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Modeling of Diffusive Transport of Polymers Moments
Using Limiting Cases of the Maxwell–Stefan Model

Stefan Welzel,* Winfried Säckel, and Ulrich Nieken

A polymer distribution is usually represented by its moments. Thus, to
calculate transport in a polymer system, a formulation for the transport of
moments of the polymer is needed. This is only possible if the moments close
or if there is a suitable closing condition. To archive this, two simplifications
of the Stefan–Maxwell diffusion are derived, which convert the transport
equation of polymeric species to a closed set of transport equations for the
polymer moments. The first approach corresponds to an infinitely diluted
polymer system, whereas the second one describes a highly concentrated
polymer system. Both formulations are compared with the full Stefan-Maxwell
model of a ternary mixture of a solvent and two polymer species of different
chain length.

1. Introduction

The method of moments is a well-established technique for mod-
eling polymerization reactions.[1] Instead of solving the balance
equations of a distributed polymer only the statistical moments of
the chain length distribution are calculated. Under the assump-
tion of ideal mixing, the simple case of a homogeneous polymer-
ization can be expressed by three or more moments of the living
and dead chains’ distributions, respectively. Moments are calcu-
lated in units of concentrations. The balance equation for each
polymer species can thus be easily converted into moment equa-
tions. In many types of polymer reactions the moments close,
otherwise, a closing condition is required.

In cases where the assumptions of ideal mixing or a very sim-
ple flow field (plug flow) are inadequate, species transport by
convective and diffusive transport must be accounted for. Ve-
locity fields may be calculated by well-established CFD methods
and can be directly applied to the transport of polymeric species
and to the transport of moments of the polymer size distribu-
tions. While the convective transport of polymer species can be
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converted to transport of moments directly,
this is not the case for diffusive transport.
Diffusive transport of moments is scarcely
discussed in the literature. A rare example
is provided by Arriola for convective and dif-
fusive transport in a tubular reactor.[2]

As we will show, limiting cases of the gen-
eral Stefan–Maxwell diffusion for ideal mix-
tures allow to derive a closed form for the
transport equation of polymer moments.
The first limiting case assumes for infinite
dilution of the polymer chain, which means
that friction between polymer chain is com-
pletely neglected and only friction between
polymer chain and solvent (or monomers)
is considered. Since the Stefan–Maxwell
diffusion coefficient between solvent and

polymer is relatively large, the diffusive fluxes of moments
are usually overestimated. This might be irrelevant if diffu-
sion is subordinate to convection. In special cases like spray
polymerization,[3–5] regions of low convective transport (i.e., be-
hind mixing elements) or polymer fouling close to walls of mi-
cro reactors, the assumption of “No Polymer Friction” introduces
large errors. This is especially true at high polymer content.
In this case, we propose to use a different limiting case of the
Stefan–Maxwell model, where we assume for infinite friction be-
tween the polymer chains, which means that a polymer chain
cannot diffuse against other polymer chains. Thus, all polymer
chains at a given location move as a whole against the solvent.
As will be shown, this assumption also allows for closure of the
transport model of polymer moments.

The outline of this paper is as follows: First, we derive the gen-
eral transport equation for a homopolymer and Stefan Maxwell
equations for diffusive transport. Two limiting cases are then de-
rived which allow converting of the transport equation of poly-
meric species to a closed set of moment equations. Finally, we
discuss the advantages and limitations of both limiting cases
and compare results to simulations with the full Stefan-Maxwell
model, for a simple system consisting of one solvent and two dis-
crete polymer species of different chain length.

2. Multicomponent Transport

In polymer reaction processes, where ideal mixing is assumed for
polymers are either treated in terms of their moments, or, if one
is interested in details of size distribution, by adaptive numerical
Galerkin methods.[6] The latter is also preferred in cases where
moment equations do not close. To study complicated polymeric
structures, like cross-linked networks, Monte Carlo methods are

Macromol. React. Eng. 2023, 17, 2200045 2200045 (1 of 11) © 2022 The Authors. Macromolecular Reaction Engineering published by Wiley-VCH GmbH



www.advancedsciencenews.com www.mre-journal.de

applied. When the impact of a distributed flow field on a poly-
merization process shall be studied, the method of moments is
preferred, since other methods become computationally infeasi-
ble for practical purposes.

Usually, the mass-averaged velocity, e.g. in a CFD simulation,
is known. Therefore, we start with the development of the equa-
tions in a mass-averaged reference frame.

The mass-induced velocity arises from the component veloci-
ties vi, where wi denotes the mass fraction on species i

v =
∑

i

wivi (1)

The mass balance for a species i then reads

𝜕𝜌i

𝜕t
+ ∇ ⋅ v𝜌i + ∇ ⋅ Ji = MWir

total
i (2)

with diffusive fluxes Ji relative to the mass-averaged velocity.ϱi is
the mass density, MWi denotes the molecular mass, rtotal

i the total
reaction rate of species i.

Since reaction rates are expressed in terms of concentrations,
a molar reference system is preferred for treating the moments
of polymer systems. The mole balance for a species i reads

𝜕ci

𝜕t
+ ∇ ⋅ vNci + ∇ ⋅ JN

i = rtotal
i (3)

with diffusive fluxes JN
i relative to the molar average velocity

vN =
∑

i

xivi (4)

with the mole fraction xi and the concentration ci. To distinguish
between a mass and a mole-centered reference system, mole-
centered quantities are indicated by superscript N.

A component’s velocity vi can be calculated from molar fluxes
by[7]

vi = vN +
JN

i

ci
(5)

The molar average velocity can be calculated with Equations (1)
and (5) and some math to

vN = v −
∑

i

JN
i MWi

𝜌i
(6)

With Equation (6) and the assumption of constant density, the
balance Equation (3) becomes

𝜕ci

𝜕t
+ ∇ ⋅

(
ci

(
v − 1

𝜌

∑
i

JN
i MWi

))
+ ∇ ⋅ JN

i = rtotal
i (7)

From polymer size distribution given in terms of repeating
units s of (homo) polymer P denoted by P(s) the kth-moment can
be calculated by

𝜉k =
∞∑

s=1

skcP(s) (8)

The transport equation of moments is derived by multipli-
cation of Equation (7) with sk and summation over all polymer
species P(s) to

𝜕𝜉k

𝜕t
+ ∇ ⋅

(
𝜉k

(
v − 1

𝜌

∑
i

JN
i MWi

))
+

∞∑
s=1

∇ ⋅ skJN
P(s) =

∞∑
s=1

skrtotal
P(s)

(9)

The diffusive transport of moments of the polymer flux is de-
noted as

∞∑
s=1

skJN
P(s) = JN

𝜉k (10)

While convective transport can be readily written in terms of
moments, the diffusive transport of moments JN

𝜉k requires further
consideration.

The molecular weight of the polymers can be expressed by the
chain length s and the molecular weight of one repeating unit
MW

MWP(s) = s ⋅ MWseg (11)

After splitting the sum for low-molecular species (index “low”)
and Polymer species, the balance equation develops to

𝜕𝜉k

𝜕t
+ ∇ ⋅

(
𝜉k

(
v − 1

𝜌

nlow∑
i

MWiJ
N
i − 1

𝜌
MWsegJN

𝜉1

))
+ ∇ ⋅ JN

𝜉k = rtotal
𝜉k

(12)

with the total reaction rate for the kth moment

rtotal
𝜉k =

∞∑
s=1

skrtotal
P(s) (13)

and the total polymer flux of all polymer distributions JN
𝜉1 .

However, to derive an expression for the diffusive fluxes of
polymer moments simplifications are needed. The treatment of
the reaction rate in terms of moments is well-established and can
be found in.[8]

2.1. Stefan–Maxwell Equations for Multicomponent Mixtures

To derive an expression for the diffusive transport of moments we
start with the rigorous treatment of multicomponent mixture by
the Stefan-Maxwell equation. The general Stefan-Maxwell equa-
tions for isothermal diffusion in J-component systems are[9]

di =
xi

RT
∇𝜇i = −

J∑
j=1

xixj

(
vi − vj

)
𝔇ij

(14)

with the driving force di for species i, the ideal gas constant R,
the temperature T, the chemical potential 𝜇i of species i, its molar
fraction xi, its overall transport velocity vi and the Stefan–Maxwell
diffusion coefficient 𝔇ij for interactions between species i and j.
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Using Equation (5) the general Stefan-Maxwell equation can
be expressed by molar fluxes

di = −
J∑

j=1

xixj

(
vi − vj

)
𝔇ij

= −
J∑

j=1

xjJ
N
i − xiJ

N
j

c𝔇ij
(15)

The overall concentration c can be calculated by

c =
nlow∑

i

ci + 𝜉0 (16)

where 𝜉0 is the 0th moment of all polymer distributions. To line
out the basic ideas it is sufficient to consider a ternary mix-
ture consisting of a small molecule like solvent or monomer
(S) and two polymeric components of the same type but with
different molecular mass resp. chain length (P1 = P(4000) and
P2 = P(2000)). The two discrete polymer species may represent
two very narrow distributions of the same type of polymer. The
ternary system will be used for comparison of the limiting cases
with the full Stefan–Maxwell model.

For a ternary mixture the Stefan–Maxwell equations read:

dS =
xS

RT
∇𝜇S = −

J∑
j=S

1
c
⋅

xjJ
N
S − xSJN

j

𝔇Sj

= −1
c
⋅

(
xP1JN

S − xSJN
P1

𝔇SP1
+

xP2JN
S − xSJN

P2

𝔇SP2

)
(17)

dP1 =
xP1

RT
∇𝜇P1 = −

J∑
j=P1

1
c
⋅

xjJ
N
P1 − xP1JN

j

𝔇P1j

= −1
c
⋅

(
xSJN

P1 − xP1JN
S

𝔇P1S
+

xP2JN
P1 − xP1JN

P2

𝔇P1P2

)
(18)

With the closing condition that all fluxes need to add up to
zero,[9] the J-th (resp 3rd in our example) flow can be calculated
from

JN
J = −

J−1∑
i

JN
i . (19)

For a ternary mixture with the elimination of JN
3 follows

dS = −1
c
⋅

(
xP1JN

S − xSJN
P1

𝔇SP1
+

xP2JN
S + xS

(
JN

S + JN
P1

)
𝔇SP2

)

= −1
c
⋅
((

xP1

𝔇SP1
+

xP2 + xS

𝔇SP2

)
JN

S +
(

xS

𝔇SP2
−

xS

𝔇SP1

)
JN

P1

)

(20)

dP1 = −1
c
⋅

(
xSJN

P1 − xP1JN
S

𝔇SP1
+

xP2JN
P1 + xP1

(
JN

S + JN
P1

)
𝔇P1P2

)

= −1
c
⋅
((

−
xP1

𝔇SP1
+

xP1

𝔇P1P2

)
JN

S +
(

xS

𝔇SP1
+

xP2 + xP1

𝔇P1P2

)
JN

P1

)

(21)

This example suggests the compact form

−cdi =
J−1∑
j=1

BijJ
N
j (22)

with

Bii =

(
xi

𝔇iJ
+

J∑
k=1;i≠k

xk

𝔇ik

)
;

Bij = −xi

(
1
𝔇ij

− 1
𝔇iJ

)
,

(23)

where the index J describes the nth component (resp 3rd in our
example) in the system.

Any formulation for the chemical potential in Equation (14) is
applicable. The simplest case for the chemical potential (isother-
mal and ideal mixture) is used for the model development. Its
gradient develops to

∇𝜇i = ∇
(
𝜇0

i + RT ⋅ ln
(
xi𝛾i

))
= RT∇

(
ln
(
xi

)
+ ln

(
𝛾i

))
=

RT 1
xi
∇xi + RT

J∑
i=1

𝜕ln(𝛾i)
𝜕xj

∇xj = RT 1
xi

J∑
i=1

(
𝛿ij + xi

𝜕ln(𝛾i)
𝜕xj

)
∇xj

(24)

with the chemical potential at a reference state 𝜇0
i and the activity

coefficient 𝛾 i for species i. In the case of an ideal mixture in which
𝛾 i = 1, the chemical potential simplifies to

∇𝜇i = RT 1
xi

J∑
i=1

𝛿ij∇xi = RT 1
xi
∇xi (25)

By inserting Equation (25) in Equation (22), the expression de-
velops to

−
ci

RT
RT 1

xi
∇xi = −c∇xi =

J−1∑
j=1

BijJ
N
j (26)

Therefore, a formulation follows, which is explicit in the fluxes
JN

j and suitable for numerical simulation codes based on mo-
lar concentrations, by inverting the matrix B containing the el-
ements Bij as

JN
j =

J−1∑
i=1

−c
(
B−1

)
ji

(
∇xi

)
(27)

3. Limiting Cases of Stefan–Maxwell Diffusion in
Polymer Systems

The rigorous treatment of an infinite number of polymer species
P(s), s [1..∞] and corresponding number of equations for the dif-
fusive transport is infeasible. As already stated, representation
in terms of moments is sufficient in most cases, but a closed
set of expression for the diffusive transport of moments is re-
quired. The simplest way to obtain a closed expression would be
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Figure 1. Overview of the developed models and simplifications.

to take the same diffusion coefficients between solvent and poly-
mer and between polymer and polymer. In this case, however, the
transport of the polymers would be greatly overestimated. With a
choice of different diffusion coefficients, we do not obtain a clo-
sure conditions for the diffusive transport of moments.

For this reason, we have taken a closer look at two limit-
ing cases for Stefan–Maxwell diffusion. A simplification can be
archived by assuming for an infinitely diluted solution. Then the
sum on the right side of the Stefan–Maxwell Equation (14) for a
component i can be interpreted as friction terms between species
i and all other species j. If the solvent is abundant, only the fric-
tion between the solvent and all polymer chains are of interest,
while the friction between polymer chains is neglected. This is
the first limiting case called “No Polymer Friction” for diffusive
transport.

If the polymer content is high, friction between different poly-
mer chain becomes the dominating mechanism, which restricts
the movement of polymer chains. This is also a reliable assump-
tion if the polymer is of high molecular weight, crosslinked or
branched, such that entanglement considerably restricts the mo-
bility of the polymer chains. In this case, the Stefan–Maxwell
equation can be simplified by assuming for the limiting case
of infinite friction between polymer chains. The polymer then
moves as a whole relative to the solvent; thus, gradients of poly-
meric species will not equilibrate. Consider a polymer, consisting
of two layers I and II, being infiltrated by a solvent (S). Both lay-
ers are of the same polymer but of different chain length distri-
butions. The solvent will equilibrate, but if the solvent fraction is
not high it takes a very long time for the polymers to equilibrate.
In many practical applications, equilibration is not achieved even
on the long term.

An overview about the simplifications and the resulting mod-
els is shown in Figure 1.

3.1. Stefan–Maxwell diffusion

Let’s consider a polymer membrane with a total depth of L = 200
μm, consisting of two layers I and II, being infiltrated by a solvent
(S). Both layers are of the same polymer, but of different chain

Table 1. Physical data of solvent and two polymers of different molar
weight.

S P1 P2

Density 𝜌[ kg

m3 ] 1000 1000 1000

Molar weight MW [10−3 kg
mol

] 18 400 000 200 000

Degree of polymerization 4000 2000

lengths. The degree of polymerization in the first layer is twice
the one of layer two, which means that the chain length of Poly-
mer P1 is twice as the chain length of Polymer P2. The assumed
physical properties of this example are provided in Table 1. The
solvent concentration in layer I (left side) is smaller than in layer
II (right side). The binary diffusion coefficient of both is in the or-
der of 𝔇SP1 = 𝔇SP2 = 𝔇SP = 10−9 m2

s
. No outer forced convection

is imposed, and no chemical reactions are taking place.
The polymer concentration is the same in both membranes,

whereas the first moment is higher in layer I. Hence, solvent
concentration and mole fraction are lower there, and the poly-
mer fraction is higher. The solvent is therefore driven from layer
II into layer I. The results presented here are based on balance
equations for the individual components as presented in chap-
ter 2.1. A diffusion coefficient of 𝔇P1P2 = 10−12 m2

s
was assumed

between both polymer species. This is three orders smaller than
that of the solvent against both polymers. Thus, the friction be-
tween the polymer chains is high and they are almost unable to
move against each other but only against the solvent. The equi-
libration progress during the first 20 s is plotted in Figure 2. Af-
ter 20 s only the solvent is fully equilibrated (∇ xS = 0) and the
two polymers are not due to the smaller diffusion coefficients. Of
course, after sufficiently long times the polymers will equilibrate
as well. The final state (t → ∞) of the system is shown in dashed
red.

The total polymer concentration is shown as the 0th chain
length moment in Figure 2 as well as the 1st chain length mo-
ment, which represents the concentration of repeat units within
polymer chains. From Figure 3, where the detailed course of the
0th chain length moment is shown, it can be concluded that the
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Figure 2. Results for [1,2,3,5,10,15,20] s for the Stefan–Maxwell approach with a diffusion coefficient between the polymers of 𝔇P1P2 = 10−12 m2

s
and

between solvent and polymer 𝔇SP = 10−9 m2

s
. The initial conditions are dashed. The final state is dashed in red.

Figure 3. Detailed course of 𝝃0 over the domain for different times according to Figure 2. Left side shows results for [1,2,3] s and right side results for
[5,10,15,20] s. The initial condition is dashed. The final state is dashed in red.

total concentration of polymer shifts to layer II within the first
three seconds. Later the diffusion of the polymers against each
other compensates for this shift (5–20s).

The non-equilibrated state of 𝜉0 after 20 s can be explained
with the help of Figure 4, where the mole based averaged veloc-
ity vN and the different fluxes are shown. The course of vN shows
the direction of the total mean transport of the components. As
time progresses, the total transport becomes smaller. In the be-
ginning, the solvent equilibrates from layer II into layer I due
to the driving force of the chemical potential. The molar flux of
the solvent is therefore negative. In contrast, polymer P1 must
compensate for this flux and thus diffuses against the solvent
into layer II (flux of P1 is positive). Polymer P2 diffuses with the
solvent into layer I but tries to compensate the force of the sol-
vent with the flux of the polymer P2. After 20 s the diffusive flux
of polymer I is still not zero, which means that it still diffuses

against the polymer in layer II. Therefore, the overall molar flux
JN

P of polymer P1 and P2 is positive but stops after the equilibra-
tion of the solvent. After that, only small fluxes of each polymer
components occur due to the small diffusion coefficient.

For distributed polymer systems, it is useful to describe the
transport of moments. To derive the equations for such a trans-
port, the polymer moments must close or a suitable closure con-
dition must be applied. Next, two limiting cases are presented, in
which this closure of the moments transport can be achieved by
simplifications.

3.2. Stefan–Maxwell Model for Highly Diluted Polymer Solutions
(“No Polymer Friction” Model)

The first limiting case describes diffusive polymer transport in
a system with a high solvent content xS → 1. In this chapter,
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Figure 4. Velocities and Fluxes for [1,2,3,5,10,15,20] s for the Stefan-Maxwell approach with a diffusion coefficient between the polymers of 𝔇P1P2 =
10−12 m2

s
and between solvent and polymer 𝔇SP = 10−9 m2

s
. The final state is dashed in red.

the derivation for this limiting case for the previously presented
ternary mixture with solvent S, polymer P1, and P2 is presented.
A detailed derivation for distributed polymer systems can be
found in the Supporting Information.

Starting from the Maxwell–Stefan equation for the polymer P1

dP1 = −1
c

(
BP1P1JN

P1 + BP1SJN
S

)
(28)

BP1P1 and BP1S simplifies to

BP1P1 =
(

xP1

𝔇P1P2
+

xS

𝔇P1S
+

xP2

𝔇P1P2

)
,

BP1S = −xP1

(
1

𝔇P1S
− 1

𝔇P1P2

)
.

(29)

Due to high dilution, the friction between two polymer
molecules approaches zero, which means that the diffusion coef-
ficient leads to 𝔇P1P2 → ∞ and 1

𝔇P1P2
→ 0. Thus, simplifications

can be made for the previously derived Stefan–Maxwell diffusion
in Equation (29). BP1j simplifies to

BP1P1 =
(

xP1 + xP2

𝔇P1P2
+

xS

𝔇P1S

)
= xS

𝔇P1S
,

BP1S = −xP1

(
1

𝔇PsS
− 1

𝔇P1P2

)
= − xP1

𝔇P1S

(30)

and Equation (28) to

dP1 = −1
c

(
xS

𝔇P1S
JN

P1 −
xP1

𝔇P1S
JN

S

)
(31)

Multiplication by c2 and by the diffusion coefficient, it follows

c2𝔇P1S dP1 =
(
cxP1JN

S − cxS JN
P1

)
=
(
cP1JN

S − cS JN
P1

)
(32)

After rearranging the equation, an expression for the polymer
flux is obtained,

JN
P1 =

−c2𝔇P1 SdP1 + cP1 JN
S

cS
=

−c2𝔇P1 S∇xP1 + cP1 JN
S

cS
(33)

This expression can be written in general terms for chains of
length s with any number of low molecular weight species (sol-
vents) as

JN
Ps =

nlow∑
j=1

−c2𝔇P(s)j∇xP(s) + 𝜁0JN
j

cj
(34)

After applying the moment approach 𝜉k =
∞∑

s=1
skcP(s), the diffu-

sive flux for moments becomes

JN
𝜉k =

∞∑
s=1

skJN
P(s) =

nlow∑
j=1

𝜉kJN
j −𝔇P(s)j

(
c∇𝜉k − 𝜉k∇c

)
cj

(35)

From Equation (35), the diffusive flux of moments depends
only on the diffusion of the low molecular species, the moment
itself, and the total concentration.

3.3. Stefan–Maxwell Model for Concentrated Polymer Solutions
(“Infinite Polymer Friction” Model)

The second limiting case describes the diffusive transport of poly-
mers which are in a system with a low solvent content xS →
0. A simplification can be made by assuming that the Stefan–
Maxwell diffusion coefficients between polymers of different
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chain length are identical, thus 𝔇P(s)P(r) = 𝔇PP. We start again
with the Maxwell-Stefan equation for the polymer P1

dP1 = −1
c

(
BP1P1JN

P1 + BP1SJN
S

)
(36)

with BP1P1 and BP1S

BP1P1 =
(

xP1

𝔇P1P2
+

xS

𝔇P1S
+

xP2

𝔇P1P2

)
,

BP1S = −xP1

(
1

𝔇P1S
− 1

𝔇P1P2

)
.

(37)

Assuming high polymer content, we take the limit 𝔇P1P2 → 0,
which implies that all polymers are transported with the same
diffusive velocity and the friction between the polymer chains is
infinite.

Multiplication of Equation (36) with this diffusion coefficient
leads to

𝔇P1P2dP1 = −𝔇P1P2
1
c

(
BP1P1JN

P1 + BP1SJN
S

)
(38)

with BP1P1 and BP1S

DP1P2 BP1P1 =
(
𝔇P1P2(xP1 + xP2)

𝔇P1P2
+

𝔇P1P2xS

𝔇P1S

)
= xP1 + xP2,

DP1P2BP1S = −xP1

(
𝔇P1P2

𝔇P1S
−

𝔇P1P2

𝔇P1P2

)
= xP1.

(39)

Inserting Equation (39) into Equation (38) and multiplication
with c2, it follows a relation for the flux of the polymer P1

JN
P1 = −

cP1

cP2 + cP1
JN

S =
cP1

cP2
JN

P2 (40)

and analogous for P2

JN
P2 = −

cP2

cP2 + cP1
JN

S =
cP2

cP1
JN

P1 (41)

The total polymer flux JN
P arises from the summation of both

terms to

JN
P = JN

P1 + JN
P2 = JN

P1 +
cP2

cP1
JN

P1 =
cP1 + cP2

cP1
JN

P1 (42)

JN
P1 follows with the total polymer concentration cP resp. the 0th

moment 𝜁 0 and the total polymer flux

JN
𝜉0 = JN

P (43)

to

JN
P1 =

cP1

cP
JN

P =
cP1

𝜉0
JN
𝜉0 (44)

After applying the definition of moments, 𝜉k =
∞∑

s=1
skcP1, the dif-

fusive flux for moments becomes

JN
𝜉k =

∞∑
s=1

skJN
P1 =

∑∞
s=1 skcP1

𝜉0
JN

P = 𝜉k

𝜉0
JN

P (45)

Generalization to homo polymer distributions with segment
number s the following expression applies

cxP(s)

∞∑
P(r)=1

JN
P(r) =

( ∞∑
P(r)=1

cP(r)

)
JN

P(s) = 𝜉0 JN
P(s) (46)

respectively

JN
P(s) =

cP(s)

𝜉0

∞∑
Pr=1

JN
P(r) =

cP(s)

𝜉0
JN

P (47)

A more detailed deviation can be found in the Supporting
Information. After applying the moment definition again, 𝜉k =
∞∑

s=1
skcP(s), the diffusive flux for moments develops to

JN
𝜉k =

∞∑
s=1

skJN
P(s) =

∑∞
s=1 skcP(s)

𝜉0
JN

P = 𝜉k

𝜉0
JN
𝜉0 (48)

Finally, the flux of higher polymer moments only depends on
the flux of the 0th polymer moment

JN
𝜉k =

𝜉k

𝜉0
JN
𝜉0 (49)

In other words, the diffusive transport of higher moments is
related to the diffusive flux of the 0th moment. If the total concen-
tration of polymers is constant, no equilibration of higher mo-
ments will take place. This preserves spatial inhomogeneities of
the polymer and is a realistic physical behavior for polymer solu-
tions with low solvent content. It is also physically consistent as
all polymer moments have the same species velocity, regardless
of the degree of the polymer moment.

3.4. Model Summary

To summarize the previously described findings, Table 2 shows
an overview of the different simplifications to describe the trans-
port of moments in a respective system.

An extension to multiple polymer distributions can be made
by calculating the diffusive fluxes for all distributions separately.
From this the overall diffusive fluxes for all polymer distributions
JN
𝜉k can be calculated. Finally, the balance equations can be calcu-

lated for each species and polymer distribution.

4. Results

The results presented here are based on the calculation of the bal-
ance equations for the individual components as mentioned acc.
to Equation (33) resp. (40). Note that the moments are an exact
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Table 2. Overview of equations to be implemented in a polymer system with constant density.

Balance equation for low-molecular species

𝜕ci

𝜕t
+ ∇ ⋅

(
ci

(
v − 1

𝜌

nlow∑
i

MWiJ
N
i − 1

𝜌
MWsegJN

𝜉1

))
+ ∇ ⋅ JN

i = rtotal
i

Balance equation for polymer moments of a representative polymer distribution P
𝜕𝜉k

P

𝜕t
+ ∇ ⋅

(
𝜉k

P

(
v − 1

𝜌

nlow∑
i

MWiJ
N
i − 1

𝜌
MWsegJN

𝜉1

))
+ ∇ ⋅ JN

𝜉k
P

= rtotal

𝜉k
P

With the flux JN
𝜉1 , which is the summation of the 1st moment over all polymer distributions.

JN
𝜉1 =

J∑
P

J
𝜉1
P

Molar average velocity

vN = v − 1
𝜌

∑
i

JN
i MWi

Highly diluted polymer solution xS → 1 (“No Polymer Friction” model)

Transport of low molecular species JN
j =

J−1∑
i=1

−c(B−1)ji(∇xi)

Transport of polymer moments of a representative polymer distribution P JN

𝜉k
P

=
nlow∑
j=1

𝜉k
PJN

j −𝔇Psj(c∇𝜉k
P − 𝜉k

P∇c)

cj

Highly concentrated polymer solution xS → 0 (“Infinite Polymer Friction” model)

Transport of low molecular species JN
j =

J−1∑
i=1

−c(B−1)ji(∇xi)

Transport of polymer moments of a representative polymer distribution P JN

𝜉k
P

=
𝜉k

P

𝜉0
P

JN
𝜉0
P

solution and not an approximation. The same results can thereby
be obtained with the “No Polymer Friction” moment model and
the “Infinite Polymer Friction” moment model. For comparison
to the full model in terms of the molar mass fractions of the in-
dividual species, the component balance equations were chosen
here. Validity of moment balances was checked.

4.1. Model Comparison for Polymers in Diluted Systems

This setup represents the diffusion of polymer chains in a sys-
tem with high solvent content xS → 1. The results for the dif-
ferent mole fractions for the first 20 s can be seen in Figure 5
for the full Stefan-Maxwell model and the “No Polymer Friction”
model. The figure shows that the assumption DP1P2 → ∞ shows
good agreement to the full model for solutions with a very high
solvent content. In systems with a high solvent content, two poly-
mer molecules almost never touch. For this reason, it is a good as-
sumption to assume a diffusion coefficient of DP1P2 → ∞, which
means that there is no friction between the two polymer chains.
Figure 5 shows that after 20 s of simulation time the solvent and
polymer fractions have balanced out.

Figure 6 shows the “Infinite Polymer Friction” model in com-
parison to the full model for highly diluted systems, whereas the
assumption DP1P2 → 0 is inappropriate for this case. The course
can be explained as follows. The mole fraction for the solvent is
equilibrated after that time, but the mole fractions for the poly-
mers aren’t. Since the driving force for the solvent tends to zero
∇ xs = 0, the transport of the whole system stops. This can be
explained by calculating the fluxes in this state

dS = 0 = −1
c
⋅
((

xP1

𝔇SP1
+

xP2 + xS

𝔇SP2

)
JN

S +
(

xS

𝔇SP2
−

xS

𝔇SP1

)
JN

P1

)

(50)

which means that JN
P1 directly follows from JN

S or vice versa. From
the driving force for polymer P2 which is always zero

𝔇P1P2dP1 = 0 = xP2 JN
P1 − xP1JN

P2 (51)

follows that JN
P2 directly depends on JN

P1 and vice versa. Equa-
tion (19) follows a trivial linear equation system for the fluxes
with all fluxes

Ji = 0 (52)

4.2. Model Comparison for Polymers in Concentrated Systems

This setup represents the diffusion of polymer chains in a sys-
tem with low solvent content xS → 0. The results for the different
mole fractions for the first 20 s are depicted in Figure 7 for the full
model and the “No Polymer Friction” model. The figure shows
that the assumption DP1P2 → ∞ is inappropriate for this case.
In systems with a low solvent content, the polymer molecules
touch each other, which means that there is high friction between
the molecules. Therefore, the assumption with a diffusion coef-
ficient of DP1P2 → ∞, which implies no friction between polymer
molecules, is not suitable. In the “No Polymer Friction” model,
the mole fractions of both the solvent and the polymers equal-
ize, whereas in the full model, the fractions of the polymers do
not equalize, at least not in the first 20 s. However, after an in-
finitely long simulation time, the mole fractions of the polymers
are also balanced. In this context, we neglect the very slow inter-
action between polymer molecules because the friction between
these molecules is much higher due to the lower diffusion coef-
ficient.

Figure 8 shows the comparison between the full Stefan-
Maxwell model and the “Infinite Polymer Friction” model. The
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Figure 5. Results for [1,2,3,5,10,15,20] s for the full Stefan-Maxwell model (solid lines) with a diffusion coefficient between the Polymers of 𝔇P1P2 =
10−12 m2

s
compared to the “No Polymer Friction” model (dashed lines) for highly diluted systems. The diffusion coefficient between solvent and polymer

was chosen to 𝔇SP = 10−9 m2

s
in both the models. The initial conditions are dashed in blue.

Figure 6. Results for [1,2,3,5,10,15,20] s for the full Stefan-Maxwell model (solid lines) with a diffusion coefficient between the Polymers of 𝔇P1P2 =
10−12 m2

s
compared to the “Infinite Polymer Friction” model (dotted lines) for highly diluted systems. The diffusion coefficient between solvent and

polymer was chosen to 𝔇SP = 10−9 m2

s
in both the models. The initial conditions are dashed in blue.
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Figure 7. Results for [1,2,3,5,10,15,20] s for the full Stefan–Maxwell model (solid lines) with a diffusion coefficient between the Polymers of 𝔇P1P2 =
10−12 m2

s
compared to the “No Polymer Friction” model (dashed lines) for concentrated systems. The diffusion coefficient between solvent and polymer

was chosen to 𝔇SP = 10−9 m2

s
in both the models. The initial conditions are dashed in blue.

Figure 8. Results for [1,2,3,5,10,15,20] s for the full Stefan–Maxwell model (solid lines) with a diffusion coefficient between the Polymers of 𝔇P1P2 =
10−12 m2

s
compared to the “Infinite Polymer Friction” model (dotted lines) for concentrated systems. The diffusion coefficient between solvent and

polymer was chosen to 𝔇SP = 10−9 m2

s
in both the models. The initial conditions are dashed in blue.
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assumption DP1P2 → 0 for solutions with a high polymer content
is in good agreement with the full model. Again, the mole frac-
tion for the solvent is equilibrated after that time. But the mole
fractions for the polymers aren’t. Since the driving force for the
solvent equals to zero ∇ xs = 0, the transport of the whole system
stops. For a system with a high polymer content, this behavior is
certainly a good assumption.

5. Conclusion

To adequately describe a polymer system for example in a CFD
simulation, a mathematical formulation for the transport of mo-
ments of polymer distributions is necessary. To derive such a for-
mulation, the polymer moments must close or a suitable closing
condition must be applied. In this paper, we first presented the
full Stefan–Maxwell model, which does not close in the case of
different binary diffusion coefficients. Then we presented two
different limiting cases for the Stefan–Maxwell model, which
do close. It was shown that each limiting case provides good
agreement to the full model for the respective application. The
“No Polymer Friction” model can be used when a highly dilute
polymer solution is present and thus friction between polymer
molecules can be neglected. Here excellent agreement can be ob-
served. In contrast, at high polymer concentrations the “Infinite
Polymer Friction” model can be used, since at high concentra-
tions the friction between the polymers is extremely high, so that
they virtually do not diffuse against each other but only with the
solvent. For this reason, the system “solidifies” as soon as the sol-
vent is equilibrated.

Using these limiting cases of the rigorous Stefan–Maxwell the-
ory has the advantage that the transport equation for moments
of polymer species close. Which of the two formulations is more
suitable depends on the polymer content of the solution, the av-
erage chain length of the polymer, the degree of branching of the
polymer, and the molecular weight.
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