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Abstract

Dynamic load models are fundamental components for simulating and analyzing

a power system. Due to their utmost importance, a wide range of dynamic mod-

els have been introduced within the past years, able to accurately capture the dy-

namic behavior of conventional loads. However, new grid technologies, such as

distributed generation (DG) and controllable loads, are gradually emerging, trans-

forming the purely load-composed distribution networks to active distribution net-

works (ADNs). Therefore, it is vital for Transmission System Operators (TSOs) to

upgrade the existing load models and reassess the stability of their system.

Motivated by study conducted in Germany several years ago, this thesis attempts

to determine the steady-state relationship between the frequency and active power

using real measurement data. As a next step, the respective methodology for devel-

oping load models, which was proposed several years ago, is further extended so

that it can be applied to modern distribution networks with DG. The results of the

“old” and the current study are compared revealing how much the load dynamics

have changed within the past years.

The thesis continues with introducing a three-stage methodology to effectively

build a set of dynamic models for an ADN based on field measurements. In the first

stage, the proposed clustering method identifies and then discards all the irrelevant

data for the model parameter estimation. In the next stage, the remaining data are

clustered into groups with similar dynamics while in the third stage, a nonlinear

dynamic model is developed for each of the derived groups. It is concluded that,

in spite of the large number of measurements representing a wide range of grid

configurations, the general dynamic characteristics of an ADN can be accurately
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Abstract

captured using a limited number of models.

Finally, this thesis aims at modeling the uncertainty induced by the stochastic na-

ture of load and DG. To do so, a new probabilistic dynamic model is proposed that,

except for its response, additionally yields the corresponding predictive uncertainty.

This probabilistic model is further enhanced so that it can directly incorporate time

and weather variables. It is shown that this model can decode the influence of this

kind of exogenous variables and convert it into more accurate predictions.
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Kurzfassung

Lastmodelle sind grundlegende Komponenten für die Simulation und Analyse eines

Stromnetzes. Aufgrund ihrer großen Bedeutung wurde in den letzten Jahren eine

große Anzahl dynamischer Modelle eingeführt, die das dynamische Verhalten kon-

ventioneller Lasten genau modellieren können. Neue Netzkomponenten, wie z.B.

dezentrale Erzeugung und steuerbare Lasten, entstehen jedoch nach und nach und

verwandeln lastdominierte Verteilnetze in aktive Verteilnetze. Daher ist es für die

Übertragungsnetzbetreiber (ÜNB) unerlässlich, die bestehenden Lastmodelle zu ak-

tualisieren und die Stabilität ihres Systems neu zu bewerten.

Angeregt durch eine vor einigen Jahren in Deutschland durchgeführte Studie

wird in dieser Dissertation versucht, die stationäre Beziehung zwischen Frequenz

und Wirkleistung zu bestimmen. Im nächsten Schritt wird die entsprechende Me-

thodik zur Entwicklung von Lastmodellen, die vor einigen Jahren vorgeschlagen

wurde, so erweitert, dass sie auf moderne Verteilnetze mit dezentraler Erzeugung

angewendet werden kann. Die Ergebnisse der “alten” und der aktuellen Studie wer-

den verglichen und zeigen, wie stark sich die Lastdynamik in den letzten Jahren

verändert hat.

Im weiteren Verlauf der Dissertation wird eine dreistufige Methodik vorgestellt,

um eine Reihe von dynamischen Modellen für ein aktives Verteilnetz zu erstellen.

In der ersten Stufe identifiziert die vorgeschlagene Clustermethode alle relevanten

Daten für die Parameteridentifikation. In der nächsten Stufe werden diese Daten in

Gruppen mit ähnlicher Dynamik geclustert. In der dritten Stufe wird ein nichtlinea-

res dynamisches Modell für jede der generierten Gruppen entwickelt. Man kommt

zu dem Schluss, dass trotz der großen Anzahl von Messungen, die ein breites Spek-
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trum von Netzkonfigurationen repräsentieren, das allgemeine dynamische Verhalten

eines aktiven Verteilnetzes mit einer begrenzten Anzahl von Clustern genau erfasst

und modelliert werden kann.

Schließlich zielt diese Dissertation darauf ab, die Unsicherheit zu modellieren,

die durch die stochastische Natur der Last und der dezentralen Erzeugung entsteht.

Zu diesem Zweck wird ein neues probabilistisches dynamisches Modell vorgeschla-

gen, das abgesehen von seiner deterministischen Antwort auch die entsprechende

Prognoseunsicherheit liefert. Dieses probabilistische Modell wird weiter verbessert,

so dass es Zeit- und Wettervariablen direkt einbeziehen kann. Es wird gezeigt, dass

dieses Modell den Einfluss dieser Art von exogenen Variablen entschlüsseln und in

genauere Vorhersagen umsetzen kann.
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Chapter 1

Introduction

This chapter introduces the problem of dynamic load modeling, which was recently

extended to the dynamic modeling of active distribution networks (ADNs). The

chapter briefly discusses the main approaches that have been proposed in the lit-

erature and their characteristics. Next, current challenges and issues in the exist-

ing approaches are identified in order to set the ground for the objectives and the

contributions of this work. The chapter ends with the thesis outline and a list of

publications derived by this work.

Before starting with the background and motivation of this work, it is important

to clarify the terms dynamic load model and equivalent model, which form the main

core of this thesis. Those terms refer to the dynamic models used in power system

stability studies in order to capture the dynamic behavior of a distribution network as

a whole during electromechanical transients. Those models should not be confused

with “load models” that generate time series of load forecasts.

1.1 Background and motivation

In the last two decades, power systems worldwide experience tremendous changes

in an attempt to mitigate climate change [5, 6]. Following this trend, the Euro-

pean power system has already changed drastically while even more changes to-
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Figure 1.1: Traditional passive distribution network [1].

wards a fossil-fuel-free system are expected within the next years [7]. The climate

policies and the technological advances in renewable energy sources (RES) have

led to the wide penetration of distributed generation (DG) in distribution networks.

Under these new circumstances, the passive load dominated distribution networks

(Fig. 1.1) are being transformed to active systems, usually known as “ADNs” in the

literature [2, 8].

RES are predominantly connected to the grid through power electronics which do

not have the same stabilizing properties as a synchronous generator [5]. At the same

time, plug-in electric vehicles (EVs) are typically viewed as a promising pathway to

decarbonize the transportation sector in the long-term. Moreover, the penetration of

controllable loads comprised by power electronics has significantly increased [2].

As a result, RES, EVs, and the changing nature of loads introduce new variables

in the power system equation (Fig. 1.2). Power system stability is becoming a

crucial issue for planning and operating transmission systems and dynamic security

assessments gain in importance [9]. Hence, this transition requires appropriate tools

and changes in power system operation and planning [10].

More importantly, the changing distribution grid architecture yields the necessity

of upgrading the existing dynamic models that are still deployed by the Transmis-

sion System Operators (TSOs) for estimating the impact of the distribution networks

on the overall power system dynamics [11]. This impact can be split into two main

components. The first one originates from the load and is also known as the self-

regulating effect. The loads react to changes in frequency and voltage causing, most

2
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Figure 1.2: Modern active distribution network [1].

of the times, a stabilizing effect on active and reactive power imbalances. The sec-

ond component is attributed to the DG which may support the voltage and/or the

frequency of the system based on the given control strategies [12].

Therefore, it becomes clear that it is vital for TSOs to accurately model the un-

derlying ADNs in order to adequately assess the stability of their system. The ne-

cessity of accurate models is also emphasized by the fact that many blackouts have

showed the consequences of incorrect modeling of distribution networks in stability

studies [13].

To model a power system for stability studies, one solution could be the trans-

mission and distribution system co-simulation (T&D co-simulation), where both

systems are modeled in detail. Recent approaches of T&D co-simulation can be

found in [14, 15, 16].

However, a detailed model development is a rather delicate task since it demands

a concrete knowledge of each individual component in the system, ranging from the

various distributed generators, partially with stochastic production, to the exact en-

ergy consumption of the power consumers. Consequently, the development of an

accurate model which takes into consideration the aforementioned variables is prac-

tically impossible. First of all, the computational requirements of such a detailed

representation of the system alongside with the time constraints that characterize

the dynamic simulations of the power system cannot be met. Secondly, the data

3
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Active Distribution 
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~

Transmission Network

~

~

Transmission Network

~

~

Active Distribution 

Network 2

Equivalent 

ADN Model 2

Figure 1.3: Aggregate individual ADN components to develop an equivalent model.

corresponding to load composition such as the total energy consumption of motors,

electrical appliances or lighting is unknown [2].

Another solution for modeling distribution networks is the reduced-order or dy-

namic equivalent model. Both terms refer to the same principle and are used inter-

changeably in the rest of the thesis. Those reduced-order models are expected to

capture the dynamics of a distribution network as a whole without knowing the ex-

act network architecture [17]. This characteristic leads to a significant reduction in

model complexity compared to the detailed modeling approach [18]. Nevertheless,

those equivalent models need to be characterized by a meaningful trade-off between

computational complexity and accuracy. Once this trade-off is adequately met, the

dynamic equivalent models can be safely integrated by the TSOs into their models

used for stability studies. An illustrative representation of the reduced-order models

is shown in Fig. 1.3.

Due to the ability of equivalent models to capture the dynamics of the system

while keeping the computational complexity low, significant research effort was put

on developing those dynamic models [2].

4
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1.2 Current challenges

Two contrasting methodologies for building dynamic distribution network models,

or dynamic load models as usually called, can be found in the literature, namely

the component-based [19, 20, 21, 22, 23] and the measurement-based approach

[24, 25, 26, 27, 28, 29, 30]. The former relies on detailed knowledge of the com-

ponents comprising the distribution network and their individual dynamic models

whereas the latter is based on field measurements in order to capture the load dy-

namic behavior. A detailed overview of the existing work based on those two ap-

proaches is presented in Chapter 2.

The measurement-based approach has been widely used in the literature since it

can be applied to any distribution network without requiring highly detailed knowl-

edge of the system [2]. In this context, the applied measurements should correctly

reflect the time-varying dynamics of an ADN. However, the majority of the inspir-

ing research work following the measurement-based approach deploys synthetic

data generated by a simulation software or by a small laboratory-scale microgrid

[3, 10, 11, 29, 30, 31, 32, 33, 34, 35, 36, 37]. Yet the accordance between the

synthetic and real data may be questioned since no validation results have been

documented. In reality, ADN dynamics can strongly vary based on geographical

and seasonal variations [2]. Both the load and the DG are constantly changing not

only in magnitude but also in composition. Thus, models derived from synthetic

data may fail to model ADNs in a realistic fashion.

A significant smaller amount of research work has employed real data in order

to build dynamic equivalent load models [24, 25, 28, 26, 27, 38, 39]. However, the

data were obtained around a decade ago, when distribution networks were governed

by passive load components and the measurements reflected only conventional load

dynamics. Nowadays, DG has a large influence on the system dynamics due to

the various grid codes worldwide for voltage support. Therefore, an ADN may

exhibit an entirely different dynamic behavior based on whether the DG units are in

operation. As a result, at least two fully distinct models may be required to capture

the various dynamics of the same ADN.

5
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More importantly, [25, 26, 39] demonstrated the strong time-varying nature of

the load model parameters. In this context, it is commonly recognized that models

relying only on a small amount of measurements are unreliable, and thus measure-

ments should be acquired over a reasonable amount of time so that seasonal varia-

tions are considered [24, 35, 39]. In this regard, the inspiring work of [40] aims at

addressing the issue of limited data by acquiring field measurements for a complete

year. However, this approach employs purely static models neglecting the system

dynamics while it is restricted to traditional load-composed distribution systems,

where no DG dynamics are considered. Furthermore, 384 different models were

developed for each substation corresponding to different combinations of half hour

intervals within a day (48), the type of the day, i.e., weekend or not (2), and the sea-

son (4); a fact that resulted in a large number of nearly identical models. Hence, it

becomes clear that a meaningful split of the measurement data in order to build vari-

ous dynamic models, i.e., developing models for combinations of hour, day, month,

high or low temperature, while avoiding redundant models is not straightforward.

Furthermore, although measuring over, e.g., a year can capture a wide range

of distribution system configurations (topology, load magnitude and composition),

irrelevant measurements can be also recorded as the trigger criteria cannot distin-

guish the cause of the disturbance. In this regard, since those dynamic models are

expected to be deployed in power system dynamic simulations and stability studies,

data that do not reflect the response of the ADN to an external disturbance should be

discarded from the system identification procedure [2]. For example, faults within

the examined grid, wrongly triggered measurements, connection/disconnection of

big consumers/DG within the examined grid, highly noisy data and outliers can be

additionally recorded. Hence, long measuring periods usually result in big datasets,

in which manual data processing would be an extremely time-demanding task. Be-

sides that, identifying a different model for each measurement will simply yield

overfitted models, valid only for a specific grid configuration. To this end, the

optimal number of dynamic models, which adequately capture the general ADN

characteristics while maintaining reliable levels of accuracy is an open question and

strongly depends on the recorded dataset.

6
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Another crucial issue that should be pointed out is the direct deployment of the

initial power values in various model structures, as thoroughly analyzed in Chapter

2. In modern ADNs, the recorded power at the point of common coupling (PCC),

i.e., connection point between transmission and distribution network, expresses the

net consumption and does not reflect the real power demand but rather the difference

between the real load and the power generated by DG. Therefore, using the raw

recorded power values may lead to error-prone models, due to the high volatility

of DG, which vary their feed-in depending on the weather conditions and the grid

codes for voltage support [41]. At the same time, bi-directional power flows that

may occur in the context of ADNs pose even more challenges in the development

of reliable ADN models [4].

Lastly, state-of-the-art methods employing the measurement-based approach do

not account for the stochastic nature of load and DG, where the consumers con-

tinuously alter their power demand and the RES adjust their generation based on

weather variations. In the literature, almost all the existing approaches are based on

deterministic dynamic models. Those models do not model the uncertainty induced

by the volatile RES and fluctuating load nor provide information on whether the

yielded responses under previously unseen scenarios should be trusted or not.

To sum up, dynamic models based on simulation-generated synthetic data may

not always reflect the underlying dynamics in a realistic fashion. For example, the

measurements recorded during the blackout in Western North America in 1996 did

not agree with the simulation results based on the Western Electricity Coordinating

Council (WECC) models [42]. In this context, there is also a lack of real up-to-date

measurement data reflecting the influence of the new load types and DG on ADN

dynamics. In addition, data processing techniques have been identified as a field

that needs to be further enhanced in order to effectively handle the large amount of

data collected by measurement devices [2]. Regarding the modeling itself, the ideal

number of dynamic models capturing the time-varying nature of loads and DG while

balancing accuracy and generalization capability poses one of the most challenging

questions in load/ADN modeling [2, 26, 38]. Moreover, complex models character-

ized by a large number of parameters are hard to be applied in practice. Hence, a
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reasonable trade-off between model complexity and performance is necessary [2].

It should be also highlighted that the direct deployment of the raw power values

recorded at the PCC may lead to error-prone models in ADNs with DG [41]. Fi-

nally, the output of deterministic dynamic models cannot provide information about

the uncertainty induced by load and DG, since a single prediction point is yielded

for each time step.

1.3 Objectives and contributions of this thesis

As thoroughly described in the previous section, there are several open questions

and issues associated with the development of generic yet accurate ADN models for

dynamic simulations. To this end, the objective of this work is to propose a complete

methodology to develop dynamic ADN models based on the measurement-based

approach while addressing the aforementioned challenges. Specifically, the main

objectives of this thesis are listed below:

• The development of a dynamic model that takes as input a voltage signal mea-

sured at PCC and generates the active or reactive power response of the un-

derlying ADN. Importantly, this dynamic model aims at capturing electrome-

chanical transients that are typically described by a time resolution within

the range of 10−2s - 1s [35]. During those transients, the bus voltage may

vary by ±10% from the nominal value [43] and thus, small-signals dynamics

are modeled. Note that this work does not cover dynamic models capturing

large-signal behavior (e.g., due to short circuits), slow dynamics (e.g.,due to

thermal loads), electromagnetic transients, and harmonics.

• The development of a dynamic model that can be integrated into power sys-

tem stability studies.

• The use of recent field measurements acquired over a reasonable amount of

time so that seasonal grid variations (different topology, load magnitude and

composition) are considered.
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• The development of a data processing technique that can handle a large amount

of measurements and identify the relevant data with respect to system identi-

fication.

• The development of a methodology to determine the optimal number of dy-

namic models required to capture the general ADN characteristics while main-

taining reliable levels of accuracy.

• The development of a model that can capture the nonlinear load and DG dy-

namics without being extremely complex. The reasonable model complexity

is essential for the practical implementation of the derived models in simula-

tion environments.

• The development of a method that can model the uncertainty induced by the

stochastic nature of load and DG.

• The incorporation of a list of exogenous variables in the modeling procedure

in order to capture their influence on the time-varying ADN dynamics.

This thesis proposes a range of models and methodologies that are able to address

the objectives listed above. In particular, the various contributions of this work can

be summarized in the following points:

1. All models and methods developed within this research work are based on

real field data acquired over a year in several different substations.

2. Contrary to most of the existing approaches assuming a homogeneous dataset

of measurements for building a generic ADN model, this thesis presents an

approach that renders this assumption unnecessary by proposing a minimum

number of models required to accurately capture the time-varying dynamics

of an ADN.

3. Based on the imperative need of the ADN modeling approaches to be robust

to bad data [2], this thesis suggests an efficient method to automatically de-

tect outliers and irrelevant measurements within a large dataset of recorded

signals.
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4. This thesis introduces a novel unsupervised learning method for grouping

measurements with similar dynamics into clusters. Importantly, this method

can be readily applied to any time-varying dynamical system characterized

by distinct sets of dynamics. Note that this approach concerns time-varying

dynamical systems where no information is available to identify the different

set of dynamics from.

5. Unlike most of the existing models that neglect complex DG control schemes

for voltage support, the proposed methodology considers the voltage con-

troller dynamics in a realistic fashion.

6. A performance evaluation of four clustering algorithms of different notion

and complexity is conducted in order to address their applicability in cluster-

ing dynamic behavior.

7. The proposed models tackle the issue regarding the recorded power values

at PCC originated by the generation within an ADN. In this context, those

models can accurately capture reverse power flows that may occur after a

voltage disturbance.

8. This thesis compares the performance of different dynamic ADN models

which were developed using the proposed unsupervised learning methodol-

ogy.

9. The complete modeling methodology is ADN-agnostic, meaning that it can

be effortlessly applied in any given ADN, and does not require detailed infor-

mation about the system, e.g. load/DG types, DG feed-in at the moment of

the disturbance, such as other approaches in the literature.

10. A new application of probabilistic machine learning in the modeling of power

systems is introduced.

11. This thesis comments on the feasibility and the challenges of applying prob-

abilistic models in the dynamic modeling of ADNs.
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12. This thesis proposes a novel probabilistic dynamic model that encodes the

stochastic, nonlinear, and complex nature of an ADN mainly caused by the

integration of volatile RES and the time-varying nature of the load.

13. This work introduces for the first time a dynamic load/ADN model that can

incorporate a set of exogenous variables in order to generate more accurate

predictions.

14. Important nonlinear correlations between ADN dynamics and various time

and weather variables are revealed.

15. A method for identifying the separate influence of load and DG within an

ADN dynamic response is proposed.

16. A comparison between model parameters estimated more than 20 years ago

and now is presented in an attempt to extract information about how load

composition changed throughout the years.

1.4 Thesis organization

The rest of this thesis is organized as follows.

Chapter 2: This chapter provides a detailed literature review of the load and,

recently, ADN modeling. It starts with the implementation details of the two ma-

jor methodologies, namely the component-based and the measurement-based ap-

proach. The chapter continues with the basic model structures and then moves on

to more complex ones. Various state-of-the-art models and parameter estimation

techniques are also discussed within this chapter.

Chapter 3: This chapter gives an insight on the measurement procedure fol-

lowed for the needs of this work, the triggering criteria, the acquired data, the pre-

processing techniques applied to the data, and the general characteristics of the

measured distribution networks. Additionally, the influence of the various DG tech-

nologies and a selection of exogenous variables on the ADN dynamics is investi-
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gated. This investigation plays a major part in the development of accurate ADN

models as confirmed in the following chapters.

Chapter 4: In this chapter, the frequency and power measurements from three

EHV/HV-substations are analyzed in an attempt to derive the steady-state relation-

ship between frequency and active power.

Chapter 5: This chapter encapsulates many of the core contributions of this

work. It rigorously describes the proposed unsupervised learning method for clus-

tering dynamic behavior that can be applied to any time-varying dynamical system

characterized by distinct sets of dynamics, regardless of the science field. Next, the

clustering results using the acquired field data are presented and discussed.

Chapter 6: This chapter presents a linear dynamic model that can be easily

integrated to any power system simulation software available in the market. The

chapter proposes a new methodology to separate a power response into two different

signals. The first one is attributed to the load and the second one is attributed to

the generation. In doing so, two different models, i.e., one for load and one for

generation, can be derived based on those two signal categories. This chapter ends

with a comparison between the dynamic load model parameters estimated several

years ago and now.

Chapter 7: This chapter introduces a nonlinear dynamic ADN model based

on the well-established exponential recovery model (ERM). In the beginning, the

ERM and its modified version for capturing reverse power flow are analyzed. Then,

their main issue in modeling modern ADNs is identified and a new model structure

alleviating this issue is proposed. The chapter ends with validation results using real

measurement data.

Chapter 8: This chapter proposes a new way of modeling ADNs by leverag-

ing the latest advances in probabilistic machine learning. Contrary to almost all

the approaches found in the literature using deterministic dynamic models, the pro-

posed method introduces a probabilistic dynamic model based on Gaussian pro-

cesses (GPs) that yields a probability distribution for each time step. Due to the

inherent flexibility of the model structure, two different alternatives are established.

The first one uses the autoregressive input and output terms as features whereas
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the second one additionally deploys a set of exogenous parameters (apart from the

autoregressive terms).

Chapter 9: This chapter discusses the applicability of the proposed models and

gives guidelines for their optimal integration in power system simulation packages.

Chapter 10: The last chapter provides a summary of this thesis by highlighting

the main findings and conclusions. The chapter ends with suggestions and direc-

tions for future work.

1.5 Mathematical notations

In this thesis, the following notation style is adopted:

• Matrices and vectors are denoted by bold letters.

• All vectors are column vectors.

1.6 Publication list

Based on the work performed for this thesis, the following publications have been

derived:

1. G. Mitrentsis and H. Lens, “A Gaussian Process Framework for the Prob-

abilistic Dynamic Modeling of Active Distribution Networks Using Exoge-

nous Variables, Electric Power Systems Research, 2022.

2. G. Mitrentsis and H. Lens, “Probabilistic Dynamic Model of Active Distri-

bution Networks Using Gaussian Processes,” IEEE PowerTech 2021, Madrid,

Spain, 2021.

3. G. Mitrentsis and H. Lens, “Data-Driven Dynamic Models of Active Distri-

bution Networks using Unsupervised Learning Techniques on Field Measure-

ments,” IEEE Transactions on Smart Grid, 2021.
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4. G. Mitrentsis and H. Lens, “A Dynamic Active Distribution Network Equiva-

lent for Enhancing the Generalization Capability of the Exponential Recovery

Model in Stability Studies,” IEEE Transactions on Power Systems, 2021.

5. G. Mitrentsis and H. Lens, “Unsupervised learning method for clustering dy-

namic behavior in the context of power systems,” IFAC-PapersOnLine. 2020.

6. G. Mitrentsis and H. Lens, “Dynamic modeling of active distribution net-

works using cluster analysis of field measurement data,” NEIS 2020, Ham-

burg, Germany, 2020.

7. H. Lens, G. Mitrentsis, H. Abele, J. Lehner, and C .Schöll, “Measurement

data-based identification of the contribution of distribution networks to the

self-regulating effect,” ETG/GMA Fachtagung Netzregelung und Systemführung,

Leipzig, Germany, 2022

In addition, the following publications were motivated by this work, albeit not

directly connected with the topic of this thesis.

1. G. Mitrentsis and H. Lens, “An Interpretable Probabilistic Model for Short-

Term Solar Power Forecasting Using Natural Gradient Boosting,” Applied

Energy, 2022.

2. G. Mitrentsis, M. Liu, and H. Lens, “Open Source Tool for Probabilistic

Short-Term PV and Wind Power Forecasting,” IEEE PMAPS 2022, Manch-

ester, UK, 2022.

3. G. Mitrentsis and H. Lens, “Enabling Energy Transition: An Interpretable AI

Model for Probabilistic Solar Power Forecasting,” ET. Energiewirtschaftliche

Tagesfragen, 2022.

1.7 Supervised master thesis

While working on the topic of this dissertation, the following master thesis were

supervised at University of Stuttgart.
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1. MengLing Liu - “Wind and solar power generation forecasting using proba-

bilistic machine learning”

2. Samuel Wiertz - “Data-driven modeling of active distribution networks for

dynamic simulations”

3. Philip Grant - “Development of a wind and solar generation forecast model

using machine learning algorithms”
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Chapter 2

Dynamic Load/ADN Modeling -
Literature Review

This chapter provides a detailed literature review of the dynamic load and ADN

modeling. It starts with the implementation details of the two major methodologies,

namely the component-based and the measurement-based approach. The chapter

continues with the basic model structures and then moves on to more complex

ones. Various state-of-the-art models and parameter estimation techniques are also

discussed within this chapter.

2.1 Component-based approach

In the component-based approach, load is generally represented as an aggregation

of an industrial, a residential and a commercial load class, which are also divided

into different load components, such as refrigeration, electronics, lighting, and cool-

ing/heat pump [22]. A static or a dynamic model can be deployed for the modeling

of each one of the load components, while their parameters are extracted through

laboratory experiments [44, 45, 46]. Therefore, although this approach does not

require the installation of special equipment to perform the field measurements, it

cannot be easily implemented in real systems, since it requires a highly detailed load
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composition knowledge. At the same time, this approach is characterized by a low

flexibility in integrating new loads [2]. The hierarchical structure of the component-

based approach is illustrated in Fig. 2.1. For more information, the interested reader

is referred to the component-based implementations of [19, 20, 21, 23].

Residential Industrial Commercial

Aggregate Load

Refrigeration Electronics
Resistive 

Lightning

Cooling/

Heatpump

Load Class

Load Components

……

……

Figure 2.1: Hierarchical structure of the component-based approach [2].

2.2 Measurement-based approach

In the measurement-based approach, the development of the dynamic model can be

considered as a system identification task, where an adequate model structure must

be initially determined and then, the system parameters need to be estimated based

mainly on measurement data. Those data can be either generated by a simulation

software (synthetic data) or by on-site measurement devices (real data)1. Regarding

the model structure, various approaches have been proposed in the literature. Those

models describe the mathematical equations that model the relationship between

voltage (and rarely frequency) with the active and reactive power at the point of

1The terms “real data” and “field data” are used interchangeably referring to the data acquired

by on-site measurement devices.
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common coupling (PCC). The most widely used model structures are analytically

described later in this section.

Once the measurements have been recorded and a specific model structure has

been selected, the parameters are estimated by minimizing the square difference

between the recorded measurements of active or reactive power and the ones gen-

erated by the model. In its simplest form, this cost-minimization problem can be

formulated using the following equation:

min
1

M

M∑
i=1

(yi − ŷi)
2 (2.1)

where yi corresponds to the measurement values of active or reactive power, ŷi
refers to the model response, and i = {1, ...,M} is the measurement index.

As a general rule, voltage magnitudes (V ) and rarely frequency (f ) are the model

inputs while active and reactive power (P , Q) are the model outputs. Load models

can be split into static and dynamic loads based on the mathematical equations that

are deployed.

2.2.1 Static models

A static load model is usually represented by algebraic equations. These models

mainly represent the sensitivity of load active and reactive power to the voltage and

frequency changes.

ZIP model

A widely used load model both for steady-state and dynamic studies is the ZIP

model, which comprises a polynomial equation with a constant power, a constant

current and a constant impedance term [47]:

P = P0

[
a1

( V
V0

)2
+ a2

( V
V0

)
+ a3

]
, (2.2)

Q = Q0

[
a4

( V
V0

)2
+ a5

( V
V0

)
+ a6

]
, (2.3)
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where P0, Q0, V0 are the active, reactive power and voltage initial conditions, re-

spectively, and ai corresponds to the contribution of each term. Representative

works that deploy ZIP models and propose parameter estimation techniques for

its terms can be found in [13, 24, 48, 49, 50, 51, 52, 53, 54, 55, 56].

Exponential model

The exponential load model is a variation of the ZIP model, where the relationship

between power and voltage can be described by an exponential equation [47]:

P = P0

( V
V0

)np

, (2.4)

Q = Q0

( V
V0

)nq

, (2.5)

where np and nq are the voltage dependent parameters of the active and reactive

power, respectively. Representative works concerning the static exponential model

are included in [40, 48, 57, 58, 59].

Frequency dependent model

This model is generated by simply multiplying either the ZIP or the exponential

model equations with the frequency factor

ηf = [1 + af (f − f0)] , (2.6)

where af is a frequency sensitivity parameter and f0 is the nominal frequency of the

examined distribution network [47]. In the rest of the chapter, ηfp and ηfq will refer

to the frequency dependent factor of active and reactive power, respectively. In this

context, indicative examples of applying the frequency dependent factor are found

in [50, 60, 61, 62].

EPRI model

This model was developed by the Electric Power Research Institute (EPRI) and is

a combination of the ZIP, Exponential, and frequency dependent models described
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above [63]. The active and reactive power are calculated using the formulas

P = P0

[(
Pa1

(
V

V0

)np1
)

· ηfp + (1− Pa1)

(
V

V0

)np2
]
, (2.7)

Q = P0

[(
Qa1

(
V

V0

)nq1
)

· ηfq1 +
((

Q0

P0

−Qa1

)(
V

V0

)nq2
)

· ηfq2
]
, (2.8)

respectively. Those two formulas are composed by two terms. In the case of active

power, there is a frequency dependent term multiplied by the frequency dependent

fraction of active power Pa1 and a frequency independent term multiplied by the

remaining fraction of active power. In the case of reactive power, the first term

corresponds to the uncompensated reactive power of the load whereas the second

term corresponds to the compensated reactive power; both are multiplied by differ-

ent frequency dependent factors ηfq1 and ηfq2. Qa1 denotes the ration between the

uncompensated reactive power of the load to the initial active power consumption.

Two representative examples of EPRI model are included in the work of [63, 64].

2.2.2 Dynamic models

In contrast with the static models, dynamic models offer a more accurate representa-

tion of the load by incorporating both voltage and time into their active and reactive

power formulas. Two of the most widely used dynamic models are the induction

motor (IM) model and the exponential recovery model (ERM) [18]. Note that the

IM model is usually combined with static models, e.g., ZIP or exponential model.

This “hybrid” model is commonly known as composite load model (CLM) [2]. In

addition, artificial neural networks (ANNs) have been also proposed as an alter-

native for dynamic load modeling. Recently, new dynamic model structures have

been emerged considering the effects of both load and DG on the system dynamics.

Those model structures are typically called ADN models.
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Induction motor (IM) model

This model is mainly based on a system of differential equation derived by the

equivalent induction motor (IM) circuit shown in Fig. 2.2. Various approaches have

been introduced in the literature [65, 66]. They differ with respect to the level of

detail and, thus, to the number of parameters of the IM model. In Fig. 2.2, Rs and

Rr denote the stator winding and rotor resistance, respectively, while Xs, Xm, and

Xr indicate the stator, magnetizing, and rotor reactance, respectively. The rotor slip

is denoted with s.

V

Rs Xs

Xm

Xr

Rr 

s

Figure 2.2: Equivalent circuit of IM.

Exponential recovery model (ERM)

This model has produced remarkable results in cases of step voltage jumps caused

by on-load tap changing events [67]. The power y (active or reactive) is derived

from the nonlinear equations

y = ys − (ys − yt) · e−
t−t0
Ty , (2.9)

ys = y0

(
V

V0

)Ns

, (2.10)

yt = y0

(
V

V0

)Nt

, (2.11)
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where t0 is the moment of voltage disturbance, Ty is the time constant of the ex-

ponential power recovery, ys, and yt are the steady-state and the transient load re-

sponses, which are modeled using the exponents Ns and Nt, respectively. Indicative

approaches exploiting the ERM have been proposed in [25, 29, 31, 39, 67, 68, 69].

Modifications of this model have been recently introduced in the literature in order

to make it suitable for modeling ADNs [4, 41]. A thorough analysis of those two

ERM modifications is presented in Chapter 7.

Composite load model

As mentioned, a composite load model is the combination of a static and a dynamic

load model. One of the most commonly used composite models is the combined

ZIP and IM model [2, 18]. The equivalent circuit of ZIP + IM model is shown in

Fig. 2.3. Representative works deploying the composite load model can be found in

[24, 25, 38, 50, 60, 66, 70, 71].

Rs Xs

Xm

Xr

Rr 

sP Z

Figure 2.3: Equivalent circuit of ZIP + IM model.

Artificial neural network (ANN) model

Artificial neural networks (ANNs) comprise different layers of processing units,

called nodes, which are interconnected by different weights. ANNs have shown

very good results in learning how to map input into output data. To do so, an ANN
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is typically trained using a procedure called back propagation, which sequentially

minimizes the error between the real and model output by adjusting the network

parameters. A few indicative papers using ANNs for load modeling can be found in

[72, 73, 74]. A more advanced ANN architecture are the recurrent neural networks

(RNNs), which are particularly advantageous at modeling sequential data [75]. Due

to their advantages, RNNs have been also proposed in load modeling. An inspiring

work, which leverages a long short-term memory (LSTM) RNN architecture, has

been recently introduced in [3].

Active distribution network (ADN) model

As already described in Chapter 1, an ADN is a distribution network that may con-

tain DG, modern load types, e.g., power electronics, demand management schemes,

etc. In this context, a detailed modeling of the individual components comprising

an ADN is a computationally demanding task, while the lack of information about

those components make the problem even more challenging. To this end, recent

approaches have been proposed in order to model an ADN as a whole [2]. Those

approaches can be divided into black-box an grey-box models. Black-box models

have no physics-based structure and can take any form that maps the input data

into the desired output. On the contrary, grey-box models rely on physics-based

formulas as well as on physical insight about the examined system. On the one

hand, black-box models offer high flexibility on the development of dynamic mod-

els, especially in cases of complex ADN architectures. On the other hand, grey-box

models can be readily interpreted since they are based on physical relationships.

In the context of black-box approaches, [76] proposes an ARX and a state-space

model in order to model a distribution network with generating units. Reference

[77] introduces an equivalent black-box model for microgrids using Prony analysis.

Included also in the ANN category, [3] proposes the use of LSTMs for modeling

dynamical systems. This method is validated using ADNs as an example. Fol-

lowing a similar principle, [78] proposes an equivalent model based on RNNs for

modeling a distribution system, which contains a large number of generating units.
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Furthermore, linear state-space models are developed for the dynamic modeling of

ADNs in the work of [79].

Regarding the grey-box models, a seventh order nonlinear state-space model is

introduced in [10]. In particular, this grey-box model comprises a composite load

model for modeling the consumers and a synchronous generator connected through

a converter to the grid. A extensive evaluation of this model is presented in [32]. A

similar approach, albeit static, can be found in [80], where the load is modeled using

a ZIP model and the influence of DG is captured by a simple PV model. A more

advanced grey-box model was recently introduced in [11, 81]. This equivalent grey-

box model is composed by a static exponential model in parallel with an induction

motor and an inverter-based generator equipped with modern control capabilities.

For instance, controls for low voltage ride-through, reactive current injections for

voltage support, and current limitations are included among others.

2.2.3 Parameter estimation

The previous section focuses on the different model structures that have been mostly

used in the literature for load/ADN modeling. However, one of the most crucial

factors differentiating the various studies presented throughout the years is the de-

ployed methodology for estimating the model parameters. In addition, the data

processing techniques applied before the parameter estimation procedure plays also

a major role in the development of accurate and generic load/ADN models. This

is attributed to the fact that the measurement-based approach requires a reasonable

amount of measurement data that should be cleaned, probably clustered, and gener-

ally transformed into a suitable form for the system identification [2, 12, 18].

For the parameter estimation, algorithms such as least-squares, genetic algo-

rithms, vector fitting, gradient-based techniques, Levenberg-Marquardt are widely

deployed [2]. Examples of the classical least-squares technique and its variations

can be found in [82, 83, 84, 85]. Moreover, the study of [86] employ a genetic

algorithm, while in [38], a genetic algorithm is combined with the Simplex search

method. Similarly, the work of [66] combines a genetic algorithm with the Lev-
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enberg–Marquard algorithm whereas the latter is also exploited in [66, 87]. The

authors of [29] propose the vector fitting technique as an alternative for estimat-

ing the transfer function parameters of the ERM, while gradient-based methods are

used in [88, 89, 90].

Recent approaches leverage deep learning techniques in order to estimate the

time-varying parameters of the composite load model (CLM). Specifically, [91]

deploys a deep generative architecture composed by LSTMs alongside with an au-

toencoeder for yielding probability density functions of the CLM parameters. In

[92, 93], deep reinforcement learning algorithms, such as double deep Q-learning

network and imitation and transfer Q-learning, are employed, respectively, where

the model parameters are viewed as the state that the respective agent tries to reach.

Finally, a multi-modal LSTM method is introduced in [94], while [35] proposes a

robust time-varying parameter identification technique. Finally, the work of [31]

and [37] exploit artificial neural networks in order to generate a new set of model

parameters depending on the grid state, i.e., load and DG mix.

2.3 System reduction based approaches

Apart from the component and the measurement-based approach, a third kind of

approach may be also included, even though it is usually omitted from the respective

list. For the sake of completeness, it is briefly mentioned in this section. The third

approach is based on system reduction techniques and can be split into two main

categories, namely the modal analysis and the coherency based methods [95]. The

most important work of those two methods is listed in the next two paragraphs.

Modal analysis methods reduce the model order by linearizing around a steady-

state point and then neglecting the non-dominant modes [96]. Different modal

analysis techniques have been proposed in the literature based on modal trunca-

tion [97, 98, 99, 100], Singular Value Decomposition (SVD) [101], Hankel-norm

approximations [102], and simple calculations of the dominant poles and the asso-

ciated residues [96]. However, the modal analysis approaches may not be able to
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capture complex power system dynamics, are computationally heavy, and vary a lot

in model structure rendering their integration in power system simulation software

challenging. Therefore, they have not been widely deployed [95].

On the contrary, coherency-based methods enjoy more popularity compared to

modal analysis ones. Those methods attempt to identify similar dynamic properties

between generators, which are grouped based on those properties and eventually re-

placed by one equivalent machine [103]. Important work of coherency-based meth-

ods can be found in [103, 104, 105, 106, 107, 108]. Nevertheless, coherency-based

methods require knowledge of the network structure as well as the parameters of the

underlying components. This information is often unavailable and thus, coherency-

based methods may not be applicable for ADN model reduction in practice [95].

2.4 Summary

In this chapter, the two main approaches for building load/ADN models have been

described and analyzed. Based on the inherent advantages of the measurement-

based approach, more emphasis was put on it. The most commonly used model

structures have been identified, split into groups, and presented in detail. Further-

more, various parameter estimation techniques and their application in load/ADN

modeling have been discussed.

To conclude, accurate distribution grid modeling is an ongoing research task

due to the lack of knowledge regarding load and generation composition. Further-

more, the stochastic behavior of consumers, which is highly influenced by time

and weather conditions, hinders the modeling procedure in practice. Active distri-

bution networks comprising generation, storage systems, electric vehicle charging

and controlled loads have changed the overall grid characteristics and can remark-

ably affect system balance and stability. To this end, the existing models (ZIP, ZIP

+ IM, ERM, etc.) may not be able to accurately mimic the dynamic behavior of

active distribution networks and thus, more sophisticated approaches should be in-

troduced.
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Additionally, all the aforementioned models implicitly assume that the data de-

ployed for parameter estimation represent qualitatively similar dynamics. In reality

however, the active or reactive power controllers of DG may be either active or in-

active, depending mainly on whether the DG unit is in operation or not. Hence,

utterly different dynamics may be observed based on the DG scheduling. As for the

deep learning approaches, they deploy a CLM as model structure, which comprises

a static (ZIP) and a dynamic (induction motor) load part. Hence, a CLM cannot

fully capture the dynamics of an ADN including, among others, power electronic

loads and DG [2]. Moreover, the aforementioned deep learning literature focuses

on delivering a highly accurate alternative for nonlinear parameter estimation of

complex model structures, whose parameter estimation forms a rather challenging

problem. Finally, there are approaches that require the knowledge of load and gen-

eration mix in order to generate a set of model parameters. As already pointed out,

this information is often hard to obtain even for the respective distribution system

operators (DSOs) and thus, those models cannot be implemented in practice.
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Chapter 3

Measurement Data and Distribution
Networks Under Study

In order to build dynamic load/ADN models based on the measurement-based ap-

proach, measurement data are required. This chapter gives an insight on the mea-

surement procedure followed for the needs of this research, the triggering criteria,

the acquired data, the preprocessing techniques applied to the data, and the general

characteristics of the measured distribution networks. Additionally, the influence

of the various DG technologies and a list of exogenous variables on the ADN dy-

namics is investigated. This investigation plays a major part in the development of

accurate ADN models as observed in the following chapters.

3.1 Data acquisition

Generally, the response of the system after a disturbance is required in order to

apply system identification techniques. Due to the different nature of voltage and

frequency disturbances in a power system, different measuring approaches are fol-

lowed with respect to those two variables. In this section, the measurement require-

ments are identified, both for voltage and frequency events. Moreover, information

about the hardware used for this study is given.
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3.1.1 Measurement requirements and settings

As pointed out in the previous chapters, the dynamic ADN models proposed in this

work are based on the measurement-based approach. To apply this method, mea-

surement data of voltage, frequency (rarely in the literature), active, and reactive

power are needed. Furthermore, measuring over a year is of utmost importance in

order to capture the time-varying nature of loads and DG, as highlighted in Chap-

ter 1.

Since voltage and frequency are likely to experience utterly different distur-

bances or events, different requirements are set, respectively. In particular, voltage

events may be mainly caused by on-load tap changer movements or rarely by short

circuits in transmission system [43], whereas frequency events may be initiated by

power plant outages or other severe grid faults [109]. In both cases, the RMS values

of the following signals are to be recorded:

• the total active and reactive power in all three phases,

• the average of the line-to-line voltages of all three phases,

• the frequency of a reference phase.

Additionally, the exact date and time of each recording needs to be also saved.

Voltage events

Based on [43], voltage changes between 0.5%-2% are sufficient for the parameter

estimation of small-signal dynamic load models. However, a possible 0.5% thresh-

old might trigger the measurement unit unnecessarily often due to measurement

noise or other irrelevant reasons for the system identification. Therefore, a voltage

change threshold of 1% is selected in this study in order to capture the important

disturbances while decreasing the probability of recording irrelevant events. In to-

tal, six different HV/MV substations were equipped with measurement units. Those

substations were deliberately selected so that different load types and DG technolo-

gies are considered. More information on these is provided in Section 3.2.
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As for the time resolution and duration, the scope of this work is to develop

dynamic models for electromechanical transients. Those transient are typically de-

scribed by a time resolution within the range of 10−2s - 1s [35]. Therefore, the

sampling frequency was set to 100Hz. In addition, a total recording duration of

maximum 4 s seems to be a very common choice in the literature, even for large

disturbances [11]. In this study, a rather conservative approach was followed, where

each measurement stores voltage, active, and reactive power data for 1 s before and

9 s after the voltage disturbance in order to robustly capture the corresponding tran-

sient without jeopardizing any loss of information. Therefore, each measurement

covers a time period of 10 s, in which the disturbance occurs at the time step td = 1s.

Since no significant variation was observed in the recorded signals during the pre-

and after disturbance steady-states, a time horizon of 3.5 s is deployed in the fol-

lowing sections of this thesis for a visually better presentation of the acquired data.

Here, it should be mentioned that PMUs with a minimum sampling frequency of

20Hz may also serve as an adequate measuring device, since stability studies are

usually performed using a time step of 50ms (=20Hz) [43].

Frequency events

Contrary to voltage, frequency does not experience step changes, even in cases of

large active power imbalances. Furthermore, frequency deviations that may oc-

cur throughout a day do not suffice for the dynamic modeling of the system. Un-

der those conditions, long measuring periods are required in an attempt to wait for

power plant outages or large grid faults that have an observable impact on the grid

frequency. Therefore, two different types of measurements were selected for the

frequency events. The first one is similar to the voltage events, where the mea-

surement device is triggered each time there is a frequency change bigger than a

user-defined threshold. The second type of measurements are the continuous ones,

where the measurement unit records constantly with a time resolution of 2 s. It is

worth mentioning that the triggering frequency threshold was modified many times

in the beginning of the measurement period, since it was too sensitive to measure-
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ment noise. To increase the signal-to-noise ratio, the units for the frequency events

were installed in three EHV/HV substations in order to measure a large grid (“net-

work group”).

3.1.2 Hardware

The hardware used in this study was selected by the two core project partners,

namely the TSO TransnetBW and the DSO NetzeBW. Two different models of

measurement units were deployed based on the type of substation. Specifically,

EHV/HV substations were equipped with the unit PQI-DA smart, while HV/MV

substations with PQ-Box 150. Both measurement units are manufactured by A.

Eberle GmbH & Co. KG. The former were fixedly installed in the corresponding

substations whereas the latter were installed for a year in three HV/MV substations

and then, they were moved to the other three HV/MV substations for a year, too.

Both types of units have the following important characteristics:

• They are certified for EHV/HV and HV/MV substations and be readily con-

nected to the secondary side of a transformer without the need of major struc-

tural changes.

• They offer high sampling frequency (100Hz for RMS measurements).

• They can be programmed to be triggered under desirable voltage and fre-

quency scenarios.

• They can save measurement data internally for a reasonable amount of time

ranging from several weeks to a few months.

More information about those units can be found in the respective manufacturer’s

manuals [110, 111].
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3.2 ADNs under study

All ADNs under study are located in southwest Germany, and in particular in the

federal state of Baden-Württemberg. The transmission system of this state is mostly

controlled by TransnetBW (TSO). Due to confidentiality reasons, the name and

location of the examined substations cannot be published in this thesis. Therefore,

each substation is denoted by a capital letter and each of its connected transformers

are represented by a number.

3.2.1 EHV/HV substations

TransnetBW is responsible for the EHV/HV substations of this study. The nominal

values of the transformers powering this large “network group” are shown in Ta-

ble 3.1. The capital letters M, P, and W correspond to each of the three EHV/HV

substations, while the numbers (1, 2, ..., 5) after the substation letter (M, P, and W)

denote the index of each measured transformer.

Table 3.1: Nominal values of the transformers powering the large network group.

ADN ID Rated Voltage (kV) Rated Power (MVA)
Sub.M.1 380/110 300

Sub.M.2 380/110 300

Sub.M.3 380/110 300

Sub.P.1 380/110 300

Sub.P.2 380/110 300

Sub.P.3 380/110 300

Sub.P.4 380/110 300

Sub.P.5 380/110 210

Sub.W.1 380/110 300

Sub.W.2 380/110 300

Sub.W.3 380/110 250

Another important aspect of measuring EHV/HV substations was to determine
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which transformers are actually powering the examined network group during the

frequency events, as the topology can be changed so that the transformers feed other

distribution networks. To do so, the history of the various switching protocols was

provided by the TSO in order to reconstruct which transformers fed this group at

any given time.

3.2.2 HV/MV substations

As for HV/MV substations, four substations are operated by NetzeBW (DSO) while

the rest two are operated by Stuttgart Netze (DSO). At each of those six substa-

tions, two transformers were equipped with measurement devices, which were pro-

grammed to record voltage events following the requirements listed earlier in this

chapter. Similarly to the EHV/HV substations, each HV/MV substation is given

Table 3.2: Nominal values of the transformers connecting the examined ADNs with

the transmission system and number of measurements acquired.

ADN ID
Rated

Voltage (kV)
Rated

Power (MVA)
Number of

measurements
Sub.A.1 110/20 40 492

Sub.A.2 110/20 40 1671

Sub.B.1 110/20 25 300

Sub.B.2 110/20 25 1371

Sub.C.1 110/10 40 1265

Sub.C.2 110/10 40 1365

Sub.D.1 110/10 40 716

Sub.D.2 110/10 40 1027

Sub.E.1 110/20 25 3010

Sub.E.2 110/20 25 1800

Sub.F.1 110/20 25 1796

Sub.F.2 110/20 25 1959
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Table 3.3: Nominal values of the installed DG capacity in the ADNs under study.

ADN ID
Installed

DG (MVA)
Sub.A.1 Wind: 30.8, PV: 16, Other: 3.7

Sub.A.2 PV: 6.4, Other: 0.1

Sub.B.1 Wind: 11.7, PV: 16.4

Sub.B.2 Wind: 16.3, PV: 14.3, Biogas: 3

Sub.C.1 CHP: 2

Sub.C.2 -

Sub.D.1 CHP: 2.7

Sub.D.2 -

Sub.E.1 Wind: 8.6, PV: 8, Other: 0.1

Sub.E.2 Wind: 5.9, PV: 11.6, Other: 0.9

Sub.F.1 PV: 8.5, Biogas: 0.3

Sub.F.2 PV: 10.5

one of the following letters {A,B,C,D,E,F}, while the indices 1 and 2 are used to

indicate the measured transformer at each substation.

The nominal values of the transformers powering each ADN under study and

their installed DG capacity are shown in Table 3.2 and 3.3. As observed in those

tables, the ADNs differ significantly from each other with respect to the DG tech-

nologies and their installed capacities. Moreover, substations A, B, E, and F power

rural regions whereas substations C and D power urban ones. It was also communi-

cated by the respective DSOs that the transformers of the same substations supply

different consumers with electricity. Therefore, each of the ADNs under study is

characterized by a distinct load and DG composition; a fact that is of utmost impor-

tance for the development of generic dynamic models.
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3.2.3 Timeline of measurements

The exact time period that each substation was measured is illustrated in Fig. 3.1.

As shown in this figure, field data for more than a year were acquired for each

ADN. It should be emphasized that only a very small numbers of studies have been

presented in the literature with field data covering a time span of a year or more.

However, as already discussed in [12, 25, 26, 39, 40], load/ADN model parameters

may significantly vary depending on date and time. Therefore, measuring over at

least a year is very important for building accurate and reliable load/ADN models

using the measurement-based approach.

During those periods of time, around 1400 measurements on average were recorded

at each ADN. For each substation, the measurements are spread out significantly

across different months and times of the day in order to include temporal variations

in dynamics.

2020

Sub.D: From 01/08/17 to 13/09/18

Sub.M + Sub.P + Sub.W: From 04/2019 

Sub.B: From 17/05/17 to 24/05/2018

Sub.E: From 26/07/18 to 16/07/19

Sub.A: From 26/07/18 to 16/07/19

2017 2018 2019

Sub.C: From 13/09/18 to 21/10/19
HV/LV:

EHV/HV:

Sub.F: From 15/03/17 to 24/05/18

Figure 3.1: Timeline of the start and end dates of measurement data.
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3.3 Data preprocessing

3.3.1 Field data

For each ADN of the HV/MV substation list, a dataset D of M measurements is

recorded at the point of common coupling (PCC) based on the trigger criteria de-

scribed in the “Voltage events” section earlier in this chapter. Each measurement

i = {1, ...,M} comprises three equally sized vectors Vi, Pi, and Qi corresponding

to the RMS values of the time domain (TD) signals of voltage, active, and reactive

power, respectively. As mentioned, this work examines the dynamic behavior of an

ADN under electromechanical transients. During those transients, the bus voltage

is expected to vary by ±10% from the nominal value [43], and thus the acquired

measurements are expected to contain voltage disturbances within those limits.

A major characteristic differentiating the traditional distribution networks from

ADNs is the installed DG. Therefore, the measured power values at the PCC may

not always reflect the real load demand. Instead, they express the difference be-

tween the real power demand and the power generated by DG. However, accessing

detailed DG data in order to estimate the real load demand may be difficult, since

there are countries where DSOs do not share those data with TSOs due to confi-

dentiality rules [11]. To this end, a preprocessing phase is performed, in which the

initial pre-disturbance conditions V0,i, Y0,i are subtracted from the TD values Vi(t),

Yi(t) for voltage and power, respectively, using:

∆Vi(t) = Vi(t)− V0,i and ∆Yi(t) = Yi(t)− Y0,i. (3.1)

The variable Y can describe either the active (P ) or reactive power (Q) while

(V0,i, Y0,i) can be considered any operating point within a few time steps before

the disturbance. This step is fundamental for the generalization capability of the

proposed method, since it virtually decouples the dynamic response of the system

from its initial unknown power conditions and additionally yields a common refer-

ence for the cluster analysis, which is introduced in Chapter 5.

It worth mentioning that generation data could be used in order to estimate the

real load consumption. However, this requires high resolution DG data that may
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not be available even to the corresponding DSOs. As an alternative, interpolated

generation values at the moment of the disturbances could be extracted from the

quarterly hour time series power data, which are usually available to the DSOs.

In this particular study, many of those time series data were given. Those data

correspond to the average 15min power values of various DG units installed in the

examined ADNs. However, data from a few DG units are missing and thus, the real

power demand cannot be correctly estimated.

For the rest of this thesis, the data are presented in pu instead of SI units due to

confidentiality reasons. Different base values have been used for each substation.

Moreover, the signals corresponding to voltage step-downs (∆V < 0) were multi-

plied by -1 only for a visually better and compact representation of the underlying

dynamics, as these can be assumed to be linear and thus, symmetrical for voltage

disturbances within the range considered.

3.3.2 Weather data

One of the main contributions of this thesis is the the analysis of how exogenous

variables can affect the system dynamics. An important part of those exogenous

variables is the weather data. Therefore, hourly time series data of temperature,

solar radiation, wind speed, and humidity were obtained from the German Weather

Agency (Deutscher Wetterdienst - DWD) [112] using the closest weather stations to

the examined ADNs. Then, those weather data are interpolated over time in order

to estimate the weather conditions at the moment of each disturbance.

3.4 Influence of distributed generation on ADN dy-

namics

In this Section, the influence of the various DG technologies on the system’s dy-

namic behavior after voltage changes is examined. Importantly, ADNs containing

solar and wind parks as well as combined heat and power (CHP) and biogas plants
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are assessed. To do so, the recorded measurements are split into two subsets for

each of the given transformers. The first subset contains only the entries in which

a specific DG technology was not operating whereas the second subset contains the

measurements corresponding to the times that the DG unit was generating power.

Note that the splitting criterion, i.e., DG operates or not, is based on the interpolated

values of the quarterly hour time series DG data provided by the respective DSO.

As a consequence, this information is to be considered as partially uncertain.

In order to easily compare the influence of the various DG technologies on the

dynamics of the system, several plots are introduced for each of the following

ADNs. Each ADN is represented by plots of individual measurements of the actual

changes in voltage, active, and reactive power as well as their respective ensem-

ble average. In particular, the six-plot figures contain the individual measurements

(colored curves) for each derived subset, i.e., one subset with measurements with-

out generation by a specific DG technology (upper plots) and another subset with

generation by a specific DG technology (lower plots). For each of those plots, the

average curve is shown by a black bold line. To facilitate direct comparison of the

subsets, the average curves are also presented in another figure.

3.4.1 Wind parks

In this section, we examine the influence of wind parks on the system dynamics after

a voltage disturbance. To do so, the actual differences of voltage, active and reactive

power are assessed using the measurements acquired at Sub.A.1 and Sub.B.1. As

mentioned above, the measurements are grouped into two subsets. The first subset

contain entries in which the wind parks of the corresponding ADNs were not in

operation, whereas the second subset contain measurements in which the wind parks

were in operation. The individual measurements of those two ADNs are depicted

in Fig. 3.2 and 3.4, while their average curves are illustrated in Fig. 3.3 and 3.5,

respectively.

As shown in Fig. 3.3 and 3.5, the average active power responses are very simi-

lar in both subsets for both ADNs. The small differences observed may be caused
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by the slightly different magnitude of voltage disturbances. At Sub.B.1, for exam-

ple, the voltage measurements with no wind generation follow a clear step change,

whereas the voltage measurements of the second subset are characterized by a quick

rise in voltage followed by a small decay until the voltages converges to a new

steady state. Regarding the reactive power responses, most of the measurements

follow the classical exponential recovery behavior as illustrated in the first subset

of both ADNs (Fig. 3.2a and 3.4a). However, the two subsets containing measure-

ments with wind generation (Fig. 3.2b and 3.4b) present different dynamics in com-

parison with the subsets of no wind generation. This characteristic is clearly visible

in the average curves of the reactive power response in the right side of Fig. 3.3 and

3.5. Therefore, both wind parks seem to have a voltage controller which adjusts the

reactive power based on the voltage values in a closed control loop. Therefore, the

measured voltages are not only influenced by the on-load tap changer position but
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(a) Individual measurements acquired with no wind generation.
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(b) Individual measurements acquired with wind generation.

Figure 3.2: Sub.A.1: Voltage, active, and reactive power change for the measure-

ments acquired with and without wind generation.
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Figure 3.3: Sub.A.1: Average voltage, active, and reactive power change of the

measurements acquired with and without wind generation.
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(a) Individual measurements acquired with no wind generation.
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(b) Individual measurements acquired with wind generation.

Figure 3.4: Sub.B.1: Voltage, active, and reactive power change for the measure-

ments acquired with and without wind generation.

also by the respective voltage controller of the wind parks. It is also worth pointing

out that, although both ADNs contain wind parks, those parks seem to be equipped

with significantly different reactive power control strategies.
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Figure 3.5: Sub.B.1: Average voltage, active, and reactive power change of the

measurements acquired with and without wind generation.
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(a) Individual measurements acquired with no PV generation.
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(b) Individual measurements acquired with PV generation.

Figure 3.6: Sub.A.2: Voltage, active, and reactive power change for the measure-

ments acquired with and without PV generation.
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Figure 3.7: Sub.A.2: Average voltage, active, and reactive power change of the

measurements acquired with and without PV generation.

3.4.2 PV parks

In this section, the influence of solar PV parks on the dynamic behavior of the dis-

tribution system after a voltage disturbance is assessed. To do so, the measurements

acquired at Sub.A.2 and Sub.E.1 are used. The individual measurements of those

two ADNs are depicted in Fig. 3.6 and 3.8, while their average curves are illustrated

in Fig. 3.7 and 3.9, respectively.

As illustrated in those figures, the average active power responses can be consid-

ered as identical in both subsets (No PV, PV), whereas the reactive power responses

differ slightly between the two subsets, especially in Sub.E.1. This difference can

be partially justified by the highly noisy signals. In general, the PV parks within our

examined systems share the same principle in terms of active and reactive power re-

sponse, meaning there is no influence of PV generation on the dynamic behavior

of active and reactive power as observed in the acquired measurements. It should

be pointed out here, though, that this conclusion is only valid for the ADNs under

study, since other distribution networks may contain PV parks that are equipped

with different control strategies.

3.4.3 Biogas plants

In this section, the effects of biogas power plants on the active and reactive power

response are evaluated using the measurements at Sub.F.1. The individual mea-
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(a) Individual measurements acquired with no PV generation.
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(b) Individual measurements acquired with PV generation.

Figure 3.8: Sub.E.1: Voltage, active, and reactive power change for the measure-

ments acquired with and without PV generation.
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Figure 3.9: Sub.E.1: Average voltage, active, and reactive power change of the

measurements acquired with and without PV generation.

surements of this ADN are depicted in Fig. 3.10, while their average curves are

illustrated in Fig. 3.11. As illustrated in Fig. 3.11, the average active and reactive

power responses of both subsets are characterized by the same dynamic behavior
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and there is no significant difference between them.

It should be mentioned that the measurements of Sub.B.2 follow the same princi-

ple, in which the active and reactive power responses are not affected by the biogas

power plants. It can be concluded that the active and reactive power of the biogas

power plants remain constant after a voltage disturbance. Note that this observation

can be attributed to the fact that either those plants do not have voltage support con-

trol activated/implemented or they are too small to actually observe it. Importantly,

as in case of solar PV parks, this conclusion is valid only in the ADNs under study,

since other distribution networks with biogas plants and/or PV parks may include

active or reactive power control strategies that influence the dynamics of the system.
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(a) Individual measurements acquired with no biogas generation.
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(b) Individual measurements acquired with biogas generation.

Figure 3.10: Sub.F.1: Voltage, active, and reactive power change for the measure-

ments acquired with and without biogas generation.
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Figure 3.11: Sub.F.1: Average voltage, active, and reactive power change of the

measurements acquired with and without biogas generation.

3.4.4 CHP plants

In this section, the effects of CHP plants on the active and reactive power response

are evaluated using the measurements at Sub.C.1. The individual measurements

of this ADN are depicted in Fig. 3.12, while their average curves are illustrated in

Fig. 3.13. In the context of CHP plants, the plots of the two subsets have similar

characteristics as the ADNs with wind parks. In particular, the average active power

responses of both subsets follow identical dynamic behavior as clearly depicted in

the middle plot of Fig. 3.13. On the other hand, the reactive power responses of the

two subsets show different dynamics. In the subset with no CHP generation, the

reactive power responses follow the classical recovery behavior, in which the power

gradually recovers to a new steady-state value. In the subset with CHP, on the

contrary, there is a significant number of measurements that show slower dynamics.

Furthermore, similar results were observed in case of Sub.D.1, where CHP plants

are also present. Therefore, CHP plants seem to have a reactive control concept

which adjusts the reactive power based on the voltage values. Again, this conclusion

is only valid for the plants considered and other CHP plants may operate without or

with a different voltage controller.
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(a) Individual measurements acquired with no CHP generation.
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(b) Individual measurements acquired with CHP generation.

Figure 3.12: Sub.C.1: Voltage, active, and reactive power change for the measure-

ments acquired with and without CHP generation.
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Figure 3.13: Sub.C.1: Average voltage, active, and reactive power change of the

measurements acquired with and without CHP generation.

3.4.5 Conclusion

To sum up, no direct influence of PV parks and biogas plants on the dynamic behav-

ior of active and reactive power can be observed in the measurement data, whereas
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wind parks and CHP plants seem to have a significant influence on the dynamic

responses of reactive power only. In other words, the active power showed no de-

pendence on the DG activity, whereas reactive power responses were influenced by

wind parks and CHP plants. However, these conclusions are only valid for the ex-

amined substations and cannot be generalized to other ADNs. Depending on the

connection code that applied at the time of commissioning, there may be PV parks

and biogas plants that perform voltage control, while other wind parks and CHP

plants may not.

3.5 Influence of exogenous variables on ADN dynam-

ics

In this section, an exploratory data analysis is performed using two variables ex-

tracted from the dynamic load/ADN response and a list of exogenous variables. For

the former, we estimate the transient response ∆Ytrans as well as the steady-state

response ∆Ysteady as

∆Ytrans = Ytrans − Y0 and ∆Ysteady = Ysteady − Y0, (3.2)

where Y0, Ytrans, and Ysteady are the power values before, at the moment, and after the

voltage disturbance, respectively, as also depicted in the qualitative plot of Fig. 3.14.

For the latter, we employ the temporal and weather features listed in Table 3.4. The

temporal features are selected based on the work of [25, 26, 39], which underlines

their influence on load dynamics, while the respective weather features correspond

to four major factors affecting the DG [113, 114].

3.5.1 Exploratory data analysis

As a first step, it is important to determine how the various measurements are dis-

tributed during the day and over the year. In this regard, the measurements should be

spread out significantly across different months and times of the day in order to in-

clude temporal variations in dynamics. An indicative example of how the recorded
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Table 3.4: Exogenous variable list and notation.

Temporal features Weather features
h time of the day (hour) t temperature

d day (weekday or weekend) r solar radiation

m month of the year w wind speed

u humidity

data points are distributed over the day (hour) and the year is illustrated in the vi-

olin plot1 of Fig. 3.15 for Sub.A.1. Although the total number of measurements of

this ADN is less than in almost any other ADN of this study, the recorded voltage

disturbances are mostly uniformly distributed with the small exception of late night

- early morning hours (00:00 - 05:00), where the total number of measurements is

smaller than for the rest of the day. Nevertheless, this does not affect the accuracy

Time Time

Vtrans

V0

Ytrans

(a) (b)

Y0

Vsteady

Ysteady

Po
w

er

Vo
lta

ge

∆
Y

tr
an

s

∆Ysteady

Figure 3.14: Qualitative active or reactive power response of an ADN after a step

voltage change: a) Possible voltage step V ; b) Indicative (active or reactive) power

response Y .

1A violin plot shows the probability density of the data at different values as approximated by

a kernel density estimator. Similar to box plots, the edge points of the bold black line in the middle

of each probability density function denote the 25th and 75th percentiles, while the edge points of

the thin black line denote the 0th and the 100th percentiles. The white dot indicates the respective

median.
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of the developed models, as described in the following chapters. The violin plots

of the other ADNs follow the same pattern, where the measurements are uniformly

distributed during the day and over the year. Two representative violin plots are

illustrated in Fig. 3.16 and 3.17.

At the next step of the exploratory data analysis, we estimate the Pearson cor-

relation coefficients between the aforementioned variables. In general, there is no

similar pattern in the correlation values between the dynamics of each substation

and the exogenous variables; a result that might be attributed to the different ADN

characteristics (load and DG types, transformer capacity). It is worth pointing out

that this first step reveals only linear relationships and is performed in order to get

an initial understanding of which variables may influence the ADN dynamics.

For instance, the day of the week (weekend or not) has a noticeable influence on

the ADN dynamics of Sub.A.1, in particular in case of reactive power, as revealed in

Fig. 3.18. For the same ADN, temperature is weakly correlated with the dynamics

of both active and reactive power, while humidity seems to have a low impact on the
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Figure 3.15: Sub.A.1: Violin plot of the total number of recorded voltage distur-

bances during the day and over the year.
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Figure 3.16: Sub.B.2: Violin plot of the total number of recorded voltage distur-

bances during the day and over the year.

active power responses. In Sub.B.2 (Fig. 3.19), the dynamics of active and reactive

power show a significant dependence on the day of the week while the reactive

power steady-state response is negatively correlated with temperature. Interesting

are the correlations in Sub.C.1 and Sub.D.2, which are presented in Fig. 3.20 and

3.21, respectively. In both ADNs, the active power seems to not be influenced (at

least not linearly) by the temporal variables but rather by solar radiation (Sub.C.1)

and temperature (Sub.D.2), respectively. Regarding the reactive power of those two

ADNs, both of them reveal small-medium dependence on weekdays, temperature,

humidity, and radiation, whereas they differ in the influence of month and time of

the day (hour). In Sub.C.1, the month of the year affects the reactive power transient

response, while the time of the day (hour) seems to have a minor effect on reactive

power dynamics. In Sub.D.2, the month of the year appears to have no influence

on reactive power whereas the time of the day (hour) show a small yet remarkable

linear trend. Finally, one of the biggest linear correlations is revealed between the

reactive power dynamics of Sub.E.1 and the day of the week (weekend or not), as
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Figure 3.17: Sub.E.1: Violin plot of the total number of recorded voltage distur-

bances during the day and over the year.
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Figure 3.18: Sub.A.1: Correlation coefficients between the various variables de-

scribing the dynamics, the time, and weather conditions.
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Figure 3.19: Sub.B.2: Correlation coefficients between the various variables de-

scribing the dynamics, the time, and weather conditions.

∆
P
tr
a
n
s

∆
P
st
ea
d
y

∆
Q
tr
a
n
s

∆
Q
st
ea
d
y

w
ee

ke
n

d

m
on

th

h
ou

r

te
m

p
er

at
u

re

hu
m

id
it

y

ra
d

ia
ti

on

w
in

d
sp

ee
d

∆Ptrans

∆Psteady

∆Qtrans

∆Qsteady

1 0.22 0.58 0.37 -0.14 -0.14 -0.21 0.12 -0.052 0.38 0.1

0.22 1 0.24 0.4 -0.076 -0.058 0.18 -0.083 -0.06 0.14 0.063

0.58 0.24 1 0.65 -0.21 -0.19 0.043 0.25 -0.22 0.33 0.12

0.37 0.4 0.65 1 -0.18 0.0012 0.13 0.48 -0.3 0.44 -0.0059
0.0

0.5

1.0

Figure 3.20: Sub.C.1: Correlation coefficients between the various variables de-

scribing the dynamics, the time, and weather conditions.

highlighted by the deep blue color in Fig. 3.22. Apart from the day of the week,

temperature shows small linear correlation with both active and reactive power.

Nevertheless, the estimated correlation values measure the linear relationships
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Figure 3.21: Sub.D.2: Correlation coefficients between the various variables de-

scribing the dynamics, the time, and weather conditions.

∆
P
tr
a
n
s

∆
P
st
ea
d
y

∆
Q
tr
a
n
s

∆
Q
st
ea
d
y

w
ee

ke
n

d

m
on

th

h
ou

r

te
m

p
er

at
u

re

hu
m

id
it

y

ra
d

ia
ti

on

w
in

d
sp

ee
d

∆Ptrans

∆Psteady

∆Qtrans

∆Qsteady

1 0.24 0.46 0.27 -0.32 -0.004 0.029 -0.16 0.13 -0.14 0.048

0.24 1 0.18 0.19 -0.17 -0.0059 0.035 -0.13 0.11 -0.07 0.051

0.46 0.18 1 0.67 -0.58 0.016 -0.039 0.14 -0.062 0.18 -0.042

0.27 0.19 0.67 1 -0.44 0.12 -0.015 0.12 -0.019 0.09 -0.12
−0.5

0.0

0.5

1.0

Figure 3.22: Sub.E.1: Correlation coefficients between the various variables de-

scribing the dynamics, the time, and weather conditions.

between the given variables and thus, a more detailed data analysis is performed

in order to identify possible nonlinear relationships. In this context, we plot the

boxplots and the scatter plots of the transient and steady-state power values against
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the categorical (day, month, hour) and continuous (temperature, humidity, radiation,

wind speed) variables, respectively.

Regarding the categorical variables, various types of relationships between the

temporal features and the ADN dynamics have been identified. For instance, the

transient active power response of Sub.A.1 shows different values throughout the

day, as illustrated in Fig. 3.23. On the contrary, the same transient responses are

rather similar with respect to the month of the year (Fig. 3.24). Qualitatively simi-

lar results are observed in the transient reactive power response, on which the time

of the day has an evident influence whereas the month of the year does not, as de-

picted in Fig. 3.25 and 3.26, respectively. Another indicative example of nonlinear

relationships between the time of the day (hour) and the active or reactive power

dynamics is shown in Fig. 3.27 for Sub.C.1. Here, there is a significant increase in

the transient active power response during noon hours.

Slightly more complex boxplots are also used in the cases that the day of the

week (weekend or not) has a clear impact on ADN dynamics. Representative ex-
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Figure 3.23: Sub.A.1: Boxplots of the transient active power response during the

day (hour).
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Figure 3.24: Sub.A.1: Boxplots of the transient active power response during the

year (month).
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Figure 3.25: Sub.A.1: Boxplots of the transient reactive power response during the

day (hour).
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Figure 3.26: Sub.A.1: Boxplots of the transient reactive power response during the

year (month).
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Figure 3.27: Sub.C.1: Boxplots of the transient active power response during the

day (hour).
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amples of those cases are presented in Fig. 3.28-3.35. In those figures, combina-

tions of the temporal variables manifest an evident impact on the active and reactive

power response dynamics. Interestingly, the active and reactive power exhibit a

smaller change (deltas) during the weekends compared to the weekdays. This may

be attributed to the fact that the total load consumption is usually smaller during the

weekends. However, their level of influence varies across the different ADNs under

study and no general conclusion can be drawn.

As for the continuous variables, weak linear relationships were predominantly

revealed by the scatter plots. Interestingly, small correlations between the reactive

power responses and the wind speed appear in a few ADNs with wind parks. This

observation may originate from the voltage controllers of the wind turbines, which

may operate at a constant power factor. In this scenario, the reactive power will scale

with the active power, which naturally depends on the wind speed. An indicative

example of this relationship can be seen in Fig. 3.36, where the reactive power

change in the steady-state decreases as the wind speed increases.
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Figure 3.28: Sub.E.1: Boxplots of the transient active power response during the

day (hour).
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Figure 3.29: Sub.E.1: Boxplots of the transient active power response during the

year (month).
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Figure 3.30: Sub.E.1: Boxplots of the steady-state reactive power response during

the day (hour).
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Figure 3.31: Sub.E.1: Boxplots of the steady-state reactive power response during

the year (month).
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Figure 3.32: Sub.B.2: Boxplots of the steady-state active power response during the

day (hour).
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Figure 3.33: Sub.B.2: Boxplots of the steady-state active power response during the

year (month).
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Figure 3.34: Sub.B.2: Boxplots of the steady-state reactive power response during

the day (hour).

61



Chapter 3 – Measurement Data and Distribution Networks Under Study

2 3 4 5 6 7 8 9 10 11 12
month

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

∆
q s
te
a
d
y

(p
u

)

weekend

0

1

Figure 3.35: Sub.B.2: Boxplots of the steady-state reactive power response during

the year (month).
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Figure 3.36: Sub.A.1: Scatter plots of the steady-state reactive power response over

different wind speed values.
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Figure 3.37: Sub.B.2: Scatter plots of the steady-state reactive power response over

different temperature values.
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Figure 3.38: Sub.D.2: Scatter plots of the steady-state reactive power response over

different temperature values.
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Figure 3.39: Sub.C.1: Scatter plots of the transient active power response over

different radiation values.

Furthermore, temperature and radiation seem to have a minor yet worth studying

effect on either active or reactive power dynamics whereas humidity does not show

a remarkable influence on them. Two scatter plots examples depicting the influence

of temperature on reactive power are shown in Fig. 3.37 and 3.38. Sub.B.2 ex-

hibits a negative correlation between the steady-state reactive power response and

temperature whereas positive correlation between those two variables is reported

in Sub.D.2. As for the impact of radiation, Sub.C.1 shows medium correlation be-

tween the transient active power response and the solar radiation, as presented in

Fig. 3.39, even though there is not any PV park within this ADN.

3.5.2 Conclusion

The presented analysis is one of the very few studies aiming at revealing relation-

ships between the ADN dynamics and a list of exogenous variables. In particular,

the transient and the steady-state response of active and reactive power were em-

ployed in order to encode the ADN dynamics in single values. After a thorough
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analysis, it was observed that temporal variables, such as time of the day, day of the

week (weekend or not), and month, may have a significant influence on the system

dynamics. Nevertheless, no general patterns have been identified and each ADN

exhibits different temporal correlations, which are highly nonlinear. At the same

time, weather variables seem to play a minor yet worth considering role in the ADN

dynamics. In this context, several ADNs showed small to medium correlations with

temperature, radiation, and wind speed whereas humidity seems to have a very mi-

nor influence. However, each ADN unveiled different relationships with respect to

the weather variables and thus, no general conclusion can be extracted. That would

probably require data from significantly more substations.

Those data analysis results highlight the high complexity of developing generic

load/ADN models. Based on the existing literature described in Chapter 2, there

is no model structure that allows the incorporation of exogenous variables into the

model calculations. Therefore, there is a need for new model structures that can de-

code the information encrypted in the temporal and weather variables and translate

it into more accurate results.

3.6 Summary

In this chapter, the main measurement requirements were identified based on the

measurement-based approach. Regarding the voltage events, those requirements

include a triggering threshold of 1% voltage change, a measurement period of 10 s,

and a sampling frequency of 100Hz. As for the frequency events, frequency does

not experience step changes, even in cases of large active power imbalances. There-

fore, continuous measurements with a time resolution of 2 s were selected. This

flexibility in setting the type of measurements, e.g., triggered, continuous, or the

triggering criteria was provided by the units PQI-DA smart (frequency events) and

PQ-Box 150 (voltage events). Both of them are manufactured by A. Eberle GmbH

& Co. KG.

Special emphasis was put on selecting the examined ADNs. To increase the
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signal-to-noise ratio, the units for the frequency events were installed in three EHV/HV

substations in order to measure a large grid (“network group”). In the case of volt-

age events, six utterly different HV/MV substations were selected. The underly-

ing ADNs differ significantly from each other with respect to the load types and

the installed DG technologies. Importantly, each measurement unit was collecting

measurements for over a year, resulting in around 1400 measurements on average

for each ADN.

Due to the fact that the measurements are acquired at the PCC, the measured

power values do not reflect the real power consumption. The measured values ac-

tually express the the difference between the real load demand and the power gen-

erated by DG. To this end, a preprocessing phase is performed in order to virtually

decouple the system dynamics from the unknown initial power values. To do so, the

actual difference between the recorded signals and the initial pre-disturbance values

are calculated for voltage, active, and reactive power.

In the last part of this chapter, we study how DG and a set of exogenous variables

may influence the system dynamics. It was observed that none of the DG technolo-

gies have a direct impact of active power dynamics. Similarly, the PV parks and the

biogas plants seem to have no influence on reactive power dynamics either. On the

contrary, the wind parks and the CHP plants are equipped with controllers that sup-

port the voltage through reactive power injections. However, those conclusions are

only valid for the examined substations and cannot be generalized to other ADNs.

As for the temporal and weather variables, linear and nonlinear relationships have

been revealed for each substation. Nevertheless, each ADN exhibits different de-

pendence on weather and time and thus, no general conclusion can be extracted.
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Chapter 4

Analysis of Frequency Events

The aim of this chapter is derive the steady-state relationship between the frequency

and active power, i.e., self-regulating effect, based on the frequency and power mea-

surements from the three EHV/HV substations. During the measurement period,

many inadequate measurements were incorrectly detected as a frequency event due

to the limitations of the trigger criteria that can be set in the used devices. As a

consequence, the related data had to be preprocessed, e.g., data cleaning, outlier

detection, before any further analysis could be performed.

Interval data of voltage, frequency, active and reactive power with a sampling

period of 2 s were acquired for all three EHV/HV substations. Based on those data,

two different methodologies are tested in order to estimate the steady-state relation-

ship between frequency and active power. While certainly of interest, obtaining

an estimate for the dynamic relationship between frequency and active power from

the data turned out to be infeasible. This is due to the fact that the measurements

do not contain a frequency event in which the frequency changes fast enough with

sufficient amplitude. For this reason, it is not possible to separate the change in

active power induced by the change of frequency from the noise in the active power

signals.

The first methodology is based on the frequency change criteria as introduced in

[65]. The second approach focuses on the deterministic frequency deviations, which

occur hourly every day. In both methods, the power values of all three substations
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are added up in order to calculate the total power consumption of this network group

and to improve the signal-to-noise ratio. It should be mentioned that there were data

with negative active power measurements which were caused by unknown reasons1.

Those data were considered as incorrect (as there is insufficient DG within this

grid to cause reverse power flows) and were discarded from the following analysis.

Furthermore, some of the measurement devices were not available at some times.

As a consequence, the graphs presented within this chapter can illustrate either the

total power consumption of all three substations or the power of two or even one

substation. Nevertheless, it will become clear at the end of this chapter that those

issues do not affect the following analysis.

4.1 Frequency change criteria

This method searches through the whole dataset of measurements in order to find

frequency changes greater than a user-defined threshold within a time period of 3 s.

In particular, frequency gradients greater than the values covered by the light blue

region in Fig. 4.1 are stored for further processing. In that case, frequency and

active power signals are stored for the interval t0 − 60 s ≤ t ≤ t0 + 120 s, where t0

is the time of the disturbance. Note that the frequency change is calculated as:

∆fi(t) = fi(t)− f0,i, (4.1)

where i is the measurement index, fi(t) denotes the recorded frequency signal, and

f0,i indicates the frequency value at t0.

The search results yielded the signals shown in Fig. 4.2. The left plot represents

the stored frequency changes, whereas the right one denotes the corresponding ac-

tive power signals. After a detailed examination of each individual active power

curve, the following conclusions were derived. There may be significant power

1A possible explanation could be incorrect assumptions with respect to transformer switch

states, as these had to be reconstructed from switching protocols provided by the TSO and may

not be fully reliable.

68



Chapter 4 – Analysis of Frequency Events

1 2 3

Δf [mHz]

20

-20

time [s]

stored

not stored

Figure 4.1: Frequency criteria for storing a measured signal.

changes at the time steps of the 15min products of the electricity market. Those ac-

tive power changes are too big to be considered as a self-regulating effect and they

correspond to the generation/consumption scheduling as defined by the electricity

market. Two indicative examples of this behavior are shown in Fig. 4.3.

In Fig. 4.3a, the total power consumption is around 19.6MW and at 20:45, fre-

quency drops by almost 50mHz. At the same time, there is a 0.6MW decrease in

active power, which is caused rather by a scheduling of generation units and large

consumers than by the frequency drop. Similar results are observed in Fig. 4.3b.

Here, a 60mHz frequency drop corresponds to a 2MW decrease in active power,

while the total power consumption is around 105MW. To conclude, at the time

steps of 15min products, any self-regulating effect is overlapped by a bigger change

in active power due scheduling of consumers and generation units. In fact, the

partial scheduling of generation and load within the examined grid contributes to

system imbalance and, hence, to the frequency deviation.

Since frequency changes at the time steps of 15min products have shown not to

be particularly useful when individual measurements are used, the rest of stored sig-
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Figure 4.2: Stored frequency and active power signals.

nals is examined. Examples of those measurements are presented in Fig. 4.4-4.11.

It is clear that the active power signals contain noise coming from the switching of

the consumers and the changes in frequency are not followed by similar changes in

active power. Therefore, individual measurements cannot be employed in practice,

since the signal-to-noise ratio is relatively low and no meaningful insight into the

self-regulating effect can be extracted. To this end, an ensemble averaging of active

power signals was performed over two subsets. The first one refers to the signals

with positive frequency change, whereas the second subset contains the measure-

ments with a negative frequency change. The motivation for using ensemble aver-

aging is based on the intuition that the noise in active power signals will cancel out

partially and thus, the signal-to-noise ratio will increase.

In Fig. 4.12 and 4.13, the black bold curves denote the average signals of fre-

quency and active power for negative and positive frequency changes, respectively.

It is clear that there was no significant change in the active power signal caused by

the change in frequency and the stochastic part overlaps any self-regulating effect.

It can be concluded that the self-regulating effect could not be estimated with this

methodology from the acquired data. It should be mentioned here that the afore-
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(a) Decrease in active power at 20:45 Jul.07, 2019.
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(b) Decrease in active power at 22:00 Jun.28, 2019.

Figure 4.3: Frequency and active power change during the time of 15min products.

mentioned methodology, which successfully worked in the ’90s [65], cannot be

fruitful nowadays, since the system is much larger and the effect of outages much

smaller.
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Figure 4.4: Frequency and active power change on Apr.23, 2019.
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Figure 4.5: Frequency and active power change on Apr.27, 2019.
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Figure 4.6: Frequency and active power change on May 31, 2019.
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Figure 4.7: Frequency and active power change on Jul.01, 2019.
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Figure 4.8: Frequency and active power change on Sep.07, 2019.
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Figure 4.9: Frequency and active power change on Aug.24, 2019.
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Figure 4.10: Frequency and active power change on Oct.07, 2019.
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Figure 4.11: Frequency and active power change on Oct.21, 2019.

4.2 Deterministic frequency deviations

It was observed that deterministic frequency changes occur on a daily basis every 15

minutes, which basically correspond to the 15min products of the electricity mar-

ket. All the acquired measurements are shown in Fig. 4.14 including both weekdays

and weekends. The colored curves denote the individual frequency measurements,

while the black bold curve is the average product of all recordings. Importantly,

the biggest frequency variations happen from 21:00 to 03:00, while remarkable fre-

quency changes occur around 7:00 in the morning and 18:00 in the afternoon.

In order to obtain a better insight of the system dynamics, the frequency vari-

ations and the corresponding active power response are examined for every hour
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Figure 4.12: Average frequency and active power signals for frequency drops.
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Figure 4.13: Average frequency and active power signals for frequency rises.

within a day. It should be also mentioned that, since the total power consumption

significantly varies within a weekday and thus, the noise caused by the switching

of the consumers is strong, only the measurements acquired in the weekends are

employed. This phenomenon can be justified by the fact that apart from residen-
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Figure 4.14: Daily frequency variations.

tial loads and commercial, industrial loads are also scheduled during the weekdays

while they usually remain inactive during the weekends. Those extra loads lead to

bigger active power changes during the time steps of the hourly market products.

Those bigger active power changes overlap the self-regulating effect and there-

fore, its estimation is not feasible. On the contrary, weekends are characterized

by smaller active power changes at the time steps of the hourly market products

(due to the smaller load demand) and thus, the impact of overlapping is expected

to be lower. Moreover, the hourly power consumption curves are characterized by

consumption trends that should be removed in order to isolate the influence of the

frequency upon the active power. An example of a power consumption trend is il-

lustrated in Fig. 4.15, in which the active power linearly decreases throughout the

examined time period. The yellow bold curve in the middle of the graph highlights

the linear trend as calculated by averaging all the recordings of the active power.

To tackle this problem, a linear detrend was applied to the average power con-

sumption of each given hour. Importantly, the average active power is deployed,

since the individual measurements are noisy due to the continuous switching of

the consumers. A time horizon of 10 minutes (5 minutes before and after the fre-
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Figure 4.15: Linear trend in active power at midnight.

quency change) is used for presenting the plots in order to better observe the filtered

active power response. The hours with significant frequency changes (deltas) are il-

lustrated in Fig. 4.16-4.29. The left plots depict the individual frequency changes

(colored curves) as well as their average (black bold curve). On the right side, the

detrended average active power is illustrated, which describes the change in active

power without the influence of consumption trends.

Throughout a day, common behavior was observed using the generated graphs.

Importantly, during the early morning hours (00:00, 01:00, 02:00 and 04:00) the

active power rises at the time that the frequency starts to decrease. Therefore, no

self-regulating effect is visible during those hours. Similarly, at 03:00, 10:00-14:00,

18:00 and 21:00-23:00 the active power does not follow the frequency variations. In

addition, the active power signal is very noisy and thus, no meaningful conclusion

can be extracted. Furthermore, at 05:00-9:00, 15:00-17:00 and 19:00-20:00 the

frequency does not change more than 20mHz. To conclude, no certain conclusion

can be drawn with respect to the self-regulating effect, since the active power does

not follow the corresponding deterministic frequency variations. Rather, the active

power changes in this examined network group seem to be a (small) part of the

77



Chapter 4 – Analysis of Frequency Events

cause of the deterministic frequency deviations.
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Figure 4.16: Weekend frequency variations at 00:00.

4.3 Summary

The aim of this chapter is to determine the steady-state relationship between fre-

quency and active power, i.e., self-regulating effect of the grid. To do so, measure-

ments from three EHV/HV substations powering a large grid were utilized. Two

different approaches were followed; the first one is based on individual frequency

changes that meet a specific criterion and the second one is based on the daily de-

terministic frequency deviations.

Regarding the first approach, several measurements were acquired following the

presented frequency gradient criterion. However, the corresponding active power

signals contain noise coming from the switching of the load and the changes in

frequency are not followed by similar changes in active power. Therefore, individ-

ual measurements cannot be employed in practice, since the signal-to-noise ratio is

rather low. In an attempt to increase the signal-to-noise ratio, an ensemble averag-

ing of the active power signals have been performed. It was observed that there was
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Figure 4.17: Weekend frequency variations at 01:00.

02:00:00 02:05:00

time

49.92

49.94

49.96

49.98

50

50.02

50.04

50.06

f 
(H

z
)

02:00:00 02:05:00

time

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

P
 (

M
W

)

Figure 4.18: Weekend frequency variations at 02:00.
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Figure 4.19: Weekend frequency variations at 03:00.
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Figure 4.20: Weekend frequency variations at 04:00.
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Figure 4.21: Weekend frequency variations at 10:00.
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Figure 4.22: Weekend frequency variations at 11:00.
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Figure 4.23: Weekend frequency variations at 12:00.
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Figure 4.24: Weekend frequency variations at 13:00.
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Figure 4.25: Weekend frequency variations at 14:00.
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Figure 4.26: Weekend frequency variations at 18:00.
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Figure 4.27: Weekend frequency variations at 21:00.
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Figure 4.28: Weekend frequency variations at 22:00.
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Figure 4.29: Weekend frequency variations at 23:00.

no remarkable change in the active power signal caused by the change in frequency

and the stochastic nature of the load overlaps any self-regulating effect.

As for the second approach, deterministic frequency deviations occur on a daily

basis every 15 minutes, corresponding to the 15 min. products of the electricity

market. In order to remove the influence of electricity market products and the

noise coming from the switching of the consumers, the weekend measurements

were selected and then, the consumption trends were removed from the active power

signals. Yet any self-regulating effect was overlapped mostly by noise.

As a suggestion for future work, measuring more ADNs simultaneously might

lead to an increase in the signal-to-noise ratio. This would further lead to an in-

crease in the probability of capturing the self-regulating effect at the cost of a lower

spatial resolution of the results nonetheless. Another possible alternative would

be measuring over longer periods so that large disturbances, e.g., system split, are

captured.
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Chapter 5

Identification of ADN Dynamics
using Cluster Analysis

This chapter introduces many of the core contributions of this work. Those contribu-

tions can be also found published in [12, 115, 116]. In the beginning, it motivates the

need for adequate data handling and preprocessing solutions in the measurement-

based approach. Then, this chapter rigorously describes the proposed unsupervised

learning method for clustering dynamic behavior that can be applied to any time-

varying dynamical system characterized by distinct sets of dynamics, regardless of

the science field. Next, the clustering results using the acquired field data are pre-

sented and discussed.

5.1 Motivation

References [25, 26, 39] have demonstrated that the load model parameters may

strongly vary from hour to hour, day to day, and month to month. In this context,

it is commonly recognized that models relying only on a small amount of measure-

ments are unreliable and thus, measurements should be acquired over a reasonable

amount of time so that seasonal grid variations are considered [24, 35, 39]. How-

ever, although measuring over, e.g., a year can capture a wide range of grid config-
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urations, irrelevant measurements can be also recorded as the trigger criteria cannot

distinguish the cause of the disturbance.

In this regard, since those dynamic models are expected to be deployed in power

system dynamic simulations and stability studies, data that do not reflect the re-

sponse of the ADN to an external disturbance should be discarded from the system

identification procedure [2]. For example, faults within the examined grid, wrongly

triggered measurements, connection/disconnection of big consumers/DG within the

examined grid, highly noisy data and outliers may be additionally recorded. Hence,

long measuring periods usually result in big datasets, in which manual data process-

ing would be an extremely time-demanding task. Besides that, identifying a differ-

ent model for each measurement will simply yield overfitted models, valid only for

a specific grid configuration. To this end, the optimal number of dynamic models,

which adequately capture the general ADN characteristics while maintaining reli-

able levels of accuracy is an open question and strongly depends on the recorded

dataset.

Based on the aforementioned ADN modeling issues, we propose a three-stage

modeling approach which develops the concept of generating a few characteristic

models for the same ADN in order to accurately describe the system under a seem-

ingly infinite number of states, i.e., load/DG amount and composition. At the first

two stages, we introduce a novel clustering methodology in order to firstly, detect

irrelevant measurements and discard them from the modeling procedure and sec-

ondly, group the remaining data into clusters with similar dynamic behavior. At the

third stage, we build a generic dynamic equivalent for each one of the derived clus-

ters using the respective grouped entries. To do so, three different dynamic models

are proposed and are thoroughly described in Chapter 6, 7, and 8. Finally, it should

be pointed out that, although the proposed method was principally designed to work

with field measurements and their peculiarities, it can be easily run with synthetic

data generated by simulations of detailed ADN models.
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5.2 Proposed methodology

The three-stage proposed method can be described by the flowchart in Fig. 5.1. As

already mentioned before in the thesis, a dataset D of M measurements is recorded

at the point of common coupling (PCC). Each measurement i ∈ {1, ...,M} com-

prises three equally sized vectors Vi, Pi, and Qi corresponding to the RMS values

of the time domain (TD) signals of voltage, active, and reactive power, respectively.

Note that this work examines the dynamic behavior of an ADN under electrome-

chanical transients. During those transients, the bus voltage may vary by ±10%

from the nominal value [43], and thus the acquired measurements should contain

voltage disturbances within those limits.

As a first step (stage 0), the recorded data are preprocessed in order to create

a common reference for all the measurements. Based on the resulting signals, the

clustering features are extracted and normalized. Then (stage 1), all the irrelevant

data are identified and discarded using one of the proposed clustering algorithms,

resulting in a new dataset Dr ⊆ D. In the second stage, similar dynamics are auto-

matically grouped together using one of the proposed clustering algorithms over Dr.

In the final stage, the cluster entries are randomly split into training and validation

set. The training set is used to derive one generic model for each cluster using sys-

tem identification techniques while the accuracy and the generalization capability

of the yielded models are assessed using the validation set.

5.2.1 Data preprocessing

A major characteristic differentiating the traditional distribution networks from ADNs

is the installed DG. Therefore, the measured power values at the PCC do not reflect

the real load demand. Instead, they express the difference between the real power

demand and the power generated by DG. However, accessing detailed DG data in

order to estimate the real load demand may be difficult, since there are countries

where DSOs do not share those data with TSOs due to confidentiality rules [11]. To

this end, a preprocessing phase is performed, as described in Chapter 3. Neverthe-
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less, for the sake of completeness, it is repeated in this section. During this step, the

initial pre-disturbance conditions V0,i, Y0,i are subtracted from the TD values Vi(t),

Yi(t) for voltage and power, respectively, using:

∆Vi(t) = Vi(t)− V0,i and ∆Yi(t) = Yi(t)− Y0,i. (5.1)

The variable Y can describe either the active or reactive power while (V0,i, Y0,i) can

be considered any operating point within a few time steps before the disturbance.

This step is fundamental for the generalization capability of the proposed method,

since it virtually decouples the dynamic response of the system from its initial un-

known power conditions and additionally yields a common reference for the cluster

analysis.

5.2.2 Feature extraction and normalization

Clustering dynamic behavior is a rather unexplored topic in control theory. Con-

sequently, the selection of the adequate clustering features for clustering dynamic

behavior is not straightforward. A simple use of the recorded dynamic responses, as

in clustering load profiles, would not work, since the model output depends also on

the applied input. To this end, a novel methodology is proposed that can be readily

generalized to any dynamical system characterized by distinct sets of time-varying

dynamics in order to identify groups of similar dynamic behavior based only on

observed input-output sequences.

The proposed clustering method relies on the principle that, in order to correctly

compare multiple dynamical systems, it is essential to examine their responses un-

der the same input. In this context, a unit step function u is one of the most com-

monly used signals for examining the response of a system in control theory due

to its practicality and its rich frequency spectrum. However, in order to obtain the

unit step response, the system should be first identified. To do so, a discrete transfer
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function Hi(z) is estimated for each measurement i as

Hn
i (z) =

Z{∆Yi(t)}
Z{∆Vi(t)}

=
∆Yi(z)

∆Vi(z)
=

=
β0,i + β1,iz

−1 + ...+ βn,iz
−n

1 + α1,iz−1 + ...+ αn,iz−n
,

(5.2)

where Z denotes the z-transform, n indicates the model order and

θi = [α1,i, ..., αn,i, β0,i, ..., βn,i]
⊤ (5.3)

is a vector containing the transfer function parameters. Eq. (5.2) can be easily re-

formulated as

∆Yi(z)
(
1 + α1,iz

−1 + ...+ αn,iz
−n
)
=

=∆Vi(z)
(
β0,i + β1,iz

−1 + ...+ βn,iz
−n
)

.
(5.4)

Subsequently, the z-domain (5.4) can be directly converted to a difference equation

as

∆Yi[t] =− α1,i∆Yi[t− 1]− ...− αn,i∆Yi[t− n]+

+ β0,i∆Vi[t] + ...+ βn,i∆Vi[t− n].
(5.5)

Taking into consideration all the T recorded samples, we can expand (5.5) to a

general matrix form as

Ψi︷ ︸︸ ︷
−∆Yi[t− 1] . . . ∆Vi[t− n]

... . . .

−∆Yi[t− 1− T ] . . . ∆Vi[t− n− T ]


θi︷ ︸︸ ︷
α1,i

...

βn,i

 =

Yi︷ ︸︸ ︷
∆Yi[t]

...

∆Yi[T ]

 (5.6)

or in a more compact form:

Ψi · θi = Yi. (5.7)

Solving for θi using the linear least squares, we obtain

θ∗
i =

(
Ψ⊤

i Ψi

)−1
Ψ⊤

i Yi. (5.8)
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To identify the model order, the root mean square error

RMSEi =

√√√√ 1

T

T∑
t=t0

(
∆Ŷi(t)−∆Yi(t)

)2
(5.9)

between the model output ∆Ŷi and recorded values ∆Yi is employed. Starting from

first order, the order of each transfer function keeps increasing until the change of

RMSE between two consecutive model orders is not greater than a user-defined

threshold ϵy. This iterative procedure results in two transfer functions H∗
P,i(z|θ∗

i )

and H∗
Q,i(z|θ∗

i ) that model the active and reactive power response to the i-th dis-

turbance, respectively. Then, a unit step is applied to each of the derived models

generating M step responses for active and reactive power, ŷP,i and ŷQ,i, respec-

tively. Since the signals ŷP,{1,...,M} and ŷQ,{1,...,M} were generated under the same

input, we can leverage them to cluster dynamic behavior using their TD and fre-

quency domain (FD) values as features. To do so, we calculate the frequencies at

which the Fast Fourier Transform (FFT) of the TD signals ŷP,i(t) and ŷQ,i(t) reach

their maximum amplitude, as:

fP,i = argmax
f

FFT (ŷP,i(t)) , (5.10)

fQ,i = argmax
f

FFT (ŷQ,i(t)) . (5.11)

Then, for every measurement i, we merge the generated TD signals ŷP,i(t) and

ŷQ,i(t) with the frequencies fP,i and fQ,i into a single feature vector Fi as:

Fi = [ŷP,i(t0), ..., ŷP,i(T ), ŷQ,i(t0), ..., ŷQ,i(T ),

fP,i, ..., fP,i, fQ,i, ..., fQ,i]
⊤.

(5.12)

In order to balance the influence of TD and FD features, the frequencies fP,i and

fQ,i are expanded within the feature vector so that they occupy the same number of

vector positions as their TD signals.

Once all individual feature vectors have been formed, they are put into a matrix

F = [F1,F2, ...,FM ]. Then, F is scaled using the Min-Max normalization tech-

nique, so that all matrix elements are within [0, 1] [117]. Finally, the scaled F is

93



Chapter 5 – Identification of ADN Dynamics using Cluster Analysis

used as an input to the clustering algorithm. A high-level description of the steps

followed for clustering dynamic behavior are shown in the pseudocode of Algo-

rithm 1 below.

Algorithm 1 Pseudocode for clustering dynamic behavior.
1: for i = 1 : M and for both active and reactive power do
2: n = 1

3: Calculate H1
i (z)

4: Calculate RMSE1
i

5: repeat
6: n = n+ 1

7: Calculate Hn
i (z)

8: Calculate RMSEn
i

9: until
(
RMSEn

i − RMSEn−1
i

)
< ϵy

10: Calculate unit step response

11: Calculate max. frequency of the unit step response FFT

12: Form Fi

13: end for
14: Merge individual Fi to a feature matrix F

15: Normalize F

16: Run the clustering algorithm with F as input

It is worth pointing out that we avoid performing the clustering based on the

parameters of existing load/ADN models, since the clustering procedure would be

highly dependent on the deployed model and the accuracy of the parameter esti-

mation. Furthermore, complex models with a lot of parameters require nonlinear

optimization which may result in local optimum solutions [24]. Hence, multiple

combinations of parameters might describe the same dynamics, and thus using them

as features would result in redundant clusters. On the contrary, this clustering ap-

proach relies exclusively on the recorded dynamic responses and thus, it can be

effortlessly integrated into most of the existing load modeling approaches in the

literature.
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5.2.3 Clustering dynamic behavior

In this phase, measurements that correspond to similar dynamic behavior are auto-

matically grouped together. One of the proposed clustering algorithms is initially

applied to D (stage 1) and then to Dr (stage 2).

Since clustering dynamic behavior has, to the author’s best knowledge, not been

presented in the literature before, the choice of a suitable clustering method was not

straightforward. Hence, four algorithms of different notion and complexity, which

are based on four different types of clustering methods (partitioning, hierarchical,

fuzzy, density-based), were implemented and validated; namely k-means++ [118],

agglomerative hierarchical clustering [119], fuzzy c-means [120] and DBSCAN

[121]. It should be noted that DBSCAN does not require a two-stage run since it

discards outliers while clustering the data.

Here, the theoretical foundations of the deployed clustering algorithms are briefly

discussed.

1. k-means++: This algorithm splits the data into K clusters C = {C1, C2, ..., CK}
by repeatedly minimizing the ”Within Cluster Sum of Squares” (WCSS) [118].

This minimization is described by:

argmin
C

K∑
k=1

∑
Fi∈Ck

∥Fi − ck∥2, (5.13)

where

ck =
1

Nk

∑
Fi∈Ck

Fi (5.14)

denotes the centroid of Ck, as calculated by its Nk entries.

2. Agglomerative hierarchical clustering: This algorithm starts with the hy-

pothesis that every entry forms its own cluster. Then, a similarity metric,

e.g., euclidean distance, is calculated between the clusters and is stored in an

M ×M symmetrical matrix. As a next step, the two most ”similar” clusters

are merged together and a new (M − 1)× (M − 1) similarity matrix is esti-

mated. The same procedure is repeated until the desired number of clusters is
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reached [119]. In our implementation, we deploy the euclidean distance as a

similarity metric.

3. Fuzzy c-means: This method is based on the simple principle that each data

entry can partially belong to more than one cluster. In a iterative manner,

fuzzy c-means tries to split the data into clusters by assigning the adequate

degrees of membership and minimizing the sum of squares [120]:

Jm =
M∑
i=1

K∑
k=1

µm
ik∥Fi − ck∥2, (5.15)

where µik denotes the degree of membership of Fi in the k-th cluster, while

m expresses the fuzzy partition matrix exponent which regulates the degree

of fuzzy overlap. In this implementation, m is set to 2 and since the goal

is to build a different dynamic model for each cluster, each measurement is

assigned to the cluster with the maximum membership after the algorithm has

converged to a solution.

4. DBSCAN: The Density-Based Spatial Clustering of Applications with Noise

is an algorithm suitable to discover clusters with arbitrary shape without re-

quiring a priori the total number of clusters as input [121]. The algorithm

classifies each point as core, border or noise point based on how many neigh-

bor points are found within a distance ϵ. The minimum number of neighbor

points minPts and the distance ϵ are the two user-defined parameters of the

algorithm. A core point has at least minPts points within ϵ, a border point

has less than minPts as neighbors but at least one core point within ϵ and the

noise points have no neighbor points. Finally, the neighbor core and border

points are grouped to the same cluster. In this application, the minPts is set to

10 and the ϵ is set to one of {0.2, 0.3, 0.4} based on the examined dataset.

To determine the optimal number of clusters in stage 1, the gap statistic is de-

ployed since it usually outperforms other popular methods, e.g., the ”elbow” [122].
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The gap statistic essentially describes the difference of the intra-cluster variation

Wk =
K∑
k=1

1

2∥ck∥
∑
i,j∈Ck

∥Fi − Fj∥2 (5.16)

with its expectation under a uniform distribution of the data E∗ for a varying number

of clusters k. Its analytic expression can be written as

Gap(k) = E∗[log(Wk)]− log(Wk), (5.17)

while the optimal k can be defined by

k∗ = argmax
k

Gap(k). (5.18)

In stage 2, once the irrelevant clusters have been removed, a visual inspection of

the remaining clusters is performed in order to identify the dominant ADN dynam-

ics. The user can exploit this information to set the number of clusters of stage 2.

Theoretically, the gap statistic could be used in stage 2 as well. However, since the

optimal number of clusters is highly dependent on the application requirements and

commonly used metrics provide only an estimate of k∗, the deployment of any of

those metrics is avoided. Instead, the user is free to define the number of clusters

based on his/her modeling requirements.

5.3 Clustering results

The aim of this section is to highlight the existence of different dynamics within

an ADN, which cannot be neglected during the modeling procedure. The section is

split into two parts; the clustering results of stage 1 and stage 2, respectively.

5.3.1 Stage 1

Although clustering algorithms have been widely used in the context of power sys-

tems [123], their application in clustering dynamic behavior has not been docu-

mented. Therefore, we evaluate the four selected algorithms using the metrics of
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”within cluster sum of squares to between cluster variation” (WCBCR), the Davies-

Bouldin index (DBI) and the average Silhouette index [124, 125]. Those metrics

are mathematically described by the following equations:

WCBCR =

K∑
k=1

Mk∑
i=1

d2(ck,Fi)

K∑
1≤k1≤k2

d2(ck1 , ck2)

, (5.19)

where Mk denotes the total number of entries assigned to cluster Ck and d(•, •)
denotes the euclidean distance. In the numerator, WCBCR expresses the sum of

the distances of all data entries to their center while the sum of distances between

cluster centers forms the denominator.

DBI expresses an average similarity of each cluster with each most similar one

and can be written as:

DBI =
1

K

K∑
k=1

max
k1 ̸=k2

[
d̂(Ck1) + d̂(Ck2)

d(ck1 , ck2)

]
, (5.20)

where

d̂(Ck) =

√√√√ 1

2Mk

Mk∑
i=1

d2(ck,Fi). (5.21)

The Silhouette index is a metric for assessing how well an entry is fitted to its

assigned cluster. To do so, this metric uses the following two functions:

a(Fi) =
1

|Ck1| − 1

∑
j∈Ck1 ,i ̸=j

d(Fi,Fj) (5.22)

and

b(Fi) = min
Ck1 ̸=Ck2

1

|Ci|
∑
j∈Ck2

d(Fi,Fj). (5.23)

Function a(Fi) describes the average dissimilarity of the entry i to all its cluster

members whereas function b(Fi) expresses the minimum average dissimilarity of

the entry i over the clusters that it is not assigned to. By combining these two

function, the Silhouette index of the entry i is defined as:

s(Fi) =
b(Fi)− a(Fi)

max(a(Fi), b(Fi))
. (5.24)
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In our application, we deploy the average Silhouette index over all entries and clus-

ters. As expected, WCBCR and DBI need to be as low as possible, whereas the

Silhouette index should be 1 in the best-case scenario.

The performance of the algorithms in stage 1 of the proposed methodology is

evaluated by estimating the aforementioned metrics for different numbers of clus-

ters ranging from two to ten. Since DBSCAN automatically discards the irrele-

vant measurements and does not partition the data based on a predefined number of

clusters, its performance is assessed in stage 2. Importantly, the deployed metrics

yielded comparable results for all the substations. Indicative results of six ADNs are
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Figure 5.2: Sub.A.1: WCBCR, DBI, and Sihlouette index for different clustering

algorithms.
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Figure 5.3: Sub.B.1: WCBCR, DBI, and Sihlouette index for different clustering

algorithms.
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Figure 5.4: Sub.C.1: WCBCR, DBI, and Sihlouette index for different clustering

algorithms.
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Figure 5.5: Sub.C.2: WCBCR, DBI, and Sihlouette index for different clustering

algorithms.

illustrated in Fig. 5.2-5.7. It is clear that k-means++ and agglomerative hierarchical

show similar results in every metric while both of them outperform fuzzy c-means.

This result may be partially justified by the fact that each entry was assigned to

the cluster with the maximum degree of membership even though fuzzy c-means

partitions the dataset based on the notion of multiple memberships [120].

In general, the ability of a load/ADN model to effectively handle bad or irrele-

vant data for the parameter identification is particularly important [2, 18, 126, 127].

Since a major scope of those dynamic equivalent models is their integration to

power system stability studies [2], the measurement data deployed for the parameter
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Figure 5.6: Sub.D.1: WCBCR, DBI, and Sihlouette index for different clustering

algorithms.
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Figure 5.7: Sub.D.2: WCBCR, DBI, and Sihlouette index for different clustering

algorithms.

estimation should reflect a clear response of the ADN to variations of the transmis-

sion grid voltage. Therefore, measurement data representing the response of the

ADN to internal events are irrelevant for the purpose of the model. Those data are

usually identified by the opposite direction between the change in voltage and power

at the moment of the disturbance. Moreover, signals with noise levels comparable

to the dynamic response of the system have a negative impact on the parameter es-

timation and should be discarded from the identification procedure [43]. Finally,

clusters with a total number of entries below a certain threshold (1% of the total

number of measurements acquired) can be considered as outliers and are omitted
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from the clustering of stage 2, as the aim of the proposed methodology is to build

generic models that are valid for a wide range of operating conditions.

Here, it is meaningful to illustrate a representative set of discarded clusters gen-

erated in this stage using the actual differences of voltage, active, and reactive power

in pu. In Fig. 5.8-5.14, the grey curves depict the individual measurements while

the black bold curves represent the average of the respective measurements. For

example, the cluster in Fig. 5.13 contains measurements with some high frequency

oscillations in active and reactive power which were present before the disturbance

and do not correspond to the response of an ADN after a voltage change. Simi-

lar results but with a lower frequency are also depicted in Fig. 5.12, justifying the
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Figure 5.8: Sub.A.1: Indicative discarded cluster.
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Figure 5.9: Sub.B.1: Indicative discarded cluster.
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Figure 5.10: Sub.C.1: Indicative discarded cluster.
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Figure 5.11: Sub.D.1: Indicative discarded cluster.
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Figure 5.12: Sub.F.1: Indicative discarded cluster 1.
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Figure 5.13: Sub.F.1: Indicative discarded cluster 2.
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Figure 5.14: Sub.F.1: Indicative discarded cluster 3.
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Figure 5.15: Sub.F.1: Indicative discarded cluster 4.
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necessity of using the FD signals as features. Furthermore, Fig. 5.14 and 5.8 may

describe the connection/disconnection of a big consumer within the examined ADN

since both active and reactive power respond towards the opposite direction than the

voltage. Similar type of response is found in Fig. 5.15, where a power controller

of DG seems to have been activated. In addition, the clusters appeared in Fig. 5.9

and 5.10 contain highly noisy measurements that cannot be used for system identi-

fication. Finally, Fig. 5.11 illustrates a cluster with two measurements, which might

describe a voltage stability issue. The reactive power starts increasing right after

the disturbance and after around 1 s, starts decreasing rapidly. To sum up, all those

measurements should be omitted from the modeling procedure since they do not

indicate the response (or a clear response) of an ADN after an external voltage dis-

turbance. A possible use of those data may lead to faulty model parameters and

error-prone models [128].

5.3.2 Stage 2

In stage 2, the user defines the optimal number of clusters using the identified dom-

inant dynamics of stage 1. Thus, we can directly compare the algorithms’ per-

formance for the user-defined number of clusters. In this case study, one to three

clusters of different dynamics were identified at each ADN. The deployed metrics

are presented in Table 5.1-5.3. DBSCAN shows overall the best results, while k-

means++ and agglomerative hierarchical follow with worse yet sufficient clustering

results, as assessed by plotting separately the measurements of the derived clusters.

Fuzzy c-means shows partly sufficient results, indicating that it could perform ac-

ceptably in a ”cleaned” dataset without noise data and outliers. Note that the ADNs

with no values in the tables comprise only one cluster of dynamics. Therefore, no

clustering performance can be measured. To sum up, we conclude that DBSCAN is

a suitable choice for clustering dynamic behavior using field measurements since it

simultaneously discards outliers and groups the data accordingly without requiring

a two-stage approach like the other algorithms. In addition, it runs without specify-

ing the number of clusters a priori, which is considered a very challenging task in
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Table 5.1: WCBCR for different ADNs and clustering algorithms.

ADN ID.
WCBCR

K-means++ Fuzzy c-means Hierarchical DBSCAN

Sub.A.1 6.2 6.2 6.2 6.22

Sub.A.2 8.2 11.18 9.64 7.3

Sub.B.1 18.26 18.26 19.09 13.51

Sub.B.2 11.48 3.21 11.82 3.95

Sub.C.1 180.93 184.13 197.57 160.92

Sub.C.2 - - - -

Sub.D.1 2.26 65.56 2.46 2.61

Sub.D.2 - - - -

Sub.E.1 24.59 27.78 29.42 24.35

Sub.E.2 - - - -

Sub.F.1 149.47 147.05 138.12 98.32

Sub.F.2 9.84 48.9 9.85 6.45

cluster analysis [122].

As pointed out, the aim of this section is to highlight the existence of different

dynamics within an ADN, which cannot be neglected during the modeling proce-

dure. For each ADN, the “cleaned” dataset of voltage, active and reactive power

measurements was grouped into distinguishable clusters. The clustering results of

several representative ADNs are presented below. Similarly to the results of stage

1, the left graphs present the voltage change, the middle ones the active power re-

sponse and the right ones the reactive power response. The grey curves indicate the

individual recordings, whereas the black curves denote the average of each cluster’s

measurements. Moreover, comparative results between the average cluster curves

are introduced.
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Table 5.2: DBI for different ADNs and clustering algorithms.

ADN ID.
DBI

K-means++ Fuzzy c-means Hierarchical DBSCAN

Sub.A.1 2.46 2.46 2.46 2.48

Sub.A.2 2.93 4.27 3.5 2.45

Sub.B.1 4.27 4.27 4.35 3.58

Sub.B.2 2.61 2.44 2.56 2.49

Sub.C.1 13.43 13.56 13.32 12.1

Sub.C.2 - - - -

Sub.D.1 9.4 11.69 9.04 4.66

Sub.D.2 - - - -

Sub.E.1 3.29 3.47 37.75 3.24

Sub.E.2 - - - -

Sub.F.1 36.05 22.75 35.69 14.28

Sub.F.2 27.43 33.3 27.48 2.38

Sub.A.1

At Sub.A.1, two clusters were generated as shown in Fig. 5.16-5.18. The major

difference between those two clusters can be found in the reactive power response,

whereas the active power responses are identical. In particular, the entries of cluster

2 are characterized by the normal recovery behavior of a distribution system with-

out DG after a step voltage change. On the contrary, the entries of cluster 2 are

characterized by the reactive power response depicted in 5.17. This phenomenon is

caused by the voltage controller of the wind turbines installed within the examined

ADN. This controller supports voltage through reactive current injections based on

the corresponding ENTSO-E Network Code on Requirements for Generators [129].
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Table 5.3: Silhouette index for different ADNs and clustering algorithms.

ADN ID.
Silhouette index

K-means++ Fuzzy c-means Hierarchical DBSCAN

Sub.A.1 0.98 0.98 0.98 0.98

Sub.A.2 0.79 0.73 0.78 0.81

Sub.B.1 0.87 0.87 0.86 0.9

Sub.B.2 0.86 0.89 0.86 0.88

Sub.C.1 0.81 0.8 0.79 0.81

Sub.C.2 - - - -

Sub.D.1 0.62 0.58 0.65 0.83

Sub.D.2 - - - -

Sub.E.1 0.78 0.72 0.76 0.78

Sub.E.2 - - - -

Sub.F.1 0.56 0.56 0.57 0.84

Sub.F.2 0.59 0.48 0.59 0.85
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Figure 5.16: Sub.A.1: Cluster 1.

Sub.B.1

At Sub.B.1, two distinct clusters were generated as shown in Fig. 5.19-5.21. These

two clusters are characterized by a similar active power response, in which the active
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Figure 5.17: Sub.A.1: Cluster 2.
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Figure 5.18: Sub.A.1: Average cluster curves.

power recovers partially to a new steady-state after a voltage change, as illustrated

in the comparative plots of Fig. 5.21. In contrast, the reactive power response pro-

duced two distinguishable curves. Cluster 2 has got a relatively small reactive power

change, in which the reactive power gradually recovers to a new steady-state, as de-

picted in Fig. 5.19. Cluster 1 is characterized by slower dynamics and their transient

response is much higher than the one of cluster 2. This effect might be generated

by the voltage controller of the DG units installed within the examined ADN.
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Figure 5.19: Sub.B.1: Cluster 1.

1 2 3

time(s)

0

5

10

15

20

v
 (

p
u
)

10
-3

1 2 3

time(s)

-0.04

-0.02

0

0.02

0.04

p
 (

p
u
)

1 2 3

time(s)

-0.01

-0.005

0

0.005

0.01

q
 (

p
u
)

Figure 5.20: Sub.B.1: Cluster 2.
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Figure 5.21: Sub.B.1: Average cluster curves.
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Sub.C.1

At Sub.C.1 two different clusters were generated as depicted in Fig. 5.22-5.24.

While both clusters present a similar recovery behavior in active power (with a

small difference in the transient and steady state value), the reactive power response

of cluster 2 is distinguished by slower dynamics as clearly observed in the compar-

ative plots of Fig. 5.24. This particular reactive power response may be caused by

the voltage controller of the CHP plant, which operates within the examined ADN

and supports the voltage through reactive current injections.
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Figure 5.22: Sub.C.1: Cluster 1.
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Figure 5.23: Sub.C.1: Cluster 2.
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Figure 5.24: Sub.C.1: Average cluster curves.

Sub.D.1

At Sub.D.1 three different clusters were generated as shown in Fig. 5.25-5.28. All

three clusters illustrate a common active power response without a significant differ-

ence between them. However, the reactive power response can highly vary among

the three clusters as clearly depicted in the comparative plots of Fig. 5.28. Cluster 2

is characterized by a low frequency oscillation directly after the voltage disturbance.

Importantly, this dynamic behavior may be caused by the two CHP plants, which

are installed within the examined ADN and are equipped with voltage controllers.

On the contrary, cluster 1 presents a different reactive power control, where the re-
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Figure 5.25: Sub.D.1: Cluster 1.
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Figure 5.26: Sub.D.1: Cluster 2.
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Figure 5.27: Sub.D.1: Cluster 3.
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Figure 5.28: Sub.D.1: Average cluster curves.

113



Chapter 5 – Identification of ADN Dynamics using Cluster Analysis

active power converges to a remarkably higher value after the transient response.

Finally, cluster 3 contains entries with the “normal” recovery part that have been

observed in all ADNs under study.

Sub.E.2

At Sub.E.2, cluster 2 and 3 seem to have a similar active power recovery although

they differ in the transient response, as shown in Fig. 5.32. On the other hand,

cluster 1 is characterized by a big active power change and a small recovery as

highlighted in the active power plots of Fig. 5.32. Regarding the reactive power,

cluster 1 and 2 include measurements with a new steady-state quite close to the

initial pre-disturbance value. Finally, cluster 3 shows a relatively moderate recovery

compared to the other two clusters as illustrated in the reactive power plots of Fig.

5.32.

Sub.F.2

At Sub.F.2, three different clusters were generated as shown in Fig. 5.33-5.35. All

three clusters show a dynamic response in which no voltage control is present. Their

main differences can be observed in the transient and steady-state response. Cluster

1 and 2 appear to have similar dynamics with respect to active power but notably dif-
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Figure 5.29: Sub.E.2: Cluster 1.
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Figure 5.30: Sub.E.2: Cluster 2.
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Figure 5.31: Sub.E.2: Cluster 3.
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Figure 5.32: Sub.E.2: Average cluster curves.
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ferent responses in reactive power, as depicted in the comparative plots of Fig. 5.36.

Cluster 3 is characterized by a rather bigger active and reactive power change even

though the voltage change is identical in all three clusters. This might be attributed

to the different load composition across the various clusters.

Conclusion

As a general rule, the yielded clusters reveal similar dynamic responses in case of

active power in all ADNs, where the load power demand recovers partially to a new

steady-state after a voltage step, due to the presence of induction motors within the

examined systems [67]. Regarding reactive power, several ADNs exhibit an entirely
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Figure 5.33: Sub.F.2: Cluster 1.
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Figure 5.34: Sub.F.2: Cluster 2.
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Figure 5.35: Sub.F.2: Cluster 3.
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Figure 5.36: Sub.F.2: Average cluster curves.

different set of dynamics. Several ADNs with DG are characterized by one cluster

with the classical load response to a voltage change like the one in Fig. 5.17 and at

least one cluster with a dynamic voltage support scheme through reactive current

injections based on the ENTSO-E Network Code [129], as in Fig. 5.16, 5.19, 5.23,

5.25, and 5.26. For example in Fig. 5.16, there is an immediate jump in reactive

power due to the load reaction to the voltage change and after a few time steps,

the DG units are activated and start supporting the voltage by injecting reactive

power to the grid. Nevertheless, each control scheme is different and possibly highly

dependent on the manufacturer of the DG unit.
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5.4 Summary

Dynamic equivalent ADN models are commonly derived using the measurement-

based approach. This method exploits acquired data in order to estimate the model

parameters using system identification techniques. However, most of the approaches

assume that the system maintains the same dynamics for different operating condi-

tions, even though the load mix and the DG composition are constantly changing.

At the same time, acquiring measurements over a significant period of time results

in big datasets, where not all the recorded data are suitable for system identification.

To tackle those two major issues, an unsupervised learning approach is proposed

comprising two stages. In the first stage, the irrelevant measurements are identified

and are discarded from the modeling procedure. In the second stage, the remaining

data are grouped into clusters of similar dynamic behavior. To do so, four clustering

algorithms of different notion and complexity were examined. Overall, DBSCAN

seems to be the best choice for this problem in practice. Furthermore, k-means++

and hierarchical clustering showed good performance and can be also deployed as

alternative without jeopardizing the overall clustering performance.

Importantly, real field measurements acquired in the ADNs under study confirm

the notable presence of irrelevant data within the recorded datasets due to the inabil-

ity of the measurement units to classify the source of the disturbances. In the second

stage, it was observed that an ADN may exhibit utterly different dynamics depend-

ing on whether the installed DG units are active or not. Therefore, unless an initial

cluster analysis is performed, the direct deployment of even the “cleaned” dataset

in the system identification procedure may lead to faulty models as demonstrated in

the previous sections.

To sum up, the clustering results indicate that, indeed, an array of different dy-

namics can be present within ADNs due to diverse load and generation composition.

This results justifies the imperative need of an initial cluster analysis or more gener-

ally, the need for a preprocessing technique. It is worth pointing out that no knowl-

edge of load and generation mix is required and the clustering is performed exclu-

sively based on the measurements themselves. Moreover, the proposed method can

118



Chapter 5 – Identification of ADN Dynamics using Cluster Analysis

be easily integrated as a preprocessing step into most of the existing ADN modeling

approaches in order to obtain an insight of the governing dynamics characterizing

the examined systems.
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Chapter 6

Linear Dynamic ADN Model

This chapter presents a linear dynamic model that can be easily integrated to any

power system simulation software available in the market. It starts with the pa-

rameter estimation of a classical active power model and then, introduces a new

approach for modeling the reactive power. This approach is based on separating a

reactive power response into two different signals. The first one is attributed to the

load and the second one is attributed to the generation. In doing so, two different

models, i.e., one for load and one for generation, can be derived based on those two

signal categories. This chapter ends with a comparison between the dynamic load

model parameters estimated several years ago and now.

6.1 Active power modeling

The aim of this section is to develop per unit (pu) models, which can be easily

scaled based on the corresponding voltage level and the real power consumption.

As stressed out throughout this thesis, the power recorded at the PCC does not

correspond to the real load demand, since there is DG installed within the examined

grids. Therefore, in order to obtain the actual power consumption, the measured

power at PCC should be calibrated using the corresponding DG values. In this

regard, dynamic active power models can be developed only for the substations

121



Chapter 6 – Linear Dynamic ADN Model

with complete data.

However, the exact DG information at the moment of the disturbance was not

available. Instead, the DSOs provided 15-minute resolution time series for some of

the big DG plants within the examined grids, where each point of the given data

represents the average power generation of the previous 15 minutes. In this context,

the given data are interpolated accordingly in order to estimate the power generation

at the moment of the voltage disturbance. Then, this result is used to estimate the

actual load consumption.

In this study, the available DG data allow an accurate estimation of the actual

load in the following ADNs:

• Sub.A.2

• Sub.B.1

• Sub.C.1

• Sub.C.2

• Sub.D.1

• Sub.D.2

• Sub.E.1

6.1.1 Preprocessing

In this section, a simple procedure is presented in order to estimate the pu input

(voltage) and output signals (active power). As a first step, the actual active power

P̂i(t) is estimated using:

P̂i(t) = Pmeas,i(t) + P̂DG,i (6.1)

where Pmeas,i(t) is the i-th active power response as recorded by the measurement

unit and P̂DG,i is an estimate of the total DG at the moment of the disturbance based

122



Chapter 6 – Linear Dynamic ADN Model

on the linear interpolation of the 15-minute time series. It is assumed that P̂DG,i is

constant over the time period of the corresponding measurement.

In this context, the initial actual load demand before the voltage disturbance is

estimated as:

P̂0,i =
1

N0

·
∑

tn∈[t0−1 s,t0)

P̂i(tn) (6.2)

where t0 is the time of the disturbance and N0 is the number of samples recorded

within 1 s before the disturbance. At this point, all the measurements that have

P̂0,i < 1MW are discarded from the modeling procedure, since 1MW is consid-

ered too low to be the real load demand of a distribution system and those power

values may be caused by missing or incorrect DG data. Furthermore, highly noisy

measurements are also discarded using the methodology described in [39]. This

methodology classifies a measurement as highly noisy if the signal variation during

the new steady-state is bigger than the 1/3 of the transient response.

Finally, we can estimate the pu active power change ∆pi for every measurement

i as

∆pi(t) =
P̂i(t)− P̂0,i

P̂0,i

. (6.3)

As for the voltage, the procedure to calculate the corresponding voltage signals

is straightforward since the measured voltage Vi(t) is the actual voltage. Thus, the

pu change ∆vi for each measurement i can be calculated using

∆vi(t) =
Vi(t)− V0,i

V0,i

, (6.4)

where V0,i is the average voltage level 1 s before the disturbance and is estimated,

similarly to the case of active power, by

V0,i =
1

N0

·
∑

tn∈[t0−1,t0)

Vi(tn). (6.5)

6.1.2 Parameter estimation

After estimating the pu signals for voltage and active power, a dynamic model is

estimated for each of the aforementioned ADNs. A simplified schematic diagram of

123



Chapter 6 – Linear Dynamic ADN Model

1st order 

transfer function 

-

Parameter estimation

Measurement 1

Measurement 2

Measurement M

… Load Model

Figure 6.1: System identification for load models.

this procedure is shown in Fig. 6.1, where each measurement corresponds to the pair

(∆vi(t), ∆pi(t)). Importantly, a first order transfer function was selected to model

the active power response of the system based on the inspiring work presented in

[130]. Finally, the parameters of each transfer function are estimated using the

CONtinuous-Time System IDentification (CONTSID) technique [131].

6.1.3 System identification results

In this section, we compare the estimated dynamic models of each ADN. To do so,

we apply a common input signal to every transfer function and then, we plot the

generated dynamic responses in a common graph. The input signal is a voltage step

change of 0.02 pu, as shown in Fig. 6.2. The generated active power responses are

illustrated in Fig. 6.3. Note that the response with the label “Hall” refers to the

model that was developed in [130] several years ago. This old model is employed

for two reasons. The first one is to observe how the load dynamics have changed

throughout the years. The second one lies in the fact that the work of [130] is

one of the very limited studies using real field data acquired in several distribution

networks.

As depicted in Fig. 6.3, the transient responses range from 0.08 to almost 0.15
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Figure 6.2: Voltage step change of 0.02 pu.
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Figure 6.3: Active power response of each ADN after a voltage step change of 0.02

pu.

pu whereas the steady-state responses vary from 0.02 to 0.05 pu. Importantly, all

the ADNs recover to a new steady-state around 0.2 s after the voltage disturbance.

To compare those results with the results obtained in the past as presented in [130]
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(bold blue curve in Fig. 6.3), we estimate an average active power response using

all the available responses of the examined ADNs. The resulted average response

is shown in Fig. 6.3 as the bold black curve. As observed in this graph, the model

from [130] has a significant smaller transient jump and recovers slower to the new

steady-state. On the other hand, it seems that there is no big difference between the

two steady-state gains. It is worth pointing out that the difference in the transient

response between the two models might be caused by the measurement equipment

used around 30 years ago, which do not provide the same high sampling frequency

as the new modern devices.

6.1.4 Generic model

In order to obtain an “average” model, which can be deployed in dynamic simula-

tions, the parameters of a transfer function

Gpv(s) = kpv
1 + sT2

1 + sT1

(6.6)

are estimated using all the available responses. The estimated kpv of the average

model corresponds to the steady-state gain of the model and is also presented in

Table 6.1 alongside with the other kpv. Here, it is observed that the average steady-

state gain estimated in this study is kpv = 1.60%/%, which is higher than the value

of 1.0 %/% observed in the past. However, it can be noted that the latter lies within

the range of values observed in the derived models of this work. Finally, the transfer

function of this average model can be written as

Gpv(s) = 1.6033
1 + 0.0985s

1 + 0.0291s
, (6.7)

and can be readily integrated into any commercial software for power systems sim-

ulation as a realistic load model for electromechanical transients.

6.2 Reactive power modeling

The aim of this section is to introduce the procedure for developing linear dynamic

models for reactive power. As discussed in Chapter 3, the reactive power response
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Table 6.1: kpv of the examined ADNs.

ADN ID kpv (%/%)

Sub.A.2 1.33

Sub.B.1 1.11

Sub.C.1 0.66

Sub.C.2 2.11

Sub.D.1 2.25

Sub.D.2 2.47

Sub.E.1 1.27

Average 1.60

Average in [130] 1.0

significantly depends on whether and which DG unit is present and active. To take

this into account, the main idea is to create two different dynamic models: one for

the reactive power response of the loads and one for the reactive power response of

the DG. Then, the sum of those two individual responses will be the reactive power

response of the system.

To do so, instead of using the whole dataset of measurements for system iden-

tification as in case of active power, the whole dataset will be divided into subsets

with and without reactive power control. The main reason for splitting the dataset

based on this criterion lies in the fact that the DG systems are operating using this

kind of control whereas load components are not.

As in case of active power, the reactive power response of the loads will be mod-

eled in per unit (pu) in order to be scaled easily for various voltage and reactive

power levels. The main issue that arises here is that there is no information about

the amount of reactive power that the various DG systems consume or inject to the

distribution system. Therefore, the measured reactive power at the PCC is essen-

tially composed by the reactive power of the loads, possibly power factor correction

devices, and the reactive power of DG. Note that a fully compensated distribution
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network, i.e. Q0 = 0 does not yield ∆Q = 0 for voltage changes and that Q0 = 0

is not a suitable reference value. However, it is plausible that the change in reac-

tive power will be proportional to the size of the load, which is known by P̂0. To

this end, it is assumed that the active power loads are operating with a constant

power factor in order to be able to model the reactive power in pu. In particular,

a constant power factor of loads (0.78) without power factor correction such that

tanφ = 0.8 is assumed. Note that this factor of 0.8 is somewhat arbitrary and that

another factor (such as 1) would work as well, as long as the same value is used

for the system identification and in the power system model in which the model is

embedded. Hence, the reactive power Q̂i,ref used for the conversion to pu values

can be written as

Q̂i,ref = 0.8 · P̂0,i, (6.8)

where P̂0,i is an estimate of the actual load demand as calculated in the previous

chapter for the following distribution grids:

• Sub.A.2

• Sub.B.1

• Sub.C.1

• Sub.C.2

• Sub.D.1

• Sub.D.2

• Sub.E.1

However, the reactive power responses of DG are formed by the control strategy

of the individual DG systems. As a result, these responses neither are proportional

to the actual power of the DG units, nor to the power of the loads. Rather, the

reactive power responses scale with the installed capacity of DG that is equipped

with corresponding control functionality. For this reason, using as base the values
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of P̂DG,0 or even P̂0 might lead to error-prone models. Therefore, the reactive power

response of DG is modeled using absolute values. Note that this is indicated by the

use of a capital letter ∆QDG for the output of this model in Fig. 6.4. It is worth

pointing out that in order to use these models in a simulation platform, the input

voltage and the output reactive power must be scaled according to the respective

values.

To sum up, Fig. 6.4 describes the overall model structure that is employed for

modeling both active and reactive power.

Gpv,load(s)

Gqv,load(s)

V

−
Δv

Δp

Δqload

ΔV

ΔQload

ΔP

Q0

Q

P

V0 1/ V0

GQV,DG(s)

Gpv,DG(s) = 0

ΔQDG

P0
P0

0.8 ⋅ P0

Figure 6.4: Block diagram representation of the model structure for active and reac-

tive power. In case of distribution grids in which no DG with reactive power control

is present, GQV,DG(s) = 0.

As there are only a few ADNs for which a significant influence of DG units on

the reactive power response was observed, the proposed methodology is applied

only on the measurement data from the following ADNs:

• Sub.A.1

• Sub.B.1

• Sub.C.1
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• Sub.D.1

For all other ADNs, no DG impact was observed on the reactive power dynamics. In

those cases, the corresponding DG units do not provide voltage control. For these

ADNs, the classical load modeling approach is applied using the whole dataset,

analogously to the procedure for active power described in previous section.

6.2.1 Methodology

In this section, the methodology deployed for generating the reactive power models

for loads, Gqv,load(s), and for DG, GQV,DG(s) is described. The proposed method-

ology follows the flowchart depicted in Fig. 6.5.

Measurements V,Q

Normalize using Q0

Dataset without reactive 

power control

Dataset with reactive 

power control

Estimate dynamic load

model

Subtract the average 

load response from all 

the measurements. 

Generation responses
Estimate dynamic 

generation model

Δqav,load

ΔQi

ΔQi,gen=ΔQi – ( Δqav,load ∙ Q0,i )

Figure 6.5: Flowchart illustrating the process of building linear reactive power mod-

els.

As a first step, it is necessary to decide whether voltage controller dynamics can

be observed in the measurement data. If yes, the measurement dataset is to be split

into subsets. A number of two subsets has shown to be sufficient for the ADNs

under consideration in this study. If an ADN contains several DG of sufficient size

that provide voltage control in a different way, a larger number of subsets may be

necessary.
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Initially, the split was performed based on the given DG data, and especially

based on whether the DG units were generating power. However, this approach

resulted in subsets in which many, but not all of the measurements of each group

exhibit similar dynamic behavior. Fig. 6.6 shows an example of the resulting subsets

when the dataset is split based only on the information of the given DG data. Both

graphs (upper and lower) present the pu change in voltage and reactive power for

Sub.A.1. The lower graph (6.6b) contains the measurements in which a wind park

was generating power (according to the DG time series data). The upper graph

(Fig. 6.6a) contains all the other measurements, i.e., those for which no generation

from wind parks was recorded. As observed in the upper graph, there are entries that

follow the classical load response as well as entries that contain voltage controller

dynamics. Similarly, the lower plots also contain both types of responses. Hence,

it is clear that splitting the measurements using only the DG information does not

generate homogeneous groups. To tackle this problem, the proposed unsupervised

learning method for grouping similar dynamic responses was deployed as presented

in Chapter 5.

Based on the clustering results of the proposed unsupervised learning method,

the new generated groups using this clustering approach are shown in Fig. 6.7. The

clustering algorithm successfully divided the data into two homogeneous groups.

In the following section, the measurements of the first group (Fig. 6.7a) are used to

build a reactive power model for pure loads, while the measurements of the second

group (Fig. 6.7b) are combined with the pure load model to obtain a reactive power

model for DG.

6.2.2 Reactive power model for loads

This subsection corresponds to the left flow of Fig. 6.5. Once the measurements

have been separated into two (or more) groups, the measurements that correspond

to the load responses are normalized using the equation:

∆qi(t) =
Qi(t)− Q̂0,i

Q̂i,ref

(6.9)
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(b) Measurements with DG generating power.

Figure 6.6: Split based only on the given DG data.

where ∆qi(t) is the pu response of reactive power for the i-th measurement, Qi(t) is

the recorded reactive power, Q̂i,ref is defined by (6.8), and the initial reactive power

before the voltage disturbance is estimated as:

Q̂0,i =
1

N0

·
∑

tn∈[t0−1 s,t0)

Q̂i(tn). (6.10)
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(b) Cluster with voltage controller dynamics.

Figure 6.7: Split based on the proposed clustering algorithm.

The pu voltage signals are estimated using the equations (6.4) and (6.5). After

estimating the pu signals for voltage, ∆vi(t) and reactive power, ∆qi(t), a dynamic

model is estimated for each of the available ADNs listed in the beginning of this

chapter. A simplified schematic diagram of this procedure is shown in Fig. 6.1,

where each measurement corresponds to the pair (∆vi(t), ∆qi(t)). Importantly, a
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first order transfer function was selected to model the reactive power response of

the system based on the inspiring work presented in [130]. Finally, the parameters

of each transfer function are estimated using the CONtinuous-Time System IDenti-

fication (CONTSID) technique [131].

System identification results

In this section, the estimated dynamic models of each distribution network are com-

pared. To do so, a common input signal is applied to every transfer function and

then, the generated dynamic responses are plotted in a common graph. The input

signal is a voltage step change of 0.02 pu as shown in Fig. 6.8. In this context, the

generated reactive power responses are illustrated in Fig. 6.9.

As depicted in Fig. 6.9, the transient responses range from around 0.05 to almost

0.13 pu whereas the steady-state responses vary from 0.02 to 0.05 pu. Importantly,

all the distribution networks recover to a new steady-state around 0.2 s after the

voltage disturbance. To compare those results with the results that were obtained

in the ’80s/’90s and are presented in [130] (bold blue curve in Fig. 6.9), an average

reactive power response is estimated using all the available responses of the exam-
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Figure 6.8: Voltage step change of 0.02 pu.
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Figure 6.9: Average reactive power response of each ADN after a voltage step

change of 0.02 pu.

ined ADNs. The resulting average response is shown in Fig. 6.9 with the black bold

curve. The old model has a slightly smaller transient jump and recovers slower in

the new steady-state. On the other hand, there is almost no difference between the

two DC gains. To better examine the DC gain, we assume a transfer function

Gqv,load(s) = kqv
1 + sT2

1 + sT1

. (6.11)

The estimated kqv are presented in Table 6.2. Here, it is observed that the aver-

age DC gain has remained the same within the past years, maintaining a value of

1.5 %/%.

Generic model

In this section, a generic model, which can be deployed in dynamic simulations, is

estimated using all the available reactive power responses of the examined ADNs.

The derived transfer function can be written as

Gqv(s) = 1.4822
1 + 0.0821s

1 + 0.0317s
, (6.12)
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Table 6.2: kqv of the examined distribution networks.

ADN ID kqv (%/%)

Sub.A.1 2.47

Sub.A.2 1.17

Sub.B.1 0.60

Sub.E.1 1.45

Sub.C.1 1.44

Sub.C.2 1.88

Sub.D.1 1.66

Sub.D.2 1.18

Sub.E.1 1.45

Average 1.48

Average in [130] 1.5

and can be readily integrated into any commercial software for power systems sim-

ulation as a realistic load model.

6.2.3 Reactive power model for generators

In this section, the various steps of the right flow of Fig. 6.5 are introduced. The

first step is to generate the dataset that includes only the measurements with volt-

age control. This step was done using the clustering algorithm that was described

in Chapter 5. The second step is to subtract the average load response of the first

group, denoted by the subscript load from each individual measurement of the sec-

ond group, denoted by the subscript DG. This step attempts to isolate the dynamic

responses caused by the DG units by removing an estimate of the load response. To

do so, for every measurement i of the second group, we estimate the reactive power

response for generators ∆Q̂i,gen as

∆Q̂i,gen = ∆Qi −
(
∆qav,load · Q̂i,ref

)
(6.13)
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where ∆Qi = Qi(t)− Q̂0,i and

∆qav,load =
1

Nload

·
Nload∑
i=1

∆qi,load(t), (6.14)

with Nload being the number of measurements contained in the load subset.

The resulting ∆Q̂i,gen for the case of Sub.A.1 are shown in Fig. 6.10 in pu. The

respective plots for the other ADNs are shown in Appendix. However, the derived

responses show some spikes at the moment of the disturbance, which are caused by

the difference between the i-th load response and the average load response. In gen-

eral, at the moment of voltage step, the induction motors’ slip cannot change and

thus, the aggregate load behaves as static [67]. Thus, the magnitude of the reactive

power jump is exclusively determined by the load amount and composition (at that

particular moment). Since the load is continuously changing, different magnitudes

of reactive power jumps were recorded as presented in Fig. 6.7. At the same time,

the installed DG starts injecting reactive current a few time steps after the voltage

disturbance, as observed in cluster 2 of Fig. 6.7, where the voltage change starts de-

creasing as the reactive power starts increasing. In this context, it is normal to obtain

spikes when subtracting the average load response from the i-th load response, as

they correspond to different load amount and composition. To remove those spikes,

a simple moving average filter is applied. The resulted reactive power responses for

generators are shown in Fig. 6.11.

Then, the filtered reactive power responses are used together with the voltage sig-

nals ∆Vi = Vi(t) − V0,i to estimate a 1st or 2nd order transfer function for each of

the reactive power control strategies that were identified within the various ADNs.

A simplified schematic diagram of this procedure is shown in Fig. 6.12, where each

measurement corresponds to the pair (∆Vi(t), ∆Q̂i,gen(t)) in absolute values. The

order of the transfer function with the best fit is selected to model the reactive power

response of the generators. Finally, the parameters of each transfer function are es-

timated using the CONtinuous-Time System IDentification (CONTSID) technique

[131].
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Figure 6.10: Sub.A.1: Estimated reactive power responses for generators in pu.
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Figure 6.11: Sub.A.1: Estimated reactive power responses for generators in pu after

filtering.

System identification results

In this section, the estimated dynamic models of each DG unit are compared. To

do so, a common input signal is applied to every transfer function and then, the
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Figure 6.12: System identification for reactive power.

generated dynamic responses are plotted in a common graph. The input signal is a

voltage step change of 0.4 kV as shown in Fig. 6.13. In this context, the generated

reactive power responses are illustrated in Fig. 6.14.

It is obvious from Fig. 6.14 that no universal or classical DG unit response can

be derived from the measurements. In fact, the reactive power responses are based

on the control strategy of each individual DG unit. Therefore, if possible, each DG

unit should be modeled explicitly.

For the sake of completeness, Table 6.3 contains the models corresponding to

Fig. 6.14. Note that the transfer functions are given in Mvar/kV and not in per unit.

The reason is that, as mentioned above, the provision of reactive power control by

DG does not scale proportional to the generation of active power.

In order to use these DG models in the context of a power system model, it is

necessary to scale their input and output accordingly. Let Vnom,MDN and Snom,MDN

denote the nominal voltage and power values of the distribution networks whose

measurements have been used to obtain the corresponding model. Similarly, let

Vnom,PSDN and Snom,PSDN denote the nominal voltage and power values of the dis-

tribution networks that are to be modeled in the power system model.

To obtain the new dynamic responses, the voltage at the PCC of the power
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Figure 6.13: Voltage step change of 0.4 kV.
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Figure 6.14: Reactive power responses of each generator after a voltage step change

of 0.4 kV.

system model should be multiplied by Vnom,MDN/Vnom,PDN before being applied

as an input to the DG model. As for the output, it needs to be multiplied by

SDG,nom,PSDN/SDG,nom,MDN. Note that the values for Vnom,MDN and SDG,nom,MDN
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are listed in Table 6.3 for each ADN under study.
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6.3 Summary

In Chapter 3, it was observed that the active power is not affected by any of the

various DG technologies in the ADNs under study. However, this is not a gen-

eral conclusion, since different control concepts may be implemented in other DG

units installed in other distribution grids. Regarding the reactive power, we have

observed that it is highly affected by wind parks and CHP plants whereas PV and

Biogas plants do not have a direct impact on its dynamic response. Importantly,

this is not a general conclusion about reactive power but rather, it is valid only in

the examined ADNs. Different ADNs may contain DG with completely different

control schemes.

Based on the aforementioned observations about the influence of different DG

technologies on system dynamics, several different pu load models were developed

for the active power. Those load models correspond to the ADNs where DG data

were fully available and the real load demand could be estimated. Using the derived

models, we concluded to a generic dynamic model which can be used in dynamic

simulations. This generic model was compared with the average model developed

several years ago and only small differences in the transient and steady-state re-

sponses were observed.

Regarding the reactive power, it was assumed that the loads operate with a con-

stant power factor so that we can derive pu models. For the ADNs with no voltage

control, the same methodology as in active power was followed. As a result, several

reactive power models were derived corresponding to the pure load dynamics of

each ADN under study. Furthermore, a generic load model was derived in order to

be used in dynamic simulations for estimating the load’s reactive power response

during electromechanical transients. This generic model was compared with the

average model developed several years ago. Interestingly, no significant difference

between the two models was observed.

As for the ADNs with voltage control, the reactive power responses were di-

vided into two respective sub-responses, one caused by the load and one by the

implemented control strategy of DG. To do so, the proposed unsupervised learning
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method was initially implemented in order to automatically group the recorded data

into subsets with and without reactive power control. As a next step, two separate

dynamic models were obtained for each of the given ADNs; one for load and one

for generation. The load model is developed using the the first subset whereas the

generation model using both subsets. In particular, five generation models were de-

veloped in order to model the dynamics of the wind parks and CHP plants installed

within the examined ADNs.

6.4 Appendix

In this section, the individual generator responses are presented for Sub.B.1, Sub.C.1,

and Sub.D.1. Note that those curves correspond to the filtered reactive power re-

sponses as derived by the methodology presented in this chapter.
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Figure 6.15: Sub.B.1: Reactive power responses for generators in pu after filtering.
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Figure 6.16: Sub.C.1: Reactive power responses for generators in pu after filtering.
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Figure 6.17: Sub.D.1: Reactive power responses for generators in pu after filtering
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Figure 6.18: Sub.D.1: Reactive power responses for generators in pu after filtering
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Chapter 7

Nonlinear Dynamic ADN Model

This chapter starts with a thorough description of the well-established exponential

recovery model (ERM) and continues with a discussion about its limitations. Then,

a recent modification of ERM is presented, which aims at addressing the limitation

of ERM in modeling reverse power flows [4]. Those reverse power flows may occur

in modern ADNs with significant DG. Next, the main issue of ERM and its modified

version of [4] is identified and discussed. To tackle this issue, a new nonlinear

dynamic ADN model structure is proposed. Finally, the efficacy of the proposed

model to alleviate the identified issue is assessed using the real data acquired within

the scope of this work. Part of the work presented in this chapter can be also found

published in [12, 41].

7.1 Exponential recovery model (ERM)

As emphasized in Chapter 1, dynamic equivalent load models are vital elements

for simulating and analyzing the dynamics of a power system and thus, they are

principally used by TSOs for their system’s stability studies. In this context, the

ERM has been widely deployed in the literature for simulating distribution networks

comprising only load components [39, 67, 43, 132]. However, distribution networks

are evolving from passive to active systems containing controllable loads and DG.
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Under those conditions, the applicability of the ERM needs to be thoroughly tested

and assessed.

As a general rule, the active and reactive power responses of a distribution net-

work after a voltage step are qualitatively similar [67] and they follow a trajectory

comparable to the one illustrated in Fig. 7.1. Note that the response in Fig. 7.1

is indicative and the responses in active and reactive power are not assumed to be

identical. In principle, those dynamic responses comprise three phases: 1) the tran-

sient part where the power changes immediately from Y0 to Ytr after the voltage step

from V0 to Vtr, 2) the recovery part, where the power progressively recovers from

Ytr to Yss and 3) the steady-state part, where the power has reached a new steady-

state Yss for a new steady-state voltage level Vss. Following [67], the mathematical

representation of that behavior can be written as

Ys(t) = Y0(V (t)/V0)
Ns , (7.1)

Yt(t) = Y0(V (t)/V0)
Nt , (7.2)

Yr(t) = L−1 [(Ys(s)− Yt(s))G(s)] , (7.3)

G(s) =
bms

m + bm−1s
m−1 + ...+ b0

sn + an−1sn−1 + ...+ 1
, (7.4)

Time Time

Vtr

V0

Ytr

(a) (b)

Y0

Vss

Yss

Po
w

er

Vo
lta

ge

td td

Figure 7.1: Qualitative active or reactive power response of an ADN after a step

voltage change: a) Possible voltage step V ; b) Indicative (active or reactive) power

response Y .
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Ŷ (t) = Yr(t) + Yt(t), (7.5)

where t is the time, V (t) indicates the bus voltage at each time step, Ys(t) and

Yt(t) are two nonlinear functions which model the power’s steady-state and tran-

sient jump, respectively, using the exponents Ns and Nt. Ys(s) and Yt(s) represent

the Laplace transform of Ys(t) and Yt(t), respectively, G(s) is the variable order

transfer function used to approximate the recovery part Yr(t), and Ŷ (t) denotes the

model output.

As a first step of the parameter estimation procedure, the exponents Ns and Nt

are calculated based on the acquired measurement using

Ns = log (Yss/Y0) / log (Vss/V0) , (7.6)

Nt = log (Ytr/Y0) / log (Vtr/V0) . (7.7)

Subsequently, if any of Yss, Ytr, and Y0 have different signs, the model exponents

cannot be determined, since logarithmic functions are not defined for negative argu-

ments. Hence, the modeling of an ADN, in which the power can change sign after

a voltage disturbance, is not feasible with (7.1)–(7.5).

7.2 Modification of exponential recovery model

As underlined in the previous section, the ERM employs two distinct exponents to

model the steady-state and transient power response. However, this formulation is

not suitable to cover bi-directional power flows that may occur in the context of

active distribution networks (ADNs). To tackle this issue, a modification of the

ERM has been proposed replacing the two exponential functions with two first-

order polynomial functions [4].

In order to tackle the aforementioned issue, [4] proposes the substitution of (7.1)

and (7.2) with the first-order polynomial functions

Ys(t) = Y0 [α1 (V (t)/V0) + α2] , α1 + α2 = 1, (7.8)

Yt(t) = Y0 [β1 (V (t)/V0) + β2] , β1 + β2 = 1, (7.9)
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while the rest of the model remains unchanged.

To estimate the model parameters, the initial, steady-state and transient values of

power and voltage are deployed. However, those values cover only one operating

point of the examined system. In this context, although the first-order polynomial

functions may be able to approximate the responses generated by a nonlinear ex-

ponential function around an equilibrium point, they may fail to accurately capture

the nonlinear characteristics of an ADN at another operating point.

In addition, both ERM model and its modification rely on the measured power at

the PCC, which expresses the net consumption and does not reflect the real power

demand due to DG. However, both models scale their outputs based on Y0, as shown

in (7.1), (7.2), (7.8), and (7.9). Hence, they may fail to accurately simulate new test

scenarios of the same system under different levels of DG. Moreover, in case that

the model parameters have been estimated using an operating point with positive Y0

and a new test scenario with negative Y0 needs to be simulated (or vice versa), both

models will generate a dynamic response towards the wrong direction for the same

voltage disturbance.

To highlight this issue, two identical voltage disturbances and their respective

change in active power are presented in Fig. 7.2a, as recorded in one of the examined

substations. The change in active power ∆P denotes the actual difference between

the recorded P signal and its corresponding initial power demand P0. As depicted

in the Fig. 7.2a, apart from the different noise levels, the two dynamic responses

are very similar even though the two recorded P0 differ greatly, i.e., −8.4MW and

14MW. In this context, we deploy the voltage and active power signals of the first

measurement (P0 ≈ −8.4MW) to build an ERM and a modified ERM according to

[4]. Then, we validate the yielded models using the respective signals of the second

measurement (P0 ≈ 14MW). As illustrated in Fig 7.2b, both models can accurately

simulate the response of the system for the first case whereas they fail to generalize

for the second case.

A possible solution to tackle this issue would be to adjust Y0 based on the ac-

tive power of DG in order to estimate the real power consumption Y0,real for each

event. However, the estimation of Y0,real requires high resolution data of the gener-

150



Chapter 7 – Nonlinear Dynamic ADN Model

1 1.5 2

time (s)

20.2

20.25

20.3

20.35

20.4

20.45

20.5

V
 (

k
V

)

1: P
0
  -8.4 MW

2: P
0
  14 MW

1 1.5 2

time (s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

P
 (

M
W

)

1: P
0
  -8.4 MW

2: P
0
  14 MW

(a) Two recorded voltage disturbances with similar active power responses.

1 1.5 2

time (s)

-8.4

-8.3

-8.2

-8.1

-8

-7.9

-7.8

-7.7

-7.6

P
 (

M
W

)

Parameter estimation

Measured

ERM

1st-order polynomial

1 1.5 2

time (s)

12.5

13

13.5

14

14.5

15

P
 (

M
W

)

Validation

Measured

ERM

1st-order polynomial

(b) Output of ERM and its modification for training and validation data. Both responses
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Figure 7.2: Limited generalization capability of ERM and modified ERM (1st-order

polynomial).

ated active power by the DG units. Privacy policies may not allow DSOs to share

those data with TSOs [11]. Furthermore, DSOs may only have access to metering

DG data, as communicated by two big DSOs. Due to the high volatility of renew-

able DG, metering data with a resolution of 15 min are insufficient for a reliable

estimation of Y0,real.
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7.3 Proposed nonlinear dynamic model

Both ERM and its modification in [4] rely on the initial pre-disturbance power Y0

in order to calculate the steady-state and transient terms. However, this value does

not describe the real power demand in modern ADNs with significant DG. DG

does not only offset the recorded active power consumption but the DG units may

also inject/absorb reactive power in order to provide voltage support. Therefore,

under high DG penetration the recorded Y0 at PCC may yield misleading dynamic

responses. To this end, a modification of the ERM is proposed, deploying the actual

differences of the recorded signals V (t) and Y (t) as

∆V (t) = V (t)− V0 and ∆Y (t) = Y (t)− Y0. (7.10)

It is reminded that the variable Y can describe either the active or reactive power

while (V0, Y0) can be considered any operating point within a few time steps before

the disturbance.

7.3.1 Proposed model structure

The proposed dynamic model relies on the simple principle that during the steady-

state and transient phases, a voltage rise (∆V (t) ≥ 0) generates a positive power

change (∆Y (t) ≥ 0) whereas a voltage drop (∆V (t) ≤ 0) results in a negative

power change (∆Y (t) ≤ 0) [43]. Therefore, the sign of the voltage change deter-

mines the direction of the steady-state and transient power response. Furthermore,

the initial power Y0 does not reflect the real load consumption due to DG, and thus

its direct deployment into the system dynamics is avoided. Based on those two

intrinsic properties of an ADN, the following dynamic model is proposed, which

captures the nonlinear characteristics of a distribution network after a voltage dis-

turbance:

h1 (V (t)) = ∆Ys(t) = sgn (∆V (t)) · as · |∆V (t)|Ns , (7.11)

h2 (V (t)) = ∆Yt(t) = sgn (∆V (t)) · at · |∆V (t)|Nt , (7.12)

Yr(t) = L−1 [(∆Ys(s)−∆Yt(s)) ·G(s)] , (7.13)
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∆Ŷ (t) = Yr(t) + ∆Yt(t), (7.14)

Ŷ (t) = ∆Ŷ (t) + Y0, (7.15)

where ∆Ys(t) and ∆Yt(t) describe the steady-state and transient power response

relative to Y0 while as, Ns and at, Nt denote a scaling and an exponential coefficient

for the steady-state and transient response, respectively. ∆Ys(s) and ∆Yt(s) indi-

cate the Laplace transform of ∆Ys(t) and ∆Yt(t), respectively; their difference is

the input of the variable order transfer function G(s) that models the load recovery

part Yr(t). Finally, ∆Ŷ (t) expresses the complete dynamic response of the system

relative to Y0, while the final power output Ŷ (t) is reconstructed by simply adding

the relative dynamic response ∆Ŷ (t) and the initial power value Y0. The block

representation of the system is depicted in Fig. 7.3.

V

-
V0

∆V

h1(·) +

+

Y0
+

Ŷ

G(s)

h2(·)

+

-

Figure 7.3: Block representation of the proposed nonlinear dynamic model.

7.3.2 Parameter estimation

As pointed out in Chapter 5, a different dynamic model is to be developed for

each of the derived clusters. Therefore, the aim of this work is to build generic

dynamic models for each individual cluster k. Given that each cluster contains

measurements with similar dynamic behavior, a generic set of model parameters

θk = [as,k, Ns,k, at,k, Nt,k,pk] is estimated by means of the corresponding cluster

entries. The vector pk denotes the coefficients of Gk(s).

The representative steady-state and transient parameters of (7.11) and (7.12) can

be estimated using nonlinear least squares (NLS) over the Mk cluster entries as:

min
as,k,Ns,k

Mk∑
i=1

(
∆Yss,i − as,k ·∆V

Ns,k

ss,i

)2
, (7.16)
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min
at,k,Nt,k

Mk∑
i=1

(
∆Ytr,i − at,k ·∆V

Nt,k

tr,i

)2
, (7.17)

where

∆Yss,i = |Yss,i − Y0,i| , (7.18)

∆Ytr,i = |Ytr,i − Y0,i| , (7.19)

∆Vss,i = |Vss,i − V0,i| , (7.20)

∆Vtr,i = |Vtr,i − V0,i| . (7.21)

For the parameter estimation, a genetic algorithm is deployed in order to find the

global minimum of (7.16) and (7.17) [133].

Regarding Gk(s), a first, a second, and a third order transfer function are esti-

mated using the continuous-time system identification (CONTSID) technique [134].

The one that yields the best fit in terms of normalized mean square error between the

simulated responses and the real output values is selected. The order of Gk(s) was

intentionally chosen low in order to capture the loads’ general characteristics while

avoiding overfitting. Besides that, the measurements acquired in six real substations

did not reveal higher order dynamics.

7.4 Results

7.4.1 Generalization capability of the clusters

Once the clusters have been formed, a dynamic model is derived for each cluster.

To do so, 70% of each cluster’s entries are randomly selected as a training set to

estimate the model parameters and the rest 30% is used as a validation set. To

assess the accuracy of the model, the RMSE between the model output and the

real measurement values is estimated for both the training and validation set. In

addition, in order to evaluate the generalization capability of the various cluster

models, their RMSEs are compared with the ones yielded in the ideal case in which

each measurement is fitted into a separate model. On the other hand, in order to
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quantify the clustering gain in the modeling accuracy, only one model is developed

for each ADN using all its measurements and its RMSE is compared with the ones

yielded by the respective clusters.
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Figure 7.4: Bar graphs of the average RMSE between the respective model output

and the real measurements for all ADNs.

In Fig. 7.4, the average RMSEs of the three different modeling approaches are
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presented, i.e., one model per ADN fitted with all the recorded data, one model per

cluster and one model per individual measurement. Those plots correspond to six

representative ADNs, as identical plots were generated for the rest. In case of active

power, splitting the measurements into clusters does not show any advantage (in

the examined ADNs), since identical RMSEs can be yielded by only one dynamic

model. Importantly, one model seems to be able to capture the general ADN charac-

teristics as its accuracy do not differ significantly from modeling each measurement

separately. Contrary to active power, the modeling accuracy of reactive power is

increased remarkably using the clustering approach, having almost the same results

with the individual modeling. In Sub.A.1, Sub.B.1, Sub.C.1, and Sub.D.1, where

there is DG installed and dynamic voltage support is provided through reactive cur-

rent injections, the need for splitting the measurements into clusters is imperative,

as it is confirmed by the modeling results. Sub.C.2 and Sub.D.2 are described by

only one cluster, and thus no such increase in accuracy is observed.

Here, it should be noted that the individual models overfit the data and may

also factor in consumption trends as well as the existing noise. Hence, their use in

dynamic simulations should be avoided even though their accuracy is high. Also, it

would not be clear which model to select for dynamic simulations, as there would be

so many models as the total number of measurements. Instead, the modeling based

on clusters can capture well the respective ADN dynamics without overfitting the

data, as it is verified by comparable results for both training and validation set.

7.4.2 Comparison with a deep learning approach

In recent years, the advances in deep learning have tremendously affected many

research areas including the development of equivalent models for (active) distribu-

tion networks. As for the latter, the majority of the existing work targets purely load-

composed distribution networks as also pointed out in the introduction. Neverthe-

less, in the recent work of [3], an LSTM RNN architecture is introduced in order to

tackle ADN modeling. In this section, we compare this approach with our proposed

three-stage methodology as a whole. To do so, the RNN model is formed using
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50 LSTM blocks and one fully connected layer while the full recorded datasets are

randomly split into training and validation sets. The training is performed using the

Adam optimizer [135]. To thoroughly evaluate the performance of each approach,

we calculate the RMSE between the final model output and the real recorded values.

Six indicative boxplots of the yielded RMSEs for Sub.A.1, Sub.D.1, and Sub.F.2 are

illustrated in Fig. 7.5-7.7.
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Figure 7.5: Sub.A.1: Boxplots of the yielded RMSEs using the proposed three-stage

methodology and the deep learning one of [3].

Regarding active power, both approaches, i.e., proposed method and LSTM, gen-

erated similar results for almost all the examined ADNs. Only in Sub.F.2 (Fig. 7.7a),

the proposed three-stage method outperformed LTSMs. Since all ADNs under study

experience similar dynamics with respect to active power, i.e., the classical load re-

covery behavior, the difference in accuracy in Sub.F.2 originates from the share of

the recorded irrelevant measurements. For instance, most of the data acquired in

Sub.A.1 (Fig 7.5a) are suitable for parameter estimation, whereas Sub.F.2 is charac-

terized by a larger number of irrelevant events. Those data affect the system iden-

tification procedure since LSTMs are trained using a part of the full dataset. As a

157



Chapter 7 – Nonlinear Dynamic ADN Model

LSTM
 T

ra
in

.

3-
Sta

ge
 T

ra
in

.

LSTM
 V

al
.

3-
Sta

ge
 V

al
.

0

1

2

3

4

5

R
M

S
E

 (
p
u
)

10
-3

(a) Boxplots for active power.

LSTM
 T

ra
in

.

3-
Sta

ge
 T

ra
in

.

LSTM
 V

al
.

3-
Sta

ge
 V

al
.

0

5

10

15

20

R
M

S
E

 (
p
u
)

10
-3

(b) Boxplots for reactive power.

Figure 7.6: Sub.D.1: Boxplots of the yielded RMSEs using the proposed three-stage

methodology and the deep learning one of [3].
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(b) Boxplots for reactive power.

Figure 7.7: Sub.F.2: Boxplots of the yielded RMSEs using the proposed three-stage

methodology and the deep learning one of [3].

158



Chapter 7 – Nonlinear Dynamic ADN Model

result, the model accuracy and generalization capability deteriorate, underlining the

necessity of the first “cleaning” stage. This conclusion is also confirmed by the two

indicative validation set examples shown in Fig. 7.8 and 7.9, where the LSTM ap-

proach can accurately capture the general active power dynamics in Sub.A.1, while

it fails to correctly reflect the real transient response in Sub.F.2.
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Figure 7.8: Sub.A.1: Individual active power responses.

As for reactive power, it has been proved that the system dynamics can entirely

change depending on whether a DG unit operates and provides voltage support

through reactive current injections. Under those conditions, it is expected that a

model being trained with the full dataset of reactive power signals would not be

able to converge to a meaningful set of parameters. This hypothesis is verified

by the boxplots of Fig. 7.5b and 7.6b, where a remarkable difference in modeling

accuracy is observed between the two approaches. Identical results are obtained for

Sub.B.1 and Sub.C.1, which also exhibit voltage support schemes through reactive

current injections. In this context, indicative reactive power examples are presented

in Fig. 7.10 and 7.11 showing the inability of LSTMs to deal with an heterogeneous

dataset. Regarding the ADNs with no voltage support dynamics, the two modeling

approaches show negligible difference in accuracy. Only in Sub.F.2, the proposed
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Figure 7.9: Sub.F.2: Individual active power responses.
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Figure 7.10: Sub.A.1: Individual reactive power responses.

method achieved better results than the LSTM approach (as in the case of active

power). This result is attributed to the larger number of irrelevant measurements

that were recorded at this particular ADN. Those measurements were included in

the training of the LSTM model whereas they were completely discarded in the
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Figure 7.11: Sub.D.1: Individual reactive power responses.
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Figure 7.12: Sub.F.2: Individual active power responses.

proposed approach. An indicative example of the generated dynamic responses is

presented in Fig. 7.12.

Finally, since the training and the computational time play a critical role in the

effectiveness of data-driven techniques, we compare the respective two metrics in
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Table 7.1. The training time describes the time needed for the proposed method to

estimate the model parameters of all cluster models and for the LSTM to estimate

all its parameters using the training set derived by the whole dataset. The com-

putational time denotes the time required for each model to generate its output for

an input signal of 100Hz sampling frequency and 3.5 s duration. As expected, the

proposed model requires three times less computational time to generate an output

response due to significantly less calculations involved. On the contrary, the av-

erage training time does not reveal a substantial difference. The training and the

generation of the individual responses were performed with MATLAB on a per-

sonal computer with an Intel Core i5-8500 CPU, 3.00 GHz processor and 8 GB of

RAM.

Table 7.1: Average training and computational time of the proposed model and the

LSTM of [3].

Av. training time Av. computational time

Proposed model 52.6 s 1.6ms

LSTM 71.8 s 5.3ms

7.4.3 Comparison with other load/ADN models

The scope of this section is to compare the accuracy of the proposed model with

three state-of-the-art models; two dynamic models of the same notion and com-

plexity as well as a very recent ADN model based on RNN. In particular, the widely

used ERM [67], its most recent modification for modeling ADNs [4] and the LSTM

RNN of [3] were implemented using the clustered data of the examined ADNs as

yielded by the first two stages of the proposed methodology. Using the same dataset

allows for a fair comparison of the model structures.

To compare the accuracy of each model, the RMSE between the respective model

output and the field measurement values is calculated for active and reactive power

using all the available data. The parameters of ERM and its modification are es-

timated following the same methodology presented in the parameter estimation
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Figure 7.13: Sub.A.1: CDFs of the proposed method, the LSTM of [3], the modified

ERM of [4] and the conventional ERM.
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Figure 7.14: Sub.B.1: CDFs of the proposed method, the LSTM of [3], the modified

ERM of [4] and the conventional ERM.

section and modifying adequately (7.16) and (7.17), so that they include the cor-

responding model’s steady-state and transient terms. The RNN model was formed
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Figure 7.15: Sub.C.1: CDFs of the proposed method, the LSTM of [3], the modified

ERM of [4] and the conventional ERM.
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Figure 7.16: Sub.C.2: CDFs of the proposed method, the LSTM of [3], the modified

ERM of [4] and the conventional ERM.

using 50 LSTM blocks and one fully connected layer and its training was performed

using the Adam optimizer [135]. To thoroughly compare the efficacy of the mod-
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Figure 7.17: Sub.D.1: CDFs of the proposed method, the LSTM of [3], the modified

ERM of [4] and the conventional ERM.
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Figure 7.18: Sub.D.2: CDFs of the proposed method, the LSTM of [3], the modified

ERM of [4] and the conventional ERM.

els to accurately capture the general ADN characteristics, the cumulative distribu-

tion functions (CDFs) of the RMSEs for active and reactive power are exhibited
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in Fig. 7.13-7.18 for six representative ADNs. Note that the RMSEs of the various

clusters were merged into one group for every ADN and for every load/ADN model,

i.e., active and reactive power model.

In all the ADNs, the proposed model yields similar results with the LSTM,

with the latter slightly outperforming the former. However, each LSTM comprises

around 5000 parameters and requires a longer execution time than the proposed

model, which does not exceed the 10 parameters. Regarding the proposed model’s

comparison with the ERM and the modified ERM, we observed three distinct types

of responses. In Sub.A.1, Sub.B.1, Sub.C.1, and Sub.D.1, the proposed model en-

joys a significantly higher accuracy, particularly in case of reactive power. This re-

sult can be justified by the fact that both ERM and its modification rely on the initial

pre-disturbance power Y0 that does not describe the real power demand in modern

ADNs with significant DG. This phenomenon was mostly perceived in Sub.A.1 and

Sub.B.1, which are characterized by big wind and PV parks. In contrast, Sub.C.1

and Sub.D.1 contain smaller DG units and thus, their influence on Y0 is lower. Un-

der those conditions, the proposed model still surpasses the other two models, al-

beit without a great margin. Finally, all models demonstrate identical RMSEs in

case of Sub.C.2 and Sub.D.2, which are composed by pure load elements. Here, the

ERM and the modified ERM perform slightly better for around 50% of active power

measurements. This small difference in accuracy originates from the fact that the

proposed method virtually decouples the dynamic response of the system with its

initial conditions in order to make it suitable for ADN modeling. Thus, this missing

dependency of the model may lead to small errors when load-composed systems are

modeled without however losing its reliability, as validated by the comparison with

the other models. In general, the proposed and the LSTM model outperform the

two ERMs in ADNs with significant DG, whereas all models show identical results

in ADNs with low or no DG.
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7.5 Summary

The ERM has been widely deployed in the literature for simulating distribution

networks comprising only load components. Howover, distribution networks cur-

rently are evolving more and more from passive systems that connect consumers

with the rest of the power system to ADNs with significant DG. Under those new

conditions, the applicability of ERM was recently questioned. In particular, the

ERM employs two distinct exponents to model the steady-state and transient power

response. However, this formulation is not suitable to cover bi-directional power

flows that may occur in the context of active distribution networks (ADNs).

To tackle this issue, a modification of the ERM has been proposed replacing the

two exponential functions with two first-order polynomial functions [4]. Neverthe-

less, both models rely on the initial power demand at the PCC, which expresses

the net consumption and does not reflect the real power demand due to DG. Hence,

they may fail to accurately simulate new test scenarios of the same system under

different levels of DG. Furthermore, [4] employs affine functions (e.g., first-order

polynomials) in order to substitute nonlinear components.

To address those issues, a new formulation of ERM was introduced, which main-

tains the model’s attribute of nonlinearity, captures bi-directional power flows and

does not require multiple models to effectively simulate similar dynamics. The pro-

posed equivalent exploits the actual change of the voltage and power signals along-

side with two exponential functions. The main novelty of the proposed model lies

in its simplicity, generalization capability, and ability to be readily integrated into

real-world power system simulation models. Nevertheless, the proposed method

cannot capture the dependency between the (unknown) actual load demand and the

magnitude of the system’s response. Yet the experimental results manifested the

applicability of the proposed approach in real-world scenarios.

Moreover, the proposed ERM-inspired nonlinear model structure can be effec-

tively combined with the presented clustering methodology. It was proved that the

proposed 3-stage modeling pipeline offers a reasonable balance between accuracy

and generalization capability. Under those conditions, the derived ADN models can
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be easily integrated into a power system simulation software in order to perform

dynamic simulations, e.g., stability studies.

Those results also highlight that, in spite of the theoretically indefinite dynamic

models that can describe each combination of load and DG within an ADN, those

ADN configurations can actually be mapped into a much smaller data space using

cluster analysis. The presented modeling results manifest the capability of the pro-

posed method to capture the general ADN characteristics using only one model per

derived cluster without a significant loss in modeling accuracy.

It should underlined that the proposed three-stage methodology can be effort-

lessly integrated into most of the existing ADN/load modeling approaches. For

instance, the performance of a recent deep learning approach based on LSTMs was

poor when it was trained using the whole recorded dataset. However, the LSTM

model achieved high accuracy results when it was trained using the data of each

cluster.

Finally, it was shown that the classical ERM and its modification may lead to less

accurate results in cases of ADN with significant DG. This observation originates

from the fact that both models directly employ the recorded power value at PCC

(Y0), which, as pointed out, does not reflect the real load demand. For ADNs with

low or no DG, those two models can be a reliable choice for stability studies, as

they yielded highly accurate results.
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Modeling ADN uncertainty

This chapter starts with an introduction about the need of modeling the stochastic

time-varying and weather dependent behavior of loads and DG, in particular in the

dynamic load/ADN models. Next, a new way of modeling dynamical systems is

presented by leveraging the latest advances in probabilistic machine learning. This

modeling approach is then tailored in order to model the dynamics of an ADN.

Specifically, the proposed method introduces a probabilistic dynamic model based

on Gaussian processes (GPs) that yields a probability distribution for each time step.

Due to the inherent flexibility of the model structure, two different alternatives are

established. The first one uses the autoregressive input and output terms as features

whereas the second one additionally deploys a set of exogenous parameters (apart

from the autoregressive terms). Part of the work presented in this chapter can be

found in [136, 137].

8.1 Motivation

In general, the measurement-based approach has been proved to work effectively on

load and, recently, on ADN modeling. As mentioned earlier in this thesis, it relies

on measurement data in order to reconstruct the dynamics of the system without

requiring detailed knowledge about the individual system components. To do so,
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the parameters of a specific model structure are tuned accordingly so that the model

output reflects the recorded signals [17].

However, most of the existing research work employs synthetic measurements

artificially generated by a detailed simulation model of the ADN covering its inter-

nal components, e.g, [3, 10, 11, 92, 93]. In reality, load and DG may remarkably

vary depending on different geographical, temporal, and weather conditions. There-

fore, models based on artificially generated data may not be able to fully capture the

ADN dynamics in a realistic fashion.

To this end, only a few approaches found in the literature exploit field data ac-

quired in real substations in order to develop the corresponding load or ADN models

[24, 25, 26, 27, 28, 38, 39]. Importantly, [25, 26, 39] demonstrated that disparate

model parameters may be estimated for different time and weather variations. For

instance, different models are developed for 4 different loading conditions using a

set of 11 measurements in [25], while 5 different sets of parameters corresponding

to different months (from July to November) are estimated in [26]. In the work of

[39], measurement data from three summer and three winter days are considered in

order to estimate different sets of load model parameters for each season.

Nevertheless, the measurement data deployed in the aforementioned studies are

rather limited and do not cover a full year. Therefore, the respective models may not

be able to generalize under new test scenarios characterized by different seasonal

conditions [40]. Furthermore, those studies were conducted around a decade ago

reflecting predominately passive distribution networks with limited or no shares of

DG. In this regard, the inspiring work of [40] aims at addressing the issue of limited

data by acquiring field measurements for a complete year. However, this approach

employs purely static models neglecting the system dynamics while it is restricted

to traditional load-composed distribution systems, where no DG dynamics are con-

sidered. Furthermore, 384 different models were developed for each substation

corresponding to different combinations of half hour intervals within a day (48), the

type of the day, i.e., weekend or not (2), and the season (4); a fact that resulted in a

large number of nearly identical models. Hence, it becomes clear that a meaningful

split of the measurement data in order to build various dynamic models, i.e., devel-
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oping models for combinations of hour, day, month, high or low temperature, while

avoiding redundant models is not straightforward.

At the same time, most of the inspiring work following the measurement-based

approach introduces deterministic dynamic models that do not provide any certainty

or confidence about their predictions [3, 11, 13, 25, 30, 33, 37]. However, the power

system is characterized by the stochastic nature of loads and DG, where the con-

sumers continuously alter their power demand and the renewable energy sources

(RES) adjust their generation based on weather variations. Under those volatile

conditions, it is of utmost importance for an ADN model to reflect the system un-

certainty induced by load and DG, in particular when previously unseen scenarios

are simulated.

Therefore, there are two major open issues in the context of dynamic ADN mod-

eling which are both related to the stochastic properties of the ADN components.

To model the uncertainty induced by the stochastic nature of load and DG, a generic

probabilistic model based on GPs is proposed. Contrary to the limited approaches

fitting random responses into a set of model parameters to account for uncertainty

[11], the proposed approach readily yields a probability distribution for each predic-

tion point. Hence, instead of yielding a traditional dynamic response that neglects

uncertainty, like the various deterministic models, the proposed model generates

confidence intervals alongside with its response. To the best of the author’s knowl-

edge, this is the first study introducing a probabilistic dynamic load/ADN model.

In this context, the utilization of the proposed model ranges from predicting

the expected dynamic response to reasoning about system uncertainties inherent

to measurement data and identifying worst case scenarios using the boundaries of

the yielded distributions. In addition, the predictive variance can be also deployed

as an indication of whether a prediction should be trusted, further examined or even

rejected.

As for the influence of time and weather on load/ADN dynamics, the proposed

GP approach is further extended in order to explicitly incorporate a set of exogenous

variables, e.g., time of the day, month, temperature, wind speed, etc. To do so, time

and a set of publicly available weather parameters are integrated into the model
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as random variables. In this context, the model is able to readily reflect time and

weather variations while yielding probability distributions as output.

Note that GP was deliberately selected as a model structure for the following

reasons:

1. The number of input features can be modified based on the ADN under study.

2. It can accurately model complex nonlinear relationships [138].

3. It is a probabilistic model and thus, it is suitable for encoding the stochastic

nature of load and DG.

4. The recorded measurements follow a Gaussian distribution at each time step,

as also observed in [11].

8.2 Gaussian processes for modeling dynamical sys-

tems

8.2.1 Gaussian process regression

In this section, a short description of the Gaussian process regression is introduced.

This step is fundamental for the comprehension of the proposed method. For a more

detailed explanation, the interested reader is referred to [138].

As in the classical regression problem, the goal is to learn a function y = f(x)

given a set of input and output points S = {(xi, yi)}Mi=1, where xi ∈ RD and y ∈ R.

However, instead of assuming a parametric function y = fθ(x;θ), a GP regression

model assumes that the output comprises a set of finite random variables f(xi) that

follow a joint multivariate Gaussian distribution:

f(x1), ..., f(xn) ∼ N (0,K), (8.1)

where K denotes the covariance matrix of this set. In this regard, each element

Kij = C(xi,xj) represents how much the output at xj is affected by the output
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at xi. Therefore, the covariance function C(xi,xj), which is also called kernel,

determines the shape of our distribution and can be employed for introducing prior

knowledge about the unknown function. Note that the kernel can be formed by any

function that results in a positive definite K.

A commonly used covariance function is the radial basis function (RBF), which

can be mathematically written as:

CRBF(xi,xj) = σ2exp
(
−∥xi − xj∥2

2l2

)
, (8.2)

where σ denotes the standard deviation of f and the parameter l (lengthscale) regu-

lates the decay of correlation between a point and its neighbors.

Assuming that our observations yi contain Gaussian noise ϵi, we can readily

express the model output as:

yi = f(xi) + ϵi, ϵi ∼ N (0, σ2
n), (8.3)

where σ2
n indicates the variance of the Gaussian noise.

Considering that the parameters of the kernel function and the variance of the

Gaussian noise are known, we can estimate the output distribution y∗ for a new test

input x∗. To do so, we write the joint Gaussian distribution as:(
y

y∗

)
∼ N (0,KM+1), (8.4)

where

KM+1 =

[
K k(x∗)

k(x∗)⊤ k(x∗)

]
. (8.5)

Since Gaussian noise is assumed in our observations, the covariance matrix can be

written as K = Σ+ σnI, where Σ indicates the covariance matrix of the noise-free

system and I denotes the M ×M identity matrix. Furthermore, y = [y1, ..., yM ]⊤ is

an M×1 vector comprising the observed outputs, k(x∗) = [C(x1,x
∗), ..., C(xM ,x∗)]⊤

is also an M × 1 vector containing the pairwise covariance between the training in-

put points and the new test input x∗, and finally k(x∗) is the prior variance of x∗.
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To estimate the output distribution y∗, the Bayes’ rule is applied for the following

probability:

p(y∗|y,X,x∗) =
p(y, y∗)

p(y|X)
, (8.6)

where X = [x1, ...,xM ]⊤ is the M × D input matrix. Based on the proof found

in [138], the probability p(y∗|y,X,x∗) follows also a Gaussian distribution with a

mean µ and a variance υ that can be described by:

µ(y∗) = k(x∗)⊤K−1y, (8.7)

υ(y∗) = k(x∗)− k(x∗)⊤K−1k(x∗), (8.8)

respectively. Due to the fact that we want to model dynamical systems, (8.7) is

deployed to yield the dynamic response of the system and (8.8) is interpreted as the

confidence level of the predicted dynamic response.

Importantly, the derived vector from the multiplication k(x∗)⊤K−1 can be con-

sidered as a weight vector that is applied to the known output values y in order to

predict the unknown y∗. Moreover, in case that the test input x∗ positions itself

away from the already seen {xi}Mi=1, then the multiplication k(x∗)⊤K−1k(x∗) will

be small, and thus υ(y∗) will be large. This can be justified by the Bayes’ way of

thinking, where the less data we see, the greater will be the uncertainty (variance)

in the prediction.

Here, it should be noted that the training procedure of a GP lies in estimating the

hyperparameters of the kernel function as well as the noise variance based on the

observed training set S. If Θ = [σ, l, σn]
⊤ is the parameter vector, then a common

choice for estimating this vector is the maximization of the log-likelihood [139]:

L(Θ) = log(p(y|X))

= −1

2
log(|K|)− 1

2
y⊤K−1y − M

2
log(2π).

(8.9)

To do so, the derivative of L(Θ) needs to be computed with respect to each of the

parameters as:

∂L(Θ)

∂Θj

= −1

2
Tr
(

K−1 ∂K
∂Θj

)
+

1

2
y⊤K−1 ∂K

∂Θj

K−1y, (8.10)
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where Tr indicates the trace. However, each step of the optimization requires the

computation of the inverse of K, which can become a big computational burden for

large training sets.

8.2.2 System identification

As a general rule, GP is largely deployed for solving regression problems. Neverthe-

less, a significantly smaller amount of research work has extended the applicability

of GP to modeling dynamical systems, as shown by, e.g., [140, 141, 142]. In order

to model a dynamical system using GP, we need to convert the system identification

problem into a regression problem. To do so, a vector of regressors corresponding

to the past input and output values is constructed as:

xk = [u(k), ..., u(k − L), y(k − 1), ..., y(k − L)], (8.11)

where L denotes the order of the model.

To yield a dynamic response, the GP model generates one prediction point ŷk at

a time, which requires the input and output values of the previous time steps, as also

indicated by (8.11). In principle, there are two approaches for making multi-step

ahead predictions using a GP dynamic model; namely the “naive” and the “exact”

approach. The former repeatedly predicts one-step ahead using the mean prediction

values of the previous steps. The latter follows the same principle, but instead of the

mean prediction values, it leverages the full predicted distributions of the previous

steps, i.e., the mean predictions and the corresponding variances [139].

8.3 Dynamic modeling of ADNs using Gaussian pro-

cesses

ADN dynamics differ notably from hour to hour, day to day and month to month,

since load and DG vary not only in magnitude but also in composition [25, 26, 39].

To this end, GPs can be considered as an adequate option to capture those variations,

due to their intrinsic probabilistic properties.
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8.3.1 Methodology

As a first step, a dataset of M voltage disturbances is acquired at the point of com-

mon coupling (PCC). Each recording i is composed by three vectors Vi, Pi and Qi

corresponding to the RMS values of voltage, active and reactive power, respectively.

As already pointed out, one of the major differences between conventional distri-

bution networks and modern ADNs is the installed DG. In this context, the recorded

active and reactive power at the PCC do not reflect the real power demand of the

system, but rather the difference between the real load and the power generated

by DG. Therefore, using the raw recorded power values may lead to error-prone

models, due to the high volatility of DG, which vary their feed-in depending on the

weather conditions and the grid codes for voltage support. To tackle this issue, the

system dynamics are virtually decoupled from its initial pre-disturbance conditions

by estimating the actual differences of voltage ∆Vi(t) and power ∆Yi(t) as:

∆Vi(t) = Vi(t)− V0,i and ∆Yi(t) = Yi(t)− Y0,i. (8.12)

The variable Y can indicate either the active or reactive power, while (V0,j, Y0,j) can

be any operating point a few time steps before the disturbance.

Consequently, we randomly split the acquired measurements into training (70%)

and validation (30%) set. Then, we construct the vector of regressors for each time

step t and for each acquired measurement i of the training set as:

xi,t = [∆Vi(t), ...,∆Vi(t− L),

∆Yi(t− 1), ...,∆Yi(t− L)],
(8.13)

which corresponds to the output yi,t = ∆Yi(t). Once all the vectors of regressors

and the output values have been set, they are merged into a training matrix X and

into an output vector y, respectively. Then, X and y are normalized within the range

of [−1, 1]. Finally, the RBF kernel (8.2) is selected as a covariance function and its

parameters are estimated using (8.9) and (8.10). Importantly, since reliable ADN

models require a significant amount of measurements, the direct deployment of all

the available data in (8.10) may lead to a computationally intractable problem. To
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this end, we deploy only a random subset of 2000 training points at each iteration

of the optimization. This can be seen as an analogous technique to the minibatch

training in deep learning [143].

Moreover, the order of the system is highly dependent on the dynamics of the ex-

amined ADN. For instance, a purely load-composed distribution network may need

first or second order dynamics to be accurately modeled. However, an ADN with

significant DG, which follows grid codes for voltage support, may require a higher

order model. To this end, we suggest a simple methodology in order to determine an

adequate model order L. Starting with L = 1, the order keeps increasing until the

difference in modeling accuracy of the training set between two consecutive model

orders does not exceed a user-defined threshold. Then, the training is stopped and

L is set to its penultimate value. In this context, the modeling accuracy can be de-

scribed by the the continuous ranked probability score (CRPS). CRPS is a widely

used metric in probabilistic forecasting that considers both the point prediction as

well as the predictive uncertainty. It can be mathematically formulated as:

CRPSi =

∫ ∞

−∞

(
F̂ (y)− 1 (y − yi)

)2
dy, (8.14)

where F̂ represents the predicted cumulative distribution function (CDF) and 1

denotes the Heaviside function, which is 1 if its argument is nonnegative and 0

otherwise. To wrap up, the model development procedure is summarized in Fig 8.1.

After the parameter vector Θ and the model order L have been estimated, we

can simulate the dynamic response of the system under new test scenarios using

iterative one step predictions. Since it is the first time that GPs are deployed to

model ADNs, the “naive” approach was implemented, in which the input vector xt

at time step t is constructed using the normalized input and output values as:

xt = [∆Vn(t), ...,∆Vn(t− L),

∆Ŷn(t− 1), ...,∆Ŷn(t− L)],
(8.15)

where subscript ”n” denotes the normalized signals. Despite the overconfidence

characteristic of the “naive” approach, the validation results manifested the efficacy

of this method in practice. To clarify the architecture of a dynamic ADN model
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Figure 8.1: Schematic representation of the proposed model development proce-

dure.

based on GP, the schematic representation of the proposed model structure is illus-

trated in Fig 8.2, where z denotes the lag operator. Finally, the ADN response can be

reconstructed by simply adding the initial power Y0 to the actual difference ∆Ŷ (t)

as generated by the GP model and then denormalized. This can be mathematically

written as:

Ŷ (t) = ∆Ŷ (t) + Y0. (8.16)

Here, it is worth mentioning that the GP model follows the Bayesian inference;

GP Model
∆Ŷ (t)

z−1∆Ŷ (t− 1)

...

z−L∆Ŷ (t− L)

∆V (t)

∆V (t− L)

...

Figure 8.2: Schematic representation of the proposed GP model.
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meaning that the more diverse recordings are obtained, the more informative the

model will be. Hence, in case of a completely different input compared to the

previously seen, the model may not be able to accurately extrapolate. Nevertheless,

the variance of the prediction will be high, indicating the low confidence of the

model over its output.

8.3.2 An indicative example

An indicative example is illustrated in order to emphasize the probabilistic char-

acteristic of the GP and how the model adjusts its predictive uncertainty based on

the given training data. To do so, we train a GP model based on a small random

subset of 50 measurements acquired in Sub.A.1 and depicted in Fig. 8.3. The gray

curves illustrate the individual measurements in terms of voltage, active, and re-

active power change as calculated by (8.12), while the black bold curves denote

the average of the individual measurements. It is worth reminding that the signals

corresponding to voltage step-downs (∆V < 0) were multiplied by -1 only for a

visually better and compact representation of the underlying dynamics.

As shown in Fig. 8.3, all the acquired data represent voltage steps resulting in

active power responses following the classical load recovery behavior due to the
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Figure 8.3: Actual differences in terms of voltage, active, and reactive power of 50

acquired measurements in Sub.A.1.
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(a) High predictive uncertainty.

(b) Low predictive uncertainty.

Figure 8.4: Model prediction for active (a) and reactive power (b).

induction motors’ presence within the examined system [67]. On the contrary, ∆q

plots show a different dynamic behavior, in which the reactive power starts increas-

ing after the voltage disturbance. This is caused by the installed DG controllers that

start providing voltage support through reactive current injections.

In Fig. 8.4, a representative response selected from the validation set is illustrated
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for both active and reactive power. It can be clearly observed that both models yield

dynamic responses very close to the measured values. Both predictions lie within

the 95% confidence limits, as the absolute value of the prediction error e does not

surpass the 2σ curve in Fig. 8.4. At the same time, the two models differ consid-

erably in the predictive uncertainty, as shown by the gray area defined within ±2σ.

This result originates partly from the fact that the active power measurements are

characterized by higher noise levels, due to the continuous switching of the con-

sumers. The second source of this higher uncertainty stems from the relatively big

variance in the active power responses despite the similarity in the voltage distur-

bances. This phenomenon is caused by the different load amount and composition

that vary from hour to hour and day to day affecting the dynamic properties of the

system. In contrast, the variance of the reactive power measurements is quite low

and thus, the confidence over the corresponding mean prediction is high. A slight

increase in the prediction uncertainty is noticed at the time step of the voltage jump,

due to the higher variance observed in the measured reactive power signals at that

moment, as shown in Fig. 8.3. It is worth pointing out that the prediction intervals

do not vary significantly over time due to the use of the “naive” approach for the

multi-step prediction. In this regard, the yielded uncertainty originates from the

variance of the training set induced by the stochastic nature of the load and RES.

Finally, this indicative example aims to spotlight how the stochastic nature of

the load is reflected in the acquired data and consequently, how this uncertainty is

captured by the proposed model and is translated into a distribution over the possible

output values.

8.3.3 Results

Individual results

It has been shown in Chapter 5 that the same ADN may exhibit an array of different

dynamics, which can be grouped into clusters of similar behavior such as the one

shown Fig. 8.3. In this context, one to three clusters were generated in each ADN,

where each cluster comprises two GP models, one for active and one for reactive
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Figure 8.5: Sub.A.1: Representative active power response; prediction error and

confidence plots.

Figure 8.6: Sub.A.1: Representative reactive power response; prediction error and

confidence plots.

power. In order to avoid showing several plots with identical dynamics, indicative

examples of different dynamic behavior are presented in Fig. 8.5-8.9. Those fig-
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Figure 8.7: Sub.B.1: Representative reactive power response; prediction error and

confidence plots.

Figure 8.8: Sub.C.1: Representative reactive power response; prediction error and

confidence plots.

ures demonstrate the capability of GPs to capture utterly different ADN dynamics.

Fig. 8.5 correspond to active power whereas Fig. 8.6-8.9 corresponds to reactive
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Figure 8.9: Sub.D.1: Representative reactive power response; prediction error and

confidence plots.

power. Note that those measurements were selected from the respective validation

sets.

More specifically, almost all of the derived GP models require second order re-

gressors in order to accurately capture the observed ADN dynamics. Those second

order models can be categorized in two groups. The first category includes all the

models with the classical load recovery behavior, where the active or reactive power

immediately reacts to a voltage step and then partially recovers to a new steady-state

(Fig. 8.5). The second category contains the dynamics of several voltage controllers,

which support the voltage through reactive power injections (Fig. 8.6 and 8.7). Only

two reactive power models of Sub.C.1 and Sub.D.1 require fifth order GP models.

Those two models correspond to the slower dynamics of their voltage controller

(Fig. 8.8 and 8.9) and thus, a lower order model was not able to capture that.

Comparison with a deep learning model

The aim of this section is to compare the proposed GP model with a state-of-the-art

deep learning model, which leverages an LSTM network to capture the nonlinear
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(a) Sub.A.1: Active power.
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(b) Sub.A.1: Reactive power.
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(c) Sub.B.1: Reactive power.
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(d) Sub.C.1: Reactive power.

Figure 8.10: CDFs of the RMSEs yielded by the proposed GP model and the LSTM

of [3] for different ADN dynamics.

dynamics of an ADN [3]. In our application, the same LSTM architecture and

hyperparameters are used as in [3], where the network was built using 50 LSTM

blocks and was trained using the Adam optimizer [135]. To thoroughly compare

the proposed model with the LSTM network, we deploy the cumulative distribution
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functions (CDFs) of the yielded RMSEs between the respective model output and

the real values. Note that the RMSEs of the various clusters were merged into one

group for every ADN and for every load/ADN model.

The CDFs of four different ADNs are exhibited in Fig. 8.10. Those ADNs are

characterized by different dynamics including the classical load recovery behavior

(Fig. 8.10a) and three different voltage support schemes (Fig 8.10b-8.10d). Impor-

tantly, qualitatively similar results are obtained for each of the ADNs under study.

More specifically, the proposed GP model enjoys a slightly higher predictive ac-

curacy than the respective LSTM in ADN modeling. In addition, although both

approaches are characterized as black-box models, and thus there is no physical

explanation over their predictions, the output distribution of the GP model could

provide a meaningful insight about the time-varying dynamics of the system and to

which extend they may vary. However, the training time of the derived GP models

is significantly larger than the respective LSTM networks, despite the fact that the

former comprises only three parameters whereas the latter around 5000.

It is also worth mentioning that training and validation sets yield identical RM-

SEs in both approaches; a fact that stresses their high generalization capability.

However, it is of utmost importance that the GP models should be trained with a

large number of diverse scenarios, since they follow the Bayesian modeling frame-

work.

8.4 Dynamic modeling of ADNs using Gaussian pro-

cesses with exogenous variables

The stochastic nature of load and DG poses many challenges in the development

of realistic dynamic models for ADNs. The consumers constantly alter their power

demand both in magnitude and composition while the DG output is governed by

weather conditions. To this end, a dynamic ADN model is proposed in the section

that can directly incorporate time and weather variables in order to decode their

influence and eventually yield more accurate predictions. To do so, a GP model is
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tailored such that it can capture the nonlinear ADN dynamics while learning any

relevant information encoded in a list of exogenous variables such as time of the

day, month, air temperature, etc.

8.4.1 Methodology

For the development of a GP model with exogenous variables, the same modeling

principles as in the previous section are followed. More specifically, M voltage

disturbances are acquired at the PCC corresponding to the RMS values of voltage,

active, and reactive power signals. Then, the actual differences of recorded signals

are calculated using 8.12.

In the next step, hourly time series data of temperature, solar radiation, wind

speed, and humidity are obtained from the German Weather Agency (Deutscher

Wetterdienst - DWD) [112] using the closest weather stations to the examined

ADNs. Then, those weather data are interpolated in order to estimate the weather

conditions at the moment of each disturbance.

Subsequently, a feature vector xj,t is created for each time step t and for each

measurement i as:

xi,t = [∆Vi(t), ...,∆Vi(t− L),

∆Yi(t− 1), ...,∆Yi(t− L),

v1
i (t), ..., vO

i (t)],

(8.17)

where L indicates the model order, i.e., how many previous time steps are consid-

ered, while vo is the o-th exogenous variable. Note that each feature vector xi,t

corresponds to the output value of the same time step: yi,t = ∆Yi(t). The selec-

tion of the exogenous variables is based on an explanatory data analysis that reveals

which of the variables contain information about the system dynamics. The steps of

the proposed explanatory data analysis can be found in Chapter 3. As a next step,

all individual feature vectors are combined into a feature matrix X and the output

values are stacked into an output vector y, respectively. Both of them are normal-

ized within [−1, 1] and then split into training and validation set. In our application,
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70% of the data is employed in the training of the GP model whereas the rest 30%

is used for validation.

To determine the model order, a same strategy as in the GP model with no ex-

ogenous variables is employed. In particular, starting from L = 1, we sequen-

tially increment it by 1 while keeping track of the average CRPS over the training

set. Once the difference between two consecutive CRPSs does not surpass a user-

defined threshold, the training is stopped and L is set to its penultimate value. To

wrap up, the model development procedure is summarized in Fig 8.11.
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Figure 8.11: Schematic representation of the proposed model development proce-

dure using exogenous variables.

Regarding the simulation of new test scenarios, iterative one step predictions are

deployed in order to reconstruct the dynamic response of the ADN. To do so, the

predicted values of the previous steps are used as features for predicting the current

step. This procedure is summarized in Fig. 8.12, where z denotes the lag operator.

Finally, the actual power response of the ADN Ŷ (t) can be readily estimated by

adding the denormalized model output ∆Ŷ (t) to the initial pre-disturbance power

value Y0 as:

Ŷ (t) = ∆Ŷ (t) + Y0. (8.18)
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GP Model
∆Ŷ (t)

z−1∆Ŷ (t− 1)

...

z−L∆Ŷ (t− L)

∆V (t)

∆V (t− L)

...

Exogenous variables

...

Figure 8.12: Schematic representation of the proposed GP model.

8.4.2 Results

Since probabilistic machine learning models are in principle computationally de-

manding, developing dynamic models for all possible combinations of exogenous

variables would result in very long training times and most likely in redundant mod-

els. Hence, it is important to identify the exogenous variables that actually contain

information about the load or ADN dynamics and not blindly include all of them in

the model. To do so, an explanatory data analysis was performed in Chapter 3 us-

ing the exogenous variables listed in Table 8.1. Note that the temporal features are

selected based on the work of [25, 26, 39], which underlines their influence on load

dynamics, while the respective weather features correspond to four major factors

affecting the DG [113, 114].

Table 8.1: Exogenous variable list and notation.

Temporal features Weather features
h time of the day (hour) t temperature

d day (weekday or weekend) r solar radiation

m month of the year w wind speed

u humidity
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Comparison of two Gaussian process models

Based on the results of the explanatory data analysis, a few features may be com-

pletely discarded for the respective ADNs. For instance, wind speed is not included

in the feature list of the active power models in Sub.A.1 due to the lack of corre-

lation, while similarly, humidity is discarded in the reactive power models of the

same ADN. Then, all possible combinations of the selected features were examined

resulting in numerous dynamic active and reactive power models.

Table 8.2: Validation set: Average performance metrics using the derived models

with and without exogenous variables.

Sub.A.1 P P m % diff. Q Q dt % diff.

RMSE (pu) 0.0037 0.0036 -2.92 0.0046 0.0043 -6.40

CRPS (pu) 0.0022 0.0021 -3.47 0.0028 0.0025 -11.44

Sub.B.2 P P ht % diff. Q Q hdt % diff.

RMSE (pu) 0.0031 0.0026 -15.08 0.0032 0.0031 -3.56

CRPS (pu) 0.0019 0.0016 -16.15 0.0022 0.0021 -4.39

Sub.C.1 P P hd % diff. Q Q md % diff.

RMSE (pu) 0.00036 0.00034 -4.61 0.00041 0.00036 -13.05

CRPS (pu) 0.00020 0.00020 -4.17 0.00025 0.00024 -3.38

Sub.E.1 P P hd % diff Q Q md % diff

RMSE (pu) 0.0012 0.0012 -3.30 0.0012 0.0010 -15.44

CRPS (pu) 0.0007 0.0007 -5.12 0.0007 0.0006 -13.60

The best combinations in terms of accuracy and predictive uncertainty are pre-

sented in Table 8.2 for four indicative ADNs. Nevertheless, similar levels of in-

crease in accuracy ranging from 3% to 16% were observed in each of the examined

ADNs. The models denoted by a single letter, i.e., P or Q, represent the derived

dynamic models using only the lagged input-output values (without considering ex-

ogenous variables) whereas the models P x or Q x indicate the proposed GP models
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using exogenous variables for active and reactive power, respectively. The subscript

‘x’ corresponds to the combination of the exogenous variables based on the notation

introduced in Table 8.1. Note that the accuracy of the model output is assessed us-

ing the RMSE between the predicted dynamic responses and real recorded values.

As for the whole predicted distribution, the CRPS is employed, see (8.14). The pre-

sented RMSE and CRPS values correspond to the average values estimated using

the validation sets.

Importantly, the dynamic models developed including a set of exogenous vari-

ables as features achieve significantly better results. In particular, the average

RMSE and CRPS are improved by around 3% to 16% depending on the power

model (active or reactive) and the ADN. Those results manifest that the proposed

GP model structure can actually learn the important information about the system

dynamics encoded in temporal and weather variables and then translate it into more

accurate predictions. Interestingly, temporal variables, i.e., time of the day (hour),

day of the week, and month, seem to have the greatest influence on system dynamics

as each of the derived models includes at least one of them. Regarding the weather

Figure 8.13: Sub.A.1: Reactive power response governed by a DG voltage con-

troller supporting the voltage through reactive current injections.
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Figure 8.14: Sub.B.2: Reactive power response governed by a DG voltage controller

supporting the voltage through reactive current injections.

Figure 8.15: Sub.C.1: Active power response following the load recovery behavior.

variables, the temperature data can also be beneficial since around 25% of the gen-

erated models exploit this information to yield better predictions. Moreover, the

deployment of all the available features did not achieve the best results in terms of
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Figure 8.16: Sub.C.1: Reactive power response following the load recovery behav-

ior.

accuracy. This may be attributed to the fact that local optimal solutions were found

due to the higher dimensionality of the data and/or weakly correlated features do

not actually contain useful information about the ADN dynamics.

A few indicative examples randomly selected from the validation set are illus-

trated in Fig. 8.13-8.16 showing mainly the generated probability distributions (up-

per plots) as well as the prediction errors e(t) = y(t) − ŷ(t) (lower plots). It is

clearly observed that in all four examples, the dynamic models with exogenous

variables yield dynamic responses very close to the real recorded values while the

latter lie almost always within the 95% prediction intervals. On the contrary, the

models with no exogenous variables may have a small offset in their output. This

may be caused by the fact that identical voltage disturbances can lead to different

ADN responses due to different load composition.

Comparison with a deep learning model

Here, we compare the proposed GP model with the deep learning model based on

long short term memory (LSTM) networks of [3]. To fairly compare those two
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(b) Sub.A.1: Reactive power.
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(c) Sub.C.1: Active power.
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(d) Sub.C.2: Reactive power.

Figure 8.17: CDFs of the RMSEs yielded by the proposed GP model with exoge-

nous variables and the LSTM of [3] for different ADN dynamics.

models, we extend the LSTM network so that it additionally includes the respective

exogenous variables. The network architecture as well as the hyperparameters re-

main the same as in [3], where 50 LSTM blocks are employed and the training was

performed using the Adam optimizer [135]. Moreover, the CDFs of the RMSEs
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between the respective model output and the real recorded signals are used in order

to rigorously compare the accuracy of each model. Note that the RMSEs of the var-

ious clusters were merged into one group for every ADN and for every load/ADN

model.

The CDFs of two different ADNs are exhibited in Fig. 8.17 for both active and

reactive power. Those ADN models are characterized by different dynamics and

different combinations of exogenous variables. As depicted in Fig. 8.17, the pro-

posed GP model enjoys a slightly higher predictive accuracy than the respective

LSTM. Importantly, qualitatively similar results are obtained for each of the ADNs

under study, where both approaches yielded almost identical CDFs. Nevertheless,

the LSTM method does not provide any confidence about its predictions whereas

the proposed GP approach yields a probability distribution revealing also possible

trajectories of the dynamic response as well as borderline scenarios. However, the

probabilistic nature of the proposed GP model requires larger training times than

the respective LSTM despite the small number of model parameters that need to be

estimated.

8.5 Summary

The development of an accurate yet generic dynamic equivalent model for active

distribution networks (ADNs) is a rather delicate task due to the high uncertainty

characterizing the various grid components. To this end, a probabilistic dynamic

model was proposed that, except for its response, additionally yields the correspond-

ing predictive uncertainty. The proposed model learns the underlying dynamics

through measurement data and yields Gaussian distributions as output.

This probabilistic output is one of the major differences between the existing

ADN models and the proposed one. Importantly, the experimental results con-

firmed the applicability of the proposed model in practice and how load and DG

uncertainties can be reflected in the model output. Therefore, the proposed prob-

abilistic model can serve as a valuable tool in order to quantify uncertainty and
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additionally deliver confidence intervals alongside with its predictions.

Furthermore, the experimental results indicate that the RBF kernel can be a reli-

able choice for a covariance function. More complex kernels may simply increase

the computational need without necessarily offering a significant increase in the

predictive accuracy. Importantly, the choice of a kernel adds prior knowledge about

the system to the model. For instance, if there are oscillations in the output, a rea-

sonable approach would be to use the periodic kernel. Therefore, the choice of the

kernel highly depends on the characteristics of the measurement data.

Apart from the kernel function, a very crucial factor for developing reliable GP

models is the data themselves. For instance, there is a great need for diversity in

the measurement data deployed in the training. At the same time, more data means

more resources in terms of computation. Hence, efficient training techniques should

be also considered in order for the GP models to incorporate more knowledge about

the system. In the proposed method, a simple data sampling technique was fol-

lowed. In addition, low order models seem to suffice for modeling ADN dynamics,

but no general conclusion could be extracted about the model order nonetheless.

Based on the model validation, the use of the “naive” approach in multi-step

predictions proved to be a reliable choice to accurately capture the ADN dynamics.

Nevertheless, the implementation of a multi-step prediction using the predictive

uncertainty of the previous steps as well as a thorough comparison of the two ap-

proaches (“naive” and “exact”) are yet to be explored and are suggested as future

work.

In the second part of this chapter, the proposed dynamic GP models were further

extended. A new model structure was introduced that can reflect the time-varying

and weather dependent dynamics of load and DG by incorporating a set of exoge-

nous variables, such as time of the day, day of the week, month, temperature, solar

radiation, and wind speed. The proposed model can learn the influence of this kind

of exogenous variables and convert it into more accurate predictions. In particu-

lar, the proposed method was applied in the challenging problem of dynamic ADN

modeling. It is shown that, among a list of exogenous variables, the temporal ones

can be the most advantageous since they can encode important information about
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the system dynamics. However, no conclusion was drawn about the type of ADN

and the list of exogenous variables yielding the best results. That would probably

require data from significantly more substations.

Moreover, comparative results indicated that there may be an offset in the gen-

erated dynamic responses, when no exogenous variable is used, especially during

the transient phase. Although this may seem negligible for a single ADN model,

power system models are composed by several of those single load/ADN models.

As a result, an aggregation of those offsets might lead to false conclusions about

system stability. By incorporating exogenous variables in the ADN models, the

overall simulation accuracy is increased and thus, the risk of false conclusions in

the context of stability studies is decreased.

The comparison with the LSTM approach reveals that, apart from the proposed

GP model, there are also other model structures that can be modified accordingly in

order to decode the influence of temporal and weather features and integrate them

into their predictions. Hopefully, this outcome will motivate more studies in power

system dynamics to incorporate that kind of information.

Finally, it is worth discussing the applicability of those probabilistic models in

power system dynamic simulations. Although those models offer the advantages

discussed earlier in this chapter, there is no commercial software, at the time of

writing this thesis, that can perform probabilistic dynamic simulations. The fol-

lowing chapter reviews how those models can be integrated into a power system

simulation for stability studies.
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Chapter 9

Deployment of the proposed models
in stability studies

This chapter starts with a description of the international industry practices on power

system load modeling. Next, this chapter discusses the applicability of the proposed

models and gives guidelines for their optimal integration in power system simula-

tion packages.

9.1 Motivation

In the past, TSOs traditionally used static models to simulate the behavior of loads

in power system simulations [48, 144]. Those models describe the relationship

between power (active or reactive) and voltage and frequency using algebraic equa-

tions. Therefore, they are particularly suitable for steady-state analysis, e.g., power

flow estimation [144]. Nevertheless, those models may not be able to deliver accu-

rate results in case of dynamic simulations, as they comprise only algebraic equa-

tions [20, 42, 145, 146]. In spite of their limitations in dynamic simulations, around

70% of the TSOs worldwide keep using static models for stability studies [17, 147].

More specifically, around 53% of the TSOs deploy the static exponential model,

while around 19% use the ZIP model [144]. This fact can be attributed to three
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main factors. The first one is simplicity of their model structure, the second one is

that those models are available in every commercial power system simulation soft-

ware while the third one is the data availability to parameterize the models [17, 147].

Under those conditions, it is of utmost importance to provide dynamic load/ADN

models that can be easily implemented or integrated in power system simulation

packages. In the next section, guidelines are provided so that the proposed models

can be deployed in stability studies.

9.2 Guidelines for applying the proposed models in

practice

In the next three sections, the applicability of the three proposed models is dis-

cussed, respectively. In addition, guidelines are given with respect to their practical

implementations in power system simulations.

9.2.1 Linear dynamic model

As thoroughly presented in Chapter 6, the proposed active power model comprises

only a linear transfer function, whereas the reactive power model is composed by

two transfer functions; one for load and one for generation. For the sake of com-

pleteness, the block diagram of the proposed linear model structure is illustrated

once more in Fig. 9.1.

As observed in Fig. 9.1, the block diagram comprises simple elements and cal-

culations. Therefore, it can be readily implemented in power system simulations

packages that allow the development of user-defined dynamic models. Indicative

examples of popular software offering this feature are DIgSILENT PowerFactory

[148], NEPLAN [149], and Matlab Simulink [150]. To further support this claim,

the proposed linear model was implemented in DIgSILENT PowerFactory by a for-

mer colleague for the needs of a research project.
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Gpv,DG(s) = 0

ΔQDG

P0 P0

Figure 9.1: Block diagram representation of the proposed linear model structure.

In case of distribution grids in which no DG with reactive power control is present,

GQV,DG(s) = 0.

9.2.2 Nonlinear dynamic model based on ERM

The proposed nonlinear dynamic model follows the same fundamental model struc-

ture as the well-established ERM. In particular, it is composed by two nonlinear

algebraic equations modeling the steady-state and transient response, respectively,

and a linear transfer function modeling the load recovery behavior after a voltage

step change. The block diagram of the proposed model structure is depicted once

more in Fig. 9.2.

V

-
V0

∆V

h1(·) +

+

Y0
+

Ŷ

G(s)

h2(·)

+

-

Figure 9.2: Block representation of the proposed nonlinear dynamic model.

Similarly to the aforementioned linear model, the proposed ERM structure for

modeling ADNs comprises simple blocks and calculations. At the same time,
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the classical ERM is one of most commonly used dynamic model structures for

load modeling [18]. Hence, the proposed ERM structure can be effortlessly inte-

grated into any power system simulation software that allow the development of

user-defined dynamic models, e.g., DIgSILENT PowerFactory, NEPLAN, Matlab

Simulink.

9.2.3 GP model

In case of the proposed GP model, its integration into power system simulation

packages is not straightforward. The major characteristic differentiating the GP

model from the rest is its probabilistic output. The GP model yields the mean and

the standard deviation of a normal distribution at each time step.

At the moment that this thesis is written, there is no tool supporting any kind of

probabilistic power system dynamic simulations. Therefore, the focus is placed on

the generation of point predictions based on the predicted probability distributions.

To do so, at each time step, the model takes as input a vector comprising the current

and previous voltage values as well as the mean of the predicted distributions of

the previous time steps (until a certain point as defined by the model order). Next,

the model yields the mean and the standard deviation of a probability distribution

and the former is selected as the point prediction. This procedure is schematically

described in Fig. 9.3. The detailed description of the GP model development can be

found in Chapter 8.

In order to estimate the mean of a probability distribution for each time step, the

GP Model
∆Ŷ (t)

z−1∆Ŷ (t− 1)

...

z−L∆Ŷ (t− L)

∆V (t)

∆V (t− L)

...

Figure 9.3: Schematic representation of the proposed GP model.
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GP model block of Fig. 9.3 executes the following matrix multiplication:

µ(y∗) = k(x∗)⊤K−1y, (9.1)

where µ(y∗) = ∆Ŷ (t), x∗ = [∆V (t), ...,∆V (t − L),∆Ŷ (t − 1), ...,∆Ŷ (t − L)],

k(x∗) is a vector containing the covariances between each of the training input

points and the test input point x∗ as calculated using the respective kernel function,

K is the covariance matrix of all the training points, and y is the vector containing

all the output points used for training. In this regard, K and y are constants and are

known in advance whereas k(x∗) is estimated at each time step.

As expected, the computational requirements of the GP model rise as the number

of training points increases, since the size of K and y increases. Nevertheless,

matrix multiplication is highly optimized in most of the programming languages

and software packages. In case of very large training sets, random batches of data

can be used to decrease the computational requirements.

Based on the aforementioned analysis, the GP model structure (Fig. 9.3) can

be integrated into any power system simulation software offering the creation of a

user-defined dynamic model, where matrix multiplications can be implemented. An

indicative examples of such a tool is Matlab Simulink. DIgSILENT PowerFactory

plans also to incorporate matrix multiplications into its user-defined dynamic model

in a future software release, as communicated by one of its core developers. It

is worth mentioning that the same procedure is followed for the GP model with

exogenous variables. The only difference lies in the total number of model inputs.

Incorporating uncertainty

To estimate the dynamic ADN response, the methodology described in this section

considers only the mean of the predicted distribution, while the standard deviation

is not used. This approach is commonly known as the “naive” approach [139].

In order to incorporate uncertainty into the predicted dynamic response, one more

step is added to the “naive” approach. Instead of using the mean of the predicted

distribution, the model output is sampled from it. Thus, ∆Ŷ (t) is a random sample

from N (µ(y∗), υ2(y∗)), where υ(y∗) is the predicted standard deviation.
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Figure 9.4: First run: Reactive power response using sampling from the predicted

probability distribution.

Figure 9.5: Second run: Reactive power response using sampling from the predicted

probability distribution.

However, this approach yields more noisy and less accurate results. Yet each

time the same power system simulation model runs, the GP model will generate dif-
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Figure 9.6: Third run: Reactive power response using sampling from the predicted

probability distribution.

Figure 9.7: Naive approach: Reactive power response using the “naive” approach.

ferent dynamic responses highlighting its stochastic nature. For instance, Fig. 9.4-

9.6 show the GP model output for the same input in three different runs. For com-

parison, the respective model output using the “naive” approach is shown in Fig. 9.7.
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As readily inferred from those figures, the sampling approach generates noisy dy-

namic responses, which may deviate from the real measured values. Nevertheless,

this sampling approach might be considered a way to reflect the stochastic ADN

nature in stability studies. As an alternative, one could use the naive approach to

generate a dynamic response such as the one in Fig. 9.7 and then, select a trajectory

corresponding to a desired percentile, e.g., 75th percentile. If the desired percentile

is randomly selected by a Gaussian distribution for each ADN, each ADN will gen-

erate a different dynamic response accounting for the stochastic nature of load and

DG.

9.3 Summary

The motivation of developing dynamic load/ADN models is to substitute the vari-

ous distribution networks in a power system model with equivalent dynamic models.

This chapter provides the guidelines for integrating the proposed dynamic models

into power system simulation packages. All proposed models can be implemented

in a simulation software that offers the development of user-defined dynamic mod-

els as a feature. Indicative examples of that kind of software tools are DIgSILENT

PowerFactory, NEPLAN, and Matlab Simulink.

In particular, the implementation of the proposed linear and nonlinear models is

rather straightforward, as both models are composed by simple block elements. On

the contrary, the deployment of the GP model structure may be confusing. To clarify

that, the corresponding implementation details are given in this chapter. Finally, a

sampling approach is proposed in order to incorporate the ADN uncertainty into the

generated dynamic responses.
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Conclusion

10.1 Summary of this work

The ongoing transition of traditional passive load-dominated distribution systems

into ADNs poses new challenges for dynamic simulations and stability studies of

power systems. Hence, the applicability of the existing load models should be scru-

tinized while new model structures incorporating the influence of new system com-

ponents, such as DG and controllable loads, should be introduced [2].

As a general rule, the measurement-based approach has been extensively de-

ployed in the literature for load and, recently, for ADN modeling. In this approach,

the derived models are developed by fitting a set of parameters to a set of input-

output measurements using system identification techniques [25]. Despite the large

number of approaches following the measurement-based approach that have been

proposed within the past years, there are still several issues and open research ques-

tions that should be resolved.

In this dissertation, an end-to-end measurement-based approach is proposed aim-

ing at developing dynamic ADN models while considering the current issues and

limitations of the existing approaches. In particular, three EHV/HV and six HV/MV

substations were equipped with measurement units, each of them acquiring data

over about one year. By measuring in several substations, various grid configu-
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rations were captured, while the long measuring time period allowed covering a

sufficient number of events at different time and weather conditions.

Based on the acquired data, the influence of the various DG technologies on

the dynamics of the systems is examined. It is concluded that the active power

is not affected by any of the various DG technologies in the ADNs under study.

However, this is not a general conclusion, since different control schemes may be

implemented in other DG units installed in other ADNs. On the contrary, it is

observed that the reactive power dynamics are highly affected by the underlying

wind parks and CHP plants whereas the respective PV and Biogas plants do not

have a direct impact on the reactive power responses. This conclusion cannot be

generalized either and is valid only in the examined grids, as different ADNs may

contain DG with completely different control schemes.

Similarly, a thorough analysis with respect to the relationship between ADN dy-

namics and a list of temporal as well as weather variables is performed. It was

observed that the ADN dynamics may vary from hour to hour, day to day, and

month to month (temporal variables). At the same time, weather variables, such

as temperature, radiation, and wind speed, might have a minor yet worth consid-

ering influence on the system dynamics. Nevertheless, different relationships and

correlations were discover at each ADN and thus, no general conclusion can be

extracted.

Regarding the self-regulating effect, it turned out that the recorded frequency

events are not suitable for the identification of the stationary relationship between

the frequency and active power. As a fallback solution, two different approaches

were attempted. The first approach is based on frequency changes that occurred

at random moments. The second one relies on the deterministic frequency devi-

ations happening every quarter hour due to market product design. However, no

unambiguous self-regulating effect can be extracted in either of those approaches.

In the context of dynamic ADN modeling, the state-of-the-art approaches assume

that the data used for the system identification are homogeneous with respect to the

dynamics, neglecting the dispatch of DG units, whose operation varies based on the

weather conditions. To address this issue, a novel unsupervised learning methodol-
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ogy for clustering different dynamic behavior is introduced. Importantly, no knowl-

edge of load and generation mix is required and the clustering is performed exclu-

sively based on the measurements themselves. Furthermore, the proposed method

can be easily integrated as a preprocessing step into most of the existing ADN mod-

eling approaches. Therefore, different dynamic models can be accurately generated

representing the same ADN under various operating conditions.

To evaluate how distribution networks have changed within the past years, linear

load models are developed for each ADN for active power and reactive power. By

combining the individual models, two generic dynamic models are derived (one

for active and one for reactive power), which can be readily integrated into power

system dynamic simulations for stability studies. Both models show only minor

differences in the transient and steady-state responses compared to the respective

average models developed several years ago.

Next, a three-stage methodology is introduced in order to effectively manage

field measurements, identify the dominant dynamics, and build an adequate num-

ber of different ADN models accurately reflecting the time-varying nature of load

and DG. To do so, this methodology leverages the proposed clustering method in

the first two stages and a new nonlinear model structure in the third stage, respec-

tively. This nonlinear dynamic model borrows the main concept of the exponential

recovery model and is further modified in order to model modern distribution net-

works with significant DG. Finally, it is manifested that, in spite of the large number

of measurements representing a wide range of grid configurations, the general dy-

namic characteristics of an ADN can be accurately captured and modeled using a

limited number of clusters.

To deal with the stochastic nature of load and DG, a new probabilistic model

structure based on GP is proposed. Contrary to most of the existing determinis-

tic approaches generating single points as output, the proposed GP model yields

a probability distribution at each time step. Due to its flexibility with respect to

the input features, the model directly incorporates time and weather variables in

order to decode their influence and eventually yield more accurate predictions. It

is shown that, among a list of exogenous variables, the temporal ones can be the
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most advantageous since they can encode important information about the system

dynamics. However, no conclusion was drawn about the type of ADN and the list

of exogenous variables yielding the best results.

This dissertation is finalized by providing the guidelines for deploying the pro-

posed models in power system simulation packages. Indicative examples of soft-

ware tools that could integrate those models are DIgSILENT PowerFactory, NE-

PLAN, and Matlab Simulink.

It is worth mentioning that several publications were generated based on the

methods and the data presented in this dissertation. For more details, the interested

reader is referred to [12, 41, 115, 116, 136, 137, 151, 152].

10.2 Directions for future work

Even though this dissertation proposes a complete methodology for developing

dynamic load/ADN models including methods for exploratory data analysis, pre-

processing, outlier detection, clustering, and new model structures, there are several

challenges that are yet to be addressed.

Measurement data

• Although this study employs measurement data from six different HV/MV

substations, which is considered a large number compared to the existing

literature, measurement data from more substations spread out in the country

could possibly reveal different dynamic behavior. Those field data would be

highly beneficial in developing generic ADN models.

• The estimation of the steady-state relationship between frequency and ac-

tive power is a rather challenging task, since big frequency changes are rare

nowadays. Therefore, measuring frequency and active power over a long

time period and for several ADNs (in order to improve the signal-to-noise ra-

tio) should be pursued in order to be able to capture those rare big frequency

events that are required.
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Exploratory data analysis

• This dissertation presented one the first attempts found in the literature to

identify correlations between load/ADN dynamics and time and weather vari-

ables. To do so, an exploratory data analysis based on correlation coefficients,

boxplots, and scatter plots was proposed. This approach may be further en-

hanced by applying more advanced statistical analysis techniques.

Modeling

• Different types of distribution networks should be examined. The increasing

interactions of the electric power system with the sectors of transportation,

heat, gas, and hydrogen would introduce new load types such as, a large

number of EV chargers, heat pumps, electrolyzers, etc. Thus, new model

structures may be required to capture the dynamics of those grid components.

Uncertainty estimation

• To the best of the author’s knowledge, this dissertation presents for the first

time a probabilistic model structure that yields a full probability distribu-

tion instead of a single deterministic point. At this point, the generated pre-

diction intervals are used in order to reason about system uncertainties in-

herent to measurement data, identify worst case scenarios using the bound-

aries of the yielded distributions, and indicate whether a prediction should

be trusted, further examined or even rejected. Nevertheless, the probabilistic

nature of the model output opens many opportunities for further research.

For instance, those models could motivate the development of probabilis-

tic dynamic simulations, which, to date, are not possible. However, as re-

search in the field advances, e.g., quantum computing [153], deep learning

[154, 155, 156, 157], probabilistic dynamic simulations may not be that far.

To support this claim, probabilistic optimal power flow is already being stud-

ied [158, 159, 160, 161].
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• Currently, the proposed model employs the “naive” approach to generate the

dynamic ADN response, as it demonstrated highly accurate results. However,

future work could be the implementation of a multi-step prediction by incor-

porating the predictive uncertainty of the previous steps as well as a thorough

comparison of the two approaches (“naive” and “exact”) with respect to mod-

eling ADNs.

• It is worth pointing out that there is some recent research work that introduces

stochastic differential-algebraic equations to model correlated stochastic pro-

cesses in power systems [162, 163]. In this regard, the integration of the

proposed probabilistic ADN models into the power system simulation envi-

ronment of [162] might be a good solution to fully leverage the probabilistic

nature of the models.

Large-scale studies

• This dissertation has focused on the development of generic and reliable dy-

namic load/ADN models that replace the individual distribution systems in

the power system model. The applicability of the proposed models can be

further validated by their integration in a detailed transmission system model.

To date, there are limited studies dealing with this topic, as it requires reliable

equivalent load/ADN models, the development of which is by itself a rather

challenging task. Nevertheless, the recent work of [164] is suggested as a

starting point.

Online parameter estimation

• As highlighted in this thesis, load composition and DG dispatch are time-

varying and thus, different models should be used based on that. Future work

could aim at the online update of dynamic load/ADN models using real-time

data.
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tion and validation of characteristic load profile through smart grid trials in a

medium voltage distribution network,” IEEE Transactions on Power Systems,

vol. 33, no. 2, pp. 1848–1859, 2017.

[41] G. Mitrentsis and H. Lens, “A dynamic active distribution network equivalent

for enhancing the generalization capability of the exponential recovery model

in stability studies,” IEEE Transactions on Power Systems, vol. 36, no. 3, pp.

2709–2712, 2021.

[42] D. N. Kosterev, C. W. Taylor, and W. A. Mittelstadt, “Model validation for

the August 10, 1996 WSCC system outage,” IEEE Transactions on Power

Systems, vol. 14, no. 3, pp. 967–979, 1999.

[43] S. A. Arefifar and W. Xu, “Online tracking of voltage-dependent load pa-

rameters using ULTC created disturbances,” IEEE Transactions on Power

Systems, vol. 28, no. 1, pp. 130–139, 2012.

[44] A. Bokhari, A. Alkan, R. Dogan, M. Diaz-Aguiló, F. De Leon,
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[58] L. M. Korunović, J. V. Milanović, S. Z. Djokic, K. Yamashita, S. M. Vil-

lanueva, and S. Sterpu, “Recommended parameter values and ranges of most

frequently used static load models,” IEEE Transactions on Power Systems,

vol. 33, no. 6, pp. 5923–5934, 2018.

[59] M. Leinakse, P. Tani, and J. Kilter, “Impact of distributed generation on esti-

mation of exponential load models,” in 2019 IEEE Power and Energy Society

General Meeting. IEEE, 2019, pp. 1–5.

[60] B.-K. Choi and H.-D. Chiang, “Multiple solutions and plateau phenomenon

in measurement-based load model development: Issues and suggestions,”

IEEE Transactions on Power Systems, vol. 24, no. 2, pp. 824–831, 2009.



Bibliography

[61] A. Samui and S. Samantaray, “An active islanding detection scheme for

inverter-based DG with frequency dependent ZIP–exponential static load

model,” International Journal of Electrical Power & Energy Systems, vol. 78,

pp. 41–50, 2016.

[62] M. Sadeghi et al., “Determination of ZIP parameters with least squares op-

timization method,” in 2009 IEEE Electrical Power & Energy Conference

(EPEC). IEEE, 2009, pp. 1–6.

[63] W. W. Price, K. A. Wirgau, A. Murdoch, J. V. Mitsche, E. Vaahedi, and

M. El-Kady, “Load modeling for power flow and transient stability computer

studies,” IEEE Transactions on Power Systems, vol. 3, no. 1, pp. 180–187,

1988.

[64] J. Anton, R. Mathews, D. Perkins, M. Herndon, P. Dworsky, and T. Mathews,

“Analysis of performance accelerator running ETMSP. Final report,” Electric

Power Research Inst., Palo Alto, CA (United States), Tech. Rep., 1993.

[65] E. Welfonder, H. Weber, and B. Hall, “Investigations of the frequency and

voltage dependence of load part systems using a digital self-acting measur-

ing and identification system,” IEEE Transactions on Power Systems, vol. 4,

no. 1, pp. 19–25, 1989.

[66] H. Bai, P. Zhang, and V. Ajjarapu, “A novel parameter identification ap-

proach via hybrid learning for aggregate load modeling,” IEEE Transactions

on Power Systems, vol. 24, no. 3, pp. 1145–1154, 2009.

[67] D. Karlsson and D. J. Hill, “Modelling and identification of nonlinear dy-

namic loads in power systems,” IEEE Transactions on Power Systems, vol. 9,

no. 1, pp. 157–166, 1994.

[68] D. J. Hill, “Nonlinear dynamic load models with recovery for voltage stabil-

ity studies,” IEEE Transactions on Power Systems, vol. 8, no. 1, pp. 166–176,

1993.



Bibliography

[69] A. Rouhani and A. Abur, “Real-time dynamic parameter estimation for an

exponential dynamic load model,” IEEE Transactions on Smart Grid, vol. 7,

no. 3, pp. 1530–1536, 2015.

[70] J. Ma, D. Han, R.-M. He, Z.-Y. Dong, and D. J. Hill, “Reducing identified pa-

rameters of measurement-based composite load model,” IEEE Transactions

on Power Systems, vol. 23, no. 1, pp. 76–83, 2008.

[71] J.-K. Kim, K. An, J. Ma, J. Shin, K.-B. Song, J.-D. Park, J.-W. Park, and

K. Hur, “Fast and reliable estimation of composite load model parameters

using analytical similarity of parameter sensitivity,” IEEE transactions on

Power Systems, vol. 31, no. 1, pp. 663–671, 2015.

[72] A. Keyhani, W. Lu, and G. T. Heydt, “Composite neural network load models

for power system stability analysis,” in IEEE PES Power Systems Conference

and Exposition. IEEE, 2004, pp. 1159–1163.

[73] M. Bostanci, J. Koplowitz, and C. Taylor, “Identification of power system

load dynamics using artificial neural networks,” IEEE Transactions on Power

Systems, vol. 12, no. 4, pp. 1468–1473, 1997.

[74] B.-Y. Ku, R. J. Thomas, C.-Y. Chiou, and C.-J. Lin, “Power system dynamic

load modeling using artificial neural networks,” IEEE Transactions on Power

Systems, vol. 9, no. 4, pp. 1868–1874, 1994.

[75] D. Mandic and J. Chambers, Recurrent neural networks for prediction:

learning algorithms, architectures and stability. Wiley, 2001.

[76] X. Feng, Z. Lubosny, and J. Bialek, “Dynamic equivalencing of distribution

network with high penetration of distributed generation,” in Proceedings of

the 41st International Universities Power Engineering Conference, vol. 2.

IEEE, 2006, pp. 467–471.

[77] P. N. Papadopoulos, T. A. Papadopoulos, P. Crolla, A. J. Roscoe, G. K. Pa-

pagiannis, and G. M. Burt, “Black-box dynamic equivalent model for micro-



Bibliography

grids using measurement data,” IET Generation, Transmission & Distribu-

tion, vol. 8, no. 5, pp. 851–861, 2014.

[78] A. M. Azmy and I. Erlich, “Identification of dynamic equivalents for distri-

bution power networks using recurrent anns,” in IEEE PES Power Systems

Conference and Exposition. IEEE, 2004, pp. 348–353.

[79] X. Feng, Z. Lubosny, and J. Bialek, “Identification based dynamic equiva-

lencing,” in IEEE Lausanne Power Tech. IEEE, 2007, pp. 267–272.
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