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Abstract

Contamination of soils with pesticides and their metabolites is a global envi-

ronmental threat. Deciphering the complex process chains involved in pesti-

cide degradation is a prerequisite for finding effective solution strategies. This

study applies prospective optimal design (OD) of experiments to identify labo-

ratory sampling strategies that allow model-based discrimination of atrazine

(AT) degradation pathways. We simulated virtual AT degradation experiments

with a first-order model that reflects a simple reaction chain of complete AT

degradation. We added a set of Monod-based model variants that consider

more complex AT degradation pathways. Then, we applied an extended

constraint-based parameter search algorithm that produces Monte-Carlo

ensembles of realistic model outputs, in line with published experimental data.

Differences between-model ensembles were quantified with Bayesian model

analysis using an energy distance metric. AT degradation pathways following

first-order reaction chains could be clearly distinguished from those predicted

with Monod-based models. As expected, including measurements of specific

bacterial guilds improved model discrimination further. However, experimen-

tal designs considering measurements of AT metabolites were most informa-

tive, highlighting that environmental fate studies should prioritise measuring

metabolites for elucidating active AT degradation pathways in soils. Our

results suggest that applying model-based prospective OD will maximise

knowledge gains on soil systems from laboratory and field experiments.

Highlights

• Bayesian model analysis can help to distinguish the active degradation path-

way of pesticides.

• Information on degradation metabolites is crucial to understand pesti-

cide fate.

• Measurements of specific guilds improve the distinction of active pesticide

pathways.

• Prospective optimal design maximizes information gain in soil sciences.
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1 | INTRODUCTION

Pesticides are important chemicals used globally in agricul-
ture to manage plant stressors such as pests, weeds and dis-
eases (Popp et al., 2013). Due to their potential negative
effects on ecosystems (de Albuquerque et al., 2020) and
human health (S�anchez et al., 2020), some pesticides have
been banned or otherwise restricted. The pesticide atrazine
(AT) has been banned in Europe in 2004. However, AT and
its metabolites are still found in soils and groundwater in
potentially harmful concentrations (Jablonowski et al., 2009;
Karlsson et al., 2020; Vonberg et al., 2014). In natural envi-
ronments, AT undergoes abiotic (L�opez-Muñoz et al., 2011)
and biotic (Udikoviç-Koliç et al., 2012) degradation. Several
bacterial guilds have been observed to metabolise AT (as a
carbon source (Ehrl et al., 2019; Kundu et al., 2019), nitrogen
source (Sharma et al., 2019) or both (Udikoviç-Koliç
et al., 2012), leading to an accumulation of intermediate
metabolites. Most commonly, these metabolites are
hydroxyatrazine (HY) (Karlsson et al., 2020; Smith
et al., 2005; Smith & Crowley, 2006), deisopropylatrazine
(DIA) and deethylatrazine (DEA) (Meyer et al., 2014; Ngigi
et al., 2012; Zhang et al., 2017). Several different (and possi-
bly simultaneously occurring) AT degradation pathways can
lead to the formation of identical metabolites. This poses a
challenge to the determination of the fate of AT, which in
turn confounds our ability to understand why AT persists in
natural systems, thus hampering strategies for mitigating
pesticide contamination of soils (Chow et al., 2020).

Mathematical modelling approaches are valuable
tools for investigating complex degradation pathways
such as AT degradation. They provide means for combin-
ing the current understanding of AT degradation with
mathematical formulations, which can be validated with
real measurement data such as AT and metabolite con-
centrations and biomass (Arhonditsis et al., 2008). In the
particular case of AT degradation, the limitation of
“which intermediate metabolites and bacterial guilds
involved are measured” could lead to distinct mathemati-
cal models that all represent the same system with equiv-
alent accuracy (equifinality problem) (Mélykúti
et al., 2010). Distinguishing among these competing
models can help us to determine which AT degradation
pathways are active in a particular environment.

When addressing competing models, two cases arise.
If all model formulations predict similar behaviour for all

system elements (AT degradation, metabolite dissipation
and biomass formation), then the simplest (most parsi-
monious) model formulation is usually accepted as the
best (most valid) representation. Otherwise, it is impor-
tant to know which observations may provide the most
useful information to distinguish the models and to facili-
tate model discrimination (Chen & Asprey, 2003; Ehrl
et al., 2019; Kremling et al., 2004). By identifying relative
differences between models, we can reduce the number of
competing models, cluster together those that are most sim-
ilar and facilitate model invalidation (Ehrl et al., 2019;
Kremling et al., 2004).

Optimal design (OD) of experiments is a promising tool
for addressing the equifinality problem. OD aims to maxi-
mise the benefit obtained from experiments (Nowak &
Guthke, 2016). If it is done prior to the execution of the
experiment, it is called prospective OD (Diggle &
Lophaven, 2006; Nowak & Guthke, 2016). In our case, we
use prospective OD to identify experimental designs that
maximise the observed difference between competing
models of AT degradation (Mélykúti et al., 2010). Among
multiple metrics used to distinguish models (Chen &
Asprey, 2003; Ehrl et al., 2019; Kremling et al., 2004), the
concept of energy distance (ED) (Székely & Rizzo, 2013) is a
computationally efficient and robust model-distance metric.
In this context, the design that produces data with maxi-
mised (model to model) ED is considered the OD for model
discrimination.

This work applies a prospective OD approach and
analyses the trade-off between-model complexity and
prediction uncertainty to identify modelling approaches
that effectively represent AT degradation pathways in
soil. We aimed at finding optimal experimental sampling
designs and chemical analysis strategies for model dis-
crimination and hence inference of active degradation
processes.

2 | MATERIAL AND METHODS

2.1 | AT degradation models

2.1.1 | Conceptual model

We consider a set of hierarchical, nested models for deg-
radation of AT in soils (Figure 1), including biotic and
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abiotic degradation, representing common degradation
pathways of AT. These models vary in complexity from a
complete Monod model version (M1) to a simple first-
order decay model (M6). The latter is commonly used to
model degradation at field scale (Bekins et al., 1998).

We assume that degradation processes occur in a
well-mixed soil environment that contains a collection of
bacterial guilds. These guilds are labelled I, II, III and IV
(Figure 1 and Section 2.1.2). Members of each guild are
able to fully or partially metabolise bioavailable AT and
its intermediate metabolites as sole carbon and energy
sources (Deutch et al., 2018; Dutta et al., 2016; Kumar &
Singh, 2016) (Figure 1). Nitrogen use is not considered.
The members of each guild are partitioned into two sub-
pools with different physiological states: active and dor-
mant. Activation and deactivation rates are driven by
carbon availability in the system. We explicitly account
for a dissolved organic carbon pool (DOC) that serves as
a collector of dead cells. The last metabolite of the AT
transformation is cyanuric acid (CA) (Zhang et al., 2011).
The transformation of CA to carbon dioxide (CO2) is reg-
ulated by nitrogen availability. At high nitrogen concen-
trations, CA transformation is strongly inhibited by all
guilds (García-Gonz�alez et al., 2005).

2.1.2 | Bacterial guilds

We defined four guilds as follows, based on genetic infor-
mation regarding known AT degraders:

1. Guild I is able to use the side chains of AT as carbon
source, degrading it to CA (Dutta et al., 2016; García-

Gonz�alez et al., 2005). Additionally, this guild can use
the metabolites HY, NE, NI and the products of the
dealkylation of AT (DIA and DEA) as carbon sources
(Kolekar et al., 2014). Members of this guild constitu-
tively express a range of functional gene combina-
tions: atzABC, trzN-atzBC and/or trzN-atzC (Ehrl
et al., 2019; Kundu et al., 2019). Examples of members
of this guild are Arthrobacter aurescens TC1 (Ma
et al., 2017), and Ensifer sp. (Ma et al., 2017).

2. Guild II is able to dechlorinate AT to HY (without
gaining either carbon or energy) through the activity
of functional genes atzA (Smith & Crowley, 2006) or
trzN (Smith et al., 2005). Additionally, they degrade
HY to N-ethylammelide (NE) (Smith et al., 2005) (via
uncharacterised enzymes), or degrade the metabolite
N-isopropylammelide (NI) to CA, via the gene atzC.
An example member of this guild is Nocardia
sp. (Smith et al., 2005).

3. Guild III uses HY and NI as main carbon and energy
sources by harbouring the functional genes atzB and
atzC, yielding CA (Smith et al., 2005; Smith &
Crowley, 2006). The atzC gene also allows for metabolism
of NE as carbon source (Fan & Song, 2014). An example
member of this guild is Rhizobium sp. (Smith et al., 2005).

4. Guild IV dealkylates AT to the metabolites DEA and
DIA in a fixed proportion f D (Shapir &
Mandelbaum, 1997) (Figure 1). Specific genes for this
pathway have not been identified; it is most probably
a cometabolic process (Huang et al., 2007; Huang
et al., 2018) mediated by the unspecific enzyme cyto-
chrome P450 (Meyer et al., 2014), An example mem-
ber of this guild is Rhodococcus sp. (Meyer
et al., 2014).

FIGURE 1 Atrazine (AT) degradation in soils: Model framework describing AT, its intermediate metabolites (HY, DEA, DIA, NI,

NE and CA), CO2 and the bacterial guilds involved in the degradation process. Arrow colours indicate guild activity. Black arrows represent

abiotic hydrolysis of AT and nitrogen-dependent degradation of CA. The dashed line represents a leak of HY during the degradation process

carried out by guild I (Ehrl et al., 2019; Kundu et al., 2019). The dash-dotted line shows a degradation step uncoupled from growth carried

out by guild II. The parameter f D represents the fraction of DIA formed during AT degradation by guild IV. All bacterial guilds respire the

metabolites, contributing to CO2 (not shown in the figure). CA, cyanuric acid; DEA, deethylatrazine; DIA, deisopropylatrazine;

HY, hydroxyatrazine; NE, N-ethylammelide; NI, N-isopropylammelide
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2.1.3 | Process formulations

The models are formulated as ordinary differential equa-
tion systems as shown in the Appendix S1, section 1. The
rate expressions provided below are general formulations
applicable to all models.

1. AT and metabolite dynamics: Together, AT and the
intermediate metabolites HY, DEA, DIA, NI and NE
are represented by a total carbon concentration CT,
expressed in mass of carbon, segregated into a bio-
available pool (concentration CL [mg cm�3]), and a
sorbed pool (concentration CS [mg g�1]):

CT ¼ θ �CLþρ �CS, ð1Þ

where θ [�] and ρ [g cm�3] are the soil water content
and bulk density, respectively.

These two pools are related by the Freundlich iso-
therm (Freundlich, 1907) with a retardation factor (RF):

RF≔ 1þρ

θ
�KC

F �nC
F � CL
� � nCF�1ð Þ, ð2Þ

where KC
F mg 1�nCFð Þg�1cmnCF

h i
is the Freundlich coeffi-

cient and nC
F [�] is the Freundlich exponent.

Bioavailable carbon sources (CL) are taken up and
degraded biotically by active guild populations Ba,k

[mg g�1], where k¼ I, II, III or IV. We account for two
possible fates of consumed substrates: metabolite forma-
tion and bacterial metabolism. A fraction 1� f C of the
carbon is converted to the downstream metabolite:

rk,Cmetabolite formation ¼
μk,C �Ba,k � 1� f Cð Þ � ρθ

RF
, ð3Þ

where μk,C is the growth coefficient (Equation 11), k rep-
resents the bacterial guilds, and r is used to express the
different metabolic rates.

The remaining fraction f C contributes to biomass
accumulation and to respiration (Equation 18), with yield
factor Yk,C [�]:

rk,CC use ¼
μk,C �Ba,k � f C

Yk,C

� �
� ρθ

RF
: ð4Þ

Together, these give an overall uptake rate:

rk,Cuptake ¼
μk,C �Ba,k � f C

Yk,C
þ 1� f Cð Þ

� �
� ρθ

RF
: ð5Þ

Specific degradation processes that do not involve bio-
mass accumulation and respiration are described as
follows:

• Abiotic transformation of AT to HY (photodegradation)
has been observed (Kiss & Vir�ag, 2009). We model this
process (black arrow in Figure 1) by first-order decay:

rATabiotic degradation ¼
Ko �ATL

RF
, ð6Þ

where Ko [d
�1] is the first-order rate coefficient.

• It has been observed that HY leaks out of guild I mem-
bers by passive diffusion (Ehrl et al., 2019; Kundu
et al., 2019) to the soil solution. We modelled this leak
flux as a constant fraction of the AT that has been
uptaken by guild I:

rAT –HY
leak ¼ rI,ATmetabolite formation � fH

RF
ð7Þ

where fH [�] is the fraction of the uptake AT flux that
leaks out.

• Guild II dechlorinates AT to HY without gaining car-
bon or energy (Kundu et al., 2019). We modelled this
process with Michaelis–Menten kinetics; this step is
not coupled to growth (Dashed-point line in Figure 1):

rIIdechlorination ¼
kAT –HY �ATL � BII,a

KAT –HYþATL � ρθ
RF

, ð8Þ

where kAT –HY [d�1] is the dechlorination rate for Guild
II, and KAT –HY [mg cm�3] is the half-saturation
concentration.

• Guild IV metabolises AT to DIA and to DEA simulta-
neously (Meyer et al., 2014). A fraction f D of the
converted AT is in the form of DIA, while the
remaining fraction (1� f D) is in the form of DEA
(Figure 1).

• CA degradation: CA is the final metabolite of AT trans-
formation considered in the model because the further
breakdown of CA is typically fast, without accumula-
tion of intermediate metabolites (Aukema et al., 2020;
Zhang et al., 2011). The model reflects CA degradation
as inhibitory first-order decay:

rCA –CO2 ¼
CAL �dCA –CO2 � K in

NO3þK in

RF
, ð9Þ

where the dCA –CO2 [d�1] is the rate of degradation of
CA to CO2, K in [mg cm�3] is the inhibition factor, and
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NO3 [mg cm�3] is the nitrogen concentration in the
system taken as a model parameter.

• Bacterial dynamics and physiology: We describe two
subpopulations of all bacterial guilds (k¼ I, II, III, IV)
according to their physiological state: active Bk,a or dor-
mant Bk,d [mg g�1]. For each guild k, the active popula-
tion grows at rate rkgrowth [mg g�1 d�1] on multiple
carbon sources modelled with Monod kinetics allowing
for competition for binding sites (Pagel et al., 2014):

rk,Cgrowth ¼
X
C � Ck

μk,C � f C
 !

�Bk,a ð10Þ

where CI ¼ AT, HY, DEA, DIA, NE, NIf g, CII ¼
fAT, HY, NIg, CIII ¼ HY, NE, NIf g, CIV ¼ ATf g are
the potential carbon sources available for the
corresponding guilds (specific carbon sources depending
on the degradation scenarios are listed in Appendix S1,
section 1) and μk,C is the growth coefficient defined as:

μk,C ¼
μk,Cmax �CL

μk,CmaxþμCk

, ð11Þ

where μk,Cmax [d
�1] is the maximum growth rate for guild

k on the available fraction of the carbon source CL.
Function μCk

is defined as:

μCk
¼
X
C � Ck

CLþKk,C
� �

, ð12Þ

where Kk,C [mg cm�3] is the half-saturation concentra-
tion of each guild k on each carbon source CL.

Dormant populations do not grow. Transitions between
dormant and active states are described by a switch-like
function proposed by Stolpovsky et al. (2011):

rkactivation ¼ τk �kk,a �Bk,d, ð13Þ

rkdeactivation ¼ 1� τkð Þ �kk,d �Bk,a, ð14Þ

where kk,a and kk,d [d
�1] are the activation and deactiva-

tion coefficients for guild k. Function τk is defined as:

τk ¼ exp

Ck
th�

P
C � Ck

CL

s �Ck
th

0
B@

1
CAþ1

2
64

3
75
�1

, ð15Þ

where Ck
th [mg cm�3] is the threshold concentration for

the guild k, and s [�] is the steepness parameter set to

0.1 (Mellage et al., 2015).
Both active and dormant subpopulations are subject to
linear decay at rate:

rj,kdecay ¼ aj,k �Bk,j, ð16Þ

where aj,k [d�1] is the decay rate coefficient for the
guild k and index j represents active or dormant bacte-
rial state.

• DOC formation and bacterial respiration: We included
two sink pools:
a. DOC pool which collects dead cells from all guilds

(rj,kdecay). A fraction f R of the DOC contributes to the
CO2 pool:

rDOC –CO2 ¼ rj,kdecay � f R: ð17Þ

b. CO2 [mg g�1] accumulates due to bacterial respira-
tion at rate:

rkrespiration ¼ μk,C �Bk,a � f C �
1�Yk,C

Yk,C

� �
: ð18Þ

2.1.4 | Degradation scenarios

AT is commonly found in soils together with three princi-
pal intermediate metabolites HY, DIA and DEA (Kolekar
et al., 2019; Krutz et al., 2008; la Cecilia & Maggi, 2017).
The additional intermediate metabolites NE and NI are
also part of some reported degradation pathways (Smith
et al., 2005; Smith & Crowley, 2006), but their accumula-
tion has rarely been reported in soils (Udikoviç-Koliç
et al., 2012). Therefore, we considered six degradation
scenarios based on the presence or absence of the main
bacterial guilds involved in AT degradation. These six

TABLE 1 Degradation scenarios of AT degradation in soils

Model
variants

Bacterial
guilds Resulting chemical pools (C)

M1 I, II, III, IV AT, HY, DIA, DEA, NI, NE

M2 II, III, IV AT, HY, DIA, DEA, NI, NE

M3 I, III, IV AT, HY, DIA, DEA, NI

M4 I, II, IV AT, HY, DIA, DEA, NE

M5 I, IV AT, HY, DIA, DEA

M6 - AT, HY, DIA, DEA

Abbreviations: AT, atrazine; DIA, deisopropylatrazine; DEA,
deethylatrazine; HY, hydroxyatrazine; NI, N-isopropylammelide; NE, N-
ethyl-ammelide.
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scenarios are designed so that the metabolites HY, DIA
and DEA are always present (Figure 1 and Table 1).
While the first five scenarios yield comparatively complex
models (M1–M5 sorted by decreasing complexity), the
sixth one (M6) is a simple first-order decay model. This
last one only includes the chemical pools AT, HY,
DIA, DEA and CA and CO2. Specific degradation path-
ways mediated by fungi (Henn et al., 2020) were not
considered.

2.2 | Prospective OD of experiments

2.2.1 | Model outputs and generation of
simulated data

As model outputs that correspond to candidates for being
measured in lab experiments, we considered the concen-
trations of AT and the metabolites HY, DIA, DEA, NI,
NE, CA and CO2. Additionally, we considered the

TABLE 2 Model parameters for Monod and first-order kinetic models

Parameter Description Units

Parameter value

Min. Max.

Monod parameters

μk,Cmax Maximal specific growth rate of pesticide degraders d�1� 	
10�3 103

Kk,C Growth substrate affinity coefficient of pesticide
degraders

mg cm�3½ � 10�3 105

kk,a Coefficient rate of activation d�1� 	
10�5 100

kk,d Coefficient rate of deactivation d�1� 	
10�5 100

Ck
th

Threshold concentration mg cm�3½ � 10�6 104

aa,k Specific death rate of active bacteria d�1� 	
10�3 104

ai,k Specific death rate of inactive bacteria d�1� 	
10�6 10�2

Yk,C Yield parameter [�] 0:1 1

kAT –HY Dechlorination rate d�1� 	
10�4 103

KAT –HY Saturation concentration mg cm�3½ � 10�5 104

Sorption parameters

KC
F Freundlich coefficient mg 1�nCFð Þg�1cm 3nCFð Þh i

0:5 10

nC
F Freundlich exponent �½ � 0:6 1

First-order decay parameters

Ko Abiotic transformation of Atrazine to HY d�1� 	
10�4 105

K in Inhibition factor mg cm�3½ � 10�4 103

NO3 Nitrogen concentration mg cm�3½ � 10�3 103

dAT –HY Decay rate of AT to HY d�1� 	
10�4 103

dAT –DD Decay rate of AT to DD d�1� 	
10�4 103

dHY –CA Decay rate of HY to CA d�1� 	
10�4 103

dDIA –CA Decay rate of DIA to CA d�1� 	
10�4 103

dDEA –CA Decay rate of DEA to CA d�1� 	
10�4 103

dCA –CO2 Decay rate of CA to CO2 d�1� 	
10�4 103

Constant rate parameters

f R Fraction of dead bacteria which goes to DOC �½ � 0:01 1

fH Leak flux constant �½ � 0:01 1

f D Fraction of AT used for DEA formation used by guild D �½ � 0:25 0:75
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biomass of the bacterial guild D (the only guild present in
all Monod-based model variants), and the total biomass
(of all guilds present in the given system formulation).

Our prospective OD analysis is based on simulated data
from Monte-Carlo simulations of all models. We chose an
initial elevated AT concentration of 100 mg kg�1 (Cao
et al., 2021; Strong et al., 2002) and a very low initial bio-
mass of AT-degrading bacteria of 0.001 mg kg�1 (which
represents between 0.001% and 0.0001% of the typical total
soil microbial biomass as described by Joergensen (1996)
for model simulations, equally divided among the guilds
present in the system formulation. We set all bacterial
guilds to be dormant and all intermediate metabolites to
zero at the beginning of the experiment. To restrict to plau-
sible simulations, we defined a set of parameter and process
constraints on the model parameters and outputs based on
expert knowledge and soil observations.

The parameter constraints are:

1. Each parameter value must lie in a plausible interval
(see Table 2).

2. For each guild, the maximum growth rate coefficient
(μk,Cmax) must be higher than the death rate coefficient
of active bacteria (aa,k).

3. The Freundlich sorption coefficient of HY must be
higher than the Freundlich sorption coefficients of AT,
DIA, DEA, CA, NI and NE (Abate & Masini, 2005).

4. The Freundlich sorption coefficient of AT must be
higher than the Freundlich sorption coefficients of
AT, DEA, CA, NE (Abate & Masini, 2005).
The process constraints are:

5. The time taken for 50% of AT to degrade (DT50

(European Food Safety Authority, 2014; FOCUS, 2011)
must be between 5 and 25days (Krutz et al., 2009;
Udikoviç-Koliç et al., 2012).

6. The minimum AT concentration must be at least 10�8

mg m1�1 (Vonberg et al., 2014) at the end of the
experiment.

7. The mineralisation of initially added AT must be
between 20%–80% at the end of the experiment .

8. The DT50 of HY, DIA and DEA must be between
2 and 30 days.
These constraints restrict values of the model parame-
ters, either directly (plausible intervals) or indirectly
via the interaction of parameters in the process.

2.2.2 | Constraint-based parameter sampling
with Markov chain Monte Carlo

The parameter space of the AT biodegradation models is
high dimensional (20–70 parameters). Consequently, uni-
form sampling from the plausible ranges is an inefficient
strategy for identifying parameter sets that satisfy the

constraints listed above (Zamora-Sillero et al., 2011). We,
therefore, adopted a constraint-based search (CBS)
method (Gharari et al., 2014) and modified it to randomly
select parameter sets from the viable parameter set. The
CBS method is based on an iterative algorithm that
applies successively stricter conditions by increasing the
minimum acceptable number of process constraints to be
satisfied in each iteration. We replaced the original
parameter sampling procedure of Gharari et al. (2014)
with a Metropolis-Hastings algorithm using a Markov
Chain Monte Carlo (MCMC) sampler. This novel
CBS-MCMC method (Figure 2) estimates posterior parame-
ter distributions conditional on the defined constraints. In
contrast to the original parameter sampling procedure of
Gharari et al. (Gharari et al., 2014), MCMC sampling
achieves reproducible and unbiased estimates of the viable
parameter set (Au, 2004; Hastings, 1970; van Ravenzwaaij
et al., 2018).

The CBS-MCMC method consists of the following
steps (repeated for each degradation scenario, M1–M6):

1. Define the initial acceptable minimum number of
process constraints, npcmin, beyond the parameter con-
straint number 1 for the initial sampling (here, npcmin ¼ 2).

2. Perform an initial Latin hypercube sampling to draw
nx
init random parameter sets (here, nxinit = 500,000)

using uniform marginal parameter distributions
according to the parameter constraint number 1 (see
Table 2 for ranges).

3. Accept all parameter sets that satisfy the remaining
parameter constraints (2–4). These are called the
candidate parameter set (xc).

4. Run the current scenario model with each of the can-
didate parameter sets xc and determine the number
of process constraints satisfied (npc

sat) in each case.
5. Accept the parameter sets (x0c) resulting in model runs

where npc
sat ≥npc

min. Reject all other parameter sets in xc.
6. Increase npcmin by one.
7. Randomly choose nxMC parameter sets from x0c to be

used as starting parameter sets (xs) in the following
steps.

8. Apply the following Metropolis-Hastings algorithm
(Au, 2004) with nx

MC parallel Markov chains
(nx

MC ¼ 40 in this study):
a. Generate new nxMC candidate parameter sets x�c by

randomly modifying values of individual parame-
ters within each parameter set in xs using Gauss-
ian jumping distributions. Each jumping
distribution is centred at the selected individual
parameter value within each parameter set in xs
and has a standard deviation determined as the
standard deviation of the corresponding parame-
ter values in x0c. Any parameter values generated
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by the chain that lie outside of parameter con-
straint 1 (Table 2) are reflected back at the
corresponding boundary (Vrugt, 2016). At each
step, verify whether the parameter constraints
(2–4) are fulfilled. If so, accept the parameter set
as a member of the x�c parameters.

b. Run the model with each parameter set in x�c and
evaluate the number of process constraints satis-
fied (npc

sat).
c. Replace xs by the corresponding x�c for which

npc
sat ≥npcmin. Store x

�
c in x0c.

d. Repeat 8a to c until termination of the Markov
chain (see below).

9. Repeat steps 6, 7 and 8 until the npcmin equals the total
number of process constraints (npctot) and all process
constraints are satisfied.

10. Optimise the MCMC Gaussian jumping distance (see
below) to achieve a desirable acceptance rate.

11. Use the tuned MCMC to generate unique model out-
puts and parameter sets for further analysis.

In step 8, the length of individual Markov chains (lMC)
was set to 1000 draws of candidate parameter sets until
npcmin reached npctot. In the final MCMC runs (Figure 2, bot-
tom left and step 11), lMC is initially set to 5000. If fewer
than nxMC new candidates x�c are accepted in the first run,

FIGURE 2 Constraint-based search-Markov Chain Monte Carlo method description flowchart
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lMC is incremented by 5000 and the runs are repeated. As a
pre-step for these final MCMC runs, initial runs were per-
formed to tune the acceptance rate of the Metropolis-
Hastings algorithm, as follows. We iteratively reduced or
increased the standard deviation of the Gaussian jumping
distance (division or multiplication by a factor of 1.3) to
achieve an acceptance rate of approximately 0.2–0.5 (step
10). The tuned MCMC algorithm was used to generate
30,000 unique model outputs per model for further analysis.

2.2.3 | Bayesian model discrimination
with ED

We used the ED as a measure of model dissimilarity.
Generically, ED provides a measure of distance between
probability distributions (Székely & Rizzo, 2013). For our
analysis, we generated distributions of normalised model
outputs for particular experimental designs. We used the
ED to measure the between-model variability of consid-
ered outputs in relation to their within-model variability
(Székely & Rizzo, 2013).

ED X ,Yð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �E kX�Y k�E kX�X 0 k�E kY �Y 0 k

q
,

ð19Þ
where X and Y are distributions of model outputs from
two model instances (e.g., M1 and M2), and X 0 and Y 0

are separate realisations (independent and identically
distributed) of the same models, respectively. The term
E kX�Y k is the expected Euclidian distance between
these distributions, while E kX�X 0 k and E kY �Y 0 k are
their expected within-model distances. By subtracting the
within-model distance from the between-model distance,
we ensure that noisy outputs that do not differ much
between models contribute minimally (or even detract
from) the ED measure of model separation.

We used a relative error (Erel tð Þ) to normalise model
outputs (ynormalized tð Þm,l): AT, metabolites (HY, DIA,
DEA, NE, NI, CA), CO2 and biomass pools for all the
models at each time. Erel tð Þ was tied to the mean value
observed at each time for the whole ensemble of each metabo-
lite and across all models (nmc = 30,000 sampled outputs):

Erel tð Þ¼ frac �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nmod
�
Xnmod

m¼1

1
nmc

�
Xnmc

l¼1

y tð Þm,l

 !2
vuut , ð20Þ

ynormalized tð Þm,l ¼
y tð Þm,l

Erel tð Þ , ð21Þ

where frac is 10%, nmod is the number of models (nmod

= 6 for analysis including chemicals, nmod = 5 for analy-
sis including biomass, and nmod = 3 for analyses

including NI and NE metabolites), and nmc is the number
of realisations (here, 30,000). This way, observations with
larger magnitudes will have larger Erel tð Þ. Due to the
normalisation of the model outputs (Equation 21) the
scale of ED is such that ED values can be interpreted as a
multiple of the standard deviation.

The goal of our prospective OD analysis was to deter-
mine those designs (d) that maximise the pairwise ED
between the set of models under consideration (Nowak &
Guthke, 2016). For pairwise comparison, this amount to:

dopt ¼ argmax ED M,M0ð Þð Þ
d � D

, ð22Þ

where D is the set of candidate designs and the
ED M,M0ð Þ is the pairwise ED between the models M and
M0 (specified in the Section 3), resulting from any given
design d. More generally, we made use of Pareto multi-
objective analysis as described below. Each design spec-
ifies which of the candidate model outputs are sampled
and at what frequency, in a hypothetical lab experiment.
The selected output vectors are then substituted as X and
Y in Equation (19). To make reliable statements about
the ED at acceptable computing time, we chose 10,000
out of the 30,000 simulated data outputs per model vari-
ant because this sample size showed a stable ED esti-
mates throughout the candidate designs (Figure S18).

Finally, we normalised the ED scores by the maxi-
mum ED of the candidate designs and applied a multi-
objective Pareto optimisation (MATLAB’s “prtp” func-
tion; Polityko, 2021) to determine the non-dominated
designs (Deb et al., 2002) (dopt). Here, our OD is multi-
objective because the optimisation goal (Equation 22) can
be formulated for any pair M, M0 of models. In this con-
text, non-dominated designs are better than all other
designs in at least one objective. The non-dominated designs
are presented as spider plots (Moses, 2021), and were pro-
duced in Matlab (see Figures in Sections 3.2 and 3.3).

3 | RESULTS AND DISCUSSION

3.1 | Can we distinguish active AT
degradation pathways based on
observations of metabolite concentrations?

We explored whether the six proposed models (M1–M6)
can be differentiated based on measurements of AT,
metabolites (HY. DEA, DIA and CA) and CO2. Each
model variant represents a specific process chain of AT
biodegradation and so this model discrimination analysis
reveals which of the degradation pathways under consid-
eration can be clearly distinguished based on chemical

CHAVEZ RODRIGUEZ ET AL. 9 of 18



data. Because the chemical pools listed above are com-
mon to all six model variants (see Figure 1), we consid-
ered candidate experimental designs involving
measurement of all possible subsets of these pools, a total
of 63 possible combinations. We do not impose any resource
costs for each measurement channel, and so one might
expect that the OD is obvious: measure all chemical pools to
maximise the information gathered. However, the ED metric
accounts for the trade-off between within-model variability
and between-model variability of outputs. Therefore, the
inclusion of noisy, information-poor channels results in a
drop in the ED between models (as demonstrated below).
Thus, considering noisy output channels in the experimental
design deteriorates model discriminability.

With the 63 possible combinations of chemical output
channels, we consider three different sampling frequen-
cies: (i) every day until day 25 (short), (ii) every 2 days
until day 50 (mid), (iii) every 4 days until day 100 (long),
giving 63�3¼ 189 designs in total (details of the designs
are provided in https://doi.org/10.5281/zenodo.5501948).

Figure 3 shows pairwise model ED scores for every
candidate experimental design. At this stage, deciphering
the individual 63 designs is not critical. Based on a minimum
ED threshold value of two for model discrimination (hori-
zontal dashed lines in Figure 3), we observed that the models
fell into three distinguishable groups: (i) M1, M2, M3 and
M4 (henceforth M j 1�4); (ii) M5; and (iii) the first-order
decay model M6. We selected a minimum ED of two
because and similarly to standard deviations, a two stan-
dard deviation distance would correspond to being out-
side of the 95% confidence interval.

As expected the simplest, first-order decay model
(M6) can be clearly distinguished from the Monod-based
models (M1–M5) with all experimental designs, except
when only measuring AT (first design in each time-related
group) regardless of the sampling frequency (Figure 3a).

Likewise, M5 clustered separately. In M5, the com-
plete AT degradation and dealkylation of AT is mediated
by bacterial guilds A and D. There is no formation of NI
and NE because the microbial guilds B and C are miss-
ing. The absence of these two guilds leads to reduced bio-
degradation of HY. Additionally, the main source of HY
in the soil solution is the leak out of guild A (Ehrl
et al., 2019; Kundu et al., 2019) or abiotically produced
HY (de Paula et al., 2016; Fan & Song, 2014).

Models M1, M3 and M4 clustered within a joint group
(M j 1�4). These three models account for AT
dealkylation and dechlorination by guilds A and D, and
either guild B or C is present. Interestingly, M2 clusters
within the M1–4 group, too, despite the absence of the
full degradation pathway of AT carried out by guild
A. The absence of guild A eliminates any degradation of
the chlorinated AT metabolites DIA, and DEA (Huang

et al., 2018; Huang et al., 2020), leading to the accumula-
tion of both compounds. However, the accumulation of
DIA and DEA occurred largely at concentrations below
detection and the overall dynamics of AT and its metabo-
lites was comparable to the other models within this
group. Models within this group are not distinguishable
based on AT, metabolite observations (HY, DIA, and
DEA, CA), and CO2 (Figure S19). Because each model
variant within M j 1�4 represents a specific variant of
potentially active AT degradation pathways, additional
measurements of microbial biomass might improve
model discrimination and thus allow identification of the
corresponding active AT degradation pathways, as we
discuss below (Section 3.3).

3.2 | Which experimental designs
provide the most informative data for
model discrimination?

We analysed the discrimination of the three identified
model groups in detail by calculating EDs between
(i) M j 1�4 and M6, (ii) M5 and M6, (iii) M j 1�4 and
M5. In this analysis, comparison between M5 and
M6 with group M j 1�4 was done by treating the group
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FIGURE 3 Pairwise energy distances (ED) (expressed in

standard deviation units) over the candidate designs (details of the

designs are provided in https://doi.org/10.5281/zenodo.5501948).

(a) between M1–M5 and M6, (b) between M1–M4 and M5.

Additional combinations are showed in Figure S19. The candidate

experimental designs include three sampling frequencies—(i) daily

over 25 day (short), (ii) every second day over 50 day (mid) and

(iii) every 4 days over 100 days (long)—in combination with a

number of one to six measured chemicals. The horizontal line

represents the selected minimum ED threshold for model

discrimination (distance of two standard deviations). M1 in green is

located under the other model lines in both panels
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M j 1�4 as a single model by adding up the individual
EDs from models M1 to M4 (group M j 1�4) to M5 and
M6 and normalising it by the maximum added ED of the
candidate designs. We performed a multi-objective Pareto
analysis (see Section 2) to determine the designs that
maximise group discrimination, i.e., those experimental
designs which lead to a maximum ED of one objective,
while simultaneously minimising the ED decrease of the
objectives (non-dominated Pareto optimal solutions).

3.2.1 | ODs and measured pools

The analysis revealed the following six Pareto ODs:
(i) measurement of DEA, DIA, and CA with short length,
(ii) measurement of CA in mid length, (iii) measurement
of DEA, DIA and CA with mid length, (iv) measurement
of CA in long length, (v) measurement of DIA and CA
with long length and (vi) measurement of DEA, DIA and
CA with long length. Figure 4 shows that the non-
dominated designs in the middle and long schemes are
visually almost indistinguishable, meaning they offer the
same advantage in differentiating the models, and there-
fore, we plotted them with the same colour.

None of the six ODs include measurements of AT,
HY or CO2. Thus, these chemical pools do not provide
informative data for model discrimination (This result
can be suspected from the similarities of their simulated
time-series for all degradation scenarios; Figures S12–S17).
Including these measurements incorporates noise into the
ED measure, confounding model discrimination. For
example, as shown in Table 3, addition of the AT output
channel increases the noise component of the ED, with
negligible increase in the comparison component.

We can, therefore, conclude that to understand the fate
of AT in natural systems, one should prioritise informa-
tion about the intermediate metabolites (DEA, DIA, CA)
that populate the design results in Figure 4. Unfortu-
nately, most dissipation experiments on AT to date have
mainly measured AT (Briceño et al., 2010; Nousiainen
et al., 2014).

CA seems to provide the most informative data
among the intermediate metabolites because it is mainly
accumulated in all selected ODs (principal end product
of AT degradation in our simulations). This well resem-
bles field observations, where further degradation of CA
to CO2 occurs only under low concentrations of nitrogen
(N) in soils (Dutta et al., 2016; García-Gonz�alez
et al., 2005). Additionally, DIA and DEA, products of the
dealkylation of AT (Huang et al., 2007; Kolekar
et al., 2014), occur in four of six non-dominated designs.
The power of these two pools to enhance model discrimi-
nation is expected due to the different DIA and DEA
dynamics simulated by the models. For example, DIA
and DEA are hardly produced (under the detection limit
of 10�7 mg cm�3) by models in Group M1–4. In contrast,
M6 and M5 simulate detectable DIA and DEA concentra-
tions (Figures S12–S17), leading to differences in the ED.

The first-order decay model M6 can be better distin-
guished from the other groups in short-term designs. This
can be read from Figure 4-short by realising that the top
and right nodes in light green are much closer to the edge
than the pink (mid) and green (long) nodes. Clearly,
short-term designs measuring CA every day are superior
for discrimination of the first-order decay model
(M6) from M5 and M j 1�4 but are less powerful for dis-
crimination within the Monod models M1 to M5
(Figure 4a). This could be related to the tendency of first-
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FIGURE 4 Optimal experimental designs based on chemical measurements AT, metabolite (HY, DEA, DIA, CA) and CO2 for three

sampling frequencies (short: Every day sampling until day 25, mid: Every 2 days sampling until day 50, long: Every 4 days sampling until day

100. Axes showed normalised ED values for each objective (see Section 2). AT, atrazine; CA, cyanuric acid; DEA, deethylatrazine;

DIA, deisopropylatrazine; HY, hydroxyatrazine
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order decay models to quickly reach steady-state in the
simulations. For discriminating the Monod model M5
from the group M j 1�4, sampling every 4 days and mea-
suring DEA, DIA and CA is the best option (Figure 4b,c)
because these groups produce distinctive endpoints of the
metabolites that differ according to the associated
pathway.

3.3 | Can measuring pools not
commonly measured improve model
discrimination?

In the analyses in Sections 3.1 and 3.2, we considered
experimental designs that involve measurements of AT,
the metabolites (HY, DIA, DEA, CA) and CO2. These cor-
respond to measurements that could be typically col-
lected in lab dissipation experiments (Krutz et al., 2008).
Next, we examine the potential of less typical measure-
ments: biomass and the NI and NE metabolite pools. We
begin by defining three new sets of candidate designs
additionally incorporating (i) measurements of total bio-
mass and/or biomass of guild D (255 possible combina-
tions of chemicals and biomass and three sampling
frequencies giving 765 designs), (ii) the metabolite NI
(127 possible combinations of chemicals and three sam-
pling frequencies giving 381 designs) and (iii) the metab-
olite NE (127 possible combinations of chemicals and
three sampling frequencies giving 381 designs). Because
models M6 and M5 can already be differentiated based
on the chemical measurements, we focused only on dis-
tinguishing models within group M j 1�4.

3.3.1 | Role of biomass measurements

We observed, that by adding the biomass information,
the EDs increased, allowing model discrimination
(Figure 5) of all models within group M j 1�4. These
results highlight the importance of biomass measure-
ments for discriminating the models and the
corresponding active AT degradation pathways in soils.

We applied a Pareto analysis to the 765 biomass-
including designs to maximise the distance between
models in group M j 1�4. We identified 15 of the
765 designs as Pareto optimal, shown in Figure 6. Simi-
larly to Figure 4, some of the non-dominated designs are
almost indistinguishable to one another, meaning they
offer the same advantage in differentiating the models,
and have, therefore, been plotted with the same colour.
Unsurprisingly, these ODs showed that measurements of
total biomass do not contribute to model discrimination.
However, also not surprisingly, measurement of guild D
biomass helps to distinguish among the Monod models.

TABLE 3 Variability decomposition of the M1–6 ED discriminating between-model M1 (X) and M6 (Y)

AT DEA DIA CA Time 2 �E kX�Y k �E kX�X 0 k �E kY �Y 0 k ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ED X ,Yð Þp

N Y Y Y 1 339.1 8.0 171.9 12.6

Y Y Y Y 1 341.5 19.6 173.1 12.2

N N N Y 3 198.6 13.8 35.6 12.2

Y N N Y 3 211.6 38.9 45.5 11.3

Note: Non-dominated designs and equivalent designs, including AT. As expected, by including AT measurements, the increase in noise outweighs the increase
in comparison, so that in total, the value of ED decreases.
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Unfortunately, distinguishing specific guilds is challeng-
ing. Guild membership could be estimated from specific
genes responsible for AT degradation, as done by Pagel
et al. (2016) for the herbicide MCPA. However, some
degraders contain genes from multiple guilds, leading to
an overestimation of the degrader biomass. We expect
that advances in molecular biology will provide the tools
to make a more accurate quantitative identification of
particular degraders, and thus, pathway identification
possible.

A closer look at the optimal experimental designs
reveals that “short” experiments including biomass of
guild D and the metabolite CA improve the identification
of models M2 and M4 with a minor impact on the ED of
the other pair of models (Figure 6). Similar results are
observed in “mid” experimental designs (Figure 6).

Interestingly, neglecting biomass of guild D in “long”
experimental schemes favours only the identification of
M2 and M4 and hampers the identification of all the
other pairs of models.

3.3.2 | Role of NI and NE measurements

Similar to biomass, NI and NE are not typically mea-
sured. Therefore, we explored whether we can enhance
active AT pathway discrimination by including them in
our experimental designs. Results of pairwise ED for all
designs are shown in Figure 7. NI and NE metabolites
appear only in models M1, M2, M3 and M1, M2 and M4,
respectively. Including NI measurements enables model
M3 to be distinguished from models M1 and M2, especially
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in designs that include mid and long sampling frequencies
(Figure 7a). Likewise, including NE measurements enables
to differentiate M4 from M1 and M2 (Figure 7c).

Because adding NI and NE metabolites measure-
ments does not contribute to model discrimination
between-model M1 and M2 (Figure 7b,d), when applying
the multi-objective Pareto analysis to NI- and NE-
containing designs, we focused on the following model
pairs: (i) M3 versus M1, (ii) M3 versus M2, for the designs
including NI; and (i) M4 versus M1, (ii) M4 versus M2 for
the designs including NE (381 in each case). A spiderplot
with a single pair generates a straight line, and so the
results are presented equivalently in Table 4. Two designs
(each per row) were determined as the non-dominated
designs per analysis (Table 4). CA observations in experi-
mental designs, including NI, enable distinction of M2

from M3, but not of M1 from M3. Additionally, when
including NE in the experimental design, DEA measure-
ments do not improve model discrimination between M1,
M2 and M4. Thus, these designs including NI and NE
measurements can support model discrimination and
pathway identification if biomass is not measured. How-
ever, these two metabolites are rarely found in soils
(De Souza et al., 2000), probably because of relatively fast
degradation rates in comparison to the formation of pre-
ceding AT metabolites (Krutz et al., 2009). Regarding
sampling frequencies and duration of experiments, long
experiments (every 4 days sampling until day 100) proved
to be more helpful for model discrimination when
including NI and NE measurements (Table 4).

4 | CONCLUSIONS

In this work, we applied a prospective OD of experiments
to find experimental sampling strategies that allow for dis-
crimination among competing atrazine (AT) degradation
models and the corresponding degradation pathways. Our
method is reliable (Figure S18), and it can be performed
prior to the execution of the experiment. Applying the
Bayesian constrained-based parameter search algorithm
(CBS-MCMC) for efficiently sampling the viable parameter
set dramatically reduced the computational demand. The
CBS-MCMC method is widely applicable to other biogeo-
chemical models and provides a powerful tool to leverage
expert knowledge for constructing robust prior parameter
distributions for model sensitivity analysis or calibration.

We found that the five proposed Monod models could
be reduced to two groups, according to their predominant
features. Considering the intermediate metabolites (DIA
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NE, N-ethylammelide;

NI, N-isopropylammelide

TABLE 4 Optimal designs after multi-objective pareto analysis

of candidate designs including NI and NE in addition to AT,

metabolites (HY, DIA, DEA, CA) and CO2 in long-term schemes

Designs ED

DEA DIA CA NI M1–M3 M2–M3

(i) Y Y N Y 0.4 1

(ii) Y Y Y Y 1 1

DEA DIA CA NE M1–M4 M2–M4

(i) N Y Y Y 1 1

(ii) Y Y Y Y 1 1

Abbreviations: AT, atrazine; CA, cyanuric acid; DEA, deethylatrazine; DIA,
deisopropylatrazine; HY, hydroxyatrazine; NE, N-ethylammelide; NI, N-

isopropylammelide.
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and DEA), and especially CA is an integral part of under-
standing the complete degradation pathway of AT and of
adequate model selection as well. Measurements of spe-
cific pesticide degrader biomass or molecular proxies such
as functional gene abundances provide the information to
discriminate models further and identify which specific
degradation pathways are active. Thus, experimental mea-
surements of specific guilds should be prioritised in the
future.

For a practical application of our results towards the
identification of the active AT degradation pathway in
soils, we recommend using the following protocol:

1. Include the OD setup in the sampling strategy for the
planned experiment, but extend the sampling fre-
quency and the number of measured variables as far
as the budget allows. For better model discrimination,
the best design should include measurements of spe-
cific biomass degraders (examples in Figure 6).

2. Calibrate all available models to all measurements
and include the ODs.

3. Leverage the measured OD data to select model struc-
tures that best represent the studied system.

4. Identify active process chains based on the selected
model structures and exclude processes exclusively con-
sidered in invalidated models (Kremling et al., 2004).

The application of prospective OD of experiments
requires that models use correct process descriptions.
Therefore, the candidate model formulations must be
carefully selected to ensure that the best possible repre-
sentation is used (Nowak & Guthke, 2016). As long as
such valid process models are available—as in this study
for atrazine degradation—model-based prospective OD
will maximise the knowledge gain on soil systems from
laboratory and field experiments.
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