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Abstract

Machine learning pipelines are an essential component of modern data science. They play a crucial
role in automating the development process of ML models. However, designing and configuring
ML pipelines is a complex and time-consuming task. Furthermore, various challenges must be
addressed to ensure a successful implementation.

In this case study, a comprehensive approach for generating ML pipelines automatically is proposed,
aiming to alleviate the burden of manual pipeline design and enable ML practitioners to focus more
on model development and analysis. The ML practitioner should be able to provide a series of
configurations that are used to generate an ML pipeline which could act as a base for the further
ML workflow.

For this, interviews with five experts from adesso SE were conducted to determine the components
and quality requirements of ML pipelines in general as well as project specifications they might
depend on. Using the results from these interviews and findings from related work, a prototypical
approach was developed. In a second round of interviews with the same interviewees, the prototypical
approach was evaluated using usefulness and ease of use as evaluation metrics.

The results of the case study show that the interviewees deemed such an approach to automatically
generate ML pipelines useful. The reduction in time to produce first ML models at the start of
a project was highlighted. Based on these results, the prototypical approach could be developed
further, becoming a useful tool in the ML workflow of every ML project.
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1 Introduction

Artificial Intelligence (Al) is the new hot topic in software engineering and an incredibly fast-growing
market in the last decade. In the year 2022 alone, organizations were 13% more likely to have
adopted Al compared to 2021, according to the IBM Global Al Adoption Index 2022 [IBM22].
Because of the increased importance of Al to organizations, more problems in the adoption arise.
Besides a lack of a clear strategy for Al, the lack of talent with the appropriate skill sets for working
with Al is one of the most significant barriers organizations face in adopting Al, according to Chui
and Malhotra [CM18]. Therefore, it is important to improve the productivity of those talents and
make their work easier and faster. Furthermore, it is reported that 87% of data science projects
never make it into production [Ven19]. This highlights the difficulties teams encounter in data
science projects.

As the most prominent field of Al, Machine Learning (ML) takes a primary role in Al-related
projects. Therefore, the main focus of research lies on the ML development process. One of the
most important parts of the ML development process is the machine learning pipeline [DMRM19].
Using this adoption from traditional software engineering, ML practitioners are able to automate
large parts of the ML workflow. But ML pipelines have different components, steps and quality
requirements compared to their traditional counterpart. Additionally, setting up ML pipelines can
be tedious alongside considering best practices for the development of ML models. Faster creation
of ML pipelines with fewer mistakes by the ML practitioner could be achieved by automizing the
process. This is the topic this paper covers. Using the context provided by the ML practitioner,
an ML pipeline should be generated automatically. The goal of the approach is to speed up the
creation of ML pipelines, prevent mistakes made by ML practitioners during the setup and thereby
improve their productivity.

To develop and evaluate the approach, this case study was conducted at adesso SE, an IT service
provider. For this, the following research questions were defined:

RQ 1: What is important for effective ML pipelines?
RQ 1.1: Which components are important for effective ML pipelines?
RQ 1.2: Which quality requirements are important for effective ML pipelines?

RQ 2: How much are ML pipeline steps and quality requirements influenced by the project- or
user-specific context?

RQ 3: What is a feasible approach to automatically generate context-dependent, high-quality ML
pipelines?

To answer the research question, the study design includes expert interviews to gather more
information on ML pipelines, the development of a prototypical approach to automatically generate
ML pipelines and a second round of expert interviews to evaluate the developed prototype. Using
the gathered information from the first round of expert interviews and findings from the literature,
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1 Introduction

an overview of ML pipelines was created which acted as a base for the consequent prototype
development. In the second round of expert interviews, the resulting prototype was rated as easy
to use and the approach was deemed useful. The experts made several suggestions for improving
the prototype as well as a few suggestions on how the approach could work differently than the
prototype did.

Chapter 2 of this paper summarizes the findings from literature concerning the ML workflow, the
ML pipeline and about automatically generating ML pipelines. Chapter 3 is about the research
design of the study with Chapter 4 covering the results from the study. These include the results
from the first round of expert interviews in Section 4.1. Section 4.2 combines the results from
Section 4.1 and the findings from literature and provides a general overview about ML pipelines and
possible configurations which can influence components and steps. Both of those sections answer
the research questions 1 and 2. Section 4.3 covers the development of the prototypical approach
and Section 4.4 the results from the second round of expert interviews, evaluation the prototype
and the approach itself. These sections cover the answers to research question 3. Lastly, Chapter 5
discusses interpretations and implications of the results as well as limitations of the study while
Chapter 6 concludes the paper and gives outlook on the future direction.

Research-related artifacts are accessible via Zenodo [Mai23] while code and other artifacts are part
of the corresponding GitHub repository'.

1https://github. com/Scrashdemix/thesis-generating-ml-pipelines
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2 Background

This section is about the background of the study’s topic. It covers the basics of the machine
learning workflow as well as machine learning pipelines, what they look like and what makes a
high-quality ML pipeline according to academic papers. These are fundamental concepts necessary
to understand this paper. Additionally, the current state-of-the-art of automatically generating ML
pipelines is reviewed.

2.1 Machine Learning Workflow

The machine learning workflow is an essential part of machine learning projects. It describes how
machine learning is done and how ML practitioners work on the project. The ML workflow is
related to workflows or lifecycles defined for data science, such as KDD, CRISP-DM and TDSP.

Knowledge Discovery in Databases (KDD) [FPS96] from the early 90s is “the overall process
of discovering useful knowledge from data. Data mining is a particular step in this process”. It
consists of the following nine steps that are also visualized in Figure 2.1:

1. Learning the application domain
Creating the target dataset

Data cleaning and preprocessing

Data reduction and projection
Choosing the function of data mining
Choosing the data mining algorithm(s)
Data mining

Interpretation

© ©® Nk wD

Using discovered knowledge
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Target
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Figure 2.1: Overview of the KDD process [FPS96]
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Figure 2.2: Process Diagram of CRISP-DM. Source: [Cro23]

The Cross-industry standard process for data mining (CRISP-DM) is a "process model for
carrying out data mining projects” [WHOO]. The process is useful for planning, documentation
and communicating between within and outside project teams. It is visualized in Figure 2.2 and
consists of the following six steps:

1. Business Understanding

2. Data Understanding
3. Data Preparation
4. Modeling

5. Evaluation

6. Deployment

The Team Data Science Process (TDSP) [Cor16] is “an agile, iterative data science methodology
to deliver predictive analytics solutions and intelligent applications efficiently”. It was proposed
by Microsoft and is visualized in Figure 2.3. It contains a variety of standardizations besides
the process, like a project structure. The process consists of many steps with four major stages:
Business Understanding, Data Acquisition & Understanding, Modeling and Deployment.
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2.1 Machine Learning Workflow
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Figure 2.3: Visual representation of the TDSP lifecycle [Corl6]

These data science processes have similarities in their stages or steps. All of them start with some
kind of business understanding followed by data-related steps. After this, there is a modeling
process which KDD specifically targets at data mining. Lastly, the model is deployed, or in KDD’s
case at least used. This gives an idea of what the process of data science looks like.

To adapt these to the machine learning workflow, CRISP-DM was enhanced.

The Cross-Industry Standard Process model for the development of Machine Learning
applications with Quality assurance methodology (CRISP-ML/(Q) [SBD+21] was proposed as
an answer to the challenges ML practitioner faced in ML projects as there was no established standard
process model for machine learning development. The lifecycle is visualized in Figure 2.4.

CRISP-ML(Q)

USE CASE
FOR,

MACHINE
LEARNING

9 BUSINESS  DATA MODEL. MODEL
g‘ UNDERSTANDING DEVELOPMENT || OPERATIONS
o-

Figure 2.4: CRISP-ML(Q) lifecycle [VKB+23]
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2 Background

Overall, it consists of six phases:
1. Business and Data Understanding
. Data Preparation

. Modeling

2
3
4. Evaluation
5. Deployment
6

. Monitoring and Maintenance

The Business and Understanding phase ensures the feasibility of the project. The tasks include
gathering criteria for success by defining so-called “Key Performance Indicators” (KPI). Furthermore,
the data should be collected and its quality verified as well as the statistical properties of the data
documented.

In the data preparation phase the ML practitioner takes care of the data quality. Feature engineering
as well as the standardization of the data is also part of this phase. The standardization not also
includes data format but also the normalization of the features’ scale. This step needs to be applied
to the test data separately with the same parameter as to the training data.

The modeling phase consists of the model selection, the specialization of the model and lastly the
model training. For this, the metrics for evaluating the model should be defined in the first phase.
Furthermore, the reproducibility of this phase needs to be ensured.

The fourth phase is the evaluation of the trained models, also called offline testing. It consists of
the validation on a test set. Besides model performance, the robustness of the model to noisy and
erroneous data should be tested. At the end, the decision whether the model should be deployed
should be met automatically based on the success criteria.

The deployment of the model is the integration of the ML model into a software system. It includes
the definition of the inference hardware based on the requirements of the model and the project.
Additionally, the model should be evaluated in the production environment, also called online
testing. The ML practitioner should provide user acceptance and usability testing as well as a
fallback plan for model outages. Lastly, a deployment strategy needs to be set up for how the new
model is rolled out. This should be done in an incremental way to reduce the cost in the case of
erroneous deployment.

The last phase contains monitoring and maintenance of the deployed ML model. This is important
because of model staleness which causes the performance of the ML models to drop. If this
reduction in performance is detected by monitoring a series of metrics, it could be decided to retrain
the model.

Amershi et al. [ABB+19] studied the ML workflow of a variety of software teams at Microsoft and
summarized the findings in a nine-stage workflow, visualized in Figure 2.5.

It consists of the following steps: model requirements, data collection, data cleaning, data labeling,
feature engineering, model training, model evaluation, model deployment and model monitoring.
Furthermore, these can be categorized as data-oriented (collection, cleaning and labeling) and
model-oriented (model requirements, feature engineering, training, evaluation, deployment and
monitoring). The feedback loops of model evaluation and monitoring as well as the iterations
of feature engineering and model training represent the non-linearity of the ML workflow. The
findings provide an overall process of the common form of machine learning, supervised learning,
for ML practitioners to follow in an ML project.
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2.1 Machine Learning Workflow

o _ e g e w K o o
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Figure 2.5: ML workflow according to Amershi et al. [ABB+19]

Haakman et al. [HCHD21] reviewed and refined the process models of CRISP-DM, TDSP and
the workflow by Amershi et al [ABB+19]. Added components to these models generally include a
“Feasibility Study” in which the feasibility of the project is assessed with the intention of adapting
a fail-fast approach. Furthermore, “Model Scoring” is added to TDSP and the Microsoft model
to the “Model Training” step. These changes are visualized in Figure 2.6. A “Documentation’
step is added to all workflows as this was not featured in any of them despite the importance of
documenting the model for reasons of audition. This also goes for the “Risk Assessment” which is
viewed as part of the “Model Evaluation” and covers the analysis whether the model performs well
enough for the given use case to be deployed. Lastly, “Model Monitoring” was added to CRISP-DM
and TDSP as this was not part of their process model.

>

3) =) e A\ .
? Model VData Feasibility Q/Dala “Data = Feature %8 Model (O D tati Ve Model —Model @Model
Requirements / |Collection Study Cleaning / | Labeling / |Engineering Training GEEREy Evaluation Deployment / |Monitoring

IModel Scoring/ Risk Assessment,

Figure 2.6: Revised ML workflow from Amershi et al. [ABB+19] by Haakman et al. [HCHD21]

Serban et al. [SBHV20] studied the adoption of software engineering practices by teams in
machine learning projects, thereby providing more information on what is important in the ML
workflow. The findings are summarized in Table 2.1. The training objective and corresponding
practices are most important with the top two ranked practices regarding this topic, according to the
study. Overall, the practices related to model training were of the most adopted with half of the
practices in the category ranked in the top ten of practice adoption. Two other important steps were
the versioning of data, model, configurations and training scripts as well as the writing of reusable
scripts for data cleaning and merging.

Additional information can be gathered on ML-Ops.org, a website containing information on MLOps
and the end-to-end machine learning development process created by Dr. Larysa Visengeriyeva et
al. [VKB+23]. The workflow described here has similarities with other process models described
earlier on. It is structured in three stages: data engineering, ML model engineering and model
deployment. The data engineering stage starts with the data ingestion. This is followed by the
exploration and validation as well as the data cleaning. These steps improve the overall quality of
the data. Next is the labeling of the data in the case of a supervised learning method used. Lastly,
the data is split for the model training into training, validation and test set. Following the data
engineering is the model engineering stage. Here, a model is trained, evaluated and tested by using
the test dataset. In the end, the model is packaged and prepared for deployment. Lastly, the model
deployment stage consists of the model serving as well as the continuous monitoring and logging of
the model performance in production.
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2 Background

Nr. Title Class Type Rank

1 Use Sanity Checks for All External Data Sources Data N 22

2 Check that Input Data is Complete, Balanced and Well Data N 18
Distributed

3 Write Reusable Scripts for Data Cleaning and Merging Data N

4 Ensure Data Labelling is Performed in a Strictly Controlled Data N 11
Process

5 Make Data Sets Available on Shared Infrastructure (private Data N 14
or public)

6 Share a Clearly Defined Training Objective within the Team Training N 2

7 Capture the Training Objective in a Metric that is Easy to  Training N 1
Measure and Understand

8 Test all Feature Extraction Code Training M 23

9 Assign an Owner to Each Feature and Document its Ratio- Training M 29
nale

10 Actively Remove or Archive Features That are Not Used Training N 28

11 Peer Review Training Scripts Training M 20

12 Enable Parallel Training Experiments Training N 6

13 Automate Hyper-Parameter Optimisation and Model Selec- Training N 26
tion

14 Continuously Measure Model Quality and Performance Training N 4

15  Share Status and Outcomes of Experiments Within the Team Training N 7

16  Use Versioning for Data, Model, Configurations and Train- Training M 3
ing Scripts

17 Run Automated Regression Tests Coding T 27

18  Use Continuous Integration Coding T 16

19  Use Static Analysis to Check Code Quality Coding T 24

20  Automate Model Deployment Deployment M 15

21  Continuously Monitor the Behaviour of Deployed Models Deployment N 12

22 Enable Shadow Deployment Deployment M 25

23 Perform Checks to Detect Skews between Models Deployment N 17

24 Enable Automatic Roll Backs for Production Models Deployment M 13

25 Log Production Predictions with the Model’s Version and Deployment M 19
Input Data

26  Use A Collaborative Development Platform Team T 8

27  Work Against a Shared Backlog Team T 9

28 Communicate, Align, and Collaborate With Multidisci- Team T 10
plinary Team Members

29  Enforce Fairness and Privacy Governance N 21

Table 2.1: SE practices for ML according to Serban et al. [SBHV?20]. They are grouped into 6
classes, together with the practice type and adoption ranks, where N — new practice, T —
traditional practice, M — modified practice.
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2.2 Machine Learning Pipelines

2.2 Machine Learning Pipelines

The ML workflow is often used interchangeably with ML pipelines, although there is a difference
between those two concepts. The machine learning pipeline is derived from the pipeline from
traditional software engineering. It is a central part of the ML workflow and can automatize many
steps. It consists of a directed acyclic graph (DAG) with a series of steps or nodes that automatically
execute several steps of the ML workflow.

According to ML-Ops.org [VKB+23], the ML workflow consists of three pipelines: the data
pipeline, the machine learning pipeline and the software code pipeline.

The data pipeline handles data acquisition and preparation with the sequence of operations of data
ingestion, exploration and validation, data wrangling or cleaning, data labeling and at last data
splitting.

This is followed by the machine learning pipeline which consists of the steps of model training,
evaluation, testing and packaging. Model training includes feature as well as model engineering.
Furthermore, there are two types of model training with online and offline training where with the
former the model is trained regularly when new data arrives, and the latter is trained with collected
data in a batch when the model needs retraining because of decay of performance. Additionally,
there is a difference in how the model makes predictions. Batch predictions are made on historical
data whereby real-time predictions are made at the time the data is available.

The last part is the deployment pipeline where the trained ML model is deployed. Other than two
model deployment strategies like as a Docker container or as a serverless function, there are several
model serving patterns. These include Model-as-Service where the model is deployed as a web
service accessible via a REST API, Model-as-Dependency where the model is integrated into the
software system during the build process, the Precompute Serving Pattern where predictions of
common input data are precomputed and stored inside a database, and Model-on-Demand which
is similar to the Model-as-Dependency pattern with an own release cycle for the model. Another
pattern is hybrid serving where every user has their own model as part of their application which
sends their model changes to a server which then aggregates all the changes into a new model.
For the MLOps setup, a series of components are listed that are supposed to ease the development
process of ML models. These include a source control for code, artifacts and data as well as test
and build services and services for deployment. Further components are the model registry, feature
store, ML metadata store and ML pipeline orchestrator.

There are a number of principles mentioned related to MLOps. Two practices that extend DevOps’
continuous integration (CI) and continuous delivery (CD), are continuous training (CT), so
automatic retraining in production, and continuous monitoring (CM) which includes the monitoring
of production data and model performance metrics.

Another principle is the versioning of the model, training script and data. This is an important part
of achieving another principle, reproducibility. This is accompanied by the principle of testing
the data, model and code. The principle of tracking experiments helps with for example running
multiple experiments in parallel.

According to Google’s website on MLOps [LLC23], there are three levels of automation of MLOps,
the operationalization of machine learning.

The lowest level of automation is level O where the whole process is manual and script-driven,
visualized in Figure 2.7. There is a distinct disconnection between the machine learning and the
operational part. Another characteristic of this level is the infrequent release iterations. Missing
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Figure 2.7: ML pipeline automization level O according to Google [LLC23]

components include the monitoring in production as well as frequent retraining and continuous
experimenting.

The next level is MLOps level 1 where the pipeline in production is automated, visualized in
Figure 2.8. This also includes the components of data and model validation, a feature store, metadata
management as well as ML pipeline triggers compared to level 0. With this level of automation rapid
experimentation and continuous training is possible. There is also an “experimental-operational
symmetry” which means that the same pipeline is used in development and production. The project
also characterizes a modular structure of code for the components and the pipelines. Another
characteristic is the continuous delivery of models as well as the deployment of a training pipeline
for automatic retraining. Challenges for the ML practitioner are manual testing and the manual
deployment of the training pipeline.

The highest level of automation in MLOps is level 2 which adds a CI/CD automation pipeline,
visualized in Figure 2.9. With this, the training pipeline can be automatically deployed and the
testing of code and model. It consists of the following stages: Development and experimentation, a
pipeline for continuous integration which builds source code and runs tests, a pipeline for continuous
delivery which deploys the artifacts, automated triggering of the training pipeline, model continuous
delivery that deploys the trained model, and the monitoring of the model performance.

In their paper, Berthold et al. [BBG+23] proposed a framework to represent data science patterns
using data flow diagrams. Besides the “General Data Science Flow” and “Model Training and
Applying” patterns which are similar to pipeline patterns and flows explored previously, the “Data
Normalization” pattern explains that data normalization should only occur after splitting the training
and testing data to avoid data leakage. The data science design patterns of “Cross-Validation”,
“Ensembles” and the “Factoring out Transformations™ are also mentioned design patterns.
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2.3 Related Work

This section is about related work that is similar to the topic of this study and covers their approaches
and how the approach in this study is different to theirs. Papers related to automatically generating
machine learning pipelines are mostly about automated machine learning, finding the best performing
combination of feature engineering steps and model algorithm.

DeepLine is such an AutoML framework proposed by Heffetz et al. [HVKR?20]. It creates a grid
with six columns containing data preprocessing, feature preprocessing, feature selection, feature
engineering, prediction and combiner. The rows of the grid represent sub-pipelines. The cells are
filled with primitives which represent pipeline steps. These are chosen by an agent which is a Deep
Q Learning Network (DQN). An example of such a grid is visualized in Figure 2.10.

While DeepLine is created to engineer ML models that achieve the best possible performance,
the approach introduced in this paper aims to support the development of models by the ML
practitioners by introducing a way of creating ML pipelines fast.
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Figure 2.10: Example of the grid-world environment used in DeepLine [HVKR20]

Giovanelli et al. [GBA22] developed a method for generating preprocessing pipelines “as a step
towards AutoETL”. They tried to solve the Data Pipeline Selection and Optimization problem
(DPSO). For this, they first evaluated the impact finding the best pipeline and found out that no
universal pipeline that works best for all considered datasets and algorithms. Additionally, they
defined a method that is capable to generate the right order of a given set of transformations,
“obtaining effective preprocessing pipeline prototypes” which are further optimized using Bayesian
Optimization.

Berti-Equille [Ber19] proposed a method that selects the optimal sequence of data preprocessing
steps, called Learn2Clean. Given a dataset, a ML model and a quality performance metric, a
Q-Learning agent is able to maximize the quality of the ML models result. This involves the
selection of data preparation algorithms, data cleaning algorithms and an ML model algorithm
depending on the problem with the resulting quality metric and the state of the pipeline being used
as input for another iteration of the reinforcement learning agent. The architecture of Learn2Clean
is visualized in Figure 2.11.
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Related work covering challenges of ML pipelines is the paper by Steidl et al. [SFR23]. They did a
Multivocal Literature Review (MLR) on the topic of continuous development of AI models. In
this paper, they proposed a pipeline comprising tasks regarding the continuous development of
Al which consists of these four stages: Data Handling, Model Learning, Software Development
and System Operations. Interesting for this study are the challenges they listed for each of those
four phases. These include the collection and integration of data for the data handling, the model
versioning for the model learning phase and the separate packaging of model and software for the
software development phase. Lastly, the biggest challenge in the system operations phase was the
handling of environment and infrastructure.

Further challenges regarding the ML workflow were studied by John et al. [JOB20]. They studied
the activities and challenges data scientists face when developing machine learning and deep
learning models in software-intensive embedded systems in a multiple-case study and were able to
categorize those into seven different phases.

The Business Case Specification phase is similar to the Business Understanding phases of process
models described previous. Challenges in this phase include the high costs of infrastructure and
qualified personnel, the communication gap between the data scientists and the stakeholders and
their high expectations of Al. Furthermore, the lack of data scientists as well as the need for large
datasets, especially for deep learning models, are challenges to ML projects.

In the Data Exploration phase, which is equivalent to similar data-related phases in other process
models of the ML workflow, there are challenges in the data concerning privacy as well as noise
in the data. A further challenge is the lack of domain experts who would be able to explain what
features in the data mean and how the data could be interpreted. The last challenge of this phase
includes the labeling of the data which needs to be done frequently due to unlabeled data and relies
often on domain experts which are not always available.

Feature Engineering includes challenges like the increase of complexity by feature engineering as
well as an improper feature selection. These increase the costs and complexity the data scientist
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must deal with, in the case of bad feature selection even without any additional value.

The Experimentation phase includes the challenge of the introduction of biases by the algorithm
selected as well as uncertainty in the algorithm selection. By selecting algorithms well known to
them, they introduce a bias based on their experience. Besides that, the data scientists are uncertain
about which model algorithm they need to choose for which use case. In relation to deep learning,
there are the challenges in the high complexity of deep learning models as well the need for deep
DL knowledge for the data scientists to understand the DL models.

The challenges during the Development phase include how data scientists determine the final model
because even in the final stages they realize that they need to go back to earlier stages. Furthermore,
the model training environment and corresponding requirements as well as the increased number of
hyperparameter settings of DL models are challenges data scientists face. Another challenge is
the verification and validation of the models, as safety-critical products need more comprehensive
validation that a sufficient degree of certainty that the system performs well can be achieved.

The Deployment phase of the project includes challenges like the lack of DL model deployment as
well as integration issues. A further challenge is the deployment in internal systems instead of the
customer’s infrastructure. Lastly, the need for all data scientists to understand the model developed
by a particular data scientist.

Operational challenges include the training-serving skew, the disparity of model performance
between training and production, and end-user communication, so the communication between data
scientists and end-users who do not understand the model. Further challenges are a model drift and
maintaining robustness which is needed to decide whether to retrain or update the model.

D’Aloisio et al. [dDS22] studied the quality attributes of ML pipelines and proposed a new
engineering approach for quality ML pipelines in their paper. More interesting for this paper
though is the identified quality attributes of the ML pipelines. The basis is the abstraction of ML
pipelines consisting of the stages from raw data over data preprocessing, feature engineering, model
training-testing and model evaluation to model deployment and monitoring.

One of the most important quality attributes is correctness with the steps from feature engineering
to model deployment and monitoring affected by this quality attribute. Another important quality
attribute, fairness, affects the data preprocessing as well as model training-testing, model evaluation
and model deployment and monitoring. Privacy is a quality attributes for the data preprocessing,
model evaluation as well as model deployment and monitoring stage. Computational complexity
affects the computationally expensive stages of feature engineering and model training-testing and
lastly interpretability has an impact on the last two stages of ML pipelines.

ModelOps [Inc23] is a concept that focuses primarily on “the governance and life cycle management
of a wide range of operationalized artificial intelligence (Al) and decision models [. .. ]. Core capa-
bilities include continuous integration/continuous delivery (CI/CD) integration, model development
environments, champion-challenger testing, model versioning, model store and rollback™.

The paper by Hummer et al. [HMR+19] introduced a framework and platform for end-to-end
lifecycle management of Al application artifacts, called ModelOps. Challenges identified during a
survey include the automation, quality assurance, traceability, risk management and the feedback
cycle. Requirements for the proposed framework include challenges in building scalable Al
operations. These consist of pluggability, reusability, flexibility, scalability, hybrid environments
and fault tolerance.

The implementation of the system works with pipeline configuration as shown in Listing 2.1 where
a sample configuration is visualized.
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Listing 2.1 Pipeline Configuration Sample from Hummer et al. [HMR+19]

models:
- name: my model 1
type: tensorflow
platform: wml
training data: s3://mybucket/training_images
pipelines :
- name: train_deploy_pipeline
tasks :
- name: Train Model
type: modelops.task.TrainModel
model: my_model_1
harden: true
- name: Compress Model
type: modelops.task.CompressModel
model: my_model_1
output: CoreML
- name: Deploy Model
type: modelops.task.DeployModel
model: my_model_1
monitor drift: true

Based on the pipeline configuration as well as a task catalog, the ModelOps code generator is
then able to generate artifacts/pipelines for a variety of platforms, as seen in Figure 2.12. Pipeline
transformers are able to change a pipeline template to include components and steps which are
added via the pipeline configuration, as visualized in Figure 2.13.

Source Generated Execution
Artifacts Artifacts Platforms
Task >
Python ModelOps ipeli
ci yt . ) Codep CPlpellne
eneric Generator Omposer
Pipeline Program OpenWhisk
Definition Argo

Figure 2.12: Pipeline Code Generation and Execution from Hummer et al. [HMR+19]

The generation of pipelines based on configuration files is similar to the approach of this paper but
the proposed ModelOps framework is more about generating pipelines for different platforms rather
than generating pipelines for the purpose of speeding up the creation of ML pipelines in general.
The difference is also visible by looking at the input of the code generator. While the ModelOps
framework still receives a "Task Catalog"written in Python, the approach in this paper is supposed
to work without any code written by the ML practitioner besides a configuration file.
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Figure 2.13: Parameterizable Pipeline Templates and Transformers from Hummer et al. [HMR+19]
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Figure 3.1: The timeline of the study

The chosen research method is a case study. This is a research method which is "conducted in order
to investigate contemporary phenomena in their natural context"[RHO09], thereby providing insight
into how this phenomena interacts with the context. Here, the phenomena is the research topic of
how ML pipelines can be automatically generated with the context being adesso SE.

The structure of the case study consisted of three phases, as visualized in Figure 3.1: an exploration
phase, the development of a prototypical approach and the evaluation phase. The exploration phase
included expert interviews, the exploration interviews, to investigate the topic of ML pipelines as
well as their structure and components in more detail. This was followed by the development of a
prototypical approach to automatically generate context-specific ML pipelines using the results from
the exploration interviews. This prototype and the approach were then evaluated in the evaluation
phase consisting of a second round of interviews, the evaluation interviews. This phase was also
part of the case study to collect feedback on potential improvements for future development of the
prototype as well as the approach itself.

Exploration Phase

In the exploration phase, the exploration interviews were conducted with 5 adesso SE employees.
The goal of these interviews was to collect data related to ML pipelines.

The topic of the study was not revealed to the participants until the corresponding section during
the interview. Their only knowledge about the topic of the interview was that it was related to ML
pipelines. The intention behind this decision was, that the interviewees gave unfiltered views on
ML pipelines without them withholding information because they valued it as less important for the
approach of generating ML pipelines automatically.

The participants of the study were ML practitioners during the time of the study. Other than their
role, there were no further requirements for the participants of the interviews. In more detail,
the qualitative data collected from the exploration interviews included demographic data like the
participant’s role and years of professional experience in ML or MLOps.

The first topic-related section of questions was general questions about ML pipelines. These
included quality requirements and challenges regarding ML pipelines as well as components in
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general and depending on the situation and context. Additionally, dependencies of components
and quality requirements on various factors were investigated. These included dependencies on the
dataset, the industry domain, team expertise, type of ML (e.g., supervised learning, unsupervised
learning) and type of problem (e.g., regression, classification) as well as other factors the participant
could think of.

The second part of the interview was about projects related to machine learning that the ML
practitioners were part of. These included the current or last ML project if the participant currently
was not part of an ML project. The information gathered about the ML projects was the industry
domain of the project’s customer, the type of problem being addressed, the requirements and the
goals of the project. Further information was gathered related to the ML pipelines used. Besides a
basic description of the ML pipeline, questions about quality requirements, special components
and encountered challenges during the start of the project, during development and release phases
were asked. This section aimed to gather additional information about ML projects and their ML
pipelines in relation to the project’s context.

At this point of the interview, the interviewer presented the topic of the study to the participant. The
topic was introduced with a possible use case to provide the interviewee with more insight into the
topic. This use case consisted of a classification task of images of flowers. The ML practitioner
wanted the project’s pipeline to have the following functionalities: versioning of data, code and
model as well as monitoring of performance metrics of the trained model.

Questions in the last section were about the approach of automatically generating context-specific
ML pipelines. These encompassed addressed challenges and components which could be considered
prime candidates for being automatically generated. The focus on the latter question laid, comparable
to other automation tasks, on the potential for time reduction and error prevention. The participant
was also asked about the importance of configuration input composition, which attributes the input
of such an approach would need as well as what kind of input the participant preferred for this
approach. Lastly, the ML practitioner was asked whether he would trust an automatically generated
ML pipeline component and the reasons for the answer.

The interviews were recorded and manually transcribed afterward before the record was deleted.
This transcription contained information on what the interviewees said during the interviews in the
form of notes. The analysis of the interviews was conducted using open coding, summarizing the
collected data and noting what information was mentioned by which interviewee or even multiple
ones.

Prototype Development

Following an analysis of the results from the exploration interviews, a prototypical approach was
developed to investigate the topic as well as its benefits, downsides and improvements further.
Based on the data collected, a general overview of ML pipelines was created. This included
important components as well as ML pipeline steps, describing the workflow of the ML pipeline.
Based on the general overview of ML pipelines, a prototypical approach was developed. This
was done using the programming language Python[VD09]. A pipeline orchestration framework
was chosen for which the prototype could generate pipelines. To comply with the time limits of
the study, the focus of the prototype laid on components and pipeline steps which were the most
important to show the functionality of the approach.
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In the second round of interviews, the evaluation interviews, the prototypical approach was evaluated
by the same participants of the exploration interviews to ensure that the analysis results from the
exploration interviews matched the expected functionalities and structure of the prototype. Here, the
participants were asked to evaluate the usefulness and the ease of use of the prototypical approach,
according to the model Davis [Dav89] and give feedback on possible improvements in the future.

Before the interview, the participants were asked to prepare for the practical part of the interview.
This involved installing the correct versions of the necessary packages for the prototype as well as
creating an example ML project.

Before trying out the prototype, the participants were asked about their experience with the chosen
pipeline orchestration and experiment tracking frameworks, preferably in years of professional
experience. Following this, the interviewees were able to experiment with the prototype and the
generated ML pipelines for 10 minutes. During this time, the interviewer first explained where the
participant was able to find documentation on input and execution of the prototype and answered
questions from the participants. The interviewees were then tasked to complete an exercise to get
more familiar with and use more functionalities of the prototype. This included extending the given
example configuration file and running the prototype with it as well as observing the resulting ML
pipeline and artifacts created after a run of this pipeline. The participants had 20 minutes each to
complete the exercise.

After the exercise, the participants filled out a survey about the usefulness of the approach itself, i.e.
if the prototype would be a more complete product, and the ease of use of the prototype specifically,
collecting quantitative data in the process. The questions and the ordinal-scaled answers of the
survey originated from the work by Davis [Dav89].

Lastly, the interviewer asked about potential improvements of the approach and the prototype. First,
the interviewees were asked about general improvements and whether the prototype should work
differently. Following this, the interviewer asked more specific questions about improvements.
Firstly, the participants should provide feedback on the interaction with the prototype. This included
feedback on how the user input could be improved and what kind of user input the participant
preferred and feedback on the program execution, more specifically how the generation process
should be preferably started and what output format or kind of output the interviewee preferred.
Questions about improvements of the resulting pipeline were asked at the end. These included
questions about the structure of the resulting pipeline, namely the participants’ thoughts and feedback
about improvements. After that, feedback about the existing data and feature engineering algorithms
was collected and which algorithms the participants wanted to be added. The interviewees were
also asked to mention their opinion on a general AutoML approach as part of the ML pipeline.
Following this, the interviewer asked the participants about a model deployment pipeline which
was not part of the prototype. Here, the participants answered on how important such a pipeline
was to them and what functionality this pipeline needs. The last question involves the participant
mentioning tools and platforms the generator should provide support for.
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4 Results

4.1 Exploration

This section covers the results from the first round of expert interviews, the exploration interviews,
and provides answers for the research questions 1 and 2.

The exploration interviews with the 5 adesso SE employees took approximately 70 to 80 minutes,
with the interview of Participant P5 taking over the full scheduled length of 90 minutes.

Demographics

All the participants called their role “data scientist”. Still, there were some differences in the tasks
they were doing. While P1 mentioned the whole ML lifecycle from ETL over model engineering
to model deployment, P4 specifically mentioned proof-of-concept and PS5 mentioned MLOps and
model deployment as their tasks. The professional experience of the participant ranged from 1.5 or
2 years to 6 or 7 years with P1, P2 and P3 with similar years of experience with 3.5 to 4.5, P4 with
1.5 or 2 years of experience while P5’s professional experience reached 6 or 7 years.

Table 4.1 summarizes the demographic information about the interviewees.

Projects

The projects which the participants were part of included a variety of use cases. Summaries of
these are also included in Table 4.1.

P1’s project provided a recommendation system for a telecommunication company to recommend
customers who could be contacted for call and mail campaigns. Customers got selected as potential
candidates for sales for call campaigns. A positive outcome of a call was registered as a success for
the recommendation system. During mail campaigns, the customers received mail newsletters with
personalized content. Here, the click rate on this content was measured as a rate of success for the
recommendation system. The customer provided a custom framework for deploying a production
pipeline with the ML practitioner being able to configure data acquisition and data preprocessing
steps. The trained ML model meanwhile was stored inside a Git repository and updated or replaced
by adding it via a Git pull request. The data was stored in a data warehouse as data marts. There
were two sets of data stored as data marts: the customer/profile data and historical events for each
customer. A databricks workflow was scheduled from the data warehouse for preprocessing and
training the model. The result was a Python package containing configurations for the customer’s
custom framework, like data preprocessing steps, and the trained model. The training process ran on
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Participant | Role Years of professional ex- | Project
perience
P1 Data Scientist 3.5 Recommendation system

for recommending cus-
tomers for call and mail

campaigns

P2 Data Scientist 3 years ML Time series forecasting of
demand for loans and sub-
sidies

P3 Data Scientist 4.5 Automation of subsidy

allowance using optical
character recognition

P4 Data Scientist (especially | 1.5-2 Currently not part of an
proof-of-concept) ML project, before that
mainly proof-of-concept
ML projects
P5 Data Scientist (MLOps | 6-7 Object recognition using
and model deployment) open source models

Table 4.1: Demographic information about the participants and their current project

the customer’s cluster infrastructure. The custom framework scored the trained model and collected
data used for monitoring. This happened via Apache Hive [Apal0] tables which were automatically
filled daily with data regarding the performance of the model, feature analysis and data drift.

P2 and P3 were part of different projects with the same customer, an investment and development
bank. The project P2 was part of was about predicting the amount of money needed for providing
loans and subsidies for the bank’s customers. This project tried to solve the problem of forecasting
this time series by using supervised learning. The forecasting needed to be done for multiple time
periods, e.g., 1, 2, ... months. For that, there was one model for each time period. The ML pipeline
was structured as follows: the data preparation contained steps like data acquisition, the merging of
the datasets, data inspection and the handling of missing values followed by data preprocessing
and the train-test split. The data preparation ended with an inspection for seasonality, data leakage
prevention and feature engineering. This was followed by the model training phase by the usage of
grid search and hyperparameter tuning. The validation of the trained model was the last step of the
ML pipeline.

Meanwhile, P3 was part of a project where the goal was the automation of subsidies allowance.
For this, Azure Cognitive Services were used for optical character recognition on the loans and
subsidies applications. The usage of the publicly available Al service was the only part related to
machine learning. With the extracted information, it was decided whether the application could be
automatically allowed or manually handled by a human person. A requirement for the program was
the restriction of execution time. The pipeline of the project contained no machine learning but still
handled data. Challenges were the heterogeneity of the data along with a multitude of data sources
and the problem of data leakage.
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Figure 4.1: Results of the exploration interviews regarding general ML pipeline components

This section is about the components mentioned during the “General” section of the exploration
interviews. A summary is visualized in Figure 4.1.

While nearly all participants started with a data pipeline as the first part of the ML workflow,
P4 began with requirements engineering. This involved including the customer’s goal in the
development process as well as looking at the current process which was the topic of the ML
project. The emphasis on requirements engineering might stem from the fact that P4 primarily
was part of proof-of-concept projects which seem to focus more on industry domain and customer
satisfaction. This part often appeared in existing literature as part of the ML workflow rather than
ML pipelines.

Data-related tasks were mentioned by all participants in varying frequencies and extensity. Because
P3 mentioned the concept of a data engineering pipeline that fits the described tasks in extensity,
the concept will work as a workflow description for those kinds of tasks for the rest of the paper.
Because the tasks of a data pipeline were mentioned by all participants, this must be an essential
part of an ML pipeline. The beginning task of a data pipeline was data acquisition as well as data
ingestion or loading. With all participants except P4 mentioning these steps, there was no difference
made between data acquisition and data ingestion or loading. Here, P1 specifically mentioned
on-demand data acquisition, which provided the ML practitioner with more flexibility for pipeline
execution. While data acquisition was about collecting data from various sources, this step was
more part of the ML workflow than an automatically executable ML pipeline in contrast to data
ingestion/loading.

All participants expressed their need for some kind of data preprocessing as part of an ML pipeline.
This preprocessing contained a variety of computations. While most of the participants called these
steps “data cleansing” or “data cleaning”, “data preparation” and ““data preprocessing”, P3 gave
more insight into what kind of computations are important. Here, combining and transforming data,
handling outliers and enriching data were mentioned. Besides improving data quality, enriching
the data signifies a need for a higher data quantity, especially in projects where data was scarce.
Tool support for data analysis was also mentioned as a critical part of an ML pipeline. Data
visualization took a major part of this phase of the ML workflow. Investigating data distribution,
feature importance and correlation between features support the ML practitioner in improving the
data quality and choosing the data preprocessing steps for that. Support for data visualization
thereby was a crucial part of the ML workflow and could be part of an ML pipeline, either by tools
visualizing the data or pipeline steps which generate data visualizations.

37



4 Results

P3 and P4 also mentioned feature engineering as part of the data preparation phase, while P4
especially set it behind an initial model training phase as a way of improving data quality and
selection. Another task of the data preparation of the ML pipeline was data quality assurance. This
was important for P2 and P4. The assurance of data quality and data format is very important for
practicing data science as the machine learning model can only achieve the best metrics depending
on the data quality. P4 added that this task was mainly handled manually in proof-of-concept
projects and automated in the latter stages.

The train-test split was mentioned as an own step of an ML pipeline by P2 in a later section and
P3. By splitting the data into a dataset for training the model and one for testing the model, the
ML practitioner could test how well the model works with unseen data. Interestingly, this step was
mentioned as part of the data preprocessing phase by P2.

For model training, there was a kind of grid search mentioned by P2 and P3. By listing a set of
machine learning algorithms as well as a set of parameters for each, it was possible to train the best
model with the best-performing algorithm and hyperparameters. This can be seen as AutoML with
the automatic search for the best combination of machine learning algorithm and hyperparameter.
P4 has not heard about the approach but would still consider it a great help. For him, training
multiple models was one of the first parts of an ML project. This might indicate that model selection
and training are of lesser importance in an ML pipeline.

After the model training the best-performing model was tested using unseen data in the model
validation step. This step was mentioned by all participants to various extents. For P1 scoring the
model using batches of data was an important step, while for PS5 using primarily publicly available
models, model validation was a step for checking whether the model could be used for the project’s
use case. A report on model quality and accuracy was common sense among the participants. P4
also added that the kind and interpretation of metrics and metrics results depend on the data. An
example was given in a classification task with 98% of the data having one label, the model could
be right 98% of the time if it chose to always output that label.

At last, there was the model deployment step. While all participants except P4 mentioned this step,
P1 and P2 went into a bit more detail. They mentioned the deployment of a “prediction pipeline” and
a “pipeline in production”. These were pipelines that validate and prepare the incoming data before
they were fed to the model. Another interpretation could be the deployment of the training pipeline
that could be automatically triggered to run and retrain the existing model, similar to the level 1
and 2 automization mentioned in [LLC23]. Because it was not made clear, what those terms mean
exactly, the “prediction pipeline” covers the deployed pipeline which prepares the data before the
model makes the prediction, while “pipeline in production” is the pipeline which covers automatic
retraining for the rest of the paper. In the following, only the model is mentioned in the context
of deployment but technically this can also be replaced by a prediction pipeline. Independently
of whether a prediction pipeline or simply a model is deployed, the type of deployment is another
matter. Several types were mentioned as examples: the model could be exported as an artifact and
be part of the software directly (statically embedded), the model could be accessible via a REST
API and the model could be available as a batch job. Furthermore, P1 mentioned the difference
between the deployment of batch and stream processing use cases.

The deployed model should be continuously monitored as all participants except P4 added. P2 even
mentioned a monitoring pipeline which not only monitored the data, looking for data and feature
drift, but also checked how well the model worked in production.

Another task was monitoring the predictions by the model and its distribution as well as performance
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metrics of it. These indicated when the model needed to be retrained. Retraining was another factor
mentioned by nearly all participants. Metrics related to fairness and bias should also be monitored
to prevent biased predictions by the model, mentioned P3. Monitoring was more part of the ML
workflow than an ML pipeline though.

Even though it was not asked specifically, some technologies were mentioned. These technologies
include libraries and frameworks like Pandas [McK10], TensorFlow [The15] and LGBM [KMF+17]
but also tools like Kedro [The23a], Hadoop Cluster [Apa06], PySpark [Apa], Databricks [Dat13]
and MLflow [Thel8Db].

Generally, the mentioned components and steps of ML pipelines were in line with steps of the ML
workflow mentioned by Amershi et al. [ABB+19]. While the model requirements step really only
was mentioned by P4, there was a focus on data-related steps among all participants. These steps
were split in data collection, data cleaning, data labeling and feature engineering, as described in
Section 2.2. The data labeling step was not prominent in the expert interviews which might be
because of it is limited to supervised learning methods. The model-related components of the model
by Amershi et al. were the same as the components and steps mentioned during the interview.

Quality Requirements

Quality Requirement | Mentioned By

Testability P3, P5
Flexibility P2, P3
Modularity P2, P3, P5

Pipeline Performance | P3
Good documentation | P5
Reusability P3

Table 4.2: A summary of mentioned quality requirements

Quality requirements describe characteristics of ML pipelines that the ML practitioners saw as
important for their work. There were three, several times mentioned, quality requirements with
further three only mentioned by one participant each. They are summarized in Table 4.2

One mentioned quality requirement was testability. Being able to automatically test singular
components with unit tests but also the interoperability between steps using integration tests, was
an important requirement for ensuring the quality of the pipeline.

Another mentioned quality requirement was flexibility. Being able to change steps and the structure
of an ML pipeline as well as other configurations easily, made the work for the ML practitioner
easier. P2 mentioned in this context that generic tools often did not have enough functionalities for
most real-life use cases.

The last of the multiple mentioned quality requirements was the structure or modularity of the
ML pipeline. The project having a clear and understandable folder structure with hyperparameters
extracted in one separate or multiple configuration files seemed important when it came to the
structure of the ML project, as P2 and P3 mentioned. The ML pipeline as well as the project itself
were supposed to have a modular structure according to P5.

Other quality requirements included pipeline performance, mentioned by P3. This meant not
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the performance of the resulting model but the execution time, which should be sufficiently low
depending on the amount of data and preprocessing steps. This is also mentioned in the work by
d’Aloisio et al. [dDS22] where this was called “computational complexity”.

Another less-mentioned quality requirement was good documentation and clean code, proposed by
P5. A well-documented pipeline and project enabled the ML practitioner to faster start building the
ML pipeline and doing data science with less time needed for understanding how the pipeline could
be changed according to the wishes of the ML practitioner.

Finally, P3 mentioned reusability as a quality requirement. Especially, for projects with similar use
cases reusing the pipeline might be a viable option for the start of the project. This speeded up the
development process of new projects with the ML practitioner being able to reuse components and
steps of an ML pipeline. This might also be an indicator of automatically generated ML pipelines,
which could include standard components but also use-case specific ML pipeline steps.

There were also quality requirements which could be derived from functional requirements
mentioned in this section. One of these functional requirements was monitoring. P1 and P4 noted
that metrics depended on what is time-tested and important for the use case. This highlighted
the need for good and fitting metrics for every kind of problem and use case. Choosing which
metrics are best suited was a very important step as described in [SBHV20] but also a source of
errors because metrics were chosen which might seem like they could measure the success rate
of the model to a problem but had flaws which made them unsuitable. The corresponding quality
requirement could be described as the “observability” of the ML pipeline.

Challenges

Mentioned Challenge Mentioned by
No standard procedure for setting up a pipeline | P1, P3

Data Quality P2, P4
Runtime Configuration P5

Model and Code Testing P5
Deployment P5

Table 4.3: Mentioned challenges of ML pipelines

In summary, there were five challenges regarding ML pipelines mentioned by the participants. Two
more important, mentioned by more than one participant, challenges were mentioned while there
were a further three challenges that were mentioned by only one participant each. Table 4.3 provides
a summary of those challenges.

These challenges included the non-existence of a standard procedure for setting up an ML pipeline.
This point was mentioned by P1 and P3 with P3 especially pointing out the challenge of creating
an ML pipeline from a Jupyter notebook [KRP+16] which was used for proof-of-concept, data
exploration and manual experimentation. According to P3, this was because the review of
such Jupyter notebooks was difficult because of the size and complexity of these notebooks. A
consequence was that other developers in the team could not get any value from the notebooks
because of the mentioned reasons. P1 mentioned also the creation of an ML pipeline from scratch
with functionalities like monitoring and retraining.
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Data quality was also mentioned as a challenge by P2 and P4. This included problems like the
handling of missing values and unlabeled data. A way for addressing this challenge could be data
visualization. Tools for data visualization could be a great help for assessing data quality, identifying
problems and choosing a suitable solution for these, participants mentioned.

The handling of configuration was also mentioned as a challenge by P5. Here, the challenge laid less
in configuring data preprocessing steps and models but in configuring runtime execution-specific
configurations. Especially mentioned here was the configuration of custom Docker containers
which could be used as runtime containers for individual steps inside an ML pipeline but also for
model deployment inside such containers.

Related to the testability of ML pipelines mentioned as one of the quality requirements, testing
code was also one of the mentioned challenges. Ensuring the correctness of the pipeline steps was a
major part in improving and ensuring the quality of the ML pipeline. P5 also added in that context
the testing of the model to ensure that the model was working as expected and did not just achieve
good performances depending on the data and metrics used. This was supported by the work by
John et al. [JOB20] that added ““verification and validation” of models to the challenges during
development.

Lastly, P5 mentioned the challenge of model deployment. Deployment included a variety of possible
configurations for the underlying runtime execution platform, the kind of deployment and use-case-
specific configurations. Examples like batch processing as possible deployment configuration were
mentioned. P1 also added non-automatic deployment because of customer-specific peculiarities
which was a consequence of his current project. The non-automatic deployment in this project
worked via a Git pull request which needed to be accepted by the company’s developers and
the custom framework which only offered functionalities that could be also provided by publicly
available platforms but prevented vendor lock-in for the cost of bad documentation of the framework.
This challenge was also mentioned by John et al. [JOB20] who stated that integration issues of
models into software-intensive systems.

Challenges during the start of P2’s project were the long duration until the data from the customer
was acquired as well as understanding the data. During the development phase, challenges included
the requirements engineering and the lack of knowledge of non-specialist colleagues about machine
learning which is supported by John et al. [JOB20] who covered the shortage in domain experts.
P3’s project had to handle the challenges of the heterogeneity of the data along with a multitude of
data sources and the problem of data leakage.

Contextual Factors

In terms of what quality requirements and components of an ML pipelines depended on, the
dataset was one of the most important factors according to the participants. All of them mentioned
dependencies that could be categorized as data quality. It was clearly stated that the data preprocessing
steps were most affected by varying data quality, with more preprocessing steps needed with lower
data quality. The data preprocessing steps mentioned here were handling missing values and
duplicates. Data visualization and a data quality profile, so how the features were distributed and
what values were missing, were helpful for identifying problems. P3 also mentioned the complexity
as well as the heterogeneity and homogeneity of the data having an influence on the ML pipeline.
The ML practitioners were also in contact with domain experts to have an idea of what the features
but also the data points and model results meant and how they could be interpreted, according to P3.
Other factors the ML pipeline might depend on are data quantity, data format and data sources.
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How do ML pipelines depend on ... Contextual Factors

Dataset Data quality

Data complexity
Domain knowledge
Data quantity

Data format

Data sources

Data security

Industry Domain Technology Stack
Infrastructure Issues
Regulations

Team Expertise Focus on Implementation
Available Toolset

Model Validation

Expectations by Domain Experts
Experience

Type of ML (e.g., supervised, unsupervised, | Model Deployment (API endpoints, batch jobs)
reinforcement learning)
Metrics

Type of problem (e.g., regression, classification, | Length of Feedback Loop
forecasting)

Other factors Execution Speed
Inference Speed
Model Availability
Computational Power

Table 4.4: Mentioned contextual factors of ML pipelines

Different sources of data but also different capabilities of data handling by companies might come
with different formats of data. Data collection by these companies might also be lacking continuity
which might motivate the ML practitioner to acquire more additional data from different sources.
The last dataset-related dependency on the ML pipeline was data security. The data might be
confidential and stored in the customer’s infrastructure with restricted access to the data for the ML
practitioners. This confidentiality might come with an additional step: anonymization. Either the
data acquired from the company might already be anonymized or the data needed to be anonymized
by the team of ML practitioners before it could be used for developing and training ML models.

The industry domain was mentioned as a less important dependency on ML pipelines. P1 outlined
more company-specific factors with special requirements in terms of the technology stack used by
the company and enforced on the project as well as missing infrastructure for providing data, model
training and deployment. P2 on the other hand highlighted the regulatory side with closely regulated
companies and institutions like bank and insurance companies needing to enforce more regulations
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on the project. Here, important factors were versioning for traceability, good data quality in general
and good documentation regarding the data origin. The other participants saw little to no influence
by the industry domain and more importance in the use case.

Dependencies of the quality requirements and components of an ML pipeline on the team expertise
were less clear. According to P1, the software engineers were more focused on the implementation
side of the project compared to scientific personnel but also saw dependencies on the available toolset.
So, tools were chosen for the development that the team was familiar with and the development was
faster in the case where the tools were customed by the project’s customer.

P2 added that during the experimentation and prototyping phase, every ML practitioner worked
more by himself than in the team, with the team expertise playing a more important role when it
came to the validating and testing of the model. For P3 and P4 the expectations of the domain
experts in comparison to the results of the model played a role in the project, with the model often
identifying patterns that the domain experts already knew about. P4 also added that the experience
of the team members in data and feature engineering let the project progress faster. P5 on the other
hand differentiated that the team expertise influenced the work as a team but less the ML pipeline of
the project.

The dependence of ML pipelines on the type of machine learning used was very low, according to
the participants. Only P1 distinguished between supervised learning and unsupervised learning
and outlined the difference in model deployment. Models trained using supervised learning were
mostly deployed using API endpoints, while unsupervised learned models used batch jobs that were
available on-demand. PS5 also added that he saw unsupervised learning methods more used for
analysis and that it needed manual validation. Different metrics were used, according to P3, but
other than that there was little to no influence.

The type of problem was also a dependence which was investigated during the interviews. Here, P1
made the distinction between a recommendation system and a clustering problem. The difference
described related to the length of the feedback loop of these two problems. So, the feedback loop of
the clustering problem did not need to be long compared to the feedback loop of the recommendation
system. This was because of the reinforcement learning approach used for this system which
generally has a short feedback loop, according to P1. While P4 and P5 added that different metrics
for model validation should be used, all participants saw that there was little to no influence on the
ML pipeline.

Other factors which the ML pipeline might depend on, included, among other things, execution
speed. This meant not only the execution speed of the data preprocessing steps (P3) but also the
execution speed of the model or the response time of the service in which the model was part of,
according to P1 and P3. This also involved testing the model or service under a load of requests
which are expected (P3). Another factor was the availability of the deployed model which also
might depend on the placement in the business cycle, according to P1. This could be categorized as
a deployment configuration such that the service was available during specific times of the day,
week, month or year. Lastly, P4 mentioned the need for resources the ML pipeline could use, most
notably computational power. Other than that, no further factors ML pipelines could depend on
were added.

Table 4.4 provides a summary on what the participants answered in this section of the interview.
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Pipeline Generation

At this point in the interview, the topic of the study was revealed to the participant. To make the
topic more understandable for the participants, a small use case example was added. This example
was the classification of flowers based on image data with the ML practitioner wanting the following
functionalities to be a part of the ML pipeline: the versioning of data, code and model as well as
monitoring of model performance metrics.

The participants were asked about what challenges could be addressed by using this approach. The
answers included timesaving and reduction of mistakes (P4) as well as easier first initialization of
an ML pipeline with extracted hyperparameters (P3). P1 also saw the generator as a bridge between
experimentation/prototyping using e.g., Jupyter notebooks, and getting the code into a pipeline.

Prime candidates for the automatic generation of ML pipelines were a set of requested features for a
possible tool for the approach.

Versioning was mentioned by P2 and P5. This included the versioning of the models in a model
registry, the code and, especially mentioned by P35, the data. They also added model validation
consisting of the generation of a report (P2), logging and a gateway that decided whether the trained
model achieved sufficient metrics to be deployed (P5). P2 also requested the data pipeline be part of
the deployable artifact which closely resembled a part of the production pipeline mentioned by P1
earlier.

According to P3, the model training should consist of the aforementioned grid search approach for
algorithm selection and hyperparameter tuning as a simplified version of AutoML. Additionally,
data visualization was also mentioned as part of an automatically generated ML pipeline. P3
proposed data visualization using tools like PowerBI, Tableau or Qlik by using the pipeline as a
data source to import the relevant data into those tools.

P4 initially had a hard time suggesting prime candidates but after hinting at data visualization,
visualizations like feature importance and correlation analysis visualizations were requested by him
with the intent of excluding unimportant features and automatically generating new features based
on important ones. Explainability of Al was also requested by P4.

P3 insisted on a modular structure of the pipeline as well as the files of the project. This included
separating the hyperparameters from the code to make it easier to change those.

One functionality request by P1 consisted of the generator being able to extend an already existing
ML pipeline. For that, the existing pipeline should be used as input and then extended by one
functionality, like for example a data preprocessing step.

In the following question, the participants were asked whether they would trust automatically
generated components of machine learning pipelines. All participants answered the same with them
being able to trust the components after some time, getting comfortable with it and confident about
the correctness of the generator’s output.

Regarding the generator’s input, the participants made no remarks on which input format they
preferred. For the configuration input the following points were mentioned:

* Model Training: Here, the grid search approach was requested. Therefore, the configurations
were related to this approach.

— Problem type: Regression, classification, . . .

# Classification: Threshold for which model output which class is chosen

44



4.2 ML Pipeline Overview

Model algorithms: Model algorithms to be trained using the grid search approach

Parameter ranges for each model algorithm

Features

% Selection of features

# Type of model features

Metrics for scoring the model
* Deployment:

— Deployment type: API endpoint, batch processing, . . .

— Kind of deployment: A/B-testing, canary deployment, . . .
* Monitoring: Monitoring of the deployed model(s)

— Selection of features

— Selection of performance metrics

P1 also added the possibility of adding a predefined feature store which stored features from previous
projects to be able to reuse those features in a new project.

4.2 ML Pipeline Overview

Using the collected data from the literature as well as the exploration interviews, a general view of
the components and quality requirements of ML pipelines can be created, providing an overview of
answers to the research questions 1 and 2. A visualization of an overview of ML pipelines which
resulted from the answers by the participants is displayed in Figure 4.2.

There can be differentiated between how many configurations a component or functionality need
with configuration-independent components where less or no configuration is needed while more
configuration-dependent components rely heavily on those to work as intended by the ML practitioner
or even exist.

Configuration-independent components and functionalities do not require any configuration by the
ML practitioner besides the notion that these components should be part of the ML project. This also
means that they are independent from the use case, and the ML practitioners decide whether they
want the functionality for the project or whether they would even use it. These components thereby
can be initially provided by the ML platform or set up as part of the project. Those components
include, for example, model registry and experiment tracker.

More configuration-dependent components need information on how the functionality should look
like. These components generally are essential parts of ML pipelines and that is why they often
should be part of automatically generated ML pipelines. While there are configurations that can
be used as default without further configurations for some of the more configuration-dependent
components, others highly depend on configurations made by the ML practitioner to work correctly
or at all. What kind of configurations can be considered important to the project or single steps can
be viewed in Table 4.5.
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Scope Configurations

project-wide Type of problem (regression, classification, ...)
Type of ML (supervised, unsupervised, ... learning)

step-specific | data ingestion Location of datasets
Loading configurations (e.g., credentials)
Data visualization

data joining Kind of data (time series, images, ...)

data preprocessing Used algorithms and parameters

train-test split Ratio (optional)

Feature selection

Target label (in case of supervised learning)
feature engineering | Used algorithms and parameters

model training General AutoML?

Grid search? Then model algorithms and hyperparameters
model evaluation Metrics (optional)

Type of problem for default metrics

model gateway Required model performance

deployment pipeline | Model packaging

Deployment infrastructure and environment

Deployment pattern

Table 4.5: Project-wide and step-specific configurations for automatically generating ML pipelines

The ML pipeline generally consists of three pipelines. These pipelines are the data pipeline, the
model pipeline and the deployment pipeline.

The data pipeline is debated to be not part of ML pipelines as this workflow often lies outside the
machine learning part and can also stand by itself in non-ML-related projects and tasks. Still, as
seen by the results of the exploration interviews, data preparation and data preprocessing are an
essential part of machine learning and the data pipeline should therefore be part of an ML pipeline.
It is supposed to load data from different data sources, join them in a meaningful way and bring it
in a fitting format before preparing it for the machine learning process. The preprocessing part of
the data pipeline has a very large intersection with the feature engineering part. Generally, the data
pipeline tries to improve the quality of the data, while feature engineering steps prepare the data for
a machine learning model. Therefore, the data preprocessing steps of the data pipeline can contain
steps like handling missing values and outliers. Data visualization should also be part of the data
pipeline to enable the ML practitioner to inspect the distribution and correlation of the features and
recognize patterns in the data. The data pipeline contains the steps data ingestion, data join and all
of the data preprocessing steps as well as data versioning.

While the data ingestion exhibits a high configuration dependence because the datasets to be ingested
need to be defined by the ML practitioner, the configuration dependence of the data joining step is
not so clear. Although a general data joining could be applied to some datasets, this does not apply
for complex use cases and low-quality datasets. Except for configurations regarding the format of
the dataset (e.g., time-series), there are no obvious configurations for this step, leaving the work to
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ML practitioners to define the joining of the dataset manually or to some automized approach that
analyses the data before joining the datasets in a meaningful way. The data preprocessing steps on
the other hand are one of the most configuration-dependent steps of ML pipelines. The steps to
improve data quality are optional components that only are generated if stated by the configuration
using data preprocessing algorithms and according parameters. While, depending on the use case,
the data visualization needs to be configured to function in a meaningful way, simple visualizations
of the data are independent from the use case and thereby a more medium configuration-dependent
functionality. The configuration dependence of the data versioning components on the other hand
relies heavily on the implementation by the developer of such an approach. This could be for
example defined as default for all datasets, even all data artifacts that result from the execution of a
pipeline step or those between single pipelines. Which configurations the ML practitioner that uses
the generator could make thereby also relies on the implementation with the possibility to define
versioning for the raw dataset or no possibility to add the functionality altogether.

Following the data pipeline is the model pipeline which covers the preparation for, model training
itself and model evaluation. As the participants said during the exploration interviews, one important
data preparation step is the train-test split which splits the dataset into multiple datasets with a
defined ratio. The most common approach is to split the data into 2 datasets, one training dataset
for training the model and one testing dataset for testing how well the model performs with unseen
data. Another approach adds a validation dataset which is used for stopping the training process
to avoid overfitting. The train-test split is a necessary step in the ML pipelines making it rather
configuration-independent. The ML practitioner could be given the possibility to configure the
train-test ratio as well as the inclusion of a validation dataset. Additionally, the feature selection
could be implemented in this step as well, allowing more possibility for configuration by the ML
practitioner.

The feature engineering is supposed to prepare the data and make it easier for the model to learn
patterns in the data. This could include feature scaling using min-max normalization or z-score
normalization. One important topic to keep in mind is to fit the scaling algorithm to the training
dataset and transform the test and validation dataset with the same scaler. This prevents data leakage
because otherwise, the normalization on the training dataset includes information about the test
data. This measure is described in [SBD+21] and [BBG+23].

The model training utilizes AutoML to find the best combination of model algorithm and hyperpa-
rameters. This can be the grid search approach mentioned in the exploration interviews but also a
more general AutoML approach provided by libraries and frameworks can be a solution. The model
with the best metrics during training gets validated in the model evaluation/validation step. Here,
the model performs predictions on the previously unseen test data. Metrics collected during the
step not only include performance metrics like accuracy (depending on the kind of ML problem)
but also metrics like feature importance. If the resulting metrics are better than a defined threshold,
the model is saved in a model registry and deployed using the deployment pipeline. Whether this is
the case, is checked using a gateway.

In a traditional approach, a model algorithm is chosen or even implemented and then trained
with defined hyperparameters which is configuration-dependent. The approach resulting from
the exploration interviews using grid search to find the best combination of model algorithm and
hyperparameters needs the ML practitioner to configure a series of model algorithms as well
as suitable possible hyperparameters. Because of that, this approach is also quite configuration-
dependent. Another, less configuration-dependent, approach is using a more general AutoML
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method which automatically finds the best combination of model algorithm and hyperparameters.
Depending on the implementation, the ML practitioner could not need to configure the model
training due to a complete reliance on AutoML.

Even though there are default metrics for the most common kind of problems, depending on the
use case other metrics are needed to evaluate the model, also during model training where the grid
search approach or AutoML is used. Because these metrics are optional, the model evaluation is
rather configuration-independent.

In between the model and the deployment pipeline is the model gateway, a single configuration-
dependent component that decides whether the newly trained model is deployed. The conditions on
how this decision is made need to be configured by the ML practitioner. A more complex approach
is the possibility to deploy the newly trained model in the case that it achieves a better performance
than the currently deployed model.

The deployment pipeline is one of the most complex parts of the ML pipeline. Many different
configurations need to be made and platforms to be considered. Possible configurations include the
pattern used for serving the model like Model-as-Service and Model-as-Dependency [VKB+23],
the infrastructure the model needs to be deployed on as well as less machine learning related
configurations like availability and scaling.

4.3 Generation Approach

Using the results from the exploration interviews, a prototypical approach was developed to
demonstrate the overarching goal of the study to automatically generate context-specific ML
pipelines. The rest of the paper a differentiation is made between the “Generator” and the
“Prototype”. The program developed during the study is identified as the prototype while the
generator means a program that solves the same problem as the prototype tries to solve but includes
more functionalities and might work in a different way.

4.3.1 Kubeflow

Initially, Kubeflow [Thel8a] was the platform of choice. Kubeflow is an end-to-end platform for
ML projects on Kubernetes [Thel4]. It supports a variety of features including Jupyter Notebooks,
Model Serving and Pipelines. The Kubeflow Pipeline (KFP) module offers “a platform for building
and deploying portable, scalable machine learning (ML) workflows based on Docker containers”
[Mer14].

In KFP, an ML workflow is a pipeline consisting of multiple nodes which can run in exclusive
Docker containers. Using the KFP SDK, a development kit for Kubeflow pipelines, the developer
can easily create pipelines using a Python decorator. Nodes can also be easily created by supplying
a Python function that is executed inside the Docker container upon the execution of the node during
a pipeline run.

One of the initial reasons for using Kubeflow as the prototype platform was the product’s completeness.
Many functionalities mentioned in the literature regarding data science are provided by Kubeflow
and few other tools were needed to be added. Another reason was the flexibility of the deployment
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of Kubeflow. Kubeflow can be deployed using solely a Kubernetes cluster which can run locally as
well as in the cloud. These deployment options give the developer more flexibility and enhance
scalability, which is one important factor in data processing as well as model training.

The reasons for abandoning Kubeflow as the platform for the prototypical approach were insufficient
documentation as well as problems with adding more tools to a project. Another reason was the
poor extensibility regarding other third-party tools as well as the insufficient documentation and
management of artifacts between pipeline nodes.

4.3.2 Kedro and MLflow

During the exploration interviews, the tool combination of Kedro and MLflow was mentioned.

Kedro [The23a] is a pipeline orchestration framework using Python specialized for machine learning
with an emphasis on “maintainable and modular data science code”. Kedro creates a new project
using a folder structure, separating configuration files, data files and code. The last is organized in
a folder structure with every major pipeline having its own folder, including a nodes. py file that
includes the Python functions for the nodes and a pipeline.py file that covers the declaration and
definition of the pipeline. A data catalog allows for declaring datasets as well as configuring the
loading process and other configurations like data versioning of datasets. The definition of pipelines
consists of a series of nodes along with their respective code, name, input and output. The code
of a node is simply a Python function. Using Kedro’s pipeline visualization plugin Kedro-viz
[WDbK+21], the Kedro pipeline can be visualized via the browser in a clear interface.

MLflow [The18b] is a platform “to manage the ML lifecycle”. It provides features like experiment
tracking, reproducibility, a model registry and model deployment. Providing a modern graphical
user interface that is accessible via the browser, the developer can view tracked experiments, details
and metadata of each experiment as well as models and their deployment stage and is able to change
this by click. Using the Kedro-MLflow plugin [The23b], the developer is able to use Kedro and
MLAflow in unison and no further configurations are needed to be made.

One of the main reasons for choosing the tool combination of Kedro and MLflow is that it already
provides a variety of configuration-independent features, like pipeline visualization and experiment
tracking. Another reason is the simplicity of setting up a project with the developer just needing to
execute a handful of shell commands. With a range of plugins for Kedro, it is possible to deploy the
Kedro pipeline on other platforms and infrastructure. The detailed documentation of the Kedro and
MLflow APIs allows the developer to gain more insight into how the platform and tools work and
thereby avoid possible errors during the development of the ML project. Because both frameworks
only depend on configuration files and the filesystem, the generation process of a pipeline consisted
of the generation of Python files.

4.3.3 Functionalities

The more configuration-independent components of the ML pipeline were provided by Kedro and
MLAflow. Besides Kedro as the pipeline orchestration tool providing the visualization of the pipeline,
it also provides data versioning in a limited way. Especially the versioning of the local raw datasets
needs to be set up manually besides adding the versioning to Kedro’s data catalog. Because of the
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lack of value to the purpose of the study, data versioning is not supported by the prototype. For
this prototypical approach, MLflow covers the functionalities of tracking experiments as well as
the model registry. This leaves data visualization, for which the tool Sweetviz [Ber22] was used.
Sweetviz is an open-source Python library that generates visualizations using self-contained HTML
applications containing information about a dataset. This information includes the number of data
points, distribution of values and number of missing values as well as statistical information about
each feature of the dataset. Additionally, plots of the data feature regarding its values as well as
tables about the correlations between features are generated. Besides those three tools, the Python
library scikit-learn [PVG+11] is used, especially for splitting the data in training and test dataset
as well as model training. Therefore, the model produced by the ML pipeline is of scikit-learn’s
format.

The generated ML pipeline contains the following steps:
 Data Pipeline
— Join Datasets
— Cut Outliers (optional)
* Model Pipeline
— Train Test Split
— Scaling (optional)
% Scale X Train
# Scale X Test
— Model Training
— Model Evaluation

Because of the immense complexity of it, the deployment pipeline was excluded from the
functionalities of the prototype. For the prototype to function correctly, there was no installation
of Python packages necessary. During the development of the prototype, Python version 3.10.2
was used but further tests revealed that other sub-versions of 3.10.x could work similarly. For the
resulting ML pipeline to function correctly, a series of Python packages needed to be installed. The
repository for this study includes the file requirements. txt which additionally covers these packages
as well as their exact versions. The repository contains all the necessary files of the prototype
inside the folder prototype. Besides Python files like main.py, the entry point of the program, the
prototype contains README .md covering the usage of the prototype and requirements. txt listing
all necessary Python package versions needed for the ML pipeline to function correctly inside the
Kedro project. Furthermore, the folder generator contains internal code and the “data” folder
contains two example datasets in CSV format as well as documentation on the input configuration
inside config_template.md and an example configuration file in template.yml. This example
configuration file contains the configuration for an example classification project using the two
mentioned example datasets alongside the target label as well as a collection of model algorithms
and hyperparameters for model training and further minor configurations.
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Figure 4.3: Overall program flow

4.3.4 Architecture

Because Kedro projects are based on Python files, the generation process consists of creating and
writing Python code into those files. These include a folder for each pipeline as well as Python
functions inside nodes.py and the pipeline creation inside pipeline.py as well as the declaration of
the dataset inside the data catalog and the hooks.py and settings.py for Kedro’s hook system. The
entry point for the program is the file main.py which is executed using the command python. Here,
the program arguments are parsed and the configuration file is read. Following this, the generator is
started using the generate function. In generator.py, the configuration from the configuration file
gets enriched and all pipeline generation is coordinated. Firstly, the layer of the datasets declared in
the configuration file is set to raw which is important for Kedro-viz for visualizing the resulting ML
pipeline in a more structured fashion. The program flow is visualized in Figure 4.3.
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Figure 4.4: Program flow of the creation of the data pipeline

Kedro Hooks

After that, the Kedro hooks are written into the files. For this, the file hook_writer.py declares
functions for writing to the projects hooks.py and settings.py as well as for generating the code
for the data visualization. The last one is done using the function add_hook_data_visualizer,
which returns code for the hook in the form of a Python string. This function is executed when the
visualization is found in the generator internal configuration and returned code is given to the file
writing function. With this structuring of functions, it is simple to add new functionalities as hooks
by declaring code inside a function and then declaring when the hook is added to the resulting
project. The file also contains the functionality of logging the artifact after model training. This
functionality was replaced by MLflow’s autolog functionality.

Pipelines

After the hooks, the pipelines are created as visualized in Figure 4.4 for the data pipeline and in
Figure 4.5 for the model pipeline. For that, every pipeline has a dedicated class that handles the
structure of the data pipeline as well as the writing into the files while holding information regarding
intermediate datasets between nodes. A class Nodes is part of every pipeline class to encapsulate the
code and information needed for adding new nodes to the pipeline in an easy manner. This class
holds several functions that return the code for the pipeline nodes as well as information on that
node to register it as part of the Kedro pipeline. Besides the code which is written in the pipeline’s
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Figure 4.5: Program flow of the creation of the model pipeline

nodes.py file, the functions return the name of the generated function, the name of the resulting
node as well as the names of the input and output datasets as a list each.

During the object creation of the pipeline’s class, the function _structure is called which executes
the functions for the necessary steps and adds the information about the node and the output dataset
to a list each which is then used by the function _write_files which writes the code for the nodes
in the corresponding file and the information on all nodes in the file pipeline.py.

While the nodes.py can be generated by writing the nodes’ code one after another into the file,
generating the file pipeline.py is more complex. So, the code for the list of nodes is created by
filling in the necessary information for the Kedro pipeline in a template. This code containing a
list of node information is then inserted in the code for Kedro’s function create_pipeline which
generates the pipeline. This pipeline can then be automatically found by the Kedro project without
further registration.

Because Python lists of names can be easier represented as a string, all the input and output datasets
are represented as lists, even if the list only holds one single dataset. This is because a Python string
object is only printed without quotation marks, which would be a syntax error in the generated
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Listing 4.1 Generation of the nodes.py for the model pipeline

def _write_files(self):
nodes_list = self.additional_nodes
# write nodes.py
with open(self.model_pipeline_dir.joinpath('nodes.py'), 'w') as node_file:
for node in nodes_list:
node_file.write(node['code'])
# write pipeline.py
write_pipeline_file(self.model_pipeline_dir, nodes_list)
# write pipeline specific params
write_parameters_file(self.root_dir, self.name, self.params)

Listing 4.2 Code snippet of the generation of the pipeline.py file for any pipeline

def write_pipeline_file(pipeline_dir: Path, nodes_list: list) -> None:
func_str = ', '.join([n['func'] for n in nodes_list])
nodes_code = "'
with open(pipeline_dir.joinpath('pipeline.py'), 'w') as file:
for node in nodes_list:
nodes_code += f'"''
node (
func={node[ 'func']},
inputs={str(node['inputs'])},
outputs={str(node['outputs'])},
name="'{node[ 'name']}",
y,

# write into file using nodes_code

Python file. This is not the case for lists that include quotation marks for each string object inside
the list. Furthermore, only the return of the node’s function needs to be encapsulated inside a
Python list. Other than that, there is no further difference.

The generation of the nodes. py file for the model pipeline is shown in Listing 4.1. The generation of
the corresponding file for the data pipeline works in a similar way. How the composition of Python
code for the pipeline.py file is constructed, is displayed in Listing 4.2.

Data Pipeline

For the data pipeline, the nodes include the node for joining all datasets and the optional node
for removing outliers from the data. The joining of all datasets requires the names of all datasets
defined in the configuration file. The joining itself is done by using the function reduce of the
Python package functools which applies the merge function of the Python package Pandas [McK10]
to the list of datasets from left to right, as displayed in Listing 4.3.
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Listing 4.3 Joining of a list of datasets

def join_datasets(xdatasets) -> pd.DataFrame:
return [reduce(lambda left, right: pd.merge(left, right), datasets)]

Listing 4.4 Code for generating outlier removal using the ’percentile’ option

df = df[
(df['{feature_name}'] < df['{feature_name}'].quantile(0.95)) &
(df['{feature_name}'] > df['{feature_name}'].quantile(0.05))
1

This is a general joining of datasets with the merge function handling all of the necessary logic.
This approach might not work completely or not as wished by the ML practitioner in more complex
scenarios.

For removing outliers, the code generated highly depends on which outlier detection algorithm was
chosen for what features. For every feature for which outlier removal is defined in the configuration
file, there is a line of code removing these outliers from the dataset.

For the outlier removal using percentile which removes the 5/ and 95" percentile of this feature’s
data points, the function quantile from pandas’ DataFrame class is used. With this, two boundaries
can be defined where only the data points within the boundaries are selected. How the code
generation and the resulting code for the option percentile looks like, is displayed in Listing 4.4.

For the outlier removal using iqgr, the function quantile is also used to calculate the interquartile
range. In the second line of code, only the data points are selected which are within the boundaries
of 1.5 times the calculated interquartile range above the 1% and below the 3"¢ quartile. For the
outlier removal using zscore, the Z-score [Abd07] is calculated for each data point. This involves
calculating the difference between the data point and the mean divided by the standard deviation.
The resulting Z-score needs to be below or equal the value of 3 for the data point to be included in
the updated dataset with data points with a Z-score above the value of 3 to be excluded as an outlier.
How the resulting data pipeline looks like in Kedro is visualized in Figure A.1.

Model Pipeline

The model pipeline is a highly parameterized part of the generated ML pipeline. Many nodes
contain the same code independent of the configuration provided by the ML practitioner. The
provided configurations of these steps are included as parameters, extracted in separate files.

In Kedro, parameters are organized in dedicated YAML files. The defined parameters can then be
used as input of a node during the pipeline’s declaration with the params: prefix added. Inside the
node’s function, the parameters can then be used as Python dictionaries. Instead of using the default
conf/base/parameters.yml file for managing all parameters across the whole project, this prototype
creates an additional folder called parameters which holds a parameter file for each pipeline where
necessary.
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The train-test split is the first step of the model pipeline, splitting the dataset which was preprocessed
by the data pipeline into two datasets, each containing two parts. These include a training dataset,
one part without the target label X_train and one only the target label y_train, and a similar
test dataset with X_test and y_test, respectively. The parameters regarding this step are called
split_options and contain the ratio of the size of the training dataset to the test dataset as well as the
name of the target label and the name of the features selected for model training. The train-test-split
step first encodes string-type features using scikit-Learn’s OrdinalEncoder, giving each different
string value an integer value. This newly generated feature is then used to replace the old feature
containing the string values.

Following that, the target label is retrieved from the parameters and the corresponding feature
is split from the rest of the dataset. Then, the features for the model training are selected based
on the parameters retrieved from the configurations file. The train-test split itself is done using
scikit-Learn’s train_test_split function. Additional to the ratio of the two dataset sizes, in case of
a classification problem, the train_test_split function’s stratify parameter is set to the variable’s
name for the data containing the target label, y. This way, the data is split in a stratified fashion,
using the data containing the target label as class labels. Imbalanced data thereby has a similar ratio
of the class label in both training and test datasets, preserving the ratio from the original dataset in
both even after the split.

After the train-test split, there can be feature scaling steps. This depends on whether the ML
practitioner added the scaling of at least one feature in the configuration file. If that is the case,
two steps are added between the train-test split and the model training. The first step is called
Scale_X_train and scales the corresponding features in the training set. This is done using scikit-
Learn’s MinMaxScaler which fits to and then transforms the training data. The scaler object is then
part of the output of the node such that it can be used to transform the test dataset in the step
Scale_X_test. The feature scaling is done in two separate steps with the same scaler to avoid data
leakage [BBG+23][SBD+21]. If the scaler object would be fit to the whole dataset before the
train-test split, there might be information about the test dataset in the training dataset.

The model training step is another highly parameterized ML pipeline component. For implementing
the grid search approach mentioned by the participants during the exploration interviews, scikit-
Learn’s GridSearchCV was used. This class takes a model estimator and a grid of parameters and find
the best parameters for this model. For testing out different model algorithms too, a few changes
needed to be made. The estimator was replaced by a scikit-Learn Pipeline, containing a single step
called clf which creates a DummyEstimator object. This way, the model algorithm can be part of
the parameter grid of the GridSearchCv. The parameter grid consists of a list of model algorithms
with their corresponding parameter values. Every list item contains an initialized object of the
model algorithm with the key clf and a list of values for the parameters which the model should be
trained with, having the key clf [parameter_name] with [parameter_name] being the name of the
parameter according to scikit-learn’s documentation of the model algorithm. After the execution of
the grid search with the training dataset, the best-performing model is returned. For tracking the
model training, MLflow’s autolog function for scikit-learn was executed at the beginning of the
ML pipeline step. This automatically logs parameters of and model metrics during the training
process.

The last step of the model pipeline is evaluating the model which shows the best performance during
the training process. Besides the model from the model training step, this step needs the test dataset
along with the corresponding labels and metrics which were defined in the configuration file by the
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ML practitioner. For this step, MLflow’s evaluate function is used. Using this approach, common
metrics are tracked depending on the machine learning problem by adding what type of model,
regressor or classifier, the model to be tested is. At the end, the additional metrics which were
defined in the configuration file by the ML practitioner are logged.

How the resulting model pipeline including and excluding the nodes representing parameters looks
like in Kedro is visualized in Figure A.3 and Figure A.2, respectively.

Data Catalog

At the end of the generation process, the data catalog is generated. For this, the file
conf/base/catalog.yml in the Kedro project is filled with objects describing information on
datasets. These include datasets added by the ML practitioner in the configuration file but also
intermediate datasets. The dataset Joined dataset stores the resulting dataset after the step which
joins all of the datasets from the configuration file with the layer raw. This dataset is stored as a CSV
file and gets added the layer information intermediate such that the dataset is visualized below the
raw datasets. In the next layer (primary), there is the dataset resulting from the removing outlier step
if this step is part of the generated ML pipeline. Unlike the dataset before, this dataset is only of
type memory which is an identifier for this dataset being of Kedro’s MemoryDataSet which loads and
stores data from/to an in-memory Python object. Therefore, the dataset is not stored permanently
and the steps to create this dataset need to be run again if the ML practitioner wants to do so. The
datasets created from the train-test split step, namely X_train, y_train, X_test and y_test, are part
of the layer feature and also are MemoryDataSet. As are the resulting datasets from the optional
feature scaling steps, the scaler object and the scaled datasets X_train_scaled and X_test_scaled
which are part of the model_input layer. The final dataset listed in the data catalog is the model,
stored as a file in pickle format within the model layer.

Configuration File

Using the configuration file, the ML practitioner is able to provide the necessary information to
the generator for generating the ML pipeline. This YAML file contains basic information about
the project, the data and many configuration-dependent components of an ML pipeline. A short
documentation on the exact syntax of the configuration file can be found in the project’s repository.
All components are mandatory unless specified otherwise.

The datasets are declared in a similar way to Kedro’s data catalog, as specified in Listing 4.5. The
datasets-list contains dictionaries containing the name, one of the supported types of the dataset
as well as the file path and other arguments for loading, saving the data as well as credentials.
The name is a string for identifying the dataset inside the Kedro project. The type of the dataset
describes the format of the file containing the dataset. For this prototype, the file formats csv, json,
xls and parquet are supported. The file path indicates where the data file can be found and loaded
from. This can be a local file path but also an URL pointing to a remote file.

Another project configuration is the problem which is a string describing the problem the project
tries to solve. This prototype accepts one of regression and classification as the configuration
for this key. This is specified in Listing 4.6.
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Listing 4.5 Specification of the dataset configuration

datasets:
- name: <name>
type: 'csv' | 'json' | 'xls' | 'parquet'
filepath: <path to file/remote>
# [Optional:]
load_args:
<Arguments according to kedro's specification>

save_args:
<Arguments according to kedro's specification>
credentials:
<Credentials needed for accessing the dataset>
- name: ...

Listing 4.6 Specification of the problem configuration

problem: 'regression' | 'classification' # Type of problem

This prototypical approach generates ML pipelines for projects trying to solve the problem using
supervised learning methods. For this method, one or multiple target labels should be defined. This
is done by the target_label key in the configuration file as displayed in Listing 4.7. The value of
the key should be the same as the name of the label in the data.

The visualization-key is an optional configuration for adding data visualization using Sweetviz, as
specified in Listing 4.8. The default value is false, so the resulting ML pipeline does not initially
support data visualization. With the value true Sweetviz is added as a Kedro hook to generate
HTML files during an ML pipeline run.

The train-test split used for splitting the dataset in a training and testing dataset is described in the
configuration file with the key train-test-split as displayed in Listing 4.9. This is a dictionary
containing optional information like the size of the training dataset as a ratio to the complete dataset
and the same configuration for the test dataset.

One optional configuration is the features-list. This describes the feature selection and engineering
steps which should be part of the ML pipeline. For that, every feature which should be used for
model training needs to be listed as well as the preprocessing steps which should be performed on
this feature like displayed in Listing 4.10. If there are no features with preprocessing configured, no

Listing 4.7 Specification of the target label configuration

target_label: <name of the feature which should be used as target variable>
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Listing 4.8 Specification of the configuration for data visualization using Sweetviz

visualization: true # [Optional:] data visualization using sweetviz (html report gets
generated in data/@8_reporting)

Listing 4.9 Specification for the train-test split configuration

train-test-split:

train-ratio: <Value between @ and 1> # [Optional: ] Ratio of training data from the
original data

test-ratio: <Value between @ and 1> # [Optional: ] Ratio of test data from the original
data

preprocessing steps are added to the resulting ML pipeline. The data preprocessing algorithms
available are the removal of outliers and min-max normalization. For outlier removal, one of the
following algorithms can be chosen:

* percentile: The 5/ and the 95" percentile of the data is removed.

* iqgr: Data points outside of the 1.5-times the interquartile range below and above the 15" and
374 quartile are removed.

* zscore: The Z-score for each data point is calculated and data points with a Z-score above 3
are removed.

For min-max normalization the key scaled is used which can be set to true while the default value
is false. If the features-section is not part of the configuration file, all the available features are
used for model training and no preprocessing steps are generated.

Listing 4.10 Specification of the configuration for feature selection and engineering

# [Optional:] list of feature names which are used for training all models
# If none, all available features are used
features:
- <name of feature>:
# [Optional:] whether this feature shall be scaled using scikit-learn's MinMaxScaler
scaled: true

[Optional:] whether outliers will be dropped from the dataframe.

The value determines the algorithm chosen for detecting outliers.

'percentile' removes the 5th and 95th percentile of the data,

'igr' removes data points which are outside of 1.5-times the interquartile range below/above
the 1st and 3rd quartile,
# 'zscore' removes data points with a z-score above 3

cut_outliers: percentile | igr | zscore

* % o
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Model training is configured using the training-keyword like specified in Listing 4.11. Because
grid search is used to find the best combination of model algorithm and hyperparameters, model
training needs a series of model algorithms and hyperparameters for each. This list inside the
training-dictionary has the key model. A listitem contains the name of the algorithm and parameters
which fit the algorithm. All the algorithms that can be chosen are implemented by scikit-learn. The
following algorithms are available:

* tree.DecisionTreeClassifier

* tree.DecisionTreeRegressor

* linear_model.LinearRegression

* linear_model.LogisticRegression

* linear_model.PassiveAggressiveClassifier
* linear_model.RidgeClassifier

* linear_model.SGDClassifier

* linear_model.Ridge

Generally, the identifiers for model algorithms are similar to the identifiers used by scikit-learn.
The first part before the dot identifies the scikit-learn’s module while the second part identifies the
model algorithm. The parameters for each model algorithm is supposed to have the same name as
described in scikit- learn’s documentation. Each of the parameters can have a list of values that will
be tested during the model training step. These values should be valid for the associated parameter
according to scikit- learn’s documentation. If a parameter is not listed, the default value is used
according to scikit-learn’s documentation.

Listing 4.11 Specification for configuration regarding model training

training:
models:
- algorithm: <model algorithm> # key for sklearn (Example: 'linear_model.LinearRegression
)
parameters:
<name of parameter>: # List of values or min/max

For model evaluation, the metrics-list can be defined which contains the metrics the model
should be evaluated with additionally to common metrics depending on the problem of
the project. This is specified in Listing 4.12. Available metrics and the correspond-
ing keywords can be found using the scikit-learn’s documentation on metrics and scoring
(https://scikit-learn.org/stable/modules/model_evaluation.html).
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Listing 4.12 Specification for the metrics configuration

# String id or list of those of the corresponding sklearn metric
metrics: <string id / list of string ids>

4.4 Evaluation

This section covers the second round of expert interviews for evaluating the prototypical approach.
Those interviews lasted approximately between 55 and 70 minutes.

Firstly, they were asked about their experience with Kedro and MLflow, preferably in years of
professional experience. While P2 said, he had approximately one year of experience with Kedro
and P3 used it “a while ago”, the others had no experience with Kedro. The participants were a
bit more familiar with MLflow. P3 stated one year of professional experience while P2 “used it
before”. P1 had between 1 and 2 years of professional experience while the participants P4 and P5
stating no experience with MLflow. After this, the interviewer sent the participants the directory
prototype in ZIP format and noted that the two example datasets in the data folder need to be
moved to the example project’s folder for raw data. Additionally, the interviewer explained where to
find the documentation on how to use the prototype and how to configure the prototype’s input in
the configuration file.

During the play-around phase, the participants used the example configuration file to try out the
prototype. Generally, the participants looked inside the example configuration file shortly, before
executing the prototype.

Following the play-around phase, the interviewer tasked the participant with the exercise to further
expose him to the functionalities of the prototype and possible options of configuration for the
configuration file. In short, the interviewees needed to extend the example configuration file by
adding the features section and note the removal of outliers and min-max normalization to at least
one feature before executing the prototype and later the ML pipeline inside the Kedro project.

Identified Weaknesses

Identified Weakness Problematic for
Complexity of Directory Paths All participants
Feature Selection All participants
Data Preprocessing & Feature Engineering | All participants
Target Label is part of feature list All participants
YAML syntax (indentation) P1, P2

YAML syntax (keywords) P4

Table 4.6: Identified weaknesses and problems of the interviewees

There were a few problems and mentioned weaknesses of the approach during the second round of
the interviews, summarized in Table 4.6. The execution of the prototype was errorless except for the
execution by P3 where a problem with a Python package was stated. The reason for this problem
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was not found, although the participant was able to execute the prototype after creating a new
Python virtual environment [VD(09]. Another problem with executing the prototype, especially of
P2 and P35, was that the participants seemed to struggle with directory paths to the configuration file
and the root directory of the Kedro project which were needed to be added to execute the prototype.
For P4, the frequency of switching between the prototype and the example project in the terminal
was also cumbersome. To solve the exercise, all participants tried to apply the data preprocessing
and feature engineering steps to all features at once. The interviewer noted that this is not possible
and referred to the documentation. After this, the participants understood that they needed to list
all features for model training if outlier removal and/or feature scaling should be added to at least
one feature. The interviewees indicated this as tedious, especially for data with a large number of
features. The participants proposed listing only features which should be preprocessed as well as an
exclusion of unwanted features for adding data preprocessing and feature engineering steps easier.
For this, they looked inside the dataset files to copy the available features and paste them into the
configuration file. This meant that the interviewees also copied the target label and pasted it into the
list of features, which would have resulted in an error upon execution of the prototype. The target
label should be separately defined in the configuration file instead of being part of the feature list.
The interviewer noted this mistake during the adoption of the features to the YAML’s syntax. The
YAML syntax of the features section was another common mistake by the participants. P1 and P2
added the cut_outliers and scaled keys one indentation less than needed. The list item of this
section is another dictionary though with the feature’s name as key. To simplify this, the indentation
could be removed by adding a new key, e.g. name, to the list item such that all the configurations in
this section have the same indentation. The current syntax is displayed in Listing 4.13 while the
proposed syntax is specified in Listing 4.14.

Listing 4.13 The configuration syntax for adding feature preprocessing to the ML pipeline

features:
- feature_name:
cut_outliers:iqgr
scaled: true

Listing 4.14 The proposed configuration syntax for adding feature preprocessing to the ML pipeline

features:
- name: feature_name
cut_outliers:iqgr
scaled: true

The last problem during the interview of P4 was an unidentified syntax error of the key cut_outliers
in the configuration file. This caused the prototype to ignore the outlier removal of the feature.
Because this was the only feature which outlier removal should be applied, the generated ML
pipeline lacked the corresponding steps. Critically, the prototype did not throw any output related to
the typo, thereby indicating an errorless execution, which was not the case. This could be addressed
by automatically checking the syntax of the configuration file by the prototype before generating the
ML pipeline.
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Questions

There were a number of questions by the participants during the play-around phase and the exercise.
These may indicate which steps and components the participants were most curious about. P1
asked about how the joining of datasets works, especially in case of heterogeneous data or different
timeframes of time series data. The participant also asked about whether multiclass classification is
supported and whether the resulting pipeline supported big data and distributed computing. Default
values of the data preprocessing algorithms were also unclear, according to P1. P2 asked whether
the absence of output by the prototype is a good or a bad sign regarding success of the prototype’s
execution. P3 and P4 asked about how the prototype can be used, indicating that the documentation
was insufficient. This could be improved by describing the prototype’s purpose of automatically
generating ML pipelines as well as how the user is able to achieve this.

Advantages

Advantages Mentioned by

Prototype easy to use P3

Fast creation of first ML pipeline | P5

Easy to learn Observed among all participants
Good structure of the ML pipeline | P2

Data visualization helpful P1

MLAflow’s report helpful P3

Table 4.7: Most mentioned advantages

There were many advantages of the approach noted by the participants, summarized in Table 4.7. P1
mentioned that the configuration file is easily created and the approach is an easy entry for creating
ML pipelines. P5 also noted that the approach is “straight-forward” for ML pipeline creation and
good for a project’s start and the creation of first ML models, which was also supported by P4. The
creation of first results in just a few minutes was also highlighted by P5. This was complemented by
P3 who added that the prototype is easy to use, with only a few commands needed for the creation
of a functioning ML pipeline. Additionally, the participants remembered how to use the prototype
during the exercise, indicating that the usage of the prototype is easy to learn. P1 mentioned that the
prototype was good for local development with small datasets but probably was too simplistic for
datasets of low quality. Meanwhile, P2 looked at the generated code of the ML pipeline, indicating
that the code as well as the structure of the pipeline seem correct. Especially, the separate scaling
of the training and test dataset using the same scaler object was noted as correct by P2. The
data visualization of the original and intermediate datasets was noted as helpful for the testing
of manually programmed data preprocessing steps by P1, indicating that the data visualization
of the generated ML pipeline is similar to the data visualization on the platform "Dataiku". P2
and P3 mentioned an alternative approach to the approach using Sweetviz. Instead of using the
library for automatically generating HTML reports, the execution of Jupyter notebooks could be
triggered, creating custom visualizations. This could be extended by data visualization tools like
Pandas Profiler [YDa23] which was mentioned by P2. Lastly, P3 noted that the plots generated by
MLAflow’s evaluate and displayed in the results of a pipeline run in MLflow’s UI are useful.
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Figure 4.6: Survey results regarding usefulness (top) and ease of use (bottom)

Usefulness and Ease of Use

As mentioned in the research design, the usefulness of the generator and the ease of use of the
prototype were rated by the participants in a survey. The results of the survey were generally positive
as visualized in Figure 4.6. Except for five answers of “quite unlikely” or “slightly unlikely”” and
two answers of “extremely likely”, all questions were answered “quite likely” or “slightly likely”.
So, the approach was generally valued as useful while the prototype was deemed easy to use.
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Improvements

There are a variety of improvements for the prototype and the approach mentioned by the
participants.

As mentioned above, the prototype was described as good for simple use cases but there was no
guarantee for it to work well for more complex ones. This was added by P35, but also by P2 in
relation to the joining of the datasets.

Another possible improvement mentioned above was the feature selection and feature engineering
in the configuration file. All participants made suggestions like the user being able to apply
preprocessing algorithms to all features as well as the exclusion of features that are not supposed to
be used for model training.

The support of more preprocessing algorithms was another topic mentioned by multiple interviewees.
P4 missed the inclusion of algorithms that are able to handle missing values in the data and added
feature generation as a possible functionality. P3 added that there are too many algorithms that
could be or needed to be provided by the generator. Which algorithm used was mainly dependent
on the data. To cover all wanted algorithms as part of the ML pipeline, the preprocessing steps
could be extracted from the experimentation phase, P3 suggested. P2 also mentioned that data
preprocessing might be a too complex topic for automatic generation but suggested that an Al could
support this process.

P1 mentioned that the support for distributed computation would be useful, distributing data
preprocessing and model training steps across multiple processing units.

The documentation could also be improved which was a conclusion from the play-around phase
and the exercise but was also mentioned by P2. One part mentioned in particular was that the
participants were not aware of the configurations in regard to the train-test split, model training and
model evaluation could easily be changed later on by changing the parameters of the respective
nodes without executing the prototype again. This might be because this fact is not mentioned in
the documentation of the prototype.

Suggestions regarding the frequent switching between the prototype and the Kedro project as well
as the struggles with complex directory paths for the execution of the prototype included moving
the prototype inside the Kedro project. All participants suggested this improvement. Another way
of making the prototype part of a Kedro project could be creating a plugin for Kedro to provide the
prototype’s functionality.

Support for other kinds of problems and datasets was also requested by P5. Examples included
kinds of datasets like images, text and videos besides the current focus on tabular data.
Additionally, P1 added that a prediction pipeline could be the output of the ML pipeline instead of
the trained model. This would include the data preprocessing steps being applied to incoming data
before the prediction by the model.

Asked about improvements regarding the input of the prototype, the participants were split on two
options. The current approach with the configuration file was described as clear and understandable
if the documentation was good but might have boundaries when it came to complex use cases
according to P2 and P4. P1 and PS5 preferred a graphical user interface. While P3 was not
against using a configuration file but proposed a web application for changing the configuration file
alongside a potential AI recommending changes to the ML pipeline.

Regarding the structure of the resulting ML pipeline, the participants were mostly content. P3
mentioned that he would have expected the feature scaling steps to be part of the data pipeline
instead of the model pipeline. After the interviewer noted that this would result in data leakage
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because information about the test dataset would end up in the training dataset, P3 agreed.
Furthermore, the interviewees were asked whether they would like a more general AutoML instead
of the grid search approach used in the prototype. All participants agreed that a general AutoML
approach would be able to replace the current grid search approach. P3 added that AutoML
and the grid search approach could be used together with the grid search approach refining the
hyperparameters found by the AutoML component.

Asked about the deployment pipeline, which was not part of the prototype’s functionality, the
participants acknowledged that model deployment was a difficult topic with many possible options
for configuration. According to P5, these configurations for example included the definition of
environment variables, runtimes, scripts, models, inferencing, inference speed, availability and
scaling. P3 suggested that running the model inside a Docker container could be considered the
standard and proposed that configurations for creating the Docker image could be collected during
the pipeline run. Still, the deployment pipeline was described as a necessary part of the ML pipeline
except for initial testing as P4 noted.

Additionally, a list of platforms and tools was mentioned for which the prototype could provide
support. While P2 thought that the combination of Kedro and MLflow was good enough, P4 and P5
requested support for the machine learning platforms of cloud providers like Amazon Web Services
(AWS) and Azure.

Regarding model deployment, P3 mentioned tools automating this task could be involved. On the
other hand, P1 noted that the platform and tools depend on the project’s requirements, especially the
amount of data is handled and whether existing infrastructure was available and how it looked like.
Besides these improvements, some participants mentioned ideas about improving the approach.
Because the prototype only created new ML pipelines, P2 mentioned that existing changes by the
ML practitioner would be overwritten in case of another prototype execution. To prevent this, the
participant suggested the functionality of extending existing ML pipelines by tracking existing code
and adding new code snippets to the corresponding files. P2 compared this to code inserts by Git.
Another idea by P3 involved the ML practitioner only working with the prototype instead of Kedro.
This consisted of the user only configuring the configuration file or some kind of other input without
the need for the user to have skills and experience with machine learning in general. For this, Kedro
could be the underlying pipeline orchestration tool with which the user did not work anymore.
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5 Discussion

The aim of this study was to evaluate an approach of automatically generating ML pipelines.
Answers for research question 1.1 regarding important components of effective ML pipelines
were comparable to findings from existing literature, with components and steps as part of three
sub-pipelines: the data pipeline, model pipeline and deployment pipeline. The most important
quality requirements of effective ML pipelines, answering research question 1.2, include testability
of single components and the interoperability between steps, flexibility of changing the ML pipeline
and a modular structure of the ML pipeline and associated files. Answers to research question 2 are
contextual factors influencing ML pipelines including data quality and regulatory requirements.
The results from the evaluation interviews indicate that the approach proposed in this paper is
viewed as a feasible approach to automatically generate context-specific ML pipelines (RQ 3).

The participants liked the fast and simple creation of ML pipelines through this approach. This
shows that there is a need for setting up ML pipelines fast such that the ML practitioners are able
to focus on the process of developing good performing ML models. The reduction in time is a
common benefit of automation of specific processes which was clearly achieved. Another common
benefit includes the reduction of mistakes. That this was achieved to some degree was shown by
the comments by one of the participants regarding the separate data normalization. This topic was
covered by Davis [Dav89] and would have resulted in data leakage if it was not applied that way.

Another point was the fast creation of models, which is similar to the “Feasibility Study”” mentioned
by Haakman et al. [HCHD21] for “failing fast” if machine learning is not suitable for the project’s
use case. This is especially important for the start of a project which may indicate where the
approach is most useful in the ML workflow. The placement in the ML workflow might also
support the standardization of ML projects which could be an additional goal of the approach. The
study also showed what configurations are needed for generating ML pipelines. These include
project-related configuration options (e.g., ML problem or target label) but also configurations
regarding single steps (e.g., dataset and model training) as well as optional configuration regarding
feature engineering and data visualization.

These configurations can be categorized differently as well. Besides necessary configurations
like, e.g., the ML problem and the datasets, there are optional configurations for steps which were
generated regardless and only influence generated Kedro parameters. For those steps like the
train-test split, there are default values for the configurations set by the library used to implement
those steps. Besides the train-test split where scikit-learn provides the implementation, MLflow’s
“evaluate” works similarly for the model evaluation.

The study also discovered weaknesses of this approach using a YAML file for configuration because
of problems with syntax and semantics which could be traced back to insufficient documentation of
the configuration input. Although some participants liked the compactness of the configuration file,
complex use cases and complex configuration of pipeline steps might cause problems in the future.
Limitations regarding the approach include that the joining of data might get complex, especially
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for some datasets. This might be less of a problem if the ML practitioner is able to make changes to
the ML pipeline after its generation, but the pipeline might not function without. This results in a
question of how much of these steps can be abstracted. For simple datasets, the joining might be
straightforward but for complex ones this might not even be possible without interference by the
ML practitioner. Generally, the components that might suffer by an increase of complexity of the
use case depend heavily on the quality of the data, like the data joining and data preprocessing steps
as part of the data pipeline, as well as domain knowledge in case of the feature engineering steps.
Analyzing the data automatically before generating the datasets joining and data preprocessing
nodes might be one way to abstract these steps further and prevent errors. How this data analysis
might look like and how great the potential impact is, could be the goal of another research project.
Also, depending on the future support for complex tasks, the complexity of the configuration file
might get out of hand. While this was viewed as one reason for the prototype’s easy use, this could
become a strain on the ease of use for the ML practitioner, which is why this approach using a
configuration file might be limited to generating basic ML pipelines with general solutions for
possibly complex problems like the data joining.

Another interpretation of the results indicates that the iterative development of ML models is more
important for the ML workflow than highlighted in the existing literature. This is based on an
improvement suggestion for the prototype that includes the extension of existing ML pipelines.
With this, the prototype should be able to add and remove new steps as well as adapt existing
steps without changing custom programmed steps and steps that are not affected by the change in
configuration of the input file. This mostly includes data preprocessing steps. One reason for this
focus is the widespread adoption of AutoML. All participants specified AutoML as their primary
approach to model engineering with the mentioned grid search being some kind of brute force
approach to AutoML. This decreases the challenges of model training but also the importance
of it, shifting the focus to data engineering. This is also the reason for the composition of the
ML pipelines which were generated by the prototype. While many literatures acknowledge the
importance of data preprocessing to the ML workflow, few modularize these steps into their own
pipeline, a data pipeline. In papers where this modularization is applied, the pipeline concerned
with model engineering is often still called machine learning pipeline. With the increased usage of
AutoML and the resulting focus on the data engineering and the data pipeline, there is less focus on
the ML pipeline. This is why in the generated ML pipeline part concerned with model engineering
is called “Model Pipeline”. Together with the data pipeline and the deployment pipeline, the model
pipeline builds the base for the machine learning pipeline.

Even though the approach was deemed useful by the participants, it can be refined to improve
the transition from experimentation to pipeline further. The repetitive process of experimentation
followed by the effort of transferring the data preprocessing steps into a pipeline might not be fully
solved by such an approach. For this, the add-on “Kale” for the platform “Kubeflow” might be an
inspiration. The ML practitioner is able to annotate cells inside a Jupyter Notebook and “Kale”
is then able to generate a Kubeflow Pipeline. This makes the transition from experimentation to
packaging the code into a pipeline much easier and faster. Still, the ML practitioner needs to write
all of the code himself. To be able to adapt the ML pipeline more easily, the ML practitioner would
need to experiment with different data preprocessing steps inside a Jupyter Notebook which might
be solved by generating a Jupyter Notebook from a pipeline and back into a pipeline after the
changes by the ML practitioner. One difficulty of this approach is that errors are not automatically
prevented but need to be detected and at least notified to the user or remedied automatically.
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The study also highlighted that there are similarities in terms of some ML pipeline steps that make
them prime candidates to be automatically generated. Those include for example the model training
or engineering step that only involves the execution of some AutoML algorithm. Other areas of ML
pipelines are key areas in the ML workflow. These areas like feature engineering steps change often
during iterations of the ML workflow and play a role in improving performance of newly trained
models. That is why, the prototype is not able to provide such a functionality as it only generates ML
pipelines from scratch. By adding the functionality to extend existing ML pipelines, the prototype
would be able to help the ML practitioner in changing the ML pipeline quickly. Another potential
improvement that could address this issue includes the usage of Al as part of the experimentation
process. With an Al for analyzing the data and recommending pipeline steps and structure, the
experimentation could be changed from a manual process to an automatic one. This could involve
an AutoETL approach which analyzes data and feature importance as well as selects features and
generates new ones. Depending on how well the Al would be able to grasp knowledge about the
domain, the process might be automatable completely.

The prototype partially fulfills the quality requirements gathered during the exploration interviews.
By generating ML pipelines for the framework Kedro, the prototype enables the ML practitioner to
adapt the resulting ML pipeline after the generation which fulfills the flexibility quality requirement.
Kedro also provides a modular structure with pipelines, nodes and hyperparameters in separate
files in a modular manner. This was also mentioned as an important quality requirement during
the exploration interviews. The framework also covers the quality requirement of reusability by
providing the functionality to package the pipeline and make it possible to reuse it in other Kedro
projects. Other quality requirements are not fulfilled by the prototype. Those include the testability,
pipeline performance and good documentation. While the evaluation interviews showed that the
last one was not achieved, the others were not focused on during the development of the prototype.
Good execution performance of the ML pipeline could be achieved by, for example, adding the
functionality of parallel model training to the prototype. Testability on the other hand might be
difficult to fulfill. Automatically generating tests for the ML pipeline might be simple to implement
for components which are similar in different ML pipelines, but other steps might not. Automatically
generating tests for feature engineering steps, especially integration tests, could be difficult to
achieve. This could also be the focus of another research study.

Lastly, while automatically generating a deployment pipeline was not implemented in the prototype,
this is still an important component of ML pipelines. Therefore, there are more information on
components and configurations to be gathered. How the deployment pipeline generally could be
split into separate parts, might be helpful in getting more insight into this component. This could
also involve the separation into components or steps that are commonly used which might be an
entry into how this pipeline could be automatically generated. Also those components or steps
should be able to generate artifacts for, otherwise these might not be automatically generated. One
of those commonly used steps might be to package the ML model into a Docker container. Creating
a Docker image for the model to be deployed into could be a pipeline step that could be automatically
generated.
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Threats to Validity

There are several threats to the validity of this study. A threat to the conclusion validity is the
researcher bias. Because the observation, the comments by the participants and the analysis of the
qualitative data were carried out by a single researcher, there is the possibility that the results would
differ if the study would have been carried out by a different researcher. The extent to which the
results would differ though is probably relatively limited.

The biggest threat to external validity is the type of this study, a case study. Using the prototype at
another company and use case outside of the given exercise probably would have resulted in more
errors and other problems the interviewees would have addressed.

Threats to internal validity includes the difference between what was said by the interviewees
and what the interviewer understood during the interviews. This was reduced by the interviewees
reviewing what the interviewer transcribed after the corresponding interview and correcting potential
misunderstandings. With the participants gaining more experience using the prototype, they would
have been able to provide better feedback. This is another threat to internal validity. Because all
interviewees as well as the interviewer were employees of the adesso SE during the time of the study,
the interviewees might give more positive feedback than without the relationship. Another threat
to internal validity is the interaction between interviewer and interviewee. Because of the help
the interviewer provided during the exercise of the evaluation interviews by answering questions,
bringing the participant back on track and highlighting mistakes for example in the syntax of
the configuration file, the interviewer helped curtain participants more than others. Lastly, the
Hawthorne effect is another threat to the external validity of the study. Because the experimentation
with the prototype took place during the interview, there could have been different results if the
participants were tasked with the exercise outside the interview setting.
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6 Conclusion

This case study proposed an approach to automatically generate ML pipelines depending on context
provided by ML practitioners. Based on a qualitative analysis of results from expert interviews
at adesso SE, important components and quality requirements of effective ML pipelines were
identified. Furthermore, project- and user-specific context that influences ML pipeline steps
and quality requirements were determined. Based on the results of the analysis, a prototypical
approach was developed which was evaluated by experts. The quantitative and qualitative analysis
of those evaluations shows that the approach is deemed useful and easy to use by ML practitioners.
Additionally, it was described as good for the start of an ML project.

For the productive use in real-life ML projects, the prototype needs to be developed further with
more added functionalities. These might include the handling of complex use cases and datasets,
most notably low-quality datasets and different data formats. Future research projects might study
the tools and visualizations that are important for ML practitioners to develop ML models depending
on the project’s context. Additionally, the possibilities of ML model deployment and how those
could work would be an interesting topic for a research project.

With these results, this case study fills the research gap of the automatic generation of ML pipelines
for the purpose of supporting and increasing the speed of how ML practitioners work while
existing literature focus on automatically generating ML models or ML pipelines for the purpose of
improving the model’s performance.

73






Bibliography

[ABB+19] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi,
T. Zimmermann. “Software engineering for machine learning: A case study”. In:
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE. 2019, pp. 291-300 (cit. on pp. 20, 21,
39).

[AbdO7] H. Abdi. “Z-scores”. In: Encyclopedia of measurement and statistics 3 (2007),
pp. 1055-1058 (cit. on p. 56).

[Apa] Apache Software Foundation. PySpark. URL: https://spark.apache.org/docs/
latest/api/python/index.html (cit. on p. 39).

[Apa06] Apache Software Foundation. Hadoop. Apr. 1, 2006. URL: https://hadoop.apache.
org/ (cit. on p. 39).

[ApalO] Apache Software Foundation. Hive. Oct. 1, 2010. URL: https://hive.apache.org/
(cit. on p. 36).

[BBG+23] M. R. Berthold, D. Brookhart, S. Gerber, S. Hayasaka, M. Widmann. “Towards
Data Science Design Patterns”. In: Advances in Intelligent Data Analysis XXI: 21st

International Symposium on Intelligent Data Analysis, IDA 2023, Louvain-la-Neuve,
Belgium, April 12—14, 2023, Proceedings. Springer. 2023, pp. 55-64 (cit. on pp. 24,

48, 57).

[Ber19] L. Berti-Equille. “Learn2clean: Optimizing the sequence of tasks for web data
preparation”. In: The World Wide Web Conference. 2019, pp. 2580-2586 (cit. on
p. 26).

[Ber22] F. Bertrand. Sweetviz. Version 2.1.4. 2022 (cit. on p. 51).

[CM18] M. Chui, S. Malhotra. Al adoption advances, but foundational barriers re-
main. https://www.mckinsey.com/featured-insights/artificial-intelligence/ai-adoption-
advances-but-foundational-barriers-remain. 2018 (cit. on p. 15).

[Corl6] M. Corporation. What is the Team Data Science Process? https://learn.microsoft.com/en-
us/azure/architecture/data-science-process/overview. [Online; accessed 29-June-
2023]. 2016 (cit. on pp. 18, 19).

[Cro23] Cross-industry standard process for data mining. Cross-industry standard process for
data mining — Wikipedia, The Free Encyclopedia. [Online; accessed 29-June-2023].
2023. URL: https://en.wikipedia.org/wiki/Cross-industry_standard_process_
for_data_mining (cit. on p. 18).

[Dat13] Databricks, Inc. Databricks. 2013. URL: https://www.databricks.com/ (cit. on p. 39).

[Dav89] F. D. Davis. “Perceived usefulness, perceived ease of use, and user acceptance of
information technology”. In: MIS quarterly (1989), pp. 319-340 (cit. on pp. 33, 69).

75


https://spark.apache.org/docs/latest/api/python/index.html
https://spark.apache.org/docs/latest/api/python/index.html
https://hadoop.apache.org/
https://hadoop.apache.org/
https://hive.apache.org/
https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining
https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining
https://www.databricks.com/

Bibliography

[dDS22]

[DMRM19]

[FPS96]

[GBA22]

[HCHD21]

[HMR+19]

[HVKR20]

[IBM22]

[Inc23]

[JOB20]

[KMF+17]

[KRP+16]

[LLC23]

[Mai23]

76

G. d’Aloisio, A. Di Marco, G. Stilo. “Modeling Quality and Machine Learning
Pipelines through Extended Feature Models”. In: arXiv preprint arXiv:2207.07528
(2022) (cit. on pp. 28, 40).

B. Derakhshan, A.R. Mahdiraji, T. Rabl, V. Markl. “Continuous Deployment of
Machine Learning Pipelines.” In: EDBT. 2019, pp. 397-408 (cit. on p. 15).

U. Fayyad, G. Piatetsky-Shapiro, P. Smyth. “The KDD process for extracting useful
knowledge from volumes of data”. In: Communications of the ACM 39.11 (1996),
pp. 27-34 (cit. on pp. 17, 18).

J. Giovanelli, B. Bilalli, A. Abell6. “Data pre-processing pipeline generation for
AutoETL”. In: Information Systems 108 (2022), p. 101957 (cit. on p. 26).

M. Haakman, L. Cruz, H. Huijgens, A. van Deursen. “Al lifecycle models need to be
revised: An exploratory study in Fintech”. In: Empirical Software Engineering 26
(2021), pp. 1-29 (cit. on pp. 21, 69).

W. Hummer, V. Muthusamy, T. Rausch, P. Dube, K. El Maghraoui, A. Murthi,
P. Oum. “Modelops: Cloud-based lifecycle management for reliable and trusted ai”.
In: 2019 IEEE International Conference on Cloud Engineering (IC2E). IEEE. 2019,
pp- 113-120 (cit. on pp. 28-30).

Y. Heffetz, R. Vainshtein, G. Katz, L. Rokach. “Deepline: Automl tool for pipelines
generation using deep reinforcement learning and hierarchical actions filtering”. In:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2020, pp. 2103-2113 (cit. on p. 26).

IBM. IBM Global Al Adoption Index 2022. https://www.ibm.com/watson/resources/ai-
adoption. 2022 (cit. on p. 15).

G. Inc. Gartner Glossary: ModelOps. Gartner Inc., 2023. URL: https://www.gartner.
com/en/information-technology/glossary/modelops (cit. on p. 28).

M. M. John, H. H. Olsson, J. Bosch. “Developing ml/dl models: A design framework”.
In: Proceedings of the International Conference on Software and System Processes.
2020, pp. 1-10 (cit. on pp. 27, 41).

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu. “Lightgbm: A
highly efficient gradient boosting decision tree”. In: Advances in neural information
processing systems 30 (2017), pp. 3146-3154 (cit. on p. 39).

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,
K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing.
“Jupyter Notebooks — a publishing format for reproducible computational workflows”.
In: Positioning and Power in Academic Publishing: Players, Agents and Agendas.
Ed. by F. Loizides, B. Schmidt. I0S Press. 2016, pp. 87-90 (cit. on p. 40).

G. LLC. MLOps: Continuous delivery and automation pipelines in machine learning.
Google LLC, 2023. urL: https: //cloud. google . com/ architecture /mlops -
continuous-delivery-and-automation-pipelines-in-machine-learning (cit. on

pp- 23-25, 38).

A.D. Maisch. Towards Automatically Generating Context-Specific ML Pipelines:
A Case Study at adesso SE. July 2023. por: 10.5281/zenodo.8128447. URL: https:
//doi.org/10.5281/zenodo. 8128447 (cit. on p. 16).


https://www.gartner.com/en/information-technology/glossary/modelops
https://www.gartner.com/en/information-technology/glossary/modelops
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://doi.org/10.5281/zenodo.8128447
https://doi.org/10.5281/zenodo.8128447
https://doi.org/10.5281/zenodo.8128447

Bibliography

[McK10]

[Merl14]

[PVG+11]

[RHO9]

[SBD+21]

[SBHV20]

[SFR23]

[Thel4]

[Thel5]

[Thel8a]

[Thel8b]

[The23a]

[The23b]

[VDO09]

[Ven19]

W. McKinney. “Data Structures for Statistical Computing in Python”. In: Proceedings
of the 9th Python in Science Conference. Ed. by S. van der Walt, J. Millman. 2010,
pp- 51-56 (cit. on pp. 39, 55).

D. Merkel. “Docker: lightweight linux containers for consistent development and
deployment”. In: Linux journal 2014.239 (2014), p. 2 (cit. on p. 49).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. “Scikit-learn: Machine learning in
Python”. In: Journal of machine learning research 12.0ct (2011), pp. 2825-2830
(cit. on p. 51).

P. Runeson, M. Host. “Guidelines for conducting and reporting case study research in
software engineering”. In: Empirical software engineering 14 (2009), pp. 131-164
(cit. on p. 31).

S. Studer, T. B. Bui, C. Drescher, A. Hanuschkin, L. Winkler, S. Peters, K.-R. Miiller.
“Towards CRISP-ML (Q): a machine learning process model with quality assurance
methodology”. In: Machine learning and knowledge extraction 3.2 (2021), pp. 392—
413 (cit. on pp. 19, 48, 57).

A. Serban, K. van der Blom, H. Hoos, J. Visser. “Adoption and effects of software en-
gineering best practices in machine learning”. In: Proceedings of the 14th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). 2020, pp. 1-12 (cit. on pp. 21, 22, 40).

M. Steidl, M. Felderer, R. Ramler. “The pipeline for the continuous development of

artificial intelligence models—Current state of research and practice”. In: Journal of
Systems and Software (2023), p. 111615 (cit. on p. 27).

The Kubernetes Authors. Kubenetes. The Linux Foundation, Sept. 9, 2014. URrL:
https://kubernetes.io/ (cit. on p. 49).

The TensorFlow development team. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. Software available from tensorflow.org. 2015. URL:
https://www. tensorflow.org/ (cit. on p. 39).

The Kubeflow Authors. Kubeflow. Apr. 5, 2018. URL: https://www.kubeflow.org/
(cit. on p. 49).

The mlflow development team. MLflow. LF Projects, LLC, June 5, 2018. UrL:
https://www.databricks.com/ (cit. on pp. 39, 50).

The Kedro development team. Kedro. Version 0.18.11. July 2023. urL: https:
//github.com/kedro-org/kedro (cit. on pp. 39, 50).

The kedro-mlflow development team. kedro-mliflow. Version 0.11.8. 2023. URL:
https://github.com/Galileo-Galilei/kedro-mlflow (cit. on p. 50).

G. Van Rossum, F.L. Drake. Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009. 1sBN: 1441412697 (cit. on pp. 32, 63).

VentureBeat. Why do 87% of data science projects never make it into produc-
tion? https://venturebeat.com/ai/why-do-87-of-data-science-projects-never-make-it-
into-production/. 2019 (cit. on p. 15).

77


https://kubernetes.io/
https://www.tensorflow.org/
https://www.kubeflow.org/
https://www.databricks.com/
https://github.com/kedro-org/kedro
https://github.com/kedro-org/kedro
https://github.com/Galileo-Galilei/kedro-mlflow

Bibliography

[VKB+23]

[WbK+21]

[WHO0]

[YDa23]

L. Visengeriyeva, A. Kammer, I. Bir, A. Kniesz, M. P16d. MLOps. innoQ Deutschland
GmbH, 2023. urL: https://ml-ops.org/ (cit. on pp. 19, 21, 23, 49).

R. Westenra, S. bot, K. Kunii, bru5, S. Wong, L. Hoang, G. Wrigley, D. Deriabin,
L. Balan, A. Ivaniuk, rashidakanchwala, Z. Patel, M. Theisen, N. Khan, W. Walker,
Y. Dada, A. B. Potje, T. Nguyen, Y. Minami, O. Kelleghan. quantumblacklabs/kedro-
viz: version 3.11.0. Apr. 2021. port: 10.5281/zenodo.4701066. URL: https://doi.
org/10.5281/zenodo. 4701066 (cit. on pp. 50, 79-81).

R. Wirth, J. Hipp. “CRISP-DM: Towards a standard process model for data mining”.
In: Proceedings of the 4th international conference on the practical applications of
knowledge discovery and data mining. Vol. 1. Manchester. 2000, pp. 29-39 (cit. on
p. 18).

YData Labs Inc. ydata-profiling: Exploratory Data Analysis for Python. 2023. URL:
https://github.com/ydataai/ydata-profiling (cit. on p. 64).

All links were last followed on July 06, 2023.

78


https://ml-ops.org/
https://doi.org/10.5281/zenodo.4701066
https://doi.org/10.5281/zenodo.4701066
https://doi.org/10.5281/zenodo.4701066
https://github.com/ydataai/ydata-profiling

A Kedro Pipelines

8 Smoking Ds

\AJ

f Join Datasets

Y

8 Joined Dataset

Y

f Cut Outliers

Figure A.1: Visualization of the data pipeline of a generated ML pipeline using Kedro-viz
[WbK+21]



© Prm Dataset

v

B f Train Test Split

v v

B XTrain 8 YTrain

v
f Scale X Train

vy

f Scale X Test

A2 v

B XTest Scaled B XTrain Scaled

YvY

B f Model Training

YYY

B f Model Evaluation

Figure A.2: Visualization of the model pipeline of a generated ML pipeline using Kedro-viz
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Figure A.3: Visualization of the model pipeline including parameter nodes using Kedro-viz
[WbK+21]
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