: rectus femoris, BF: biceps femoris, VM: vastus medialis, GMax: gluteus maximus.
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Although studies aiming to develop sEMG-based lower limb 
prosthesis controllers have increased in the last decade, there is still no 
commercialized product that relies on neuromuscular input (Fleming 
et al., 2021). Song et al. (2020) predicted the movement patterns using 
normalized sEMG amplitudes of RF, VM, vastus lateralis, and 
semitendinosus muscles to extract features within a sliding window 
size of 1,024 ms. However, a window size less than 300 ms was 
suggested to support implementation of feature extraction in real-time 
prosthetic control (Phinyomark et  al., 2011). Also, sEMG 
normalization is a non-specific method in terms of the required data 
to determine the reference value (Halaki and Ginn, 2012), e.g., the 
large window size can be  a major limitation for the required 

computation and real-time applicability. Spanias et  al. (2015) and 
Spanias et al. (2018) utilized the same number of neuromuscular input 
and achieved the use of nonnormalized sEMG amplitudes collected 
from RF, tensor fasciae latae, semitendinosus, and adductor magnus 
to extract features within a window size lower than 300 ms. 
Nonetheless, they have implemented the additional mechanical 
sensor, which can be energy consuming and could be a trade-off in 
autonomous adaptation due to its latency in generating the output for 
the human locomotion (Zhang et  al., 2019). Utilizing solely 
nonnormalized sEMG amplitude was achieved but the number of 
neuromuscular inputs was increased. In order to recognize the 
locomotion modes, Huang et al. (2011) utilized sEMG amplitudes of 

FIGURE 4

Temporal success assessment for PL. The normal Q-Q plots for the residuals between original data and LSTM response for ankle (A) position and 
(B) moment. Mean and standard deviation of estimated NN response vs. original data for ankle (C) position and (D) moment, as a function of % stride. 
Statistical parametric mapping using F-statistics (SPM{F}) for ankle (E) position and (F) moment as a function of % stride shows values below the 
threshold (i.e., for p < 0.05, F*position = 9.25, F*moment = 9.38). PL abbreviates peroneus longus.
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RF, VM, sartorius, vastus lateralis, gracilis, biceps femoris long head, 
semitendinosus, biceps femoris short head, and adductor magnus 
muscles. Hargrove et  al. (2013) developed a pattern recognition 
algorithm using sEMG amplitudes of BF, RF, VM, vastus lateralis, 
sartorius, gracilis, adductor magnus, and tensor fasciae latae. Chen 
et  al. (2018) developed a deep belief network-based algorithm to 
estimate lower limb joint angles including the ankle and utilized 
sEMG amplitudes collected from BF, VM, RF, MG, TA, SO, MG, 
semitendinosus, vastus lateralis, and sartorius. Huihui et al. (2018) 
implemented the use of feature extraction and nonnormalized sEMG 
amplitudes collected from the external gastrocnemius, gastrocnemius, 

SO, TA, and tibialis longus in order to estimate ankle joint angle. 
Wang et  al. (2019) used sEMG amplitudes of RF, VM, BF, 
semitendinosus, and gastrocnemius to estimate knee joint angles. 
These studies show that the prosthesis controller can be advanced with 
several sEMG inputs. However, such implementation may bear 
difficulties regarding the processing complexity (Hussain et al., 2020). 
Au et  al. (2008) limited the use of neuromuscular input size and 
utilized TA and gastrocnemius muscles in order to develop a powered 
ankle prosthesis controller, whereas Au et al. (2005) and Farmer et al. 
(2014) used the same muscles and included the SO to predict the 
ankle position. Similarly, Zabre-Gonzalez et al. (2021) developed a 

FIGURE 5

Temporal success assessment for MG + RF + VM. The normal Q-Q plots for the residuals between original data and LSTM response for ankle (A) position 
and (B) moment. Mean and standard deviation of estimated NN response vs. original data for ankle (C) position and (D) moment, as a function of % 
stride. Statistical parametric mapping using F-statistics (SPM{F}) for ankle (E) position and (F) moment as a function of % stride shows values below the 
threshold (i.e., for p < 0.05, F*position = 9.32, F*moment = 9.11). MG abbreviates medial gastrocnemius, RF abbreviates rectus femoris, and VM abbreviates 
vastus medialis.
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neural network-based algorithm to predict ankle position and 
moment using TA and MG muscles. Jephil et al. (2020) utilized the 
same muscles with the addition of the lateral gastrocnemius to 
estimate the ankle joint torque and angle. These studies show that the 
neuromuscular input size can be  reduced by using the lower leg 
muscles. However, Huang and Ferris (2012) showed that sEMG 
amplitudes patterns of the TA, gastrocnemius medial head, and 
gastrocnemius lateral head in transtibial amputees, recorded within 
the prosthetic socket during walking, have high inter-subject 
variability. Therefore, limiting lower leg muscle inputs or using solely 
upper leg muscles can increase the compatibility of the prediction 
algorithms for different levels of amputations. In the present study, 

with the goal of real-time applicability, we developed LSTMs to predict 
ankle position and ankle moment using time-domain features 
extracted within 150 ms from non-normalized sEMG amplitudes. The 
proposed LSTM structure eliminates the need for external mechanical 
sensor inputs which cause high processing complexity. Also, the 
presented structure is capable of generating strongly correlated 
predictions by using sEMG amplitudes of GMax and VM muscles, 
addressing the compatibility issue. Furthermore, none of the previous 
studies provided a systematic analysis for the selection of muscles to 
be  used as input. We  recently developed a methodology to 
systematically study all possible variations of sEMG inputs from lower 
leg muscles (Keleş and Yucesoy, 2020). Yet, the implementation of this 

FIGURE 6

Temporal success assessment for GMax+VM. The normal Q-Q plots for the residuals between original data and LSTM response for ankle (A) position 
and (B) moment. Mean and standard deviation of estimated NN response vs. original data for ankle (C) position and (D) moment, as a function of % 
stride. Statistical parametric mapping using F-statistics (SPM{F}) for ankle (E) position and (F) moment as a function of % stride shows values below the 
threshold (i.e., for p < 0.05, F*position = 9.29, F*moment = 9.44). GMax abbreviates gluteus maximus and VM abbreviates vastus medialis.
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methodology to level walking was limited to the usage of five muscle 
inputs (TA, MG, RF, BF, and GMax) and more importantly to 
normalized sEMG data exclusively. Presently, we  extended the 
systematic analysis by including also SO, PL, and VM muscles. Note 
that, indeed the PL muscle was shown to be relevant as even a single 
input, whereas the analyses indicated that VM is important in limiting 
the usage of lower leg muscles. However, the bigger contribution of 
the present study was the extension of the methodology to make it 
suitable for a real-time implementation, which now involves utilization 
of features extracted from nonnormalized sEMG signals as inputs to 
the LSTM architecture. Integration of the SPM analysis outcome into 
the performance metric is also a new approach allowing for a better 
tracking of specific %GC’s showing significant differences between the 
original data and LSTM response. These present achievements provide 
a good versatility by increasing the choices of upper and lower leg 
muscles and improve the user specific applicability of sEMG-based 
ankle position and moment prediction procedures in powered ankle 
prosthesis control algorithms.

The present study shows that the LSTM is suitable for ankle 
position and moment prediction by using the time-domain 
features extracted from the nonnormalized sEMG amplitudes as 
input. Our comprehensive time-domain sEMG feature selection 
analysis showed that the best performing variation is IEMG+WL, 
which is frequently implemented in sEMG-based prosthesis 
controller studies (Fleming et al., 2021) and is feasible to be used 
in real-time applications (Phinyomark et  al., 2011). Presently, 
we  used the muscle combination MG + BF + GMax for sEMG 
feature selection. Previous studies with a similar aim of utilizing 
sEMG in predicting joint kinematics and kinetics conducted 
either a feature (e.g., Phinyomark et  al., 2011) or a muscle 
combination selection (e.g., Wang et al., 2021), or report only the 
utilized feature per muscle (Phinyomark et al., 2011; Li et al., 
2021). Note that, taking into account the challenging nature of 
determining which specific parameter or combination of 
parameters is responsible for an improved neural network output 
(Goodfellow et al., 2016), a separate evaluation of the effects of 
multiple parameters has been suggested (Molnar, 2020). The 
complexity of the neural networks can consequently be reduced 
for an efficient training (Kendall et  al., 2018). Our present 
approach, which involves already a large space of possible muscle 
combinations (255) is in concert with that. To the best of our 
knowledge studies combining the possible sets of both sEMG 
feature selection and muscle selection are very rare and one 
which did cover both involves only 11 muscle combinations 
(Khan et al., 2021). In the present study, the muscle combination 
(i.e., MG + BF + GMax) used in sEMG feature selection process 
was chosen based on our previous study (Keleş and Yucesoy, 
2020), which was shown to provide successful predictions, while 
minimizing the use of lower leg muscles. The feature combination 
IEMG+WL selected as a result, if put to the test with also other 
muscle combinations that stood out in Keleş and Yucesoy (2020) 
yields consistently the preferable results (see 
Supplementary Document 3 for details): for BF + MG + TA (the 
three muscle combination providing improved predictions 
without aiming at minimizing the use of lower leg muscles), for 
MG + TA (the successful combination with minimum muscle 
inputs) and for BF + MG + Gmax+RF + TA (the best-performing 
muscle combination), IEMG+WL shows the best performance 

among other feature combinations yielding strongly correlated 
predictions (minimally, rposition = 0.9161 and rmoment = 0.9739). Our 
comprehensive muscle selection analysis showed that 225 of 255 
variations provide strong correlations for ankle position and 
moment prediction, ascribed to the flexibility of using all 
combinations of a wide range of muscles. A specific assessment 
seeking for the economic variation showed that PL alone provides 
the best performance in minimizing the number of muscle 
inputs. This is a lower leg muscle with limited accessibility but, 
strongly correlated predictions were shown to be achievable by 
utilizing solely upper leg muscles. The practical variation 
achieving the best performance by minimizing utilized upper leg 
muscles, is comprised of GMax+VM which are highly relevant 
for sEMG-based prosthesis controller development (Fleming 
et  al., 2021). On the other hand, the flexible variation, i.e., 
MG + RF + VM showed that the best performance can be achieved 
by using a combination of upper and lower leg muscles.

The limitations of the present study need to be addressed. The 
position and moment predicting LSTMs were developed, trained and 
tested using data from healthy subjects only. Note that, the open 
database by Lencioni et al. (2019) involving nonnormalized sEMG 
amplitudes of various leg muscles is a rarity, but the lack of an open 
database that consists of amputee data limits further testing. However, 
Huang and Ferris (2012) reported that transtibial amputees are able to 
voluntarily activate their leg muscles with several of them producing 
activation profiles similar to healthy controls during voluntary 
dorsiflexion and plantar flexion. They also demonstrated that 
amputees are capable of generating consistent sEMG amplitude 
patterns from stride to stride, which supports the approach utilized in 
this study for developing position and moment predicting LSTMs. On 
the other hand, in case sEMG amplitude patterns show differences in 
amputees compared to those of healthy subjects, the proposed 
infrastructure can be adapted by re-training it with data collected 
from amputees. This will also facilitate a patient specific algorithm 
development. Also, the present study focuses on the prediction of 
ankle position and moment during level walking only, yet the LSTMs 
can be advanced for different locomotion tasks such as stair ascending 
and descending. Training their LSTM and using time-domain features 
extracted from nonnormalized sEMG amplitudes of eight muscles 
involving RF, BF, TA, and SO, Lu et al. (2022) achieved lower limb 
joint angles prediction for additional locomotion tasks. Therefore, the 
developed methodology is suitable for such prediction algorithms. 
Overall, the accuracy of ankle movement predictions should 
be studied after re-training the developed LSTM structure with a large 
database including nonnormalized sEMG amplitudes collected from 
lower extremity amputees and different locomotion tasks can 
be adapted. Note that unlike surface electrodes, electrodes within the 
socket of the prosthetic device may compromise user’s comfort, and 
long-term use may negatively affect sensor lifetime. The use of, e.g., 
sEMG knit band sensor (Lee et al., 2018) i.e., a silver-plated conductive 
yarn for electrodes knitted with a moisture-wicking technical yarn can 
make implementation much easier and improve comfort. Additionally, 
high density sEMG can help avoiding problems related to bipolar 
electrode placement (Ison et  al., 2016) and improve data quality 
(Rojas-Martínez et al., 2012).

In bodily motion, humans have the sensation of position and 
moment changes in their limbs and such proprioception is 
essential to human motor control (Clites et  al., 2018). 
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Consequently, to support natural ambulation, powered prostheses 
require an advanced autonomous adaptation, which can 
be achieved with a real-time implementation of joint position and 
moment prediction (Fleming et  al., 2021). The present study 
serves this purpose by utilizing nonnormalized sEMG amplitudes 
and LSTM architecture for ankle joint position and moment 
predictions in level-ground walking. This structure can 
be implemented in real-time robotic control applications (e.g., Li 
et al., 2021) and used to generate reference inputs for advanced 
powered prosthesis controllers such as impedance control 
(Aghasadeghi et al., 2013; Wu et al., 2022).

In conclusion, a novel LSTM approach utilizing exclusively 
lower limb nonnormalized sEMG amplitudes was developed. Its 
feasibility for predicting ankle angle and moment during level 
walking of a healthy population was evaluated by testing five 
time-domain features (IEMG, MAV, WAMP, RMS, and WL) and 
eight leg muscle combinations (TA, SO, MG, PL, RF, VM, BG, 
and GMax). PL and GMax+VM performed best in predicting 
ankle motion while minimizing the total number of sEMG inputs 
and minimizing the use of lower leg muscles, respectively. The 
best performing variation MG + RF + VM combines upper and 
lower leg muscle inputs. The versatile LSTM architecture utilizing 
nonnormalized sEMG for sensor inputs makes the algorithms get 
closer to being implemented in a real-time implementation. 
Moreover, the comprehensive testing protocol developed 
involving ranking of all muscle combinations according to their 
success will facilitate user specific solutions. However, in order 
to translate an offline application into online applicable powered 
ankle prosthesis control algorithms, the present implementation 
needs to be extended with other movement types, followed by 
training and testing of the algorithms for data collected from 
amputee participants in future studies.
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