
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Learning the Loss in Optical Flow
Estimation based on the

End-Point-Error

Jiaqi Zhao

Course of Study: Autonome Systeme M.Sc

Examiner: Prof. Dr.-Ing. Andrés Bruhn

Supervisor: M.Sc. Azin Jahedi

Commenced: November 2, 2022

Completed: May 2, 2023

Abstract

Currently, deep neural networks are penetrating every corner of computer vision tasks, including
optical flow estimation. Although supervised methods of optical flow estimation have facilitated
more accurate motion prediction, the lack of labeled training data has hindered this progress. As
a result, unsupervised and semi-supervised methods have attracted enormous interest in optical
flow estimation. Contrastive learning serves as one of the primary bases of some semi-supervised
methods. Despite the advances of combining contrastive learning and flow estimation by using the
loss between the positive and negative prediction as the semi-supervised loss term, there are neither
no full investigations on whether such a loss can be estimated nor a clear indication of the extent of
the penalties on the negative samples.

The aim of this work is to investigate whether such a flow error can be estimated in a supervised
fashion given two consecutive images and the corresponding estimated optical flow only. We
proposed three architectures of error estimation networks and performed experiments on them, in
which the update of parameters is supervised by the end-point error to the ground truth flow error
during training. The ground truth flow error is the difference between the ground truth flow and the
estimated flow. The evaluation results indicate that with a proper combination of error and flow
estimation networks, the flow error can be estimated to some extent, especially on the synthetic
dataset FlyingChairs2. Furthermore, we fine-tune the RAFT flow estimation networks with the
validation samples of FlyingChairs2 by means of the error-based semi-supervised methods and
improve the accuracy by approximately 4.7% in AEPE on the FlyingChairs2 dataset.

In summary, we would conclude that the RAFT-like and GMA-like error estimation networks are
able to predict flow errors. Moreover, the estimated flow error can be utilized as a potential direction
to improve the optical flow estimation in a semi-supervised manner.

3

Contents

1 Introduction and Related Works 7
1.1 Introduction . 7
1.2 Related Works . 9
1.3 Thesis Organization . 10

2 Foundations 11
2.1 Optical Flow . 11
2.2 Average End-Point Error (AEPE) . 12
2.3 Optical Flow Datasets . 12
2.4 Architectures of the well-known Optical Flow Estimation Networks 16

3 Error Estimation Networks 23
3.1 Error Ground truth, Estimated Error, and Loss Error 23
3.2 Error Estimation Network Overview . 24
3.3 Single-iteration Conv Error Estimation Network 26
3.4 RAFT-like Error Estimation Network . 26
3.5 GMA-like Error Estimation Network . 28
3.6 Chapter Conclusion . 31

4 Experimental Results 33
4.1 Experimental setup . 33
4.2 Implementation Details . 35
4.3 Phase 1: FlyingChairs2 . 38
4.4 Phase 2: FlyingThings . 41
4.5 Phase 3: Sintel-split . 43
4.6 Ablations . 46
4.7 Discussion . 54

5 Error-Based Semi-supervised Flow Estimation 57
5.1 Experimental Setup and Implementation Details 57
5.2 Evaluation . 63
5.3 Discussion . 68

6 Conclusion and Outlook 71
6.1 Conclusions and Limitations . 71
6.2 Outlook . 72

Bibliography 73

5

1 Introduction and Related Works

1.1 Introduction

A dense pixel-wise correspondence between two successive frames of an image sequence can be
described as an optical flow, in which the first frame specifies where each pixel is in the second
frame, and the second frame specifies where each pixel will be. An apparent “flow“ of pixels
between the two images is represented by the resulting vector field of relative pixel locations.
Optical flow is useful for estimating motion, disparity, and semantic correspondence, thus the
improvement in the optical flow estimation benefits the performance of various downstream
tasks such as action recognition[SLG+19], visual odometry[WCWT17], object tracking[ZUB18],
semantic segmentation[REYE19], motion segmentation[MES+21], SLAM[TD21], etc.

Deep learning has recently led to dramatic improvements in the performance of optical flow
techniques. Inspired by the pioneering work of applying the end-to-end trainable Convolutional
Neural Network (CNN) approach for optical flow estimation proposed by Dosovitskiy et al. [DFI+15],
extensive studies focusing on supervised methods (e.g.FlowNet2[IMS+17], PWC-Net[SYLK18],
RAFT[TD20], GMA[JCL+21], FlowFormer[HSZ+22], etc.) have established increasingly improved
results.

Given the significant role deep neural networks have played in optical flow estimation, successfully
training flow estimation networks in a supervised manner requires a large amount of labeled data.
Nevertheless, such supervised approaches are hand-crafted by the limited labeled training samples.
It is challenging to collect such datasets for optical flow estimation problems, especially those that
involve real-world images because currently there is no sensor that can measure the per-pixel ground
truth motions for the entire image. Manual labeling is also not applicable. Therefore studies over
the past decades have provided important information on the effectiveness of unsupervised and
semi-supervised methods in optical flow estimation. Recently, surveys such as that conducted by
Jeong et al. [JLPK22] have even achieved further improvements in the accuracy of the estimation.

Several of these approaches with alternative learning paradigms are based primarily on contrastive
learning introduced by Hadsell et al. [HCL06]. Take Bailer et al. [BVS17] and Zhang et al.
[ZJB+22] for example: Bailer et al. [BVS17] proposed to learn a meaningful feature descriptor
with a modified hinge embedding loss such that the L2 distance between the matching patches is
small while the L2 distance between the non-corresponding is large. CLIP-Flow[ZJB+22] also
embedded the contrastive learning concept to learn a contrastive flow loss, which is desired to
hence the training with positive features and thus results in a better representation of the optical
flow. To date, this topic has also been studied in our group, as two students, Jahedi[Jah18] and
Schäufele[Sch21], have submitted their theses on contrastive-learning-based optical flow estimation.
Jahedi‘s[Jah18] analysis of more descriptive “features“ provided a strong insight into the contrastive

7

1 Introduction and Related Works

learning idea in a supervised fashion. Schäufele[Sch21] carried out a number of investigations into
the learning of a loss term which incentives the matching samples and penalizes the non-matching
ones generated by the teacher models.

However, previous studies of contrastive-learning-based optical flow estimation have not treated
supervised learning of such contrastive loss in much detail. Furthermore, few studies have dealt with
quantitative metrics of such a loss between various negative samples. Take the negative samples
of the optical flow in Figure 1.1 for example. The red arrow represents the ground truth flow of
pixel (i, j) while the purple and green arrows refer to the non-matching flow A and B, respectively.
In the spirit of contrastive learning, the losses of negative samples A and B should be maximized.
Although negative sample A is not the perfect match for the reference ground truth flow, it is not so
deviated from the ground truth flow and is still capable of providing meaningful guidance to the
ground truth flow. There is a significant difference between negative sample B and the ground truth,
which may cause the flow estimation network to incorporate inaccurate features and mislead the
flow estimation.

negative sample A

negative sample B

ground truth optical flow

Figure 1.1: Illustration of two negative samples.

Therefore such a negative sample A should not be penalized by the loss term as much as the negative
sample B in the right part of the figure. Thus a question arises: How can we quantitatively represent
such a loss term and distinguish negative samples with different deviation extents? We decided to
use the flow error, which is the difference between the ground truth flow and the negative sample, as
the quantitative metric of the contrastive loss. Negative sample A has a significantly lower flow
error than negative sample B, as is obvious without saying. Therefore, we assume that flow error
can be used as a criterion to learn such a contrastive loss.

The aim of this work is to explore the feasibility of learning the flow error in a supervised
manner. We propose various error estimation networks and they can produce the estimated flow
error based on two consecutive input images and the corresponding predicted optical flow. The
estimated optical flow is generated by some notable architectures, namely RAFT[TD20] and
GMA[JCL+21]. Such learnable flow errors can be utilized to train the optical flow estimation
networks in an unsupervised or semi-supervised fashion. Additionally, we conduct experiments
relating to error-based semi-supervised optical flow estimation.

8

1.2 Related Works

1.2 Related Works

To begin with, we provide a brief background on the contrastive learning method. Contrastive
learning is first used as a powerful method of learning visual representations in a self-supervised
manner. The basic concept of contrastive learning proposed by Hadsell et al. [HCL06] is: The
representation of the positive (similar) samples should be mapped close together, while the negative
(dissimilar) samples should be mapped away from the positive ones. In this way, it minimizes the
distance between pairs of positive elements and maximizes the distance between pairs of negative
elements. With the contrastive learning idea, the features or representations of the positive samples
can be learned by contrasting the positive and negative samples.

With respect to optical flow estimation, we can observe that several attempts have been made to
incorporate contrastive learning strategies into this process. Gadot and Wolf[GW16] proposed
PatchMatch as the pioneer to adopt CNNs as feature extractors. In order to construct the training
set, the method collects positive (matching) examples of corresponding patches with respect to
ground truth flow. Following the contrastive learning concept, negative (non-matching) examples
of non-matching patches obtained by shifting the image patches randomly around the ground
truth flow direction are also collected. Intuitively, the flow estimation networks can extract more
discriminative features from the contrastive of positive and negative samples. The network is trained
with a modified DrLIM[HCL06] loss. It is possible to maximize the squared L2 distance between
positive (matching) samples and minimize the distance between negative (non-matching) samples
by employing such a training loss term.

In a similar vein, Bailer et al. [BVS17] established an approach to learn a meaningful feature
descriptor with a modified hinge embedding loss. The hinge embedding loss is widely used for
Siamese architectures to minimize the L2 feature distance between the matching patches and
maximize the L2 feature distance between the non-matching patches above a certain margin m. To
mitigate the architectural flaw of the hinge embedding loss, which will minimize the L2 distance
between matching patches too aggressively, Bailer et al. proposed the variant of hinge embedding
loss by adding a threshold t into the loss. This novel thresholded loss also inherits the idea of
contrastive learning and improves the accuracy of the estimation flow.

In our group, Jahedi[Jah18] analyzed the effectiveness of learnable feature descriptors and embed
them in the Coarse-to-Fine Patch Match (CPM)[HSL16] framework for optical flow estimation.
The CNN-based learned descriptors are trained in a supervised manner following the contrastive
learning idea, which incentives the matching patches and penalizes the non-matching ones.

Schäufele[Sch21], another student in our group, extended RAFT[TD20], which established SotA
results at the time to the area of unsupervised learning. He carried out a number of investigations
into the learning of a loss term in terms of the contrastive learning idea.

In 2022, Zhang et al. [ZJB+22] proposed CLIP-Flow to estimate the optical flow with an iterative
pseudo-labeling framework in a semi-supervised method. An approach is proposed for improving
representations for optical flow by explicitly training a network during the learning process, which
is supervised by a semi-supervised contrastive flow loss in order to learn better features for optical
flow.

9

1 Introduction and Related Works

1.3 Thesis Organization

The work has been organized in the following way: In Chapter 2, we provide an exhaustive
explanation of optical flow and the optical flow datasets used in this thesis. Following these basic
concepts, we also elaborate on the architectures of the well-celebrated flow estimation networks,
RAFT[TD20] and GMA[JCL+21].

In Chapter 3, we first explain some crucial concepts in this work, including estimated flow error,
ground truth error, and loss error. Then we propose three error estimation networks used in this
work: namely the Single-iteration Conv, RAFT-like, and GMA-like error estimation networks.
We provide an explanation of how these networks operate and move on to provide an elaborate
introduction to our experiments on error estimation networks and report the results in Chapter 4.

In Chapter 5, we run semi-supervised optical flow estimation on the FlyingChairs2 dataset with the
help of the error estimation networks. The conclusion of our thesis occurs in Chapter 6 where we
summarize our work and provide an outlook on this thesis.

10

2 Foundations

A few notable flow estimation network architectures are discussed in this chapter, along with the
basic principles of optical flow estimation. The concept of optical flow estimation is introduced
in the first part of this chapter. In the following sections, we introduce the optical flow datasets
that we used for the experiments in Chapter 4 and Chapter 5. There is a detailed explanation of the
structures of RAFT[TD20] and GMA[JCL+21] in the final section of this chapter, as well as the
optical flow estimator of PWC-Net[SYLK18].

2.1 Optical Flow

Estimating optical flow between two successive frames is a task that involves calculating pixel-wise
displacement fields between two adjacent frames. Pixel motion is represented by such displacement
fields, also called optical flow. Take two consecutive grey-scale images I1 and I2 shown in Figure 2.1
for example. Here, we want to estimate the flow of the pixel (𝑥, 𝑦) (black point) in image I1. It is
assumed that the corresponding pixel in image I1 fulfills the brightness constancy assumption. This
means the intensities of the corresponding pixels are identical:

𝐼1(𝑥, 𝑦) = 𝐼2(𝑥 + 𝑢, 𝑦 + 𝑣), (2.1)

where 𝐼1(𝑥, 𝑦) and 𝐼2(𝑥 + 𝑢, 𝑦 + 𝑣) refer to the grey value of the pixel (𝑥, 𝑦) in I1 and the one of
pixel (𝑥 + 𝑢, 𝑦 + 𝑣) in I2. Thus we can confirm that pixel (𝑥 + 𝑢, 𝑦 + 𝑣) (red point) in the right image
is the corresponding pixel of pixel (𝑥, 𝑦). As such, the displacement between the corresponding
pixels is (𝑢, 𝑣) (blue vector). This displacement is the optical flow we want to estimate.

Image Image

Figure 2.1: Illustration of optical flow of the pixel (𝑥, 𝑦) between two consecutive frames.

11

2 Foundations

2.2 Average End-Point Error (AEPE)

In the last section, the optical flow and the optical flow estimation problem are elaborated. So how
can we evaluate the performance of an optical flow estimation network, or in other words, how is the
quality of an estimated flow field evaluated? In this section, We introduce one of the widely used
evaluation methodologies for optical flow estimation networks: Average End-Point Error (AEPE)
Both methods focus on the flow error within metric spaces between a given ground truth flow field
Fgt ∈ R2×𝐻×𝑊 and an estimated flow field F ∈ R2×𝐻×𝑊 generated by an optical flow estimation
network. H and W represent the height and width of the flow field in pixels.

Before we explain the concept of Average End-Point Error (AEPE), let us first elaborate on the
definition of End-Point Error (EE). Given the ground truth optical flow vector fgt and an estimated
optical flow vector f, the end-point error represents the Euclidean distance between the endpoints
of two optical flow vectors. Intuitively, the total end-point error is averaged over the entire flow
field so as to evaluate the performance of an optical flow estimation network with respect to the
estimated optical flow field F and the corresponding ground truth flow field Fgt. The ground truth
flow vector of the pixel (i, j) in the flow field is denoted as fgt(i, j) = (𝑢gt(i, j), 𝑣gt(i, j))T, while
f (i, j) = (𝑢(i, j), 𝑣(i, j))T denotes the estimated optical flow vector of the same pixel. Consequently,
the mathematical formulation of the average end-Point error yields as follows:

AEE(F, Fgt) =
1

𝐻 ×𝑊

𝑊−1∑︁
i=0

𝐻−1∑︁
j=0

EE(f (i, j), fgt(i, j))

=
1

𝐻 ×𝑊

𝑊−1∑︁
i=0

𝐻−1∑︁
j=0

√︃
(𝑢(i, j) − 𝑢gt(i, j))2 + (𝑣(i, j) − 𝑣gt(i, j))2

(2.2)

Public benchmarks also adopt other evaluation indicators. For instance, KITTI-2015 [MG15]
benchmark evaluates the optical flow estimation network quantitatively by measuring the percentage
of optical flow outliers over all ground truth pixels (F1-all). The F1-all (%) is a measure of the
fraction of flow vectors with an end-point error exceeding more than three pixels or more than five
percent of the ground truth flow. Mean Square Error(MSE) and Average Angular Error (AAE) are
also common alternatives for flow estimation in particular applications.

In this thesis, we mainly utilize AEPE as the evaluation methodology for both error and flow
estimation networks. The definition of the average end-point error of an estimated flow error field is
introduced in Section 4.1.2.

2.3 Optical Flow Datasets

Considering the fact that deep neural networks have significantly influenced optical flow estimation,
the most successful flow estimation networks all require a large amount of labeled data to directly
train in a supervised fashion. In other words, we need to have many temporally consecutive image
pairs with the corresponding flow map with per-pixel labels so as to train the networks based on
standard supervised learning. However, the reality is cruel: Unlike other computer vision tasks
like object recognition, segmentation, or stereo problems, collecting such datasets for optical flow
estimation problems, especially those with real-world images, has been quite challenging due to the

12

2.3 Optical Flow Datasets

lack of sensors at the time being that can directly measure the true per-pixel motions for the entire
image. What’s more, obtaining such datasets by manually labeling the samples is not applicable
due to the inaccuracy of annotated motions and a huge amount of workload. This is why the
real-world datasets for optical flow estimation problems are often constrained by quantities (e.g.
the KITTI-2015 [MG15] dataset) or the constraint setup of samples (e.g. the VIPeR[RHK17]
dataset).

To unfasten these handcuffs, researchers turn to another viable alternative: synthetic datasets, for
example, the FlyingChairs[DFI+15] and the FlyingThings3D [MIH+16] datasets, which contain
an abundance of synthesized images with ground truth flow information. Large-scale synthetic
datasets are commonly used for pre-training optical flow estimation models (in which the training
schedule FlyingChairs → FlyingThings3D is the most popular and effective one [IMS+17]), and
then fine-tune them on the limited in-domain datasets, e.g. Sintel or KITTI-2015. Although this
two-step training process surpasses the direct training on the limited target dataset, the networks
inevitably suffer from domain discrepancy, and the performance is thus hindered. To narrow the
domain gap, Huang et al. proposed Autoflow[HHH+22] which renders synthetic training samples
to optimize the performance of the network on the target dataset. Autoflow’s rendering system
employs a layered approach, where each layer is controlled by a set of learnable hyperparameters
to control its motion, shape, and appearance. Further studies focus on the dataset generation
methods to enhance the quality of estimated optical flow on the target real-world samples. For
example, RealFlow[HLL+22] is an Expectation-Maximization based framework that allows the
direct production of large-scale optical flow datasets from arbitrary unlabeled realistic videos.

In this work, only the following five optical flow datasets are used for the training of error estimation
networks in Chapter 4 and Chapter 5.

2.3.1 Sintel

The MPI-Sintel dataset[BWSB12], shorten as Sintel, is a synthetic dataset for optical flow evaluation
that contains 1064 stereo image pairs and ground truth data for the disparity. Sintel samples are
derived from an open-source animated 3D movie. Sintel is a more realistic dataset, including
natural image degradations such as fog and motion blur. The entire dataset is divided into two
parts, namely training split and test split. It comprises 1064 pixel-wise labeled training samples
and 564 test samples, whose ground truth flow is not open to the public. Samples of Sintel are
rendered with additional effect, so each sample has three versions: albedo pass, clean pass, and
final pass. The albedo pass is the simplest version with no illumination effects; The clean pass is
rendered with illumination effects while no post-processing effects are imposed on it; The most
challenging version is the final pass, which is rendered with full effects such as motion blur and
some atmospheric effects. In this work, we only use the clean and final pass of the Sintel training
split for training and inference. Figure 2.2 shows some example samples of the Sintel dataset.

2.3.2 FlyingChairs and FlyingChairs2

On account of the limited samples of Sintel, Dosovitskiyz et al. [DFI+15] proposed a synthetic
dataset by means of layering the static background image retrieved from Flickr (includes 964
images from categories “city“, “mountain“, and “landscape“) with rendered CAD models of

13

2 Foundations

Figure 2.2: Examples of the Sintel dataset, occlusion map, and ground truth flow fields. Image
source:[BWSB12]. The first two rows are an example of Sintel’s clean pass. From left
to right, on the upper row are the first and second input images as well as the occlusion
map. On the lower row are the ground truth flow fields of all pixels, occluded and
non-occluded pixels. The last two rows are an example of Sintel’s final pass listed in
the same order,

chairs[AME+14], whose parameterized affine motion imitates the motion of existing real-world
samples. This random sampling of affine transformation for the background and the chairs generates
the required motion. There exists a correlation between the 3D models’ transformations and the
background transformation. This can be depicted as the simultaneous movement of objects and the
camera. Besides, all the other parameters regarding transformations including the initial position of
chairs and the number of chairs that appeared in the image pairs are also randomly sampled in the
fashion of a similar motion statistic of the Sintel dataset. Using this procedure, a dataset with 22,872
image pairs and ground truth flow fields was generated (22,232 training samples and 640 validation
samples). To further investigate the motions in occluded and non-occluded regions separately, we
adopt the FlyingChairs2 dataset[ISKB18] with additional provided occlusion maps in this work.
Figure 2.3 shows an example sample of the FlyingChairs2 dataset. Despite the inevitable intrinsic
differences with real-world samples, FlyingChairs and its varieties are utilized by researchers to
pre-train their flow estimation networks before being fine-tuned on the target real-world datasets.

2.3.3 FlyingThings3D

Inspired by FlyingChairs[DFI+15], FlyingThings3D[MIH+16] provides an abundance of samples
that are generated by randomly moving foreground objects above a background image. Here the
foreground objects are daily objects, whose detailed 3D models are collected from the ShapeNet
database[SCH15]. The samples of FlyingThings3D are randomly rendering the frames with different

14

2.3 Optical Flow Datasets

Figure 2.3: Examples of the FlyingChairs2 dataset, occlusion map, and ground truth flow fields.
Image source:[ISKB18]. From left to right, on the upper row are the first and second
input images as well as the occlusion map. On the lower row are the ground truth flow
fields of all pixels, occluded and non-occluded pixels.

levels of realism. Similar to Sintel, each sample of FlyingThings3D has two versions. Lighting
and shading effects can be observed in the clean pass images, while more noise and ambiguity are
inserted into the final pass images with motion blur and defocus blur.

2.3.4 KITTI

KITTI-2012[GLU12] and KITTI-2015[MG15] are a collection of real-world optical flow samples
with an application of autonomous driving. KITTI-2015 consists of dynamic scenes with moving
cameras and moving objects while KITTI-2015 comprises static scenes with moving vehicles only.
Thus, only the KITTI-2015 dataset is used in the following training and evaluation in this work,
which can provide more realistic real-world samples. The term “KITTI“ in the following chapters
refers to KITTI-2015. KITTI-2015 contains 200 training samples, along with test samples of
the same amount, where the ground truth flow of the test samples is not revealed by Menze and
Geiger[MG15]. The scenes of the datasets are captured by the high-resolution cameras on the
vehicle and a 3D laser scanner. The laser scanner provides accurate depth and motion information
for a subset of 3D points in the scene. The ground truth optical flow is collected through the
projection of these 3D points in the image plane. As such, the pixel-wise motions can be computed
between the consecutive images. However, the motion information of occluded and reflective points,
or those with a large displacement can not be captured by the laser scanner. It only provides sparse
data within a constrained margin of distance and height. Consequently, KITTI-2015 only provides
a sparse ground truth flow, which comprises around 5% of the pixels in the images.

15

2 Foundations

2.3.5 HD1K

HD1K[KNH+16] is also an optical flow dataset used in autonomous driving, which contains 1018
frames with a variety of lighting and weather scenarios and their corresponding ground truth data.
Besides the occlusion mask is also provided. Similar to KITTI[MG15], the frames are collected by
a stereo camera on top of the vehicle. It comprises 1018 frames with diverse lighting and weather
scenarios, which involves the public traffic scenarios in urban and rural areas.

2.4 Architectures of the well-known Optical Flow Estimation
Networks

A detailed explanation of the structure of Recurrent All-Pairs Field Transforms (RAFT) [TD20] and
GMA[JCL+21] is presented in this section, together with a depiction of the flow estimator adopted
by PWC-Net[SYLK18]. The architectures described below are also crucial to the error estimation
networks discussed in the following chapter.

2.4.1 PWC-net

Constructing the feature pyramid with CNNs, PWC-Net[SYLK18] estimates optical flow in a
coarse-to-fine way with six pyramid levels, with feature channels of 16,32,64,96,128, and 196. A
cost volume is constructed with the feature map extracted from the source frame and the warped
one of the target frame at each level. The optical flow estimator at the current level takes in the cost
volume and the feature map of the first image, along with the upsampled estimated flow from the
coarser level, and outputs the estimated flow at the current level. This estimator is a subsequent
CNN module consisting of five convolutional layers with feature channels of 128, 128, 96, 64, and
32, respectively. Every convolutional layer of the optical flow estimator has two inputs: the output
of its previous layer and the input of the layer that comes before it.

2.4.2 RAFT

RAFT [TD20] is an influential optical flow estimation framework and has demonstrated notable
improvement at the time. Figure 2.4 presents a schematic overview of the RAFT working pipeline.
First, the feature encoders which extract the feature maps from the input images, and the context
encoder, which shares the same architecture as the feature ones, extracts the context feature only
from the first frame; The matching block constructs an all-pairs correlation pyramid from the
feature maps, which is denoted as 4D cost volume. Another core module of RAFT is the recurrent
GRU-based iterative update operator, which can refine the estimated optical flow iteratively with
the repeated look-up operation. The look-up cost can be retrieved from the correlation pyramid and
updated in each GRU iteration by indexing the refined flow in the 4D cost volume. Then the motion
encoder generates the motion feature of the current GRU iteration. Given the updated estimated flow,
the motion feature, and the constant context feature map, the following GRU operator is capable of
computing the flow residual. Therefore, the optical flow is refined. RAFT also proposed a convex
upsampler to upsample the final refined flow at 1/8 resolution to the resolution of input frames.

16

2.4 Architectures of the well-known Optical Flow Estimation Networks

Frame 1
Matching

Block
4D Cost
Volume

Motion
Encoder

GRU
Operator

Upsampler

Frame 2

Frame 1

Feature
Encoder

Feature
Encoder

Context
Encoder

Figure 2.4: Schematic overview of the RAFT flow Estimation network pipeline. Image adapted
from [TD20].

Feature and Context Encoders

In this section, we focus on the architecture of the feature and context encoders proposed by
RAFT[TD20]. Both the images I1 and I2 will be applied with separate feature encoders which
embrace their own learnable parameters. Only the first image I1 will pass through the context
encoder to produce the required context features for further flow error estimation.

Both encoders share the same architecture. Take the feature extraction network for example. It
can be distilled down to three parts: (1) preprocessing block, (2) residual blocks, and (3) output
block, whose structure is illustrated in Figure 2.5. First, the input image I ∈ R3×𝐻×𝑊 will be
passed through a 7 × 7 convolutional layer, followed by a normalization layer and an output layer
with ReLU activation function (denoted as “LayerNorm“ in the grey background). This is the
preprocessing block that outputs a feature map of R64×𝐻×𝑊 . Then the feature map is further passed
through 6 residual blocks with 3 expanding feature channels at 3 decreasing resolutions: 2 residual
blocks (denoted as “Residual Block“ in blue background) at 1/2 resolution with 64 feature channels,
followed by another 2 residual blocks (denoted as “Residual Block“ in blue background) at 1/4
resolution with 128 feature channels and finally the last 2 residual blocks (denoted as “Residual
Block“ in the red background) at 1/8 resolution with 196 feature channels. The output block, which
is a 3 × 3 convolutional layer, takes in the output feature map of the residual blocks and outputs a
feature map at 1/8 resolution with 256 feature channels. The difference between the feature and
context encoders lies in the normalization layers: Instance normalization is employed by the feature
encoder, while batch normalization is employed by the context encoder.

Matching Block, All-pairs Correlation Cost Volume and Look-up Cost

Teed and Deng[TD20] proposed an all-pairs correlation cost volume to model correlations for
all possible displacements. The inputs of the matching block are the feature maps extracted by
the feature encoders from the image pair. Features perform a dot product and thus the matching
correlations across each level are constructed. These are called correlation volumes. By means of
pooling and stride, all the correlation volumes are constructed together as a correlation pyramid,
which is also referred to as 4D cost volume. This correlation pyramid represents the visual similarity
of the image pairs and provides crucial information about the motion with various displacements.

17

2 Foundations

Re
sid

ua
l B

lo
ck

 (6
4)

Re
sid

ua
l B

lo
ck

 (6
4)

Re
sid

ua
l B

lo
ck

 (1
28

)

Re
sid

ua
l B

lo
ck

 (1
28

)

Re
sid

ua
l B

lo
ck

 (1
96

)

Re
sid

ua
l B

lo
ck

 (1
96

)

input frame

Co
nv

ol
ut

io
na

lL
ay

er

3×
3

(2
56

)

2D Features

Co
nv

ol
ut

io
na

lL
ay

er
 7

×
7

(6
4)

La
ye

rN
or

m

Figure 2.5: The Architecture of Feature and Context Encoders.

Furthermore, a look-up operator is introduced to retrieve the required feature map (look-up cost)
from the correlation pyramid by indexing the displacement of each pixel in each level of the 4D cost
volume. The correlation pyramid remains constant over the estimation while the look-up cost is
updated in each GRU iteration.

Iterative Updates

The success of RAFT also largely lies in a large number of iterative refinements. With the Gated
Recurrent Unit (GRU) based iterative update operator adopted by RAFT, a sequence of predicted
flows is generated and refined over each GRU iteration. The inputs of the iterative update operator
are the estimated flow from the last GRU iteration and the all-pairs correlation pyramid constructed
from the feature maps at 1/8 resolution. The look-up cost can be retrieved from the correlation
pyramid with the estimated flow and processed by the motion encoder which outputs the motion
features. Given the concatenation of the look-up cost, the context features, and the estimated flow,
the GRU operator can predict the flow residual of the current GRU iteration. Then the flow residual
is added to the predicted flow from the last GRU iteration. Thus the flow is refined iteratively.
Both flow and flow residual in the iterative update operator are at 1/8 resolution. The hidden state
of the GRU operator is updated as well, which is passed through two convolutional layers and
predicts a convex upsampling mask. Thus the final refined estimated flow can be upsampled to full
resolution.

Convex Upsampling

The GRU-based iterative update operator outputs an estimated optical flow at a lower resolution.
The estimated flow at low resolution is then upsampled to the original resolution of the input images
with the proposed convex upsampling module. So how does the convex upsampling, or to be more

18

2.4 Architectures of the well-known Optical Flow Estimation Networks

precise, the weighted combination work? The upsampling operation computes the target resolution
flow of each pixel as the weighted average of the flow at the neighboring pixels in a 3×3 grid. In this
context, neighboring pixels refer to pixels at 1/8 resolution rather than pixels at the fine resolution.
With the 𝐻/8 ×𝑊/8 × (8 × 8 × 9) upsampling mask, which is also the output of the flow error
estimation blocks, the weights of the neighboring pixels (nine in total) are performed with Softmax.
Figure 2.6 illustrates the convex upsampling module. We also adopt this convex upsampling instead
of the conventional adopted bilinear upsampling method in the error estimation networks proposed
in Chapter 3 to enhance the accuracy of the estimated flow error at motion boundaries.

Figure 2.6: Illusiation of the convex upsampling module. Image source:[TD20].

2.4.3 GMA

The GMA[JCL+21] flow estimation network follows a similar framework to RAFT[TD20] except
for a Global Aggregation Motion (GMA) module. The purpose of this GMA module is to combine
the long-range image self-similarities with the corresponding motion feature with the help of the
self-attention mechanism. Such a GMA module can boost the performance of the network especially
in occluded regions. Figure 2.7 illustrates the working pipeline of GMA. Architectures of the other
components in GMA[JCL+21] inherit those of RAFT[TD20]. The feature maps are extracted by
the feature encoder from two images and a 4D cost volume is constructed based on the feature maps.
In each GRU iteration, the GMA module takes in the updated motion feature and the context feature
map and generates the aggregated motion feature. Then the concatenation features, including the
motion feature and the aggregated motion feature as well as the context feature, pass through the
GRU operator to compute the residual flow of the current GRU iteration. Thus the estimated optical
flow is iteratively refined. Finally, the refined optical flow is upsampled to the target resolution via
the convex upsampling mask.

Global Motion Aggregation (GMA) module

Taking inspiration from the Self-Attention mechanism proposed by Vaswani et al. [VSP+17], GMA
designed a Global Motion Aggregation (GMA) module to model the long-range relations between
the local features of the input frames. The details of the GMA module are presented in Figure 2.8.
Same as RAFT[TD20], the motion feature is updated in each GRU iteration. Given the updated input
motion feature matrix y and the constant context feature map x extracted by the context encoder,
the query vector and key vector are derived from the context feature map and the value vector is
derived from the motion feature. These vectors are all computed through linear projection, such that

19

2 Foundations

Frame 1
Matching

Block
4D Cost
Volume

Motion
Encoder

GRU
Operator

Upsampler
Frame 2

Frame 1

Feature
Encoder

Feature
Encoder

Context
Encoder

Global Motion
Aggregation

Figure 2.7: Schematic overview of the GMA flow Estimation network pipeline. Image adapted
from [JCL+21].

Q = Wqryx, K = Wkeyx, V = Wvaly. The final output of the GMA module is the aggregated motion
feature, which is an attention-weighted sum of the projected motion features. The aggregated
motion feature can be formulated as follows:

ŷ = y + 𝛼Attention (K,Q,V) , (2.3)

where 𝛼 is a learnable coefficient and Attention (K,Q,V) is the attention map:

Attention (K,Q,V) = A (K,Q) V. (2.4)

A (K,Q) is the scaled-dot product of query and key vector aiming to compute the self-similarities of
the context feature, where is a dot-product attention function proposed by Vaswani et al. [VSP+17]

Figure 2.8: Schematic details of the Global Motion Aggregation (GMA) module. Image source:
[JCL+21].

20

2.4 Architectures of the well-known Optical Flow Estimation Networks

2.4.4 Chapter Conclusion

In this chapter, we introduce the fundamental knowledge of optical flow estimation and several
widely used optical flow dataset. Additionally, a detailed explanation of the architectures of
RAFT[TD20] and GMA[JCL+21] and the flow estimator of PWC-Net[SYLK18] is also provided.
In the next chapter, three different architectures of error estimation networks are proposed in the
spirit of the above-mentioned well-established flow estimation networks.

21

3 Error Estimation Networks

In our previous chapters, we have introduced the necessary foundations to this work as well as
presented the related architectures of several well-known architectures. In this chapter, we propose
three different error estimation network architectures based on the well-established architectures
of RAFT[TD20] and GMA[JCL+21]. Two consecutive images are inputs for the error estimation
network, with an additional estimated flow, which is estimated by a flow estimation network whose
inputs are identical image pairs. Figure 3.1 demonstrates the basic idea of the proposed error
estimation networks. Prior to presenting the architectures of the error estimation networks, it is
necessary to explain the key concepts and definitions underlying this work: ground truth flow error,
estimated flow error, and loss error. Then the architectures of the Single-iteration Conv, RAFT-like,
and GMA-like error estimation networks are illuminated in the following sections.

input frame 1

input frame 2

Flow Estimation Network

estimated flow

Error Estimation Network

estimated flow error

Figure 3.1: The basic idea of the error estimation network.

3.1 Error Ground truth, Estimated Error, and Loss Error

It is crucial for us to elucidate some new concepts and definitions which are crucial to our error
estimation networks before we further discuss what error estimation networks are and how they
work. These concepts and definitions include ground truth flow error, estimated flow error, and loss
error. These definitions and notations are essential for us to explain the architecture and how we
supervised the training of the error estimation networks.

23

3 Error Estimation Networks

Our definition of flow error follows the traditional definition, which is the difference between
Flowes and Flowgt, as shown in Figure 3.2, or in the mathematical description, it is Flow Error =
Flowgt − Flowes. The flow estimation network estimates the flow Flowes given two consecutive
images I1 and I2, while the accurate ground-truth flow Flowgt is provided by the optical flow datasets
themselves.

input frame 1

input frame 2

Flow Estimation Network

estimated flow

flow ground truth

Flow Error

Figure 3.2: The definition of flow error

We would like to introduce a relatively new concept, loss error, in contrast to the traditionally defined
flow error. We need to estimate the flow error Errores via the proposed error estimation network,
given two temporally consecutive image pairs I1 and I2 with an estimated flow Flowes, which is
produced by an arbitrary flow estimation network. The inputs of this flow estimation network are
still the same image pairs I1 and I2 mentioned above. In order to supervise the training processes as
well as evaluate the resulting tuned error estimation networks, we initiate the training methods of
the optical flow estimation networks which are applied by RAFT [TD20], GMA [JCL+21] ,and
many other celebrated flow estimation models. To put it another way, a error estimation network is
trained by minimizing the pixel-wise Euclidean distance between the ground truth flow error and
flow error estimation based on the entire flow error map with per-pixel labels. The ground truth
flow error, denoted as Errorgt, refers to the difference between the estimated flow error and the
ground truth flow error, as shown in Figure 3.3. Moreover, the loss of the estimated flow error, or
loss error, is denoted as loss error, which is the difference between the ground-truth flow error and
flow error estimation Errores. A diagram illustrating the explanation of these concepts can be found
in Figure 3.3.

3.2 Error Estimation Network Overview

Given two temporally consecutive images, I1 and I2, as well as an estimated flow Flowes which is
predicted by the selected flow estimation network given the same image pairs, the error estimation
network is designed to generate a per-pixel flow error estimation Errores.

In the following proposed error estimation networks, the feature encoders and context encoders
inherit the flow estimation pipeline of RAFT [TD20]. Furthermore, the matching block, which is
responsible for constructing the all-pairs correlation cost volume, also encapsulates the same idea
as the one proposed by [TD20].

24

3.2 Error Estimation Network Overview

input frame 1

input frame 2

Error Estimation Network

ground truth flow error

Loss Error

estimated flow

estimated flow error

Figure 3.3: The definition of ground truth flow error and loss error.

All the flow error estimation blocks of the three error estimation networks output an estimated
flow error at 1/8 resolution. The estimated flow error at low resolution is then upsampled to the
original resolution of the input images with the convex upsampling module. As such, we also adopt
the convex upsampler to upsample the estimated flow error from the lower resolution to the target
resolution. The convex upsampler here shares the same architecture as the one of RAFT [TD20].

3.2.1 Inputs of the Error Estimation Network

The inputs of error estimation networks are two consecutive RGB images I1, I2 ∈ R3×𝐻×𝑊 , where
𝐻 and 𝑊 refer to the heights and widths of the corresponding images. Additionally, an estimated
flow Errores ∈ R2×𝐻/8×𝑊/8 is also obtained by the selected flow estimation network. We embrace
the notable RAFT [TD20] and GMA [JCL+21] as the flow estimation network to produce the
required estimated flow (Please refer to Section 4.2.2 for further explanation of the choice of these
two notable flow estimation networks). On account of adopting the promising combination of
feature encoders and visual similarity with the same architecture as RAFT and GMA, as well as
the convex upsampling module, we utilize the estimated flow Flowes at 1/8 resolution instead of
the upsampled estimated flow at full resolution as the input of error estimation networks. With
the estimated flow Flowes at 1/8 resolution the error estimation network can spare a downsampling
module to downsample the full-resolution estimated flow. This can avoid a bloated network and the
potential information loss during the upsampling-downsampling operation. However, the estimated
optical flow at full resolution is also needed to generate the ground truth flow error for the training
of error estimation networks in Chapter 4. Further details about feature and context encoders as
well as computing visual similarity can be found in Section 2.4.2 and Section 2.4.2.

25

3 Error Estimation Networks

3.3 Single-iteration Conv Error Estimation Network

First, we introduce an error estimation network with a relatively straightforward structure. Figure 3.4
depicts the design of the Single-iteration Conv error estimation network. The idea of the Single-
iteration Conv error estimation network is to estimate the flow error without the iterative update
operator and investigate whether the flow error can be estimated only with pure convolutional layers
as the estimator part.

Frame 1

Matching
Block

4D Cost
Volume

Frame 2

Frame 1

Feature
Encoder

Feature
Encoder

Context
Encoder

Look-up
Cost

Single-iteration Conv Module

Co
nv

ol
ut

io
na

lL
ay

er
 1

Co
nv

ol
ut

io
na

lL
ay

er
 2

Co
nv

ol
ut

io
na

lL
ay

er
 3

Co
nv

ol
ut

io
na

lL
ay

er
 4

Co
nv

ol
ut

io
na

lL
ay

er
 5

UpsamplerCo
nv

ol
ut

io
na

lL
ay

er
 6

Figure 3.4: Architecture of the Single-iteration Conv Error Estimation Network.

The feature and context encoders are reserved, along with the correlation pyramid and the upsampler
proposed by RAFT [TD20]. Inspired by the “Optical Flow Estimator“ of PWC-Net [SYLK18]
flow estimation network, the flow error estimator of the Single-iteration Conv error estimation
network, denoted as “Single-iteration Conv Module“ in Figure 3.4, takes two feature maps, namely
the look-up cost and context features of the first image as inputs. However, as we adopt the
feature and context encoder introduced above in Section 2.4.2, our flow error estimator discards the
coarse-to-fine method of estimation with several pyramid levels, we only keep the pyramid level
at 1/8 resolution of the input images with 256 feature channels and estimate the flow error at this
resolution and upsample the flow error to the original resolution. The look-up cost is retrieved from
the 4D cost volume given the estimated flow Flowes alone. The context features maps are generated
by the context encoder. The Single-iteration Conv module consists of six convolutional layers with
feature channels of respectively 256, 256, 128, 96, 64, and 32, and outputs the estimated flow error
Errores at 1/8 resolution of the input images as well as the convex upsampling mask, denoted as
“Upsampler“ in Figure 3.4. Same as PWC-Net, these convolutional layers are also enhanced with
DenseNet connections [HLVW17], which makes the inputs to every convolutional layer the output
of and the input to its previous layer. Finally, the predicted flow error is upsampled to the desired
resolution with the convex upsampling mask. Please refer to Section 3.2 for more information
on the feature and context encoder, the matching block as well as the upsampler adopted by the
Single-iteration Conv error estimation network.

3.4 RAFT-like Error Estimation Network

Inspired by the RAFT[TD20] flow estimation networks, the architecture of the RAFT-like error
estimation network embeds an all-pairs correlation pyramid and a recurrent GRU-based iterative
update operator that retrieves the look-up cost from the correlation pyramid and refines the estimated

26

3.4 RAFT-like Error Estimation Network

flow error in each GRU iteration. The major differences between the RAFT-like error estimation
network and the Single-iteration Conv one lie in the error encoder and the iterative update operator,
whose architectures and operation pipelines are explained in the following subsections. The
architecture of the RAFT-like error estimation network is presented in Figure 3.5.

Frame 1
Matching

Block
4D Cost
Volume

Error
Encoder

GRU
Operator

Upsampler

Frame 2

Frame 1

Feature
Encoder

Feature
Encoder

Context
Encoder

Figure 3.5: Schematic overview of the RAFT-like Error Estimation Network pipeline.

3.4.1 Error Encoder

The error encoder contains three convolutional blocks. Given the estimated flow error Errores𝑖−1

of the current GRU iteration 𝑖 (more details of the iterative update operator can be found in
Section 3.4.2), the look-up cost will be retrieved from the 4D correlation volume by the estimated
flow with offset, namely the sum of the estimated flow Flowes and the estimated flow error Errores𝑖−1

of last GRU iteration 𝑖 − 1. Then a convolutional block, which consists of two convolutional layers,
is applied to the indexed correlation features, and the estimated flow error Errores𝑖−1 itself is also
processed by another convolutional block, which shares the same structure as the first convolutional
block. Finally, the output of these two convolutional blocks is concatenated together and passed
through an additional convolutional block, whose output is called error features. This feature map
will be updated on every iteration. The operation principle of the error encoder is illustrated in
Figure 3.6.

4D Cost
Volume

from last GRU iteration i

Look-up
Cost CNN Block

CNN Block

CNN Block Error
Features

Error Encoder

Figure 3.6: Illustration of the error encoder pipeline.

27

3 Error Estimation Networks

3.4.2 Iterative Update Operator

We also mimic the iterative update operator proposed by RAFT[TD20]. Our GRU-based iterative
update operator is designed to compute a sequence of flow error estimates. Figure 3.7 illustrates
how our iterative update operator helps the RAFT-like error estimation network predict the desired
flow error. To distinguish the GRU operator iterations and training iterations, we call them GRU
iterations and iterations respectively.

With each GRU iteration, the hidden state of the GRU operator is updated based on the iteration
inputs of the static context information, the currently estimated flow field, and the result of the
correlation look-up cost for the currently estimated flow error field. Let us take the GRU iteration
𝑖 as an example to interpret the iterative estimation of the flow error. Given a flow estimation
at 1/8 resolution produced by a specified flow estimation network, denoted as Flowes, and the
estimated flow error of the last GRU iteration Errores𝑖−1 at the same resolution, the correlated
lookup feature map of the current GRU iteration, denoted as “Look-up Cost𝑖“, can be retrieved
from the constructed 4D cost volumes by the compensated flow, which equals the sum of Flowes
and Errores𝑖−1 . Taking in Look-up Cost𝑖 and Errores𝑖−1 , the error encoder outputs “Error Features𝑖“,
which denotes the error feature map of the current GRU iteration. Then the outputted error feature
map is concatenated with Errores𝑖−1 as well as the directly injected context features. The GRU
operator shares the same architecture as the one proposed by RAFT[TD20]. After taking in the
concatenation of error and context feature maps as well as the estimated flow error at the last GRU
iteration, the GRU operator will produce an updated hidden state of the GRU operator as well as the
flow error residual at GRU iteration 𝑖, denoted as “△Error𝑖“. Then the flow error residual △Error𝑖 is
applied to the current estimated flow error Errores𝑖 . In other words, Errores𝑖 = △Error𝑖 + Errores𝑖−1 .
The resulting flow error is then used as the initialization of the next GRU iteration. During training,
the estimated flow error Errores𝑖 is then upsampled to the estimated flow error at full resolution
with the help of the convex upsampling mask mentioned in Section 2.4.2, which is the output of
two convolutional layers taking the updated hidden state of the GRU operator of current GRU
iteration as input. These estimated flow errors at full resolution of each GRU iteration are essential
to the supervision of training (Please refer to Section 4.2.1 for more details of the loss function
during training). When the error estimation network is in the inference mode, only the outputted
flow error estimation ErroresN at the GRU iteration N, which is the sum over all flow error residual
produced by the GRU operator over the N iterations, is the desired estimated flow error Errores at
1/8 resolution: Errores = Errores0 +

∑N
𝑖=1 △Error𝑖 =

∑N
𝑖=1 △Error𝑖. Then the estimated flow error

Errores is upsampled to the full resolution with the convex upsampler of the last GRU iteration N.
N is the total iterations of the iterative update operator, which will be assigned different numbers
during training and inference. As initialization, we assume Errores0 to be 0, which means that at the
first GRU iteration, the look-up cost is only retrieved by Flowes.

3.5 GMA-like Error Estimation Network

We propose another architecture of the network, namely the GMA-like error estimation network,
based on the notable flow estimation network GMA[JCL+21]. In comparison with the RAFT-like
estimation network, we insert a Global Error Features Aggregation module in the network to globally
aggregate the error features and input the concentrated features to the GRU-based iterative update
operator instead of only the constant context features and the refined error features. Inspired by

28

3.5 GMA-like Error Estimation Network

4D Cost
Volume

Error
Encoder

GRU
Operator

4D Cost
Volume

Error
Encoder

GRU
Operator

GRU iteration 1

GRU iteration 2

4D Cost
Volume

Error
Encoder

GRU
OperatorGRU iteration N

initialized with 0

4D Cost
Volume

Error
Encoder

GRU
OperatorGRU iteration i

Context Features

Context Features

Context Features

Context Features

Figure 3.7: Illustration showing the iterative update operator. Image adapted from [TD20].

the aggregation mechanisms introduced by Jiang et al. , the purpose of proposing such an error
estimation network is to improve the flow error predictions for occluded regions. Figure 3.8 presents
the architecture of the GMA-like error estimation network.

Frame 1
Matching

Block
4D Cost
Volume

Error
Encoder

GRU
Operator

Upsampler
Frame 2

Frame 1

Feature
Encoder

Feature
Encoder

Context
Encoder

Global Error
Features

Aggregation

Figure 3.8: Schematic overview of the GMA-like Error Estimation Network pipeline.

29

3 Error Estimation Networks

3.5.1 Global Error Features Aggregation

Inspired by the self-attention mechanism which has become increasingly popular in computer vision
in recent years, we initiate the Global Motion Aggregation (GMA) module [JCL+21] and propose
our Global Error Features Aggregation module in the GMA-like error estimation network. The
details of the Global Error Features Aggregation model are shown in Figure 3.9.

The self-attention mechanism proposed by Vaswani et al. [VSP+17] implies that the feature matrix
is linearly projected to query, key, and value. This means that the difference between these output
matrices only lies in the corresponding weight matrices Wqry,Wkey, and Wval. Nevertheless, our
Global Error Features Aggregation model operates on two input matrices - i.e. the context feature
matrix x ∈ R𝑁c×𝐷c and the error feature matrix y ∈ R𝑁e×𝐷e , whose comprehensive introductions
can be found in Section 2.4.2 and Section 3.4.1, respectively. Take 𝑁𝑐 as an example: 𝑁𝑐 represents
the number of tokens of the context feature matrix, in other words, 𝑁c = 𝐻c𝑊c, where 𝐻c and 𝑊c
represent the resolution the respective context feature map. Similarly, the number of tokens of the
error feature matrix is 𝑁e = 𝐻e𝑊e, and as we have discussed in Section 2.4.2 and Section 3.4.1, the
heights of the context feature map and the error feature map are 1/8𝐻, and the width 1/8𝑊 , where
𝐻 and 𝑊 are the height and width of the input images, in a word, 𝑁𝑒 = 𝑁𝑐. 𝐷c and 𝐷e invoke
the channel dimension of the feature maps. The self-similarities of the input frame 1 are modeled
by the query and key features [JCL+21], namely Q and K. The value features V are the hidden
representation of the error features.

So how come these three essential features? As illustrated in Figure 3.9, using the weight matrices
Wqry ∈ R𝐷in×𝐷c and Wkey ∈ R𝐷in×𝐷c , the query features Q and the key features K are the linear
projections of the input context feature matrix, while value features V are linearly projected from
another input of the Global Error Features Aggregation model, the error features with the help of
the weight matrix Wval ∈ R𝐷m×𝐷m , such that Q = Wqryx, K = Wkeyx, V = Wvaly. The attention
matrix is computed from the query features Q and the key features K via the scaled-dot product
[VSP+17], which is given by

A (Q,K) = Softmax
(
QKT
√
𝐷c

)
. (3.1)

The output of the self-attention operation “
⊗

“ is defined as the weighted sum of 𝑁 features in
V with the weights corresponding to the attention map, which is an attention-weighted sum of
projected error features:

Attention (K,Q,V) = A (K,Q) V. (3.2)

After aggregating the value features V with the above-mentioned attention matrix A (Q,K), in the
Aggregrator∗ shown in Figure 3.9, the Global Error Features Aggregation module obtains its final
output, the aggregated error features, via:

e = y + 𝛼Attention (K,Q,V) (3.3)

The matrices Wqry, Wkey, Wval, and the coefficient 𝛼, which is initialized to zero are the learnable
parameters in the Global Error Features Aggregation module.
Eventually, we concatenate all three feature maps, namely the error feature y, the aggregated error
features e as well as the context features x into the final concatenated features [y|e|x], which are the
input of the following GRU operator, as shown in Figure 3.8, where these features are decoded and

30

3.6 Chapter Conclusion

residual flow error are computed. As interpolated by GMA [JCL+21], concatenation allows error
vectors to be combined based on global context without any specification on how they should be
combined.

Context
Features

Error
Features

Query
Projector

Key
Projector

Value
Projector

Value
Features

Key
Features

Query
Features

Global Error Features Aggregation

Scaled
Dot-Product

Attention
Matrix

Concatenated
FeaturesAggregator

Context
Features

Error
Features

* Aggregrated
Error Features

Concatenate

Figure 3.9: Illustration showing details of Global Error Features Aggregation module and the
concatenated output features. Image adapted from [JCL+21].

3.6 Chapter Conclusion

The purpose of this chapter is to describe three distinct error estimation networks: the Single-
iteration Conv, the RAFT-like error estimation network, and the GMA-like error estimation network.
These networks are designed to predict the flow error by taking two consecutive images and the
corresponding estimated optical flow. Experimental studies will be conducted using these error
estimation networks in conjunction with different flow estimation networks and training settings.
As such we can investigate whether adopting the end-point error to the ground truth flow can be
used to learn such a flow error in a supervised manner by the proposed error estimation networks as
expected in Chapter 4.

31

4 Experimental Results

In the previous chapter, we proposed and elaborated on the architectures of several error estimation
networks. One of them is the Single-iteration Conv error estimation network, and the other two
are networks with iterative update operators, namely RAFT-like and GMA-like error estimation
networks. In this chapter, we conduct experiments on these error estimation networks in three
phases following the schedule FlyingChairs2 → FlyingThings → Sintel-split with two different
training settings.

We will introduce the details of the experimental setup and implementation details in Section 4.1
and Section 4.2, then the results of the error estimation networks on the corresponding datasets
are explicated in the following sections, along with the ablation studies on some architectures
and training settings, including shared encoders and/or the convex upsampler, look-up radius, and
training iterations. In the end, we summarize our findings from this chapter in Section 4.7.

4.1 Experimental setup

4.1.1 Training schedule

This section presents the training and validation schedule and the primary evaluation metric. A key
objective of this thesis is to investigate the learnability of flow error with end-point error (EPE)
to ground truth flow error as a criterion. To this end, our error estimation networks are trained
following a dataset schedule adopted by various well-established flow estimation networks, with
minor modifications.

The error estimation networks are initially trained on the training split of the FlyingChairs2 dataset
[ISKB18] (denoted as “C“) and evaluated on the corresponding validation set. We utilize the
FlyingChairs2 dataset, rather than the original FlyingChairs dataset [DFI+15], to further verify
the performance of the error estimation networks in estimating flow error in both occluded and
non-occluded areas of the flow error field. This is made possible by the additional provision of
occlusion maps in the FlyingChairs2 dataset, which allow for the division of pixels in the flow
field into occluded and non-occluded categories. Following the initial training phase, the error
estimation networks are evaluated on the validation set of the FlyingThings3D dataset [MIH+16]
and the training split of Sintel[BWSB12] before being further trained with its training set.

After training with FlyingChairs2 → FlyingThings3D (denoted as “T“), these networks will
additionally be evaluated on the validation set of the FlyingThings3D dataset. The error estimation
networks are also validated on the entire training set of Sintel[BWSB12] to verify their cross-data
generalization capabilities.

33

4 Experimental Results

For the third training phase, we adopt a modified Sintel training dataset (denoted as “S-split“),
namely the Sintel-split dataset. Due to the lack of access to pixel-wise ground truth flow for the test
set of the Sintel dataset, the original training set is divided into two sets: a new training set and a
new validation set. This modification allows us to train the error estimation networks with samples
from the relatively challenging Sintel dataset without concerns about overfitting.

The training set of the Sintel-split dataset includes the following scenes: alley_1, ambush_2,
ambush_5, ambush_7, bamboo_1, bandage_1, bandage_2, cave_2, market_5, mountain_1, shaman_2,

shaman_3, sleeping_1, sleeping_2, temple_3, while the other eight scenes, alley_2, ambush_4,
ambush_6, bamboo_2, cave_4, market_2, market_6, temple_2, are divided into the validation set of
the Sintel-split dataset. Specifically, the original 1041 training samples of the Sintel dataset are
grouped into 706 training samples and 366 validation samples for the Sintel-split dataset. The error
estimation networks are then trained with the combined “Sintel-split-mixed” dataset comprising
Sintel-split, FlyingThings, KITTI, and HD1K. We use the clean and final passes of Sintel-split for
training and analyze the performance of our error estimation networks on both passes. (Please
refer to Section 2.3 for further detailed introductions to the FlyingChairs2, FlyingThings3D, Sintel,
HD1K, and KITTI-2015 datasets).

An overview of the training and evaluation datasets adopted in different training phases is provided
in Table 4.1. The notation “Sintel-split‡“ represents the mixed training dataset consisting of 226737
training samples from Sintel-split, FlyingThings, KITTI, and HD1K, where 31% of these samples
are composed of Sintel-split clean pass and another 31% of Sintel-split final pass.

Training Phase Training Evaluation

Phase 1: Chairs FlyingChairs2 FlyingChairs2
FlyingThings3D

Phase 2: Things FlyingThings3D Sintel-train
FlyingThings3D

Phase 3: Sintel-split Sitel-split‡ Sintel-split

Table 4.1: The Overview of training and evaluation dataset of entire training phases.

4.1.2 Evaluation Metric

In order to evaluate the performance of the error estimation networks quantitatively, the main
evaluation metric we use in this chapter is the Average End-Point Error (AEPE) of the estimated
flow error field Errores with respect to the corresponding ground truth flow error field Errorgt.
Average pixel-wise loss error is defined similarly to flow error in Section 2.2. It follows intuitively
that the end-point error of the flow error is averaged over the entire flow error field. This end-point
error refers to the loss error previously introduced in Section 3.1. The ground truth flow error
vector of the pixel (i, j) in the flow error field is denoted as egt(i, j) = (𝑢gt(i, j), 𝑣gt(i, j))T, while

34

4.2 Implementation Details

e(i, j) = (𝑢(i, j), 𝑣(i, j))T denotes the estimated optical flow error vector of the pixel (i, j). The
End-point Error (EE) between these two flow error vectors yields:

EE(e(i, j), egt(i, j)) =
1

𝐻 ×𝑊

𝑊−1∑︁
i=0

𝐻−1∑︁
j=0

√︃
(𝑢(i, j) − 𝑢gt(i, j))2 + (𝑣(i, j) − 𝑣gt(i, j))2. (4.1)

The average end-Point error of the estimated flow error field is formulated as follows:

AEE(Errores,Errorgt) =
1

𝐻 ×𝑊

𝑊−1∑︁
i=0

𝐻−1∑︁
j=0

EE(e(i, j), egt(i, j)). (4.2)

4.2 Implementation Details

Using the mixed precision strategy, our error estimation networks are trained on a GeForce RTX
3090 GPU with a memory size of 24 GB on PyTorch library [PGC+17].

4.2.1 Training Loss

With the aim to investigate the effectiveness of using the end-point error to the ground truth flow,
namely the ground truth flow error, to predict the flow error in the supervised fashion, the following
loss functions are adopted for the purpose of supervising the update of the parameters during
training:

the loss of the Single-iteration Conv error estimation networks during training is computed between
the estimated flow error Errores and the ground-truth flow error Errorgt with L1 distance:

Lloss =
Errorgt − Errores

1 . (4.3)

On account of the iterative update operator, an alternative training loss is adopted for RAFT-like
and GMA-like error estimation networks. We imitate how the renowned flow estimation network
RAFT [TD20] supervises its training process. Intuitively, error estimation networks with these two
architectures are supervised based on the L1 distance between the estimated flow error and the
ground-truth flow error over every refinement. Given the ground-truth flow error Errorgt, and the
estimated flow error Erroresi of GRU iteration i, i = 1, ...,N, where N represents the total number of
GRU iterations. The loss is defined as follows:

Lloss =

N∑︁
i=1

𝛾N−i Errorgt − Erroresi

1 , (4.4)

where 𝛾 is the decay coefficient smaller than 1, whose function is to apply exponentially increasing
weights to the L1 distance between the estimated flow error of each refinement and the ground-truth
flow error. The finer the estimated flow error, the larger the contribution of the corresponding L1
distance to the loss function in Equation (4.4).

35

4 Experimental Results

4.2.2 Flow Estimation Networks

Before we move forward to hyperparameter settings, it is essential to choose an appropriate flow
estimation network first so that we can obtain the required estimated flow at the resolution of
1/8 ⟨H,W⟩ as one of the inputs to the error estimation networks. This estimated flow is the output of
the iterative update operator of the corresponding flow estimation network before being upsampled
to full resolution. As explained in Chapter 3, we adopt the estimated flow at 1/8 resolution instead
of full resolution to avoid the potential information loss during the upsampling-downsampling
operation. Moreover, the flow estimation network also helps to produce the ground truth flow
error (Please refer to Section 3.1 for more details on the ground truth flow error.) to supervise
the training of the error estimation networks. Here, it is important to note that the estimated flow
used to produce the ground truth flow error is at full resolution. Because both the ground truth
optical flow provided by the datasets and the later computed ground truth flow error which is used
to supervise the parameter update are at full resolution. In conclusion, the estimated flow error at
1/8 resolution and full resolution are needed for the training of error estimation networks.

We select the following two flow estimation networks:

1. The flow estimation network with the architecture of RAFT [TD20], which is trained with
FlyingChairs2 → FlyingThings3D following the training settings provided by RATF[TD20],
is chosen to produce the required estimated flow. This flow estimation network is denoted as
“RAFTC+T“.

2. Similarly, we also adopt another flow estimation network with the architecture of GMA
[JCL+21], which is also trained with FlyingChairs2 and FlyingThings following the training
settings adopted by GMA[JCL+21]. This flow estimation network is denoted as “GMAC+T“.

Since both flow estimation networks are not trained with samples from the Sintel or Sintel-split
datasets, they are suitable for investigating the learnability of flow errors on various datasets. We
can examine whether the flow error can be learned on the samples with complex motions if the
flow estimation networks are not fine-tuned on the target dataset. Moreover, these flow estimation
networks are trained with FlyingChairs2 → FlyingThings3D instead of FlyingChairs2 only, which
means they both have a good generalization performance on the Sintel training set while the
produced estimated flow is still not too abbreviated from the ground truth flow of FlyingChairs2
dataset.

RAFT flow estimation networks trained with FlyingChairs2 alone (denoted as “RAFTC“) are also
used for the ablation study in Section 4.6 and the semi-supervised method of flow estimation in
Chapter 5.

The upper part of Table 4.2 presents the performance of the above-mentioned flow estimation
networks RAFTC+T and GMAC+T on the validation proportions of FlyingChairs2, Sintel, and
Sintel-split. The bottle half of the table also reports the results of RAFTC on the FlyingChairs2
validation dataset. To guarantee the consistency and comparability of the networks, we adopt the
results of the flow estimation networks which are trained on the same GPU instead of the published
ones.

36

4.2 Implementation Details

Flow Training
Dataset Chairs

Sintel Sintel-split

clean final clean final

RAFTC+T C+T 1.121 1.475 2.769 2.025 3.166
GMAC+T 1.147 1.367 2.803 1.769 3.438

RAFTC C 0.867

Table 4.2: Results of flow estimation networks appear in this work.

4.2.3 Experimental settings

As part of our investigation of whether the error estimation networks will work on different datasets
and in different phases, we follow the two training settings adopted by RAFT [TD20] and GMA
[JCL+21] We refer to these two training settings as RAFT and GMA training settings, respectively.
Following these two training procedures, the AdamW [LH17] optimizer and the one-cycle policy
[ST19] are adopted. During the first training phase, we use a batch size of 10. When the error
estimation networks are trained with FlyingThings3D and Sintel-split, we use batch sizes of 6 for
both phases. During training, the total number of GRU iterations N is always set to 12, while
N varies with different datasets during validation. N=24 when the error estimation network is
validated with FlyingChairs2 or FlyingThings3D, while N is set to 32 for inference on Sintel or
Sintel-split. The decay coefficient 𝛾 of the loss function in Equation (4.4) is set to 0.8 for the first two
training phases, while 𝛾 is set to 0.85 when the error estimation network is trained with the mixed
Sintel-split dataset. All the data argumentations also follow the original code of RAFT[TD20] and
GMA[JCL+21].

The differences between RAFT and GMA training settings are listed as follows. For RAFT and
GMA training settings, the highest learning rate of the one-cycle policy is set to 0.0004 and 0.00025
during phase 1 respectively, then it is set to 0.000125 during the next two phases for both settings;
When we adopt the RAFT training settings, We train the error estimation networks for 100,000
iterations in each phase, while the error estimation networks are trained for 120,000 iterations in
each phase with the GMA training settings; The batch normalization is frozen during the second
and third phases with the RAFT training settings, whereas no normalization is frozen during the
whole training process if we adopt the GMA training settings.

4.2.4 Error Estimation Networks

In Chapter 3 we explain the pipeline of three different error estimation networks. In this chapter,
experiments are performed on the combinations of the specific flow and error estimation networks.
The error estimations networks with various architectures are also trained with different training
settings.

We only train the Single-iteration Conv error estimation network with the corresponding training
settings of the flow estimation network. Therefore, When the flow estimation network is RAFTC+T,
the Single-iteration Conv error estimation network is trained according to the RAFT training
schedule; When the flow estimation network is GMAC+T, the Single-iteration Conv error estimation
network is trained with the GMA training schedule. A cross-check of the influence of RAFT and

37

4 Experimental Results

GMA training settings on the error estimation networks was performed by training the other two
error estimation networks, the RAFT-like network and the GMA-like network, using different
training settings. This means that the RAFT-like error estimation networks are trained with the
RAFT and the GMA training settings, and GMA-like ones are also the case.

Additionally, we also combine different flow estimation networks with different error estimation
networks to verify whether such cross-cases can lead to better results. All the combinations of
flow estimation networks, error estimation networks, and training settings are listed in Table 4.3.
The superscript “★“ refers to the error estimation network that is trained with the RAFT training
schedule mentioned above; The superscript “†“ refers to the error estimation network that is trained
with the GMA training schedule. “Conv“ represents the Single-iteration Conv error estimation
network, while RAFT and GMA refer to the RAFT-like and the GMA-like ones.

Flow Estimation Network Error Estimation Network

RAFTC+T

RAFT★

RAFT†

GMA★

GMA†

Conv★

GMAC+T

GMA†

GMA★

RAFT†

RAFT★

Conv†

Table 4.3: The combinations of various flow and error estimation networks following two training
settings. The superscript “★“ refers to the error estimation network that is trained with
the RAFT training settings; The superscript “†“ refers to the error estimation network
that is trained with the GMA training settings.

4.3 Phase 1: FlyingChairs2

In this section, we present the results of the conducted experiments on the error estimation networks
of the first phase: FlyingChairs2. The error estimation networks are trained with FlyingChairs2
for 100,000 iterations (RAFT training settings) or 120.000 iterations (GMA training settings).
Then they are evaluated with FlyingChairs2 to investigate the learnability of the flow error on the
FlyingChairs2 dataset. The effectiveness of the error estimation networks at estimating the flow
error of occluded and non-occluded pixels is also separately verified and presented as loss error in
the corresponding regions. To give a clear image of whether the loss error is decreasing during the
training process, we also compare the loss error of the error estimation networks that are trained
with the first 5,000 iterations and the networks that have finished the first phase of training, We do
not adopt the loss error of the plain error estimation networks which are not trained with any samples
because the parameters of these networks are randomly initialized and thus non-comparable.

38

4.3 Phase 1: FlyingChairs2

4.3.1 Quantitative Results

Table 4.4 shows the evaluation results of the error estimation networks on the FlyingChairs2 dataset.
The AEPE refers to the average end-point error of the flow error, namely the loss error. As shown
in Table 4.4, the combination of the flow estimation network RAFTC+T and the error estimation
network GMA† achieves the most accurate results on the validation portion of FlyingChairs2 with
a loss error of 1.021 among all the combinations. It is imperative to point out that both loss
error in occluded and non-occluded areas decreases during training for all the combinations of
flow and error estimation networks except the combinations with the Single-iteration Conv error
estimation network. The improvement in the performance of these two combinations is insignificant
in comparison to the other eight combinations. Positive improvements are indicated by a gray
background in the “Relative Improvement“ column. These results suggest that flow error can
be estimated during the first phase with the proposed RAFT-like and GMA-like error estimation
networks.

Flow Error Type
Training Progress Rel.

Improv. Flow Error Type
Training Progress Rel.

Improv.5K Phase 1 5K Phase 1

RAFTC+T

RAFT★

All 1.136 1.049 +7.62%

GMAC+T

GMA†
All 1.159 1.052 +9.19%

Noc 0.894 0.826 +7.57% Noc 0.913 0.827 +9.40%
Occ 5.103 4.712 +7.66% Occ 5.185 4.740 +8.58%

RAFT†
All 1.139 1.030 +9.56%

GMA★

All 1.155 1.069 +7.44%
Noc 0.897 0.811 +9.55% Noc 0.909 0.840 +7.62%
Occ 5.111 4.621 +9.58% Occ 5.183 4.824 +6.92%

GMA★

All 1.141 1.037 +9.11%
RAFT†

All 1.161 1.050 +9.58%
Noc 0.899 0.816 +9.22% Noc 0.915 0.825 +9.83%
Occ 5.113 4.664 +8.80% Occ 5.190 4.731 +8.84%

GMA†
All 1.143 1.021 +10.63%

RAFT★

All 1.144 1.077 +5.86%
Noc 0.901 0.805 +10.61% Noc 0.897 0.844 +5.99%
Occ 5.110 4.564 +10.69% Occ 5.178 4.892 +5.52%

Conv★
All 1.126 1.125 +0.10%

Conv†
All 1.147 1.146 +0.12%

Noc 0.883 0.882 +0.16% Noc 0.901 0.899 +0.14%
Occ 5.099 5.103 -0.07% Occ 5.183 5.182 +0.04%

Table 4.4: Comparison of loss error of various combinations of flow and error estimation networks
in phase 1: FlyingChairs2. The superscript “★“ refers to the error estimation network
that is trained with the RAFT training settings mentioned above; The superscript “†“
refers to the error estimation network that is trained with the GMA training settings. The
best performance is denoted with bold font.

4.3.2 Qualitative Results

Figure 4.1 provides example visual results on the FlyingChairs2 validation dataset, which demonstrate
that flow error can be estimated with the error estimation networks. The first row is the ground truth
flow error of all pixels, non-occluded pixels, and occluded pixels, while the last row is the estimated
flow error in the corresponding regions. The ground truth flow error and the estimated flow error
are generated by the combination of RAFTC+T and GMA†. One limitation of this qualitative result

39

4 Experimental Results

however is the blurred and misleading estimation of the fine structure around the boundaries of the
chairs. This may result from the limitation of the feature encoders and the resulting correlation
pyramid architecture we adopt in the networks.

G
ro

un
d

tru
th

 fl
ow

 e
rr

or
Es

tim
at

ed
 fl

ow
 e

rr
or

Frame 143

G
ro

un
d

tru
th

 fl
ow

 e
rr

or
Es

tim
at

ed
 fl

ow
 e

rr
or

Frame 64

All Noc Occ

Figure 4.1: Visualized results of estimated flow error on FlyingChairs2 dataset. The ground truth
flow error and the estimated flow error are generated by the combination of RAFTC+T
and GMA†.

40

4.4 Phase 2: FlyingThings

4.4 Phase 2: FlyingThings

In the second phase of training, the error estimation networks are trained with FlyingThings3D
for another 100,000 or 120,000 iterations. A comparison of the accuracy of flow error on the
validation dataset of FlyingThings3D is conducted in order to determine the learnability of flow
error. Additionally, the error estimation networks are evaluated on the entire Sintel benchmark
training set in order to determine their generalization performance.

4.4.1 Quantitative Results

Table 4.5 compares the accuracy of the estimated flow errors on the validation set of FlyingThings3D
benchmarks. The quality of the various combinations of flow and error estimation networks is
listed in the table. In the analyses of data, we can come to the conclusion that the flow error can be
predicted on both clean and final passes of FlyingThings3D. On the clean pass of FlyingThings3D,
the combination of GMAC+T and GMA† achieve the best result with AEPE = 14.002, while on
the final pass, the best performance is acquired by the combination of GMAC+T and RAFT† with
AEPE = 13.155.

Data Type
Things Flow Error

Training Progress Rel.
Improve. Flow Error

Training Dataset Rel.
Improve.C C+T C C+T

clean RAFTC+T

RAFT★ 14.781 14.146 +4.30%

GMAC+T

GMA† 16.213 14.002 +13.64%
RAFT† 14.753 14.134 +4.19% GMA★ 15.462 14.016 +9.35%
GMA★ 16.145 14.108 +12.62% RAFT† 14.891 14.011 +5.91%
GMA† 16.219 14.076 +13.21% RAFT★ 14.813 14.017 +5.38%
Conv★ 14.169 14.169 0.00% Conv† 14.022 14.021 +0.01%

final RAFTC+T

RAFT★ 14.004 13.624 +2.71%

GMAC+T

GMA† 14.495 13.178 +9.09%
RAFT† 14.099 13.581 +3.67% GMA★ 14.035 13.157 +6.26%
GMA★ 14.621 13.567 +7.21% RAFT† 13.902 13.155 +5.37%
GMA† 14.668 13.566 +7.51% RAFT★ 13.696 13.159 +3.92%
Conv★ 13.643 13.642 +0.01% Conv† 13.160 13.159 +0.01%

Table 4.5: Comparison of loss error of various combinations of flow and error estimation networks
on the FlyingThings3D validation dataset in phase 2:FlyingThings3D. The superscript
“★“ refers to the error estimation network that is trained with the RAFT training settings
mentioned above; The superscript “†“ refers to the error estimation network that is
trained with the GMA training settings. The best performance is denoted with bold font.

In Table 4.6, we report the AEPE of flow error over all pixels (All), over occluded pixels (Occ),
and over pixels in non-occluded regions (Noc). The results suggest that the flow error can also be
predicted on training samples of Sintel. This is on account of the fact that the performances of the
error estimation networks improve after the second phase compared to the ones only trained with
FlyingChairs2.

The only exception is still the Single-iteration Conv error estimation networks, where no improvement
in estimated flow error appeared during the second phase. A closer inspection of the table shows
that the loss error of the Single-iteration Conv error estimation networks is the most accurate among
all error estimation networks. This strange finding, however, reveals that the end-point error to
the ground truth flow error is not the most suitable criterion for inference of such a flow error to

41

4 Experimental Results

some extent, or at least cannot be used as the only criterion. Although the Single-iteration Conv
error estimation networks achieve the best AEPE of flow error, the visualized results show that the
networks do not learn much useful in comparison to other error estimation networks. More details
of the visualized results are illustrated in Section 4.4.2.

Except for the Single-iteration Conv error estimation networks, the best result on the clean pass
of the Sintel training dataset is acquired by the combination of GMAC+T and GMA★, whereas the
combination of RAFTC+T and GMA★ achieves the best performance on the final pass. We should
note that the quality of the estimated flow also influences the results given that the flow estimation
network GMAC+T has a better estimation on the clean pass with an AEPE (of flow) of 1.367 and
RAFTC+T is superior to GMAC+T on the final pass with an AEPE (of flow) of 2.769.

Data Type
Sintel(train) Flow Error Type Training Progress Rel.

Improve. Flow Error Type Training Progress Rel.
Improve.C C+T C C+T

clean RAFTC+T

RAFT★

All 1.750 1.479 +15.50%

GMAC+T

GMA†
All 1.934 1.367 +29.34%

Noc 0.885 0.662 +25.19% Noc 1.028 0.620 +39.66%
Occ 12.723 11.839 +6.96% Occ 13.434 10.839 +19.31%

RAFT†
All 1.713 1.480 +13.60%

GMA★

All 2.030 1.364 +32.80%
Noc 0.864 0.665 +23.06% Noc 1.073 0.618 +42.38%
Occ 12.484 11.823 +5.30% Occ 14.186 10.838 +23.60%

GMA★

All 2.412 1.473 +38.94%
RAFT†

All 1.651 1.366 +17.23%
Noc 1.378 0.665 +51.73% Noc 0.841 0.620 +26.27%
Occ 15.537 11.722 +24.55% Occ 11.925 10.835 +9.14%

GMA†
All 2.139 1.480 +30.80%

RAFT★

All 1.478 1.366 +7.58%
Noc 1.186 0.673 +43.21% Noc 0.720 0.620 +13.86%
Occ 14.233 11.717 +17.68% Occ 14.233 11.717 +17.68%

Conv★
All 1.474 1.473 +0.03%

Conv†
All 1.366 1.366 0.00%

Noc 0.655 0.655 +0.08% Noc 0.619 0.619 -0.01%
Occ 11.860 11.860 0.00% Occ 10.806 10.806 0.00%

final RAFTC+T

RAFT★

All 2.941 2.761 +6.15%

GMAC+T

GMA†
All 3.216 2.802 +12.88%

Noc 1.799 1.610 +10.49% Noc 2.809 1.682 +19.50%
Occ 17.442 17.361 +0.47% Occ 13.434 10.839 +19.31%

RAFT†
All 3.022 2.730 +9.68%

GMA★

All 3.456 2.799 +19.02%
Noc 1.867 1.587 +15.00% Noc 2.220 1.680 +24.33%
Occ 17.683 17.233 +2.54% Occ 17.514 17.011 +2.87%

GMA★

All 3.077 2.751 +10.25%
RAFT†

All 3.534 2.802 +20.69%
Noc 1.909 1.594 +16.48% Noc 2.270 1.683 +25.85%
Occ 17.898 17.436 +2.58% Occ 19.569 17.006 +13.10%

GMA†
All 3.032 2.721 +10.27%

RAFT★

All 3.029 2.802 +7.52%
Noc 1.889 1.581 +16.35% Noc 1.910 1.682 +11.94%
Occ 17.534 17.192 +1.95% Occ 17.237 17.013 +1.30%

Conv★
All 2.740 2.739 +0.01%

Conv†
All 2.802 2.802 0.00%

Noc 1.588 1.588 +0.02% Noc 1.683 1.683 0.00%
Occ 17.352 17.352 0.00% Occ 17.009 17.009 0.00%

Table 4.6: Comparison of loss error of various combinations of flow and error estimation networks
on the Sintel training dataset in phase 2: FlyingThings3D. The superscript “★“ refers to
the error estimation network that is trained with the RAFT training settings mentioned
above; The superscript “†“ refers to the error estimation network that is trained with the
GMA training settings. The best performance is denoted with bold font.

42

4.5 Phase 3: Sintel-split

4.4.2 Qualitative Results

Figure 4.2 provides qualitative results on the clean and final pass of the training split of Sintel,
which demonstrates that flow error can be estimated with our error estimation network and the
accuracy of the estimated flow error improves compared to the ones only trained with Chairs2. For
the results of clean pass, the ground truth flow error and the estimated flow error are generated by
the combination of GMAC+T and GMA★, while they are generated by the combination RAFTC+T
and GMA† for the final pass.

cl
ea

n

Ground truth flow error

Frame 711

Estimated flow errorEstimated flow error

EPE:0.679 EPE:0.423

Frame 483 EPE:5.866

fin
al

EPE:8.580

C+TC

Figure 4.2: Visualized results of estimated flow error on Sintel training dataset. The estimated flow
error on the clean pass of Sintel is generated by the combination GMAC+T and GMA★,
while the one on the final pass is generated by the combination RAFTC+T and GMA†.

4.5 Phase 3: Sintel-split

We have trained our error estimation networks using the FlyingChairs → FlyingThings schedule.
Lastly, the error estimation networks are trained on the Sintel-split dataset during the third phase,.
These networks are then evaluated on the validation split of Sintel-split.

4.5.1 Quantitative Results

The results are presented in Table 4.7 for a variety of combinations of flow and error estimation
networks on the Sintel-split validation set. As shown in the table, the combination of GMAC+T and
GMA† outperforms other components on the clean pass of the Sintel-split validation set. On the
final pass, the combination of RAFTC+T and GMA★ surpasses all the other combinations with an
AEPE of 3.048. Interestingly, not all the combinations of flow and error estimation networks are
able to estimate the flow error during this phase, especially on the relatively “difficult“ final pass.
As with the previous two phases, the Single-iteration Convolution error estimation networks failed
to predict the flow error once again. As a consequence of misleading predictions in non-occluded
areas, the performance of the other ineffective error estimation networks has been degraded. Except
for the combinations of GMAC+T and RAFT†, all the other error networks with the iterative
operator can slightly enhance the accuracy of the estimated flow error in the occluded areas after
fine-tuning the networks with Sintel-split. These findings suggest that the final performance of the

43

4 Experimental Results

error estimation networks is a balance between the improved estimation in occluded areas and the
consequent misguided prediction of non-occluded pixels. Additionally, these experiments indicate
the importance of the Global Error Feature Aggregation module as both networks that achieve the
best performance on the clean and final passes are GMA-like error estimation networks.

The mediocre performance of the error estimation networks may be caused by the limitation of the
correlation pyramid which is constructed from the feature encoder we adopt. The dataset we used
in this phase could also contribute to these findings. It cannot be guaranteed that the training set of
Sintel-split contains all the characteristics of the flow in the validation set due to the fact that the
training samples of Sintel are divided into training and validation splits by us.

Data Type
Sintel-split Flow Error Type Training Progress Rel.

Improve. Flow Error Type Training Progress Rel.
Improve.C+T C+T+S-split C+T C+T+S-split

clean RAFTC+T

RAFT★

All 2.025 1.791 +11.56%

GMAC+T

GMA†
All 1.761 1.597 +9.27%

Noc 1.047 0.943 +9.89% Noc 0.920 0.861 +6.44%
Occ 12.229 10.634 +13.05% Occ 10.522 9.275 +11.85%

RAFT†
All 2.067 1.771 +14.33%

GMA★

All 1.761 1.606 +8.78%
Noc 1.065 0.950 +10.87% Noc 0.920 0.855 +7.04%
Occ 12.510 10.344 +17.39% Occ 10.531 9.440 +10.36%

GMA★

All 2.053 1.726 +15.92%
RAFT†

All 1.759 1.827 -3.89%
Noc 1.074 0.902 +16.04% Noc 0.920 0.991 -7.82%
Occ 12.264 10.326 +15.80% Occ 10.509 10.541 -0.30%

GMA†
All 2.048 1.727 +15.64%

RAFT★

All 1.759 1.755 +0.26%
Noc 1.065 0.931 +12.57% Noc 0.920 0.957 -4.02%
Occ 12.295 10.030 +18.42% Occ 10.517 10.079 +4.16%

Conv★
All 2.031 2.031 +0.03%

Conv†
All 1.761 1.761 +0.01%

Noc 1.047 1.048 -0.01% Noc 0.920 0.920 0.00%
Occ 12.286 12.285 +0.01% Occ 10.526 10.525 +0.01%

final RAFTC+T

RAFT★

All 3.166 3.178 -0.38%

GMAC+T

GMA†
All 3.256 3.166 +2.78%

Noc 2.017 2.061 -2.18% Noc 2.074 2.106 +6.44%
Occ 15.151 14.818 +2.13% Occ 15.579 14.216 +8.75%

RAFT†
All 3.133 3.177 -1.41%

GMA★

All 3.255 3.313 -1.79%
Noc 2.005 2.103 -4.86% Noc 2.073 2.186 -5.42%
Occ 14.894 14.383 +3.43% Occ 15.571 15.064 +3.26%

GMA★

All 3.126 3.048 +2.51%
RAFT†

All 3.255 3.364 -3.35%
Noc 1.997 2.018 -1.03% Noc 2.072 2.149 -7.08%
Occ 14.900 13.790 +7.45% Occ 15.587 15.305 +1.81%

GMA†
All 3.144 3.064 +2.55%

RAFT★

All 3.257 3.212 +1.40%
Noc 2.008 2.044 -1.81% Noc 2.075 2.141 -3.20%
Occ 14.995 13.700 +8.63% Occ 15.587 14.480 +7.10%

Conv★
All 3.136 3.136 +0.01%

Conv†
All 3.258 3.258 0.00%

Noc 2.005 2.005 0.00% Noc 2.075 2.075 0.00%
Occ 14.928 14.927 +0.01% Occ 15.590 15.590 +0.01%

Table 4.7: Comparison of loss error of various combinations of flow and error estimation networks
on the Sintel-split validation dataset in phase 3: Sintel-split. The superscript “★“ refers
to the error estimation network that is trained with the RAFT training settings mentioned
above; The superscript “†“ refers to the error estimation network that is trained with the
GMA training settings. The best performance is denoted with bold font.

44

4.5 Phase 3: Sintel-split

4.5.2 Qualitative Results

Qualitatively, Figure 4.3 demonstrates that it is possible to estimate the flow error in some samples
of the Sintel-split validation set. The fine structures around the motion boundaries of the flow error
are still wicked issues for error estimation networks. We also present some failed estimations of
flow error during phase 3 in Figure 4.4. The major issue is observed in the non-occluded areas of
the flow error field. As a result of the misleading estimation in these areas, the predicted flow error
field is worsen after training phase 3.

Ground truth flow error Estimated flow errorEstimated flow error

cl
ea

n

Ground truth flow error

Frame 256

Estimated flow errorEstimated flow error

cl
ea

n

EPE:58.025 EPE:7.379

Frame 5 EPE:1.586

fin
al

EPE:3.170

Frame 111 EPE:5.480EPE:6.165

fin
al

EPE:1.992Frame 254 EPE:1.494

C+T+S-splitC+T

Figure 4.3: Visualized results of estimated flow error on Sintel-split evaluation dataset. The
estimated flow error on the clean pass of Sintel-split is generated by the combination
GMAC+T + GMA†, while the one on the final pass is generated by the combination
RAFTC+T + GMA★.

To qualitatively compare the difference between the estimated flow error generated by the Single-
iteration Conv error estimation networks and the one with iterative update operators, we visualized
the results in Figure 4.5. The visual results in Figure 4.5 demonstrate that the End-point Error of
the estimated flow error to the ground truth may not be the only reasonable criterion for inference.
If we look closely at the results, we can find that in phase 2, the estimated flow errors produced by
RAFTC+T + Conv† are look-alike and do not express the correct direction of estimations despite
the relatively acceptable End-point Error. The most surprising aspect of these results is that the
estimated flow errors produced by GMAC+T + Conv† still demonstrate some akin structures to
the ground truth flow error in phase 1 and phase 3, though the entire flow error field is masked
with the wrong direction of estimations. This may be the culprit behind the quantitative results

45

4 Experimental Results
cl

ea
n

Ground truth flow error

Frame 84

Estimated flow errorEstimated flow error

EPE:0.154 EPE:0.215

fin
al

Frame 87 EPE:0.201EPE:0.165

C+T+S-splitC+T

Figure 4.4: Visual examples of failed estimated flow error on Sintel-split evaluation dataset. The
estimated flow error on the clean pass of Sintel-split is generated by the combination
GMAC+T + GMA†, while the one on the final pass is generated by the combination
RAFTC+T + GMA★.

of GMAC+T + Conv† and GMAC+T + Conv† which run on the spot in phase 1 and phase 3. In
contrast, the visual results of the estimated flow error produced by GMAC+T + GMA† show a
positive direction to the ground truth flow error in all three phases.

4.6 Ablations

We perform exhaustive ablation experiments to show the relative importance of the encoders and
the convex upsampler in the error estimation network design. Furthermore, ablated experiments on
the training iterations and the look-up radius for constructing the correlation cost volume are also
conducted. These two ablation studies aim to search for potential improvements in the performance
of the proposed error estimation network. These networks are crucial to the studies in Chapter 5. In
the following, we elaborate on each of the above-mentioned experiments in more detail.

4.6.1 Sharing Parameters of Encoder and/or Umsampler

Among the error estimation networks and the flow estimation networks listed in Table 4.3, there
are two combinations of flow and error estimation networks that are quite unique: the flow
estimation network RAFTC+T + the error estimation network RAFT★ and the flow estimation
network GMAC+T + the error estimation network GMA†. A common characteristic exists between
these two combinations. Take the combination RAFTC+T + RAFT★ for example: In addition to
the same architecture of feature and context encoders as well as the upsampler, both networks are
trained following the identical training procedure with the exact same experimental settings. For
the combination GMAC+T + GMA† is also the same case. There arises a question in our minds:
whether the error estimation network should share the same parameters of the encoders and/or the
upsampling mask as the flow one to promote accuracy as well as the model efficiency?

46

4.6 Ablations
Ph

as
e

1
Ph

as
e

2
cl

ea
n

Ph
as

e
2

fin
al

Ph
as

e
3

cl
ea

n
Ph

as
e

3
fin

al

Frame 696

Frame 35

Frame 88

EPE:1.521 EPE:1.520

EPE:4.054 EPE:4.055

EPE:0.558 EPE:0.566

Frame 53 EPE:0.505 EPE:0.547

Frame 263 EPE:11.678 EPE:11.766

Ground Truth

Figure 4.5: Visual comparison of estimated flow error generated by the Single-iteration Conv and
the GMA-like error estimation networks with respect to the ground truth flow error
during all training phases. The estimated flow on the middle column is generated
by GMAC+T + GMA†; The estimated flow on the right column is generated by
GMAC+T + Conv†.

To verify our hypothesis, we conducted the following experiments: Taking the combination
RAFTC+T + RAFT★ as the baseline experiment, we conducted three additional experiments, namely
the flow estimation network RAFTC+T and the RAFT-like error estimation network that shares
the same parameters of the encoders (two feature encoders and the context encoder) and/or the
upsampler as their counterparts in the flow estimation network. The RAFT★-fc error estimation
network embeds the RAFT-like architecture and shares the parameters of feature and context
encoders of the flow estimation network RAFTC+T. The error estimation network RAFT★-fc differs
from the baseline network RAFT★ in that the parameters of the feature and context encoders are
frozen throughout the training process. Simply put, “-fc“ represents that the error estimation
network shares the same upsampler as the corresponding flow estimation network RAFTC+T. When
the error estimation network shares the same feature and context encoders as the flow estimation
network, the constructed all-pairs correlation pyramids of the flow and error estimation networks

47

4 Experimental Results

are also identical. Thus the look-up operation retrieves the look-up cost from the same 4D cost
volume. Similarly, “-u“ refers to the error estimation network that adopts the same upsampler‘s
parameter of the upsampler as the flow estimation network RAFTC+T; While “-fcu“ indicates that
the error estimation network shares not only the same encoders but also the identical upsampling
mask to RAFTC+T. All these error estimation networks are trained following the same training
schedule, namely FlyingChairs2 (C) → FlyingThings3D(T) → Sintel-split(S-split), and with the
identical RAFT training settings so they are marked with a superscript “★“.

The experiments on the combinations of the flow estimation network GMAC+T and the varieties
of the error estimation network GMA† are also denominated in the same manner. This means
that the error estimation networks GMA†-fc, GMA†-u and GMA†-fcu are additionally trained and
evaluated following the GMA training procedure and settings.

Table 4.8 implicates the importance of adopting learnable encoders and upsamplers instead of
sharing the same ones of the flow estimation networks in phase 1. For inference on FlyingChairs2,
the error estimation network RAFT★ and GMA† combined with the corresponding flow estimation
networks eclipse all their varieties respectively in the accuracy of the estimated flow error in both
the non-occluded and occluded regions.

Flow Error Type
Training Progress Rel.

Improv. Flow Error Type
Training Progress Rel.

Improv.5K Phase 1 5K Phase 1

RAFTC+T

RAFT★

All 1.136 1.049 +7.59%

GMAC+T

GMA†
All 1.159 1.052 +9.19%

Noc 0.894 0.826 +7.57% Noc 0.913 0.827 +9.40%
Occ 5.103 4.712 +7.66% Occ 5.185 4.740 +8.58%

RAFT★-fc
All 1.145 1.066 +6.83%

GMA†-fc
All 1.148 1.072 +6.61%

Noc 0.902 0.837 +7.27% Noc 0.902 0.842 +6.65%
Occ 5.118 4.834 +5.56% Occ 5.182 4.844 +6.51%

RAFT★-u
All 1.137 1.055 +7.18%

GMA†-u
All 1.165 1.059 +9.07%

Noc 0.895 0.829 +7.34% Noc 0.919 0.832 +9.41%
Occ 5.105 4.761 +6.74% Occ 5.193 4.774 +8.07%

RAFT★-fcu
All 1.156 1.071 +7.32%

GMA†-fcu
All 1.160 1.074 +7.37%

Noc 0.913 0.840 +7.99% Noc 0.913 0.844 +7.60%
Occ 5.133 4.858 +5.36% Occ 5.195 4.847 +6.70%

Table 4.8: Loss error of RAFTC+T + RAFT★ and GMAC+T + GMA† with their varieties of shared
encoders and/or upsamplers on FlyingChairs2 in phase1. The best result of each group
is underlined.

For phase 2, the comparison of the flow error predicted by the combinations RAFTC+T + RAFT★ and
GMAC+T + GMA† with their corresponding varieties are summarised in Table 4.9 and Table 4.10
respectively. In this regard, it is worth noting that error estimation networks with their own encoders
and upsamplers establish the most accurate results on FlyingThings3D.

What is striking about the figures in Table 4.10 is that error estimation networks with learnable
encoders and upsamplers are no longer the most accurate ones among their varieties. When it comes
to the flow estimation network RAFTC+T, RAFT★-fc outperforms all its varieties in AEPE on the
clean pass of the Sintel training split; RAFT★-u acquires the best results on the final pass. However,
in the right part of the table, the error estimation network GMA† is on par with its varieties on both
passes of the Sintel-train.

48

4.6 Ablations

Data Type
Things Flow Error

Training Progress Rel.
Improve. Flow Error

Training Dataset Rel.
Improve.C C+T C C+T

clean RAFTC+T

RAFT★ 14.781 14.146 +4.30%

GMAC+T

GMA† 14.004 14.002 +13.64%
RAFT★-fc 14.390 14.153 +1.65% GMA†-fc 14.656 14.012 +4.40%
RAFT★-u 14.864 14.152 +4.79% GMA†-u 16.427 14.006 +14.74%
RAFT★-fcu 14.361 14.154 +1.44% GMA†-fcu 14.442 14.010 +2.99%

final RAFTC+T

RAFT★ 14.004 13.624 +2.71%

GMAC+T

GMA† 14.495 13.178 +9.09%
RAFT★-fc 13.887 13.631 +1.84% GMA†-fc 14.411 13.186 +8.50%
RAFT★-u 14.118 13.628 +3.47% GMA†-u 14.618 13.180 +9.84%
RAFT★-fcu 13.839 13.631 +1.50% GMA†-fcu 14.102 13.180 +6.50%

Table 4.9: Loss error of RAFTC+T + RAFT★ and GMAC+T + GMA† with their varieties of shared
encoders and/or upsamplers on FlyingThings3D in phase2. The best result of each group
is underlined.

Data Type
Sintel Flow Error Type Training Progress Rel.

Improve. Flow Error Type Training Progress Rel.
Improve.C C+T C C+T

clean RAFTC+T

RAFT★

All 1.750 1.479 +15.50%

GMAC+T

GMA†
All 1.934 1.367 +29.34%

Noc 0.885 0.662 +25.19% Noc 1.028 0.620 +39.66%
Occ 12.723 11.839 +6.95% Occ 13.434 10.839 +19.31%

RAFT★-fc
All 1.776 1.471 +17.16%

GMA†-fc
All 1.657 1.366 +17.57%

Noc 0.914 0.658 +28.02% Noc 0.879 0.620 +29.55%
Occ 12.707 11.786 +7.25% Occ 11.535 10.845 +5.98%

RAFT★-u
All 1.687 1.472 +12.71%

GMA†-u
All 2.067 1.367 +33.84%

Noc 0.823 0.659 +0.01% Noc 1.107 0.620 +43.97%
Occ 14.928 14.927 +0.01% Occ 14.246 10.848 +23.86%

RAFT★-fcu
All 1.687 1.472 +12.71%

GMA†-fcu
All 1.676 1.366 +18.49%

Noc 0.823 0.659 +19.91% Noc 0.864 0.619 +28.33%
Occ 12.655 11.798 +6.771% Occ 11.982 10.844 +9.50%

final RAFTC+T

RAFT★

All 2.941 2.761 +6.15%

GMAC+T

GMA†
All 3.216 2.802 +12.88%

Noc 1.799 1.610 +10.49% Noc 2.089 1.682 +19.50%
Occ 17.442 17.361 +0.47% Occ 17.514 17.011 +2.87%

RAFT★-fc
All 3.251 2.745 +15.55%

GMA†-fc
All 3.609 2.804 +22.31%

Noc 2.011 1.595 +20.67% Noc 2.408 1.687 +29.96%
Occ 18.995 17.346 +8.68% Occ 18.855 16.987 +9.90%

RAFT★-u
All 2.853 2.737 +4.09%

GMA†-u
All 3.201 2.801 +12.48%

Noc 1.699 1.589 +6.48% Noc 2.043 1.683 +17.63%
Occ 17.506 17.304 +1.16% Occ 17.900 17.000 +5.03%

RAFT★-fcu
All 2.985 2.739 +8.24%

GMA†-fcu
All 3.396 2.803 +17.46%

Noc 1.810 1.590 +12.15% Noc 2.200 1.685 +23.42%
Occ 17.894 17.318 +3.22% Occ 18.577 16.995 +8.51%

Table 4.10: Loss error of RAFTC+T + RAFT★ and GMAC+T + GMA† with their varieties of shared
encoders and/or upsamplers on Sintel training dataset in phase2. The best result of
each group is underlined.

49

4 Experimental Results

A striking feature of Table 4.11 is that error estimation networks with learnable encoders and
upsamplers are again the most accurate of their varieties in phase 3. On the clean pass of Sintel-split,
error estimation networks with their own encoders and upsampling masks achieve better results
than their varieties. The shared upsampling mask can only slightly improve the results, but the gap
is insignificant. For inference on the final pass, the only exception is the combination RAFTC+T
+ RAFT★-u, which outperforms all its varieties. When considering the combination GMAC+T +
GMA†, the learnable encoders and upsampling masks can still promote the estimation on the final
pass.

Data Type
Sintel-split Flow Error Type Training Progress Rel.

Improve. Flow Error Type Training Progress Rel.
Improve.C+T C+T+S-split C+T C+T+S-split

clean RAFTC+T

RAFT★

All 2.025 1.791 +11.56%

GMAC+T

GMA†
All 1.761 1.590 +9.71%

Noc 1.047 0.943 +9.89% Noc 0.920 0.863 +6.22%
Occ 12.229 10.634 +13.634% Occ 10.522 9.166 +12.89%

RAFT★-fc
All 2.025 1.820 +10.10%

GMA†-fc
All 1.762 1.754 +0.46%

Noc 1.046 0.955 +8.64% Noc 0.920 0.934 +1.45%
Occ 12.232 10.838 +11.40% Occ 10.537 10.306 +2.20%

RAFT★-u
All 2.029 1.806 +11.00%

GMA†-u
All 1.766 1.609 +8.87%

Noc 1.049 0.937 +10.69% Noc 0.923 0.858 +7.12%
Occ 12.241 10.861 +11.27% Occ 10.552 9.447 +10.47%

RAFT★-fcu
All 2.027 2.066 -1.96%

GMA†-fcu
All 1.766 1.609 +8.89%

Noc 1.047 1.111 -6.16% Noc 0.923 0.958 +7.12%
Occ 12.242 12.023 +1.79% Occ 10.552 9.447 +10.47%

final RAFTC+T

RAFT★

All 3.166 3.178 -0.38%

GMAC+T

GMA†
All 3.256 3.166 +2.78%

Noc 2.017 2.061 -2.18% Noc 2.071 2.223 -1.52%
Occ 15.141 14.818 2.13% Occ 15.579 14.216 +8.75%

RAFT★-fc
All 3.189 3.239 -1.56%

GMA†-fc
All 3.255 3.344 -2.72%

Noc 2.034 2.142 -5.28% Noc 2.074 2.223 -7.20%
Occ 15.228 14.678 +3.61% Occ 15.568 15.024 +3.50%

RAFT★-u
All 3.137 3.133 +0.10%

GMA†-u
All 3.257 3.232 +1.05%

Noc 2.007 2.056 -2.44% Noc 2.075 2.138 -3.03%
Occ 14.918 14.371 +3.66% Occ 15.580 14.531 +6.73%

RAFT★-fcu
All 3.166 3.236 -2.20%

GMA†-fcu
All 3.434 3.352 +2.37%

Noc 2.018 2.128 -5.43% Noc 2.186 2.227 -1.85%
Occ 15.135 14.790 +2.28% Occ 16.443 15.092 +8.21%

Table 4.11: Loss error of RAFTC+T + RAFT★ and GMAC+T + GMA† with their varieties of shared
encoders and/or upsamplers on Sintel-split in phase 3. The best result of each group is
underlined.

It turns out to be uncertain whether the error estimation networks should adopt the same encoders
and/or upsamplers as the corresponding flow estimation networks. Thus we perform additional
experiments on the combination RAFTC + RAFT★ and its varieties. Here the flow estimation
networks are only trained with samples from FlyingChairs2 and the RAFT-like error estimation
networks are also trained with FlyingChairs2 alone. The most obvious finding to emerge from the
analysis in Table 4.14 is that shared feature and context encoders can enhance the accuracy of the
estimated flow error. Adopting an identical upsampling mask to the flow estimation network could
only slightly improve the result. These findings may be due to the fact that both flow and error
estimation networks are fine-tuned on the same target datasets. Thus it is reasonable for the error
estimation network to share the same encoders as the corresponding flow one.

However, another finding that stands out from Table 4.8 is that the error estimation should learn
its own feature and context encoders as well as the upsampling masks when the flow and error
estimation networks are not tuned with the same target dataset. It is also imperative to point out that
the predicted flow error from the combinations in this ablation study is not as accurate as the one

50

4.6 Ablations

generated by the combinations of cross cases. Take the flow estimation network RAFTC and the
error estimation networks with various architectures and training settings as examples. Despite the
relatively better results achieved by RAFT★-fc with an AEPE of 0.867, the combination RAFTC
+ RAFT★ achieved the most accurate prediction with an AEPE of 0.861 in Table 4.8, let alone
RAFT★∗ which is trained with extended training steps. The explanation of the extended training
steps can be found in the following section.

4.6.2 Potential Improvement Methods

The two following ablated experiments are performed for further investigation, aiming to improve the
performance of error estimation networks. The two potential improvement directions are: training
the networks with more epochs and adopting a larger look-up radius for the look-up operation.

Look-up Radius

In light of the fact that the proposed error estimation networks provide less than satisfactory results
in the third phase, one may ask: Is it because the networks do not look broad enough in the
correlation pyramid? When performing a lookup, the look-up radius specifies the retrieval grid
used in the search for the 4D cost volume. We conduct experiments on error estimation networks
with increasing look-up radii in order to confirm our suspicions.

We only perform experiments on one combination of flow and error estimation network and the
increasing look-up radius of 5, 6, and 7 because of limited time and hardware. We choose the
combination of the flow estimation network RAFTC+T + GMA† error estimation network. The
evaluation results of this combination imply that the flow error can be learned on FlyngChairs2
in training phase 1, and the same case on FlyingThings3D and Sintel in training phase 2, while
the accuracy slightly increases in training phase 3 when it is trained on Sintel-split. It is set to 4
for the look-up radius of the baseline error estimation network. Table 4.12 presents the results of
these four error estimation networks. “Flow“ represents the flow estimation network, while “Error“
refers to the error estimation network. “-4“ refers to the error estimation network with a look-up
radius of 4, “-5“, “-6“, and “-7“ following the same naming rule. All the hyperparameters and
the architecture of the networks, except the look-up radius, are identical in these error estimation
networks trained according to the GMA training settings and procedure (please refer to Section 4.2
for more details). Specifically, all our error estimation networks are trained with FlyingChairs2 (C)
→ FlyingThings3D(T) → Sintel-split(S-split), and evaluated on FlyingChairs2, Sintel training set,
and Sintel-split respectively. “C“, “C+T“, and “C+T+S-split“ refers to the first, second, and third
training phases.

In the analyses of data from Table 4.12, it is apparent that the error estimation networks GMA† with
a broader look-up range compare unfavorably with the baseline networks GMA† with a look-up
radius of 4 in all three training phases. Increasing the look-up radius of the error estimation network
GMA† does not significantly increase the accuracy of the estimated flow error as expected, while
the AEPE for flow error is deteriorating. During the first phase of Chairs2, the AEPE (of flow error)
of the baseline networks have no rivals, while the networks are evaluated on Sintel and Sintel-split
during phase2 and phase3, the other three networks GMA†-5, GMA†-6, and GMA†-7 are still

51

4 Experimental Results

Flow Error Training
Dataset Chairs

Sintel Sintel-split

clean final clean final

RAFTC+T

GMA†-4

C

1.021
GMA†-5 1.032
GMA†-6 1.050
GMA†-7 1.050

GMA†-4

C+T

1.480 2.721
GMA†-5 1.487 2.726
GMA†-6 2.175 3.561
GMA†-7 1.482 2.756

GMA†-4

C+T+S-split

1.727 3.064
GMA†-5 1.738 3.143
GMA†-6 2.001 3.430
GMA†-7 1.942 3.155

Table 4.12: Comparison of error estimation networks GMA† with different look-up radii. “-4“
refers to the error estimation network with a look-up radius of 4, “-5“, “-6“, and “-7“
following the same naming rule. The superscript † refers to the GMA training setting
and procedure introduced in Section 4.2. The best performance is underlined.

eclipsed by the baseline network GMA†-4 both on clean and final pass inference. Overall, these
results indicate that we should adopt a look-up radius of 4 for error estimation networks, at least for
the combination of RAFTC+T + GMA†.

Training Iterations

In regard to the second question, we would like to ask: Are the error estimation networks trained
with enough epochs using the target datasets? To verify the suspicion above, we experiment with
more epochs in the training of the error estimation networks, or more precisely, by doubling the
training steps of each phase. Let us take the GMA training settings as an example. All the error
estimation networks are trained with FlyingChairs2 (C) → FlyingThings(T) → Sintel-split(S-split)
for 120,000 steps in each phase, and evaluated on FlyingChairs2, Sintel training set, and Sintel-split
respectively. And the extended GMA training schedule is still following FlyingChairs2 (C) →
FlyingThings(T) → Sintel-split(S-split) with 240,000 steps in each phase.

We compare the results of the combination of flow estimation network RAFTC+T with error
estimation network GMA† with the two training iterations mentioned above in Table 4.13. “Flow“
represents the flow estimation network, while “Error“ refers to the error estimation network. These
error estimation networks are trained following the identical training schedule proposed in this
chapter, and all the hyperparameters are the same as the GMA training settings except for the
training steps. The superscript “†“ represents the original GMA training schedule with training
steps of 120,000 in each phase, while the superscript “†∗“ refers to the GMA training schedule with
training steps of 240,000 in each phase, double as many as the original training schedule. “C“,
“C+T“, and “C+T+S-split“ refer to the first, second, and third phases of training.

52

4.6 Ablations

Flow Error Training
Dataset Chairs

Sintel Sintel-split

clean final clean final

RAFTC+T

GMA†
C 1.021

GMA†∗ 0.963

GMA†
C+T 1.480 2.721

GMA†∗ 1.442 2.704

GMA†
C+T+S-split 1.727 3.064

GMA†∗ 1.792 2.924

Table 4.13: Comparison of the combinations of RAFTC+T+GMA† with different training iterations.
The superscript “†“ represents the original GMA training schedule with training steps of
120,000 in each phase, while the superscript “†∗“ refers to the GMA training schedule
with training steps of 240,000 in each phase, double as many as the original training
schedule. The best performance is underlined.

As can be seen in Table 4.13, a positive correlation is found between the accuracy of the estimated
flow error and training iterations. When the iterations in each phase are doubled, the AEPE (of flow
error) increases by 5.6% in phase 1, and at the end of the second phase, the error estimation network
GMA†∗ achieved an improved AEPE (of flow error) of 1.442 on the clean pass of Sintel training
split, while the AEPE (of flow error) on the final pass has already surpassed the best performance of
all the error estimation networks performed in Section 4.4. For inference on Sintel-split, improved
accuracy of estimated flow error can also be observed on final passes. The loss error of GMA†∗ has
improved by 4.6/Nevertheless, the network GMA†∗ performs deterioratingly on the clean pass of
Sintel-split than GMA† .

On account of the findings mentioned above, we also perform experiments on the combination of
the flow estimation network RAFTC with various error estimation networks trained with extended
iterations. Given the experiments in Section 4.6.2, the look-up radius of error estimation networks
is still set to 4. These experiments are crucial to the survey in Chapter 5. The surveys on the
Single-iteration one are discarded because of the ineffectiveness demonstrated in the aforementioned
surveys. All the error estimation networks are only trained with FlyingChairs2 following the RAFT
and GMA training settings, which are denoted with superscripts “★“ and “†“ respectively. For
comparison, experiments with the extended version of these two training settings are also conducted.
We denote them as “★∗“ and “†∗“, which refer to the doubled training iterations of the settings. To
be more precise, for the extended RAFT training settings, the networks are trained with 200,000
iterations instead of 100,000, while for the extended GMA training setting with 240,000.

The results of these experiments are compared in Table 4.14. What stands out in the table is the
improved accuracy of the estimated flow error on Chairs2 of all the combinations compared to
the results presented in Table 4.4. What emerges from the results reported here is that the quality
of the estimated flow utilized in the error estimation networks also plays an important role in the
accuracy of the estimated flow error. The flow estimation network we adopt here is RAFTC with an
AEPE (of flow) of 0.867, which is tuned with the target dataset Chairs2 with an AEPE (of flow) of
0.867, dwarfing the adopted flow estimation networks RAFTC+Tin Table 4.4. The most striking
observation to emerge from the data comparison is the quality of the estimated flow generated by
the combination of RAFTC + GMA†∗, which achieves an AEPE (of flow error) of 0.858.

53

4 Experimental Results

Another interesting finding that stands out in the table is the performance of the error estimation
network RAFT★ and its variants. Although the shared feature and context encoders can improve
prediction accuracy if we adopt the original RAFT training settings, the final results of these
networks are on the same level if they are trained with double iterations. The accuracy of these error
estimation networks is not as good as the one with cross cases which are also trained with extended
iterations. This may indicate the limitations of the RAFT-like error estimation networks trained with
RAFT training settings. In contrast, a more accurate estimation can be observed (AEPE=0.859)
when the RAFT-like error estimation network is trained with extended GMA training settings.

Flow Error Training
Dataset

Chairs

Occ Noc All

RAFTC

RAFT★

C 3.994 0.686 0.876
RAFT★∗ 3.969 0.678 0.867

RAFT★-fc C 3.988 0.676 0.867
RAFT★∗-fc 3.985 0.675 0.866

RAFT★-u C 3.995 0.686 0.876
RAFT★∗-u 3.987 0.676 0.866

RAFT★-fcu C 3.988 0.676 0.867
RAFT★∗-fcu 3.987 0.677 0.867

RAFT†
C 3.995 0.686 0.876

RAFT†∗ 3.950 0.670 0.859

GMA★

C 3.996 0.688 0.878
GMA★∗ 3.944 0.672 0.860

GMA†
C 3.950 0.673 0.861

GMA†∗ 3.915 0.671 0.858

Table 4.14: Comparison of the combinations of RAFTC with various error estimation networks
trained with different iteration settings. The best performance is denoted with bold
font.

4.7 Discussion

In this chapter, we train the proposed error estimation networks following the FlyingChairs2 →
FlyingThings → Sintel-split schedule and evaluate the performance on the corresponding datasets.
Together these inference results provide important insights into doable flow error estimation. In
general, both error estimation networks with iterative update operators can perform their function in
the first two phases. This is done by taking in only the image pairs and the estimated optical flow.

For phase 1 the most effective combination is RAFTC+T (flow) and GMA† (error). As for phase 2,
the combination GMAC+T + GMA★ and RAFTC+T + GMA★ achieve performance for inference on
the clean and final passes of Sintel respectively. However, not all combinations work as expected
in phase 3. The combination of GMAC+T + GMA† and RAFTC+T + GMA★ surpasses all the
other combinations on the clean and final pass of Sintel-split respectively, whereas only a slight

54

4.7 Discussion

improvement in the loss error can be observed. With the ablation studies, we can conclude that
error estimation networks with shared encoders and/or upsamplers are a poor substitute for the ones
embedding their own encoders and/or upsamplers when the error and flow estimation networks are
not fine-tuned on the same datasets. The look-up radius of error estimation networks should be
set to 4. Moreover, more training iterations instead of the originally adopted 100,000 or 120,000
iterations are beneficial to the quality of estimated flow errors.

One limitation of these methods however is that the above-mentioned ablation studies are not
performed on all combinations of flow and error estimation networks due to limited computation
ability and time space. Another limitation lies in the inadequate ablation studies on the training
settings and the error estimation network architectures. A future direction for ablation studies could
include a deeper correlation level or an adjusted loss function that can separate the flow error in the
occluded and non-occluded regions.

The next part of the survey is concerned with the error-based semi-supervised optical flow estimation
on FlyingChairs2 in Chapter 5.

55

5 Error-Based Semi-supervised Flow
Estimation

In Chapter 4 we present the results of the proposed error estimation networks combined with the
adopted flow estimation networks. Despite their preliminary characters, these findings clearly
indicate that flow error can be estimated with the error estimation networks, among which the
RAFT- and GMA-like ones achieve prominent performance, especially on the synthetic dataset
FlyingChairs2. In light of this, it is logical to consider whether error estimation networks can be
employed to boost the performance of the RAFT[TD20] flow estimation.

We utilize the estimated flow error to fine-tune the RAFT flow estimation network in the fashion of
semi-supervised learning. The basic idea of our semi-supervised training schedule for the RAFT
flow estimation network is as follows: We first pre-train the flow estimation network with the
training samples of FlyingChairs2 only, then fine-tune the network with the validation samples,
whose ground truth optical flow is replaced by the corresponding “estimated flow with offset“. The
estimated flow with offset is the sum of the estimated optical flow generated by the pre-trained
RAFT and the estimated flow error produced by the selected error estimation network (Please refer
to Section 5.1.2 for more details).

In the first part of this chapter, we introduce the experimental setup for the flow estimation as well
as the implementation details. Two methods of applying the fine-tuning phase are elaborated on
in this part. Next, the quantitative and qualitative results of the RAFT flow estimation networks,
after fine-tuning on FlyingChairs2 validation samples, are demonstrated. Finally, a summary of
the semi-supervised learning of optical flow estimation proposed in this chapter is provided. As
with the experiments on the error estimation networks in Chapter 4, all the optical flow estimation
networks presented in this chapter are also trained on the same GeForce RTX 3090 GPU with a
memory size of 24 GB on PyTorch library [PGC+17] using the mixed precision strategy.

5.1 Experimental Setup and Implementation Details

5.1.1 Experimental setup

We choose the RAFT flow estimation network which has been trained with FlyingChairs2 (following
the RAFT flow estimation training schedule provided by [TD20]) as the baseline experiment. Two
different fine-tuning methods are proposed in this chapter:

57

5 Error-Based Semi-supervised Flow Estimation

Method 1

After completing the initial pre-train phase, an additional fine-tuning phase is implemented using
validation samples from FlyingChairs2. During this phase, the flow estimation network is trained
with validation samples labeled with the corresponding estimated flow with offset, as described
in Section 5.1.2, or with mixed samples of validation and training samples from FlyingChairs2.
Figure 5.1a illustrates how the learning rate varies during the pre-train and fine-tuning phases with
method 1.

Two questions arise from this process: Firstly, how many additional iterations should be performed
during the fine-tuning phase? For the baseline network, the flow estimation network is trained with
22,232 training samples for 100,000 iterations using a batch size of 10. This results in an epoch of
45. On the ground that the validation set of FlyingChairs2 consists of 640 samples, we propose
setting the additional iterations to 3000. This will enable us to run the validation samples for 45
epochs using a batch size of 10.

Secondly, since the training is conducted under the same settings as RAFT, what should be the
maximum learning rate (denoted as “LRmax

2 “) for the One-cycle Policy [ST19] during the fine-tuning
phase? To answer this question, it is necessary to interpret how the One-cycle Policy functions
during training. This policy involves training a model with a learning rate that increases linearly
before decreasing linearly over one epoch, allowing deep learning models to converge faster and
achieve better accuracy. Consequently, the initial learning rate increases to the set maximum
learning rate LRmax

2 and then from that maximum learning rate to some minimum learning rate in
the fine-tuning phase. In the pre-train phase, the maximum learning rate LRmax

1 is set to 0.0004,
which means the learning rate is decreased to 0.000013 when there are still 3,000 iterations from
the end of the first phase. Therefore, we set LRmax

2 to 0.000013 in order to avoid the potential
accuracy degradation attributable to the bump in the upcoming fine-tuning stage. Experiments with
LRmax

2 = 0.0004 (which is equal to LRmax
1) are also conducted.

Method 2

Instead of fine-tuning the flow estimation network during an additional phase after the first phase
of training, we choose the last 3000 iterations of the original 100,000 iterations as the fine-tuning
phase of our second method. For the first 997,000 iterations, the flow estimation network is trained
following the training schedule with all the settings identical to the original code of RAFT[TD20],
which is called the “pre-train phase“, while the networks are trained with the fine-tuned dataset
during the last 3,000 iterations without any modifications to the training setup. Method 2 does not
require a re-start of the training progress with the learning rate first increasing to a set number and
then declining. This may lead to a better quality of the estimated optical flow owing to the smooth
learning rate schedule. Figure 5.1b illustrates how the learning rate varies with method 2.

The evaluation metric used in the following experiments is the Average End-point Error (AEPE),
which is the mean pixel-wise flow error. The details of the average end-point error of the estimated
flow field with respect to the corresponding ground truth flow field are elaborated in Section 2.2.

58

5.1 Experimental Setup and Implementation Details

Fine-tune

(a) Method 1

Fine-tune

(b) Method 2

Figure 5.1: The learning rate schedules of the pre-train and fine-tune phases.

5.1.2 Implementation Details

All experiments have been conducted in the same setting as the official code of RAFT[TD20]. The
differences are explained explicitly in the following paragraphs.

Training Loss

On account of using RAFT [TD20] as the flow estimation network, it is reasonable to adopt the
weighted multi-iteration L1 loss function provided by RAFT[TD20] given the ground truth flow fgt
and the output estimated flow fi of each GRU iteration.

Lloss =

N∑︁
i=1

𝛾N−i fgt − fi

1 , (5.1)

where 𝛾 is the decay coefficient and N is the total GRU iteraions.

Estimated Flow with Offset

We have introduced in Section 2.3 that the FlyingChairs2 training set provides 22,232 image pairs
as well as the corresponding ground truth optical flow. In this chapter, we denote the ground truth
optical flow field Fgt(It,1, It,2) ∈ R2×𝐻×𝑊 between the two consecutive images It,1, It,2 ∈ R3×𝐻×𝑊

from the FlyingChairs2 training set, where t denote training samples and 𝑊, 𝐻 are the image
width and height. Although we also have the ground truth optical flow of the validation samples
of FlyingChairs2 on hand, we discard these correct labels during the fine-tuning phase to avoid
overfitting. Therefore people would ask: is it possible to construct a flow that is believed to be close
to the correct answer to the estimated flow, namely the ground truth optical flow? And this agrees
with one of the motivations of this thesis. In Chapter 4, we draw the conclusion that the flow error

59

5 Error-Based Semi-supervised Flow Estimation

can be learned to some extent, especially in phase 1 where the error estimation networks are trained
with the FlyingChairs2 dataset. In our opinion, it is possible to determine the right path to the
ground truth optical flow through the use of the estimated flow error.

Given an image pair Iv,1, Iv,2 ∈ R3×𝐻×𝑊 from the FlyingChairs2 validation set and a combination of
a flow estimation network and an error estimation network, the flow estimation network can generate
an estimated optical flow field Flowes ∈ R2×𝐻×𝑊 and the error estimation network can produce
an estimated flow error field Errores ∈ R2×𝐻×𝑊 by taking in the image pair and the estimated
optical flow. v denotes the image from validation samples. We define the sum of the estimated
optical flow and the estimated flow error as the Estimated Flow with Offset, which is denoted as
F̃(Iv,1, Iv,2) ∈ R2×𝐻×𝑊 , F̃(Iv,1, Iv,2) = Flowes + Errores. Thus we can construct a “labeled“ sample
with two consecutive input images Iv,1, Iv,2 and the estimated flow with offset F̃(Iv,1, Iv,2), which
performs the same function as the ground truth optical flow of the training samples in the supervision
of training.

Figure 5.2 presents an example of the computation of the error estimation with offset. In respect to
the pixel (i, j) in the flow field, the estimated flow (blue vector) generated by the flow estimation
networks is denoted with flowes ∈ R2, flowes = (𝑢gt, 𝑣gt)T. The predicted flow error (green vector)is
denoted with errores ∈ R2, flowes = (𝑚es, 𝑛es)T. As such, the estimated flow with offset denoted
with the dashed black vector is computed as (𝑢es + 𝑚es, 𝑣es + 𝑛es)T.

estimated flow
with offset

Flow field

Figure 5.2: Illustration of computing the estimated flow with offset.

Figure 5.3 gives an example of the visualized estimated flow with offset in FlyingChairs2 validation
samples. The flow estimation network RAFTC generates the estimated optical flow in Figure 5.3a
from the given image pair (Frame 530-1 and 530-2) and the estimated flow error in Figure 5.3b is
produced by the error estimation network GMA∗ that takes the same estimated optical flow and the
identical image pair as input.

Flow Estimation Network

We choose the RAFTC instead of RAFTC+T adopted in Chapter 4 since RAFTC is trained only with
the training set of the FlyingChairs dataset. Thus we can avoid or mitigate the underperformance of
the flow estimation results from domain discrepancy. We also use RAFTC as the baseline network

60

5.1 Experimental Setup and Implementation Details

(a) Estiamted flow (b) Estimated flow error (c) Estimated flow with offset

Figure 5.3: The estimated flow, the estimated flow error, and the resulting estimated flow with
offset (Frame 530).

in the following evaluations. This flow estimation network is trained with 100,000 steps with a
batch size of 10 on the FlyingChairs2 training set, following the original training settings provided
by RAFT[TD20].

Error Estimation Network

It is also essential to choose an appropriate error estimation network to provide a reliably estimated
flow error so that the final estimated flow with offset is not too abbreviated from the ground truth
flow. We have already run experiments on different combinations of error estimation networks with
RAFTC flow estimation network in Chapter 4. Table 4.14 shows the evaluation results of these error
estimation networks on the FlyingChairs2 validation set. “AEPE“ in this table refers to the average
end-point error of the estimated flow error. It is apparent from this table that the combination of
RAFTC + GMA†∗ achieves the most favorable results with an AEPE of 0.858 (denoted with bold
font). Consequently, we choose this combination for our semi-supervised method of optical flow
estimation to generate the required estimated flow with offset.

Training and Validation Dataset of the Fine-tuning Phase

Training Dataset of the Fine-tuning Phase: With the aim of error-based semi-supervised optical
flow estimation in this chapter, we verify the application of the error estimation networks on
semi-supervised learning of optical flow by training our RAFT flow estimation network with these
validation samples. For the training set of FlyingChairs2, we still use the input image pairs and
the ground truth flow provided by the dataset. As we explained before, we want to fine-tune the
RAFT[TD20] flow estimation network also with the validation samples of the FlyingChairs2 dataset,
which are named validation-semi samples. A validation-semi sample consists of two consecutive
input images and the corresponding estimated flow with offset, which performs a similar function of
ground truth flow during training to mitigate the overfitting issue. The entire validation-semi dataset
refers to all 640 validation-semi samples. Furthermore, we also investigate the influence of different
subsets of the validation-semi samples on the final performance of the fine-tuned flow estimation
networks. Thus we also adopt three subsets of the entire validation-semi dataset, whose samples are
selected based on the corresponding estimated flow error. For the validation-semi samples whose
estimated flow error is among the top 160 best samples, they are named after 25best validation-semi

61

5 Error-Based Semi-supervised Flow Estimation

samples (denoted as “25best ValC“). Similarly, those flow errors are among the top half, and the top
480 samples are called 50best and 75best validation-semi samples (denoted as “50best ValC“ and
“75best ValC“) respectively.

The network was also fine-tuned using both samples from the training set and samples taken from
the entire/subsets of validation semi-samples to investigate how they influence the accuracy of
the estimated optical flow. In summary, the training samples of the fine-tuning phase are the
entire/subsets of the validation-semi samples or a combination of the samples from the FlyingChairs2
training set and the entire/subsets of the validation-semi samples. Mathematically, the training
samples adopted for the fine-tuning phase can be formulated as follows:

Taining Dataset Finetune = x × TrainC + y × ValC, (5.2)

where x and y are two factors to adjust the different combinations of the training samples TrainC
and entire/subset of validation-semi samples ValC (ValC can be 25best, 50best, 75best or entire
validation-semi samples). Factor x is set to zero if we fine-tune the network only with validation-semi
samples, while x is set to 1 if the combined fine-tune samples are adopted.

Validation Set of the Fine-tuning Phase: For the different training samples of the fine-tuning
phase adopted in the experiments, we evaluate the flow estimation network also with different
validation sets. All the networks are evaluated on the entire validation set of FlyingChairs2 (denoted
as “Chairs-val“). In addition, the networks are also evaluated on the subsets of the validation
set according to the training samples used in the fine-tuning phase. For example, when we use
the 25best validation-semi samples as the training samples for fine-tuning, we adopt the 25best
validation samples with the ground truth optical flow as the additional validation set. This validation
set is called the 25best-subset of Chairs-val, where “Chairs-val“ refers to the Chairs2 validation set.
To be more precise, the quantitative analysis of the corresponding flow estimation networks will be
evaluated on the entire validation set and the 25best validation set. Table 5.1 lists the training and
validation datasets used in the entire training process.

Training Phase Training Set Validation Set

Pre-train TrainC Chairs-val

Fine-tune

25best ValC Chairs-val
(with TrainC) 25best-subset of Chairs-val

50best ValC Chairs-val
(with TrainC) 50best-subset of Chairs-val

75best ValC Chairs-val
(with TrainC) 75best-subset of Chairs-val

ValC Chairs-val
(with TrainC)

Table 5.1: The overview of training and evaluation dataset of the entire training process. “TrainC“
refers to the entire training samples of Chairs2; “ValC“ refers the entire validation
samples of Chairs2; “Chairs-val-semi“ refers to the training samples adopted in fine-tune
phase

62

5.2 Evaluation

5.2 Evaluation

In this section, we present the evaluation results of the fine-tuned RAFT flow estimation networks
in a semi-supervised fashion. For method 1, we choose the network which is only tuned with
FlyingChairs2 training samples for 100,00 iterations (denoted with “Baseline1“) and the network
which is trained with additional 3,000 iterations with FlyingChairs2 training samples alone following
the setup of method 1 (denoted with “Baseline2“), while only Baseline1 is chosen as the baseline
network for method 2 since no additional iterations are needed. Both baseline networks are evaluated
with the FlyingChairs2 validation set as well as all of the subsets (25best, 50best, and 75best).

5.2.1 Quantitative Results

We initially test the effectiveness of fine-tuning the flow estimation network with method 1, which
involves inserting an additional fine-tune phase after the original 100,000 iterations of the pre-train
phase. Table 5.2 and Table 5.3 compare the summary statistics for the RAFT flow estimation network
that are fine-tuned with validation-semi samples only or the mixed samples (training samples TrainC
and validation-semi samples ValC) in various proportions. The networks are evaluated with the
entire validation samples and the corresponding subsets. The LRmax

2 for the fine-tuning phase is set
to 0.000013 and 0.0004 respectively.

What stands out in the tables is that: For FlyingChairs2, the semi-supervised training of the RAFT
flow estimation networks with the aid of error estimation networks can improve the performance of
RAFT trained in a supervised fashion alone. A closer inspection of the tables mentioned above
indicates several interesting findings:

1. Comparing the results of Baseline1 and Baseline2, we can find that even if we fine-tune the
network with training samples of Chairs2 alone for another 3,000 iterations, the network can
still achieve favorable performance when LRmax

2 is set to 0.000013. In contrast, if LRmax
2 is

relatively larger, for example, 0.0004, an degraded performance can be expected.

2. The network favors a lower LRmax
2 during the fine-tuning phase. A bump in the learning

rate during the additional 3,000 iterations may lead to worse estimations of optical flow.
Moreover, if we compare the results in Table 5.2 and Table 5.3 with the same training samples
and the same proportion, the results with the lower LRmax

2 (in Table 5.2) always dwarf the
corresponding results with the higher LRmax

2 . As a result, we can come to the conclusion that
the higher the LRmax

2 , the higher the bump, and thus the inferior the results.

3. Fine-tuning the RAFT flow estimation network with the entire or the subsets of the validation-
semi samples alone is not a good choice. Even when the LRmax

2 is set to 0.000013, the
improvement of the results is not in the same league as those which are fine-tuned with
mixed samples. The network fine-tuned with the combined samples (1 × TrainC + 10 × ValC)
achieves an AEPE of 0.825. Those fine-tuned with combined samples in different proportions
and with different subsets of validation-semi samples also surpass those only fine-tuned with
validation-semi samples (The best of which only acquire an AEPE of 0.858).

4. In addition, the estimated flow can also be enhanced by using the entire validation-semi
samples instead of its subsets. This may result from inadequate samples of the validation
sets. This is a balance between the accuracy of the estimated flow with offset and the

63

5 Error-Based Semi-supervised Flow Estimation

quantity of the validation-semi samples. Although we can “supervise “ the fine-tuning with
these relatively accurate estimated flows with offset, which means they are more suitable to
perform the function of the “ground truth optical flow“, the quantity of these samples may
still constrain the performance of the fine-tuned networks. Those samples in the subsets may
not be sufficiently representative of all the properties of the motions that appear in the whole
validation samples.

Another perspective on the inadequate validation-semi samples is that: the samples in
the subsets of validation-semi samples are only chosen according to the loss error of the
corresponding estimated flow error. Those samples with a lower error may be the relatively
“easy“ samples in the validation set. If we only fine-tune the networks with the subsets of the
validation-semi samples, the networks do not perform well since they are only fine-tuned
with those “easy“ samples and may be tackled by those unseen “difficult“ samples.

The influence of the proportion of the mixed fine-tuning samples is still unclear. Taking a look at
Table 5.2, we can find that when the network is fine-tuned with mixed samples, it can achieve an AEPE
of 0.825 if the fine-tuning samples consist of 1 × TrainC + 1 × 25best-ValC. If we turn to the mixed
samples with 50best validation-semi samples, the best combination is 1×TrainC + 20× 50best-ValC
with an AEPE of 0.827. The most satisfactory performance for the mixed 75best validation-semi
samples occurs when the combination is 1 × TrainC + 15 × 75best-ValC.

Table 5.4 demonstrates the results of the fine-tuned flow estimation networks with method 2.
Compared with experiments shown in Table 5.4 and Table 5.2, what stands out in the tables is the
well-matched performance of the networks fine-tuned with method 2 and with method 1. This
finding confirms again the importance of applying a LRmax

2 of 0.000013 to avoid a learning rate
bump in method 1. Compared with the baseline experiments where the networks are trained with a
training split of Chairs2 for the entire 100,000 iterations, the results of fine-tuned network surpass
those of the baseline experiment even with the validation-semi samples alone. However, as can be
seen from the table, adopting the mixed samples as the fine-tuning training samples is still superior
to adopting the validation-semi samples alone. Taking the entire validation-semi samples for
example, the fine-tuned network achieves an AEPE of 0.857 when taking only the validation-semi
samples, while the networks fine-tuned with 1 × TrainC + 5 × ValC can acquire a better accuracy
of estimated flow with an AEPE of 0.826, which is an improvement of 4.7% with respect to the
baseline experiment Baseline1.

5.2.2 Qualitative Results

In Figure 5.4 we compare the results of the flow estimation networks qualitatively with some
examples from the validation split of FlyingChairs2. For method 1, we select the fine-tuned RAFT
with the samples of 1 × TrainC + 10 × ValC, and the LRmax

2 is set to 0.000013. The visual results
of the optical flow predicted by this network are marked with “Method 1“. As for method 2, the
fine-tuned RAFT with the samples of 1 × TrainC + 5 × ValC, which achieves superior performance
among its competitors, is chosen as the representative flow estimation network. The visual results of
the optical flow predicted by this network are marked “Method 2“. In addition, we also present the
consecutive input image pairs, the ground truth flow in occluded, non-occluded, and entire regions
as well as the visual results of Baseline1 (denoted as “RAFTC“) for comparison.

64

5.2 Evaluation

Method 1: LRmax
2 = 0.000013

Training
Dataset

factors 25best 50best 75best full

x y Occ Noc All Occ Noc All Occ Noc All Occ Noc All

Baseline1 - - 0.978 0.165 0.181 1.237 0.265 0.295 1.811 0.386 0.446 4.004 0.676 0.867
Baseline2 1 0 1.003 0.173 0.190 1.250 0.269 0.300 1.809 0.388 0.448 3.965 0.672 0.862

0 1 1.008 0.172 0.190 4.061 0.678 0.872
1 1 0.989 0.173 0.189 3.808 0.643 0.825
1 5 0.979 0.173 0.189 3.884 0.646 0.832
1 10 0.993 0.171 0.188 3.924 0.650 0.838
1 15 0.984 0.172 0.189 3.833 0.646 0.829

25best- 1 20 0.991 0.172 0.189 3.952 0.651 0.841
mix 1 25 0.977 0.171 0.188 3.858 0.644 0.829

1 30 0.997 0.172 0.189 3.909 0.649 0.836
1 35 0.985 0.172 0.189 3.935 0.649 0.838
1 40 0.976 0.172 0.188 3.796 0.649 0.830
1 45 0.982 0.171 0.188 3.937 0.650 0.839
1 50 0.976 0.171 0.187 3.882 0.648 0.834

0 1 1.286 0.275 0.307 4.007 0.671 0.863
1 1 1.228 0.266 0.296 3.888 0.650 0.837
1 5 1.228 0.265 0.295 3.880 0.646 0.832
1 10 1.217 0.265 0.295 3.864 0.648 0.833
1 15 1.244 0.266 0.296 3.861 0.650 0.834

50best- 1 20 1.244 0.275 0.305 3.751 0.649 0.827
mix 1 25 1.330 0.272 0.302 3.907 0.649 0.836

1 30 1.228 0.266 0.296 3.843 0.648 0.831
1 35 1.233 0.267 0.297 3.848 0.645 0.829
1 40 1.231 0.267 0.297 3.867 0.650 0.835
1 45 1.229 0.267 0.297 3.895 0.651 0.838
1 50 1.216 0.267 0.297 3.934 0.651 0.839

0 1 1.822 0.401 0.461 3.928 0.675 0.862
1 1 1.773 0.384 0.442 3.928 0.648 0.837
1 5 1.770 0.384 0.443 3.843 0.644 0.828
1 10 1.761 0.384 0.442 3.857 0.650 0.834
1 15 1.776 0.386 0.444 3.837 0.645 0.829

75best- 1 20 1.764 0.385 0.444 3.920 0.651 0.839
mix 1 25 1.778 0.385 0.444 3.857 0.647 0.831

1 30 1.771 0.390 0.448 3.902 0.652 0.839
1 35 1.775 0.388 0.446 3.861 0.650 0.835
1 40 1.785 0.388 0.447 3.874 0.652 0.837
1 45 1.781 0.392 0.450 3.849 0.652 0.836
1 50 1.779 0.389 0.448 3.847 0.651 0.835

0 1 3.874 0.675 0.858
1 1 3.857 0.648 0.833
1 5 3.862 0.647 0.829
1 10 3.697 0.649 0.825
1 15 3.807 0.649 0.831

full- 1 20 3.784 0.649 0.829
mix 1 25 3.816 0.654 0.835

1 30 3.777 0.652 0.831
1 35 3.783 0.652 0.832
1 40 3.787 0.656 0.836
1 45 3.787 0.654 0.834
1 50 3.814 0.655 0.837

Table 5.2: Comparison of the fine-tuned RAFT flow estimation network with method 1. The LRmax
2

during fine-tuning phase is set to 0.000013. “Factors“ refers to the proportion of the
training samples and validation-semi samples and the corresponding “x“ and “y“ are
formulated in the same way as Equation (5.2).

65

5 Error-Based Semi-supervised Flow Estimation

Method 1: LRmax
2 = 0.0004

Training
Dataset

factors 25best 50best 75best full

x y Occ Noc All Occ Noc All Occ Noc All Occ Noc All

Baseline1 - - 0.978 0.165 0.181 1.237 0.265 0.295 1.811 0.386 0.446 4.004 0.676 0.867
Baseline2 1 0 1.033 0.178 0.195 1.300 0.280 0.312 1.882 0.405 0.467 3.960 0.691 0.879

0 1 1.054 0.180 0.198 4.292 0.6783 0.984
1 1 1.017 0.180 0.197 4.050 0.675 0.869
1 5 1.013 0.181 0.198 4.007 0.676 0.868
1 10 0.999 0.174 0.191 3.959 0.667 0.856
1 15 1.022 0.179 0.196 3.850 0.675 0.858

25best- 1 20 0.995 0.176 0.193 4.049 0.679 0.873
mix 1 25 0.996 0.178 0.195 3.893 0.672 0.857

1 30 1.013 0.177 0.194 3.886 0.683 0.867
1 35 1.002 0.175 0.192 4.028 0.676 0.868
1 40 1.006 0.178 0.195 3.928 0.694 0.880
1 45 1.026 0.179 0.196 3.957 0.693 0.881
1 50 1.019 0.173 0.190 3.982 0.675 0.865

0 1 1.307 0.282 0.314 4.528 0.734 0.952
1 1 1.268 0.276 0.307 4.107 0.674 0.871
1 5 1.248 0.275 0.305 3.909 0.667 0.853
1 10 1.256 0.276 0.307 3.971 0.680 0.870
1 15 1.243 0.282 0.312 3.933 0.679 0.866

50best- 1 20 1.261 0.276 0.307 4.031 0.677 0.870
mix 1 25 1.256 0.275 0.305 3.910 0.677 0.863

1 30 1.267 0.276 0.306 3.962 0.683 0.872
1 35 1.269 0.280 0.311 3.813 0.673 0.854
1 40 1.250 0.276 0.306 3.890 0.684 0.869
1 45 1.263 0.274 0.304 3.896 0.675 0.860
1 50 1.253 0.276 0.306 3.956 0.680 0.868

0 1 1.867 0.412 0.473 4.225 0.717 0.919
1 1 1.821 0.408 0.467 3.922 0.680 0.866
1 5 1.835 0.399 0.460 3.760 0.671 0.849
1 10 1.826 0.403 0.463 3.925 0.676 0.862
1 15 1.839 0.402 0.462 3.904 0.679 0.864

75best- 1 20 1.862 0.401 0.463 3.950 0.676 0.864
mix 1 25 1.824 0.402 0.462 3.959 0.677 0.866

1 30 1.830 0.405 0.465 3.988 0.691 0.881
1 35 1.829 0.401 0.462 3.905 0.680 0.866
1 40 1.853 0.403 0.464 4.099 0.691 0.887
1 45 1.860 0.404 0.466 4.088 0.682 0.878
1 50 1.875 0.404 0.466 4.033 0.687 0.879

0 1 4.052 0.706 0.899
1 1 4.032 0.682 0.874
1 5 3.982 0.680 0.870
1 10 3.970 0.675 0.864
1 15 4.096 0.683 0.879

full- 1 20 3.885 0.672 0.857
mix 1 25 3.873 0.682 0.865

1 30 3.932 0.685 0.871
1 35 4.055 0.686 0.880
1 40 3.926 0.684 0.870
1 45 3.955 0.684 0.873
1 50 3.989 0.694 0.884

Table 5.3: Comparison of the fine-tuned RAFT flow estimation network with method 1. The LRmax
2

during fine-tuning phase is set to 0.0004. “Factors“ refers to the proportion of the
training samples and validation-semi samples and the corresponding “x“ and “y“ are
formulated in the same way as Equation (5.2).66

5.2 Evaluation

Method 2

Training
Dataset

factors 25best 50best 75best full

x y Occ Noc All Occ Noc All Occ Noc All Occ Noc All
Baseline1 - - 0.978 0.165 0.181 1.237 0.265 0.295 1.811 0.386 0.446 4.004 0.676 0.867

0 1 1.006 0.172 0.189 4.022 0.675 0.867
1 1 0.985 0.173 0.189 3.827 0.648 0.831
1 5 0.981 0.172 0.189 3.935 0.645 0.836
1 10 0.991 0.172 0.189 3.930 0.649 0.838
1 15 0.987 0.172 0.189 3.928 0.647 0.835

25best- 1 20 0.980 0.172 0.189 3.823 0.645 0.828
mix 1 25 0.990 0.172 0.188 3.883 0.644 0.830

1 30 0.980 0.171 0.188 3.920 0.649 0.837
1 35 0.982 0.172 0.189 3.864 0.646 0.831
1 40 0.977 0.172 0.188 3.799 0.649 0.830
1 45 0.985 0.172 0.189 3.940 0.651 0.840
1 50 0.979 0.172 0.188 3.938 0.648 0.837

0 1 1.269 0.277 0.308 4.001 0.673 0.865
1 1 1.232 0.266 0.296 3.889 0.648 0.834
1 5 1.238 0.266 0.296 3.970 0.651 0.842
1 10 1.228 0.266 0.296 3.789 0.646 0.827
1 15 1.226 0.265 0.295 3.921 0.651 0.839

50best- 1 20 1.227 0.271 0.301 3.851 0.648 0.832
mix 1 25 1.234 0.266 0.296 3.893 0.648 0.835

1 30 1.232 0.267 0.297 3.866 0.646 0.831
1 35 1.234 0.267 0.297 3.864 0.645 0.830
1 40 1.232 0.267 0.297 3.903 0.649 0.836
1 45 1.230 0.272 0.302 3.895 0.650 0.837
1 50 1.234 0.267 0.297 3.883 0.649 0.835

0 1 1.823 0.404 0.464 3.888 0.673 0.858
1 1 1.775 0.385 0.444 3.871 0.647 0.832
1 5 1.788 0.388 0.447 3.897 0.650 0.837
1 10 1.772 0.384 0.443 3.921 0.650 0.838
1 15 1.776 0.387 0.445 3.924 0.651 0.839

75best- 1 20 1.767 0.385 0.443 3.865 0.647 0.832
mix 1 25 1.787 0.387 0.446 3.862 0.650 0.836

1 30 1.779 0.387 0.446 3.891 0.650 0.836
1 35 1.775 0.391 0.449 3.837 0.651 0.834
1 40 1.788 0.388 0.447 3.844 0.650 0.834
1 45 1.776 0.390 0.449 3.894 0.653 0.840
1 50 1.786 0.388 0.447 3.870 0.652 0.837

0 1 3.874 0.673 0.857
1 1 3.893 0.647 0.834
1 5 3.777 0.646 0.826
1 10 3.811 0.652 0.834
1 15 3.864 0.651 0.835

full- 1 20 3.813 0.649 0.831
mix 1 25 3.841 0.651 0.834

1 30 3.779 0.652 0.832
1 35 3.806 0.652 0.833
1 40 3.792 0.656 0.836
1 45 3.845 0.655 0.839
1 50 3.790 0.654 0.834

Table 5.4: Comparison of the fine-tuned RAFT flow estimation network with method 2. “Factors“
refers to the proportion of the training samples and validation-semi samples and the
corresponding “x“ and “y“ are formulated in the same way as Equation (5.2).

67

5 Error-Based Semi-supervised Flow Estimation

The first example presented in the upper part of Figure 5.4 is Frame 530 of the validation set of
Chairs2. The AEPE of the estimated flow generated by aseline1 is 3.374. In contrast, the AEPE of
the estimated flow generated by the fine-tuned network achieves better results of 0.940 and 0.982.
The red circle in the figures in the upper part of Figure 5.4 demonstrates that the accuracy of the
estimated optical flow in the non-occluded regions is improved after the RAFT flow estimation is
fine-tuned with the help of the error estimation network GMA†∗.

Let us take a look at the relatively “difficult“ example in Figure 5.4: Frame 278. The results of
Baseline1 is 0.865. Both fine-tune methods show a promising improvement in the quality of the
estimated optical flow by 46.5% (Method 1) and 41.5% (Method 2), especially of the motions in
occluded areas (red circle in the lower part of Figure 5.4).

5.3 Discussion

In this chapter, we propose two methods to fine-tune the RAFT flow estimation network on
FlyingChairs2 in a semi-supervised way. On account of the issue of overfitting, we use the estimated
flow with offset to supervise the training during the fine-tuning phase instead of the ground truth
flow. The estimated flow with offset is generated with the help of the error estimation network
proposed and trained in the previous chapters.

The evaluation results suggest that both fine-tuning methods can boost the quality of the estimated
flow compared to the RAFT flow estimation networks without fine-tuning with the validation set.
It is important to note the benefit of adopting the combined training samples (training and the
validation-semi samples of FlyingChairs2) as the training samples for the fine-tuning phase. We also
favor the use of the entire validation-semi samples over its subsets. Further studies on the choice
of LRmax

2 reveal the necessity of a lower value (for example 0.000013) to mitigate the accuracy
degradation caused by the learning rate bump in the additional fine-tuning phase.

Although there are important discoveries revealed by these experiments, there are also limitations.
There is uncertainty about the influence of the proportion of the mixed fine-tuning samples. Because
of the workload and the limited time space, we do not perform semi-supervised flow estimation on
GMA[JCL+21]. Another limitation is the target dataset. We only perform the experiments on the
synthetic dataset FlyingChairs2. Further explorations may also focus on the performance of these
flow-error-estimation-based fine-tuned methods on Sintel and KITTI-2015.

In Chapter 6 the summary and concluding remarks of this work are provided, along with the
potential directions for future work.

68

5.3 Discussion

Fr
am

e
53

0
Fr

am
e

27
8

Image 1 Image 2 Ground truth

EPE:4.604

Method 1

EPE:8.605

Ground truth in non-occluded areas Ground truth in occluded areas

Method 2

EPE:0.940

Method 1

EPE:0.982

Method 2

Image 1 Image 2 Ground truth

Ground truth in occluded areasGround truth in non-occluded areas

EPE:3.374

EPE:5.034

Figure 5.4: Compariosn of visualized results of the estimated optical flow (Baseline).

69

6 Conclusion and Outlook

6.1 Conclusions and Limitations

The main goal of the current study is to investigate whether flow error can be learned in a supervised
manner. We propose three architectures of error estimation networks, namely the Single-iteration
Conv, RAFT-like, and GMA-like error estimation networks. The error estimation network takes in
two consecutive images and the corresponding estimated flow error generated by a flow estimation
network and outputs an estimated flow error field. Experiments on the combinations of flow
estimation networks and various error estimation networks are performed. The error estimation
networks are trained following the FlyingChairs2 → FlyingThings3D → Sintel-split schedule.

These experiments confirm that flow error can be learned in a supervised fashion in the first two
training phases with RAFT-like and GMA-like error estimation networks. The loss error improves
during the training process. The Single-iteration Conv error estimation networks fail to estimate the
flow error in all three training phases. For phase 1, the most accurate combination is RAFTC+T
+ GMA†; While for phase 2, the combination of GMAC+T + GMA★ achieves the most accurate
estimation on the clean pass of the Sintel training set, whereas RAFTC+T + GMA† is the most
favorable combination on the final pass; For phase 3, the best combination of the clean and final
passes of Sintel-split are GMAC+T + GMA† and RAFTC+T + GMA★ respectively. However, these
results in phase 3 are not very encouraging. In this training phase, not all combinations can learn
the flow error as expected. The major issue is the misleading estimation in non-occluded areas.

Although there are some important discoveries revealed by these studies, there are also limitations.
One limitation of these methods however is that we do not perform all the ablation studies on the
correlation look-up process of all the combinations due to restricted time. Furthermore, not all the
ablation studies on the extended training iterations are performed. The Sintel-split dataset may not
be perfectly divided into training and validation samples. The training samples of Sintel-split may
not fully present all the motions that appear in the validation samples.

From the above discussion, the conclusion can be reached that RAFT-like and GMA-like error
estimation networks can learn the flow error with supervised learning. The extended training steps
can improve the accuracy of the estimated flow error to some extent.

We further investigate the effectiveness of error-based semi-supervised optical flow estimation
with RAFT[TD20] on the FlyingChairs2 dataset. We propose two methods to fine-tune the
flow estimation network. We construct the validation-semi samples by applying the estimated
flow with offset to perform the function of ground truth flow during training. This enables the
flow estimation networks to learn the motions of the validation samples without the concerns of
overfitting. The experiments are limited by the lack of further investigation into the influence of

71

6 Conclusion and Outlook

various proportions of training and validation-semi samples on the accuracy of the estimated optical
flow. Notwithstanding these limitations, the study suggests that error estimation networks can be
used to promote optical flow estimation in a semi-supervised manner.

6.2 Outlook

As for the error estimation networks, more research aiming to investigate the impact of each
component of the networks and hyperparameters of training settings needs to be carried out. For
example, the correlation level of the all-pairs correlation pyramid and the maximum learning rate
are potential experimental directions.

Furthermore, there is abundant room for further progress in improving the architecture of the
error estimation network. The visual results of the estimated flow error suggest that the flow error
around the fine structure of objects is still a big issue. Inspired by FlowFormer[HSZ+22] and
Transflow[LWM+23], one feasible method could be embracing the Transformer blocks in the CNN
encoder and decoder structure to ameliorate the blurry edges of the structure boundaries.

Taking the misleading estimation in non-occluded areas and the improved accuracy in occluded
areas in phase 3 into account, additional studies will be needed to explore an alternative training loss
for error estimation networks. The training loss could conduct an additional occlusion detection
to promote the error estimation of the occluded pixels and mitigate the deviated estimation of
non-occluded pixels.

For the semi-supervised learning of optical flow with the aid of error estimation networks, further
experimental investigations are needed to estimate the flow on other datasets, for example on Sintel.
Furthermore, the estimated flow error is ideally beneficial for the flow estimation of unseen samples.
This means that there is no pretrain on the target dataset. A natural progression of this work is to
analyze the feasibility of error-based unsupervised optical flow estimation. This would also be a
fruitful area for further investigation.

72

Bibliography

[AME+14] M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, J. Sivic. “Seeing 3d chairs:
exemplar part-based 2d-3d alignment using a large dataset of cad models”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2014, pp. 3762–3769. doi: 10.1109/cvpr.2014.487. url: https://doi.org/10.1109%
2Fcvpr.2014.487 (cit. on p. 14).

[BVS17] C. Bailer, K. Varanasi, D. Stricker. “CNN-based patch matching for optical flow
with thresholded hinge embedding loss”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2017, pp. 3250–3259. doi: 10.1109/
cvpr.2017.290. url: https://doi.org/10.1109%2Fcvpr.2017.290 (cit. on pp. 7, 9).

[BWSB12] D. J. Butler, J. Wulff, G. B. Stanley, M. J. Black. “A naturalistic open source movie
for optical flow evaluation”. In: Computer Vision–ECCV 2012: 12th European
Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings,
Part VI 12. Springer. 2012, pp. 611–625. doi: 10.1007/978-3-642-33783-3_44. url:
https://doi.org/10.1007%2F978-3-642-33783-3_44 (cit. on pp. 13, 14, 33).

[DFI+15] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der Smagt,
D. Cremers, T. Brox. “FlowNet: Learning optical flow with convolutional networks”.
In: 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, 2015.
doi: 10.1109/iccv.2015.316. url: https://doi.org/10.1109%2Ficcv.2015.316
(cit. on pp. 7, 13, 14, 33).

[GLU12] A. Geiger, P. Lenz, R. Urtasun. “Are we ready for autonomous driving? the kitti
vision benchmark suite”. In: 2012 IEEE conference on computer vision and pattern
recognition. IEEE. 2012, pp. 3354–3361. doi: 10.1109/cvpr.2012.6248074. url:
https://doi.org/10.1109%2Fcvpr.2012.6248074 (cit. on p. 15).

[GW16] D. Gadot, L. Wolf. “PatchBatch: A batch augmented loss for optical flow”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2016, pp. 4236–4245. doi: 10.1109/cvpr.2016.459. url: https://doi.org/10.1109%
2Fcvpr.2016.459 (cit. on p. 9).

[HCL06] R. Hadsell, S. Chopra, Y. LeCun. “Dimensionality reduction by learning an invariant
mapping”. In: 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06). Vol. 2. IEEE. 2006, pp. 1735–1742. doi: 10.1109/
cvpr.2006.100. url: https://doi.org/10.1109%2Fcvpr.2006.100 (cit. on pp. 7, 9).

[HHH+22] H.-P. Huang, C. Herrmann, J. Hur, E. Lu, K. Sargent, A. Stone, M.-H. Yang,
D. Sun. “Self-supervised AutoFlow”. In: arXiv preprint arXiv:2212.01762 (2022).
doi: 10.48550/ARXIV.2212.01762. url: https://arxiv.org/abs/2212.01762 (cit. on
p. 13).

73

https://doi.org/10.1109/cvpr.2014.487
https://doi.org/10.1109%2Fcvpr.2014.487
https://doi.org/10.1109%2Fcvpr.2014.487
https://doi.org/10.1109/cvpr.2017.290
https://doi.org/10.1109/cvpr.2017.290
https://doi.org/10.1109%2Fcvpr.2017.290
https://doi.org/10.1007/978-3-642-33783-3_44
https://doi.org/10.1007%2F978-3-642-33783-3_44
https://doi.org/10.1109/iccv.2015.316
https://doi.org/10.1109%2Ficcv.2015.316
https://doi.org/10.1109/cvpr.2012.6248074
https://doi.org/10.1109%2Fcvpr.2012.6248074
https://doi.org/10.1109/cvpr.2016.459
https://doi.org/10.1109%2Fcvpr.2016.459
https://doi.org/10.1109%2Fcvpr.2016.459
https://doi.org/10.1109/cvpr.2006.100
https://doi.org/10.1109/cvpr.2006.100
https://doi.org/10.1109%2Fcvpr.2006.100
https://doi.org/10.48550/ARXIV.2212.01762
https://arxiv.org/abs/2212.01762

Bibliography

[HLL+22] Y. Han, K. Luo, A. Luo, J. Liu, H. Fan, G. Luo, S. Liu. “RealFlow: EM-Based
Realistic Optical Flow Dataset Generation from Videos”. In: Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part XIX. Springer. 2022, pp. 288–305. doi: 10.1007/978-3-031-19800-7_17. url:
https://doi.org/10.1007%2F978-3-031-19800-7_17 (cit. on p. 13).

[HLVW17] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger. “Densely connected
convolutional networks”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. IEEE, 2017, pp. 4700–4708. doi: 10.1109/cvpr.2017.243.
url: https://doi.org/10.1109%2Fcvpr.2017.243 (cit. on p. 26).

[HSL16] Y. Hu, R. Song, Y. Li. “Efficient coarse-to-fine patchmatch for large displacement
optical flow”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2016, pp. 5704–5712. doi: 10.1109/cvpr.2016.615. url:
https://doi.org/10.1109%2Fcvpr.2016.615 (cit. on p. 9).

[HSZ+22] Z. Huang, X. Shi, C. Zhang, Q. Wang, K. C. Cheung, H. Qin, J. Dai, H. Li.
“Flowformer: A transformer architecture for optical flow”. In: Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XVII. Springer. 2022, pp. 668–685. doi: 10.1007/978-3-031-
19790-1_40. url: https://doi.org/10.1007%2F978-3-031-19790-1_40 (cit. on pp. 7,
72).

[IMS+17] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox. “Flownet 2.0:
Evolution of optical flow estimation with deep networks”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017, pp. 2462–2470.
doi: 10.1109/cvpr.2017.179. url: https://doi.org/10.1109%2Fcvpr.2017.179
(cit. on pp. 7, 13).

[ISKB18] E. Ilg, T. Saikia, M. Keuper, T. Brox. “Occlusions, motion and depth boundaries with
a generic network for disparity, optical flow or scene flow estimation”. In: Proceedings
of the European conference on computer vision (ECCV). 2018, pp. 614–630. doi:
10.1007/978-3-030-01258-8_38. url: https://doi.org/10.1007%2F978-3-030-
01258-8_38 (cit. on pp. 14, 15, 33).

[Jah18] A. Jahedi. Improved descriptor learning for correspondence problems. 2018 (cit. on
pp. 7, 9).

[JCL+21] S. Jiang, D. Campbell, Y. Lu, H. Li, R. Hartley. “Learning to estimate hidden motions
with global motion aggregation”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 9772–9781. doi: 10.1109/iccv48922.
2021.00963. url: https://doi.org/10.1109%2Ficcv48922.2021.00963 (cit. on pp. 7,
8, 10, 11, 16, 19–21, 23–25, 28, 30, 31, 36, 37, 68).

[JLPK22] J. Jeong, J. M. Lin, F. Porikli, N. Kwak. “Imposing consistency for optical flow
estimation”. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2022. doi: 10.1109/cvpr52688.2022.00318. url:
https://doi.org/10.1109%2Fcvpr52688.2022.00318 (cit. on p. 7).

[KNH+16] D. Kondermann, R. Nair, K. Honauer, K. Krispin, J. Andrulis, A. Brock, B. Gussefeld,
M. Rahimimoghaddam, S. Hofmann, C. Brenner, et al. “The HCI benchmark suite:
Stereo and flow ground truth with uncertainties for urban autonomous driving”. In:

74

https://doi.org/10.1007/978-3-031-19800-7_17
https://doi.org/10.1007%2F978-3-031-19800-7_17
https://doi.org/10.1109/cvpr.2017.243
https://doi.org/10.1109%2Fcvpr.2017.243
https://doi.org/10.1109/cvpr.2016.615
https://doi.org/10.1109%2Fcvpr.2016.615
https://doi.org/10.1007/978-3-031-19790-1_40
https://doi.org/10.1007/978-3-031-19790-1_40
https://doi.org/10.1007%2F978-3-031-19790-1_40
https://doi.org/10.1109/cvpr.2017.179
https://doi.org/10.1109%2Fcvpr.2017.179
https://doi.org/10.1007/978-3-030-01258-8_38
https://doi.org/10.1007%2F978-3-030-01258-8_38
https://doi.org/10.1007%2F978-3-030-01258-8_38
https://doi.org/10.1109/iccv48922.2021.00963
https://doi.org/10.1109/iccv48922.2021.00963
https://doi.org/10.1109%2Ficcv48922.2021.00963
https://doi.org/10.1109/cvpr52688.2022.00318
https://doi.org/10.1109%2Fcvpr52688.2022.00318

Bibliography

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 2016, pp. 19–28. doi: 10.1109/cvprw.2016.10. url: https://doi.org/
10.1109%2Fcvprw.2016.10 (cit. on p. 16).

[LH17] I. Loshchilov, F. Hutter. “Fixing weight decay regularization in adam”. In:
abs/1711.05101 (2017). url: http://arxiv.org/abs/1711.05101 (cit. on p. 37).

[LWM+23] Y. Lu, Q. Wang, S. Ma, T. Geng, Y. V. Chen, H. Chen, D. Liu. “TransFlow: Transformer
as Flow Learner”. In: arXiv preprint arXiv:2304.11523 (2023) (cit. on p. 72).

[MES+21] E. Mohamed, M. Ewaisha, M. Siam, H. Rashed, S. Yogamani, W. Hamdy, M. El-
Dakdouky, A. El-Sallab. “Monocular instance motion segmentation for autonomous
driving: Kitti instancemotseg dataset and multi-task baseline”. In: 2021 IEEE
Intelligent Vehicles Symposium (IV). IEEE. 2021, pp. 114–121. doi: 10.1109/

iv48863.2021.9575445. url: https://doi.org/10.1109%2Fiv48863.2021.9575445
(cit. on p. 7).

[MG15] M. Menze, A. Geiger. “Object scene flow for autonomous vehicles”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015, pp. 3061–
3070. doi: 10.1109/cvpr.2015.7298925. url: https://doi.org/10.1109%2Fcvpr.
2015.7298925 (cit. on pp. 12, 13, 15, 16).

[MIH+16] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, T. Brox. “A
large dataset to train convolutional networks for disparity, optical flow, and scene
flow estimation”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 4040–4048. doi: 10.1109/cvpr.2016.438. url:
https://doi.org/10.1109%2Fcvpr.2016.438 (cit. on pp. 13, 14, 33).

[PGC+17] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, A. Lerer. “Automatic differentiation in pytorch”. In: (2017). url: https:
//openreview.net/forum?id=BJJsrmfCZ (cit. on pp. 35, 57).

[REYE19] H. Rashed, A. El Sallab, S. Yogamani, M. ElHelw. “Motion and depth augmented
semantic segmentation for autonomous navigation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops. 2019, pp. 0–0.
doi: 10.1109/cvprw.2019.00049. url: https://doi.org/10.1109%2Fcvprw.2019.
00049 (cit. on p. 7).

[RHK17] S. R. Richter, Z. Hayder, V. Koltun. “Playing for benchmarks”. In: Proceedings of
the IEEE International Conference on Computer Vision. 2017, pp. 2213–2222. doi:
10.1109/iccv.2017.243. url: https://doi.org/10.1109%2Ficcv.2017.243 (cit. on
p. 13).

[SCH15] M. Savva, A. X. Chang, P. Hanrahan. “Semantically-enriched 3D models for common-
sense knowledge”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. IEEE, 2015, pp. 24–31. doi: 10.1109/cvprw.2015.
7301289. url: https://doi.org/10.1109%2Fcvprw.2015.7301289 (cit. on p. 14).

[Sch21] J. Schäufele. Improved RAFT architectures for optical flow estimation. 2021 (cit. on
pp. 7–9).

[SLG+19] L. Sevilla-Lara, Y. Liao, F. Güney, V. Jampani, A. Geiger, M. J. Black. “On the inte-
gration of optical flow and action recognition”. In: Pattern Recognition: 40th German
Conference, GCPR 2018, Stuttgart, Germany, October 9-12, 2018, Proceedings 40.
Springer. 2019, pp. 281–297 (cit. on p. 7).

75

https://doi.org/10.1109/cvprw.2016.10
https://doi.org/10.1109%2Fcvprw.2016.10
https://doi.org/10.1109%2Fcvprw.2016.10
http://arxiv.org/abs/1711.05101
https://doi.org/10.1109/iv48863.2021.9575445
https://doi.org/10.1109/iv48863.2021.9575445
https://doi.org/10.1109%2Fiv48863.2021.9575445
https://doi.org/10.1109/cvpr.2015.7298925
https://doi.org/10.1109%2Fcvpr.2015.7298925
https://doi.org/10.1109%2Fcvpr.2015.7298925
https://doi.org/10.1109/cvpr.2016.438
https://doi.org/10.1109%2Fcvpr.2016.438
https://openreview.net/forum?id=BJJsrmfCZ
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.1109/cvprw.2019.00049
https://doi.org/10.1109%2Fcvprw.2019.00049
https://doi.org/10.1109%2Fcvprw.2019.00049
https://doi.org/10.1109/iccv.2017.243
https://doi.org/10.1109%2Ficcv.2017.243
https://doi.org/10.1109/cvprw.2015.7301289
https://doi.org/10.1109/cvprw.2015.7301289
https://doi.org/10.1109%2Fcvprw.2015.7301289

[ST19] L. N. Smith, N. Topin. “Super-convergence: Very fast training of neural networks
using large learning rates”. In: Artificial intelligence and machine learning for
multi-domain operations applications. Vol. 11006. SPIE. 2019, pp. 369–386. doi:
10.1117/12.2520589. url: https://doi.org/10.1117%2F12.2520589 (cit. on pp. 37,
58).

[SYLK18] D. Sun, X. Yang, M.-Y. Liu, J. Kautz. “Pwc-net: Cnns for optical flow using pyramid,
warping, and cost volume”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, pp. 8934–8943. doi: 10.1109/cvpr.2018.00931.
url: https://doi.org/10.1109%2Fcvpr.2018.00931 (cit. on pp. 7, 11, 16, 21, 26).

[TD20] Z. Teed, J. Deng. “Raft: Recurrent all-pairs field transforms for optical flow”. In:
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part II 16. Springer. 2020, pp. 402–419. doi: 10.24963/
ijcai.2021/662. url: https://doi.org/10.24963%2Fijcai.2021%2F662 (cit. on
pp. 7–11, 16, 17, 19, 21, 23–26, 28, 29, 35–37, 57–59, 61, 71).

[TD21] Z. Teed, J. Deng. “Droid-slam: Deep visual slam for monocular, stereo, and rgb-
d cameras”. In: Advances in neural information processing systems 34 (2021),
pp. 16558–16569 (cit. on p. 7).

[VSP+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
I. Polosukhin. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017). url: http://arxiv.org/abs/1706.03762 (cit. on
pp. 19, 20, 30).

[WCWT17] S. Wang, R. Clark, H. Wen, N. Trigoni. “Deepvo: Towards end-to-end visual odometry
with deep recurrent convolutional neural networks”. In: 2017 IEEE international
conference on robotics and automation (ICRA). IEEE. 2017, pp. 2043–2050. doi:
10.1109/icra.2017.7989236. url: https://doi.org/10.1109%2Ficra.2017.7989236
(cit. on p. 7).

[ZJB+22] Z. Zhang, P. Ji, N. Bansal, C. Cai, Q. Yan, X. Xu, Y. Xu. “CLIP-FLow: Contrastive
learning by semi-supervised iterative pseudo labeling for optical flow estimation”.
In: arXiv preprint arXiv:2210.14383 (2022) (cit. on pp. 7, 9).

[ZUB18] H. Zhou, B. Ummenhofer, T. Brox. “Deeptam: Deep tracking and mapping”. In:
Proceedings of the European conference on computer vision (ECCV). 2018, pp. 822–
838. doi: 10.1007/978-3-030-01270-0_50. url: https://doi.org/10.1007%2F978-3-
030-01270-0_50 (cit. on p. 7).

All links were last followed on May 2, 2023.

https://doi.org/10.1117/12.2520589
https://doi.org/10.1117%2F12.2520589
https://doi.org/10.1109/cvpr.2018.00931
https://doi.org/10.1109%2Fcvpr.2018.00931
https://doi.org/10.24963/ijcai.2021/662
https://doi.org/10.24963/ijcai.2021/662
https://doi.org/10.24963%2Fijcai.2021%2F662
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/icra.2017.7989236
https://doi.org/10.1109%2Ficra.2017.7989236
https://doi.org/10.1007/978-3-030-01270-0_50
https://doi.org/10.1007%2F978-3-030-01270-0_50
https://doi.org/10.1007%2F978-3-030-01270-0_50

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction and Related Works
	1.1 Introduction
	1.2 Related Works
	1.3 Thesis Organization

	2 Foundations
	2.1 Optical Flow
	2.2 Average End-Point Error (AEPE)
	2.3 Optical Flow Datasets
	2.4 Architectures of the well-known Optical Flow Estimation Networks

	3 Error Estimation Networks
	3.1 Error Ground truth, Estimated Error, and Loss Error
	3.2 Error Estimation Network Overview
	3.3 Single-iteration Conv Error Estimation Network
	3.4 RAFT-like Error Estimation Network
	3.5 GMA-like Error Estimation Network
	3.6 Chapter Conclusion

	4 Experimental Results
	4.1 Experimental setup
	4.2 Implementation Details
	4.3 Phase 1: FlyingChairs2
	4.4 Phase 2: FlyingThings
	4.5 Phase 3: Sintel-split
	4.6 Ablations
	4.7 Discussion

	5 Error-Based Semi-supervised Flow Estimation
	5.1 Experimental Setup and Implementation Details
	5.2 Evaluation
	5.3 Discussion

	6 Conclusion and Outlook
	6.1 Conclusions and Limitations
	6.2 Outlook

	Bibliography

