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Abstract
We explore the interplay between t-structures in the
bounded derived category of finitely presented mod-
ules and the unbounded derived category of all modules
over a coherent ring 𝐴 using homotopy colimits. More
precisely, we show that every intermediate t-structure
in 𝐷𝑏(mod(𝐴)) can be lifted to a compactly gener-
ated t-structure in 𝐷(Mod(𝐴)), by closing the aisle and
the coaisle of the t-structure under directed homotopy
colimits. Conversely, we provide necessary and suffi-
cient conditions for a compactly generated t-structure
in 𝐷(Mod(𝐴)) to restrict to an intermediate t-structure
in 𝐷𝑏(mod(𝐴)), thus describing which t-structures can
be obtained via lifting. We apply our results to the spe-
cial case of HRS-t-structures. Finally, we discuss various
applications to silting theory in the context of finite
dimensional algebras.
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1 INTRODUCTION

A modern perspective on representation theory suggests to view the category of modules over
a ring as an abelian subcategory of its derived category and to study properties of the ring via
complexes of modules. Such a triangulated point of view allows to compare the representation
theories of two given rings even if their module categories are rather different. Foundational work
in this direction goes back to Happel [17], Rickard [32], and Keller [21], who extended classical
Morita theory to the setup of derived categories, explaining when two derived module categories
are triangle equivalent. The key notion in this context are tilting complexes. In recent years, tilting
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theory was generalized to silting theory, which allows to study more generally the embeddings of
module categories into derived categories as hearts of associated t-structures (see, e.g., [1, 23, 28,
31]).
In general, t-structures play a fundamental role in understanding the structure of triangu-

lated categories such as derived module categories. Following [9], every t-structure gives rise to
an abelian category—called the heart of the t-structure—connected to the ambient triangulated
category via a cohomological functor. In other words, every t-structure induces a cohomology
theory on the ambient triangulated category. Nowadays, t-structures are prominently used in
different branches of mathematics such as algebraic geometry, representation theory, category
theory, and topology.
In particular, understanding bounded t-structures on the bounded derived category of finitely

presented modules 𝐷𝑏(mod(𝐴)) over a finite dimensional algebra 𝐴 or on the bounded derived
category of coherent sheaves on a smooth projective variety 𝕏 is crucial for computing the space
of Bridgeland stability conditions. In representation theory, bounded t-structures appear in the
fundamental correspondence with silting complexes, co-t-structures and simple minded collec-
tions (see [22, 23, 33]). Nevertheless, even for bounded derived categories of finite dimensional
algebras, many questions are still open, in particular, when it comes to constructing t-structures
explicitly. On the contrary, in the unbounded derived category of all modules 𝐷(Mod(𝐴)) over an
arbitrary ring 𝐴, one can always generate a t-structure from any given set of objects [3, 35].
In this paper, we explore for a coherent ring𝐴 the interplay between t-structures in𝐷𝑏(mod(𝐴))

and in 𝐷(Mod(𝐴)). We restrict ourselves to intermediate t-structures, sitting in an interval
between shifts of the standard t-structure. Note that if 𝐴 is a finite dimensional algebra, a
t-structure in 𝐷𝑏(mod(𝐴)) is intermediate if and only if it is bounded.
Building on [37], where it was proved that t-structures in 𝐷(Mod(𝐴)) lift to coherent diagrams,

we show that every intermediate t-structure ( ,) in 𝐷𝑏(mod(𝐴))with heart can be lifted to a
compactly generated t-structure (hocolim

⃖⃖⃖⃖⃖⃖⃗
(), hocolim

⃖⃖⃖⃖⃖⃖⃗
()) in𝐷(Mod(𝐴)) by closing the classes

and  under directed homotopy colimits. Moreover, the heart of this new t-structure is a locally
coherent Grothendieck category with the set of finitely presented objects given by  (see Sec-
tion 3). This process of lifting t-structures from 𝐷𝑏(mod(𝐴)) to 𝐷(Mod(𝐴)) can be considered as
a generalization of lifting torsion pairs ( ,) from mod(𝐴) to torsion pairs (lim

��→
( ), lim

��→
()) in

Mod(𝐴) (see [13, Section 4.4]).
In Section 4, we discuss the problem of restricting t-structures from𝐷(Mod(𝐴)) to𝐷𝑏(mod(𝐴)).

Note that except for the commutative case discussed in [2] notmuch seems to be known.We prove
that a compactly generated and intermediate t-structure in 𝐷(Mod(𝐴)) restricts to 𝐷𝑏(mod(𝐴)) if
and only if every object in the heart𝐇 is a directed homotopy colimit of objects in𝐇∩ 𝐷𝑏(mod(𝐴))
(see Theorem 4.1). Altogether, via lifting and restricting t-structures, we obtain the following
result.

Theorem (see Corollary 4.2). Lifting and restricting t-structures yields a bijetcion between

(1) intermediate t-structures in 𝐷𝑏(mod(𝐴));
(2) intermediate, compactly generated t-structures in 𝐷(Mod(𝐴)) with a locally coherent

Grothendieck heart𝐇, whose finitely presented objects are given by𝐇∩ 𝐷𝑏(mod(𝐴)).

As a consequence, we get that a derived equivalence 𝐷(Mod(𝐵))
𝐹
⟶ 𝐷(Mod(𝐴)) preserves

coherent rings if and only if the image under 𝐹 of the standard t-structure in 𝐷(Mod(𝐵)) restricts
to𝐷𝑏(mod(𝐴)) (see Corollary 4.3 and Remark 4.4).Moreover, when restricting the bijection above
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to the special case of noetherian rings and HRS-t-structures, that is intermediate t-structures with
the smallest possible interval, the bijection takes a simpler form and recovers some results on
lifting torsion pairs (see Section 5).
In Section 6, we discuss applications to silting theory. First of all, it turns out that every lifted

t-structure in 𝐷(Mod(𝐴)) is controlled by a not necessarily small cosilting complex. In case 𝐴 is
a finite dimensional algebra we can establish a dual way of lifting by cogenerating a t-structure
in 𝐷(Mod(𝐴)) from a t-structure in 𝐷𝑏(mod(𝐴)). In this way, we obtain silting t-structures with
respect to not necessarily compact silting complexes (see Theorem 6.2). In general, we do not
know how to classify the silting t-structures of this form. Only in the case of HRS-t-structures, we
get a complete picture (see Proposition 6.4). Finally, by combining both ways of lifting, we can
show that for an intermediate t-structure ( ,) in 𝐷𝑏(mod(𝐴)) there is a unique t-structure in
𝐷(Mod(𝐴)) restricting to ( ,) if and only if ( ,) is algebraic, i.e. its heart is a finite length
category (see Corollary 6.3).

2 PRELIMINARIES

2.1 Notation

Throughout, let 𝐴 be a right coherent ring, that is a ring 𝐴 such that every finitely generated
submodule of a finitely presented right𝐴-module is again finitely presented. The category of right
𝐴-modules is denoted by Mod(𝐴), its subcategory of finitely presented modules by mod(𝐴), its
subcategory of projective modules by Proj(𝐴) and its subcategory of finitely generated projective
modules by proj(𝐴). Note that 𝐴 is right coherent if and only ifmod(𝐴) is an abelian category. By
𝐾𝑏(proj(𝐴)) (respectively, 𝐾−(proj(𝐴))), we denote the (right) bounded homotopy category. We
write𝐷(𝐴) = 𝐷(Mod(𝐴)) for the derived category of all𝐴-modules and𝐷𝑏(𝐴) = 𝐷𝑏(mod(𝐴)) for
the bounded derived category of finitely presented 𝐴-modules.
All subcategories considered are strict and full. If  is a subcategory of an additive category,

we define ⟂ to be the subcategory of  formed by all objects 𝑍 with Hom(𝐶, 𝑍) = 0 for all 𝐶
in . Dually, we define ⟂. If  is a triangulated category and 𝐶 an object in  , we define the
following perpendicular classes for any subset 𝐼 of ℤ:

⟂𝐼𝐶 ∶= {𝑍 ∈  ∣ Hom (𝑍, 𝐶[𝑖]) = 0 for all 𝑖 ∈ 𝐼}

𝐶⟂𝐼 ∶= {𝑍 ∈  ∣ Hom (𝐶, 𝑍[𝑖]) = 0 for all 𝑖 ∈ 𝐼}

2.2 t-structures

For a triangulated category  and a subcategory  of  , we call a morphism 𝑓∶ 𝑍⟶ 𝐶 in
 a left -approximation of 𝑍 provided that 𝐶 is in  and the induced map Hom (𝐶, 𝐶

′)⟶
Hom (𝑍, 𝐶

′) is surjective for all 𝐶′ in . We call 𝑓 a minimal left -approximation, if 𝑓 is a left-
minimal morphism, i.e., every morphism g ∶ 𝐶⟶ 𝐶 with g◦𝑓 = 𝑓 is an isomorphism. Dually,
we define (minimal) right approximations.
A pair of subcategories ( ,) in  is said to be a torsion pair, if both  and are closed under

direct summands,Hom (𝑋, 𝑌) = 0 for all 𝑋 in  and 𝑌 in , and for all 𝑍 in  there is a triangle

(⋆)
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with 𝑋 in  and 𝑌 in  . Moreover, a torsion pair ( ,) is called a t-structure (respectively, co-t-
structure), if  is closed under positive (respectively, negative) shifts. We call  the aisle and 

the coaisle of the (co-)t-structure.
For a t-structure ( ,) the morphism 𝑋⟶ 𝑍 in the triangle above is a minimal right

-approximation, and the morphism 𝑍⟶ 𝑌 is a minimal left -approximation. These approx-
imations are induced by the truncation functors 𝜏 ∶  ⟶  , which is right adjoint to the
inclusion of in  , and 𝜏 ∶  ⟶  , which is left adjoint to the inclusion of in  . The triangle
⋆ then takes the form

Moreover, for a t-structure ( ,) we denote by  ∶=  ∩ [1] its heart, which is well-known
to be an abelian category. Its exact structure is given by the triangles in  with the first three
terms in . Combining the truncation functors, we get a cohomological functor 𝐻0∶  ⟶ 

mapping an object 𝑍 ∈  to 𝜏[1]𝜏 (𝑍), where 𝜏[1] denotes the truncation functor with respect
to the shifted t-structure ([1],[1]). The functor𝐻0 sends triangles in  to long exact sequences
in.
If  is a triangulated category with coproducts, we say that an object 𝑍 in  is compact, if

the functorHom (𝑍, −) commutes with coproducts. Moreover, a t-structure ( ,) in  is called
compactly generated, if  = ⟂ for a set  of compact objects in  .
For  = 𝐷(𝐴), we denote by (𝐷(𝐴)⩽0, 𝐷(𝐴)⩾1) the standard t-structure, where𝐷(𝐴)⩽0 (respec-

tively, 𝐷(𝐴)⩾1) denotes the subcategory of complexes with non-zero cohomologies only in
non-positive (respectively, positive) degrees. For 𝑛 ∈ ℤ, we define 𝐷(𝐴)⩽𝑛 ∶= 𝐷(𝐴)⩽0[−𝑛] and
𝐷(𝐴)⩾𝑛+1 ∶= 𝐷(𝐴)⩾1[−𝑛]. For the standard t-structure (𝐷(𝐴)⩽0, 𝐷(𝐴)⩾1) we denote the trunca-
tion functors by 𝜏⩽0 and 𝜏⩾1, for the shift of the standard t-structure (𝐷(𝐴)⩽𝑛, 𝐷(𝐴)⩾𝑛+1) by 𝜏⩽𝑛
and 𝜏⩾𝑛+1. A t-structure ( ,) in 𝐷(𝐴) is called intermediate, if there are 𝑚, 𝑛 ∈ ℤ such that
𝐷(𝐴)⩽𝑚 ⊆  ⊆ 𝐷(𝐴)⩽𝑛, or equivalently,𝐷(𝐴)⩾𝑛+1 ⊆  ⊆ 𝐷(𝐴)⩾𝑚+1. Note that𝐷𝑏(𝐴) is equipped
with a standard t-structure as well, and we can adapt the previous notation. In particular, we
call a t-structure ( ,) in 𝐷𝑏(𝐴) intermediate, if there are 𝑚, 𝑛 ∈ ℤ such that 𝐷𝑏(𝐴)⩽𝑚 ⊆  ⊆
𝐷𝑏(𝐴)⩽𝑛. If 𝐴 is a finite dimensional algebra, it can be checked that a t-structure ( ,) in 𝐷𝑏(𝐴)
is intermediate if and only if it is bounded, i.e.

⋃

𝑛∈ℤ

[𝑛] = 𝐷𝑏(𝐴) =
⋃

𝑛∈ℤ

[𝑛].

2.3 Homotopy colimits

We will be interested in taking homotopy colimits in 𝐷(𝐴). For that we will follow the approach
based on the theory of derivators, without actually defining all the corresponding notions. Instead,
we will give a short overview of facts and ideas used to define homotopy colimits in 𝐷(𝐴). For a
more detailed overview on homotopy colimits in triangulated categories and the use of derivators,
we refer to [16, 19, 37, 39].
Let 𝐶𝑎𝑡 be the 2-category of all small categories. For 𝐼 ∈ 𝐶𝑎𝑡 we consider the category

Mod(𝐴)𝐼 , the category of 𝐼-shaped diagrams of 𝐴-modules. Objects of this category are functors
𝐼 ⟶Mod(𝐴) and morphisms are natural transformations between these functors. The category
Mod(𝐴)𝐼 is again abelian, so we can consider the unbounded derived category 𝐷(Mod(𝐴)𝐼). This
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category is the localization of the category of complexes 𝐶(Mod(𝐴)𝐼) ≃ 𝐶(Mod(𝐴))𝐼 with respect
to quasi-isomorphisms. The objects of 𝐷(Mod(𝐴)𝐼) are called coherent diagrams and we think of
them as 𝐼-shaped diagrams of complexes of 𝐴-modules.
A functor 𝑢∶ 𝐼 ⟶ 𝐽 in 𝐶𝑎𝑡 yields a functor 𝑢∗ ∶ Mod(𝐴)𝐽 ⟶Mod(𝐴)𝐼 via precomposition.

As 𝑢∗ is exact, it further induces a triangle functor 𝑢∗ ∶ 𝐷(Mod(𝐴)𝐽)⟶ 𝐷(Mod(𝐴)𝐼). Now, let ∗
be the category with one object and one morphism. The category 𝐷(Mod(𝐴)∗) identifies with the
category 𝐷(𝐴). For any 𝐼 ∈ 𝐶𝑎𝑡 there exists a unique functor 𝜋𝐼 ∶ 𝐼 ⟶∗. The constant diagram
functor 𝜋∗𝐼 ∶ 𝐷(𝐴)⟶ 𝐷(Mod(𝐴)𝐼) maps an object 𝑍 ∈ 𝐷(𝐴) to the constant diagram of shape
𝐼 with entries 𝑍 and identity maps everywhere. We can view 𝜋∗𝐼 as a functor between the cor-
responding categories of complexes. In this case, its left (respectively, right) adjoint is the usual
colimit (respectively, limit) functor in the category of complexes. The homotopy colimit is defined
to be the left derived functor of this colimit functor, and thus the functor left adjoint to 𝜋∗𝐼 on the
level of derived categories.

Wewillmostly be interested in the case, when 𝐼 is a directed category. In this situation, we speak
of a directed homotopy colimit and write hocolim

⃖⃖⃖⃖⃖⃖⃗
𝑖∈𝐼𝑍𝑖 , where (𝑍𝑖 ∣ 𝑖 ∈ 𝐼) denotes a coherent dia-

gram. Since direct limits in the category of complexes of𝐴-modules are exact, directed homotopy
colimits can be computed as usual direct limits of complexes.
For a small category 𝐼 and an object 𝑖 ∈ 𝐼 we can consider the functor 𝜄𝑖 ∶ ∗⟶ 𝐼 sending ∗ to

𝑖, and the corresponding functor 𝜄∗
𝑖
∶ 𝐷(Mod(𝐴)𝐼)⟶ 𝐷(𝐴). Evaluating 𝜄∗

𝑖
on a diagram of com-

plexes of 𝐴-modules (𝑍𝑖 ∣ 𝑖 ∈ 𝐼) yields 𝑍𝑖 . Moreover, each morphism 𝑓∶ 𝑖 ⟶ 𝑗 in 𝐼 gives rise to
a natural transformation 𝑓∶ 𝜄𝑖 ⟹ 𝜄𝑗 and thus to a natural transformation 𝑓∗ ∶ 𝜄∗𝑖 ⟹ 𝜄∗

𝑗
(via pre-

composition). Evaluating 𝑓∗ on (𝑍𝑖 ∣ 𝑖 ∈ 𝐼) yields the correspondingmorphism 𝑍𝑖 ⟶ 𝑍𝑗 . We can
extend this assignment to define the diagram functor dia𝐼 ∶ 𝐷(Mod(𝐴)𝐼)⟶ 𝐷(𝐴)𝐼 . The objects
of 𝐷(𝐴)𝐼 are called incoherent diagrams.
Finally, for a subcategory  of𝐷(𝐴), we denote by hocolim

⃖⃖⃖⃖⃖⃖⃗
() the smallest subcategory of𝐷(𝐴)

containing  and closed under directed homotopy colimits of objects from , that is closed under
directed homotopy colimits of diagrams 𝑍 = (𝑍𝑖 ∣ 𝑖 ∈ 𝐼) in 𝐷(Mod(𝐴)𝐼) with 𝜄∗𝑖 (𝑍) = 𝑍𝑖 ∈  for
all 𝑖 ∈ 𝐼, for all directed categories 𝐼 ∈ 𝐶𝑎𝑡.

3 LIFTING T-STRUCTURES VIA HOMOTOPY COLIMITS

In the proof of the next lemma, we will use brutal truncations. For a complex 𝑋 = (𝑋𝑖, 𝑑𝑖) with
components 𝑋𝑖 and a differential 𝑑𝑖 of degree 1 we denote the brutal truncation at degree 𝑚 by
𝜎⩾𝑚(𝑋) (respectively 𝜎<𝑚(𝑋)), where 𝜎⩾𝑚(𝑋) = (𝜎⩾𝑚(𝑋)𝑖, 𝑑′

𝑖
) is the complex with 𝜎⩾𝑚(𝑋)𝑖 = 𝑋𝑖

for 𝑖 ⩾ 𝑚 and 0 otherwise, and𝑑′
𝑖
= 𝑑𝑖 for 𝑖 ⩾ 𝑚 and 0 otherwise. The truncation𝜎<𝑚(𝑋) is defined

to be the complex (𝜎<𝑚(𝑋)𝑖, 𝑑′
𝑖
) with 𝜎<𝑚(𝑋)𝑖 = 𝑋𝑖 for 𝑖 < 𝑚 and 0 otherwise, and 𝑑′

𝑖
= 𝑑𝑖 for

𝑖 < 𝑚 − 1 and 0 otherwise.

Lemma 3.1. Let ( ,) be an intermediate t-structure in 𝐷𝑏(𝐴). Then

(𝐗, 𝐘) ∶= (⟂(⟂),⟂)
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is a compactly generated intermediate t-structure in 𝐷(𝐴) and

(𝐗 ∩ 𝐷𝑏(𝐴), 𝐘 ∩ 𝐷𝑏(𝐴)) = ( ,).

Proof. Since  is skeletally small, the pair (𝐗, 𝐘) forms a t-structure in 𝐷(𝐴), where 𝐗 is given
by the smallest subcategory of 𝐷(𝐴) containing  and closed under extensions, coproducts and
positive shifts (see [3]). By construction, the t-structure (𝐗, 𝐘) is again intermediate, i.e., there are
𝑚, 𝑛 ∈ ℤ such that 𝐷(𝐴)⩽𝑚 ⊆ 𝐗 ⊆ 𝐷(𝐴)⩽𝑛. This follows from the fact that taking the orthogonal
in𝐷(𝐴) yields (𝐷𝑏(𝐴)⩽𝑛)⟂ = 𝐷(𝐴)⩾𝑛+1. Now, take 𝑋 in  and view 𝑋 as an object in 𝐾−(proj(𝐴))
by taking its projective resolution. Using brutal truncation, we obtain a triangle

where 𝜎⩾𝑚(𝑋), viewed as an object in 𝐷(𝐴), is compact. Define  ∶= 1 ∪ 2 to be the set of
compact objects given by1 ∶= {𝐴[𝑡] ∣ 𝑡 ⩾ −𝑚} and2 ∶= {𝜎⩾𝑚(𝑋) ∣ 𝑋 ∈ }.We claim that⟂ =
𝐘, showing that (𝐗, 𝐘) is a compactly generated t-structure.
First, note that 𝐘 ⊆ 𝐷(𝐴)⩾𝑚+1 = ⟂1 . Hence, it suffices to observe that for an object 𝑍 in ⟂1 ,

we have

𝑍 ∈ ⟂2 ⇔ 𝑍 ∈ 𝐘 = ⟂.

Applying the functor Hom𝐷(𝐴)(−, 𝑍) to the triangle above and using the fact that both
Hom𝐷(𝐴)(𝜎

<𝑚(𝑋)[−1], 𝑍) and Hom𝐷(𝐴)(𝜎
<𝑚(𝑋), 𝑍) are zero, we get the claim. □

We call the t-structure obtained in Lemma 3.1 the lifted t-structure associated to ( ,). We
want to better understand the t-structures in 𝐷(𝐴) that we obtain via lifting. Recall that an object
𝑋 in a Grothendieck category 𝐇 is said to be finitely presented provided that Hom𝐇(𝑋,−) com-
mutes with direct limits. Moreover,𝐇 is called locally coherent, if it has a set of finitely presented
generators and if the finitely presented objects form an exact abelian subcategory.

Theorem 3.2. Let ( ,) be an intermediate t-structure in 𝐷𝑏(𝐴) with heart , and let (𝐗, 𝐘) be
the associated lifted t-structure in 𝐷(𝐴) with heart𝐇. Then the following holds.

(1) (𝐗, 𝐘) = (hocolim
⃖⃖⃖⃖⃖⃖⃗

(), hocolim
⃖⃖⃖⃖⃖⃖⃗

()).
(2) 𝐇 = hocolim

⃖⃖⃖⃖⃖⃖⃗
(), and 𝐇 is a locally coherent Grothendieck category, whose finitely presented

objects are given by = 𝐇 ∩ 𝐷𝑏(𝐴).

Proof. (1): Every aisle of a t-structure in 𝐷(𝐴) is closed under homotopy colimits by [37, Propo-
sition 4.2]. Moreover, since (𝐗, 𝐘) is compactly generated by Lemma 3.1, the coaisle 𝐘 is closed
under directed homotopy colimits (see [37, Proposition 5.6]). Indeed, if 𝑆 is a compact object in
𝐷(𝐴) and (𝑍𝑖 ∣ 𝑖 ∈ 𝐼) is a directed coherent diagram, we have the canonical isomorphism

Hom𝐷(𝐴)(𝑆, hocolim
⃖⃖⃖⃖⃖⃖⃗

𝑖∈𝐼𝑍𝑖) ≅ lim��→ 𝑖∈𝐼 Hom𝐷(𝐴)(𝑆, 𝑍𝑖).

It follows that hocolim
⃖⃖⃖⃖⃖⃖⃗

() ⊆ 𝐗 and hocolim
⃖⃖⃖⃖⃖⃖⃗

() ⊆ 𝐘. Now, take an object 𝑍 in 𝐷(𝐴) and consider
the approximation triangle
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with 𝑋 in 𝐗 and 𝑌 in 𝐘. We will show that 𝑋 is in hocolim
⃖⃖⃖⃖⃖⃖⃗

() and 𝑌 is in hocolim
⃖⃖⃖⃖⃖⃖⃗

(), proving
that (𝐗, 𝐘) = (hocolim

⃖⃖⃖⃖⃖⃖⃗
(), hocolim

⃖⃖⃖⃖⃖⃖⃗
()). To this end, write 𝑍 ≅ lim

��→𝑖∈𝐼
𝑍𝑖 in 𝐶(Mod(𝐴)), where

(𝑍𝑖 ∣ 𝑖 ∈ 𝐼) ∈ 𝐶(Mod(𝐴))
𝐼 is a direct system of bounded complexes of finitely presented modules

(see [15, Lemmas 4.1.1(ii) and 5.1.1] for the existence of such a diagram, and [12, Section 4] for
further context).We can view (𝑍𝑖 ∣ 𝑖 ∈ 𝐼) as an object in𝐷(Mod(𝐴)𝐼) and get𝑍 ≅ hocolim

⃖⃖⃖⃖⃖⃖⃗
𝑖∈𝐼𝑍𝑖 . By

[37, Theorem A], there is a t-structure (𝐗𝐼, 𝐘𝐼) in 𝐷(Mod(𝐴)𝐼), where𝐗𝐼 , respectively 𝐘𝐼 , is given
by all 𝐼-shaped diagrams of complexes in𝐗, respectively𝐘. Consider the associated approximation
triangle

in 𝐷(Mod(𝐴)𝐼). Applying the functors 𝜄∗
𝑖
, we obtain triangles of the form

in 𝐷(𝐴). Since all the 𝑍𝑖 belong to 𝐷𝑏(𝐴), so do all the 𝑋𝑖 and 𝑌𝑖 . In fact, we have found the
approximation triangles of𝑍𝑖 with respect to the t-structure ( ,) in𝐷𝑏(𝐴). Taking the homotopy
colimit of the triangle in 𝐷(Mod(𝐴)𝐼) yields a triangle

in 𝐷(𝐴) isomorphic to

It follows that 𝑋 belongs to hocolim
⃖⃖⃖⃖⃖⃖⃗

() and 𝑌 belongs to hocolim
⃖⃖⃖⃖⃖⃖⃗

(), as desired. Observe that
the previous arguments applied to an arbitrary directed coherent diagram imply that truncation
functors of compactly generated t-structures always commute with directed homotopy colimits.
(2): We know that hocolim

⃖⃖⃖⃖⃖⃖⃗
() ⊆ 𝐇 by (1). Conversely, take an object 𝐻 in 𝐇 and write again

𝐻 ≅ hocolim
⃖⃖⃖⃖⃖⃖⃗

𝑖∈𝐼𝑍𝑖 with 𝑍𝑖 in 𝐷𝑏(𝐴) and 𝐼 directed. By 𝐻0∶ 𝐷(𝐴)⟶𝐇 we denote the cohomo-
logical functor associated to the t-structure (𝐗, 𝐘). Note that on objects in 𝐷𝑏(𝐴) the functor 𝐻0
coincides with the cohomological functor associated to ( ,). Since 𝐻0 is the composition of
truncation functors, it commutes with directed homotopy colimits following (1). Hence, we get

𝐻 = 𝐻0(𝐻) ≅ 𝐻0(hocolim
⃖⃖⃖⃖⃖⃖⃗

𝑖∈𝐼𝑍𝑖) ≅ hocolim
⃖⃖⃖⃖⃖⃖⃗

𝑖∈𝐼𝐻
0(𝑍𝑖)

with𝐻0(𝑍𝑖) in, as desired.
The heart 𝐇 of (𝐗, 𝐘) is a Grothendieck category by [7, Corollary 4.10] (see also [36, 37] for

more general results in this direction). By [37, TheoremA andCorollary 5.8] we can lift incoherent
diagrams in𝐇 to coherent diagrams and compute direct limits in𝐇 as directed homotopy colimits
in𝐷(𝐴). Thus, it only remains to show that the set of finitely presented objects in𝐇 is given by =
𝐇 ∩ 𝐷𝑏(𝐴). This follows from [34, Proposition 4.5]. In order to apply [34, Proposition 4.5] we only
need to check that for each direct system (𝐻𝑖 ∣ 𝑖 ∈ 𝐼) in𝐇 and for each 𝑘 ∈ ℤ, the canonical map
lim
��→𝑖∈𝐼

Hom𝐷(𝐴)(𝐴[𝑘],𝐻𝑖)⟶ Hom𝐷(𝐴)(𝐴[𝑘], lim��→𝑖∈𝐼
𝐻𝑖) is an isomorphism. After lifting (𝐻𝑖 ∣ 𝑖 ∈

𝐼) to a coherent diagram, this follows from the fact thatHom𝐷(𝐴)(𝐴[𝑘], −) is naturally isomorphic
to the −𝑘th cohomology functor on complexes, which preserves direct limits. □
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We have seen so far that every intermediate t-structure ( ,) in 𝐷𝑏(𝐴) lifts to an intermediate
and compactly generated t-structure (hocolim

⃖⃖⃖⃖⃖⃖⃗
(), hocolim

⃖⃖⃖⃖⃖⃖⃗
()) in 𝐷(𝐴), and that this lifting pro-

cess is compatible with the heart. Next, we would like to better understand which t-structures in
𝐷(𝐴) can be obtained in this way.

4 RESTRICTING T-STRUCTURES

We say that a t-structure (𝐗, 𝐘) in 𝐷(𝐴) restricts to 𝐷𝑏(𝐴), if (𝐗 ∩ 𝐷𝑏(𝐴), 𝐘 ∩ 𝐷𝑏(𝐴)) is a t-
structure in 𝐷𝑏(𝐴). Clearly, every t-structure in 𝐷(𝐴) obtained via lifting restricts to the initial
t-structure in 𝐷𝑏(𝐴).
Moreover, we call a t-structure (𝐗, 𝐘) in𝐷(𝐴) homotopically smashing, if the coaisle𝐘 is closed

under directed homotopy colimits. As discussed in the proof of Theorem 3.2, every compactly
generated t-structure is homotopically smashing.

Theorem4.1. Let (𝐗, 𝐘) be an intermediate, homotopically smashing t-structure in𝐷(𝐴)with heart
𝐇. Then the following are equivalent.

(1) (𝐗, 𝐘) restricts to 𝐷𝑏(𝐴);
(2) 𝐘 = hocolim

⃖⃖⃖⃖⃖⃖⃗
(𝐘 ∩ 𝐷𝑏(𝐴));

(3) 𝐇 = hocolim
⃖⃖⃖⃖⃖⃖⃗

(𝐇 ∩ 𝐷𝑏(𝐴)).

In particular, if these conditions are fulfilled, we also have 𝐗 = hocolim
⃖⃖⃖⃖⃖⃖⃗

(𝐗 ∩ 𝐷𝑏(𝐴)).

Proof. (1) ⇒ (2), (3): By lifting again, we obtain the t-structure

(hocolim
⃖⃖⃖⃖⃖⃖⃗

(𝐗 ∩ 𝐷𝑏(𝐴)), hocolim
⃖⃖⃖⃖⃖⃖⃗

(𝐘 ∩ 𝐷𝑏(𝐴)))

in𝐷(𝐴), which coincides with (𝐗, 𝐘), as both𝐗 and𝐘 are closed under directed homotopy colim-
its, and thus contain the respective classes hocolim

⃖⃖⃖⃖⃖⃖⃗
(𝐗 ∩ 𝐷𝑏(𝐴)) and hocolim

⃖⃖⃖⃖⃖⃖⃗
(𝐘 ∩ 𝐷𝑏(𝐴)). Hence,

we get (2), and also (3) by Theorem 3.2(2).
(2) ⇒ (1): Now, assume that 𝐘 = hocolim

⃖⃖⃖⃖⃖⃖⃗
(𝐘 ∩ 𝐷𝑏(𝐴)). We show that for an object 𝑍 in 𝐷𝑏(𝐴)

the approximation triangle

with respect to (𝐗, 𝐘) lies in 𝐷𝑏(𝐴). To this end, we first consider the case when 𝑍 is a compact
object. By assumption, we can write 𝑌 = hocolim

⃖⃖⃖⃖⃖⃖⃗
𝑖∈𝐼𝑌𝑖 with 𝑌𝑖 in 𝐘 ∩ 𝐷𝑏(𝐴) for all 𝑖. Since 𝑍 is

compact, we have

𝑓 ∈ Hom𝐷(𝐴)(𝑍, hocolim
⃖⃖⃖⃖⃖⃖⃗

𝑖∈𝐼𝑌𝑖) ≅ lim��→ 𝑖∈𝐼 Hom𝐷(𝐴)(𝑍, 𝑌𝑖).

Thus, the map 𝑓 factors through some 𝑌𝑖 . Since 𝑓 is a minimal left 𝐘-approximation, the object
𝑌 identifies with a direct summand of 𝑌𝑖 . In particular, the whole approximation triangle above
lies in 𝐷𝑏(𝐴), as desired.
For the general case, assume 𝑍 ∈ 𝐷𝑏(𝐴). We view 𝑍 as an object in 𝐾−(proj(𝐴)) and use trun-

cations. First, note that there exists 𝑖 ∈ ℤ big enough such that 𝜏>𝑚𝜎⩾−𝑖(𝑍) ≃ 𝜏>𝑚𝑍, where 𝑚
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is given by the intermediate condition 𝐷(𝐴)⩽𝑚 ⊆ 𝐗 ⊆ 𝐷(𝐴)⩽𝑛. Since 𝐘 ⊆ 𝐷(𝐴)>𝑚, we get that
𝜏𝐘𝜏>𝑚𝑊 ≃ 𝜏𝐘𝑊 for any𝑊 ∈ 𝐷(𝐴). Thus

𝑌 = 𝜏𝐘𝑍 ≃ 𝜏𝐘𝜏>𝑚𝑍 ≃ 𝜏𝐘𝜏>𝑚𝜎⩾−𝑖(𝑍) ≃ 𝜏𝐘𝜎⩾−𝑖(𝑍) ∈ 𝐷𝑏(𝐴)

as 𝜎⩾−𝑖(𝑍) is compact.
(3) ⇒ (1): Finally, assume that 𝐇 = hocolim

⃖⃖⃖⃖⃖⃖⃗
(𝐇 ∩ 𝐷𝑏(𝐴)). Take 𝑍 in 𝐷𝑏(𝐴) and consider the

approximation triangle

(†)

with respect to (𝐗, 𝐘). Since (𝐗, 𝐘) is intermediate, there is some 𝑘 ⩾ 0 with 𝑍[𝑘] in 𝐗. Instead of
the triangle † we consider the shifted triangle

which is the approximation triangle of 𝑍[𝑘] with respect to the t-structure (𝐗[𝑘], 𝐘[𝑘]). Hence, it
is enough to show that for any object 𝑍 in 𝐗 ∩ 𝐷𝑏(𝐴) and 𝑘 ⩾ 0, the approximation triangle

with respect to (𝐗[𝑘], 𝐘[𝑘]) belongs to 𝐷𝑏(𝐴). We proceed by induction on 𝑘. The case 𝑘 = 0 is
trivial. For the case 𝑘 = 1, we argue in a similar way as in the proof of (2) ⇒ (1). First, consider a
compact object 𝑍 in 𝐗 ∩ 𝐷𝑏(𝐴) together with the approximation triangle

We have 𝑌[1] = 𝐻0(𝑍), where 𝐻0 denotes the cohomological functor associated to (𝐗, 𝐘). By
assumption, it follows that𝐻0(𝑍) = hocolim

⃖⃖⃖⃖⃖⃖⃗
𝑖∈𝐼𝐻𝑖 with𝐻𝑖 in𝐇∩ 𝐷𝑏(𝐴) for all 𝑖. Since 𝑍 is com-

pact, the map 𝜙 factors through some 𝐻𝑖 and, thus, the previous triangle lies in 𝐷𝑏(𝐴). Now
suppose that 𝑍 is an arbitrary object in 𝐗 ∩ 𝐷𝑏(𝐴). We view 𝑍 as an object in 𝐾−(proj(𝐴)) so
that the brutal truncations 𝑍𝑖 ∶= 𝜎⩾−𝑖(𝑍) are compact for all 𝑖. For every 𝑖 we get a triangle

Since (𝐗, 𝐘) is intermediate, the object 𝜎<−𝑖(𝑍)[−1] will belong to 𝐗 for sufficiently large 𝑖.
In that case, 𝑍𝑖 will also be in 𝐗, as an extension of objects in 𝐗. Moreover, we can choose 𝑖
big enough so that 𝜏>𝑚−1𝑍 ≃ 𝜏>𝑚−1𝜎⩾−𝑖(𝑍) = 𝜏>𝑚−1𝑍𝑖 , where 𝑚 is given by the intermediate
condition 𝐷(𝐴)⩽𝑚 ⊆ 𝐗 ⊆ 𝐷(𝐴)⩽𝑛. Hence, as in the proof of (2) ⇒ (1) we get

𝑌[1] = 𝜏𝐘[1]𝑍 ≃ 𝜏𝐘[1]𝜏>𝑚−1𝑍 ≃ 𝜏𝐘[1]𝜏>𝑚−1𝑍𝑖 ≃ 𝜏
𝐘[1]𝑍𝑖 ∈ 𝐷

𝑏(𝐴)

as 𝑍𝑖 is compact.
For the induction step, let
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be the approximation triangle of 𝑍 with respect to the t-structure (𝐗[𝑘 − 1], 𝐘[𝑘 − 1]), which
belongs to 𝐷𝑏(𝐴) by the induction hypothesis. Moreover, let

be the approximation triangle of 𝑋′[𝑘 − 1] with respect to (𝐗[𝑘], 𝐘[𝑘]). Note that, as 𝑋′[𝑘 − 1]
belongs to 𝐗[𝑘 − 1] ∩ 𝐷𝑏(𝐴), this triangle belongs to 𝐷𝑏(𝐴) by the base of induction (𝑘 = 1). We
obtain the following commutative diagram of morphisms

Note that the composition gℎ factors through 𝑓, as 𝑓 is a right 𝐗[𝑘]-approximation. On the other
hand, since 𝑋[𝑘] is in 𝐗[𝑘] ⊆ 𝐗[𝑘 − 1], the map 𝑓 factors through g , as g is a right 𝐗[𝑘 − 1]-
approximation, and thus through the composition gℎ, as ℎ is a right𝐗[𝑘]-approximation. Hence,
we get a map 𝑑∶ 𝑋[𝑘]⟶ 𝑋

′′
[𝑘] such that 𝑓 = gℎ𝑑 = 𝑓𝑐𝑑. The minimality of 𝑓 guarantees that

𝑐𝑑 is an isomorphism, showing that𝑋[𝑘] lies in𝐷𝑏(𝐴), as a direct summandof𝑋′′
[𝑘]. This finishes

the proof. □

As an immediate consequence, it follows that every intermediate, homotopically smashing
t-structure in 𝐷(𝐴) that restricts to 𝐷𝑏(𝐴) is necessarily compactly generated. We can now deter-
mine precisely, which t-structures we obtain from lifting. In fact, it turns out that the necessary
conditions discussed in Lemma 3.1 and Theorem 3.2 are also sufficient.

Corollary 4.2. Lifting and restricting t-structures yields a bijection between

(1) intermediate t-structures ( ,) in 𝐷𝑏(𝐴);
(2) intermediate, compactly generated t-structures (𝐗, 𝐘) in 𝐷(𝐴) with a locally coherent

Grothendieck heart𝐇, whose finitely presented objects are given by𝐇∩ 𝐷𝑏(𝐴).

Moreover, the t-structures in (2) are precisely the intermediate homotopically smashing t-structures
in 𝐷(𝐴) that restrict to 𝐷𝑏(𝐴).

Proof. By Lemma 3.1 and Theorem 3.2, lifting intermediate t-structures in 𝐷𝑏(𝐴) yields a well-
defined, injective map from (1) to (2). Now take a t-structure (𝐗, 𝐘) in 𝐷(𝐴) as in (2). Using [37,
Theorem A and Corollary 5.8], we can compute direct limits in𝐇 as directed homotopy colimits
in 𝐷(𝐴). Hence, it follows that 𝐇 = hocolim

⃖⃖⃖⃖⃖⃖⃗
(𝐇 ∩ 𝐷𝑏(𝐴)). By Theorem 4.1, the t-structure (𝐗, 𝐘)

restricts to 𝐷𝑏(𝐴), and we can recover it via lifting, as (𝐗, 𝐘) is compactly generated. The final
statement follows again from Theorem 4.1. □

We finish this section with an application of Theorems 3.2 and 4.1 providing a criterion for a
derived equivalence to preserve coherent rings. For that we need some further definitions.
A complex 𝑇 ∈ 𝐾𝑏(proj(𝐴)) is called tilting, if Hom𝐷(𝐴)(𝑇, 𝑇[𝑖]) = 0 for any 𝑖 ≠ 0 and if the

smallest triangulated subcategory of𝐾𝑏(proj(𝐴)) containing𝑇 and closed under direct summands
is𝐾𝑏(proj(𝐴)) itself. We say that two rings𝐴 and 𝐵 are derived equivalent if the derived categories
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𝐷(𝐴) and 𝐷(𝐵) are triangle equivalent. By [21, 32], this happens if and only if there exists a tilt-
ing complex 𝑇 in 𝐾𝑏(proj(𝐴)) such that End𝐷(𝐴)(𝑇) ≃ 𝐵. Under the triangle equivalence defined
by the tilting complex 𝑇, the standard t-structure on 𝐷(𝐵) is mapped to the t-structure on 𝐷(𝐴)
generated by 𝑇, that is the t-structure (𝐗, 𝐘) = (𝑇⟂>0 , 𝑇⟂⩽0). Its heart𝐇 is equivalent toMod(𝐵).

Corollary 4.3. Let 𝐴 be a right coherent ring and 𝑇 be a tilting complex in 𝐾𝑏(proj(𝐴)). Then the
ring 𝐵 = End𝐷(𝐴)(𝑇) is right coherent if and only if the t-structure (𝑇⟂>0 , 𝑇⟂⩽0) restricts to 𝐷𝑏(𝐴).

Proof. If the t-structure (𝑇⟂>0 , 𝑇⟂⩽0) restricts to 𝐷𝑏(𝐴), we can recover it via lifting. Thus, the
finitely presented objects in its heart𝐇 are of the form𝐇∩ 𝐷𝑏(𝐴) and they form an abelian cat-
egory. Since𝐇 is equivalent toMod(𝐵), this implies that the finitely presented objects inMod(𝐵)
form an abelian category. So 𝐵 is right coherent.
If 𝐵 is right coherent the standard t-structure on 𝐷(𝐵) restricts to the standard t-structure on

𝐷𝑏(𝐵), and the triangle equivalence 𝐷(𝐵) ≅ 𝐷(𝐴) induced by 𝑇 restricts to the level of bounded
derived categories (see [32, Proposition 8.1]). Since the standard t-structure on𝐷(𝐵) identifies with
(𝑇⟂>0 , 𝑇⟂⩽0) under this equivalence, we get that (𝑇⟂>0 , 𝑇⟂⩽0) restricts to 𝐷𝑏(𝐴), as desired. □

Note that Corollary 4.3 also appears as [29, Proposition 6.6].

Remark 4.4. In case we have a triangle equivalence 𝐹∶ 𝐷(𝐵)⟶ 𝐷(𝐴) that is hypothetically
not given by a tilting complex 𝑇, we can still argue as above by considering the t-structure
(𝐹(𝐷(𝐵)⩽0), 𝐹(𝐷(𝐵)⩾1)) instead of (𝑇⟂>0 , 𝑇⟂⩽0) in 𝐷(𝐴). In particular, the ring 𝐵 is right coherent
if and only if this t-structure restricts to 𝐷𝑏(𝐴).

5 CASE STUDY: HRS-T-STRUCTURES

In this section, we assume that 𝐴 is a right noetherian ring and we specialize Corollary 4.2 to the
setting of HRS-t-structures arising from torsion pairs in module categories. Recall that a torsion
pair ( ,) inmod(𝐴) induces a t-structure ( ,) in 𝐷𝑏(𝐴) as follows:

 = {𝑋 ∈ 𝐷𝑏(𝐴) ∣ 𝐻𝑖(𝑋) = 0 for 𝑖 > 0 and𝐻0(𝑋) ∈  }

 = {𝑌 ∈ 𝐷𝑏(𝐴) ∣ 𝐻𝑖(𝑌) = 0 for 𝑖 < 0 and𝐻0(𝑌) ∈  },

where 𝐻𝑖 denotes the cohomological functor with respect to the shifted standard t-structure
(𝐷𝑏(𝐴)⩽𝑖, 𝐷𝑏(𝐴)⩾𝑖+1). Analogously, a torsion pair (𝐓, 𝐅) inMod(𝐴) induces a t-structure in 𝐷(𝐴).
We call these t-structures HRS-t-structures; see [18] for details. By [30, Lemma 1.1.2], HRS-t-
structures are precisely the t-structures ( ,) in𝐷𝑏(𝐴) (respectively,𝐷(𝐴))with𝐷𝑏(𝐴)⩽−1 ⊆  ⊆
𝐷𝑏(𝐴)⩽0 (respectively, 𝐷(𝐴)⩽−1 ⊆  ⊆ 𝐷(𝐴)⩽0), i.e. intermediate t-structures with the smallest
non-trivial interval [𝑚, 𝑛] (see also [10]).
Starting with a torsion pair ( ,) in mod(𝐴), considering the associated HRS-t-structure in

𝐷𝑏(𝐴) and lifting this t-structure, we obtain an HRS-t-structure in 𝐷(𝐴) corresponding to some
torsion pair (𝐓, 𝐅) in Mod(𝐴). Since 𝐻0 sends directed homotopy colimits to direct limits in
Mod(𝐴), we get that

(𝐓, 𝐅) = (lim
��→

( ), lim
��→

()).
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This recovers awell-known construction of lifting torsion pairs frommod(𝐴) toMod(𝐴) by closing
 and  under direct limits of objects in  and  , respectively (see [13, Section 4.4]). Recall that a
torsion pair (𝐓, 𝐅) inMod(𝐴) is said to be of finite type, if the class  is closed under direct limits.
Torsion pairs of the form (lim

��→
( ), lim

��→
()) provide examples of torsion pairs of finite type. The

following proposition makes precise the connection between lifting HRS-t-structures on the level
of torsion pairs and on the level of t-structures.

Proposition 5.1. Let𝐴 be a right noetherian ring. Then there is a commutative square of bijections
as follows.

Moreover, a t-structure (𝐗, 𝐘) in 𝐷(𝐴) with 𝐷(𝐴)⩽−1 ⊆ 𝐗 ⊆ 𝐷(𝐴)⩽0 is compactly generated if and
only if its heart 𝐇 is a Grothendieck category. In this case, 𝐇 is locally coherent and the finitely
presented objects of𝐇 are given by𝐇∩ 𝐷𝑏(𝐴).

Proof. The upper horizontal bijection was already mentioned above. Since 𝐴 is right noetherian,
every torsion pair in Mod(𝐴) restricts to a torsion pair in mod(𝐴). Thus, it is not hard to check
that the vertical maps on the right hand side of the diagram induce mutually inverse bijections.
By [11, Theorem 3.10], a torsion pair inMod(𝐴) is of finite type if and only if the associated HRS-
t-structure is compactly generated if and only if the heart of this t-structure is a Grothendieck
category. In particular, we get the lower horizontal bijection. Now, it remains to observe that lifting
t-structures on the left hand side yields a commutative diagram, so lifting induces a bijection with
restriction being its inverse. Note that this bijection is a special case of the bijection appearing in
Corollary 4.2. □

We have just seen that every compactly generated t-structure (𝐗, 𝐘) in 𝐷(𝐴) fulfilling
𝐷(𝐴)⩽−1 ⊆ 𝐗 ⊆ 𝐷(𝐴)⩽0 restricts to 𝐷𝑏(𝐴). The following example shows that a similar statement
fails, if we allow the interval to be any larger.

Example 5.2. Let 𝐴 be the Kronecker algebra over an algebraically closed field 𝑘. Let (𝐗, 𝐘) be
the t-structure in 𝐷(𝐴) generated by the stalk complexes 𝐴[2] and 𝑆𝜆, where 𝑆𝜆 denotes a simple
regular 𝐴-module for 𝜆 in 𝑘 ∪ {∞}. Thus, we have 𝐘 = ⟂ for  = {𝐴[𝑛 + 2] ⊕ 𝑆𝜆[𝑛] ∣ 𝑛 ⩾ 0}.
It follows that (𝐗, 𝐘) is compactly generated with 𝐷(𝐴)⩽−2 ⊆ 𝐗 ⊆ 𝐷(𝐴)⩽0. But (𝐗, 𝐘) does not
restrict to 𝐷𝑏(𝐴) by [38, Corollary 4.5(1)].
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6 CONNECTIONSWITH SILTING THEORY

An object 𝑇 in 𝐷(𝐴) is called silting, if the pair (𝑇⟂>0 , 𝑇⟂⩽0) forms a t-structure in 𝐷(𝐴). Dually,
an object 𝐶 in𝐷(𝐴) is called cosilting, if the pair (⟂⩽0𝐶,⟂>0𝐶) forms a t-structure in𝐷(𝐴). We refer
to these t-structures as silting and cosilting t-structures; further details can be found in [28, 31].
Note that it follows from [26, Theorem 4.6] that every intermediate and homotopically smash-

ing t-structure (𝐗, 𝐘) in𝐷(𝐴) is cosilting with respect to a pure-injective cosilting object𝐶 in𝐷(𝐴)
with bounded cohomology. In fact,𝐶 has non-zero cohomology only in the interval determined by
the intermediate condition, andwe can choose𝐶 to be a bounded complex of injective𝐴-modules.
In particular, every t-structure in 𝐷(𝐴) obtained from lifting via homotopy colimits is controlled
by such a cosilting complex. In general, however, we do not know how to deduce from the proper-
ties of the cosilting complex, if the associated t-structure restricts to𝐷𝑏(𝐴); only partial results are
available. For example, cosilting t-structures with respect to 2-term cosilting complexes of injec-
tive 𝐴-modules are (up to shift) precisely HRS-t-structures with respect to torsion pairs of finite
type in Mod(𝐴) (see [4, Corollary 3.9]). Thus, if 𝐴 is right noetherian, they restrict to 𝐷𝑏(𝐴) by
Proposition 5.1. On the other hand, it follows from Example 5.2 that not every cosilting t-structure
with respect to a 3-term cosilting complex restricts to 𝐷𝑏(𝐴).
Next, we discuss various conditions for the lifted t-structures to be silting as well. For this pur-

pose, we restrict ourselves to the case when 𝐴 is a finite dimensional algebra, which allows us to
use the fundamental correspondences from [23].

Proposition 6.1. Let𝐴 be a finite dimensional algebra over a field 𝑘. Let ( ,) be an intermediate
t-structure in 𝐷𝑏(𝐴) with heart, and let (𝐗, 𝐘) be the associated lifted t-structure in 𝐷(𝐴), whose
heart is denoted by𝐇. Then the following conditions are equivalent.

(1) (𝐗, 𝐘) is a silting t-structure with respect to a silting object 𝑇;
(2)  ∩ 𝐾𝑏(proj(𝐴)) is the coaisle of a co-t-structure in 𝐾𝑏(proj(𝐴));
(3)  ≅ mod(Λ) for a finite dimensional 𝑘-algebra Λ;
(4) 𝐇 ≅ Mod(Λ′) for a finite dimensional 𝑘-algebra Λ′;
(5) (𝐗, 𝐘) is a silting t-structure with respect to a compact silting object 𝑇′.

Proof. (1) ⇒ (2): To show (2) it suffices to check that every object 𝑍 in 𝐾𝑏(proj(𝐴)) admits a
left -approximation 𝑓∶ 𝑍⟶ 𝑋, where 𝑋 lies in 𝐾𝑏(proj(𝐴)). Indeed, since by assumption
𝐾𝑏(proj(𝐴)) is a Krull-Schmidt category, it would follow from [25, Corollary 1.4] that we can
choose 𝑓 left-minimal, which by the dual of [20, Lemma 2.1] implies that there is a triangle

in 𝐾𝑏(proj(𝐴)) with 𝐶 in ⟂ , as desired. Now, take 𝑍 in 𝐾𝑏(proj(𝐴)). Since (𝐗, 𝐘) is a silting t-
structure, there is a co-t-structure (⟂𝐗,𝐗) in 𝐷(𝐴) and we get a left 𝐗-approximation 𝑓′ ∶ 𝑍⟶
𝑋′ (see [28, Remark 4]). By assumption, we can write 𝑋′ = hocolim

⃖⃖⃖⃖⃖⃖⃗
𝑖∈𝐼𝑋𝑖 with 𝑋𝑖 in  . Since 𝑍 is

compact, the map 𝑓′ factors through some 𝑋𝑖 via a map 𝑓′𝑖 ∶ 𝑍 ⟶ 𝑋𝑖 , which by construction is
a left -approximation. Now, we can view 𝑋𝑖 as an object in 𝐾−(proj(𝐴)) and use brutal trunca-
tions to write 𝑋𝑖 ≅ hocolim

⃖⃖⃖⃖⃖⃖⃗
𝑗∈ℕ𝜎

⩾−𝑗(𝑋𝑖) with 𝜎⩾−𝑗(𝑋𝑖) in 𝐾𝑏(proj(𝐴)). For sufficiently large 𝑗 the
objects 𝜎⩾−𝑗(𝑋𝑖) belong to (see the proof of (3) ⇒ (1) in Theorem 4.1). Also, using again the fact
that 𝑍 is compact, we get that 𝑓′

𝑖
factors through 𝜎⩾−𝑗(𝑋𝑖) for 𝑗 big enough. This way, we get the

required approximation.
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Remaining implications: Since ( ,) is intermediate, the co-t-structure in (2)with coaisle  ∩
𝐾𝑏(proj(𝐴)) is intermediate with respect to the standard co-t-structure in 𝐾𝑏(proj(𝐴)), so it is
necessarily bounded. Therefore, (2) ⇔ (3) is part of the bijections in [23, Theorem 6.1], and it is
further equivalent to stating that ( ,) = (𝑇′⟂>0 , 𝑇′⟂⩽0) for a silting object 𝑇′ in𝐾𝑏(proj(𝐴)). The
latter, however, is easily seen to be equivalent to (5). Moreover, (5) ⇒ (1) is trivial, and (5) ⇒ (4)
holds by [28, Proposition 2]. Finally, (4) ⇒ (3) holds by Theorem 3.2, since  is the subcategory
of finitely presented objects of𝐇.
Note that if the equivalent conditions in the proposition are fulfilled, then Λ and Λ′ are Morita

equivalent, and 𝑇 is equivalent to 𝑇′ as a silting object, that is the smallest subcategory of 𝐷(𝐴)
containing𝑇 and closed under coproducts and direct summands coincideswith the corresponding
subcategory containing 𝑇′. □

Note that Proposition 6.1 cannot be easily generalized. Using [8, Section 4], there are noetherian
rings𝐴 admitting pure projective tiltingmodules that are not equivalent to finitely presented ones.
These tilting modules induce compactly generated HRS-t-structures in 𝐷(𝐴), which necessarily
restrict to 𝐷𝑏(𝐴) by Proposition 5.1, and which are both silting and cosilting. However, they are
not silting with respect to a compact silting object and their hearts are Grothendieck categories
with a projective generator, but not module categories.
By the discussion above, the process of lifting t-structures via homotopy colimits is closely

related to cosilting theory. In the final part of this section, we will explore a dual way of lifting
t-structures, which is closely connected to silting theory. For this purpose, we restrict ourselves
again to the setting of finite dimensional algebras.

Theorem6.2. Let𝐴 be a finite dimensional algebra over a field 𝑘, and let ( ,) be an intermediate
t-structure in 𝐷𝑏(𝐴) with heart. Then the following holds.

(1) (𝐗, 𝐘) = (⟂ , (⟂)⟂) is a silting t-structure in 𝐷(𝐴) with respect to a bounded silting complex
of projective 𝐴-modules.

(2) An object𝐻 ∈ 𝐇 satisfiesHom𝐇(𝐻,) = 0 if and only if𝐻 = 0.

Proof. (1): Since 𝐴 is a finite dimensional algebra, dual arguments to those in the proof of
Lemma 3.1 imply that ⟂ = ⟂ , where  ⊆  is a set of bounded complexes of finitely generated
injective 𝐴-modules. Without loss of generality, we can assume that  is closed under negative
shifts. Our aim is now to show that (⟂ , (⟂)⟂) is a silting t-structure with respect to a bounded
silting complex of projective 𝐴-modules. By 𝜈 and 𝜈−1 we denote the total derived functors of
the Nakayama functor −⊗𝐴 𝔇(𝐴) and its right adjointHom𝐴(𝔇(𝐴), −). Here,𝔇 = Hom𝑘(−, 𝑘)
denotes the standard duality. Recall that 𝜈 and 𝜈−1 induce quasi-inverse triangle equivalences
between𝐾𝑏(proj(𝐴)) and𝐾𝑏(inj(𝐴)), where the latter denotes the bounded homotopy category of
finitely generated injective 𝐴-modules. Moreover, we have the following natural isomorphism

𝔇Hom𝐷(𝐴)(𝜈
−1𝑀,𝑁) ≅ Hom𝐷(𝐴)(𝑁,𝑀)

for all 𝑀 in 𝐾𝑏(inj(𝐴)) and 𝑁 in 𝐷(𝐴) (see [17, Ch.1, Section 4.6], [23, Section 2.3] and [24]). In
our situation, it follows that the subcategory ⟂ coincides with (𝜈−1)⟂, where all the objects
in 𝜈−1 are compact in 𝐷(𝐴). Moreover, by assumption, we know that there are 𝑚, 𝑛 ∈ ℤ with
𝐷(𝐴)⩽𝑚 ⊆ ⟂ ⊆ 𝐷(𝐴)⩽𝑛. Hence, we can invoke [27, Theorem 3.6] to conclude that (⟂ , (⟂)⟂) is
a silting t-structure of the desired form.
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(2): Take 𝐻 in𝐇 with Hom𝐇(𝐻,) = 0. First, observe that, by using approximation triangles
with respect to ( ,), every object 𝑌[1] in [1] appears in a triangle

with 𝐻′ in  and 𝑌′ in  . Since Hom𝐷(𝐴)(𝐻,) = 0 and Hom𝐇(𝐻,) = 0 by assumption, it
follows that also Hom𝐷(𝐴)(𝐻,[1]) = 0. Hence, 𝐻 belongs to 𝐗[1]. As 𝐻 also belongs to 𝐘[1], it
must be zero, as desired. □

We obtain the following general observation on restricting t-structures.

Corollary 6.3. Let𝐴 be a finite dimensional algebra over a field 𝑘, and let ( ,) be an intermediate
t-structure in 𝐷𝑏(𝐴) with heart. Then there is a unique t-structure (𝐗, 𝐘) in 𝐷(𝐴) that restricts to
( ,) if and only if is equivalent tomod(Λ) for a finite dimensional 𝑘-algebra Λ.

Proof. First, let (𝐗, 𝐘) be the unique t-structure in𝐷(𝐴) restricting to ( ,). It follows that (𝐗, 𝐘)
arises from ( ,) via the two different ways of lifting discussed in Section 3 and Theorem 6.2.
Thus, we can use Proposition 6.1 to conclude that  is equivalent to mod(Λ) for a finite dimen-
sional 𝑘-algebra Λ. Conversely, suppose that  ≅ mod(Λ) for a finite dimensional 𝑘-algebra Λ.
We consider the t-structure (𝐗, 𝐘) in𝐷(𝐴) obtained from the lifting procedure in Section 3. Again
by Proposition 6.1, it follows that

(𝐗, 𝐘) = (𝑇⟂>0 , 𝑇⟂⩽0)

for a compact silting object 𝑇. As in the proof of Theorem 6.2, we will make use of the derived
Nakayama functor 𝜈 and the natural isomorphism

𝔇Hom𝐷(𝐴)(𝑀,𝑁) ≅ Hom𝐷(𝐴)(𝑁, 𝜈𝑀)

for𝑀 in 𝐾𝑏(proj(𝐴)) and𝑁 in 𝐷(𝐴). It follows that 𝑇⟂>0 = ⟂⩽0𝐶 for 𝐶 ∶= 𝜈𝑇[−1]. Indeed, for an
object 𝑋 in 𝐷(𝐴) we have

𝑋 ∈ 𝑇⟂>0 ⇔ Hom𝐷(𝐴)(𝑇, 𝑋[𝑛 > 0]) = 0

⇔ Hom𝐷(𝐴)(𝑋[𝑛 > 0], 𝜈𝑇) = 0

⇔ Hom𝐷(𝐴)(𝑋, 𝜈𝑇[−1][𝑛 ⩽ 0]) = 0 ⇔ 𝑋 ∈ ⟂⩽0𝐶.

Similarly, we have 𝑇⟂⩽0 = ⟂>0𝐶 and, thus, (𝐗, 𝐘) is the cosilting t-structure with respect to the
cosilting complex 𝐶 in 𝐾𝑏(inj(𝐴)). Now, let (𝐗′, 𝐘′) be any t-structure in 𝐷(𝐴) that restricts to
( ,). Since 𝑇 belongs to  ⊂ 𝐗′ and 𝐶 lies in  ⊂ 𝐘′, we get 𝐗 ⊂ 𝐗′ and 𝐘 ⊂ 𝐘′ showing that
(𝐗, 𝐘) = (𝐗′, 𝐘′), as desired. □

Corollary 6.3 and its proof show that the two presented ways of lifting t-structures in 𝐷𝑏(𝐴),
in general, provide us with distinct classes of t-structures in 𝐷(𝐴). In fact, the heart of every t-
structure in 𝐷(𝐴) that can be obtained via both lifting procedures is necessarily equivalent to a
module category.
Moreover, note that part (2) of Theorem 6.2 is a weaker dual of the generation property of in

Theorem 3.2(2), which was essential to describe the cosilting t-structures we obtain from lifting.
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In general, we do not know how to classify the silting t-structures appearing in Theorem 6.2.
One of the reasons is that cogenerating t-structures from a given set of objects seems to be a far
more delicate task than generating t-structures. In particular, we cannot expect to simply replace
homotopy colimits by homotopy limits to prove dual results to those before. In the case of HRS-
t-structures, however, we can provide a complete classification. To make this precise, we need to
introduce further terminology. Recall that a subcategory 𝐂 of Mod(𝐴) is called definable if it is
closed under products, direct limits and pure submodules. Moreover, a submodule is called pure
if the induced short exact sequence remains exact after tensoring with any other 𝐴-module. Note
that for a torsion pair (𝐓, 𝐅) in Mod(𝐴), the class 𝐓 is definable if and only if it is closed under
products and pure submodules, and the class 𝐅 is definable if and only if it is closed under direct
limits, i.e. the torsion pair is of finite type. We are now ready to state the result, which is dual to
Proposition 5.1.

Proposition 6.4. Let 𝐴 be a finite dimensional algebra over a field 𝑘. By assigning to an interme-
diate t-structure ( ,) in 𝐷𝑏(𝐴) (respectively, to a torsion pair ( ,) in mod(𝐴)) the t-structure
(⟂ , (⟂)⟂) in 𝐷(𝐴) (respectively, the torsion pair (⟂ , (⟂)⟂) inMod(𝐴)), we get a commutative
square of bijections as follows.

Proof. The upper horizontal bijection was already discussed in Section 5. Moreover, the lower
horizontal bijection is a consequence of the fact that, in our setup, a torsion class 𝐓 in Mod(𝐴)
is definable if and only if it is a silting class with respect to a silting 𝐴-module, which in turn
is equivalent to stating that the associated HRS-t-structure is silting (see [5, Corollary 3.8] and
[6, Section 4.2]). The right vertical map assigning (⟂ , (⟂)⟂) to ( ,) is well-defined by [14,
Section 2.3, Example 2]. Since in our setup all torsion pairs inMod(𝐴) restrict tomod(𝐴), restric-
tion yields a left inverse. Let us show that these two maps are bijections. It suffices to check that
a torsion pair (𝐓, 𝐅) in Mod(𝐴) with 𝐓 definable is of the form (⟂ , (⟂)⟂), where ( ,) ∶=
(𝐓 ∩ mod(𝐴), 𝐅 ∩ mod(𝐴)) denotes the restricted torsion pair in mod(𝐴). By construction, we
know that (⟂)⟂ ⊆ 𝐅. It remains to check that ⟂ ⊆ 𝐓 as well. Let 𝑋 be an object in ⟂ . By
[14, Section 2.2, Example 3], we can realize 𝑋 as a pure subobject of

∏
𝑋𝑖 , where 𝑋𝑖 runs through

all finite dimensional quotients of 𝑋. By assumption, all the 𝑋𝑖 belong to  . As  ⊂ 𝐓 and 𝐓 is
definable, both

∏
𝑋𝑖 and𝑋 belong to𝐓 as well. Finally, it is easy to see that the left vertical map in

the diagram above, given by Theorem 6.2, makes the square commutative, hence it is a bijection,
and its inverse is clearly given by restriction. This finishes the proof. □
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