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Abstract: District heating is seen as an important concept to decarbonize heating systems and meet
climate mitigation goals. However, the decision related to where central heating is most viable is
dependent on many different aspects, like heating densities or current heating structures. An urban
energy simulation platform based on 3D building objects can improve the accuracy of energy demand
calculation on building level, but lacks a system perspective. Energy system models help to find
economically optimal solutions for entire energy systems, including the optimal amount of centrally
supplied heat, but do not usually provide information on building level. Coupling both methods
through a novel heating grid disaggregation algorithm, we propose a framework that does three
things simultaneously: optimize energy systems that can comprise all demand sectors as well
as sector coupling, assess the role of centralized heating in such optimized energy systems, and
determine the layouts of supplying district heating grids with a spatial resolution on the street level.
The algorithm is tested on two case studies; one, an urban city quarter, and the other, a rural town.
In the urban city quarter, district heating is economically feasible in all scenarios. Using heat pumps
in addition to CHPs increases the optimal amount of centrally supplied heat. In the rural quarter,
central heat pumps guarantee the feasibility of district heating, while standalone CHPs are more
expensive than decentral heating technologies.

Keywords: energy system optimization; district heating; energy system modelling; 3D building
model; urban energy simulation platform

1. Introduction

Space heating accounted for 26% of the total end energy demand in 2019, and for 68%
of the end energy demand in the residential sector in Germany [1]. With only 17% of energy
for space heating stemming from renewable sources, the heating sector contributed to 17%
of Germany’s energy-related greenhouse gas (GHG) emissions in 2018 [1,2]. To achieve
Germany’s goals of reducing 2030 GHG emissions by 65% compared to 1990, and to net-
zero by 2045, both the technologies and energy carriers employed for procuring space
heating need to undergo fundamental shifts. To facilitate this shift as efficiently as possible,
it is highly important to have a detailed understanding of the most economically viable
solution to provide space heating for a given configuration of buildings or city quarters [3].
District heating is seen as an important concept to decarbonize heating supply, as it can ease
the integration of renewables and make use of scale effects for different technologies [3,4].
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Different aspects have to be taken into account on both the building and district level to
assess where heating grids are the most viable option, such as the heating density in a
quarter, the current heating structure and possible extensions of existing heating stations.
Usually, the heating demand of buildings is needed to calculate the heating density as
an important parameter for the viability of heating grids [5]. Moreover, 3D building
models can help to assess heating demand of single buildings by using information such
as the size, form and orientation of buildings, the buildings’ usage types (e.g., residential
or commercial), their number of inhabitants, the buildings’ physical properties such as
U-values of surfaces, and their geographic location, and by extension, the local climate [6].

In contrast, energy system models are a widely used tool to assess future energy
systems with the inclusion of all-important sectors such as electricity, heating, cooling
and transport, and therefore also the amount of decentralized and centrally supplied heat.
However, when used on the quarter or city level with less spatial resolution, there is no
provision on the information of whether buildings will be supplied centrally or via a
decentralized supply. This means that currently, in terms of energy system simulation
and optimization, trade-offs have to be made: either by optimizing energy systems by
sacrificing building details [7] or by maintaining location and building information and
finding technological solutions, but this typically lacks an optimization algorithm [8,9].

This paper therefore presents a new framework that couples an energy system op-
timization tool, KomMod [10] (developed at Fraunhofer ISE, Freiburg, Germany) with
SimStadt [9] (developed and validated at HFT Stuttgart, Germany), a tool that allows re-
searchers to assess building heating demands based on 3D building models. Linking these
two models with a novel heat disaggregation algorithm, the resulting framework allows us
to study optimal solutions for providing heat to city quarters. En route, we determine the
optimal amount of centrally supplied heat and the layout of the supplying heating grid.
To that end, we independently iterate KomMod and the grid disaggregation algorithm
towards a common point that represents an optimal grid solution for the entire energy
system that the building model is based on. Hence, we self-consistently determine the role
of central heating in cost-optimal energy systems that can feature other demand sectors like
electricity and cooling—without imposing the heat supplied by the grid or the overall grid
costs. The coupling of an energy simulation and an optimization tool requires trade-offs
between spatial-temporal resolution on the one hand and calculation times on the other
hand, such that the optimization problem can be solved in reasonable time with standard
computing infrastructure.

The new framework is tested with a high-density urban quarter and a low-density
rural town. It will help local governments, planning authorities, city utilities or project
managers to perform an assessment of optimal heating supply options for a given city
quarter early on in the decision making and planning process.

State of the Art

A sweet spot of spatial and temporal resolution is crucial in energy system mod-
elling, as deviations from it can profoundly affect results [11]. The choice of the temporal
resolution constrains the spatial resolution, as a high resolution in both domains yields
high computation times and renders modelling impractical at some point [8,9]. Most
models therefore focus on only one of the two domains, but this can limit the model scope.
If, for example, one wants to understand the impact of intermittency and fluctuations in
energy systems on supply security and the demand for storage, high temporal resolution
is required [12]. Yet, especially in cases where a high degree of spatial resolution or time
spans of several years are to be assessed, high temporal resolutions would require immense
computing power [13]. In such cases, representative days or weeks of a year are often
chosen, and the modeller needs to ensure that the chosen interval represents all effects,
e.g., very high and low levels of renewable power generation as well as very high and
low heating demands, in order to generate meaningful results [14]. In contrast, models
that study interactions between geographical entities in high temporal resolution, such as
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market models that assess, amongst others, per-minute power flows between countries,
often consider these entities in low spatial detail [11,15]. In models that study smaller
geographic entities such as city quarters, buildings are often clustered in order to keep
the spatial dimension at a manageable scale. Different clustering methods have been
presented in prior research, like manually clustering based on building information or
spatial coherence [16,17]. Other approaches use aggregation methods like the k-means
algorithm to find optimal clusters of buildings [18].

However, the more buildings are aggregated, the more likely idiosyncrasies in, for
instance, electricity load profiles—stemming from the heterogeneity of the building stock—
are evened out. For example, for the aggregate of more than 50 households, the electrical
standard load profile can be considered a good representation of electricity demand [19].
Below that threshold, either measured data or synthetic load profiles with a high reso-
lution have to be used and further detailed information on the desired level of spatial
resolution is needed, which may be difficult to acquire [20,21]. More precisely, physical
properties (e.g., building geometry) and related demand data per sector relevant to the
model (e.g., heating, cooling, electricity) are required for each modelled entity.

The use of 3D building data models is one approach to increase the accuracy of
spatially resolved models, as they provide standardized and consistent input for building
geometries. Energetic modelling based on 3D building data thus closes a gap between
models that consider a city or an even larger geographic entity as a node and tools that
assess the energetic behaviour of single buildings in high detail, such as EnergyPlus [22,23].
Based on 3D City GML data, a range of studies are available which assess photovoltaic
rooftop potentials [24–27], the impact of urban microclimate on space heating and cooling
energy demands for office buildings [28], building energy demands including space heating,
hot water and electricity [29]. Other works introduce a web-based platform, CityBES, using
CityGML to represent and exchange 3D city models [30].

A high level of spatial resolution in energy system modelling is also required if heating
networks are to be considered as one option of providing heating (or cooling) for a given
city quarter: in such cases, a decision has to be made about which areas shall be connected
to the grid, based, for example, on economic and environmental criteria (for an assessment
of different criteria see, e.g., [31]). Various research has been performed to include district
heating layouts in energy system modelling in order to determine the optimal amount of
central heating in urban energy systems.

One option is to calculate an area’s heating density [5], but this method has the
disadvantage of non-built-up areas entering the calculation and skewing results. Assessing
a linear heating density, which is calculated by dividing the heating demand by the heating
grid length, might therefore be a better approach [5]. However, it requires detailed local
data, such as the heating grid length that has to be calculated for the whole study area.
In [5], the focus area is divided into building groups. For every building group, the optimal
layout of the heating grid, the heating demand and subsequently the linear heating density
is calculated. A validation of the results is conducted by applying the method to areas
with pre-existing heating grids. Results show deviations between 3% and 13% of the grid
length for a small grid in a quarter of single-family homes and for a larger grid with mixed
buildings stock, respectively.

In [32], the linear heating density is calculated for the whole study area. The area is
then divided into different zones, and the average of the linear heating density is taken as
the determining factor to model the percentage of each zone being supplied via district
heating grids and how much is supplied with decentral technologies, based on a minimum
cost target function. In [33], clustering is used to determine the area where central heating
is used. The starting point of the cluster is the building with the highest energy demand.
A circle is drawn around this building to define the cluster of buildings which are centrally
supplied with heat. Different scenarios are calculated by varying the radius of the circle and
the results are compared to define the economically optimal share of centrally supplied heat.
In [34], buildings are clustered by minimizing the total distance between buildings which
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belong to the same cluster. For each cluster, a heat network is subsequently designed by
finding the minimum grid length required to connect all cluster buildings, while following
the street grid. Clusters are thus either supplied entirely with central or decentral heating.
In [35], an energy system optimization is presented without clustering. Instead, every
building is represented in the model, as are the pipe length and corresponding costs to
connect buildings via a supplying heating grid. However, for the computational reasons
mentioned above, this model consists only of twelve buildings and one type day for
every month.

Previous work thus shows that in energy system modelling and optimization, out of
computational reasons, a trade-off between spatial and temporal resolution has to be found
depending on the research question. When looking at whole quarters or cities, clustering
buildings is an option to keep computation times at a manageable scale. However, this
often also means that the model results to supply heat centrally or decentrally will be only
given at the cluster scale, but not for single buildings or streets. Therefore, such techniques
can only give first hints where, for example, district heating grids would be economically
feasible. For decision makers in cities that have to decide when it comes to the expansion
of heating grids, a higher level of spatial granularity is needed.

This paper thus presents a model framework that features a high level of spatial
resolution (street segment level) with low acceptable computation times (less than 1 h) but
at the same time has a high temporal resolution to assess future sector-coupled energy
systems, while at the same time determining the optimal centrally supplied heating amount
and grid layout. Details and a discussion of computation time can be found in the Section 4.

2. Materials and Methods
2.1. The Two Case Studies

The proposed methodology is tested for two quarters, one in an urban and the other
in a rural setting. The densely populated urban quarter lies in the city center of Stuttgart,
Germany. The building stock is a mix of buildings from the 19th century and more recent
construction, with a high share of buildings from the period between 1950 and 1980.
The rural area is Rainau, a municipality of 3000 inhabitants about 80 km east of Stuttgart.
Table 1 provides further information about the building stock and the energy demand
situation in both case studies.

Table 1. Basic information about the two case studies.

Urban: Stuttgart-Stöckach Rural: Rainau

Buildings included in the model [−] 1858 1838

Area of the case study [m2] 2,064,000 29,840,000

Heating demand calculated with Simstadt for medium
refurbishment scenario [GWh/a] 106 40

Areal heating demand density [kWh/(m2 a)] 51.4 1.3

Number of street segments (part of street between two
intersections) [−] 439 498

2.2. The Modelling Framework

We introduce SimStadt (Section 2.2.1), KomMod (Section 2.2.2), and a heating grid
disaggregation algorithm (Section 2.2.3). Of these, SimStadt calculates building-specific
heating demands, KomMod cost-optimal energy systems, and the disaggregation algo-
rithm cost-optimal grid layouts. The challenge in the setup is to determine which part of a
city quarter should be supplied by centralized heating in a cost-optimal energy system that
provides both electricity and thermal energy. To overcome this challenge, in Section 2.2.4,
KomMod and the grid disaggregation algorithm are coupled through two common vari-
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ables to find both the near-optimal grid layout and annual grid heat supplied. The whole
tool chain is shown in Figure 1.

Figure 1. Flow Chart and data relations between SimStadt, KomMod and the heating grid distribution algorithm.

2.2.1. The Simstadt Model

SimStadt is an urban energy system simulation platform under constant development
at HFT Stuttgart [36], which currently allows one to assess local energy and water demands
(cooling and heating demand [9], electricity profile [37], water demand [38]) and renewable
energy potentials (rooftop photovoltaics [9] and bioenergy [39]) on a single-building level
or single-field level using 3D city models or digital landscape models in the CityGML
format [36]. SimStadt comprises a modular workflow management, with each workflow
serving a specific purpose, e.g., heating demand of buildings or photovoltaic potential,
while certain modules are shared between workflows.

A 3D building model in CityGML data format serves as basic input for SimStadt.
CityGML data files can depict existing environments, such as buildings, roads, and land-
scape. In this paper, the relevant CityGML object is building objects. Building models
are available in five levels of details (LoD), where LoD2 is required to perform a proper
energetic analysis, as it includes complete information on the building envelope [9]. Fur-
ther essential inputs such as building functions, e.g., residential, office, etc., and year of
construction [40], can be attached to CityGML files. In the presented cases, the build-
ing model for Stöckach is provided by the City Surveying Office, Stuttgart [41], while
Baden-Württemberg’s State Office for Geoinformation and Land Development provided
the building model for Rainau [42].

In this paper, the per-building heating and domestic hot water demand, and PV
potentials on roofs are the basic information. SimStadt calculates the heating demand of
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each building in a city quarter or larger area as a monthly energy balance according to the
German standard DIN 18599 [9]. The general concept of the monthly energy balance is to
identify the heat sinks and heat sources in a building zone. Heat sinks describe the heat
losses of a zone (e.g., transmission, ventilation, internal, and solar heat losses), whereas heat
sources are heat gains (e.g., trough transmission, solar radiation, ventilation, and internal
gains). The final heating demand of a building’s zone is then calculated by combining the
sum of heat sinks and sources with a degree of utilization.

A building physics library included in SimStadt classifies buildings according to their
type and year of construction. For each building type and construction period, information
on physical properties of an archetypical building’s wall, roof, and windows are included
therein. These properties can then be applied to the actual buildings of a given case
study [36]. Similarly, a usage library based on a range of German norms and standards,
and focusing on heating set point temperatures, occupancy schedules, ventilation rate
and usage-dependent internal gains is consigned. Since outdoor temperatures and solar
irradiation are decisive factors for heating demand [43], an integrated weather processor
retrieves weather data based on the location of the building model and creates synthetic
hourly values for temperature and precipitation from monthly means, if only monthly data
is available. If available for a location, climatic data are taken from Meteonorm [44].

The heating period in Germany typically lasts from October to April, while heating
demand (excluding domestic hot water demand) is zero over the summer period. To be
compatible with the hourly data resolution applied in KomMod, monthly heating demand
values are transferred into hourly values according to the German standard VDI 4710 [45].
More detailed information on heating demand simulation can be found in [46,47].

A building’s PV potential can also be assessed with SimStadt based on the same
CityGML file and weather data. In the first simulation steps, SimStadt uses the 3D CityGML
model to determine the inclination and azimuth for every roof area and calculates the
solar irradiance on those surfaces [9]. Different radiation models can be applied, with
some taking shading and reflection effects into account [48]. In this study, heating demand
and PV potential (considering shading effects) define the basic conditions for subsequent
simulation and are run up-front and detached from any subsequent optimization process.

2.2.2. The KomMod Model

KomMod is a linear energy system optimization model that can compute the combined
installation and cost-optimal operation of energy supply technologies for the sector’s elec-
tricity, heating, cooling and (synthetic) fuels [10]. The model—implemented in AMPL [49]
is available in a spatially disaggregated version as well as a version without any explicit
spatial disaggregation. As described in Section 1, spatial disaggregation comes with the
need for spatially disaggregated data and results in longer computation times, in one case
study, for example, the computation time increases from 5 min for the one node model
to 6 h for 58 nodes [10]. Consequently, the variant without spatial disaggregation is used
for all practical purposes, which allows KomMod’s simplex algorithm (implemented via
a gurobi solver [50]) to find the optimal system configuration (if present) in less than ten
minutes in most cases. All main energy conversion technologies for supplying electricity,
heating, cooling and (synthetic) fuels are implemented in the model: thermal power plants
and CHPs, wind power plants, photovoltaics, hydro power plants and fuels cells for elec-
tricity supply. For heating supply, we consider heat pumps, solar heaters and boilers, in
addition to CHPs and fuel cells. Cooling demand can be met with different kind of chillers.
Due to the high temporal resolution, the optimal amount of storage technologies is also
assessed with every run for electrical and thermal storages, as is the use of electrolyzers to
convert excess electricity to hydrogen and store it for later use.

As input data, technical specifications as well as cost parameters are needed for
all technologies. This way, each technology’s lifetime, efficiency, as well as capital and
maintenance costs are considered. All cost data are expressed as annuities for the respective
technology lifetime. In addition, the potentials for the deployment of different technologies
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have to be given as a boundary condition, such as rooftop potentials for PV and solar
heaters, as well as usable amounts of different fuel types. The energy output of wind
energy converters, photovoltaics and solar heaters and the efficiency of heat pumps is
calculated based on weather data (e.g., from [44]). Therefore, wind speed, solar irradiation
and temperature of the air and the ground have to be fed into the model in the same
time resolution as the demand profiles. Temporal demand profiles (given mostly in an
hourly resolution) for all relevant demand sectors need to be included. In all scenarios
considered here, these are electricity and heat. On top of this, cooling, fuel demands and
energy demand for transport can also be considered. Further boundary conditions can be
set, e.g., certain thresholds for carbon dioxide emissions, mandatory usage of renewable
energy technologies or upper limits for capacities for some technologies.

If Simstadt output is used as input data in KomMod, the building-specific energy
demand has to be aggregated to a single hourly-resolved time series when using KomMod’s
one-node mode. Solar energy rooftop potentials have to be aggregated to several angles
and tilt classes.

One of the key outputs of KomMod used in the proposed modelling framework is the
annual amount of heating energy supplied by the combination of all considered heating
technologies in a cost-optimal energy system. As KomMod is used as a one-node model,
the optimal share of centrally supplied heat cannot be a result of the model itself and makes
coupling with the proposed algorithm necessary.

2.2.3. The Heating Grid Disaggregation Algorithm

To extend the definition of a cost-optimal energy system to the heating grid, it is
desirable for the heating grid assigned to such energy system to have maximum heating
density. In the following, we therefore describe a disaggregation algorithm that gener-
ates heating grids based on a 3D building model and the buildings’ associated heating
demands. From the wide range of grids generated by the algorithm, a process introduced
in Section 2.2.4 chooses the one that is consistent with a cost-optimal energy system as
computed by KomMod. The applied consistency condition builds on heating grid costs
and the pricing model that assigns a specific cost x to each grid is introduced further below.
The basic building blocks of the disaggregation algorithm are street segments, which is
that part of a street that lies between two intersections. The 3D building model that is
processed in SimStadt to determine heating demand and solar potential also allows us to
assign every building in the study area to its nearest street segment. It is then assumed
that all buildings assigned to a specific street segment will be connected to the heating
grid if this street segment is part of the grid. In reality, grid layouts can differ from this
coarse-grained pattern, but such deviations cannot easily be included in an automated
algorithm as proposed in this paper.

To choose a heating grid’s first street segment, three approaches are plausible:

1. The street segment with the global highest heating density (taken in this paper).
2. A street segment adjacent to a potential site for a future heating station.
3. The street segment with the highest heating density among all segments adjacent to

an existing grid.

The goal is then to generate a sequence of cost-optimal heating grids (of increasing
length) by maximizing the respective heating density. To that end, a greedy grid disag-
gregation procedure is presented that sequentially adds neighboring building clusters of
highest heating density to the growing grid. It should be noted that the resulting connected
grid—while being composed of segments with locally highest heating density—is not
necessarily guaranteed to have itself highest heating density (see Section 4).

Two inputs are required by the disaggregation algorithm: a city street segment model
and a so-called look-ahead number. The street segment model includes information on
the segments’ heating demands and their lengths, as well as their neighboring segments.
The look-ahead number tells the algorithm how “far” to look when assessing the next
best segment for the grid’s extension, with look-ahead = 1 meaning that only neighboring
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segments are considered, while look-ahead = 2 also takes the neighbor’s neighbors into ac-
count, etc. After determining the starting point for a heating grid (see above), the algorithm
calculates the next best street segment to add to the grid. This is done by searching for the
segment or group of segments (look-ahead dependent) with the highest score, with the
score defined as the highest coefficient of the sum of all segments’ heating demand divided
by the sum of all their lengths. After the sequence of segments with the highest score is
determined, only the respective neighbor segment will be added to the grid, because our
algorithm is exploratory instead of fully committing. The algorithm continues until all
street segments are included. In case the heating grid cannot grow further, implying that
all neighbor segments are already part of the grid and there is no street segment connecting
the grid to other parts of the city, the first heating grid will be kept as is, and the algorithm
starts building a second grid in the same manner as described before.

The left part of Figure 2 illustrates look-ahead 1 and the right illustrates look-ahead 2.
Comparing the results shows that look-ahead 2 can better avoid unnecessary dead-end
street segments (the lower left part of look-ahead 1 figure) and tends to expand to the more
demand-dense area as a cluster (right part of the area). The reason behind this is that the
city model contains segments without heating demand, which will not be chosen until
there are no other available segments with a demand larger than 0 (case look-ahead 1).
Clearly, this strategy fails at some stages of grid expansion, but when using a lookahead
of 2, any of the street segments, even those without heating demand, and their neighbors
are combined and compared. This can improve foresight in the algorithm, so that new
segments are added strategically rather than tactically. However, given the nature of the
algorithm, we cannot increase the lookahead without having performance loss. Therefore,
the heating grid layout under variable look-ahead 2 is taken for further optimization in the
next step.

Figure 2. Illustration of the search algorithm for the next street segment in the grid distribution algorithm with Rainau as an
example. The darkness of the street segments indicates the sequence of grid expansion. The darker the color, the later the
street segments are included in the grid (lookahead 1 = left, lookahead 2 = right).

At each stage of grid expansion in the disaggregation algorithm, the supplied annual
heating demand QG

[
kWh

a

]
, total grid length L [m] and specific grid costs x [€/kWh] are

calculated. The specific grid cost, defined as the annuity costs divided by the annual heat
QG that is provided by the grid, is calculated according to Equation (1) [51]. Equation (1)
considers annual repayments of a heating grid’s investment cost, which depend mainly on
material and construction cost, without costs for operating the grid.

x =
A·
(

C1 + C2·
[
0.0468m· ln

(
QG
L ·m·kWh

278·a

)
+ 0.0007m

]
)(

QG
L

) (1)
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Here, A [1/a] is the annuity factor, C1

[
€
m

]
and C2

[
€

m2

]
are constants quantifying the

scaling of grid costs with length and diameter, the latter of which is defined by the location
of the grid, e.g., urban or rural. As the coupling of grid disaggregation and KomMod is
mediated through both QG and x, it needs to be ensured that specific heating grid costs
are in the same cost category as annuities used in KomMod. This has two implications:
first, the annuity factor in Equation (1) shall be the same one used in KomMod’s pricing of
energy system components, and second, the values of the cost constants in Equation (1)
(C1, C2) shall be adjusted for inflation (see also Section 3.1).

2.2.4. Computing the Optimal Grid

With both the supplied grid heat QG and grid length L growing with each step of the
grid disaggregation algorithm presented in Section 2.2.3, we want to identify a grid stage
that conforms to a cost-optimal energy system as computed by KomMod. This is achieved
through linking two variables used both in KomMod and the grid disaggregation algorithm:
the specific annual grid cost x and the annual grid heat QG. The former is an input and the
latter an output variable for KomMod, and vice versa for the grid disaggregation algorithm.

While the grid disaggregation algorithm yields multiple pairs (x, QG)—each of which
characterize a grid growth stage—similar pairs need to be generated by KomMod. To that
end, a heating grid cost surcharge x, masked as fuel costs per kWh, is imposed on all
thermal machines capable of central heating. In the subsequent KomMod optimization
run, all energy technologies—centralized and decentralized—compete with each other
under imposed boundary conditions to determine the most cost-efficient energy system.
By adding up the resulting annual heat provided by all technologies with grid surcharge,
KomMod yields the annual grid heat QG as a function of x.

With both grid disaggregation algorithm and KomMod independently generating two
sets of pairs (x, QG), both sets are compared to find a common pair. For this pair, the grid
disaggregation algorithm yields a self-consistent heating grid “solution” (in terms of grid
layout and annual grid heat supplied) that is part of a cost-optimal energy system. In the
case of multiple such grid solutions, the one with lowest grid cost surcharge x is chosen to
minimize the overall system cost (e.g., see also Section 3.2.2). Self-consistent solutions are
best found graphically through plotting and interpolating both sets of pairs in the x-QG
plane, and subsequently looking for grid solutions closest to the intersection. There, two
scenarios are possible:

1. The two curves have an intersection. In that case, the intersection point yields the
optimal amount of grid-supplied heat, as at this point, the specific grid costs from
KomMod and the cost determined via the grid distribution algorithm are approxi-
mately the same (KomMod case 1 in Figure 3).

Figure 3. Illustrative relation of specific grid costs to grid supplied heat for the two options of the
relative position of the algorithm curve and the KomMod curve.
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2. The two curves do not intersect, with the KomMod curve generally yielding smaller
values for the grid-supplied heat. In this case, KomMod suggests using district heating
only at costs that are lower than the costs associated with heating grid installations in
the studied area. Therefore, district heating is economically not feasible. (KomMod
case 2 in Figure 3).

It has to be noted that if the heating grid runs through a street segment, all of the
segment’s buildings are connected to the grid. Therefore, it is known which buildings
in one quarter are supplied with heat via a grid and which buildings have decentralized
heating systems. The technologies with a grid surcharge in KomMod are then assigned
to the grid, and decentralized technologies without grid surcharge shall be assigned to
those buildings located in street segments without grid connection. To that end, the annual
heat supplies of different centralized and decentralized heating systems—as given by
KomMod—can be used. For assigning decentralized technologies, criteria such as building
types and years of construction are taken into account.

3. Results
3.1. Linear Heating Density and Grid Costs

Figure 4 shows the specific heating demand for every building and the linear heating
density for every street segment based on analysis within SimStadt for the case study area
in Stuttgart-Stöckach.

Figure 4. Specific heating demand for every building in Stuttgart-Stöckach and linear heating density for every street segment.

Figure 5 shows the specific grid costs and grid-supplied heat for the case study
Stuttgart-Stöckach for different parameters in Equation (1): The blue line gives the default
case for an inner-city area, with an annuity factor calculated with 50 years lifetime and an
interest rate of 7%. The orange line applies 23% lower construction cost (via parameters C1
and C2 in Equation (1)) than is typically associated with suburban quarters, but might also
be achieved if grid building is more coordinated with water or electricity grid maintenance
or refurbishments. In contrast, the grey line shows a configuration with 11% higher specific
grid costs based on an asset lifetime that is reduced to 30 years. This sensitivity assumes,
for example, that heating grids become stranded assets by 2050, as carbon-neutral heating
by other means become much more efficient, even in inner-city districts. Taking these
results into account, the calculated specific grid costs are assessed as sufficiently robust for
our aim.
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Figure 5. Specific grid costs over grid-supplied heat with different parameters for Equation (1).

3.2. Optimal Grid Layout

Table 2 shows the scenario specifications for the two case study areas. Parameters and
specifications as similar as possible are chosen to allow for a better comparison of results.

Table 2. Scenario specifications for Stuttgart-Stöckach and Rainau in 2030.

Stöckach Rainau

Possible
technologies

Electricity converters

Photovoltaic

Gas-fired CHP

Import

Wind power plants

Decentral thermal
converters

Gas and oil boilers Gas, wood and oil boilers

Air-sourced heat pumps Air and ground-sourced
heat pumps

Solar heaters

Central thermal converters
Gas-fired CHP

Ground-sourced heat pumps

Cost data

Import electricity price [EUR/kWh] 0.15
Technology installation and

maintenance costs According to [52]

Natural gas price [EUR/kWh] Varied between 0.03 and 0.11

Price for oil and wood 0.02 EUR/kWh higher than natural gas price (based on historic
price differences between gas, oil and wood)

3.2.1. Case Study Stuttgart-Stöckach: Fuel Cost Variation

Figure 6 shows specific grid costs vs. grid-supplied heat for Stuttgart-Stöckach un-
der varying natural gas prices in KomMod, default values for the cost calculation with
Equation (1) and lookahead = 2 for the grid distribution algorithm. A gas-fired (central-
ized) CHP provides heat to the grid. The applied gas price ranges from 0.03 EUR/kWh to
0.11 EUR/kWh, as indicated in Figure 6. As discussed earlier, the respective optimal grid
size is indicated by the intersection between the KomMod graphs and the grid distribution
curve: as expected, the amount of grid-supplied heat decreases with increasing gas price,
as alternative heating options such as heat pumps become relatively more cost-competitive,
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as the electricity price is kept constant in all four scenarios. Table 3 gives an overview of
the share of centrally supplied heat in all scenarios.

Figure 6. Results for Stuttgart-Stöckach of specific grid costs over grid-supplied heat with CHPs as central heating supplier.

Table 3. Share of centrally supplied heat in the different scenarios in Stöckach and Rainau.

Fuel Price in
EUR/kWh

S-Stöckach
CHP

S-Stöckach CHP +
Heat Pump

Rainau
CHP

Rainau CHP +
Heat Pump

0.03 51.1% 95.0% 4.5% 8.4%
0.05 49.4% 86.2% 20.3%
0.08 26.5% 91.2% 41.8%
0.11 6.9% 87.6% 47.3%

A visualization of the four optimal heating grid configurations is given in Figure 7.
With a fuel price of EUR 0.11/kWh, only the first grid element is supplied centrally (orange)
with heat. With a fuel price of EUR 0.08/kWh, 23 more grid segments with a total length of
6.2 km are connected to the grid (grey), leading to 26.5% of the total heating demand being
supplied centrally. When lowering the fuel price to EUR 0.05/kWh, the share of centrally
supplied heat nearly doubles to 49.5% and 75 more street segments are connected (yellow).

As linear heating density is lower in that part of the quarter, the total yellow grid
length is 15.6 km, which is more than twice as high as the grey and orange part together.
With EUR 0.03/kWh as gas price, four more grid segments are added and the heating
supply reaches a share of 51.1%.

In a second configuration, a central, ground-sourced heat pump is implemented in the
model as a second heating supply technology, in addition to gas CHP. As Stuttgart-Stöckach
is densely populated, ground-sourced water/water heat pumps cannot be installed in
the majority of buildings, and more inefficient air-sourced heat pumps would have to
be used in a decentral setup, whereas a centrally installed larger heat pump might be
ground-sourced and therefore have better efficiency. Given the large size of the central heat
pump, the effective electricity price charged to the heat supplier is lower than the electricity
price that decentral, air sourced, heat pumps in individual buildings would be charged,
lowering the centralized heat pump’s levelized costs of heat (LCOH). As a result, at least
88% of the area’s heating demand is covered centrally in the optimal configuration with
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CHPs and heat pumps have nearly equal shares of supplied heat for EUR 0.03/kWh gas
price and rising shares for heat pumps with higher gas prices.

Figure 7. Visualization of the different heating grid configurations for Stuttgart-Stöckach (orange:
EUR 0.11/kWh gas price, +grey: EUR 0.08/kWh, +yellow: EUR 0.05/kWh, +blue: EUR 0.03/kWh).

3.2.2. Case Study Rainau: Fuel Cost Variation

For Rainau, the same scenarios are calculated as for Stuttgart-Stöckach. In a CHP-only
configuration, a heating grid is economically feasible only if the natural gas price is at EUR
0.03/kWh. In this case, only 4.5% of total heating demand is grid-supplied under given
boundary conditions (see Table 3). Given its rural nature, heating densities are lower, and
by this, specific grid costs are higher in Rainau than in Stuttgart Stöckach: for example,
to supply 25% of the area’s total heating demand, specific grid costs in Stuttgart-Stöckach
are EUR 0.012/kWh, but EUR 0.047/kWh in Rainau, i.e., almost four times higher.

The Rainau result nicely illustrates that grid disaggregation curves (here the blue-
dotted line in Figure 8) contain the chronology of the whole grid disaggregation. This is
because there, moving one data point to the right corresponds to another street segment
added in the grid disaggregation algorithm. Hence, a steep rise in the curve indicates the
grid running out of heat demand in a neighborhood, and a decrease in the curve points
to the grid invading a cluster of street segments with relatively high heating densities.
This way, the course of the grid disaggregation can be qualitatively read off that blue-
dotted curve.

In contrast to Stuttgart-Stöckach, most buildings in Rainau can, in principle, install
ground-sourced heat pumps, as most buildings are single- or two-family houses with
gardens. Therefore, and as the results with a CHP-only configuration already indicated,
decentral options are more feasible. For the centralized case, it is assumed that the central
heat pump benefits from economics and efficiencies of scale, as for example, individual
buildings can only install more shallow ground-sourced heat pumps that are less efficient.
With the increase of fuel prices, centralized CHPs and local boilers using gas, wood or
oil are both less competitive and the centralized ground-sourced heat pump becomes
relatively more attractive. Figure 8 shows the results for the combination of gas-fired CHP
and ground-sourced heat pumps.
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Figure 8. Results for Rainau for specific grid costs over grid supplied heat with CHPs and heat
pumps as central heating supplier.

As can be seen, the KomMod curves show a higher elasticity with respect to specific
grid cost, which can be attributed to overall higher grid costs because of lower linear heating
densities and better decentral heating supply options, namely shallow ground sourced heat
pumps, which are economically more favorable when specific grid costs increase. Note also
that the KomMod configuration with a gas prize of EUR 0.08/kWh yields three candidates
for the energy system’s self-consistent solution to centralized heating. Of these candidates,
the one with the lowest specific grid cost was chosen in accordance with Section 2.2.4.

With lower linear heating densities in Rainau than in Stuttgart-Stöckach, the share
of centrally supplied heat is lower, ranging from 8.4% to 47.3%. The shares of centrally
supplied heat increase with higher fuel prices, as heat pumps are more favorable than
boilers in that case.

3.2.3. Case Study Stöckach: Grid Connection

In Germany, there is no obligation to connect to a heating grid in already built-up
areas where buildings usually already have a (decentral) heating system installed.

Thus, the share of grid-connected buildings will not achieve 100% in the studied areas.
For Stuttgart-Stöckach, a sensitivity analysis was performed, with 80%, 50% and 30% of
the heating demand being supplied by the heating grid in the different street segments,
at a natural gas price of EUR 0.08/kWh. As Figure 9 shows, the two curves still intersect
in all cases, i.e., the heating grid remains economically feasible for (varying) parts of the
area. In these cases, the share of centrally supplied heat is decreasing from 26.5% at 100%
connectivity rate (see also Table 3) to 25.8%, 20.6%, and 16.1% for connectivity rates of 80%,
50%, and 30%, respectively.

3.3. Summary of the Results

The proposed algorithm has been tested on two case studies to check the robustness
and practical applicability for two quite different quarters; one being a densely populated
urban city quarter, a typical area for district heating, and the other one being a rural
town, an area where normally no district heating would be applied. One of the core
parts of the algorithm is the cost calculation for specific grid costs based on Equation (1).
Therefore, the robustness of the resulting grid costs based on the input parameters was
tested for Stuttgart-Stöckach. Changing the annuity factor substantially by decreasing
technology lifetime from 50 to 30 years, as well as taking the constants for outer city area
in Equation (1), led to a cost change of 11% higher grid costs for the former and 23%
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lower grid costs for the latter. As the purpose of the modelling framework is to provide
information about possible grid infrastructure in a first planning step, a cost variation of
10–20% is seen as sufficiently robust for our aim. A much higher influence can be seen
for the gas price. For Stuttgart-Stöckach, in the scenarios where a gas fired CHP is the
only central technology, the amount of centrally supplied heat varies between 7% and
51% depending on the price. Fuel prices are always hard to predict [53] and this leads
to uncertainties in the planning process. However, this uncertainty is independent from
the planning tool used and one challenge district heating providers are dealing with [54].
A heat pump is therefore installed as a second central supply technology and the share of
centrally supplied heat rises to 88–95% showing that the amount of centrally supplied heat
is nearly independent from the gas price in that case. When locally installed renewables
mainly supply electricity in the future, the electricity price is not dependent on world
market prices for fuels, but only on technology costs and local policies, which makes the
heat pump a more robust technology choice.

Figure 9. Sensitivity analysis for the share of heating demand that is supplied via the heating grid in
Stuttgart-Stöckach (hd = heating demand).

The results for the second case study, the rural town of Rainau, shows that district
heating can even be favorable in less densely populated areas. By solely giving the option
of a centrally installed CHP only with a gas fuel price of EUR 0.03/kWh, district heating
is economically feasible, and only for 4.5% of the total heating demand. However, heat
pumps increase the economic feasibility of a heating grid like in Stuttgart Stöckach, in this
case, especially when the fuel price is increasing and the levelized costs of heat of decentral
boilers is rising. Central heat pumps make use of scale effects in efficiency and use electricity
at a lower price. Even with imposed grid costs, they are the better solution than decentral
heat pumps and boilers from an economic point of view in the shown scenarios.

4. Conclusions

Here, we present a method to determine the role of central heating in a cost-optimal
energy system that can feature multiple (coupled) demand sectors. This is achieved without
imposing the length or the overall cost of the respective heating grid. Instead, the coarse-
grained grid layout and its annually supplied heat are computed self-consistently through
coupling two established tools: a building energy demand simulation model of high spatial
resolution and an energy system optimization tool of high temporal resolution. This
coupling is provided by a novel heating grid disaggregation algorithm. This makes the
presented concept a suitable tool for the planning of district heating grid expansions in
city quarters. The major benefit of this approach is that not only is the district heating grid
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layout planned, but also all sectors are optimized. This is achieved by using an energy
system model that has integrated all demand sectors (such as heating and electricity in the
presented cases, while in addition, transport and cooling are also possible) and points out
technologies to satisfy the respective energy demand for the least possible costs.

One advantage of the proposed framework is that it optimizes (i) overall energy
systems; (ii) the respective share of supplied centralized heat; (iii) the layout of the sup-
plying heating grid without minimizing an overarching cost function. Instead, two fast
optimization algorithms—one exact for linear point-like energy systems, the other heuristic
for heating grid layouts—independently generate two solution curves whose intersection
yields features (i)–(iii). The shown methodology is hereby not limited to small building
models, but also feasible for a larger area, e.g., the whole city, with a reasonable computa-
tion time.

The computational effort involved in the proposed framework stretches to three
components —heating demand simulation, energy system optimization, and the heating
grid disaggregation algorithm. The computation time of the heating demand simulation by
SimStadt is less than 90 s including 3D buildings processing for 1900 buildings in the case
study Stöckach. The heating demand simulation is run on a PC with standard performance
(Duo-core 2.49 GHz CPU and 8 GB RAM). When increasing the number of buildings,
the increase of computation time follows the trend of O(n(log(n)), where n is the number
of buildings. The computation time of energy system optimization by KomMod does
not change when increasing the numbers of buildings, as KomMod is a one-node energy
system optimization tool. In order to find the intersection as shown in Figure 3, several
scenarios should be run in KomMod with different specific grid costs. For the case study
Stöckach, 50 scenarios are run on a server, with one scenario taking 1:10 min (10 kernels
on a server with Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00 GHz processor and 128 GB ram).
If the newly added buildings are located in the existing street segments, the computation
time of heating grid disaggregation algorithm does not increase, since heating demand is
aggregated at street segment level. If new street segments are created, the computation
time will increase following the trend of O(n(log(n)), as new street segment might have
one or more neighbours. In general, for the case study Stöckach, the process takes time at
the order of magnitude of seconds.

Other existing modelling approaches cannot handle such a high number of individual
entities as we could model in our approach (around 500 street segments) and an aggregation
is necessary (e.g., [32]). Even with only a few dozen buildings that are modelled as
individual entities, the run time of a spatially disaggregated energy system model can
easily be a few days to weeks with previous approaches.

The shown methodology should of course be developed further, as there are still some
drawbacks. First, no temporal resolution in the grid layout methodology is included, and
therefore there is no way to check if the operation of the CHPs during the year corresponds
to the heating demand of the connected buildings. However, the full load hours are checked
manually. Second, with the current methodology, no sizing of peak load boilers is possible,
as a distinction between a decentralized boiler and a central boiler cannot be made. Third,
the used grid cost formula could be amended to account for more than just investment
costs. Fourth, the grid layout algorithm used here is not guaranteed to yield cost-optimal
grids. Instead, it is a search heuristic that—for benign building models—generates heating
grids with high heating densities. To strive for connected heating grids with highest heating
densities, alternative algorithms such as simulated annealing could be employed.
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