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Abstract
Weconsider cubicKlein–Gordon equations on infinite two-dimensional periodic
metric graphs having for instance the form of graphene. At non-Dirac points of
the spectrum, with a multiple scaling expansion Nonlinear Schrödinger (NLS)
equations can be derived in order to describe slow modulations in time and
space of traveling wave packets. Here we justify this reduction by proving error
estimates between solutions of the cubic Klein–Gordon equations and the asso-
ciated NLS approximations. Moreover, we discuss the validity of the modulation
equations appearing by the same procedure at the Dirac points of the spectrum.
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1 INTRODUCTION

In [20], with a multiple scaling expansion the NLS equation and the Dirac equations have been derived as effective
equations for the description of slow modulations in time and space of traveling oscillating wave packets on infinite
one-dimensional periodic metric graphs such as the necklace graph. The associated NLS approximation and Dirac
approximation have been justified by error estimates.
It is the goal of this paper to transfer the results from [20] from one-dimensional (1D) to two-dimensional (2D) periodic

metric graphs, where we concentrate on the most prominent 2D periodic metric graph, namely the honeycomb graph,
which reminds of the hexagonal form of graphene. The approximation result for the NLS approximation is given in The-
orem 7.1 and the approximation result for the counterpart to the Dirac approximation is given in Theorem 8.1. At a first
view the transfer seems rather straightforward, but on a second view various new challenges occur.
First, in 1D the spectral curves at the Dirac points are smooth and a Taylor expansion of those is possible, whereas in

2D the spectral surfaces at the Dirac points form a cone and so no Taylor expansion of the spectral surfaces is possible. In
Section 8 we get rid of this problem by extracting other smooth two-dimensional structures.
Secondly, for the derivation and justification of modulation equations, such as the NLS equation and the Dirac

equations, in periodic media Bloch transform turned out to be a fundamental tool. For the 1D necklace graph it is straight-
forward how to Bloch transform the original nonlinear PDE posed on the 1D necklace graph. However, in order to apply
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F IGURE 1 (a) A graphene like metric graph, and (b) the associated equivalent metric “brick” graph with the indices of two vertex
points. For both graphs we take the edge lengths 𝜋.

the existing theory for the derivation and justification of modulation equations in periodic media to the 2D honeycomb
graph we have to Bloch transform the original nonlinear PDE over a Brillouin zone which is a torus. For the hexagonal
graph the standard cell is trapezoidal. Since we work with metric graphs, we can use the fact that with this respect the
honeycomb graph is equivalent to the brick graph which easily can be Bloch transformed over a 2D torus as Brillouin
zone. See Section 2 and Section 6.
Thirdly, since our theory is 𝐿2-based, due to the scaling property of the 𝐿2-norm, in 1D we lose (

𝜀−1∕2
)
in the residual

estimates, but in 2D we lose (
𝜀−1

)
, where 0 < 𝜀 ≪ 1 is the small perturbation parameter occurring in the derivation of

the modulation equations. As a consequence of this loss, higher order terms have to be added to the approximation. One
has to be careful in doing so for metric graphs due to the Kirchhoff boundary conditions at the vertices, cf. Section 2, in
order to avoid an unwanted loss of regularity. See Section 7.3.
Finally, we consider a cubic Klein–Gordon (cKG) equation instead of a NLS equation as in [20] as original system on

the metric graph and to our knowledge prove a first local existence and uniqueness result for the cKG equation posed on
a periodic metric graph, see Section 5.
The plan of the paper is as follows. In Section 2 we define what is meant by posing the cKG equation on a honeycomb

graph and explain that it is advantageous to consider the associated nonlinear initial value problem on the equivalent brick
graph. In Section 3 we recall spectral properties of the Laplacian on the honeycomb/brick graph. We explain in Section 4
for two other 2D periodicmetric graphs how they can be handledwith our approach. In Section 5we use semigroup theory
and suitable function spaces for a local existence and uniqueness result. In Section 6we derive a Blochwave representation
of the cKG equation on the periodic brick graph. This representation is the basis of the derivation of effective amplitude
equations in Section 7 for non-Dirac points of the spectrum and in Section 8 for Dirac points of the spectrum.

Notation. We denote with 𝐻𝑠
(
ℝ𝑑

)
the Sobolev space of 𝑠-times weakly differentiable functions whose derivatives up to

order 𝑠 are in 𝐿2
(
ℝ𝑑

)
. The norm ‖𝑢‖𝐻𝑠 for 𝑢 in the Sobolev space 𝐻𝑠

(
ℝ𝑑

)
is equivalent to the norm ‖‖(1 − Δ)𝑠∕2𝑢‖‖𝐿2 in

the Lebesgue space 𝐿2
(
ℝ𝑑

)
. Throughout this paper, many different constants are denoted by 𝐶, if they can be chosen

independently of the small perturbation parameter 0 < 𝜀 ≪ 1.

2 THE CKG EQUATION ON AHONEYCOMB/BRICK GRAPH

We are interested in the nonlinear dynamics ofmodulated waves on graphene like quantum graphs.We consider the cubic
Klein–Gordon (cKG) equation

𝜕2𝑡 𝑢 = Δ𝑢 − 𝑢 − 𝑢3, 𝑡 ∈ ℝ, 𝜉 ∈ Γ, 𝑢 ∶ ℝ × Γ → ℝ, (2.1)

on the periodic metric graph Γ̃ in Figure 1(a). Equation (2.1) can be seen a phenomenological model describing
electromagnetic waves on graphene like wave guides.
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A metric graph is a network of one-dimensional bonds (or edges) of certain lengths, connected at the vertices. As a
metric graph, Γ̃ is equivalent to the brick graph Γ plotted in Figure 1(b), because angles between bonds are irrelevant
in this context. The hexagonal geometry of Γ̃ motivates coordinates that allow a simple analytical solution of spectral
problems for typical Schrödinger operators on Γ̃, see [27] and below. Our representation Γmakes such spectral problems
somewhat more complicated, because we essentially have to choose a fundamental cell which is four times bigger than
the one for Γ̃, but we believe that the nonlinear problems we consider are more transparent in the rectangular coordinates
used in Γ. See Remark 3.3 for further comments.
The graph Γ can be described as

Γ = Γ𝑥 ⊕ Γ𝑦, with Γ𝑥 = ⊕𝑛∈ℤ,𝑚∈ℤ,𝑚+𝑛∈2ℤ+1Γ
𝑥
𝑚,𝑛 and Γ𝑦 = ⊕𝑛∈ℤ,𝑚∈ℤΓ

𝑦
𝑚,𝑛,

where Γ𝑥
𝑚,𝑛 is the horizontal link of length 𝜋 between the points 𝜉 = (𝑥, 𝑦) = (𝑚𝜋, 𝑛𝜋) and 𝜉 = ((𝑚+1)𝜋, 𝑛𝜋), and Γ

𝑦
𝑚,𝑛

is the vertical link of length 𝜋 between the points (𝑚𝜋, 𝑛𝜋) and (𝑚𝜋, (𝑛 + 1)𝜋). For a function 𝑢 ∶ Γ → ℂ, we denote the
part on Γ𝑥

𝑚,𝑛 with 𝑢𝑥
𝑚,𝑛 and the part on Γ

𝑦
𝑚,𝑛 with 𝑢

𝑦
𝑚,𝑛.

The second-order differential operator 𝐿 = −Δ + 1 is given by −𝜕2𝑥 + 1 on Γ𝑥
𝑚,𝑛, and by −𝜕2𝑦 + 1 on Γ

𝑦
𝑚,𝑛. We use Kirch-

hoff conditions at the vertex points = {(𝑥, 𝑦) = (𝑚𝜋, 𝑛𝜋) ∶ 𝑚, 𝑛 ∈ ℤ}, which are given by the continuity of the functions
and of the fluxes at the vertices. For𝑚 + 𝑛 odd we have

𝑢𝑥
𝑚,𝑛(𝑚𝜋, 𝑛𝜋) = 𝑢

𝑦
𝑚,𝑛(𝑚𝜋, 𝑛𝜋) = 𝑢

𝑦
𝑚,𝑛−1(𝑚𝜋, 𝑛𝜋), and (2.2)

𝜕𝑥𝑢
𝑥
𝑚,𝑛(𝑚𝜋, 𝑛𝜋) + 𝜕𝑦𝑢

𝑦
𝑚,𝑛(𝑚𝜋, 𝑛𝜋) − 𝜕𝑦𝑢

𝑦
𝑚,𝑛−1(𝑚𝜋, 𝑛𝜋) = 0. (2.3)

For𝑚 + 𝑛 even we have

𝑢𝑥
𝑚−1,𝑛(𝑚𝜋, 𝑛𝜋) = 𝑢

𝑦
𝑚,𝑛(𝑚𝜋, 𝑛𝜋) = 𝑢

𝑦
𝑚,𝑛−1(𝑚𝜋, 𝑛𝜋), and (2.4)

𝜕𝑥𝑢
𝑥
𝑚−1,𝑛(𝑚𝜋, 𝑛𝜋) − 𝜕𝑦𝑢

𝑦
𝑚,𝑛(𝑚𝜋, 𝑛𝜋) + 𝜕𝑦𝑢

𝑦
𝑚,𝑛−1(𝑚𝜋, 𝑛𝜋) = 0. (2.5)

We introduce the functions

𝑢𝑥(𝑥, 𝑦) =

{
𝑢𝑥
𝑚,𝑛(𝑥, 𝑦), (𝑥, 𝑦) ∈ Γ𝑥

𝑚,𝑛, 𝑚 + 𝑛 odd,
0, elsewhere,

𝑢𝑦(𝑥, 𝑦) =

{
𝑢
𝑦
𝑚,𝑛(𝑥, 𝑦), (𝑥, 𝑦) ∈ Γ

𝑦
𝑚,𝑛,

0, elsewhere,

collect 𝑢𝑥 and 𝑢𝑦 in the vector 𝑈 = (𝑢𝑥, 𝑢𝑦), and rewrite the evolutionary problem (2.1) as

𝜕2𝑡 𝑈 = Δ𝑈 −𝑈 −𝑈3, 𝑡 ∈ ℝ, 𝜉 ∈ Γ ⧵  , (2.6)

with the conditions (2.2)–(2.5) at the vertex points. The cubic nonlinear term 𝑈3 stands for the vector ((𝑢𝑥)3, (𝑢𝑦)3).

3 THE SPECTRAL PROBLEM

We are interested in the dynamics ofmodulatedwaves of small amplitude. Thus in the derivation of effective equations the
linearized problem plays a fundamental role. The linearization of (2.6) at 𝑈 = 0 reads

𝜕2𝑡 𝑈 = −𝐿𝑈 ∶= Δ𝑈 −𝑈, (3.1)

i.e., 𝐿𝑈 = −Δ𝑈 +𝑈 together with the vertex conditions (2.2)–(2.5). Linear Schrödinger operators on metric graphs, such
as 𝐿 and more general versions, have been studied extensively, see, e.g., [4]. Here we consider 𝐿 in the space

2 =
{
𝑈 = (𝑢𝑥, 𝑢𝑦) ∈

(
𝐿2(Γ)

)2}
,
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with the domain of definition

2 ∶=
{
𝑈 ∈ 2 ∶ 𝑢

𝜁
𝑛1,𝑛2

∈ 𝐻2
(
Γ
𝜁
𝑛1,𝑛2

)
, (2.2) − (2.5) are satisfied

}
.

We also need the intermediate space

1 ∶=
{
𝑈 ∈ 2 ∶ 𝑢

𝜁
𝑛1,𝑛2

∈ 𝐻1
(
Γ
𝜁
𝑛1,𝑛2

)
, (2.2) and (2.4) hold

}
.

The𝐻𝑠 norms on these spaces are

‖𝑈‖𝑠 ∶=
⎛⎜⎜⎝

∑
(𝜁,𝑛1,𝑛2)

‖‖𝑢𝜁
𝑛1,𝑛2

‖‖2𝐻𝑠
(
Γ
𝜁
𝑛1,𝑛2

)⎞⎟⎟⎠
1∕2

.

Problem (3.1) is solved by so-called Bloch modes

𝑈(𝑡, 𝑥, 𝑦) = 𝑒i𝜔𝑡𝑒i𝑘𝑥𝑒i𝑙𝑦𝑓(𝑘, 𝑙, 𝑥, 𝑦), 𝑘, 𝑙 ∈ ℝ, (𝑥, 𝑦) ∈ Γ, (3.2)

where 𝑓 = (𝑓𝑥, 𝑓𝑦) satisfies

𝑓(𝑘, 𝑙, 𝑥, 𝑦) = 𝑓(𝑘, 𝑙, 𝑥 + 2𝜋, 𝑦) = 𝑓(𝑘, 𝑙, 𝑥, 𝑦 + 2𝜋), (3.3)

𝑓(𝑘, 𝑙, 𝑥, 𝑦) = 𝑓(𝑘 + 1, 𝑙, 𝑥, 𝑦)𝑒i𝑥 = 𝑓(𝑘, 𝑙 + 1, 𝑥, 𝑦)𝑒𝑖𝑦. (3.4)

Due to (3.3) and (3.4) we can restrict ourselves to the Brillouin zone (𝑘, 𝑙) ∈ 𝕋2
1, and for 𝑓

𝑥 to 𝑥 ∈ 𝕋2𝜋 and 𝑦 ∈ {0, 𝜋},
and for 𝑓𝑦 to 𝑦 ∈ 𝕋2𝜋 and 𝑥 ∈ {0, 𝜋}. The torus 𝕋1 is isometrically parameterized with 𝑘 or 𝑙 ∈ [−1∕2, 1∕2] and the torus
𝕋2𝜋 with 𝑥 or 𝑦 ∈ [0, 2𝜋], where the endpoints of the intervals are identified to be the same. Hence, 𝑓 can be found as a
solution of the eigenvalue problem

−
(
𝜕𝑥 + i𝑘

)2
𝑓𝑥(𝑘, 𝑙, 𝑥, 𝑦) + 𝑓𝑥(𝑘, 𝑙, 𝑥, 𝑦) = 𝜔2(𝑘, 𝑙)𝑓𝑥(𝑘, 𝑙, 𝑥, 𝑦), for 𝑥 ∈ 𝕋2𝜋, (3.5)

−
(
𝜕𝑦 + i𝑙

)2
𝑓𝑦(𝑘, 𝑙, 𝑥, 𝑦) + 𝑓𝑦(𝑘, 𝑙, 𝑥, 𝑦) = 𝜔2(𝑘, 𝑙)𝑓𝑦(𝑘, 𝑙, 𝑥, 𝑦), for 𝑦 ∈ 𝕋2𝜋, (3.6)

subject to the following vertex conditions. For odd𝑚 + 𝑛 we have

𝑓𝑥
𝑚,𝑛(𝑘, 𝑙,𝑚𝜋, 𝑛𝜋) = 𝑓

𝑦
𝑚,𝑛(𝑘, 𝑙,𝑚𝜋, 𝑛𝜋) = 𝑓

𝑦
𝑚,𝑛−1(𝑘, 𝑙,𝑚𝜋, 𝑛𝜋), and (3.7)

(
𝜕𝑥 + i𝑘

)
𝑓𝑥
𝑚,𝑛(𝑘, 𝑙,𝑚𝜋, 𝑛𝜋) +

(
𝜕𝑦 + i𝑙

)
𝑓
𝑦
𝑚,𝑛(𝑘, 𝑙,𝑚𝜋, 𝑛𝜋) −

(
𝜕𝑦 + i𝑙

)
𝑓
𝑦
𝑚,𝑛−1(𝑘, 𝑙,𝑚𝜋, 𝑛𝜋) = 0, (3.8)

and for even𝑚 + 𝑛 we have

𝑓𝑥
𝑚−1,𝑛(𝑘, 𝑙,𝑚𝜋, 𝑛𝜋) = 𝑓

𝑦
𝑚,𝑛(𝑘, 𝑙,𝑚𝜋, 𝑛𝜋) = 𝑓

𝑦
𝑚,𝑛−1(𝑘, 𝑙,𝑚𝜋, 𝑛𝜋), and (3.9)

(
𝜕𝑥 + i𝑘

)
𝑓𝑥
𝑚−1,𝑛(𝑘, 𝑙,𝑚𝜋, 𝑛𝜋) −

(
𝜕𝑦 + i𝑙

)
𝑓
𝑦
𝑚,𝑛(𝑘, 𝑙,𝑚𝜋, 𝑛𝜋) +

(
𝜕𝑦 + i𝑙

)
𝑓
𝑦
𝑚,𝑛−1(𝑘, 𝑙,𝑚𝜋, 𝑛𝜋) = 0. (3.10)

Due to (3.3) and (3.4) we can restrict the function 𝑓 to the (fundamental) cell

Γ𝑏 = ⊕(𝜁,𝑛1,𝑛2)∈𝐼𝑏Γ
𝜁
𝑛1,𝑛2

,

cf. Figure 1 and Figure 2(a), with the index set

𝐼𝑏 = {(𝑥, 1, 0), (𝑥, 0, 1), (𝑦, 1, 0), (𝑦, 1, 1), (𝑦, 2, 0), (𝑦, 2, 1)}. (3.11)

Together, for fixed 𝑘, 𝑙 ∈ 𝕋1, (3.5)–(3.10) define the eigenvalue problem

�̃�(𝑘, 𝑙)𝑓 = 𝜆(𝑘, 𝑙)𝑓, (3.12)
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F IGURE 2 (a) The basic cell. (b) A selection of spectral surfaces 𝜆𝑚, and the flat band 𝜆 ≡ 5, showing in particular five Dirac points, two
at 𝜆 ≈ 3.25, one at 𝜆 = 5, and two at 𝜆 ≈ 7.25. The colors of the bands are chosen to be consistent with those in (c), and the Brillouin zone 𝕋2

1

is slightly cut off in 𝑙 for graphical reasons. (c) The spectral surfaces �̃�𝑚,𝑚 = 0 (black),𝑚 = 1 (blue), and𝑚 = −1, associated to a minimal
trapezoidal fundamental cell and associated Brillouin zone 𝕋2

2, cf. (3.15), again with the flat band 𝜆 ≡ 5, cf. Remark 3.3 for a more detailed
explanation.

where 𝜆(𝑘, 𝑙) = 𝜔2(𝑘, 𝑙). For fixed 𝑘, 𝑙 ∈ 𝕋1, we define

𝐿2
Γ ∶=

{
𝑈 =

(
𝑢
𝜁
𝑛1,𝑛2

)
(𝜁,𝑛1,𝑛2)∈𝐼𝑏

∈
(
𝐿2(𝕋2𝜋)

)6
∶ supp

(
𝑢
𝜁
𝑛1,𝑛2

)
⊂Γ

𝜁
𝑛1,𝑛2

}
(3.13)

and

𝐻2
Γ(𝑘, 𝑙) ∶=

{
𝑈 ∈ 𝐿2

Γ ∶ 𝑢𝑗 ∈ 𝐻2
(
Γ
𝜁
𝑛1,𝑛2

)
, (𝜁, 𝑛1, 𝑛2) ∈ 𝐼𝑏, (3.7)−(3.10) are satisfied

}
,

equipped with the norm

‖‖𝑈‖‖𝐻2
Γ
(𝑘,𝑙)

=
⎛⎜⎜⎝

∑
(𝜁,𝑛1,𝑛2)∈𝐼𝑏

‖‖𝑢𝜁
𝑛1,𝑛2

‖‖2𝐻2(Γ
𝜁
𝑛1,𝑛2

)

⎞⎟⎟⎠
1∕2

.

Similar to [20, Lemma 2.2] we obtain the following result.

Lemma 3.1. For fixed 𝑘, 𝑙 ∈ 𝕋1, the operator �̃�(𝑘, 𝑙) ∶ 𝐻2
Γ(𝑘, 𝑙) → 𝐿2

Γ is self-adjoint, positive definite, and has compact resol-
vents.

By Lemma 3.1 and the spectral theorem for self-adjoint operators with compact resolvents, for each 𝑘, 𝑙 ∈ 𝕋1 there exists
a Schauder basis

{
𝑓(𝑚)(𝑘, 𝑙, ⋅, ⋅)

}
𝑚∈ℕ

of 𝐿2
Γ consisting of eigenfunctions of �̃�(𝑘, 𝑙)with positive eigenvalues

{
𝜆𝑚(𝑘, 𝑙)

}
𝑚∈ℕ

,
ordered as 𝜆𝑚(𝑘, 𝑙) ≤ 𝜆𝑚+1(𝑘, 𝑙). By construction, the 𝜆𝑚 are periodic w.r.t. 𝑘 and 𝑙, and the Bloch wave functions satisfy
(3.3) and (3.4), and the orthogonality and normalization relations⟨

𝑓(𝑚)(𝑘, 𝑙, ⋅, ⋅), 𝑓(𝑚′)(𝑘, 𝑙, ⋅, ⋅)
⟩
𝐿2
Γ

= 𝛿𝑚,𝑚′ , 𝑘, 𝑙 ∈ 𝕋1. (3.14)

Via the 𝜆𝑚 we find 𝜔 = 𝜔(±𝑚) with 𝜔(𝑚) =
√
𝜆𝑚 and 𝜔(−𝑚) = −𝜔(𝑚).

Additionally, let Σ𝐷 =
{
𝜆 = 𝑘2 + 1 ∶ 𝑘 ∈ ℕ

}
denote the set of Dirichlet eigenvalues of −𝜕2𝑥 + 1 on (0, 𝜋). Then each

𝜆 ∈ Σ𝐷 yields an eigenvalue 𝜆 of 𝐿 of infinite multiplicity, with eigenspaces generated by so called simple loops which
are localized in a single hexagon, see [27, Lemma 3.5]. By linear combinations of these localized eigenfunctions an associ-
ated Bloch mode representation can be constructed. Therefore, horizontal planes occur in the spectral picture plotted in
Figure 2(b), which shows a selection of spectral surfaces 𝜆𝑚(𝑘, 𝑙). For some 𝜆𝑚 there appear conical singularities at certain
so called Dirac points (𝑘, 𝑙) ∈ 𝕋2

1. See Remark 3.3 for further comments. In summary, we have, cf. [27, Theorem 3.6].
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Theorem 3.2. The spectrum 𝜎(𝐿) consists of the spectral surfaces 𝕋2
1 ∋ (𝑘, 𝑙) ↦ 𝜆𝑚(𝑘, 𝑙), 𝑚 ∈ ℕ (absolutely continous

spectrum), and the eigenvalues Σ𝐷 of infinite multiplicity.

Remark 3.3.

a) As already said above, the spectral problem can be analyzed more efficiently on the original hexagonal graph Γ̃ by
choosing a minimal trapezoidal fundamental cell [27]. Transfering the analysis from [27] to our case (bond lengths 𝜋,
potential 𝑞0 = 1, cf. d)), we obtain that the spectral surfaces 𝜆 ∉ Σ𝐷 are given by

𝜆𝑚(𝑘, 𝑙) = 1 +

(
1

𝜋
arccos(𝐹(𝑘, 𝑙)∕3) + 𝑚

)2

, 𝑚 ∈ ℤ, (3.15)

see Figure 2(c), where 𝐹(𝑘, 𝑙) = ||1 + ei𝜋𝑘 + ei𝜋𝑙||, and 𝑘, 𝑙 are quasimomenta associated to non–orthogonal directions,
e.g., 𝑒1 =

(√
3∕2, 1∕2

)
and 𝑒2 = (0, 1). The function 𝐹 has range [0,3] with minima at (𝑘, 𝑙)min = ±(2∕3, −2∕3) and

a maximum at (𝑘, 𝑙)max = (0, 0), yielding Dirac points. Similar fairly explicit results on dispersion relations for other
periodic quantum graphs associated to tilings of the plane such as triangular graphs and trihexagonal (or Kagome)
graphs are given in [30], again based on non-rectangular fundamental cells.
However, such non-orthogonal coordinates make the treatment of nonlinear terms (see below) inmomentum space

somewhat inconvenient, andwe believe that our results on the nonlinear problems are easier interpreted in the orthog-
onal coordinates𝑥, 𝑦. For these reasonswe prefer towork onΓ.We remark that ’distorted’ hexagonal graphs (of unequal
side-length) also fit into this framework via rescaling of side-lengths, and that subsequently we comment on two other
periodic quantum graphs which can be treated similarly, namely the rectangular graph (trivially), and the triangular
graph, cf. Examples 4.1 and 4.2.

b) To (numerically) compute the dispersion relation in Figure 2(b) we proceed as follows. On Γ𝑥
0,1 and Γ𝑥

1,0 we have the
ODE (3.5), while on the remaining bonds (3.6) applies. For (3.5) we choose a fundamental system𝜙0, 𝜙1, and for (3.6)we
choose 𝜓0, 𝜓1, which depend on 𝑘 and 𝑙, respectively. The solutions 𝑓𝑥

0,1, 𝑓
𝑦
1,1, … , 𝑓

𝑦
2,1 are then written as 𝑓

𝑥
0,1 = 𝛼1𝜙0 +

𝛽1𝜙1, 𝑓
𝑦
1,1 = 𝛼2𝜓0 + 𝛽2𝜓1, … , 𝑓

𝑦
2,1 = 𝛼6𝜓0 + 𝛽6𝜓1, such that the vertex conditions (3.7)–(3.10) lead to a 12-dimensional

system𝑀(𝑘, 𝑙, 𝜔)Φ = 0 for the unknown coefficients Φ =
(
𝛼1, 𝛽1, … , 𝛼6, 𝛽6

)
with nontrivial solutions if and only if

det𝑀(𝑘, 𝑙, 𝜔) = 0. (3.16)

This can be simplified considerably, starting with a smart choice of the fundamental system(s). For the different and
simpler choice of the fundamental cell, this is done in [27], leading to the analytic solution in (3.15), and similarly in
[30]. However, to obtain Figure 2(b) we simply solve (3.16) numerically, starting with different initial guesses for 𝜆(𝑘, 𝑙)
to obtain the given selection of surfaces.

c) Alternatively to (3.2) one can consider Bloch modes of the form 𝑓(𝑘, 𝑙, 𝑥, 𝑦) with cyclic boundary conditions

𝑓(𝑘, 𝑙, 𝑥 + 2𝜋, 𝑦) = e2𝜋i𝑘𝑥𝑓(𝑘, 𝑙, 𝑥, 𝑦) and 𝑓(𝑘, 𝑙, 𝑥, 𝑦 + 2𝜋) = e2𝜋i𝑙𝑦𝑓(𝑘, 𝑙, 𝑥, 𝑦),

𝑓(𝑘 + 1, 𝑙, 𝑥, 𝑦) = 𝑓(𝑘, 𝑙 + 1, 𝑥, 𝑦) = 𝑓(𝑘, 𝑙, 𝑥, 𝑦),
(3.17)

in which case the associated linear problem is (3.5)–(3.10) with 𝜕𝑥 + i𝑘 and 𝜕𝑦 + i𝑙 reset to 𝜕𝑥 and 𝜕𝑦 , respectively. This
for instance yields a slightly simpler calculus for the fundamental systems on the edges. One advantage of our ansatz
(3.2) is a simpler isomorphism property of the associated Bloch transform stated in Lemma 6.1.

d) Instead of −𝜕2𝑥 + 1 on the edges we could also consider −𝜕2𝑥 + 𝑞0 with a potential 𝑞0 ≥ 0, or even more generally
𝑞0 ∈𝐿2((0, 2𝜋)) nonnegative and even, i.e., 𝑞0(2𝜋 − 𝑥) = 𝑞0(𝑥), see [27]. The numerics as in b) work as long as we
can find a fundamental system for the ODEs on the bonds. However, in order to not proliferate symbols we set 𝑞0 = 1.

e) The flux vertex conditions (2.3) and (2.5) are often generalized to so called 𝛿 vertex conditions [4] of the form
∑𝑁

𝑗=1
𝑢′
𝑗
=

𝛿𝑢, assuming that𝑁 edges meet in a vertex with suitable orientations of 𝑥 for incoming and outgoing edges. This can
also be modified to so called 𝛿′ vertex conditions, and the only restriction is that 𝐿 stays self-adjoint. In many of these
cases, a similar spectral analysis as above holds. However, here we are interested in the nonlinear problem (2.6), and
for 𝛿 ≠ 0 the corresponding space 𝐻2

Γ is no longer closed under multiplication, and therefore we stick to (2.3), (2.5),
i.e., 𝛿 = 0.
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F IGURE 3 A square periodic metric graph Γ (a), and exampe spectral surfaces (b), see (4.4).

4 TWO OTHER EXAMPLES

We give two more examples of 2D periodic metric graphs for which the analysis of the present paper applies. For the first
one this is trivial, but the second one shows that a treatment with rectangular fundamental cells is possible for, e.g., all the
metric graphs treated in [30], i.e., for instance also for the trihexagonal (Kagome) graph.We emphazise that the procedure
is useless for the linear problems, which can be treatedmore efficiently using non-rectangular fundamental cells, and that
our transform to axis-parallel bonds is exclusively motivated by the nonlinear problems.

Example 4.1 (The square graph). The periodic metric graph Γ from Figure 3(a) can be expressed as

Γ = Γ𝑥 ⊕ Γ𝑦, with Γ𝑥 = ⊕𝑛∈ℤ,𝑚∈ℤΓ
𝑥
𝑚,𝑛 and Γ𝑦 = ⊕𝑛∈ℤ,𝑚∈ℤΓ

𝑦
𝑚,𝑛,

where Γ𝑥
𝑚,𝑛 represents the horizontal link of length 2𝜋 between the points (2𝜋𝑚, 2𝜋𝑛) and (2𝜋(𝑚 + 1), 2𝜋𝑛) and where

Γ
𝑦
𝑚,𝑛 represents the vertical link of length 2𝜋 between the points (2𝜋𝑚, 2𝜋𝑛) and (2𝜋𝑚, 2𝜋(𝑛 + 1)). For a function

𝑢 ∶Γ→ℂ, we denote the part on Γ𝑥
𝑚,𝑛 with 𝑢𝑥

𝑚,𝑛 and the parts on Γ
𝑦
𝑚,𝑛 with 𝑢

𝑦
𝑚,𝑛.

The second-order differential operator −Δ + 𝑞0, with 𝑞0 ≥ 0 a constant, is given by −𝜕2𝑥 + 𝑞0 on Γ𝑥
𝑚,𝑛 and by −𝜕2𝑦 + 𝑞0

on Γ
𝑦
𝑚,𝑛. The Kirchhoff boundary conditions at the vertex points {(𝑥, 𝑦)=(2𝜋𝑚, 2𝜋𝑛) ∶ 𝑚, 𝑛∈ℤ} are now

𝑢𝑥
𝑚,𝑛(2𝜋𝑚, 2𝜋𝑛) = 𝑢𝑥

𝑚−1,𝑛(2𝜋𝑚, 2𝜋𝑛) = 𝑢
𝑦
𝑚,𝑛(2𝜋𝑚, 2𝜋𝑛) = 𝑢

𝑦
𝑚,𝑛−1(2𝜋𝑚, 2𝜋𝑛), (4.1)

𝜕𝑥𝑢
𝑥
𝑚,𝑛(2𝜋𝑚, 2𝜋𝑛)−𝜕𝑥𝑢

𝑥
𝑚−1,𝑛(2𝜋𝑚, 2𝜋𝑛)+𝜕𝑦𝑢

𝑦
𝑚,𝑛(2𝜋𝑚, 2𝜋𝑛)−𝜕𝑦𝑢

𝑦
𝑚,𝑛−1(2𝜋𝑚, 2𝜋𝑛)= 0. (4.2)

Again we introduce the functions

𝑢𝑥(𝑥, 𝑦) =

{
𝑢𝑥
𝑚,𝑛(𝑥, 𝑦), (𝑥, 𝑦) ∈ Γ𝑥

𝑚,𝑛,

0, elsewhere,
𝑢𝑦(𝑥, 𝑦) =

{
𝑢
𝑦
𝑚,𝑛(𝑥, 𝑦), (𝑥, 𝑦) ∈ Γ

𝑦
𝑚,𝑛,

0, elsewhere,

collect 𝑢𝑥 and 𝑢𝑦 in the vector 𝑈 = (𝑢𝑥, 𝑢𝑦), and rewrite the evolutionary problem (2.1) as

𝜕2𝑡 𝑈 = Δ𝑈 − 𝑞0𝑈 − 𝑈3 = 0, 𝑡 ∈ ℝ, (𝑥, 𝑦) ∈ Γ ⧵ (2𝜋ℤ)2, (4.3)

subject to the conditions (4.1)–(4.2) at the vertex points (𝑥, 𝑦) ∈ (2𝜋ℤ)2, and where the cubic nonlinear term stands for the
vector𝑈3 =

(
(𝑢𝑥)3, (𝑢𝑦)3

)
. Nowwe can proceed exactly as above. For instance, for 𝑞0 = 0 (cf. Remark 3.3(d)), the spectral

surfaces 𝜆𝑚 = 𝜔2
𝑚 are obtained from

𝜔𝑚(𝑘, 𝑙) =
1

2𝜋
arccos

(
1

2
(cos(2𝜋𝑘) + cos(2𝜋𝑙))

)
+

𝑚

2
, 𝑚 ∈ ℕ, (4.4)

together with flat bands 𝜆 = (𝑚∕2)2,𝑚 ∈ ℕ, see [11], and Figure 3(b) for a sketch. Obviously, rectangular graphs can be
treated in the same way.
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F IGURE 4 (a),(b) The triangle graph and its fundamental cell. (c),(d) An equivalent metric triangle graph and its basic cell. Since we
have metric graphs it does not matter which path we choose on the diagonal. However, since we changed the length from (b) to (d) we have to
rescale the differential operator on the diagonal elements in (d). See the explanations above.

Example 4.2 (The triangle graph). Figure 4 shows a triangle graph and a possible representation in rectangular coordi-
nates, for which we choose as fundamental cell Γ1 ∪ … ∪ Γ6 consisting of Γ1 connecting (0, 0) with (2𝜋, 0), Γ2 connecting
(0, 0)with (0, 2𝜋), Γ3 connecting (0, 0)with (𝜋, 0), Γ4 connecting (𝜋, 0)with (𝜋, 𝜋), Γ5 connecting (𝜋, 𝜋)with (2𝜋, 𝜋), and
Γ6 connecting (2𝜋, 𝜋) with (2𝜋, 2𝜋). The parts Γ1 and Γ2 will be identified with the interval [0, 2𝜋], the parts Γ3 and Γ4

with the interval [0, 𝜋], and the parts Γ5 and Γ6 with the interval [𝜋, 2𝜋]. The part of the solution living on Γ𝑗 is denoted
by 𝑢𝑗 . We obtain the following Bloch transformed eigenvalue problem(

𝜕𝑥 + i𝑘
)2
𝑢1 − 𝑢1 = −𝜔2𝑢1, on Γ1,(

𝜕𝑦 + i𝑙
)2
𝑢2 − 𝑢2 = −𝜔2𝑢2, on Γ2,(√

2𝜕𝑥 + i𝑘
)2

𝑢3,5 − 𝑢3,5 = −𝜔2𝑢3,5, on Γ3,5,(√
2𝜕𝑦 + i𝑙

)2

𝑢4,6 − 𝑢4,6 = −𝜔2𝑢4,6, on Γ4,6,

where the scaling in the last two equations comes from the scaling of the diagonal to come from the original graph to the
equivalent graph, i.e., �̃� =

√
2𝑥 implies 𝜕�̃� =

√
2𝜕𝑥. The vertex conditions then are

𝑢1(0, 0) = 𝑢2(0, 0) = 𝑢3(0, 0) = 𝑢1(2𝜋, 0) = 𝑢2(0, 2𝜋) = 𝑢6(2𝜋, 2𝜋),

𝑢3(𝜋, 0) = 𝑢4(𝜋, 0), 𝑢4(𝜋, 𝜋) = 𝑢5(𝜋, 𝜋), 𝑢5(2𝜋, 𝜋) = 𝑢6(2𝜋, 𝜋),

𝜕𝑥𝑢3(𝜋, 0) = 𝜕𝑦𝑢4(𝜋, 0), 𝜕𝑦𝑢4(𝜋, 𝜋) = 𝜕𝑥𝑢5(𝜋, 𝜋), 𝜕𝑥𝑢5(2𝜋, 𝜋) = 𝜕𝑦𝑢6(2𝜋, 𝜋), and

𝜕𝑥𝑢1(0, 0) + 𝜕𝑦𝑢2(0, 0) +
√
2𝜕𝑥𝑢3(0, 0) − 𝜕𝑥𝑢1(2𝜋, 0) − 𝜕𝑦𝑢2(0, 2𝜋) −

√
2𝜕𝑦𝑢6(2𝜋, 2𝜋) = 0.

5 LOCAL EXISTENCE AND UNIQUENESS

In this section we prove that the cKG equation (2.6) defines a well-posed initial value problem. The functional analytic
frame which we use for the local existence and uniqueness of solutions of the cKG equation (2.6) will also be used as the
basics for establishing the error estimates for the two approximations introduced in the subsequent sections.
FromTheorem 3.2 we obtain the existence of a self-adjoint and positive definite rootΩ of 𝐿. Thus, setting𝑉 = −Ω−1𝜕𝑡𝑈

we can rewrite (2.6) as

𝜕𝑡𝑊 = Λ𝑊 +𝑁(𝑊), (5.1)

with

𝑊 =

(
𝑈

𝑉

)
, Λ =

(
0 −Ω

Ω 0

)
, and 𝑁(𝑊) =

(
0

Ω−1𝑈3

)
.
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As a consequence of classical semigroup theory [33], we have:

Corollary 5.1. The skew symmetric operator Λ with domain 𝐷(Λ) = 𝐷(Ω) × 𝐷(Ω) defines a unitary group
(
𝑒Λ𝑡

)
𝑡∈ℝ

in 2

such that ‖‖𝑒Λ𝑡𝑊‖‖2 = ‖𝑊‖2 for every 𝑡 ∈ ℝ.

Another direct consequence of classical semigroup theory is

Corollary 5.2. There exists a positive constant 𝐶𝐿 such that

‖‖𝑒Λ𝑡𝑊‖‖(2)2
≤ 𝐶𝐿‖𝑊‖(2)2 (5.2)

for every𝑊 ∈
(2

)2
and every 𝑡 ∈ ℝ.

Proof. We find

‖‖𝑒Λ𝑡𝑊‖‖(2)2
≤ 𝐶‖‖Λ2𝑒Λ𝑡𝑊‖‖(2)2

≤ 𝐶‖‖𝑒Λ𝑡Λ2𝑊‖‖(2)2
= 𝐶‖‖Λ2𝑊‖‖(2)2

≤ 𝐶‖𝑊‖(2)2 ,

where we used the equivalence of the norms ‖ ⋅ ‖(2)2 and ‖‖Λ2 ⋅ ‖‖(2)2
= ‖diag(𝐿, 𝐿) ⋅ ‖(2)2 , that Λ2 and 𝑒Λ𝑡 commute,

and that 𝑒Λ𝑡 is a unitary group, cf. Corollary 5.1. □

Using additionally that the space2 is closed under multiplication, cf. [20, Lemma 3.1], allows us to proceed with the
general theory for semilinear dynamical systems [33] in proving the local existence and uniqueness of solutions of the
initial value problem associated with the cKG equation (5.1) in the phase space (2)2.

Theorem5.3. For every𝑊0 ∈
(2

)2
, there exists a 𝑡0 = 𝑡0

(‖𝑊0‖(2)2
)
> 0 and a unique solution𝑊∈𝐶

([
− 𝑡0, 𝑡0

]
,
(2

)2)
of the cKG equation (5.1) with the initial data𝑊|𝑡=0 = 𝑊0.

Proof. From 𝑈 ∈ 2 it follows that 𝑈3 ∈ 2, cf. [20, Lemma 3.1]. Moreover, we have

‖‖Ω−1𝑈3‖‖2 = ‖‖Ω𝑈3‖‖2 ≤ 𝐶‖‖Ω2𝑈3‖‖2 ≤ ‖‖𝑈3‖‖2 ≤ 𝐶‖𝑊‖3
(2)2

,

such that the nonlinearity is locally Lipschitz continuous from
(2

)2
to

(2
)2
. Then we use the variation of constant

formula to rewrite the initial value problem associated with (5.1) as

𝑊(𝑡, ⋅) = 𝑒Λ𝑡𝑊0 + ∫
𝑡

0

𝑒Λ(𝑡−𝜏)𝑁(𝑊)(𝜏) 𝑑𝜏, (5.3)

and seek the solution in the space

 ∶=

{
𝑊 ∈ 𝐶

([
− 𝑡0, 𝑡0

]
,
(2

)2)
∶ sup

𝑡∈[−𝑡0,𝑡0]

‖‖𝑊(𝑡, ⋅) − 𝑒Λ𝑡𝑊0
‖‖(2)2

≤ 𝐶3

}
,

for a constant 𝐶3 > 0 arbitrary, but fixed. For every𝑊0 ∈
(2

)2
, there is a sufficiently small 𝑡0 = 𝑡0

(‖𝑊0‖(2)2
)
> 0 such

that the right-hand side of (5.3) is a contraction in the space . Therefore, Banach’s fixed-point theorem implies the
existence of a unique solution𝑊 ∈ 𝐶

([
− 𝑡0, 𝑡0

]
,
(2

)2)
. □

Remark 5.4. Theorem 5.3 implies that there exists a unique solution 𝑈 ∈ 𝐶
([

− 𝑡0, 𝑡0
]
,2

)
∩ 𝐶1

([
− 𝑡0, 𝑡0

]
,1

)
of the

original system (2.6) with the initial conditions𝑊0 =
(
𝑈0, 𝜕𝑡𝑈0

)
∈ 2 ×1 = 𝐷(𝐿) × 𝐷

(
𝐿1∕2

)
.
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6 THE SYSTEM IN BLOCH SPACE

In order to apply the existing theory for the derivation and justification of modulation equations in periodic media to the
2D honeycomb graph, we have to Bloch transform the original nonlinear PDE over a Brillouin zone which is a torus. Since
weworkwithmetric graphs, we use the fact that the honeycomb graph is equivalent to the brick graphwhich easily can be
Bloch transformed over a 2D torus as Brillouin zone. We briefly recall the main properties of Bloch transform  but refer
to [20] and [36, §11.6.3] for further details. See also [26] for a very useful extensive summary and guide to the literature,
based on a somewhat more general approach but also including many pointers to applications in the context of quantum
graphs and otherwise.
Bloch transform  is the counterpart to Fourier transform  for spatially periodic problems. Bloch transform inℝ𝑑 for

media which is 2𝜋-periodic in every direction is defined by

𝑢(𝓁, 𝜉) = ( 𝑢)(𝓁, 𝜉) =
∑
𝑗∈ℤ𝑑

𝑒i𝑗⋅𝜉𝑢(𝓁 + 𝑗), (6.1)

where 𝑢(𝜅) = (𝑢) (𝜅), 𝜅 ∈ ℝ𝑑, is the Fourier transform of 𝑢. The inverse Bloch transform is given by

𝑢(𝜉) =
( −1𝑢

)
(𝜉) = ∫

𝕋𝑑
1

𝑒i𝓁⋅𝜉𝑢(𝓁, 𝜉) 𝑑𝓁. (6.2)

By construction, 𝑢(𝓁, 𝜉) is extended from (𝓁, 𝜉) ∈ 𝕋𝑑
1 × 𝕋𝑑

2𝜋 to (𝓁, 𝜉) ∈ ℝ𝑑 × ℝ𝑑 according to the continuation conditions

𝑢(𝓁, 𝜉) = 𝑢
(
𝓁, 𝜉 + 2𝜋𝑒𝑗

)
and 𝑢(𝓁, 𝜉) = 𝑢

(
𝓁 + 𝑒𝑗, 𝜉

)
𝑒i𝜉𝑗 , (6.3)

where 𝑒𝑗 is the 𝑗-th unit vector in ℝ𝑑. The following lemma [5, 20] allows to transfer estimates from Bloch space into
physical space and vice versa.

Lemma 6.1. The Bloch transform  is an isomorphism between𝐻𝑠
(
ℝ𝑑

)
and 𝐿2

(
𝕋𝑑
1 ,𝐻

𝑠
(
𝕋𝑑
2𝜋

))
, where 𝐿2

(
𝕋𝑑
1 ,𝐻

𝑠
(
𝕋𝑑
2𝜋

))
is

equipped with the norm ‖𝑢‖
𝐿2

(
𝕋𝑑
1
,𝐻𝑠

(
𝕋𝑑
2𝜋

)) =

(
∫
𝕋𝑑
1
‖𝑢(𝓁, ⋅)‖2

𝐻𝑠
(
𝕋𝑑
2𝜋

) 𝑑𝓁)1∕2

.

Multiplication of two functions 𝑢 and 𝑣 in physical space corresponds to convolution in Bloch space, i.e.,

 (𝑢𝑣)(𝓁, 𝜉) = (�̃� ⋆ 𝑣)(𝓁, 𝜉) = ∫
𝕋𝑑
1

�̃�(𝓁 − 𝑚, 𝜉)𝑣(𝑚, 𝜉) 𝑑𝑚, (6.4)

where the continuation conditions (6.3) have to be used for ||𝓁𝑗 − 𝑚𝑗
|| ≥ 1. If 𝜒 ∶ ℝ𝑑 → ℝ𝑑 is 2𝜋-periodic in every 𝑒𝑗-

direction, then

 (𝜒𝑢)(𝓁, 𝜉) = 𝜒(𝜉)( 𝑢)(𝓁, 𝜉). (6.5)

The relations (6.4) and (6.5) are well-known and can be proved directly from the definition (6.1).
We apply the Bloch transform  to (2.6) and obtain

𝜕2𝑡 𝑈(𝑡, 𝑘, 𝑙, 𝑥, 𝑦) = −�̃�(𝑘, 𝑙)𝑈(𝑡, 𝑘, 𝑙, 𝑥, 𝑦) −
(
𝑈 ⋆𝑈 ⋆𝑈

)
(𝑡, 𝑘, 𝑙, 𝑥, 𝑦), (6.6)

where the operator �̃�(𝑘, 𝑙) ∶= −
(
𝜕𝑥 + i𝑘

)2
−

(
𝜕𝑦 + i𝑙

)2
+ 1 is as in Lemma 3.1. The function 𝑈(𝑡, 𝑘, 𝑙, 𝑥, 𝑦) =(

𝑢𝑥, 𝑢𝑦
)
(𝑡, 𝑘, 𝑙, 𝑥, 𝑦) satisfies

𝑈(𝑡, 𝑘, 𝑙, 𝑥, 𝑦) = 𝑈(𝑡, 𝑘, 𝑙, 𝑥 + 2𝜋, 𝑦) = 𝑈(𝑡, 𝑘, 𝑙, 𝑥, 𝑦 + 2𝜋) and (6.7)

𝑈(𝑡, 𝑘, 𝑙, 𝑥, 𝑦) = 𝑈(𝑡, 𝑘 + 1, 𝑙, 𝑥, 𝑦)𝑒i𝑥 = 𝑈(𝑡, 𝑘, 𝑙 + 1, 𝑥, 𝑦)𝑒i𝑦, (6.8)

and the convolution integrals 𝑈 ⋆𝑈 ⋆𝑈 = (𝑢𝑥 ⋆ 𝑢𝑥 ⋆ 𝑢𝑥, 𝑢𝑦 ⋆ 𝑢𝑦 ⋆ 𝑢𝑦) are applied component-wise.
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The Bloch transform 𝑢𝑥 consists of 𝑢𝑥
1,0 and 𝑢𝑥

0,1 which for fixed 𝑡, 𝑘, 𝑙 have supports in Γ𝑥
1,0 and Γ𝑥

0,1, and similarly 𝑢𝑦

consists of 𝑢𝑦
1,0, 𝑢

𝑦
1,1, 𝑢

𝑦
2,0 and 𝑢

𝑦
2,1 which for fixed 𝑡, 𝑘, 𝑙 have supports in Γ

𝑦
1,0, Γ

𝑦
1,1, Γ

𝑦
2,0 and Γ

𝑦
2,1. This is a direct consequence

of applying (6.5) to the function

𝑢
𝜁,

∑
𝑚,𝑛(𝑥, 𝑦) =

{
𝑢
𝜁
𝑚,𝑛(𝑥, 𝑦), (𝑥, 𝑦) ∈ Γ

𝑦

�̃�,𝑛
, 𝑚 − �̃� ∈ 2ℤ, 𝑛 − 𝑛 ∈ 2ℤ,

0, elsewhere,
(6.9)

for (𝜁,𝑚, 𝑛) ∈ 𝐼𝑏 (cf. 3.11) and with suitably chosen periodic cut-off functions 𝜒.
We proved the local existence and uniqueness of solutions of the cKG equation in2, which is the domain of definition

of the operator 𝐿 in 2. Its counterpart in Bloch space is given by

̃2 =
{
𝑈 ∈ 𝐿2

(
𝕋2
1, 𝐿

2
Γ

)
∶ 𝑢

𝜁
𝑚,𝑛 ∈ 𝐿2

(
𝕋2
1,𝐻

2
(
Γ
𝜁
𝑚,𝑛

))
, (𝜁,𝑚, 𝑛) ∈ 𝐼𝑏, (3.7)−(3.10) are satisfied

}
,

which is the domain of definition of the operator �̃�(𝑘, 𝑙) from (3.12) in the space 𝐿2
(
𝕋1, 𝐿

2
Γ

)
, where 𝐿2

Γ is defined by (3.13).̃2 is equipped with the norm

‖𝑈‖̃2 =
⎛⎜⎜⎝

∑
(𝜁,𝑚,𝑛)∈𝐼𝑏

∫
1∕2

−1∕2
∫

1∕2

−1∕2

‖‖‖𝑢𝜁
𝑚,𝑛(𝑘, 𝑙, ⋅, ⋅)

‖‖‖2𝐻2(Γ
𝜁
𝑚,𝑛)

𝑑𝑘 𝑑𝑙
⎞⎟⎟⎠
1∕2

,

and the Bloch transform  is an isomorphism between the spaces2 and ̃2, cf. [20, Lemma 4.2].

7 EFFECTIVE DYNAMICS AT NON-DIRAC POINTS

At non-Dirac points of the spectrum with a multiple scaling expansion Nonlinear Schrödinger (NLS) equations can be
derived in order to describe slowmodulations in time and space of travelingwave packets. It is the purpose of this section to
prove the validity of the NLS approximation for the cKG equation posed on the honeycomb graph.

7.1 The result

We start by choosing a Blochmode as underlying carrier wave with a Bloch wave vector
(
𝑘0, 𝑙0

)
which is not a Dirac point.

Slow modulations in time and space of a small-amplitude modulated wave packet with this Bloch mode are described by
the perturbation ansatz

𝑈(𝑡, 𝑥, 𝑦) = 𝜀Ψnls(𝑡, 𝑥, 𝑦) + higher order terms, (7.1)

with

𝜀Ψnls(𝑡, 𝑥, 𝑦) = 𝜀𝐴(𝑇, 𝑋, 𝑌)𝑓(𝑚0)
(
𝑘0, 𝑙0, 𝑥, 𝑦

)
𝑒i𝑘0𝑥𝑒i𝑙0𝑦𝑒i𝜔

(𝑚0)(𝑘0,𝑙0)𝑡 + c.c., (7.2)

where 0 < 𝜀 ≪ 1 is a small perturbation parameter, 𝑇 = 𝜀2𝑡 is the slow time variable, 𝑋 = 𝜀(𝑥 − 𝑐g,𝑥𝑡) and 𝑌 = 𝜀
(
𝑦 −

𝑐g,𝑦𝑡
)
are long space variables, 𝐴(𝑇,𝑋, 𝑌) ∈ ℂ is the amplitude function, and c.c. stands for the complex conjugate of the

preceding terms. The vector (
𝑐g,𝑥, 𝑐g,𝑦

)
∶=

(
𝜕𝑘𝜔

(𝑚0)
(
𝑘0, 𝑙0

)
, 𝜕𝑙𝜔

(𝑚0)
(
𝑘0, 𝑙0

))
(7.3)

is the group velocity associated with the Bloch wave vector
(
𝑘0, 𝑙0

)
. In particular, while (𝑥, 𝑦) are always coordinates on

the graph Γ, and thus ’partially discrete’, i.e., either 𝑥 = 𝑚𝜋 for some𝑚, or 𝑦 = 𝑛𝜋 for some 𝑛, the large scale vector (𝑋, 𝑌)

runs continuously through all ofℝ2. It turns out, cf. §3, that in the lowest order w.r.t. 𝜀 the amplitude function 𝐴 satisfies
the NLS equation

i𝜕𝑇𝐴 = −
(
𝜈20𝜕

2
𝑋𝐴 + 𝜈11𝜕𝑋𝜕𝑌𝐴 + 𝜈02𝜕

2
𝑌𝐴

)
− 𝜈|𝐴|2𝐴, (7.4)
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with, due to our rectilinear coordinates 𝑥, 𝑦,

𝜈20 =
1

2
𝜕2
𝑘
𝜔(𝑚0)

(
𝑘0, 𝑙0

)
, 𝜈11 = 𝜕𝑘𝜕𝑙𝜔

(𝑚0)
(
𝑘0, 𝑙0

)
, 𝜈02 =

1

2
𝜕2
𝑙
𝜔(𝑚0)

(
𝑘0, 𝑙0

)
, (7.5)

and cubic coefficient

𝜈 =
3𝛾

2i𝜔(𝑚0)
(
𝑘0, 𝑙0

) , where 𝛾 = ∫
Γ𝑏

|||𝑓(𝑚0)
(
𝑘0, 𝑙0, 𝑥, 𝑦

)|||4 d𝑥 d𝑦. (7.6)

Our goal is the mathematical justification of the effective equation (7.4) by error estimates.

Theorem 7.1. Choose𝑚0 ∈ ℤ and 𝑘0, 𝑙0 ∈ 𝕋1 such that the non-resonance conditions

𝜔(𝑚)
(
𝑘0, 𝑙0

) ≠ 𝜔(𝑚0)
(
𝑘0, 𝑙0

)
for all𝑚 ≠ 𝑚0 (7.7)

and

𝜔(𝑚)
(
3𝑘0, 3𝑙0

) ≠ 3𝜔(𝑚0)
(
𝑘0, 𝑙0

)
for all𝑚 (7.8)

are satisfied, where in (7.8) the periodicity of the 𝜔(𝑚) has to be used. Then for every 𝜗 ∈ (1, 2], 𝐶0, 𝐶1 > 0 and 𝑇0 > 0 there
exist 𝜀0 > 0 and 𝐶2 > 0 such that for all solutions 𝐴 ∈ 𝐶

([
0, 𝑇0

]
, 𝐻4

(
ℝ2

))
of the NLS equation (7.4) with

sup
𝑇∈[0,𝑇0]

‖𝐴(𝑇, ⋅)‖𝐻4 ≤ 𝐶0

and all 𝜀 ∈
(
0, 𝜀0

)
the following holds. If

‖𝑈0(⋅, ⋅) − 𝜀Ψnls(0, ⋅, ⋅)‖2 +
‖‖‖‖𝑈1(⋅, ⋅) − 𝜀

d

d𝑡
Ψnls(0, ⋅, ⋅)

‖‖‖‖1

≤ 𝐶1𝜀
𝜗, (7.9)

where 𝜀Ψnls has been defined in (7.2), then there exists a unique solution 𝑈 ∈ 𝐶
([

− 𝑡0, 𝑡0
]
,2

)
of the cKG equation,

𝑡0 =𝑇0∕𝜀
2, with initial conditions

(
𝑈, 𝜕𝑡𝑈

)
𝑡=0

=
(
𝑈0,𝑈1

)
, and this solution satisfies

sup
𝑡∈[0,𝑇0∕𝜀2]

(‖𝑈(𝑡, ⋅, ⋅) − 𝜀Ψnls(𝑡, ⋅, ⋅)‖2 +
‖‖‖‖𝜕𝑡𝑈(𝑡, ⋅, ⋅) − 𝜀

d

d𝑡
Ψnls(𝑡, ⋅, ⋅)

‖‖‖‖1

)
≤ 𝐶2𝜀

𝜗. (7.10)

Remark 7.2.

a) (7.10) in particular implies

sup
𝑡∈[0,𝑇0∕𝜀2]

sup
(𝑥,𝑦)∈Γ

|𝑈(𝑡, 𝑥, 𝑦) − 𝜀Ψnls(𝑡, 𝑥, 𝑦)| ≤ 𝐶𝜀𝜗. (7.11)

b) It will be obvious that Theorem 7.1 remains valid if the rate 𝜀𝜗 is replaced by a rate 𝑜(𝜀) for 𝜀 → 0.
c) The coefficients in (7.5) and (7.6) and the non-resonance conditions (7.7) and (7.8) are defined in terms of the eigen-

values and modes 𝜔(𝑚) and 𝑓(𝑚). Hence, the NLS equation (7.4) can be derived and justified whenever the spectral
surfaces 𝜆𝑚 can be computed and (7.7) and (7.8) hold. In this limit, the specifics of the problem condense in the coef-
ficients 𝜈𝑖𝑗, 𝜈. Adding higher order nonlinear terms such as 𝑢5 to (2.1) does not change the effective equation (7.4) or
the justification result Theorem 7.1 as they only produce higher order terms in the residual, which contains the terms
that do not cancel on insertion of the approximation into the cKG equation. On the other hand, the case of quadratic
nonlinearities is considerably more complicated already in the spatially homogeneous or smooth spatially periodic
case, cf. [5], and is open for the case of graphs.

d) The non-resonance conditions (7.7) and (7.8) are used for defining an improved approximation which makes the
residual sufficiently small. Although formally these are infinitely many conditions, for elliptic operators as above we
only have finitely many ’dangerous’ ones, which in practice can be checked. Additionally, (7.7) is already used in the
derivation of 𝜈 in (7.6) to have a well defined 𝛾, which requires some regularity of (𝑘, 𝑙) ↦ 𝑓(𝑚0)(𝑘, 𝑙, ⋅, ⋅), cf. (7.20).
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In particular, (7.7) excludes intersection points of the spectral surfaces, and thus here especially the Dirac points, cf.
Figure 2.

e) This approximation has successfully been used as a universal envelope or modulation equation in many fields, such as
in nonlinear optics [2], for the description of water waves [39], for waves in DNA [37], for Bose–Einstein condensates
[34], or in plasma physics [8].

f) The justification of the NLS approximation for the spatially homogeneous cKG equation is rather trivial and follows by
a simple application of Gronwall’s inequality [24]. See [36, Chapter 11] for an introduction into themathematical valid-
ity theory of NLS approximations. In the context of smooth spatially periodic coefficients the justification of the NLS
approximation has been carried out in [5]. In [20] the validity of the NLS approximation for the NLS equation posed
on a 1D necklace graph has been proven.

g) We finally remark that in contrast to the 1D NLS equation there is the possibility of finite time blow up in the 2D NLS
equation, cf. [29].

7.2 Derivation of the NLS equation

In Bloch space we split the solution to the evolution problem (6.6) into two parts. We introduce

the Bloch wave vector 𝓁 = (𝑘, 𝑙), and the coordinate vector 𝜉 = (𝑥, 𝑦),

and write

𝑈(𝑡, 𝓁, 𝜉) = 𝑉(𝑡, 𝓁)𝑓(𝑚0)(𝓁, 𝜉) + 𝑈⟂(𝑡, 𝓁, 𝜉), (7.12)

where the orthogonality condition
⟨
𝑓(𝑚0)(𝓁, ⋅), 𝑈⟂(𝑡, 𝓁, ⋅)

⟩
𝐿2
Γ

= 0 is used for uniqueness of the decomposition. We find

𝜕2𝑡 𝑉(𝑡, 𝓁) = −
(
𝜔(𝑚0)(𝓁)

)2
𝑉(𝑡, 𝓁) − 𝑁𝑉

(
𝑉,𝑈⟂

)
(𝑡, 𝓁), (7.13)

𝜕2𝑡 𝑈
⟂(𝑡, 𝓁, 𝜉) = −�̃�(𝑘, 𝓁)𝑈⟂(𝑡, 𝓁, 𝜉) − 𝑁⟂

(
𝑉,𝑈⟂

)
(𝑡, 𝓁, 𝜉), (7.14)

where

𝑁𝑉

(
𝑉,𝑈⟂

)
(𝑡, 𝓁) =

⟨
𝑓(𝑚0)(𝓁, ⋅),

(
𝑈 ⋆𝑈 ⋆𝑈

)
(𝑡, 𝓁, ⋅)

⟩
𝐿2
Γ

,

𝑁⟂
(
𝑉,𝑈⟂

)
(𝓁, 𝜉) =

(
𝑈 ⋆𝑈 ⋆𝑈

)
(𝓁, 𝜉) − 𝑁𝑉

(
𝑉,𝑈⟂

)
(𝑡, 𝓁)𝑓(𝑚0)(𝓁, 𝜉).

Since we have an original system (2.1) without quadratic terms, for the derivation of the NLS equation it is sufficient to
consider (7.13) and to set there 𝑈⟂ = 0. The nonlinear terms in (7.13) are of the form

𝑁𝑉

(
𝑉,𝑈⟂

)
(𝑡, 𝓁) = ∫

𝕋2
1
∫
𝕋2
1

𝛽
(
𝓁, 𝓁 − 𝓁1, 𝓁1 − 𝓁2, 𝓁2

)
𝑉
(
𝑡, 𝓁 − 𝓁1

)
𝑉
(
𝑡, 𝓁1 − 𝓁2

)
𝑉
(
𝑡, 𝓁2

)
𝑑𝓁2 𝑑𝓁1

+𝑁𝑉,𝑟𝑒𝑠𝑡

(
𝑉,𝑈⟂

)
(𝑡, 𝓁), (7.15)

where the kernel 𝛽 is given by

𝛽
(
𝓁, 𝓁 − 𝓁1, 𝓁1 − 𝓁2, 𝓁2

)
=

⟨
𝑓(𝑚0)(𝓁, ⋅), 𝑓(𝑚0)

(
𝓁 − 𝓁1, ⋅

)
𝑓(𝑚0)

(
𝓁1 − 𝓁2, ⋅

)
𝑓(𝑚0)

(
𝓁2, ⋅

)⟩
𝐿2
Γ

, (7.16)

and where 𝑁𝑉,𝑟𝑒𝑠𝑡

(
𝑉, 0

)
= 0.

For the formal derivation of the NLS equation in Bloch space we make the ansatz

𝑉app(𝑡, 𝓁) = 𝜀𝜀−2𝐴1

(
𝜀2𝑡,

𝓁 − 𝓁0

𝜀

)
𝐄1(𝑡, 𝓁) + 𝜀𝜀−2𝐴−1

(
𝜀2𝑡,

𝓁 + 𝓁0

𝜀

)
𝐄−1(𝑡, 𝓁), (7.17)
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with

𝐄𝑗(𝑡, 𝓁) = 𝑒−𝑗i𝜔(𝑚0)(𝓁0)𝑡𝑒−i𝜕𝓁𝜔
(𝑚0)(𝓁0)(𝓁−𝑗𝓁0)𝑡, where 𝜕𝓁𝜔(𝑚0) ∶=

(
𝜕𝑘𝜔

(𝑚0), 𝜕𝑙𝜔
(𝑚0)

)
.

Remark 7.3. If 𝐴(⋅) is defined on ℝ𝑑 and if it is scaled with the small parameter 𝜀, then the Fourier transform of 𝐴(𝜀⋅)

is 𝜀−𝑑𝐴
(
𝜀−1 ⋅

)
. Therefore, a small term of the formal order (𝜀𝑟) in physical space corresponds to a small term of the

formal order(
𝜀𝑟−𝑑

)
in Fourier space. The same holds in Bloch space, which explains the scaling and somewhat unusual

notation 𝜀𝜀−2 in (7.17) and henceforth.

However, there is a problemwith (7.17), namely that the support of the scaled𝐴±1 gets bigger with 𝜀 > 0 getting smaller,
and becomes thewhole infinite plane for 𝜀 → 0.Moreover, since the𝐴±1 should satisfy in physical space aNLS equation on
the infinite plane, the 𝐴±1 will be taken in Fourier space and not in Bloch space. So let 𝐴1 be the solution of the Fourier
transformed NLS equation (7.4).
In order to bring together the Fourier space representation of the NLS equation with the Bloch wave representation

(6.6) of the cKG equation we introduce a number of operators. We start with a cut-off operator 𝜒 ∈ 𝐶∞
0

(
ℝ2,ℝ

)
with

𝜒(𝓁) ∈ [0, 1], 𝜒(𝓁) = 1 for |𝓁| ≤ 1∕5, and 𝜒(𝓁) = 0 for |𝓁| ≥ 2∕5, and an extension operator  which extends a function
with length of support less than 1 in the 𝑘- and the 𝑙-direction to a function onℝ2with period 1 in the 𝑘- and the 𝑙-direction.
With these operators we modify the previous ansatz (7.17) to

𝑉(𝓁, 𝑡) = 𝜀𝜀−2
(
𝜒
(
⋅ −𝓁0

)
𝐴1

(
𝜀2𝑡,

⋅ − 𝓁0

𝜀

)
𝐄1(𝑡, ⋅)

)
(𝓁) + 𝜀𝜀−2

(
𝜒
(
⋅ +𝓁0

)
𝐴−1

(
𝜀2𝑡,

⋅ + 𝓁0

𝜀

)
𝐄−1(𝑡, ⋅)

)
(𝓁). (7.18)

Plugging (7.18) into (7.13) we find that all terms at 𝜀𝜀−2𝐄 and 𝜀2𝜀−2𝐄 cancel, and at 𝜀3𝜀−2𝐄 we obtain the NLS equation

−2𝑖𝜔(𝑚0)
(
𝓁0

)
𝜕𝑇𝐴1 =

1

2

(
𝜕2
𝓁
𝜆𝑚0

(
𝓁0

)
− 2

(
𝜕𝓁𝜔

(𝑚0)
(
𝓁0

))(
𝜕𝓁𝜔

(𝑚0)
(
𝓁0

))𝑇)|𝜅|2𝐴1 − 3𝛾𝐴1 ∗ 𝐴1 ∗ 𝐴−1, (7.19)

where 𝑇 = 𝜀2𝑡, 𝜅 = 𝜀−1
(
𝓁 − 𝓁0

)
and 𝛾 = 𝛽

(
𝓁0, 𝓁0, 𝓁0, −𝓁0

)
∈ ℝ, while 𝐴−1 = −1𝐴−1 satisfies the complex conjugate

NLS equation. In order to obtain (7.19) we used formal calculations such as

𝜕2𝑡

(
𝜀𝜀−2

(
𝜒
(
⋅ −𝓁0

)
𝐴1

(
𝜀2𝑡,

⋅ − 𝓁0

𝜀

)
𝐄1(𝑡, ⋅)

)
(𝓁)

)
= 𝜕2𝑡

(
𝜀𝜀−2(

𝜒
(
⋅ −𝓁0

)
𝐴1

(
𝜀2𝑡,

⋅ − 𝓁0

𝜀

)
𝑒−i𝜔(𝑚0)(𝓁0)𝑡𝑒−i𝜕𝓁𝜔

(𝑚0)(𝓁0)(𝓁−𝓁0)𝑡

)
= 𝐄1(𝑡, ⋅)(𝓁)

(
− i𝜔(𝑚0)

(
𝓁0

)
− 𝜀i𝜕𝓁𝜔

(𝑚0)
(
𝓁0

)
𝜅
)2
𝐴1(𝑇, 𝜅)

+𝐄1(𝑡, ⋅)(𝓁)2𝜀2
(
−i𝜔(𝑚0)

(
𝓁0

)
− 𝜀i𝜕𝓁𝜔

(𝑚0)
(
𝓁0

)
𝜅
)
𝜕𝑇𝐴1(𝑇, 𝜅) + (

𝜀3
)

and

−
(
𝜔(𝑚0)(𝓁)

)2(
𝜀𝜀−2

(
𝜒
(
⋅ −𝓁0

)
𝐴1

(
𝜀2𝑡,

⋅ − 𝓁0

𝜀

)
𝐄1(𝑡, ⋅)

)
(𝓁)

)
= −

(
𝜔(𝑚0)

(
𝓁0 + 𝜀𝜅

))2(
𝜀𝜀−2(

𝜒( 𝜀𝜅)𝐴1(𝑇, 𝜅)𝐄
1(𝑡, ⋅)

)
(𝓁)

)
= −

(
𝜔(𝑚0)

(
𝓁0

)
+ 𝜀𝜕𝓁𝜔

(𝑚0)
(
𝓁0

)
𝜅 +

1

2
𝜀2𝜅𝑇𝜕2

𝓁
𝜔(𝑚0)

(
𝓁0

)
𝜅 + (

𝜀3
))2

𝐴1(𝑇, 𝜅)𝐄
1(𝑡, ⋅)(𝓁) + (

𝜀3
)
,

and that formally

𝜀−4 ∫
𝕋2
1∕𝜀

∫
𝕋2
1∕𝜀

𝛽
(
𝓁0 + 𝜀𝜅, 𝓁0 + 𝜀

(
𝜅 − 𝜅1

)
, 𝓁0 + 𝜀

(
𝜅1 − 𝜅2

)
, −𝓁0 + 𝜀𝜅2

)
𝐴1

(
𝜅 − 𝜅1

)
𝐴1

(
𝜅1 − 𝜅2

)
𝐴−1

(
𝜅2

)
𝑑𝜅2 𝑑𝜅1

⟶ 𝛾 ∫
ℝ2 ∫ℝ2

𝐴1

(
𝜅 − 𝜅1

)
𝐴1

(
𝜅1 − 𝜅2

)
𝐴−1

(
𝜅2

)
𝑑𝜅2 𝑑𝜅1 (7.20)

for 𝜀 → 0, and the symmetry of the kernel. Division by 2𝑖𝜔(𝑚0)
(
𝓁0

)
yields (7.4).
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Remark 7.4. This derivation of (7.4) from (7.19) is consistent with the derivation from the associated first order system, cf.
[9, Chapter 5], since for instance

(
𝜕2
𝓁
𝜆𝑚0

(
𝓁0

)
− 2

(
𝜕𝓁𝜔

(𝑚0)
(
𝓁0

))(
𝜕𝓁𝜔

(𝑚0)
(
𝓁0

))𝑇)
∕
(
4𝑖𝜔(𝑚0)

(
𝓁0

))
= −

(
𝜕2
𝓁

(
𝜔(𝑚0)

(
𝓁0

)2)
− 2

(
𝜕𝓁𝜔

(𝑚0)
(
𝓁0

))(
𝜕𝓁𝜔

(𝑚0)
(
𝓁0

))𝑇)
∕
(
4𝑖𝜔(𝑚0)

(
𝓁0

))
= 𝑖𝜕2

𝓁
𝜔(𝑚0)

(
𝓁0

)
∕2.

7.3 The improved approximation and estimates for the residual terms

The approximation (7.17) produces a number of terms in (7.14) which are of the formal order (
𝜀3

)
in physical space.

These terms are collected together in the so called residual. However, in order to subsequently bound the error with a
simple application of Gronwall’s inequality, we need the residual to be of the formal order (

𝜀4+𝛿
)
in physical space for

a 𝛿 > 0. This can be achieved by adding higher order terms to the approximation (7.17) such that all terms up to formal
order (

𝜀4
)
in physical space cancel.

In order to obtain a not too restrictive set of non-resonance conditions wemodify our previous separation of the modes.
Again we set

𝑈(𝓁, 𝜉, 𝑡) = 𝑉(𝓁, 𝑡)𝑓(𝑚0)(𝓁, 𝜉) + 𝑈⟂(𝓁, 𝜉, 𝑡),

with
⟨
𝑓(𝑚0)(𝓁, ⋅), 𝑈⟂(𝓁, ⋅, 𝑡)

⟩
𝐿2
Γ

= 0, but now the two functions 𝑉(𝓁, 𝑡) and 𝑈⟂(𝓁, 𝜉, 𝑡) are defined to satisfy

𝜕2𝑡 𝑉(𝓁, 𝑡) = −𝜆𝑚0
(𝓁)𝑉(𝓁, 𝑡) + 𝐸𝑐(𝓁)

⟨
𝑓(𝑚0)(𝓁, ⋅), �̃�⋆3(𝓁, ⋅, 𝑡)

⟩
𝐿2
Γ

,

𝜕2𝑡 𝑈
⟂(𝓁, 𝜉, 𝑡) = −�̃�

(
𝓁, 𝜕𝜉

)
𝑈⟂(𝓁, 𝜉, 𝑡) + 𝑈⋆3(𝓁, 𝜉) − 𝐸𝑐(𝓁)

⟨
𝑓(𝑚0)(𝓁, ⋅), �̃�⋆3(𝓁, ⋅, 𝑡)

⟩
𝐿2
Γ

𝑓(𝑚0)(𝓁, 𝜉),

where the so called mode-filter 𝐸𝑐 is in 𝐶∞
(
𝕋2
1,ℝ

)
and fulfills 𝐸𝑐(𝓁) ∈ [0, 1] with 𝐸𝑐(𝓁) = 1 for 𝓁 ∈ 𝑈𝜌

(
− 𝓁0

)
∪ 𝑈𝜌

(
𝓁0

)
for a small 𝜌 > 0, 𝐸𝑐(𝓁) = 0 elsewhere. Thus, the support of 𝑉(𝓁, 𝑡) can and will be chosen to be contained in the support
of 𝐸𝑐.
We add higher order terms to the ansatz to make the residual smaller, i.e., we consider

𝑉(𝓁, 𝑡) =
∑
𝑗=0,1

(
𝜀1+𝑗𝜀−2

(
𝜒
(
⋅ −𝓁0

)
𝐴1,𝑗

(
⋅ − 𝓁0

𝜀
, 𝜀2𝑡

)
𝐄1

)
(𝓁)

+ 𝜀1+𝑗𝜀−2
(
𝜒
(
⋅ +𝓁0

)
𝐴−1,𝑗

(
⋅ + 𝓁0

𝜀
, 𝜀2𝑡

)
𝐄−1

)
(𝓁)

+ 𝜀3+𝑗𝜀−2
(
𝜒
(
⋅ −3𝓁0

)
𝐴3,𝑗

(
⋅ − 3𝓁0

𝜀
, 𝜀2𝑡

)
𝐄3

)
(𝓁)

+ 𝜀3+𝑗𝜀−2
(
𝜒
(
⋅ +3𝓁0

)
𝐴−3,𝑗

(
⋅ + 3𝓁0

𝜀
, 𝜀2𝑡

)
𝐄−3

)
(𝓁)

)
,

𝑈⟂(𝓁, 𝜉) = 𝜀3𝜀−2𝑈⟂
1

(
𝓁 − 𝓁0

𝜀
, 𝜉, 𝜀2𝑡

)
𝐄1 + 𝜀3𝜀−2𝑈⟂

−1

(
𝓁 + 𝓁0

𝜀
, 𝜉, 𝜀2𝑡

)
𝐄−1

+ 𝜀3𝜀−2𝑈⟂
3

(
𝓁 − 3𝓁0

𝜀
, 𝜉, 𝜀2𝑡

)
𝐄3 + 𝜀3𝜀−2𝑈⟂

−3

(
𝓁 + 3𝓁0

𝜀
, 𝜉, 𝜀2𝑡

)
𝐄−3.

As before we find 𝐴1,0 as a solution of the NLS equation (7.19) and 𝐴−1,0 as a solution of the complex conjugate equation.
The𝐴±1,𝑗 , 𝑗 ≠ 0, satisfy linearized Schrödinger equationswith an inhomogeneitywhich contains third derivatives of𝜔(𝑚0)
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in 𝓁0 and first derivatives of the kernel 𝛽. For instance 𝐴1,1 satisfies

−2𝑖𝜔(𝑚0)
(
𝓁0

)
𝜕𝑇𝐴1,1 =

1

2

(
𝜕2
𝓁
𝜆𝑚0

(
𝓁0

)
− 2

(
𝜕𝓁𝜔

(𝑚0)
(
𝓁0

))(
𝜕𝓁𝜔

(𝑚0)
(
𝓁0

))𝑇)|𝜅|2𝐴1,1

−6𝛾𝐴1,1 ∗ 𝐴1 ∗ 𝐴−1 − 3𝛾𝐴1 ∗ 𝐴1 ∗ 𝐴−1,1 + 𝑔1,1,

where the inhomogeneity 𝑔1,1 here only depend on the𝐴±1 and contains terms such as the linear term
1

6

(
𝜕3
𝑘
𝜆𝑚0

(
𝓁0

))
𝜅3
(1)
𝐴1

or the nonlinear term

∫
ℝ2 ∫ℝ2

(
𝜕1𝛽

(
𝓁0, 𝓁0, 𝓁0, −𝓁0

)
⋅ 𝜅

)
𝐴1

(
𝜅 − 𝜅1

)
𝐴1

(
𝜅1 − 𝜅2

)
𝐴−1

(
𝜅2

)
𝑑𝜅2 𝑑𝜅1.

Using appropriate non–resonance conditions (see below), we choose 𝐴3,0 as the solution of

0 = 9
(
𝜔(𝑚0)

)2(
𝓁0

)
𝐴3,0(𝜅, 𝑇) − 𝜆𝑚0

(
3𝓁0

)
𝐴3,0(𝜅, 𝑇) +

⟨
𝑓(𝑚0)

(
3𝓁0, ⋅

)
,
(
𝑓(𝑚0)

(
𝓁0, ⋅

))3⟩
𝐿2
Γ

𝐴∗3
1,0(𝜅, 𝑇),

and 𝐴3,1 as the solution of the linearized equation with an inhomogeneity which contains first derivatives of 𝜔(𝑚0) in
3𝓁0 and first order derivatives of the kernel 𝛽. We choose the 𝐴−3,𝑗 as the solutions of the associated complex conjugate
equations. All this is well documented in the literature, cf. [9, Chapter 5]. Here we concentrate on new aspects having to
do with non-smoothness w.r.t. 𝜉. We choose 𝑈⟂

1 and 𝑈⟂
3 as the solutions of

0 =
(
𝜔(𝑚0)

)2(
𝓁0

)
𝑈⟂

1 (𝓁, 𝜉, 𝑡) − �̃�
(
𝓁0 + 𝜀𝜅, 𝜕𝜉

)
𝑈⟂

1 (𝜅, 𝜉, 𝑇) + 𝑁⟂
1

(
𝐴±1,𝑗

)
,

0 = 9
(
𝜔(𝑚0)

)2(
𝓁0

)
𝑈⟂

3 (𝓁, 𝜉, 𝑡) − �̃�
(
3𝓁0 + 𝜀𝜅, 𝜕𝜉

)
𝑈⟂

3 (𝜅, 𝜉, 𝑇) + 𝑁⟂
3

(
𝐴±1,𝑗

)
,

respectively, where𝑁⟂
1 and𝑁

⟂
3 contain all nonlinear terms concentrated at 𝓁0 and 3𝓁0 and which solely depend on𝐴±1,𝑗 .

By this choice formally all terms of (
𝜀3

)
and (

𝜀4
)
cancel. This choice has the advantage that we do not have to expand

the operator �̃�
(
𝓁0 + 𝜀𝜅, 𝜕𝜉

)
w.r.t. 𝜅whichwould lead to a loss of regularity w.r.t. 𝜉. We choose𝑈⟂

−1 and𝑈
⟂
−3 as the solutions

of the associated complex conjugate equations.
In order to solve the equations for 𝐴3, 𝑈⟂

1 , and 𝑈⟂
3 , a number of non-resonance conditions are needed. By making the

support of 𝐸𝑐 smaller these condense in(
𝜔(𝑚0)

)2(
𝓁0

)
∉ spec

(
�̃�
(
𝓁0, 𝜕𝜉

))|{𝑓(𝑚0)(𝓁0,⋅)}⟂
, (7.21)

which corresponds to (7.7), and

9
(
𝜔(𝑚0)

)2(
𝓁0

) ≠ 𝜆(𝑚0)
(
3𝓁0

)
, and 9

(
𝜔(𝑚0)

)2(
𝓁0

)
∉ spec

(
�̃�
(
3𝓁0, 𝜕𝜉

))|{𝑓(𝑚0)(3𝓁0,⋅)}⟂
, (7.22)

which corresponds to (7.8). Then we have that

R̃es
(
𝜀Ψ̃

)
= −𝜕2𝑡 𝑈(𝑡, 𝓁, 𝜉) − �̃�(𝓁)𝑈(𝑡, 𝓁, 𝜉) −

(
𝑈 ⋆𝑈 ⋆𝑈

)
(𝑡, 𝓁, 𝜉)

is of order (
𝜀4

)
in2 in physical space:

Lemma 7.5. Let𝐴 ∈ 𝐶
([
0, 𝑇0

]
, 𝐻4

)
be a solution of the effective equation (7.4) for some 𝑇0 > 0. Then there exists a𝐶Res > 0

that only depends on the norm of the solution 𝐴 such that

sup
𝑡∈[0,𝑇0∕𝜀2]

‖‖‖R̃es(𝜀Ψ̃)‖‖‖̃2
≤ 𝐶Res𝜀

4, (7.23)

or equivalently,

sup
𝑡∈[0,𝑇0∕𝜀2]

‖Res(𝜀Ψ)‖2 ≤ 𝐶Res𝜀
4. (7.24)
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Proof. The proof is straightforward and follows [20, Section 5.3] almost line for line. □

Remark 7.6. Compared to Remark 7.3 on the formal order in physical
((

𝜀5
))

and Bloch space
((

𝜀3
))
, we note that

bounds (7.23) and (7.24) are identical in physical and Bloch space. This is because we gain 𝜀 in the ̃2-norm due to the
concentration, and lose 𝜀−1 in the2-norm due to the long wave scaling.

7.4 Estimates for the error

The remainder of the proof of Theorem 7.1 is based on energy estimates and an application of Gronwall’s inequality. To
do so we introduce another space. By construction, the leading-order approximation 𝑉app𝑓

(𝑚0) is of the order (1) in ̃2

due to the scaling properties of the 𝐿2-norm, and thus we lose 𝜀−1 in naive convolution estimates in ̃2. In order to avoid
this, we introduce as in [20] an 𝐿1-based space, namely

̃2 =
{
𝑈 ∈ 𝐿1

(
𝕋2
1, 𝐿

2
Γ

)
∶ 𝑢

𝜁
𝑚,𝑛 ∈ 𝐿1

(
𝕋2
1,𝐻

2
(
Γ
𝜁
𝑚,𝑛

))
, (𝜁,𝑚, 𝑛) ∈ 𝐼𝑏, (3.7)−(3.10) are satisfied

}
,

equipped with the norm

‖‖‖𝑈‖‖‖̃2
=

∑
(𝜁,𝑚,𝑛)∈𝐼𝑏

∫
1∕2

−1∕2
∫

1∕2

−1∕2

‖‖‖𝑢𝜁
𝑚,𝑛(𝑘, 𝑙, ⋅, ⋅)

‖‖‖𝐻2
(
Γ
𝜁
𝑚,𝑛

)𝑑𝑘 𝑑𝑙.

By Young’s inequality we have ‖‖𝑉⋆𝑊‖‖̃2≤ ‖‖𝑉‖‖̃2
‖‖𝑊‖‖̃2 , and, similar to [20, Lemma 5.7]:

Lemma 7.7. Let𝐴 ∈ 𝐶
([
0, 𝑇0

]
, 𝐻4

)
be a solution of the NLS equation (7.4) for some 𝑇0 > 0. Then there exist 𝐶, 𝐶Ψ > 0 that

only depend on the norm of the solution 𝐴 such that

sup
𝑡∈[0,𝑇0∕𝜀2]

‖‖‖𝜀Ψ̃‖‖‖̃2
≤ 𝐶Ψ𝜀 (7.25)

and

sup
𝑡∈[0,𝑇0∕𝜀2]

‖𝜀Ψ − 𝜀Ψnls‖𝐿∞ ≤ 𝐶𝜀3∕2. (7.26)

In order to establish the error estimates we write the solution𝑈 of (2.6) as a sum of the approximation 𝜀Ψ and an error
𝜀𝜗𝑅, i.e.,

𝑈 = 𝜀Ψ + 𝜀𝜗𝑅, (7.27)

and obtain

𝜕2𝑡 𝑅 = −𝐿𝑅 + 𝐺(Ψ, 𝑅), (7.28)

with the linear operator 𝐿 = −Δ + 1 and the remainder

𝐺(Ψ, 𝑅) = 𝜀−𝜗Res(𝜀Ψ) + 3𝜀2Ψ2𝑅 + 3𝜀1+𝜗Ψ𝑅2 + 𝜀2𝜗𝑅3.

The product terms in the definition of 𝐺(Ψ, 𝑅) have to be understood componentwise with 𝑅 = (𝑟𝑥, 𝑟𝑦) and Ψ = (𝜓𝑥, 𝜓𝑦).
Using

‖Ψ𝑅‖2 ≤ 𝐶
‖‖‖Ψ̃ ∗ 𝑅

‖‖‖̃2
≤ 𝐶

‖‖‖Ψ̃‖‖‖̃2

‖‖‖𝑅‖‖‖̃2
≤ 𝐶𝐶Ψ

‖‖‖𝑅‖‖‖̃2
≤ 𝐶2𝐶Ψ‖𝑅‖2 ,

we estimate the terms of 𝐺 as‖‖‖𝜀−𝜗Res(𝜀Ψ)
‖‖‖2

≤ 𝐶Res𝜀
2, ‖‖3𝜀2Ψ2𝑅‖‖2 ≤ 3𝐶3𝜀

2‖𝑅‖2 ,
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‖‖‖3𝜀1+𝜗Ψ𝑅2‖‖‖2
≤ 3𝐶3𝜀

1+𝜗‖𝑅‖22 ,
‖‖‖𝜀2𝜗𝑅3‖‖‖2

≤ 𝐶3𝜀
2𝜗‖𝑅‖32 ,

where 𝐶3 is a constant independent of ‖𝑅‖2 and the small parameter 𝜀 > 0. Therefore,

‖𝐺(Ψ, 𝑅)‖2 ≤ 𝐶Res𝜀
2 + 3𝐶3𝜀

2‖𝑅‖2 + 3𝐶3𝜀
1+𝜗‖𝑅‖22 + 𝐶3𝜀

2𝜗‖𝑅‖32 . (7.29)

The local existence and uniqueness of solutions 𝑅 of (7.28) works exactly as for the original cKG equation in §5,
cf. Remark 5.4. Our goal is to use energy estimates to show that 𝑅 stays (1) bounded on the long time interval
0 ≤ 𝑡 ≤ 𝑡0 = 𝑇0∕𝜀

2. Let 𝐸𝑅 = ⟨𝐿𝑅, 𝐿𝑅⟩2 + ‖𝜕𝑡Ω𝑅‖22 be the energy, which is equivalent to the 2 ×1 norm, i.e., there
exists 𝐶𝐸,1 and 𝐶𝐸,2 such that

𝐶𝐸,1

(‖𝜕𝑡𝑅‖2
𝐻1(Γ

𝜉
𝑚,𝑛)

+ ‖𝑅‖2
𝐻2(Γ

𝜉
𝑚,𝑛)

)
≤ 𝐸𝑅 ≤ 𝐶𝐸,2

(‖𝜕𝑡𝑅‖2
𝐻1(Γ

𝜉
𝑚,𝑛)

+ ‖𝑅‖2
𝐻2(Γ

𝜉
𝑚,𝑛)

)
. (7.30)

We take the 2 scalar product of (7.28) with 𝜕𝑡𝐿𝑅 and obtain

𝜕𝑡⟨𝜕𝑡Ω𝑅, 𝜕𝑡Ω𝑅⟩2 + 𝜕𝑡⟨𝐿𝑅, 𝐿𝑅⟩2 = 2⟨𝜕𝑡Ω𝑅,Ω𝐺(Ψ, 𝑅)⟩2 .

Since ⟨𝐿𝑅, 𝐿𝑅⟩2 = ‖𝐿𝑅‖22 = ‖𝑅‖22 and since

|⟨𝜕𝑡Ω𝑅,Ω𝐺(Ψ, 𝑅)⟩2 | ≤ ‖𝜕𝑡Ω𝑅‖2‖𝐺(Ψ, 𝑅)‖2 ,

we obtain

d

d𝑡
𝐸𝑅 ≤ 2𝐸

1∕2
𝑅

(
𝐶Res𝜀

2 + 3𝐶3𝜀
2𝐸

1∕2
𝑅 + 3𝐶3𝜀

1+𝜗𝐸𝑅 + 𝐶3𝜀
2𝜗𝐸

3∕2
𝑅

)
≤ 2𝐶Res𝜀

2 + 2
(
3𝐶3 + 𝐶Res

)
𝜀2𝐸𝑅 + 6𝐶3𝜀

1+𝜗𝐸
3∕2
𝑅 + 2𝐶3𝜀

2𝜗𝐸2
𝑅.

From (7.9) and (7.30) we obtain 𝐸𝑅(0) ≤ 𝐶𝐸,2𝐶1, and as long as

6𝐶3𝜀
𝜗−1𝐸

1∕2
𝑅 + 2𝐶3𝜀

2𝜗−2𝐸𝑅 ≤ 1 (7.31)

we obtain

d

d𝑡
𝐸𝑅 ≤ 2𝐶Res𝜀

2 + 𝛽𝜀2𝐸𝑅 (7.32)

with 𝛽 =
(
6𝐶3 + 𝐶Res + 1

)
. Gronwall’s inequality, see, e.g., [36, Lemma 2.2.8] yields, for 0 ≤ 𝑡 ≤ 𝑡0 = 𝑇0∕𝜀

2,

𝐸𝑅(𝑡) ≤ 𝐸𝑅(0)e
𝛽𝜀2𝑡 +

2𝐶Res

𝛽

(
e𝛽𝜀

2𝑡 − 1
) ≤

(
𝐸𝑅(0) +

2𝐶Res

𝛽

)
e𝛽𝑇0 =∶ 𝑀. (7.33)

Now choosing 𝜀0 > 0 so small that 6𝐶3𝜀
𝜗−1𝑀1∕2 + 2𝐶3𝜀

2𝜗−2𝑀 ≤ 1 yields (7.33) for all 0 < 𝜀 ≤ 𝜀0. Sobolev’s embedding
theorem, bound (7.26), and the decomposition (7.27) complete the proof of Theorem 7.1. □

8 EFFECTIVE EQUATIONS AT THE DIRAC POINTS

The Dirac points are of high relevance from a physical point of view and attracted recently a lot of interest, cf. [16, 28]. In
[20], effective equations describing the dynamics of solutions which are concentrated in Bloch space near the Dirac points
have been derived via multiple scaling analysis in the 1D case. The validity question of this so called Dirac approximation
for 2D quantum graphs is more involved and has not been discussed before.
Similar results in the above sense also exist for linear and nonlinear Schrödinger equations over ℝ2 with honeycomb

symmetric potentials. For the linear case it has been shown in [19] that a linear Dirac equation makes correct predictions
about the dynamics over a long time scale. For the nonlinear case, a nonlinear Dirac system has been derived in [18], and
an approach to prove its validity has been discussed. A rigorous approximation result with the NLS equation as original
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F IGURE 5 At the Dirac points the non smooth curves in (a) obtained for the 1D dispersion relation can be made smooth by relabeling
the curves leading to (b). This is not possible in the 2D case (c). Only directional smoothness can be obtained.

system has been established in [3], and similar to that result, we derive effective equations for the dynamics near the Dirac
points and prove their validity for the cKG equation on 2D quantum graphs.
Suppose now that𝓁𝐷 =

(
𝑘𝐷, 𝑙𝐷

)
is a Dirac point, cf. Figure 2 and Figure 5. For aDirac approximationwe assume that the

Bloch transform of the solution is concentrated in an(
𝜀2

)
-neighborhood of 𝓁𝐷 =

(
𝑘𝐷, 𝑙𝐷

)
. In this point the two surfaces

of eigenvalues 𝜆𝑚𝐷
and 𝜆𝑚𝐷+1 of �̃�(𝓁) meet and form approximately a cone. In contrast to the NLS equation as original

system where due to the−𝑈|𝑈|2 nonlinearity no other modes are amplified by nonlinear coupling, for the cKG equation,
with its real-valued solutions and its 𝑈3 nonlinearity, other modes, in particular the second Dirac point at 𝓁𝐷 = −𝓁𝐷 , cf.
Figure 2, have to be taken into account when deriving the Dirac approximation.
In contrast to all other points 𝓁 = (𝑘, 𝑙), in a Dirac point no smooth expansion of the surfaces of eigenvalues is possible.

This is fundamentally different from the 1D case where by relabeling the curves of eigenvalues the non-smooth curves of
eigenvalues and the non-smooth kernels in the nonlinear convolution integrals, can be made smooth at the Dirac points,
cf. Figure 5 and Remark 8.6. Hence, we have to proceed differently than in the derivation of the Dirac system in the 1D
case or than in the derivation of the NLS equations above.
The starting point for the derivation of the approximation equations is again system (6.6) in Bloch space, namely

𝜕2𝑡 𝑈(𝑡, 𝓁) = −�̃�(𝓁)𝑈(𝑡, 𝓁) −
(
𝑈 ⋆𝑈 ⋆𝑈

)
(𝑡, 𝓁). (8.1)

In this representation we obviously have smoothness of all linear and nonlinear operators w.r.t. the Bloch wave numbers.
We recall that resolvents and spectral projections on isolated subsets of the spectrum are smooth w.r.t. 𝓁, cf. [22].
For extracting the Dirac modes at the cone around 𝓁𝐷 we define an �̃�(𝓁)-invariant projection 𝑃𝐷(𝓁) on the two-

dimensional subspace associated to the two eigenvalues 𝜆𝑚𝐷
(𝓁) and 𝜆𝑚𝐷+1(𝓁) which are separated from the rest of the

spectrum of �̃�(𝓁) for ||𝓁 − 𝓁𝐷
|| sufficiently small. For fixed 𝓁 in a neighborhood of 𝓁𝐷 we set

𝑃𝐷(𝓁) =
1

2𝜋 ∫
Γ

(
𝜆 − �̃�(𝓁)

)−1
𝑑𝜆,

where for this fixed 𝓁 the smooth curve Γ surrounds the two eigenvalues 𝜆𝑚𝐷
(𝓁) and 𝜆𝑚𝐷+1(𝓁). By Neumann’s series we

have a smooth expansion of 𝑃𝐷(𝓁) near 𝓁𝐷 , i.e.,

𝑃𝐷(𝓁) = 𝑃𝐷

(
𝓁𝐷

)
+ (||𝓁 − 𝓁𝐷

||),
cf. [22]. Similarly, we define projections 𝑃𝐷 in a neighborhood of 𝓁𝐷 . We extend these projections by zero outside their
domain of definitions in the set of wave vectors. We use these projections to split (8.1) into three parts. We set 𝑈 = 𝑈𝐷 +

𝑈𝐷 + 𝑈⟂, where 𝑈𝐷 = 𝑃𝐷𝑈, 𝑈𝐷 = 𝑃𝐷𝑈, and 𝑈⟂ = 𝑃⟂𝑈 = (1 − 𝑃𝐷 − 𝑃𝐷)𝑈, and obtain

𝜕2𝑡 𝑈𝐷(𝑡, 𝓁) = −�̃�(𝓁)𝑈𝐷(𝑡, 𝓁) − 𝑃𝐷(𝓁)
(
𝑈𝐷 + 𝑈𝐷 + 𝑈⟂

)⋆3
(𝑡, 𝓁), (8.2)

𝜕2𝑡 𝑈𝐷(𝑡, 𝓁) = −�̃�(𝓁)𝑈𝐷(𝑡, 𝓁) − 𝑃𝐷(𝓁)
(
𝑈𝐷 + 𝑈𝐷 + 𝑈⟂

)⋆3
(𝑡, 𝓁), (8.3)

𝜕2𝑡 𝑈⟂(𝑡, 𝓁) = −�̃�(𝓁)𝑈⟂(𝑡, 𝓁) − 𝑃⟂(𝓁)
(
𝑈𝐷 + 𝑈𝐷 + 𝑈⟂

)⋆3
(𝑡, 𝓁). (8.4)
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Since𝑈𝐷 and𝑈𝐷 will be of order (𝜀), and𝑈⟂ of order (
𝜀3

)
, for the derivation of the effective equations we set𝑈⟂ = 0

and make the ansatz

𝑈𝐷(𝑡, 𝓁) = 𝜀−4𝜀𝑉+
𝐷(𝑡, 𝓁)

(
𝜀2𝑡, 𝜀−2

(
𝓁 − 𝓁𝐷

))
𝑒𝑖𝜔𝑚𝐷

(𝓁𝐷)𝑡 + 𝜀−4𝜀𝑉−
𝐷(𝑡, 𝓁)

(
𝜀2𝑡, 𝜀−2

(
𝓁 − 𝓁𝐷

))
𝑒−𝑖𝜔𝑚𝐷

(𝓁𝐷)𝑡, (8.5)

𝑈𝐷(𝑡, 𝓁) = 𝜀−4𝜀𝑉+

𝐷
(𝑡, 𝓁)

(
𝜀2𝑡, 𝜀−2

(
𝓁 + 𝓁𝐷

))
𝑒𝑖𝜔𝑚𝐷

(𝓁𝐷)𝑡 + 𝜀−4𝜀𝑉−

𝐷
(𝑡, 𝓁)

(
𝜀2𝑡, 𝜀−2

(
𝓁 + 𝓁𝐷

))
𝑒−𝑖𝜔𝑚𝐷

(𝓁𝐷)𝑡, (8.6)

where 𝜔𝑚 =
√
−𝜆𝑚 as above and with 𝑉±

𝐷 = 𝑃𝐷𝑉
±
𝐷 and 𝑉±

𝐷
= 𝑃𝐷𝑉

±

𝐷
. The pre-factor 𝜀−4 comes from the Bloch transform,

cf. Remark 7.3. We find with 𝑇 = 𝜀2𝑡, 𝑘 = 𝜀−2
(
𝑘 − 𝑘𝐷

)
, 𝑙 = 𝜀−2

(
𝑙 − 𝑙𝐷

)
, and 𝓁 =

(
𝑘, 𝑙

)
the effective equations

2𝑖𝜔𝑚𝐷

(
𝓁𝐷

)
𝜕𝑇𝑉

+
𝐷

(
𝑇, 𝓁

)
=

(
𝑖𝑘𝑃𝐷

(
𝓁𝐷

)
𝜕𝑘�̃�

(
𝓁𝐷

)
+ 𝑖𝑙𝑃𝐷

(
𝓁𝐷

)
𝜕𝑙�̃�

(
𝓁𝐷

))
𝑉+
𝐷

(
𝑇, 𝓁

)
+𝑃𝐷

(
𝓁𝐷

)(
3𝑉+

𝐷 ∗ 𝑉+
𝐷 ∗ 𝑉−

𝐷
+ 6𝑉+

𝐷 ∗ 𝑉−
𝐷 ∗ 𝑉+

𝐷

)(
𝑇, 𝓁

)
, (8.7)

−2𝑖𝜔±

(
𝓁𝐷

)
𝜕𝑇𝑉

−
𝐷

(
𝑇, 𝓁

)
=

(
𝑖𝑘𝑃𝐷

(
𝓁𝐷

)
𝜕𝑘�̃�

(
𝓁𝐷

)
+ 𝑖𝑙𝑃𝐷

(
𝓁𝐷

)
𝜕𝑙�̃�

(
𝓁𝐷

))
𝑉−
𝐷

(
𝑇, 𝓁

)
+𝑃−

𝐷

(
𝓁𝐷

)(
3𝑉−

𝐷 ∗ 𝑉−
𝐷 ∗ 𝑉+

𝐷
+ 6𝑉−

𝐷 ∗ 𝑉+
+ ∗ 𝑉−

𝐷

)(
𝑇, 𝓁

)
, (8.8)

and complex conjugate equations for 𝑉+

𝐷
and 𝑉−

𝐷
. Like for the NLS approximation the limit equations no longer live in

Bloch space, but in Fourier space.
Our approximation theorem is as follows.

Theorem 8.1. For every 𝐶0 > 0 and 𝑇0 > 0, there exist 𝜀0 > 0 and 𝐶 > 0 such that for all solutions
(
𝑉+
𝐷, 𝑉

−
𝐷

)
∈

𝐶
([
0, 𝑇0

]
, 𝐻2

(
ℝ
)2)

of the effective equations (8.7)–(8.8) with

sup
𝑇∈[0,𝑇0]

‖‖‖𝑉±
𝐷(𝑇, ⋅)

‖‖‖𝐻2
≤ 𝐶0

the following holds. For all 𝜀 ∈
(
0, 𝜀0

)
there are solutions𝑈 ∈ 𝐶

([
0, 𝑇0∕𝜀

2
]
, 𝐿∞(ℝ)

)
of the original system (8.1) satisfying the

bound

sup
𝑡∈[0,𝑇0∕𝜀2]

sup
(𝑥,𝑦)∈Γ

|𝑈(𝑡, 𝑥, 𝑦) − 𝜀Ψdirac(𝑡, 𝑥, 𝑦)| ≤ 𝐶𝜀5∕2

where 𝜀Ψdirac is defined through (8.5)–(8.6).

Proof. Since the original system contains no quadratic terms the proof is straightforward and goes along the lines of
Theorem 7.1 given in Section 7.3 and in Section 7.4. Since we expand �̃�(𝓁) only up to linear order, we only need 𝐻2 in
the Dirac case instead of 𝐻3 in the NLS case. Moreover, due do the different scaling, every power of ||𝓁 − 𝓁𝐷

|| gains 𝜀2
instead of only 𝜀. The computation of the higher order approximation as in Section 7.3 is possible due to the validity of the
non-resonance conditions

𝜔(𝑚)(𝓁𝐷) ≠ 𝜔(𝑚𝐷)
(
𝓁𝐷

)
for all |𝑚| ∉ {

𝑚𝐷,𝑚𝐷 + 1
}

(8.9)

and

𝜔(𝑚)
(
3𝓁𝐷

) ≠ 3𝜔(𝑚𝐷)
(
𝓁𝐷

)
for all𝑚. (8.10)

The equations for the error have exactly the same form as (7.28) in Section 7.4. □

Remark 8.2. For fixed 𝓁 the function 𝑉+
𝐷

(
𝓁, ⋅

)
is two-dimensional. Hence, up to an error of order (||𝓁 − 𝓁𝐷

||) it can be
represented as a linear combination of two eigenvectors which span the two-dimensional subspace at the apex of the
cone. We choose two such eigenfunctions which are called Φ1 and Φ2 in the following, i.e., �̃�

(
𝓁𝐷

)
Φ𝑗 = −𝜔2

𝑚𝐷

(
𝓁𝐷

)
Φ𝑗 .

Then we set

𝑉+
𝐷

(
𝑇, 𝓁

)
= 𝐴1

(
𝑇, 𝓁

)
Φ1 + 𝐴2

(
𝑇, 𝓁

)
Φ2,
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𝑉−
𝐷

(
𝑇, 𝓁

)
= 𝐵1

(
𝑇, 𝓁

)
Φ1 + 𝐵2

(
𝑇, 𝓁

)
Φ2,

with 𝐴1

(
𝑇, 𝓁

)
, … , 𝐵2

(
𝑇, 𝓁

)
∈ ℂ. For such Φ1 and Φ2 we have

𝑃𝐷

(
𝓁𝐷

)
𝑢 =

1

det

(⟨Φ2,Φ2⟩⟨Φ1, 𝑢⟩ − ⟨Φ1,Φ2⟩⟨Φ2, 𝑢⟩),
where det = ⟨Φ1,Φ1⟩⟨Φ2,Φ2⟩ − ⟨Φ1,Φ2⟩⟨Φ2,Φ1⟩. In these coordinates the effective equation (8.7) is given by

2𝑖𝜔𝑚𝐷

(
𝓁𝐷

)
𝜕𝑇𝐴1

(
𝑇, 𝓁

)
=

(
𝑖𝑘𝛼11 + 𝑖𝑙𝛼21

)
𝐴1

(
𝑇, 𝓁

)
+

(
𝑖𝑘𝛼12 + 𝑖𝑙𝛼22

)
𝐴2

(
𝑇, 𝓁

)
+

(
3𝛽111𝐴1 ∗ 𝐴1 ∗

˜
𝐴1 + 3𝛽112𝐴1 ∗ 𝐴1 ∗ 𝐴2 + 3𝛽121𝐴1 ∗ 𝐴2 ∗

˜
𝐴1

+3𝛽122𝐴1 ∗ 𝐴2 ∗
˜
𝐴2 + 3𝛽221𝐴2 ∗ 𝐴2 ∗

˜
𝐴1 + 3𝛽222𝐴2 ∗ 𝐴2 ∗

˜
𝐴2

+6𝛾111𝐴1 ∗ 𝐵1 ∗ 𝐵1 + 6𝛾112𝐴1 ∗ 𝐵1 ∗ 𝐵2 + 6𝛾121𝐴1 ∗ 𝐵2 ∗ 𝐵1

+6𝛾122𝐴1 ∗ 𝐵2 ∗ 𝐵2 + 6𝛾221𝐴2 ∗ 𝐵2 ∗ 𝐵1 + 6𝛾222𝐴2 ∗ 𝐵2 ∗ 𝐵2

)(
𝑇, 𝓁

)
,

where

𝛼1𝑗 =
1

det

(⟨Φ2,Φ2⟩⟨Φ1, 𝜕𝑘�̃�
(
𝓁𝐷

)
Φ𝑗

⟩
− ⟨Φ1,Φ2⟩⟨Φ2, 𝜕𝑘�̃�

(
𝓁𝐷

)
Φ𝑗

⟩)
,

𝛼2𝑗 =
1

det

(⟨Φ2,Φ2⟩⟨Φ1, 𝜕𝑙�̃�
(
𝓁𝐷

)
Φ𝑗

⟩
− ⟨Φ1,Φ2⟩⟨Φ2, 𝜕𝑙�̃�

(
𝓁𝐷

)
Φ𝑗

⟩)
,

𝛽𝑗1𝑗2𝑗3 =
1

det

(⟨Φ2,Φ2⟩⟨Φ1,Φ𝑗1Φ𝑗2Φ𝑗3

⟩
− ⟨Φ1,Φ2⟩⟨Φ2,Φ𝑗1Φ𝑗2Φ𝑗3

⟩)
,

𝛾𝑗1𝑗2𝑗3 =
1

det

(⟨Φ2,Φ2⟩⟨Φ1,Φ𝑗1Φ𝑗2Φ𝑗3

⟩
− ⟨Φ1,Φ2⟩⟨Φ2,Φ𝑗1Φ𝑗2Φ𝑗3

⟩)
.

A similar equation is obtained for (8.8). In physical space these equations are given by

2𝑖𝜔𝑚𝐷

(
𝓁𝐷

)
𝜕𝑇𝐴1 =

(
𝛼11𝜕𝑋 + 𝛼21𝜕𝑌

)
𝐴1 +

(
𝛼12𝜕𝑋 + 𝛼22𝜕𝑌

)
𝐴2

+

(
3𝛽111𝐴1𝐴1𝐴1 + 3𝛽112𝐴1𝐴1𝐴2 + 3𝛽121𝐴1𝐴2𝐴1 + 3𝛽122𝐴1𝐴2𝐴2 + 3𝛽221𝐴2𝐴2𝐴1 + 3𝛽222𝐴2𝐴2𝐴2

+ 6𝛾111𝐴1𝐵1𝐵1 + 6𝛾112𝐴1𝐵1𝐵2 + 6𝛾121𝐴1𝐵2𝐵1 + 6𝛾122𝐴1𝐵2𝐵2 + 6𝛾221𝐴2𝐵2𝐵1 + 6𝛾222𝐴2𝐵2𝐵2

)
.

For suitable chosen Φ1 and Φ2 the representation [3, eq. (1.6)] of (8.7) in [3] is simpler. There, various coefficients 𝛼⋅,
𝛽⋅, and 𝛾⋅ can be shown to vanish by using the hexagonal symmetry of the NLS equation on ℝ2 with the honeycomb
symmetric potential. Since we have chosen our coordinate system for (2.1) parallel to the 𝑥- and 𝑦-axis the existence of
eigenfunctions Φ1 and Φ2 with similar properties as used in [3] is not obvious. Even for a hexagonal coordinate system
this is not obvious, since the results from [16, 28] have to be transferred to quantum graphs, first.

Remark 8.3. By making the ansatz

𝑈𝐷(𝑡, 𝓁) = 𝜀−4𝜀𝛼𝑉+
𝐷(𝑡, 𝓁)

(
𝜀2𝑡, 𝜀−2

(
𝓁 − 𝓁𝐷

))
𝑒𝑖𝜔𝑚𝐷

(𝓁𝐷)𝑡 (8.11)

+ 𝜀−4𝜀𝛼𝑉−
𝐷(𝑡, 𝓁)

(
𝜀2𝑡, 𝜀−2

(
𝓁 − 𝓁𝐷

))
𝑒−𝑖𝜔𝑚𝐷

(𝓁𝐷)𝑡,

and similar for 𝑈𝐷 , with 𝛼 > 1, the nonlinear terms are of higher order. We then obtain the linear effective equations

2𝑖𝜔±

(
𝓁𝐷

)
𝜕𝑇𝐴1

(
𝑇, 𝓁

)
=

(
𝑖𝑘𝛼11 + 𝑖𝑙𝛼21

)
𝐴1

(
𝑇, 𝓁

)
+

(
𝑖𝑘𝛼12 + 𝑖𝑙𝛼22

)
𝐴2

(
𝑇, 𝓁

)
,

2𝑖𝜔±

(
𝓁𝐷

)
𝜕𝑇𝐴2

(
𝑇, 𝓁

)
=

(
𝑖𝑘𝛼∗

11 + 𝑖𝑙𝛼∗
21

)
𝐴1

(
𝑇, 𝓁

)
+

(
𝑖𝑘𝛼∗

12 + 𝑖𝑙𝛼∗
22

)
𝐴2

(
𝑇, 𝓁

)
,
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with

𝛼∗
1𝑗

=
1

det

(⟨Φ2,Φ2⟩⟨Φ1, 𝑃𝐷

(
𝓁𝐷

)
𝜕𝑘�̃�(𝓁𝐷)Φ𝑗⟩ − ⟨Φ1,Φ2⟩⟨Φ2, 𝑃𝐷

(
𝓁𝐷

)
𝜕𝑘�̃�

(
𝓁𝐷

)
Φ𝑗

⟩)
,

𝛼∗
2𝑗

=
1

det

(⟨Φ2,Φ1⟩⟨Φ1, 𝑃𝐷

(
𝓁𝐷

)
𝜕𝑙�̃�

(
𝓁𝐷

)
Φ𝑗

⟩
+ ⟨Φ1,Φ1⟩⟨Φ2, 𝑃𝐷

(
𝓁𝐷

)
𝜕𝑙�̃�

(
𝓁𝐷

)
Φ𝑗

⟩)
.

The system can be diagonalized into

𝑖𝜕𝑇𝐴+

(
𝑇, 𝓁

)
+Ω+

(
𝓁
)
𝐴+

(
𝑇, 𝓁

)
= 0,

𝑖𝜕𝑇𝐴−

(
𝑇, 𝓁

)
+Ω−

(
𝓁
)
𝐴−

(
𝑇, 𝓁

)
= 0,

(8.12)

where theΩ± are the roots of a quadratic equation inΩ±, 𝑘, and 𝑙. Since in the apex of the cone the directional derivatives
exist, we have Ω−

(
𝓁
)
= −Ω+

(
− 𝓁

)
.

We have the following approximation result which is formulated in physical space.

Theorem8.4. For every𝛼 > 1,𝐶0 > 0 and𝑇0 > 0, there exist 𝜀0 > 0 and𝐶 > 0 such that for all solutions𝐴± ∈ 𝐶
(
ℝ,𝐻2(ℝ)

)
of (8.12) with

sup
𝑇∈[0,𝑇0]

‖‖‖𝐴±(𝑇, ⋅)
‖‖‖𝐻2

≤ 𝐶0

and for all 𝜀 ∈
(
0, 𝜀0

)
, there are solutions𝑈 ∈ 𝐶

([
0, 𝑇0∕𝜀

2
]
, 𝐿∞(ℝ)

)
of the original system (8.1) satisfying the bound

sup
𝑡∈[0,𝑇0∕𝜀2]

sup
(𝑥,𝑦)∈Γ

|𝑈(𝑡, 𝑥, 𝑦) − 𝜀𝛼Ψdirac(𝑡, 𝑥, 𝑦)| ≤ 𝐶𝜀min(𝛼+3∕2,3𝛼−2)),

where 𝜀𝛼Ψdirac is defined through (8.11).

The proof works like for the NLS approximation except for the fact that the surfaces 𝜔𝑚𝐷
and 𝜔𝑚𝐷+1 are not smooth in

the center. However, we have the estimate|||𝜔𝑚𝐷
(𝓁) − 𝜔𝑚𝐷

(
𝓁𝐷

)
−Ω+

(
𝓁 − 𝓁𝐷

)||| ≤ 𝐶|𝓁 − 𝓁𝐷|2
which is sufficient for the residual estimates.

Remark 8.5. The linear equations (8.12) can be transferred into themasslessDirac equations. By construction, the functions
Ω± in (8.12) are of the form

Ω±

(
𝑘, 𝑙

)
= 𝑠±

⎛⎜⎜⎜⎝
𝑘√

𝑘
2
+ 𝑙

2
,

𝑙√
𝑘
2
+ 𝑙

2

⎞⎟⎟⎟⎠
√

𝑘
2
+ 𝑙

2
,

with 𝑠± ∶ 𝑆1 → ℝ+. We introduce new coordinates

�̃�
±
= 𝑘𝑠±

⎛⎜⎜⎜⎝
𝑘√

𝑘
2
+ 𝑙

2
,

𝑙√
𝑘
2
+ 𝑙

2

⎞⎟⎟⎟⎠, �̃�
±
= 𝑙𝑠±

⎛⎜⎜⎜⎝
𝑘√

𝑘
2
+ 𝑙

2
,

𝑙√
𝑘
2
+ 𝑙

2

⎞⎟⎟⎟⎠
and set

Ω̃±

(
�̃�
±
, �̃�

±

)
= Ω±

(
𝑘, 𝑙

)
= 𝑠±

⎛⎜⎜⎜⎝
𝑘√

𝑘
2
+ 𝑙

2
,

𝑙√
𝑘
2
+ 𝑙

2

⎞⎟⎟⎟⎠
√√√√√(

�̃�
±

𝑠±

)2

+

(
�̃�
±

𝑠±

)2

=

√
�̃�
2

±
+ �̃�

2

±
.

Since the two equations for 𝐴+ and 𝐴− decouple w.r.t. these coordinates we can write
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𝑖𝜕𝑇𝐴+

(
𝑇, �̃�, �̃�

)
+

√
�̃�
2
+ �̃�

2
𝐴+

(
𝑇, �̃�, �̃�

)
= 0, (8.13)

𝑖𝜕𝑇𝐴−

(
𝑇, �̃�, �̃�

)
−

√
�̃�
2
+ �̃�

2
𝐴−

(
𝑇, �̃�, �̃�

)
= 0. (8.14)

The new system (8.13)–(8.14) can be replaced by equations which are local in physical space, having the same spectral
surfaces, such as 𝜕2𝑇𝜙 = Δ𝜙 or the massless Dirac equation

𝜕𝑇𝜓 = −
(
𝜎𝑥𝜕𝑋𝜓 + 𝜎𝑦𝜕𝑌𝜓

)
,

with 𝜎𝑥 =

(
0 1

1 0

)
and 𝜎𝑦 =

(
0 i

−i 0

)
.

Remark 8.6. The motivation for the approach chosen in this section was that in a Dirac point no smooth expansion of the
surfaces of eigenvalues is possible. We finally remark that the situation for the nonlinear kernels

𝛽
𝑗
𝑗1,𝑗2,𝑗3

(
𝓁, 𝓁 − 𝓁1, 𝓁1 − 𝓁2, 𝓁2

)
=

⟨
𝑓𝑗(𝓁, ⋅), 𝑓𝑗1

(
𝓁 − 𝓁1, ⋅

)
𝑓𝑗2

(
𝓁1 − 𝓁2, ⋅

)
𝑓𝑗3

(
𝓁2, ⋅

)⟩
𝐿2
Γ

,

with 𝑗, 𝑗1, 𝑗2, 𝑗3 ∈
{
𝑚𝐷,𝑚𝐷 + 1

}
at the apex of the cone is even worse. They even do not have a limit at the Dirac points;

instead a continuum of accumulation points occurs.
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