
1.  Introduction
Scientists and engineers have been trying to model physical phenomena occurring in nature for centuries, one of 
which is the transport of a quantity in space and time through natural media. A few examples include: subsur-
face fluid flow modeling (e.g., Ghosh et al., 2020; T. Koch et al., 2021), climate modeling (e.g., IPCC, 2013; 
Marchuk, 1974), and diffusion-reaction modeling (e.g., Turing, 1952; Wei & Winter, 2017). Of course, contami-
nant transport and attenuation in water resources research also falls into this problem class. Problems of this type 
are usually described mathematically using partial differential equations (PDEs) because of their space and time 
dependencies.

However, despite promising development in computing power and availability of data, the behavior of several 
of these physical systems is still poorly understood (Winsberg,  2003). As such, simplifying assumptions are 
required to model parts of the processes that are either still unknown, too complicated, or act on scales much 
smaller  than those of interest. A concrete example is the simplification of diffusion-sorption problems to be 
modeled with sorption isotherms (Al-Ghouti & Da'ana, 2020; Limousin et  al.,  2007). The available sorption 
isotherms are valid only under certain geochemical conditions. In particular, they are not applicable to more 
complicated diffusion-sorption problems that may, for example, involve reactive transport. Other examples 
include the choice of relative permeability and saturation relationships in multiphase flow in porous media (K. 
Li & Horne, 2006; Moghadasi et al., 2015), and the reaction formulations in diffusion-reaction systems (Allen & 
Cahn, 1979; Klaasen & Troy, 1984).

To address this issue, we propose the finite volume neural network (FINN) as a novel physics-aware machine 
learning (ML) modeling framework. FINN combines the well-established numerical discretization strategy of the 
finite volume method (FVM) and the flexibility and learning ability of artificial neural networks (ANNs). Most 
importantly, this combination allows to explicitly and accurately learn parts of the unknown or poorly understood 
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processes mentioned above, while maintaining numerical stability, producing highly accurate predictions, and 
providing scientifically interpretable functions of interest. For the sake of demonstration, we focus here on diffu-
sion and sorption of groundwater contaminant in fully saturated clay. This process is relevant, for example, in 
clay liners of landfills (Hendry et al., 2003; Timms et al., 2018) or in long-term tailing of groundwater pollution 
(Huang & Goltz, 2015; Johnson et al., 2003).

One particularly harmful contaminant is trichloroethylene (TCE), which is categorized as a carcinogen (National 
Toxicology Program, US Department of Health and Human Services, 2021); yet it is still commonly used in 
industry (World Health Organization, Regional Office for World Health Organization Regional Office for 
Europe, 2000). TCE is a dense non-aqueous phase liquid (Pankow & Cherry, 1996), meaning that it is denser 
than water and has a very low solubility in water. As a consequence, when TCE infiltrates into the subsurface, it 
migrates downwards until it reaches an impermeable barrier, where it forms a pool, resulting in difficult remedi-
ation (e.g., G. H. Brown et al., 2012; J. Koch & Nowak, 2015). One of the most common impermeable barriers 
in the subsurface is a layer of clay. However, even though a layer of clay is impermeable, TCE can still diffuse 
into it and over time can contaminate the groundwater in the vicinity (e.g., Nowak & Guthke, 2016; Pankow & 
Cherry, 1996). It is accordingly necessary to build a model of such processes in order to predict the longevity of 
contamination, select remediation strategies, and assess environmental and health risks.

The process of TCE adsorption on clay surfaces is influenced by a complex mechanism (Allen-King et al., 1996; 
Pankow & Cherry, 1996). Consequently, simplifying assumptions have to be made that introduce conceptual 
uncertainties in the modeling process, such as the choice of particular isotherms (Limousin et al., 2007), the 
unknown parameters of those sorption isotherms (e.g., Nowak & Guthke, 2016), uncertain clay/soil parameters, 
effective diffusion coefficients of dissolved chemicals in water (Hayduk & Laudie, 1974; Wilke & Chang, 1955), 
as well as uncertain initial and boundary conditions that the model requires to be satisfied. As a consequence 
of these uncertainties, we are faced with a model choice problem (Höge et al., 2019). Furthermore, all available 
models are inherently generated with simplifying assumptions to different extents, enhancing the model choice 
problem even more. Thus, a more flexible way of modeling is needed, such that the unknown true process is 
covered by the chosen modelling strategy. Accordingly, we propose a data-driven modeling approach, which 
induces physics-aware inductive biases to effectively learn the unknown actual process properties.

In order to approach the question of conceptual model learning, it is worth looking at the rapidly evolving 
field of ML, which has revolutionized various domains, including image and language processing (Krizhevsky 
et al., 2012; T. B. Brown et al., 2020). Recently, ML is also being applied to approximate physical processes, 
such as rigid body interactions, liquid propagation, or weather and sea-surface temperature prediction (Battaglia 
et  al.,  2016; De Bézenac et  al.,  2019; Espeholt et  al.,  2021; Lienen & Günnemann, 2022; Rasp et  al.,  2020; 
Sanchez-Gonzalez et al., 2020). The benefit and charm of applying ML models lies in their ability to learn an 
input-to-output mapping function without any knowledge of the underlying process that describes the data (i.e., 
the “true model”). Furthermore, ML models also have the potential to learn complicated functional relationships 
that are not addressed in the physical models due to limited computational power or lack of understanding of the 
modeled systems. In the following, we summarize the related works, separating them in non-physics-motivated 
(pure ML), physics-motivated, and physics-aware ML models.

An exemplary pure ML method for processing spatiotemporal data is the temporal convolution network (TCN) 
proposed by Lea et al. (2016), which performs convolution operations along space and time dimensions. TCNs 
have been proven successful in various classification tasks (Bai et al., 2018; Kalchbrenner et al., 2016). On the 
other hand, their applicability as autoregressive models in generative forecasting tasks is limited (Almqvist, 2019; 
Karlbauer et al., 2020). In contrast, ConvLSTM (Shi et al., 2015) is a spatiotemporal recurrent neural network 
that processes temporal data points sequentially. It is therefore slower than TCN's parallel convolution opera-
tions. It can, however, aggregate and conserve any past information in a latent state, implementing a flexible, 
latent memory structure. In contrast, the temporal horizon of TCNs is limited to the receptive field, that is, the 
number of time steps fed into the TCN filters. Moreover, because ConvLSTMs are by training optimized towards 
maintaining stable predictions within a recurrent loop, they typically exhibit superior performance on related, for 
example, autoregressive tasks (Almqvist, 2019; Karlbauer et al., 2020). However, the freedom of pure ML models 
has several limitations when learning an unconstrained function that should reflect a physical process. First, they 
typically depend on large amounts of data in order to learn a useful mapping. Second, they can be expected to 
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behave adequately only within the range of the data they have been trained on. And third, they can produce phys-
ically implausible predictions.

These limitations can be addressed by incorporating structural physical knowledge to formulate physics-motivated 
ML models, using the form of (relational) inductive biases (Battaglia et  al.,  2018). DISTANA (Karlbauer 
et  al.,  2019), for example, shares similarities with ConvLSTM, albeit with advanced and physically moti-
vated lateral information flow between neighboring control volumes. An alternative approach is to learn (Z. 
Li et al., 2020a, 2020b) operators using neural networks, both in the input and output space (DeepONet, L. Lu 
et al., 2021), as well as in the frequency domain (Fourier neural operator model, FNO, Z. Li et al., 2020a). By 
design, these methods are implemented to specifically learn PDEs from data, but are not guided or constrained by 
physical principles that would be already known.

Recently, much effort was directed to finding reasonable ways of connecting the learning abilities of ANNs 
not only with structural, but also with functional knowledge, resulting in physics-aware ML methods. The 
physics-informed neural network (PINN), for example, explicitly learns to solve a given equation, such as Burg-
ers' or Navier-Stokes, in order to accelerate simulation (Jin et al., 2021; Raissi et al., 2019). PINN has also been 
applied to solve subsurface fluid flow problems (Tartakovsky et al., 2020) and to perform data assimilation for 
parameter estimation, accounting for multiple physical processes (Q. He et  al.,  2020). The physics-informed 
prior from PINN has also recently been embedded in FNO models, resulting in a Physics-Informed Neural 
Operator (PINO) model (Z. Li et al., 2021). Other methods do not depend on receiving the underlying equa-
tion, but approximate it implicitly through data. These weaker physics constraints are either implemented by 
means of convolution-like operators representing derivatives up to a particular degree, for example, PDE-Net 
(Long et al., 2018), PhyDNet (consisting of a data-driven ConvLSTM and a physics-constrained path) proposed 
by Guen and Thome (2020), or SIREN (Sitzmann et al., 2020); or by directly learning the transition function 

𝐴𝐴 𝐴𝐴 ∶ ℝ
𝑑𝑑
↦ℝ

𝑑𝑑 (e.g., in form of a vector field) that maps the d-dimensional observation in frame t to the succeeding 
frame t + 1 (De Bézenac et al., 2019; Tran & Ward, 2017). More recently, graph-based approaches are formulated 
by Seo et al. (2019) and Salehi and Giannacopoulos (2021) to explicitly consider differences between neighbor-
ing control volumes on spatially irregularly distributed data.

Nevertheless, a common downside of all these approaches is the missing facility to include explicit physical 
knowledge—such as the structure of a particular PDE—into the learning process. In contrast, and similar to 
our work, Bar-Sinai et al.  (2019); Kochkov et al.  (2021); and Zhuang et al.  (2021) propose learning selected 
parts of ordinary differential equations (ODEs), but focus more on accelerating supersampling procedures and 
less on predictive, explorative, and explainability tasks. APHYNITY (Yin et al., 2020) represents an alternative 
approach, where traditional physical models are augmented by ML methods, effectively learning to minimize 
the residual between an explicitly stated physical model and the observation. A survey of methods that combine 
physics with ML has been proposed by Karniadakis et al. (2021) and an extensive collection is maintained by 
Thuerey et al. (2021).

Despite these exciting developments in the areas of physics-motivated and physics-aware ML modeling, impor-
tant issues remain to be addressed. That is, building PINN models requires the complete knowledge of the 
modeled systems, including the aforementioned closure/constitutive relationships, which are usually the main 
source of uncertainty in the modeling process. As a consequence, PINN can be trained on incorrect equations, if 
spurious assumptions are chosen. Additionally, most, if not all, of the spatiotemporal ML models adopt convolu-
tional operations to process the spatial correlation between data points. Convolutional operations, however, can 
only pad constant values on the domain boundaries. Therefore, such ML models have no means to implement 
sufficient, non-constant boundary conditions. For example, they are not able to properly incorporate boundary 
conditions that depend on derivatives such as the Neumann or Cauchy boundary conditions. Furthermore, the 
existing ML models struggle when confronted with different initial or boundary conditions. In such a case, typi-
cally retraining is necessary, which requires large amounts of observation data that is often expensive and difficult 
to obtain. In short, the existing physics-motivated and physics-aware ML models are either too restricted by the 
physical knowledge or too lenient so that they learn relationships that do not exist (i.e., they overfit).

Another crucial drawback of most ML models is the lack of practical uncertainty quantification (UQ) applica-
tions, despite the availability of numerous theoretical foundations (Jospin et al., 2022). This is mainly caused 
by computational challenges of existing UQ algorithms for large ML models. When dealing with real-world 
applications, however, UQ is critical. For example, when performing a risk assessment about a poorly understood 
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system based on uncertain models trained on uncertain (noisy) and sparse data (Nowak & Guthke, 2016; Wöhling 
et al., 2015; Xu et al., 2020). Moreover, fundamental scientific work depends on hypothesis-testable models, 
which is strongly supported by models with quantifiable uncertainty. Consequently, it is important to design a 
model with few parameters and an interpretable structure to enable feasible implementations of available UQ 
algorithms.

The goal of this work, therefore, is to provide a framework that merges physics-aware ML models with 
well-selected structures known from numerical solutions. This can facilitate scientists to produce better models 
that balance well between the flexibility of learning data-driven models and the existing scientific knowledge. 
We emphasize that this work is not intended to develop a faster and more efficient surrogate model in place of 
any existing physical model, but to learn unknown constituents of the PDE used to model the (not yet fully under-
stood) physical processes. The named TCE problem is a representative problem from a broader class where the 
model structure is only partially known.

In a wider sense, we are interested in environmental problems where fundamental parts of the governing equa-
tions (or principles used in their derivation) are accepted as “known truth,” but where other parts are uncertain or 
even unknown, and often treated with assumptions, closures, or other approximations. In our TCE example, it is a 
sorption isotherm that is most uncertain. Other instances of the same problem class are (a) water retention curves 
in the Richards equation; (b) capillary pressure and saturation relations, relative permeability and saturation 
relations, or expressions for hysteresis and dynamic effects in multiphase flow in porous media; or (c) turbulence 
closures in rivers, pipe flow, or atmospheric flow. When these uncertain or unknown relationships are success-
fully learned from data, exceptional generalization ability and highly accurate predictions can be expected.

The proposed FINN framework is capable to jointly learn unknown constitutive/closure relationships, PDE terms, 
and parameters from data. The benefits of our hybrid model are an excellent generalization ability beyond sparse 
training data, a proper treatment of different boundary conditions other than a constant Dirichlet condition, and an 
explainable model. Furthermore, with the adoption of the FVM structure and physical constraints, FINN utilizes 
as much existing modeling knowledge as possible. Additionally, we enable FINN to provide an uncertainty esti-
mate over its learned constituents when predicting a real-world soil contamination problem, and affirm FINN's 
advantages over a calibrated, conventional PDE-based model.

2.  Methodological Background
In this section, we derive the methodological framework of this paper on the basis of an experimental reference 
setup and the involved equation form which will be learned by FINN. Then, we provide some background on the 
FVM discretization method to solve PDEs and on neural ODE (NODE) as a differentiable numerical integrator 
as it serves the conceptual basis for FINN. Finally, we summarize a selection of UQ methods that can be imple-
mented in FINN.

2.1.  Experimental Setup and Governing Equations

The diffusion process in general is governed by a PDE of second-order in space and first-order in time:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= ∇ ⋅ (𝐷𝐷(𝑐𝑐)∇𝑐𝑐) + 𝑞𝑞(𝑐𝑐),� (1)

where c is the variable of interest, namely, the contaminant concentration in this study, t is time, D is a diffusion 
coefficient that can be a dependent variable on c, and q is the source/sink term, for example, if there is a reaction 
or there is an addition/extraction of the contaminant to/from the domain of interest. The diffusion through clay, 
however, might be hampered by the presence of organic matter inside the clay that sorbs the TCE, therefore slow-
ing down the diffusion process (Parker et al., 2004). Therefore, the sorption process has to be taken into account 
in the governing PDE as well, by including an additional variable in form of the retardation factor. The retardation 
factor is a variable that is possibly dependent on the contaminant concentration (among other features such as 
pH, ionic strength, water chemistry), and it defines the degree to which the diffusion process is hindered by the 
sorption process. The resulting diffusion-sorption equation can be solved with various numerical discretization 
methods, one of the most popular being FVM due to its conservation property (Moukalled et al., 2016).
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This diffusion-sorption process of TCE as contaminant in water-saturated clay was studied in a laboratory exper-
iment (Nowak & Guthke, 2016), and its setup is adopted in the numerical experiments performed in this work. 
A clay sample with a radius of 2.54 cm (1 inch) is placed inside a stainless steel tube of length L. On the upper 
end of the sample, pure-phase TCE is injected through an inlet valve. There, it forms a pool, from which it can 
migrate into the clay and thus installs a constant concentration condition at the upper end of the clay cylinder. 
The bottom end of the sample is flushed with clean water below the clay cylinder at a constant flow rate, in order 
to enable measurement of the dissolved TCE concentration (as it diffused downward through the clay) at various 
time intervals. At the end of the experiment, the clay sample is cut into horizontal slices to allow measurement 
of the total TCE concentration (i.e., TCE dissolved in the water and sorbed in the clay) within the cylinder. In 
short, there are two main variables of interest in the experiment, namely the dissolved concentration and the total 
concentration of the contaminant. More details of the experiment can be found in Parker et al. (2004) and Nowak 
and Guthke (2016).

Assuming that the clay sample is homogeneous, the governing diffusion-sorption equation can be simplified 
into a one-dimensional system. Mathematically, the governing PDE used to calculate the dissolved concentration 
could be written as (Nowak & Guthke, 2016)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

𝐷𝐷

𝑅𝑅(𝑐𝑐)

𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2
,� (2)

where c is the dissolved TCE concentration, t is time, x is distance along the axis of the cylinder, D is the effective 
diffusion coefficient, and R is the retardation factor, which is a function of c. As a consequence, the diffusivity 
(i.e., D/R) is also dependent on c.

Because the upper end of the sample is in equilibrium with the TCE in pure-phase, a Dirichlet boundary condition 
is applied:

𝑐𝑐|𝑥𝑥=0 = 𝑐𝑐sol ∀𝑡𝑡 ∶ 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 𝑇� (3)

where csol is the solubility limit of the TCE in water, and T is the experiment time. On the bottom end of the sample, 
the TCE concentration is not constant, and therefore, a Cauchy condition is required to model the flow-dependent 
boundary condition as a result of the flushing with water:

𝑐𝑐|𝑥𝑥=𝐿𝐿 =
𝐷𝐷

𝑄𝑄

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∀𝑡𝑡 ∶ 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 𝑇� (4)

where Q is the water flow rate at the bottom of the clay sample. The clay sample is initially clean of any contam-
ination, resulting in an initial condition of:

𝑐𝑐|𝑡𝑡=0 = 0 ∀𝑥𝑥 ∶ 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿𝐿� (5)

To derive a possible equation for the total concentration, the general definition of retardation factor R is required. 
The retardation factor R is defined as the ratio of sorbed to non-sorbed material as following (e.g., Fetter, 1999; 
Nowak & Guthke, 2016):

𝑅𝑅 =
1

𝜙𝜙

𝜕𝜕𝜕𝜕𝑡𝑡

𝜕𝜕𝜕𝜕
,� (6)

where ϕ is the porosity of the porous medium and ct is the total contaminant concentration, that is, the contam-
inant concentration dissolved in the fluid and sorbed in the solid phase. By substituting Equation 6 into Equa-
tion 2, the equation to calculate the total contaminant concentration ct can be written as:

𝜕𝜕𝜕𝜕𝑡𝑡

𝜕𝜕𝜕𝜕
= 𝐷𝐷𝐷𝐷

𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2
.� (7)

Many sorption processes are well-understood. However, when it involves an interaction between the solvent 
and sediments, the complexity of the process is enhanced. As a result, parametric models such as the sorption 
isotherms are commonly assumed for simplification. Three of the most commonly used isotherms are linear, 



Water Resources Research

PRADITIA ET AL.

10.1029/2022WR033149

6 of 28

Freundlich, and Langmuir, which are all derived empirically. These isotherms define the retardation factor 
differently:

𝑅𝑅𝑙𝑙 = 1 +
1 − 𝜙𝜙

𝜙𝜙
𝜌𝜌𝑠𝑠𝐾𝐾𝑑𝑑,� (8)

𝑅𝑅𝐹𝐹 = 1 +
1 − 𝜙𝜙

𝜙𝜙
𝜌𝜌𝑠𝑠𝐾𝐾𝑓𝑓𝑛𝑛𝑓𝑓 𝑐𝑐

𝑛𝑛𝑓𝑓−1,� (9)

𝑅𝑅𝐿𝐿 = 1 +
1 − 𝜙𝜙

𝜙𝜙
𝜌𝜌𝑠𝑠

𝑠𝑠max𝐾𝐾

(𝑐𝑐 +𝐾𝐾)
2
,� (10)

where Equations 8–10 describe the retardation factor formulation based on the linear, Freundlich, and Langmuir 
isotherm, respectively. Here, ρs is the bulk density of the porous medium, Kd is the linear isotherm parameter, 
Kf is the Freundlich isotherm parameter, nf is the Freundlich exponent, smax is the maximum sorption capacity of 
the solid phase, and K is the half-saturation value. Note that, if the Freundlich exponent nf = 1, the Freundlich 
isotherm becomes identical to the linear isotherm, and therefore, it is impossible to distinguish between them.

Traditionally, the retardation factors reported in Equations 8–10 would lead to three different discrete models, one 
for each sorption isotherm. However, FINN allows us to define the retardation factor as a flexible function that 
is learned from data to best support the approximation of the overall process without constraining the model too 
much by a possibly inaccurate assumption (more details on the physical constraint will be discussed in the loss 
function definition in Section 3). This particular aspect of FINN is demonstrated with the application on labora-
tory measurement data, which will be discussed in Section 4.2.

2.2.  Numerical Solution

Obtaining an analytical solution is impossible for many PDEs. Consequently, it is common to resort to numerical 
methods to solve it. The most popular numerical methods are the finite difference method (FDM), which approx-
imates the derivatives based on Taylor's expansion (Morton & Mayers, 1994); the finite element method (FEM), 
which reformulates the PDE in a weak form and interpolates the solution through a function with limited element 
support (Logan, 1992); and FVM, which approximates the solution using a volume integral combined with the 
Gauss' divergence theorem (Moukalled et al., 2016).

The FVM derivation of the PDE is based on conservation laws and is the closest to physics compared to the 
other discretization methods. To be more specific, the applied divergence theorem leads to the right-hand side of 
Equation 13, which now represents the flux exchanges between any control volume and its neighboring volumes. 
This ensures that conservation is not violated, meaning that the flux entering a control volume should be exactly 
the same as the flux leaving the control volume, given that the variable of interest (i.e., the concentration or 
quantity c) does not change over time. On the other hand, FEM does not guarantee this conservation property. 
Moreover, FVM allows straightforward implementation of the boundary conditions without approximation. Due 
to these reasons, we choose to specifically adopt FVM in this work. Note that, when the domain is discretized 
using a regular Cartesian grid, then the FVM, FEM, and FDM discretizations are identical, with differences in 
the boundary condition treatment.

Following the FVM concept, the spatial domain is discretized into a number of N control volumes (cells). For 
each control volume, a volume integral is applied to Equation 2, resulting in

∫
𝑣𝑣𝑖𝑖

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 =

∫
𝑣𝑣𝑖𝑖

𝐷𝐷

𝑅𝑅(𝑐𝑐)

𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2
𝑑𝑑𝑑𝑑𝑑� (11)

where vi is the volume, and the subscript i = 1, …, N denotes a specific control volume i. Since the right-hand 
side has a divergence term, the Gauss' divergence theorem needs to be applied (Arfken et al., 2013), leading to a 
surface integral over the enclosing control volume surfaces/boundaries, and resulting in the equation

∫
𝑣𝑣𝑖𝑖

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 =

∮
𝜔𝜔𝜔Ω

(
𝐷𝐷

𝑅𝑅(𝑐𝑐)

𝜕𝜕2𝑢𝑢

𝜕𝜕𝜕𝜕2

)

⋅ 𝑛̂𝑛 𝑛𝑛Γ,� (12)
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where ω is a continuous surface element and 𝐴𝐴 𝐴𝐴𝐴 is the unit normal vector pointing outwards of ω. Furthermore, 
ω is a subset of all surfaces Ω enclosing the control volume i and Γ is a continuous variable along ω. Applying 
the surface integral in Equation 12 allows flux evaluation at each enclosing control volume surface. As a result, 
a spatially discrete formulation of the PDE for control volume i using a Cartesian grid leads to the following:

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
𝑣𝑣𝑖𝑖 = 𝐴𝐴𝑖𝑖−1

𝐷𝐷𝑖𝑖

𝑅𝑅 (𝑐𝑐𝑖𝑖)

𝑐𝑐𝑖𝑖−1 − 𝑐𝑐𝑖𝑖

Δ𝑥𝑥
− 𝐴𝐴𝑖𝑖+1

𝐷𝐷𝑖𝑖

𝑅𝑅 (𝑐𝑐𝑖𝑖)

𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖+1

Δ𝑥𝑥
,� (13)

where Ai − 1 and Ai + 1 are the left and right cross-sectional surface areas of control volume i, respectively. The 
equation is spatially discrete, and thus uses Δx instead, which is the length of the control volume.

For each i = 1, …, N, Equation 13 form a coupled set of ODEs. The ODEs in the system of Equation 13 are 
coupled through their connections with their respective neighbors (i − 1 and i + 1). To derive Equation 13 into 
a spatially and temporally discrete equation, a temporal discretization is required. The simplest temporal discre-
tization scheme is the Euler method (e.g., Butcher, 2008), which is a first-order time integration method. The 
Euler method itself is categorized into explicit and implicit schemes. In the explicit scheme, the time derivative 
function dc/dt is defined with the variable c at the current time step t, whereas in the implicit scheme, it is defined 
with the variable c at the subsequent time step t + 1. Applying the explicit Euler method to Equation 13 leads to

𝑐𝑐𝑡𝑡+1
𝑖𝑖

− 𝑐𝑐𝑡𝑡
𝑖𝑖

Δ𝑡𝑡
𝑣𝑣𝑖𝑖 = 𝐴𝐴𝑖𝑖−1

𝐷𝐷𝑖𝑖

𝑅𝑅
(
𝑐𝑐𝑡𝑡
𝑖𝑖

)
𝑐𝑐𝑡𝑡
𝑖𝑖−𝑖𝑖

− 𝑐𝑐𝑡𝑡
𝑖𝑖

Δ𝑥𝑥
− 𝐴𝐴𝑖𝑖+1

𝐷𝐷𝑖𝑖

𝑅𝑅
(
𝑐𝑐𝑡𝑡
𝑖𝑖

)
𝑐𝑐𝑡𝑡
𝑖𝑖
− 𝑐𝑐𝑡𝑡

𝑖𝑖+1

Δ𝑥𝑥
,� (14)

and applying the implicit Euler method yields

𝑐𝑐𝑡𝑡+1
𝑖𝑖

− 𝑐𝑐𝑡𝑡
𝑖𝑖

Δ𝑡𝑡
𝑣𝑣𝑖𝑖 = 𝐴𝐴𝑖𝑖−1

𝐷𝐷𝑖𝑖

𝑅𝑅
(
𝑐𝑐𝑡𝑡+1
𝑖𝑖

)
𝑐𝑐𝑡𝑡+1
𝑖𝑖−𝑖𝑖

− 𝑐𝑐𝑡𝑡+1
𝑖𝑖

Δ𝑥𝑥
− 𝐴𝐴𝑖𝑖+1

𝐷𝐷𝑖𝑖

𝑅𝑅
(
𝑐𝑐𝑡𝑡+1
𝑖𝑖

)
𝑐𝑐𝑡𝑡+1
𝑖𝑖

− 𝑐𝑐𝑡𝑡+1
𝑖𝑖+1

Δ𝑥𝑥
,� (15)

where the superscript t denotes the time discretization and Δt is the corresponding time step. The same discre-
tization strategy also applies to Equation 7. As can be inferred from both equations, the implementation of the 
explicit method is simpler than the implicit method, because the value of 𝐴𝐴 𝐴𝐴𝑡𝑡+1

𝑖𝑖
 is still unknown in time step t. 

Furthermore, because we intend to combine numerical methods with ANNs—which fundamentally belong to 
the class of explicit methods—from here on we will use the explicit scheme and, when possible, drop the super-
script t for clarity. More comprehensive explanations on links between ANNs and differential equations can be 
found in (K. He et al., 2016; Y. Lu et al., 2018), where the authors discuss the analogy between the skip connec-
tions in Residual Networks (ResNet) and a numerical discretization method, as well as neural operator learning 
(Kovachki et al., 2021).

Even though the explicit method is more convenient to implement, it suffers from numerical instability. To be 
more specific, the size of the time step Δt has to be chosen carefully such that it does not surpass the time at which 
the quantity c is moving from one control volume to the other. This requirement can be controlled, for example, 
by using the Courant–Friedrichs–Lewy (CFL) condition (Courant et al., 1967; Isaacson & Keller, 1994). Accord-
ing to CFL, a finer spatial discretization (i.e., smaller Δx) requires a smaller temporal discretization Δt. In some 
cases, this condition becomes very limiting when the required Δt becomes too small, leading to substantially inef-
ficient computation. As an alternative, a higher order integration method can be used to alleviate this limitation, 
which will be discussed in the following section.

2.3.  Neural ODE

Implementing the explicit integration method from Section 2.2 with an unregularized ANN will likely lead to 
numerical instability, as the ANN might easily enter unstable regimes. To mitigate this problem, a higher-order 
ODE integration method, such as Runge-Kutta method (Kutta, 1901; Runge, 1895), can be used, in combination 
with an adaptive time stepping capability, to maintain both the numerical stability and the accuracy of the inte-
gration. Such ODE solvers, however, must be differentiable in order to be able to propagate an error signal for 
adapting the parameters of an ANN, which will be used to represent the ODE. For a comprehensive introduction 
to ANNs, we refer the readers to Goodfellow et al. (2016).
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Such a fully differentiable and ANN-based ODE solver, called NODE, has recently been proposed by Chen 
et al. (2018). In short, NODE assumes an ANN fθ with parameters θ to compute the change of a state vector c t 
over time. NODE parameterizes the change of c over time by treating fθ as a time-continuous function, such that

𝜕𝜕𝐜𝐜(𝑡𝑡)

𝜕𝜕𝜕𝜕
= 𝑓𝑓𝜃𝜃(𝐜𝐜(𝑡𝑡), 𝑡𝑡).� (16)

Accordingly, f(⋅) is an ANN that learns and represents the system dynamics, that is, the derivative of the variable 
of interest with respect to time, which directly corresponds to the form of Equation 13. Then, the quantity of c in 
the next time step could, in principle, be computed using an explicit Euler discretization:

𝐜𝐜
𝑡𝑡+1 = 𝐜𝐜

𝑡𝑡 + 𝑓𝑓𝜃𝜃

(
𝐜𝐜
𝑡𝑡
)
.� (17)

Formulating a dynamic system with Equation 17 has been proposed in the Deep Residual Learning (ResNet) 
architecture (K. He et al., 2016). This approach has been shown to improve model training because it can learn 
particular functions, such as the identity function, better and because it minimizes the vanishing gradient problem 
(Hochreiter et al., 2001). In the NODE framework, however, the temporal discretization of Equation 16 occurs 
after the forward propagation of the ANN and with a higher-order scheme, rather than learning the discretization 
form as in Equation 17.

In NODE, to integrate from c t to c t + 1, fθ is optimized end-to-end in the overall training process. This leads to 
better accuracy and efficiency, as well as to allow adaptive time stepping strategy for better numerical stability 
(Chen et al., 2018). Note that this approach differs from the Elman network, that is, the traditional recurrent 
neural network (Elman, 1990). The Elman network uses the ANN as a function to predict c t + 1 directly from c t, 
that is, without the appearance of c t in Equation 17. NODE plays a fundamental role in our model, as detailed in 
Section 3.

2.4.  Uncertainty Quantification Methods

In this work, we perform UQ over the model parameters and all learned constituents, such as the retardation 
factor function R(c). One of the most straightforward UQ methods on ANNs is the Bayes-by-backprop method 
(Blundell et al., 2015), which parameterizes the variational posterior using the mean μ and standard deviation σ 
of the model parameters θ (i.e., weights and biases). In short, for each training iteration, the model parameters 
are sampled based on

𝜃𝜃 = 𝜇𝜇 + log(1 + exp(𝜎𝜎)) ⋅ 𝜖𝜖𝜖� (18)

where 𝐴𝐴 𝐴𝐴 ∼  (0, 𝐼𝐼) . The goal of the training is then to find the values of μ and σ that minimize the Kullback-Leibler 
divergence (Joyce, 2011) between the variational posterior q(θ) and the (unknown) true posterior π(θ), reformu-
lated as

 = 𝐾𝐾𝐾𝐾[𝑞𝑞(𝜃𝜃)‖𝑝𝑝(𝜃𝜃)] − 𝔼𝔼𝑞𝑞(𝜃𝜃)[log 𝑝𝑝(𝐷𝐷|𝜃𝜃)],� (19)

where p(θ) is the prior knowledge on the model parameters, and p(D|θ) is the probability of observing the data D 
given the model parameters θ.

The Bayes-by-backprop approach, however, assumes independent Gaussian distributions to define the model 
parameters, which is an oversimplification of the actual joint posterior distribution (Blei et al., 2017). In contrast, 
Markov chain Monte Carlo (MCMC; Bardenet et al., 2017) provides a sampling of model parameters from the 
exact posterior distribution (Jospin et al., 2022). The general MCMC algorithm is summarized in Algorithm 1.

The proposal of drawing θt and the transition/proposal distribution Q are defined respectively for the random 
walk Metropolis-Hastings (MH; Chib & Greenberg, 1995), Metropolis-adjusted Langevin algorithm (MALA; 
Dwivedi et al., 2019), and Barker proposal (Barker, Livingstone & Zanella, 2019), as:

𝜃𝜃𝑡𝑡 = 𝜃𝜃(𝑖𝑖) + ℎ ⋅ 𝜖𝜖𝜖 𝜖𝜖
(
𝜃𝜃𝑡𝑡|𝜃𝜃

(𝑖𝑖)
)
= exp

(
−‖𝜃𝜃𝑡𝑡 − 𝜃𝜃(𝑖𝑖)‖2

2
∕ℎ2

)
,� (20)

𝜃𝜃𝑡𝑡 = 𝜃𝜃(𝑖𝑖) + ℎ∇𝜋𝜋
(
𝜃𝜃(𝑖𝑖)

)
+

√
2ℎ𝜖𝜖𝜖 𝜖𝜖

(
𝜃𝜃𝑡𝑡|𝜃𝜃

(𝑖𝑖)
)
= exp

(
−‖𝜃𝜃𝑡𝑡 − 𝜃𝜃(𝑖𝑖) − ℎ∇𝜋𝜋

(
𝜃𝜃(𝑖𝑖)

)
‖2
2
∕4ℎ

)
,� (21)
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𝜃𝜃𝑡𝑡 = 𝜃𝜃(𝑖𝑖) + 𝑏𝑏 ⋅ 𝜖𝜖𝜖 𝜖𝜖
(
𝜃𝜃𝑡𝑡|𝜃𝜃

(𝑖𝑖)
)
=

1

1 + exp

(
−(𝜃𝜃𝑡𝑡 − 𝜃𝜃(𝑖𝑖))

𝑇𝑇
∇log𝜋𝜋 (𝜃𝜃(𝑖𝑖))

) .� (22)

Here, θt is the proposed sample, θ (i) is the sample from iteration i, h is the step size, π is the posterior of the model 
parameters, and 𝐴𝐴 𝐴𝐴 ∼  (0, 𝐼𝐼) . For Barker specifically, b = 1 with the probability p = 1/(1 + exp(−ϵ∇π(θ (i)))), 
and b = −1 otherwise. It is also important to note that both MALA and Barker utilize the gradient information 
provided by the automatic differentiation tools available in various ML libraries, including PyTorch (Paszke 
et al., 2019), which is used in this work.

3.  Finite Volume Neural Network
In this section, we introduce the FINN framework by providing derivations and explanations on how FINN 
relates to the concepts from the previous section. FINN is designed to explicitly learn the individual components 
of the PDE using dedicated modules—defined as nonlinear ANN layers—in a compositional manner (Battaglia 
et al., 2018; Karlbauer et al., 2022; Lake, 2019; Lake et al., 2017). These modules are connected to effectively 
represent the PDE of interest (see Figure 1). Although the model has a general form, it can be set up and inter-
connected individually to form a specific architecture that is explicitly motivated and inspired by the physical 

Algorithm 1.  General Markov Chain Monte Carlo Algorithm

Require: Initial parameter values θ (0)

  Set i = 0
  while i < N do
      Draw θt given θ 

(i)

      Calculate acceptance probability 𝐴𝐴 𝐴𝐴
(
𝜃𝜃𝑡𝑡|𝜃𝜃

(𝑖𝑖)
)
= min

(

1,
𝜋𝜋(𝜃𝜃𝑡𝑡)𝑄𝑄(𝜃𝜃(𝑖𝑖)|𝜃𝜃𝑡𝑡)
𝜋𝜋(𝜃𝜃(𝑖𝑖))𝑄𝑄(𝜃𝜃𝑡𝑡|𝜃𝜃(𝑖𝑖))

)

      Draw a random number 𝐴𝐴 𝐴𝐴 ∼  [0, 1]

      if α(θt|θ 
(i)) > u then

          θ (i + 1) ← θt
      else
          θ (i + 1) ← θ (i)

      end if
      i ← i + 1
  end while

Figure 1.  Schematic illustration of a flux kernel for one finite volume in finite volume neural network (left) and alignment of network modules with their 
corresponding parts in a partial differential equation of interest (right). Black lines indicate forward information flow whereas red lines indicate gradient flow during 
backpropagation through time. Dashed lines indicate closed-loop feedback between subsequent time steps.
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equation that would typically be assumed to govern the modeled system at hand, that is, the diffusion-sorption 
Equation  2 in this work. More specifically, FINN combines the knowledge-based structure of the PDE core 
elements with the FVM discretization as described in Section 2.2 to obtain a set of ODEs. Then, it adopts the 
NODE method as described in Section 2.3 for the time integration and learning of the PDE constituents (i.e., not 
only the PDE parameters, but also unknown functions such as the retardation factor and the reaction function, as 
well as the discretization of the PDE).

As outlined in Section 2.2, a PDE describes the change of a quantity at a local position under influence of its 
direct neighbors. Accordingly, we propose to model the adjacent flux exchange—see Equation 13—by so called 
flux kernels 𝐴𝐴 𝑖𝑖 . They learn to represent the quantity entering and leaving control volume i from left and right 
(in the one-dimensional case). These flux kernels approximate the surface integral for each control volume i as 
written in Equation 12, and therefore are mathematically written as

𝑖𝑖 =

𝑀𝑀𝑖𝑖∑

𝑗𝑗=1

𝑓𝑓𝑗𝑗 ≈
∮
𝜔𝜔𝜔Ω

(

𝐷𝐷(𝑐𝑐)
𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2

)

⋅ 𝑛̂𝑛 𝑛𝑛𝑛𝑛𝑛� (23)

where Mi is the number of discrete surface elements of control volume i and fj is the subkernel calculated at each 
surface element. For one-dimensional cases, Mi = 2 and therefore, each flux kernel is supported by 2 subker-
nels 𝐴𝐴 𝑖𝑖 = {𝑓𝑓𝑖𝑖−, 𝑓𝑓𝑖𝑖+} .

The flux kernels 𝐴𝐴 𝑖𝑖 are provided with ci and ci−1 or ci+1 as the inputs for fi− or fi+, respectively. Each subkernel 
consists of two modules that are formulated as neural network layers. On the one hand, 𝐴𝐴 𝐴𝐴 is a linear layer to 
approximate the FVM stencil to represent the contribution of each neighboring control volume and the direction 
of the flux exchange. Hence, the output of 𝐴𝐴 𝐴𝐴 is conceptually supposed to become ∂ 2c/∂x 2, that is

𝜑𝜑𝑖𝑖−
(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖−1) + 𝜑𝜑𝑖𝑖+

(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1) ≈
𝜕𝜕2𝑐𝑐𝑖𝑖

𝜕𝜕𝜕𝜕2
.� (24)

Note that 𝐴𝐴 𝐴𝐴𝑖𝑖−
 and 𝐴𝐴 𝐴𝐴𝑖𝑖+

 share weights and thus are represented by one and the same network. Ideally, in a system 
with Fickian diffusion and mass conservation fulfilled, the parameters of 𝐴𝐴 𝐴𝐴 should be [ −1, 1] with respect to 
[ci, ci − 1] and [ci, ci + 1]. When fi− and fi+ are combined, that is, in Equation 24, the coefficients become [1, −2, 
1] with respect to [ci−1, ci, ci + 1]. This follows from the central discretization scheme (Fornberg, 1988) of the 
second-order spatial derivative as

𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2
≈

(𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕)|𝑖𝑖− − (𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕)|𝑖𝑖+

Δ𝑥𝑥
,� (25)

with (∂c/∂x)|i− ≈ (ci−1 − ci)/Δx and (∂c/∂x)|i+ ≈ (ci − ci+1)/Δx. As a result,

𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2
≈

(𝑐𝑐𝑖𝑖−1 − 𝑐𝑐𝑖𝑖) − (𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖+1)

Δ𝑥𝑥2
=

𝑐𝑐𝑖𝑖−1 − 2𝑐𝑐𝑖𝑖 + 𝑐𝑐𝑖𝑖+1

Δ𝑥𝑥2
.� (26)

The module 𝐴𝐴 𝐴𝐴 , on the other hand, is responsible to account for the (variable-dependent, possibly nonlinear) 
diffusion coefficient, thus

𝜑𝜑 (𝑐𝑐𝑖𝑖) ≈ 𝐷𝐷 (𝑐𝑐𝑖𝑖) ,� (27)

if the diffusion coefficient D depends on c. Otherwise, 𝐴𝐴 𝐴𝐴 is a scalar value 𝐴𝐴 𝐴𝐴 ≡ 𝐷𝐷 , which can also be set as a 
learnable parameter. For our exemplary diffusion-sorption case, 𝐴𝐴 𝐴𝐴 ≈ 𝐷𝐷∕𝑅𝑅(𝑐𝑐) for the dissolved concentration, 
that is, Equation 2, and 𝐴𝐴 𝐴𝐴 ≈ 𝐷𝐷 for the total concentration, that is, Equation 7. Because the diffusion coefficient 
D can be learned from the total concentration, the retardation factor R(c) can also be extracted from the learned 
module 𝐴𝐴 𝐴𝐴 in the dissolved concentration calculation.

Finally, subkernels fi− and fi+ are calculated as a combination of both modules 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 :

𝑓𝑓𝑖𝑖− = 𝜑𝜑 (𝑐𝑐𝑖𝑖) ⋅ 𝜑𝜑𝑖𝑖−
(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖−1) ,� (28)

𝑓𝑓𝑖𝑖+ = 𝜑𝜑 (𝑐𝑐𝑖𝑖) ⋅ 𝜑𝜑𝑖𝑖+
(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1) .� (29)
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Performing calculations of flux kernels at the surface element additionally provides advantages for boundary 
condition treatment. In addition to Dirichlet, boundary condition types that are flux dependent, such as Neumann 
or Cauchy conditions (Cheng & Cheng,  2005), can easily be adopted. For Dirichlet boundary conditions, a 
constant value c = cb is set as the input ci−1 (for the flux kernel fi−) or ci + 1 (for fi+) at the corresponding bounda-
ries. For a Neumann boundary condition ν, the output of the flux kernel fi− or fi+ at the corresponding boundaries 
can be set to be equal to ν. For Cauchy boundary conditions, the solution-dependent derivative is calculated and 
set as ci − 1 or ci + 1 at the corresponding boundary.

Furthermore, we also introduce the state kernel 𝐴𝐴 𝑖𝑖 to model ∂c/∂t. The state kernel 𝐴𝐴 𝑖𝑖 receives ci of the associated 
control volume i, along with the output of fi− and fi+ (the fluxes to/from each neighboring cell) as inputs:

𝑖𝑖 (𝑐𝑐𝑖𝑖, 𝑓𝑓𝑖𝑖−, 𝑓𝑓𝑖𝑖+) = (Φ (𝑐𝑐𝑖𝑖) + 𝑓𝑓𝑖𝑖− + 𝑓𝑓𝑖𝑖+) ≈
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
.� (30)

Optionally, the state kernel includes a neural network module Φ(⋅), a function that is trained to model reaction 
terms related to the quantity ci in control volume i. In the processes considered in this work, however, the only 
source of change comes from neighboring volumes. Particularly, there are no external effects that locally modify 
the quantity of interest (such as e.g., sun radiation would increase temperature locally without sensible or latent 
heat entering from adjacent volumes). Therefore, in this work, Φ(⋅) is the identity function and, hence, 𝐴𝐴 𝑖𝑖 is only 
responsible for integrating information coming from neighboring cells.

Taking the bigger picture into account, all control volumes share the same kernels, and thus FINN is parsimo-
nious, exploiting translation equivariance of physical laws. Flux kernels specifically are designed similarly to 
message passing neural networks (Brandstetter et al., 2022; Gilmer et al., 2017) to exploit PDE-type structural 
knowledge upon discretization. The main difference lies in the fact that all flux kernels are uniquely labeled with 
a physical meaning through derivation from FVM and NODE. Additionally, boundary conditions can be switched 
explicitly.

During training, FINN only receives the initial condition c(x, t = 0) as input. This input is processed first by the 
flux kernels to calculate the flux exchanges between neighboring control volumes, and then by the state kernels 
to be integrated through all surface elements. The output of the state kernels are then fed into a differentiable 
ODE solver (within a NODE framework) to be integrated in time to obtain the solution c at the subsequent 
time step. This solution is fed back into FINN, and the same operations are recurrently applied until the final 
simulation time t = T is reached. This way, FINN uses a closed-loop setting to propagate the dynamics forward, 
leading to a more stable prediction during testing (Praditia et al., 2020). This workflow is visualized in Figure 1, 
where  the black arrows depict the direction of the input processing, and the red arrows depict the direction of the 
error backpropagation during training. The dashed arrows depict the closed-loop feedback between subsequent 
time steps, as well as coupling between neighboring control volumes.

The prior physical information in FINN is embedded in the form of the additional physical regularization and 
the structure itself, not in the training algorithm. For this particular case, FINN is trained by minimizing the loss 
function, defined by combining the data driven error and physical constraint:

 =
1

𝑁𝑁𝑒𝑒

𝑁𝑁𝑒𝑒∑

𝑖𝑖

(𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖)
2

+
1

𝑁𝑁𝑝𝑝

𝑁𝑁𝑝𝑝∑

𝑗𝑗

𝐸𝐸𝑝𝑝𝑝𝑝𝑝 ,� (31)

where c is the available training data (either generated from simulation or measured from experiment), 𝐴𝐴 𝐴𝐴𝐴 is 
FINN's prediction, Ne is the number of data points of c(x, t), Ep is an additional physical constraint, and Np is the 
number of data points used to calculate the physical constraint. The physical constraint Ep in our current example 
enforces that the retardation factor is a monotonically decreasing function of c, that is, R(ci) ≥ R(cj) for all ci < cj 
and positiveness of the diffusion coefficient, that is, D > 0. To enforce these conditions, the ReLU operator is 
used. Other  thinkable constraints could ab initio dictate mass conservation, energy balances or thermodynamic 
principles. Likewise, soft information (like staying close to an often-successful but not fully accurate law) could 
also be added. This loss function is also used as the negative log posterior  −π(θ) in the UQ, which will be 
discussed later.
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4.  Learning Experiments
To demonstrate FINN's capability, both synthetic and real-world data sets of 
the TCE diffusion-sorption process are used. Recall that the hypothesized 
advantages of FINN, by construction and due to the physics constraints, are 
little data requirements, robust generalization beyond the training data distri-
bution (i.e., applicability to different boundary conditions), and high inter-
pretability, allowing it to learn when known models fail.

First, we generate synthetic data based on the setup described in Section 2.1 
in order to perform an elaborated analysis in a controlled setting. By doing 
so, we will also assess the performance of FINN against already existing 
pure deep learning models such as TCN and ConvLSTM, physics-motivated 
deep learning models, such as DISTANA and FNO, as well as physics-aware 
architectures, that is, PINN and PhyDNet. Second, we also show that FINN 
is not only suitable for synthetic data, but also for real-world application by 
modeling real laboratory experimental data.

4.1.  Synthetic Data Set

We simulate the experimental setup described in Section 2.1 numerically and 
generate synthetic data sets solving the related (assumed-to-be-true for now) 

PDE. The numerical simulator is a simple finite difference code with explicit Euler, made available along with 
our code (Praditia et al., 2022). Three different sorption isotherms, namely the linear, Freundlich, and Langmuir 
isotherm are used to generate three distinct synthetic data sets, which are then used for a comparison study. The 
parameters for each isotherm are set so that they yield similar concentration distribution, thus we can show that 
our proposed method is able to distinguish various isotherms even with similar looking data (only by approxi-
mating the function using an ANN, and not explicitly choosing between the available equations). The parameter 
values are given in Table 1.

To compare the generalization ability of FINN to that of the aforementioned existing methods, for each data gener-
ated with different sorption isotherms, we define three different types of synthetic data sets: train, in-distribution 
test (in-dis-test), and out-of-distribution test (out-dis-test). The differences between these data sets lie in the time 
domain and boundary condition used. The train data is generated with x = [0, 1] m, t = [0, 2,500] days, and 
csol = 1.0 kg/m 3. The in-dis-test data is generated with x = [0, 1] m, t = [2,500, 10,000] days, and csol = 1.0 kg/m 3. 
The out-dis-test data is generated with x = [0, 1] m, t = [0, 10,000] days, and a modified upper boundary value 
of csol  =  0.7  kg/m 3. The simulation domain for all three types of data is discretized with Δx  =  0.04  m and 
Δt = 5 days. The train data, as its name suggests, is used to train the models. Both in-dis-test and out-dis-test are 
used to test the models. The difference is that in-dis-test data is generated with the same parameter as the train 
data, but extrapolated for a longer time span, whereas out-dis-test data is generated with a different boundary 
condition value, to test the models' generalization under a different situation than during training. A different type 
of boundary condition will be tested in Section 4.2.

4.1.1.  State-of-the-Art Benchmark Models

In this work, we compare FINN's performance against other models that are capable of processing spatiotemporal 
data. These models are either pure ML models or models that possess a form of physical inductive bias.

Pure ML models. For the pure ML models, we choose TCN and ConvLSTM. TCN performs convolution oper-
ations over both the spatial and temporal domain (Lea et al., 2016), and it exploits the benefits of features such 
as dilated convolution to process a larger receptive field. In other words, the TCN structure allows for processing 
information contained in more distant preceding time steps. For TCN, the chosen structure has 2 input channels, 
a hidden layer with 32 channels, and 2 output channels.

ConvLSTM takes a more classical approach, which is to capitalize on the recurrent structure of the long short-term 
memory (LSTM) model to handle the temporal correlation of the data, and replaces the internal operations with 

Parameter Symbol Unit Value

Common parameters

  Effective diffusion coefficient D m 2/day 5.00 × 10 −4

  Porosity ϕ – 0.29

  Density ρs kg/m 3 2,880

Linear isotherm

  Partitioning coefficient Kd m 3/kg 4.30 × 10 −4

Freundlich isotherm

  Freundlich's K Kf𝐴𝐴 (m
3
∕kg)

n
f  3.50 × 10 −4

  Freundlich exponent nf – 0.87

Langmuir isotherm

  Half-concentration K kg/m 3 1.00

  Sorption capacity smax m 3/kg 5.90 × 10 −4

Table 1 
Parameter Values for Synthetic Data Generation
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convolutional operations to handle the spatial correlation of the data (Shi et al., 2015). For ConvLSTM, the 
chosen structure is 2 input and output channels, with a hidden layer containing 24 channels.

Physics-motivated ML models. The physics-motivated methods chosen as benchmark models in this work are 
namely DISTANA, FNO, and CNN-NODE. While DISTANA is similar to ConvLSTM, the main difference 
is that DISTANA propagates information laterally via additional latent feature maps (and not only by applying 
convolutions on the input). This can also be seen as an analog to a flux exchange between neighboring control 
volumes—even though in DISTANA, the lateral latent information does not have any physical meaning. The 
lateral and dynamic input and output sizes of the DISTANA model are set to 1 and 2, respectively, while a hidden 
layer of size 16 is used.

CNN-NODE is a combination of a conventional convolutional network stem that is augmented by NODE and 
thus formulates an ablation of FINN to determine the relevance of FINN's modular network architecture. We use 
a three-layered, batch-normalized and tanh-activated convolution stem.

Due to a point-wise formulation (similarly to PINN), FNO approximates PDEs by learning a continuous mapping 
from space-time inputs to the desired outputs, that is, 𝐴𝐴 ℝ

𝑥𝑥×𝑡𝑡
↦ℝ

𝑑𝑑 , where x and t are space and time coordinates and 
d is the dimensionality of the target. However, FNO differs from PINN in two fundamental aspects: First, FNO 
learns the according mapping in frequency instead of in time domain by applying fast (inverse) Fourier transfor-
mations. Second, FNO learns purely from data and does not depend on explicit physical process knowledge. In 
our experiments, we apply the identical model architecture as suggested by Z. Li et al. (2020a).

Physics-aware ML models. In the class of physics-aware ML models, we chose PINN and PhyDNet as bench-
mark candidates. PINN is one of the pioneering physics-motivated ML models. It makes use of the capability of 
ANN to calculate analytical derivatives through backpropagation to approximate derivatives in the PDE (Raissi 
et al., 2019). For this problem, PINN is defined as a feedforward network with the size of [2, 20, 20, 20, 20, 20, 
20, 20, 20, 2] (i.e., 2 input and output neurons, with 8 hidden layers, each containing 20 neurons).

PhyDNet consists of two main branches: one for calculating the physical component and the other for calculat-
ing the residual component of the data, assuming that the PDE does not fully describe the modeled system. The 
physical branch is inspired by the Kalman Filter, which is a data assimilation technique to recurrently update the 
model parameters based on observation (i.e., training) data. The residual branch adopts the ConvLSTM struc-
ture. With a specific condition of the PhyDNet structure, it reduces to a PDE-Net model (Guen & Thome, 2020). 
PhyDNet is defined with the PhyCell containing 32 input dimensions, 7 hidden dimensions, 1 hidden layer, and 
the ConvLSTM containing 32 input dimensions, 32 hidden dimensions, 1 hidden layer.

In the last class of physics-aware ML models, FINN is implemented with the use of the modules 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 . 
Here, the module 𝐴𝐴 𝐴𝐴 is defined as a linear layer that takes 2 inputs, namely the dissolved concentration c of 
two neighboring control volumes. For the dissolved concentration c, the module 𝐴𝐴 𝐴𝐴 is defined as a feedforward 
network with the size of [1, 10, 20, 10, 1] that takes c as an input and outputs the retardation factor R(c). For the 
total concentration ct, 𝐴𝐴 𝐴𝐴 is defined as a scalar parameter to learn the unknown diffusion coefficient D.

4.1.2.  Benchmark Performance of ML Models

All models are trained with the objective to minimize the deviation between the model predictions of c and ct 
with the training data. They are trained until convergence using the L-BFGS optimizer (Malouf, 2002), except 
for PhyDNet and FNO, which are trained with the Adam optimizer (Kingma & Ba, 2015) and a learning rate 
of 1 × 10 −3 due to stability issues when training with the L-BFGS optimizer. The L-BFGS optimizer is chosen 
because it is a quasi-Newton optimization algorithm, which means it uses an approximation of the second-order 
derivative (Hessian matrix). Second-order optimization algorithms are shown to be more effective in reaching 
the (local) optima (Kochenderfer & Wheeler, 2019). The pure ML models are trained on the first 400 time steps 
(t = 0 to 2,000) and validated on the remaining 100 time steps (t = 2,000–2,500) of the train data, applying early 
stopping (Goodfellow et al., 2016). Additionally, all models are trained with 10 different random initializations to 
learn about their consistency and to show better representation of each model's performance.

Table 2 shows the summary of all the trained models' performance. For each data set and each model, the mean 
and standard deviation values of the prediction mean squared error (MSE) across the 10 different initializations 
are presented. A more detailed presentation of the MSE values for each random training initialization can be 
found in Supporting Information S1. Note that PINN is not implemented for out-dis-test data. The reason behind 
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this is that PINN learns the explicit relationship of the prediction as a function of x and t based on a specific initial 
and boundary condition implemented in the train data. When the boundary condition is changed to generate 
the out-dis-test data, this functional relationship no longer holds, and as such, PINN is no longer applicable. As 
a further comparison, we present the number of learnable parameters used by the different models in Table 3. 
FINN's parameters consist of two parameters of the 𝐴𝐴 𝐴𝐴 module as a linear layer, and the weights and biases of 
the 𝐴𝐴 𝐴𝐴 module as a feedforward ANN. With a well-defined structure, FINN manages to use a relatively small 
number of parameters to achieve better results in comparison to the other models. To clarify, the benchmark does 
not include computational time, since the main purpose of our work is not to build a fast surrogate model, but 

Data set

Iso. Model Train In-dis-test Out-dis-test

Linear Pure ML TCN (2.4 ± 3.1) × 10 −1 (3.5 ± 4.4) × 10 −1 (2.9 ± 3.1) × 10 −1

ConvLSTM (3.7 ± 3.9) × 10 −2 (4.0 ± 3.9) × 10 −2 (5.3 ± 4.9) × 10 −2

Physics motiv. DISTANA (2.8 ± 6.5) × 10 −4 (1.9 ± 2.6) × 10 −3 (3.9 ± 2.3) × 10 −3

CNN-NODE (2.1 ± 3.2) × 10 −3 (1.6 ± 1.9) × 10 −1 (1.5 ± 1.8) × 10 −1

FNO (7.6 ± 3.3) × 10 −5 (1.0 ± 0.3) × 10 −3 (1.9 ± 0.4) × 10 −2

Physics aware PINN (6.3 ± 11) × 10 −5 (3.9 ± 7.8) × 10 −3 –

PhyDNet (3.3 ± 1.5) × 10 −5 (6.1 ± 17) × 10 −3 (1.6 ± 1.0) × 10 −2

FINN (2.1 ± 1.5) ×10 −7 (2.7 ± 1.9) ×10 −7 (1.8 ± 1.3) ×10 −7

Freundlich Pure ML TCN (1.1 ± 3.5) × 10 −1 (1.6 ± 1.5) × 10 −1 (1.3 ± 1.3) × 10 −1

ConvLSTM (1.9 ± 2.8) × 10 −2 (2.4 ± 1.9) × 10 −2 (4.3 ± 3.8) × 10 −2

Physics motiv. DISTANA (8.1 ± 7.0) × 10 −6 (1.8 ± 1.6) × 10 −4 (1.5 ± 1.4) × 10 −3

CNN-NODE (4.3 ± 8.9) × 10 −3 (2.6 ± 5.2) × 10 −1 (2.2 ± 4.3) × 10 −1

FNO (6.7 ± 17.6) × 10 −4 (1.4 ± 2.7) × 10 −3 (1.4 ± 0.5) × 10 −2

Physics aware PINN (4.3 ± 2.4) ×10 −6 (9.7 ± 16) × 10 −4 –

PhyDNet (7.1 ± 20) × 10 −4 (2.2 ± 3.7) × 10 −3 (1.2 ± 0.1) × 10 −2

FINN (2.9 ± 0.4) × 10 −5 (2.7 ± 0.4) ×10 −5 (2.3 ± 0.3) ×10 −5

Langmuir Pure ML TCN (1.3 ± 0.6) × 10 −1 (1.2 ± 0.7) × 10 −1 (1.5 ± 0.5) × 10 −1

ConvLSTM (3.9 ± 3.4) × 10 −2 (3.1 ± 2.3) × 10 −2 (6.2 ± 4.4) × 10 −2

Physics motiv. DISTANA (2.3 ± 2.6) × 10 −5 (9.8 ± 14) × 10 −4 (3.3 ± 3.5) × 10 −3

CNN-NODE (1.8 ± 3.1) × 10 −4 (1.2 ± 1.2) × 10 −1 (9.7 ± 10.7) × 10 −2

FNO (3.5 ± 7.2) × 10 −4 (1.1 ± 1.4) × 10 −3 (1.7 ± 0.7) × 10 −2

Physics aware PINN (3.3 ± 8.9) ×10 −5 (6.4 ± 17) × 10 −3 –

PhyDNet (4.6 ± 4.2) × 10 −5 (1.3 ± 1.4) × 10 −3 (1.3 ± 0.2) × 10 −2

FINN (7.3 ± 7.2) × 10 −5 (7.9 ± 7.8) ×10 −5 (6.1 ± 6.1) ×10 −5

Note. Best results are reported in bold.

Table 2 
Comparison of Mean Squared Error and According Standard Deviation Scores Across 10 Repetitions Between Different 
Deep Learning (TCN and ConvLSTM), Physics-Motivated (DISTANA, CNN-NODE, and FNO), and Physics-Aware Neural 
Networks (PINN, PhyDNet, and FINN) Methods on the Different Isotherms

TCN ConvLSTM DISTANA CNN-NODE FNO PINN PhyDNet FINN

10,782 8,216 6,519 1,026 5,878 3,042 37,815 464

Note. Each model uses the same number of parameters for the linear, Freundlich, and Langmuir cases. FINN uses the least 
number of parameters (printed in bold).

Table 3 
Comparison of the Number of Learnable Parameters Used by the Different Models
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rather to learn unknown functions in an interpretable fashion from the data and to generalize well to unseen data 
with different initial and boundary conditions.

As shown in Table 2, the pure ML models perform very poorly even during training, failing to capture/approxi-
mate the system's behavior. This result is expected because we only use a relatively small amount of training data, 
whereas pure ML models thrive on learning from large amount of data. However, measurement data on physical 
systems are often not abundantly available. Therefore, it is important to emphasize the capability of the models 
to learn from limited data. The physics-motivated and physics-aware models, on the other hand, perform compa-
rably during training, showing adequate learning (except for CNN-NODE). Also, note that the pure ML models 
in general require more parameters compared to the physics-motivated and physics-aware models, as shown in 
Table 3. Even then, their performance is still not comparable. However, PhyDNet is an exception, because most 
of its parameters originate from the ConvLSTM branch, which is the data-driven part and not the physics-aware 
part of PhyDNet. During training, FINN achieves the lowest prediction error for the data generated with the linear 
sorption isotherm, while PINN achieves the lowest prediction error for the data generated with the other sorption 
isotherms, namely Freundlich and Langmuir. This relatively higher training error of FINN on the Freundlich 
and Langmuir isotherm data can be attributed to the error of the diffusion coefficient prediction, which will 
be discussed further in the following section. We also note that the training times of the physics-motivated and 
physics-aware models are comparable to the pure ML models, without providing a rigorous computational time 
comparison.

It is more interesting to see how the models perform when confronted with unseen data, both extrapolation 
(in-dis-test) and different boundary condition (out-dis-test). For both test cases, all models perform significantly 
worse compared to the training phase. Nevertheless, FINN produces the best predictions with the lowest MSE, 
surpassing the other models by several orders of magnitude. More importantly, FINN is the only model with a 
consistently low prediction error with the same order of magnitude for all train, in-dis-test, and out-dis-test data. 
This model performance comparison is also visualized in Figure 4 for better clarity.

We also plot the predictions of the considered models for better visualization and understanding. For concise-
ness, we only show the plots for the dissolved concentration data generated with the Langmuir sorption isotherm 
due to similarities of the other plots. Figures 2 and 3 show the best prediction of each model, that produces the 
lowest MSE among the 10 randomly initialized trainings, when predicting the in-dis-test and the out-dis-test data, 
respectively. Figure 2 shows that most models, except for TCN and CNN-NODE, have at least one trained version 
that produces acceptable results even after extrapolation to a significantly longer time span (T = 10,000 days) 
compared to the one covered during training (T = 2,500 days). More interestingly and importantly, Figure 3 
shows that when the boundary condition is changed to csol = 0.7, all models still tend to overfit to the boundary 
condition value used during training, that is, csol = 1.0, demonstrating the tendency of all models to overestimate 
the dissolved concentration close to x = 0. One distinguishing feature of FINN is its ability to properly treat 
different values of numerical boundary conditions, and thus, FINN is the only model that does not suffer from 
this overfitting issue, as also shown in Figure 2. Plots for data generated with other sorption isotherms and for the 
total concentration are presented in Supporting Information S1.

To assess the robustness of the considered ML models, Figures 5 and 6 show the prediction averaged over the 10 
different training initializations for the in-dis-test and out-dis-test data, respectively. Moreover, Figures 5 and 6 
are also equipped with 95% confidence intervals, to show the consistency of each model. These intervals are 
approximated with the t-distribution (Oliphant, 2006). Figure 5 shows that, even though each model has at least 
one good result, the other training result can still produce incorrect predictions. To be more specific, the average 
predictions by TCN, ConvLSTM, and CNN-NODE do not fit the data. Additionally, we observe that most of the 
models produce highly inconsistent predictions with wide confidence intervals. Figure 6 (for out-dis-test) shows 
worse consistency of all models, evidenced by the wider confidence intervals. Additionally, all existing ML 
models still overfit to the boundary condition value used in the train data, as discussed earlier. FINN, in contrast, 
produces very consistent predictions, making the confidence interval hardly visible in Figure 5. Furthermore, 
FINN shows excellent consistency and adjustment to the new boundary condition value in Figure 6. The perfor-
mance comparison between FINN and CNN-NODE emphasizes the relevance of FINN's modularized structure. 
Apparently, NODE alone does not guarantee accurate function approximations, which is reflected in the larger 
training errors of CNN-NODE compared to FINN, as well as in the test errors—consistently over all experiments. 
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Figure 2.  Plots of the dissolved concentration data generated with the Langmuir isotherm (red) and in-dis-test prediction 
(blue) using different models. The left column shows the solution over x and t (red lines mark the transition from train to 
in-dis-test), the right column visualizes the best solution of each model distributed in x at t = 10,000.
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Figure 3.  Plots of the dissolved concentration data generated with the Langmuir isotherm (red) (as well as a different boundary condition) and out-dis-test prediction 
(blue) using different models. The left column shows the solution over x and t, the right column visualizes the best solution of each model distributed in x at t = 10,000.
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We show with the example that a structurized method to design the model using the FVM discretization as a basis 
is extremely beneficial.

Focusing on the physics-aware ML modeling concepts, we could state that PINN and PhyDNet lie on different 
extremes. Even though PINN has a data-driven feature, it is more dominated by the physics-informed feature. It 
also can be formulated as an inverse problem, for example, to estimate unknown parameters such as the diffusion 
coefficient, but it still requires the modeler to know the complete form of the PDE to be solved. As a consequence, 
the retardation factor function also have to be known in advance to train the model. In contrast to PINN, PhyDNet 
puts more emphasis on the data-driven part, shown by the high number of parameters in the ConvLSTM branch 
compared to the physics-aware branch. Therefore, PhyDNet has more freedom in learning, but can suffer from 
overfitting issues. This is shown by the fact that PhyDNet achieves a very low prediction error during training, but 
its result significantly deteriorates when predicting in-dis-test and out-dis-test data. The introduced FINN concept 
lies somewhere in the middle of these extremes, compromising between the freedom of learning and the rigidity 
of (assumed) physical knowledge. As a result, FINN outperforms the other models, especially on the out-dis-test 
data, which is considered a particularly challenging task for ML models. Finally, while FNO can—in contrast 
to PINN—still be applied to different initial and boundary conditions, it suffers from a noticeable performance 
drop when applied to the new boundary condition. This is not surprising, as the explicit function learned during 
training (mapping continuous space-time coordinates to c) does not hold in the out-dis-test scenario anymore. 
This drawback of FNO could potentially be alleviated by embedding a more robust physics-informed prior in 
FNO, which results in the PINO model (Z. Li et al., 2021).

4.1.3.  Learning the PDE Constituents With FINN

The most important feature of FINN is its ability to interpretably learn the building blocks of the sought PDE. 
In our example, the numerical stencil, the diffusion coefficient and the retardation factor function are learned 
during the training process. The learned numerical stencils and the learned diffusion coefficient D for the linear, 

Figure 4.  Average mean squared error (MSE) comparison of different Machine learning models with the error bars denoting 
the MSE standard deviation. The MSEs are calculated on the train (blue), in-dis-test (yellow), and out-dis-test (red) data set 
generated using the Langmuir isotherm.

Figure 5.  Prediction mean over 10 different trained models (with 95% confidence interval) of the dissolved concentration 
generated using the Langmuir isotherm at t = 10,000 for the in-dis-test data set.
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Freundlich, and Langmuir sorption isotherm data are shown in the second and third column of Table 4. All 
the learned numerical stencils are symmetrical, meaning that the prediction is mass-conservative and clearly 
diffusive.

Assuming that the ideal numerical stencils should be −1 and 1, we normalize the learned diffusion coefficient 
(by multiplying it with the learned numerical stencils) and compare it to the real diffusion coefficient value 
(D = 5.0 × 10 −4 m 2/day) to evaluate the prediction error. The normalized diffusion coefficient for the linear, 
Freundlich, and Langmuir data are shown in the last column of Table 4. In terms of relative error to the real D 
value, these amount to 2.6%, 4.4%, and 10.8% error for the linear, Freundlich, and Langmuir isotherm, respec-
tively. The prediction of the diffusion coefficient values has the highest error and variance for the Langmuir data, 
and the lowest error and variance for the linear data. As a consequence, FINN predicted the linear data with the 
highest accuracy, and Langmuir data with the lowest accuracy (see Table 2). Nevertheless, FINN's prediction 
is still highly consistent, as shown by the low MSE in Table 2 and the almost invisible confidence interval in 
Figures 5 and 6.

Furthermore, a very strong advantage of FINN is its ability to successfully learn closure/constitutional relation-
ships, which are often unknown when modeling a system. In our diffusion-sorption example, the major source of 
uncertainty is the retardation factor R(c), which can be defined with various empirical functions. Figure 7 shows 
the retardation factor learned by FINN, when trained on data generated with the three aforementioned sorption 
isotherms. FINN is able to learn the retardation factor through its module 𝐴𝐴 𝐴𝐴 . The learned retardation factor also 
captures the linearity of the linear sorption isotherm, shown by the straight red line on the left plot in Figure 7. 
The retardation factors from the Freundlich and Langmuir isotherms are also captured well, even with less accu-
racy compared to the linear isotherm. This also contributes to the slightly higher prediction error for the Freun-
dlich and Langmuir data compared to the linear data. Nevertheless, FINN is still able to distinguish between these 
different isotherms very well. Higher accuracy would need more informative data, especially at larger values of c.

4.2.  Learning Using an Experimental Data Set

Synthetic data sets provide good insights into FINN's performance in a controlled experiment, where the data 
set is clean and abundant. However, real-world data is often only sparsely available due to costs or restrictions 

Figure 6.  Prediction mean over 10 different trained models (with 95% confidence interval) of the dissolved concentration 
generated using the Langmuir isotherm at t = 10,000 for the out-dis-test data set. Note that physics-informed neural network 
(PINN) is not valid for predictions on a different boundary condition.

Sorption isotherm Numerical stencil D (m 2/day) Normalized D (m 2/day)

Linear −1.06 ± 0.02 and 1.06 ± 0.02 4.59 ± 0.19 × 10 −4 4.87 ± 0.19 × 10 −4

Freundlich −0.99 ± 0.04 and 0.99 ± 0.04 4.83 ± 0.19 × 10 −4 4.78 ± 0.34 × 10 −4

Langmuir −1.08 ± 0.06 and 1.08 ± 0.06 4.13 ± 0.19 × 10 −4 4.46 ± 0.74 × 10 −4

Table 4 
Learned Partial Differential Equation Constituents by Using Finite Volume Neural Network
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of equipments, the amount of time required to obtain useful data, or the difficulty in direct measurement of the 
system's internal states.

In the experimental setup described in Section 2.1, the dissolved TCE concentration distribution inside the clay 
sample is unobservable throughout the experiment. The only means of measuring the dissolved TCE concen-
tration is through the water flushing below the lower end of the clay cylinder, as of now called a breakthrough 
curve. Furthermore, the total TCE concentration can only be measured at the end of the experiment, by cutting the 
clay specimen into slices to enable direct (but destructive) measurement of the total TCE concentration. Hence, 
the dissolved concentration data is available as a breakthrough curve, which has only a single data point at each 
time step; and the spatial distribution of the total concentration data is available only at the final time step, and at 
coarse spatial resolution. Additionally, the observation data obtained from the experiment is very sparse and also 
noisy. All these challenges associated with the use of real-world data prompt the implementation of UQ meth-
ods on FINN to provide honest and reliable predictions that would be useful for aiding critical decision making 
processes or hypothesis testing.

For this real-world application, three core samples are retrieved from the same geographical area, namely core 
samples #1, #2, and #2B (Nowak & Guthke, 2016). Consequently, similar soil parameters can be assumed for all 
three samples, which are summarized in Table 5. The breakthrough curve of core sample #2 is the least noisy, 
and hence is chosen as the training data; whereas the breakthrough curve of core #1 is chosen to test the trained 
model. Additional test is also performed with the data from core sample #2B. However, core #2B is significantly 
longer than the other samples and the bottom of the setup is closed (no flushing). By the end of the experiment, 
no measurable TCE has yet arrived at the bottom end of the sample. Numerically, the experiment is modeled with 
the setup as described in Section 2.1, with the initial condition written in Equation 5 and the boundary conditions 
written in Equations 3 and 4 for both core samples #1 and #2. For core sample #2B, because it is closed on the 
bottom, a no-flow Neumann boundary condition is used instead:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

|
|
|
|𝑥𝑥=𝐿𝐿

= 0 ∀𝑡𝑡 ∶ 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 𝑇� (32)

The breakthrough curve of core #2 used as training data only serve for model 
training using the Cauchy boundary condition described in Equation 4. As 
a consequence, no other benchmark models can be used, since all of them, 
except for PINN, have no means of properly implementing numerical bound-
ary conditions other than Dirichlet or periodic. PINN also cannot be applied 
in this example, because the test data set from core sample #1 and #2B have 
different boundary conditions, and therefore the PINN model trained on 
core sample #2 no longer holds for the other samples. Moreover, one of the 
most interesting goals of this experiment is to learn the retardation factor, 
whereas all the considered ML models have no capability to do so explicitly. 
Therefore, we assess the performance of FINN using a comparison to the 
PDE-based physical model—the same as used to generate synthetic data in 
Section 4.1—calibrated to the experimental data as a benchmark. The best fit 
of the physical model is found with the retardation factor modeled using the 
Freundlich sorption isotherm, with Kf = 5.20 × 10 −4 𝐴𝐴 (m

3
∕kg)

n
f and nf = 0.35. 

Note that this Freundlich exponent is considered low, and can be attributed 

Figure 7.  Learned retardation factor of finite volume neural network (FINN) for the linear (left), Freundlich (middle), and 
Langmuir (right) sorption isotherm, compared with the retardation factor generated with the three isotherms.

Parameter Unit Core #1 Core #2 Core #2B

Soil parameters

  D m 2/day 2.00 × 10 −5 2.00 × 10 −5 2.78 × 10 −5

  ϕ – 0.288 0.288 0.288

  ρs kg/m 3 1,957 1,957 1,957

Simulation domain

  L m 0.0254 0.02604 0.105

  r m 0.02375 0.02375 N/A

  T days 38.81 39.82 48.88

  Q m 3/day 1.01 × 10 −4 1.04 × 10 −4 N/A

  csol kg/m 3 1.4 1.6 1.4

Table 5 
Parameter Values of Various Clay Core Samples for the Laboratory 
Experiment
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to the scarcity of the training data. This also shows that even fitting a well-defined physical model to limited data 
could lead to inaccuracies.

For this application, FINN is implemented with the use of the module 𝐴𝐴 𝐴𝐴 . Here, the module 𝐴𝐴 𝐴𝐴 is defined as a 
feedforward network with the size of [1, 10, 20, 10, 1] that takes c as an input and outputs the retardation factor 
R(c). The diffusion coefficient is assumed to be known and measurable for all the core samples (Nowak & 
Guthke, 2016), and therefore is not learned by FINN. As in the synthetic case, FINN is trained with the objective 
to minimize the deviation between the model predictions of c as a breakthrough curve and the total concentration 
ct at the end of the experiment. Also, in contrast to the synthetic data scenario, FINN is now trained using the 
Bayes-by-backprop method as outlined in Section 2.4 using Equation 19 as the loss function formulation. Even 
though the Bayes-by-backprop method manages to provide reasonable UQ of FINN's prediction, it fails to learn 
the standard deviation parameter σ sufficiently (i.e., the learned σ values do not differ much from the initial 
values).

Due to the limitations of the Bayes-by-backprop method, we alternatively use three different MCMC meth-
ods, namely the random walk MH, MALA, and Barker. Starting with random initial values of FINN's parame-
ters, samplings are performed with these three methods for 102,000 iterations, with the 2,000 initial iterations 
discarded as the burn-in period, resulting in 100,000 effective iterations. This number is chosen as the upper limit, 
to investigate which MCMC method provides decent convergence and offers the most efficient sampling under 
acceptable computational time.

Out of the 100,000 iterations, we thin out the samples by saving only every tenth iteration, resulting in a total of 
10,000 samples. The step size h is chosen so that the acceptance rate amounts to approximately 23% (Reuschen 
et al., 2021). This corresponds to h = 10 −2 for MH, h = 7 × 10 −6 for MALA, and h = 4 × 10 −3 for Barker. As 
shown by the trace plot (the left plot in Figure 8), all methods improve the log posterior substantially after only a 
few iterations. However, looking at the zoomed-in plot (the right plot in Figure 8), none of the used MCMC meth-
ods converge well to an equilibrium distribution, as evidenced by the downward trend of the log posterior even 
until the last iteration. Even though MALA has better convergence compared to the other methods, the acceptance 
rate quickly deteriorates. This can be attributed to the fact that MALA is less robust to high step size (Livingstone 
and Zanella (2019), although the step size used for MALA is already very low in this case).

To improve the performance of the MCMC chains, we start the sampling with optimized parameter values of 
FINN. To obtain this, FINN is first trained deterministically as in the synthetic data scenario, and the param-
eter values of the trained FINN model are used as the starting point of the MCMC chain. Samplings are then 
performed for 100,000 iterations, without the burn-in period (since we start with optimized values), again thin-
ning by a factor of 10, resulting in a total of 10,000 samples. The corresponding step sizes are h = 10 −2 for MH, 
h = 3 × 10 −5 for MALA, and h = 5 × 10 −3 for Barker.

As shown by the log posterior trace plot (the left plot in Figure 9), there is a downward trend in the log posterior 
of the samples. This is fundamentally caused by using an excellent starting point with minimized error (statisti-
cally too good to be a representative sample), resulting in less good (but as of then statistically valid) subsequent 

Figure 8.  Trace plot of the log posterior starting with random initial values (left) and the zoomed-in plot after 5,000 
iterations (right) for the Metropolis Hastings (MH, blue), Metropolis-adjusted Langevin algorithm (MALA, orange), and 
Barker (green) MCMC methods.



Water Resources Research

PRADITIA ET AL.

10.1029/2022WR033149

22 of 28

samples. When zooming in after 5,000 iterations, we observe that the performance of both the gradient-based 
MCMC methods, namely MALA and Barker, is better than that of MH. It is also worth to note that the step size 
tuning for both MALA and Barker method is not straightforward due to the influence from the loss gradient on 
the jump distribution, and therefore, could potentially lead to a heavier computational burden.

Among these two gradient-based MCMC methods, Barker shows the best behavior with the highest and most 
stable log posterior values, indicating proper sampling from the desired posterior. On the other hand, the log 
posterior value of the samples obtained using MALA is still slightly decreasing. This result shows that Barker 
scales well for higher dimensionality, especially when the chain is properly initialized. All in all, only the opti-
mized Barker MCMC finishes its burn-in properly and reaches an equilibrium distribution, that is the desired 
posterior, within the 100,000 iterations window.

Another way to quantify the predictive performance/sharpness of the MCMC methods is to plot the reliability 
curve as defined in Jospin et al. (2022), which is calculated using the cumulative distribution function across all 
samples, compared to its observed probability (i.e., ordered against the actual data). The reliability plot enables 
evaluation of the model's predictive performance. The model is described as underconfident if the reliability 
curve lies above the baseline, and overconfident otherwise. As shown in Figure 10, all the methods with random 
initialization (left plot) lie further from the ideal condition compared to the methods with optimized starting 
point (right plot). Among all the methods, Barker MCMC with optimized initialization lies the closest to the 
ideal condition, confirming further that the samples generated by the optimized Barker MCMC provides the best 
predictive performance. It is also interesting to note that the models are overconfident for lower extremes and 
underconfident for higher extremes. One possible explanation is that the data error is not Gaussian.

Figure 9.  Trace plot of the log posterior starting with optimized initial values (left) and the zoomed-in plot after 5,000 
iterations (right) for the Metropolis Hastings (MH, blue), Metropolis-adjusted Langevin algorithm (MALA, orange), and 
Barker (green) Markov chain Monte Carlo methods.

Figure 10.  Reliability curves of the Metropolis Hastings (MH, blue), Metropolis-adjusted Langevin algorithm (MALA, 
orange), and Barker (green) Markov chain Monte Carlo methods initialized randomly (left) and with optimized values (right). 
The baseline for the ideal condition is shown by the black dashed line.
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The predictions obtained using the optimized Barker MCMC are shown in Figure  11. The MCMC method 
augment FINN's prediction with a confidence interval, which captures most of the noisy observation data 
inside, showing sufficient UQ. Quantitatively, FINN achieves lower training error on core sample #2 data with 
MSE = 5.43 × 10 −4, compared to the physical model with MSE = 1.06 × 10 −3. During testing with data from core 
sample #1, FINN also outperforms the physical model with MSE = 1.41 × 10 −3 compared to MSE = 2.50 × 10 −3, 
because the calibrated physical model underestimates the TCE breakthrough curve. When tested against data 
from core sample #2B, which has a different type of numerical boundary condition implemented, FINN again 
achieves lower prediction error with MSE = 1.16 × 10 −3 compared to the calibrated physical model that overes-
timates the TCE concentration with MSE = 2.73 × 10 −3. Because there is no breakthrough curve data available 
for this specific sample, we compare the prediction against the total concentration profile c(x, t = T) at the end 
of the experiment. The differences between FINN and the physical model prediction are not very clear in the 
breakthrough curve plots because both predictions have only small variance at the end of the sample. However, 
the error of the physical model prediction becomes more apparent in the total concentration profile (Figure 11, 
bottom left).

Moreover, we also plot FINN's learned retardation factor in comparison to the calibrated Freundlich retardation 
factor, which shows that the best-fitting available sorption isotherm model fails to capture the retardation factor 
shape as learned by FINN, possibly leading to the higher prediction error of the calibrated physical model in both 
cases of training and testing. Overall, FINN outperforms the calibrated physical model by learning the retardation 
factor better than the parametric sorption isotherm model using only the breakthrough curve of core sample #2 
(i.e., only 55 data points) and successfully applies it to the other samples with relatively high accuracy.

As a side note, this real-world application example adopted in this work was performed in a small-scale laboratory 
experiment. With the corresponding scale, homogeneity could be assumed for the modeled soil parameters. For 
a larger-scale application (i.e., field-scale), the assumption might no longer hold, and thus heterogeneity would 
have to be taken into account. To account for heterogeneity, FINN has to either adopt a geostatistical approach to 
model the heterogeneous distribution of the parameter (e.g., the diffusion coefficient), or a graph representation.

Figure 11.  Breakthrough curve average prediction of finite volume neural network (FINN, blue line) and its 95% confidence 
interval (blue shade) during training on core sample #2 (top left), during testing on core sample #1 (top right) and total 
concentration profile of core sample #2B (bottom left). The predictions are compared with the experimental data (red circles) 
and the results obtained using the physical model (orange dashed line). The learned retardation factor R(c) is shown in the 
bottom right plot.
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Finally, even though we only showed the application of FINN to a subsurface contaminant transport problem, it 
is also applicable to a range of other problems or equations, such as the 2D Burgers' the diffusion-reaction equa-
tion, and the Allen-Cahn equation. For further details, we refer the interested readers to our ML-focused paper 
(Karlbauer et al., 2022). FINN lays the groundwork for further development of hybrid modeling frameworks in 
this area, and hopefully can be used for an even wider range of problems in the future, such as weather and climate 
simulation or investigation of improved constitutive relations in multiphase flow.

5.  Summary and Conclusion
In this work, we applied FINN, a hybrid modeling framework that induces physical inductive biases into an 
ANN learning paradigm. FINN is based on the numerical structure of the FVM for solving PDEs, as well as on 
conditions such as monotonicity and non-negativity of functions or parameters to constrain the model training. 
FINN learns numerical stencils, unknown constitutional/closure relationships, and/or parameters to predict vari-
ables of interest in spatiotemporal physical systems. Using a well-controlled subsurface contaminant transport 
benchmark, we showed that FINN is beneficial in comparison to pure ML models as well as physics-motivated 
and physics-aware ML models for several reasons.

First, FINN demonstrates superior generalization when tested against extrapolated data and data generated with 
different boundary condition. The other ML models participating in our comparison have the tendency to overfit, 
while PINN is not even applicable to the same system with a different boundary condition.

Second, FINN allows proper treatment of different boundary condition types, whereas other models are only 
applicable to boundary condition types with constant values such as Dirichlet or periodic ones, because of the 
convolutional structure adopted in most of the other models. As a result, only FINN can be trained on data under 
a Cauchy boundary condition in the form of a diffusive breakthrough curve in the real-world experimental data 
example.

Third, FINN can be trained with a sparse data set without compromising its learning ability and its prediction 
accuracy. It was shown in the real-world data example that FINN was trained with only 55 data points, yet it 
generalized well to other unseen samples, even one with a different boundary condition type. This also implies 
that FINN is applicable to real-world data that is noisy and sparse. Hence, FINN offers a data-driven modeling 
approach that goes beyond a surrogate modeling tool.

Fourth, FINN provides flexibility in choosing between different UQ methods, especially due to its compara-
tively low number of parameters. FINN can be paired not only with the variational inference type of UQ (i.e., 
Bayes-by-backprop), but also with MCMC methods. Additionally, the widely available automatic differentiation 
tools in various ML libraries enable the use of gradient information in both MALA and Barker MCMC, leading 
to better performance compared to a random walk MH. Furthermore, these automatic differentiation tools also 
promote finding an optimal starting point for the MCMC chain, by first training FINN deterministically.

Fifth, and probably most importantly, FINN's structure provides a high degree of model explainability. Through 
its structure, FINN can explicitly learn unknown constitutive/closure relationships or parameters, which are 
usually the main source of uncertainty in physical systems modeling. The particular example shown in this work 
is the unknown retardation factor as a function of concentration. Because the available sorption isotherm models 
describe the retardation factor function using few parameters, they are not flexible enough to be calibrated to 
learn the “true” shape of the function. FINN, on the other hand, has the full flexibility to learn it.

To re-emphasize, in this work we did not intend to develop FINN as a faster and more efficient surrogate model 
in place of known equations and their numerical solvers. The only comparison between FINN and a traditional 
numerical simulation model was presented on the real-world problem example. The purpose of this comparison 
was to show that, when calibrating the physical model, we are faced with discrete choices of models that lead to 
difficulties in capturing the “true” functional relationship. FINN, on the other hand, alleviates this problem by 
providing a flexible way of learning the unknown relationship, as shown in Section 4.2.

Despite the promising benefits of FINN, we realized that there is still a lot of room for improvement. For instance, 
the computation time of FINN is still not optimized, because the implementation is highly dependent on the 
available NODE package. It will not be as fast as PINN, because PINN models the system as an explicit function 
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of x and t, allowing to parallelize the computation. The recurrent structure in FINN and other models, such as 
ConvLSTM, DISTANA, and PhyDNet, on the other hand, prohibit full parallelization.

Additionally, FINN offers room for possible extension of the underlying physical theory behind the framework. 
For example, it could be enabled to account for non-Fickian diffusion or dispersion, where the diffusion coeffi-
cient can be a highly complex function of many variables, or for other neglected processes that may contribute 
significantly to the modeled system, such as chemical transformation, evaporation, or advection. In these cases, 
FINN's structure would need to be modified to allow for a more complicated representation of the unknown 
functional relationships. This could be achieved, for example, not only by including more independent variables 
as input to the different neural network modules, but also spatio-temporal dynamics of more dependent variables 
to be approximated by FINN (e.g., including more non-linearly coupled PDEs).

To upscale FINN to a field size domain, spatial heterogeneity also has to be taken into account, due to the high 
possibility of higher variations of the geophysical properties across a larger area. It is possible to model a heter-
ogeneous system either by modeling the diffusion coefficient as a function of space, complemented by geostatis-
tical methods, or by modifying FINN's neural network modules to be connected via a graph-like structure. This 
will allow for more freedom in the modeled interactions and the message passing between neighboring spatial 
control volumes as well as in implementations on unstructured grids.

UQ of ML models is still a broad and open research area, due to the complicated nature of ML models, and ANNs 
in particular. More rigorous analysis of UQ on FINN can further improve the predictive performance and foster 
the interpretability of the model itself. Furthermore, it would also be beneficial to reach a fully accurate total 
UQ over inferred scientific hypotheses. This could include not only the uncertainty from parameters, closures, 
and stencils covered in this work, but also over entirely different conceptualizations of a system. The latter could 
result in different structural set-ups of FINN. Additional research is necessary to pursue these challenges.

Data Availability Statement
All codes used for generating the train, in-dis-test, and out-dis-test data and reproduce all the results in this paper 
are preserved at https://doi.org/10.5281/zenodo.7260671, available via the MIT license and developed openly at 
https://github.com/CognitiveModeling/finn (Praditia et al., 2022).
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