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Abstract: The Chemical Master Equation is a standard approach to model biochemical reaction
networks. It consists of a system of linear differential equations, in which each state corresponds
to a possible configuration of the reaction system, and the solution describes a time-dependent
probability distribution over all configurations. The Stochastic Simulation Algorithm (SSA) is a
method to simulate sample paths from this stochastic process. Both approaches are only applicable
for small systems, characterized by few reactions and small numbers of molecules. For larger systems,
the CME is computationally intractable due to a large number of possible configurations, and the
SSA suffers from large reaction propensities. In our study, we focus on catalytic reaction systems,
in which substrates are converted by catalytic molecules. We present an alternative description
of these systems, called SiCaSMA, in which the full system is subdivided into smaller subsystems
with one catalyst molecule each. These single catalyst subsystems can be analyzed individually,
and their solutions are concatenated to give the solution of the full system. We show the validity of
our approach by applying it to two test-bed reaction systems, a reversible switch of a molecule and
methyltransferase-mediated DNA methylation.

Keywords: chemical master equation; DNA methylation; catalytic systems; stochastic simulation
algorithm; time-continuous Markov process; equivalence of stochastic processes

1. Introduction

Different approaches exist to model (bio)chemical reaction networks. On one end
of the spectrum, quantum-theoretical approaches provide insights into the dynamics of
few-atom systems using nearly no approximations of the underlying physics. Force-field
driven particle simulations approximate the positions and velocities of atoms or molecules
deterministically and are therefore capable of simulating significantly larger systems. By
assuming a well-stirred, isothermal and isobaric system, one can eliminate the spatial
component completely, thus further increasing the feasible system size.

Without the spatial dependency, the only time-dependent system state is characterized
by the number of molecules of each chemical species at a given time. An established method
to describe the behavior of such a system is the Chemical Master Equation (CME). It is
a system of coupled linear ordinary differential equations whose solution describes a
time-dependent probability distribution over the set of possible states of the system (see,
e.g., Higham [1], Wilkinson [2], Schnoerr et al. [3] for reviews on stochastic modeling
approaches for chemical reactions).

The CME suffers from the curse of dimensionality, i.e., computational complexity
and memory requirement grow exponentially with the number of chemical species. Thus,
exact solutions of the CME are rare and only possible for very small and simple systems.
Moreover, depending on the system at hand, it can be tedious to even find a proper state
definition and to list all possible states.
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Different approaches are used to approximate the solution of a CME. Some of these
date back to the 1960s, when the use of stochastic models for natural phenomena became
quite popular [4,5]. For example, the Stochastic Simulation Algorithm (SSA) is a Monte
Carlo method which generates sample paths that are drawn from the CME’s true solu-
tion [6]. It rapidly becomes computationally expensive if reaction propensities are large,
which is usually the case already with a moderate number of molecules. Furthermore,
many samples are needed for an accurate estimation of system parameters, especially if
the system operates near an unstable point. Different methods have been introduced to
increase the efficiency of the SSA. τ-leaping, for example, allows for several reactions to
happen in a given time interval [t, t + τ] by neglecting changes in the reaction propensities
during [t, t + τ]. Other approaches approximate the CME’s solution by calculating its
central moments up to a certain order. The evolution of these moments is described by
a set of coupled ODEs. Since the ODE system is not closed if any reaction propensity is
superlinear with respect to the state of the system, closure schemes have to be applied [7,8].
Similar to moment closure methods, linear noise approximations or the chemical Langevin
equation approximate the discrete state space with continuous quantities. In addition
to the already mentioned techniques, finite state projections [9] or sliding window meth-
ods [10] and similar approaches [11] truncate the state space by neglecting states with low
probability masses.

However, although many methods have been introduced to amplify the efficiency of
CME-based approaches, these approaches quickly come to their limits for complex systems,
and, hence, stochastic modeling of intracellular processes is still computationally challenging.

In recent years, especially the experimental methodology for single cells has expe-
rienced rapid growth. This not only enables new insights into heterogeneous cellular
responses caused by stochastic effects, it also spotlights the need for simulation models and
procedures that are able to include and predict said stochasticity. Different studies have
already investigated this ubiquitous phenomenon in the context of gene expression [12,13],
intracellular transport processes [14] or signal transduction pathways [15–17].

In this paper, we introduce a new methodology, the Single Catalyst Stochastic Mod-
eling Approach (SiCaSMA), to describe catalytic reaction systems. This class of systems
consists of substrate molecules which can be converted by catalysts. Instead of simulating
the system as one large process, we subdivide the full system into smaller parts in which
the catalyst molecules are simulated one after another, solve the corresponding equations
and recombine the solutions. This either enables the direct solution of the CME or at least
eases the implementation of the SSA for the smaller subsystems. Our approach is based on
the assumption that catalyst molecules react independently of each other. The advantages
of our approach are manifold:

1. It is not necessary to define the state transition graph of the entire system. This
can be a real advantage, since the state transition graph can become quite large.
This holds in particular for catalytic systems in which the substrate exists in many
conformations. A prominent example is post-translational modification of a protein,
e.g., phosphorylation at different sites. The nodes of the transition graph correspond
here to all possible configurations of substrate phosphorylation states and catalyst
binding states. Due to the combinatorial complexity, this number grows rapidly even
for small molecule numbers. Moreover, it is for most of those systems not possible to
exploit the underlying structure of the graph.

2. Intractable state transition graphs are replaced by a concatenation of much simpler
graphs, resulting in lower dimensional differential equations for the CME approach.
Instead of solving the conventional CME defined on the full state transition graph, one
can solve the CME on these simpler graphs and concatenate the obtained solutions.
This effectively enables the solution of the CME for complex systems, where it was
formerly necessary to resort to simulation methods.

3. The implementation of the SSA is considerably simplified.
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We show on different example systems, including a simple conversion reaction and a
model for methyltransferase-mediated DNA methylation, that SiCaSMA is equivalent to
the standard CME description of the full system.

2. Materials and Methods

The CME is a set of linear differential equations that describe the evolution of proba-
bility distribution P(X, t) over all possible system states X and time t:

dP(X, t)
dt

=
M

∑
j=1

[
X− ν−j ≥ 0

]
aj(X− νj)P(X− νj, t)−

M

∑
j=1

[
X + ν+

j ≥ 0
]

aj(X)P(X, t) (1)

Here, j ∈ {1, ..., M} is the reaction index and νj the state change vector of reaction
j. Reaction propensities are denoted aj(X). Conditions in square brackets ensure that the
summation is over feasible reactions only, where νj = ν+

j + ν−j is decomposed into positive
and negative parts. Equation (1) can be cast into the form

Ṗ(X, t) = SP(X, t) (2)

with system matrix S and solution

P(X, t) = eStP(X, t = 0). (3)

Hence, solving the CME requires the calculation of the exponential of the product of
the system matrix S and time t.

The SSA simulates sample paths from the CME. For each reaction step, this includes
the realization of two random variables, an exponentially distributed waiting time t̃ for
the next reaction to happen, and a reaction index j to determine the type of reaction, as
depicted in Algorithm 1.

Algorithm 1 SSA general scheme (Xinit, t f , kinetic params)

1: Initialize X(0) = Xinit and set t = 0
2: while t < t f do
3: Calculate aj(X(t)) and asum(X(t)) = ∑j aj(X(t)) for j = 1, . . . , m
4: Draw waiting time t̃ until next reaction event from T̃ ∼ Exp(asum(X(t)))
5: Draw reaction index j from discrete distribution J ∼ aj(X(t))/asum(X(t))

6: Update t = t + t̃
7: if t < t f then
8: Update X(t) = X(t) + νj
9: end if

10: end while
11: return X(t)

3. Results
3.1. An Intuitive Example: Linear Conversion Process

As an intuitive example to illustrate the idea behind our approach, we consider the
reversible conversion of molecules between two different forms with simple first order
kinetics (Figure 1A), i.e., reactions of the form

A
k1−−→←−−

k– 1
B ·

This reaction system constitutes a special and very simple case of our system class. It
represents, for example, reversible binding of a catalyst to a substrate, without modification
of the substrate. The forms A and B represent free enzyme and enzyme substrate complex,
respectively. When substrate is in excess, reaction rates only linearly depend on the amount
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of catalyst molecules and are of order zero with respect to the substrate, as assumed here.
Especially for this simple system, it is intuitively clear that we can either describe the full
system or consider each molecule independently and obtain equivalent solutions. We
define the state X(t) of the underlying Markov process to be the number of molecules in
state A. Thus, for n molecules, the range of X(t) is given by

X(t) ∈ {0, 1, . . . , n}. (4)

The propensities and state change vectors of the two reactions are given by

a1(X) = k1X, a−1(X) = k−1(n− X), ν1 = −1, ν−1 = 1. (5)

The state transition graph of this reaction system for n = 2 is shown in Figure 1B (left).
This system can alternatively be modeled by concatenating n single molecule systems with
state spaces Yi(t) ∈ {0, 1}, i = 1, . . . , n (Figure 1B (right)). In this case, the concatenation is
equivalent to a summation Y(t) = ∑n

i=1 Yi(t).
Next, we show that X(t) and Y(t) describe equivalent stochastic processes. We

therefore solve the CME corresponding to each system analytically and compare the
resulting probability distributions P(X, t) and P(Y, t). Regarding the original system,
P(X, t) corresponds to the solution of the respective CME, which can be derived from the
state transition graph (Figure 1B) and reads

Ṗ(X, t) =

Ṗ(X = 2, t)
Ṗ(X = 1, t)
Ṗ(X = 0, t)

 =

−2k1 k−1 0
2k1 −(k1 + k−1) 2k−1
0 k1 −2k−1

P(X = 2, t)
P(X = 1, t)
P(X = 0, t)

. (6)

Without loss of generality and for the sake of brevity, we choose k1 = k−1 = 1 for
the following calculations. Then, the solution of this set of linear differential equations is
given by

P(X, t) =
1
4

1 + e−4t + 2e−2t 1− e−4t 1 + e−4t − 2e−2t

2− 2e−4t 2 + 2e−4t 2− 2e−4t

1 + e−4t − 2e−2t 1− e−4t 1 + e−4t + 2e−2t

P(X, t = 0), (7)

and for X(t = 0) = 2

P(X, t) =
1
4

1 + e−4t + 2e−2t

2− 2e−4t

1 + e−4t − 2e−2t

. (8)

Applying SiCaSMA, for the equivalent process, we solve each subsystem to obtain
P(Yi, t), i = 1, 2 in a first step. The respective CME reads

Ṗ(Yi, t) =
(

Ṗ(Yi = 1, t)
Ṗ(Yi = 0, t)

)
=

(
−k1 k−1
k1 −k−1

)(
P(Yi = 1, t)
P(Yi = 0, t)

)
, (9)

with solution

P(Yi, t) =
1
2

(
1 + e−2t 1− e−2t

1− e−2t 1 + e−2t

)
P(Yi, t = 0). (10)

This gives for Yi(t = 0) = 1

P(Yi, t) =
1
2

(
1 + e−2t

1− e−2t

)
. (11)
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Since Y(t) = ∑n
i=1 Yi(t), the probability distribution P(Y, t) is formally defined as a

convolution of the probability distributions P(Yi, t). For n = 2, this results in P(Y, t) =
P(Y1, t) ∗ P(Y2, t) and can also be formulated in a verbose fashion

P(X = 2, t) = P(Y1 = 1, t)P(Y2 = 1, t)

P(X = 1, t) = P(Y1 = 1, t)P(Y2 = 0, t) + P(Y1 = 0, t)P(Y2 = 1, t) (12)

P(X = 0, t) = P(Y1 = 0, t)P(Y2 = 0, t).

P(X, t) and P(Y, t) are equivalent, as can be derived from the Equations (11) and (12)
in comparison to the solution of the full system (Equation (8)) and seen in the courses in
Figure 1C.

Figure 1. Application of SiCaSMA to a molecular conversion process. (A) We consider a reversible
conversion reaction, in which the system state X is defined as the number of molecules in the
first (blue) state. State change vectors and propensities are denoted ν1, ν−1 and a1(X), a−1(X),
respectively. (B) State transition graph of the full system (left) and both single catalyst subsystems
(right). (C) Visual representation of the solution P(X, t) of the CME for the full system (left) and of
the combined solution P(Y, t) of the two single catalyst subsystems (right).

3.2. Applying SiCaSMA to a Model for DNMT1-Mediated DNA Methylation

While the just-described system is rather simple in nature, it provides an intuitive
application of our approach to general catalytic systems, which are assumed to be of the
following form: The chemical species can be subdivided into two categories. C denotes the
catalyst species and S the substrate species, respectively. Catalyst-driven conversions of
the substrate, such as conformational changes or post-transcriptional modifications, are
treated as individual species in this framework. The key assumption for our approach is
that the catalyst molecules function independently of each other. In our system, substrate
molecules S are modified by catalysts C. Our specific system comprises reversible complex
formation of catalyst and substrate molecules and catalyst-mediated modifications of the
substrate. If multiple modifications are possible, this is implemented as a counter, and
denoted by Si for a single substrate molecule or CSi in complex form, respectively,

C + Si k1−−→←−−
k– 1

CSi i = 0, . . . , nS

CSi km−−→ CSi+1 i = 0, . . . , nS − 1.

While all catalyst and substrate molecules are simulated simultaneously in the classical
approaches, we replace this procedure with consecutive simulations including all substrate
molecules and only one catalyst molecule at a time. Both approaches differ in one major
aspect: In the classical approach, each catalyst molecule faces the same substrate state at a
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given time, and if one catalyst molecule changes this substrate state, this change is directly
visible for all other catalysts. Using SiCaSMA, however, a catalyst molecule initially faces
the substrate state that results from all modifications of the previously simulated catalyst
molecules. The equivalence of both procedures is therefore non-trivial. Moreover, unlike in
the previous example, the subsystems cannot be simulated in parallel, since they indirectly
depend on each other through the initial condition in the substrate state.

On this basis, we apply our method to a model for epigenetic regulation via DNA
methylation, as described in Adam et al. [18]. In this system, the protein DNA methyltrans-
ferase 1 (DNMT1) can methylate DNA molecules at different sites and therefore serves as
biocatalyst. The DNA strands serve as substrate molecules. Each DNA molecule contains
44 methylation sites in the original model. Analogously to Adam et al. [18], we model
the binding reaction of DNMT1 and DNA with a propensity that increases linearly with
the number of unbound DNMT1 molecules and is independent of the number of DNA
molecules. This assumption comes from the fact that a DNA strand contains many (unspe-
cific) sites at which DNMT1 can bind. Furthermore, each DNA molecule can accommodate
arbitrarily many DNMT1 proteins, such that the DNMT1 species is the limiting factor here.

For an analytic CME solution, we have to simplify this model in order to obtain a
tractable number of states. We do this by neglecting different DNMT1 conformations
and consider a system consisting of nD = 1 DNA molecule with nS = 1 methylation site
and nP = 2 DNMT1 molecules. This keeps the system size tractable and enables a clear
illustration. The reaction scheme is shown in Figure 2A. DNMT1 can bind to and dissolve
from the DNA. In the bound state, it can methylate the DNA processively. The state of the
system is described by a two-dimensional vector, in which the first and second component
correspond to the number of enzymes bound to the DNA molecule and the number of
methylated sites of this DNA molecule, respectively. The first entry, therefore, serves as
catalyst species C, while the second one represents the substrate species S. Methylation
reactions are modeled as irreversible processes in our system. We obtain the following
reaction propensities and state transition vectors:

a1(X, nP) = k1(nP − X1) a−1(X) = k−1X1 am(X, nS) = kmX1

(
1− X2

nS

)
ν1 =

(
1
0

)
ν−1 =

(
−1
0

)
νm =

(
0
1

)
.

(13)

Here, the factor (1− X2/nS) in am(X, nS) indicates the fraction of yet unmethylated
sites. The state transition graph of the CME for the full system is depicted in Figure 2B (left).
It comprises six possible states; hence, the CME is a six-dimensional linear differential
equation system, which is given by

Ṗ(X, t) =



−2k1 k−1 0 0 0 0
2k1 −(k−1 + k1 + km) 2k−1 0 0 0
0 k1 −(2k−1 + 2km) 0 0 0
0 0 0 −2k1 k−1 0
0 km 0 2k1 −(k−1 + k1) 2k−1
0 0 2km 0 k1 −2k−1

P(X, t). (14)

For the initial state X = (0, 0)T and k1 = k−1 = km = 1, the solution of Equation (14)
is given by
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P(X, t) =



2e−3t

5 + 2e−
√

5t−3t

5(3+
√

5)
− 2e

√
5t−3t

5(
√

5−3)

− 2e−3t

5 − 2e−
√

5t−3t

5(3+
√

5)
− 2e−

√
5t−3t

√
5(
√

5+3)
+ 2e

√
5t−3t

5(
√

5−3)
− 2e

√
5t−3t

√
5(
√

5−3)

− 2e−3t

5 + e−
√

5t−3t

5 + e
√

5t−3t

5
1
4 + e−4t

4 −
2e−3t

5 + e−2t

2 −
2e−
√

5t−3t

5(3+
√

5)
+ 2e

√
5t−3t

5(
√

5−3)
1
2 −

e−4t

2 + 2e−3t

5 + 2e−
√

5t−3t

5(3+
√

5)
+ 2e−

√
5t−3t

√
5(
√

5+3)
− 2e

√
5t−3t

5(
√

5−3)
+ 2e

√
5t−3t

√
5(
√

5−3)
1
4 + e−4t

4 + 2e−3t

5 − e−2t

2 −
e−
√

5t−3t

5 − e
√

5t−3t

5


. (15)

Figure 2. Application of SiCaSMA to a model for DNMT1-mediated DNA methylation. (A) We
consider a system of DNMT1 molecules (blue) and DNA molecules in which DNMT1 can reversibly
bind to DNA and processively methylate different sites. The state X, the state-transition vectors νr

and the propensities ar(X) for all reactions r ∈ {1,−1, m} are indicated. The numbers nS, nD and nP

specify the number of methylation sites per DNA strand, the number of simulated DNA strands
and the number of DNMT1 proteins, respectively. (B) State space of the full system (left) and the
two SiCaSMA single catalyst subsystems including only one DNMT1 each (right). In the CME, we
have used the ordering of states as indicated with red numbers on the top left of each system state.
(C) Analytic solution of the full CME (left) and SiCaSMA as provided in Equation (A3) (right) for
parameters k1 = k−1 = km = 1.

The stochastic process, which results from applying SiCaSMA to the system, is illus-
trated in Figure 2B (right). Here, the system is modeled by simulating the two DNMT1
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molecules one after another while accumulating the methylation state. For each single
catalyst subsystem indicated by p = 1, 2, we obtain a CME that comprises four states,

Ṗ
((

Yp

Ym

)
, t
)
=


−k1 k−1 0 0
k1 −(k−1 + km) 0 0
0 0 −k1 k−1
0 km k1 −k−1


︸ ︷︷ ︸

S

P
((

Yp

Ym

)
, t
)

. (16)

The general solution of this equation is given by

P
((

Yp

Ym

)
, t
)
= etSP

((
Yp

Ym

)
, t = 0

)
. (17)

Using

c− = exp

(
−
√

5t− 3t
2

)
and c+ = exp

(√
5t− 3t

2

)
, (18)

the matrix exponent etS is given by

etS =



2c−
5+
√

5
− (5−

√
5)c+

5
√

5−15
− (1+

√
5)c−

5+
√

5
+ c+√

5
0 0

(
√

5−1)c−√
5−5

+
√

5c+
5

(
√

5+3)c−√
5+5

+ (
√

5+5)c+
5
√

5+15
0 0

(1−
√

5)c−
2
√

5
− 2

√
5c+

5
√

5−5
+ 1

2 + e−2t

2
(
√

5+3)c−
5+3
√

5
− (5+

√
5)c+

5+5
√

5
+ 1

2 −
e−2t

2
1
2 + e−2t

2
1
2 −

e−2t

2
(1−
√

5)c−√
5−5

−
√

5c+
5 + 1

2 −
e−2t

2 − (
√

5+3)c−√
5+5

− (
√

5+5)c+
5
√

5+15
+ 1

2 + e−2t

2
1
2 −

e−2t

2
1
2 + e−2t

2

. (19)

All above equations hold for both single catalyst subsystems. However, the initial
state of the second system depends on the solution of the first one. The state transition
graph of the single catalyst subsystems (Figure 2B (right)) consists of two classes. The
transient class, which contains all states with unmethylated DNA, is enclosed by the left
red box. Similarly, the absorbing class, which contains the states with methylated DNA,
is depicted inside the right red box. Exchanging the first catalyst molecule by the second
one corresponds to keeping the methylation state from the first subsystem and starting in
the respective class in the DNMT1 unbound state, i.e., the DNMT1 protein is re-initialized.
The probabilities within each class are therefore added up, which is indicated by the red
plus-sign. The distribution of the initial state of the second subsystem reads

P
((

Y2

Ym

)
=

(
0
0

)
, t = 0

)
= P

((
Y1

Ym

)
=

(
0
0

)
, t = t f

)
+ P

((
Y1

Ym

)
=

(
1
0

)
, t = t f

)
P
((

Y2

Ym

)
=

(
0
1

)
, t = 0

)
= P

((
Y1

Ym

)
=

(
0
1

)
, t = t f

)
+ P

((
Y1

Ym

)
=

(
1
1

)
, t = t f

)
, (20)

where t f is the simulated time. The two states in which the catalyst molecule is bound have
probability 0 for t = 0. From Y1, Y2 and Ym, we construct the overall system state Y, which
will be shown to be equivalent to X. We therefore define:

Y =

(
Y1 + Y2

Ym

)
(21)

As for the first example system, the probability distribution P(Y1 + Y2, t) is defined
as the convolution

P(Y1 + Y2, t) = P(Y1, t) ∗ P(Y2, t). (22)

Using Equation (20), we construct all possible outcomes after two successive sin-
gle catalyst subsystem simulations and compare the resulting probability P(Y, t) with
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P(X, t) of the full system in Equation (A3). An exemplary derivation of the equality for
P
(
X = (0, 1)T , t

)
and the initial state X = (0, 0)T is detailed in Appendix A. Similar deriva-

tions can be undertaken for all six entries of the full CME solution. Figure 2C visualizes
the equivalent analytic solutions P(X, t) and P(Y, t) obtained for the full system (left) and
SiCaSMA (right), respectively.

3.3. Applying SiCaSMA to Larger Networks via the SSA

Next, we apply SiCaSMA to a larger network by implementing it into an SSA approach.
Therefore, we consider the methylation system of Figure 2 and arbitrary nS, nD, nP. Pseu-
docode of the conventional SSA for the full system is depicted in Algorithm 2. Applying
SiCaSMA (Algorithm 3), we initialize the number of methylated sites Ym = Xinit,2. For
the nP single catalyst systems, the state of the catalyst Yp is set to Yp = Xinit,1, and sample
paths are generated via the conventional SSA with a single catalyst molecule, nP = 1.
Finally, the state vector X(t), which is a two-dimensional vector with X1(t) = ∑nP

i=1 Yp(t)
and X2(t) = Ym(t), is returned. In summary, SiCaSMA SSA runs the conventional version
of the SSA for each single catalyst subsystem and eventually combines the obtained solu-
tions by treating the methylation state as a global variable throughout all single catalyst
simulations and concatenating the catalyst states using a sum.

Algorithm 2 SSA DNA methylation system (Xinit, t f , nP, nS)

Initialize X = Xinit and set t = 0
2: while t < t f do

Calculate A = (a1, a−1, am) and asum = ∑j=1,2,3 Aj
4: Draw independent random numbers ξ1 and ξ2 uniformly from (0, 1)

Set i to be the smallest integer satisfying ∑j=1,...,i aj > ξ1asum

6: Update t = t + ln(ξ−1
2 )

asum
if t < t f then

8: Update X = X + νi
end if

10: end while
return X

Algorithm 3 Single Catalyst SSA DNA methylation system (Xinit, t f , nP, nS)

Initialize Ym = Xinit,2
for p = 1, ..., nP do

3: Initialize
(

Yp

Ym

)
=

(
Xinit,1

Ym

)
Update

(
Yp

Ym

)
= SSA

((
Yp

Ym

)
, t f , 1, nS

)
end for

6: return Y =

(
∑nP

p=1 Yp

Ym

)

A visual comparison of the outcome of the two algorithms is shown in Figure 3.
Results in Figure 3A are obtained with nS = 10, nD = 2, nP = 10 and reaction rates
k1 = 2, k−1 = 1, km = 1

2 . The estimated distributions are obtained using 105 sample paths
for each of the simulation algorithms evaluated for t = 3.0. Similarly, Figure 3B presents the
estimated distributions for an even larger system defined by nS = 100, nD = 5, nP = 100
and the same reaction rates as in Figure 3A. It can be seen that the probability distributions
estimated with the SSA of the full system (Figure 3 (left)) and of SiCaSMA (Figure 3
(right)) are nearly identical. This becomes especially remarkable when recapitulating the
dimension of the corresponding CME, which defines a probability for every single possible
state of the system. Only considering the different possibilities of binding 100 DNMT1
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molecules to five DNA strands renders a CME solution nearly impossible, not to mention
the second, independent combinatorial explosion introduced via the different possible
methylation states of the DNA. A convergence of SSA results such as the one observed in
Figure 3 can therefore not be taken for granted.

Figure 3. Application of SiCaSMA to a larger system via SSA. All distributions are obtained by
105 sample paths of the respective version of the SSA evaluated for t f = 3.0 and parameters
k1 = 2, k−1 = 1, km = 1

2 . (A) Estimated probability distributions for the state of the second DNA
molecule, which is defined by the number of DNMT1 molecules bound to it and the number of
methylations. Results were obtained with nS = 10, nD = 2 and nP = 10. (B) Analog results for DNA
molecule 5 and an even larger system (nS = 100, nD = 5, nP = 100).

4. Discussion

In this paper, we have introduced SiCaSMA, an alternative stochastic description for a
class of catalytic systems in which catalysts act independently of each other on substrate
molecules. Instead of considering the CME for the full system, SiCaSMA concatenates
smaller subsystems which consist of all substrate molecules, but only one catalyst molecule
each. The single catalyst subsystems are analyzed one after another. Hereby, the substrate
state is inherited from actions of former subsystems, which is reflected in the initial con-
ditions of the subsystem under consideration. Thus, the substrate state acts as a global
variable. The states of the catalyst molecules in the subsystems are local variables, i.e.,
describe the state in the subsystems, and are re-initialized for each subsystem. By applying
SiCaSMA, it is not necessary to characterize the state space of the full system. It is sufficient
to perform calculations or simulations on the single catalyst subsystems, which usually
have a much smaller state space. In the end, the state of the full system is reconstructed
from the states of the individual single catalyst subsystems.

We have applied SiCaSMA to different systems. First, a simple reversible conversion
reaction, in which a molecule can reversibly switch between two different states, was
used to illustrate the approach. This system was described with simple first-order kinetics
and represents an intuitive example for our approach. The partition into n individual
subsystems is trivial here, but the example is well-suited to demonstrate the general
idea of SiCaSMA. Second, we have considered DNMT1-mediated DNA methylation,
which consists of reversible binding of DNMT1 to the DNA and processive methylation
at different sites. For both systems and low numbers of variables, we have shown that
SiCaSMA provides indeed an equivalent description of the underlying stochastic process.
Since the dimensions of the single catalyst subsystems are smaller than those of the full
systems, SiCaSMA can also be applied to calculate a solution of the full system when the full



Mathematics 2021, 9, 1074 11 of 13

system is not feasible. However, reconstruction of the state of the full system also becomes
more complicated in these cases, and a practically applicable general reconstruction scheme
is still missing.

Beyond the specific methylation system discussed in the paper, we think that SiCaSMA
can be applied to a broad range of biochemical reaction systems. Several literature mod-
els can be adopted to this form. Examples include mRNA transcription [19] and post-
transcriptional modifications of proteins such as phosphorylation [20]. Moreover, we
believe that it is also possible to extend the model class in several directions, e.g., regarding
the number of different catalyst or substrate types and their numbers of different configu-
rations. A more formal definition of the system class, which generalizes our results, is a
challenging future task.
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Appendix A. Proof of Equivalence of X and Y for the DNA Methylation Model

We perform an exemplary derivation of equivalence for P
(
X = (0, 1)T , t

)
and the

initial state X = (0, 0)T . Four additional algebraic identities are used during the derivation:

0 =
1−
√

5
4
√

5
+

1
5 +
√

5
=

5−
√

5
10
√

5− 30
+

1
5−
√

5
(A1)

as well as

1−
√

5
5 + 5

√
5
= − 2

5(3 +
√

5)
,

√
5− 1

20− 10
√

5
=

2
5(
√

5− 3)
. (A2)

The relation between the states X and Yi is given by the convolution, i.e.,

https://fairdomhub.org/models/784
https://fairdomhub.org/models/784
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P
(

X = (0, 0)T , t
)
= P

(
(Y1, Ym)T = (0, 0)T , t

)
P
(
(Y2, Ym)T = (0, 0)T , t

)
P
(

X = (1, 0)T , t
)
= P

(
(Y1, Ym)T = (0, 0)T , t

)
P
(
(Y2, Ym)T = (1, 0)T , t

)
+ P

(
(Y1, Ym)T = (1, 0)T , t

)
P
(
(Y2, Ym)T = (0, 0)T , t

)
P
(

X = (2, 0)T , t
)
= P

(
(Y1, Ym)T = (1, 0)T , t

)
P
(
(Y2, Ym)T = (1, 0)T , t

)
P
(

X = (0, 1)T , t
)
= P

(
(Y1, Ym)T = (0, 0)T , t

)
P
(
(Y2, Ym)T = (0, 1)T , t

)
+ P

(
(Y1, Ym)T = (0, 1)T , t

)
P
(
(Y2, Ym)T = (0, 1)T , t

)
(A3)

P
(

X = (1, 1)T , t
)
= P

(
(Y1, Ym)T = (0, 0)T , t

)
P
(
(Y2, Ym)T = (1, 1)T , t

)
+ P

(
(Y1, Ym)T = (1, 1)T , t

)
P
(
(Y2, Ym)T = (0, 1)T , t

)
+ P

(
(Y1, Ym)T = (1, 0)T , t

)
P
(
(Y2, Ym)T = (0, 1)T , t

)
+ P

(
(Y1, Ym)T = (0, 1)T , t

)
P
(
(Y2, Ym)T = (1, 1)T , t

)
P
(

X = (2, 1)T , t
)
= P

(
(Y1, Ym)T = (1, 0)T , t

)
P
(
(Y2, Ym)T = (1, 1)T , t

)
+ P

(
(Y1, Ym)T = (1, 1)T , t

)
P
(
(Y2, Ym)T = (1, 1)T , t

)
Thus, for P

(
X = (0, 1)T , t

)
we get

P
(
X = (0, 1)T , t

)
(A3)
= P

(
(Y1, Ym)T = (0, 0)T , t

)
P
(
(Y2, Ym)T = (0, 1)T , t

)
+P
(
(Y1, Ym)T = (0, 1)T , t

)
P
(
(Y2, Ym)T = (0, 1)T , t

)
(17)
= etS

11 · etS
31 + etS

31 · etS
33

(19)
=
(

1
2 + e−2t

2 + 2c−
5+
√

5
− (5−

√
5)c+

5
√

5−15

)
·
(
(1−
√

5)c−
2
√

5
− 2

√
5c+

5
√

5−5
+ 1

2 + e−2t

2

)
= 1

4 + e−2t

2 + e−4t

4 + (1−
√

5)c−
4
√

5
+ e−2t(1−

√
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4
√

5
+ c−

5+
√

5
+ e−2tc−

5+
√

5
− 2e−2tc+

5−
√

5
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5−
√

5
− (5−

√
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10
√

5−30
− (5−

√
5)e−2tc+

10
√
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+

(1−
√

5)c2
−

5+5
√

5
− 2c+c−

5 +
(
√

5−1)c2
+

20+5
√

5
(A1)
= 1

4 + e−2t

2 + e−4t

4 +
(1−
√

5)c2
−

5+5
√

5
− 2c+c−

5 +
(
√

5−1)c2
+

20+5
√

5
(18)
= 1

4 + e−2t

2 + e−4t

4 + (1−
√

5)e−
√

5t−3t

5+5
√

5
− 2e−3t

5 + (
√

5−1)e
√

5t−3t

20+5
√

5
(A2)
= 1

4 + e−2t

2 −
2e−3t

5 + e−4t

4 −
2e−
√

5t−3t

5(3+
√

5)
+ 2e

√
5t−3t

5(
√

5−3)

(A4)

This expression is indeed equivalent to the fourth entry of Equation (15).
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