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Abstract
We classify t-structures and thick subcategories in any
discrete cluster category () of Dynkin type 𝐴, and
show that the set of all t-structures on () is a lat-
tice under inclusion of aisles, with meet given by their
intersection.We show that both the lattice of t-structures
on () obtained in this way and the lattice of thick
subcategories of () are intimately related to the lat-
tice of non-crossing partitions of type 𝐴. In particular,
the lattice of equivalence classes of non-degenerate t-
structures on such a category is isomorphic to the lattice
of non-crossing partitions of a finite linearly ordered set.
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1 INTRODUCTION

The notion of a t-structure, first introduced by Beilinson, Bernstein, Deligne and Gabber (see [4]
for the latest edition), lies behind several groundbreaking developments in modern mathematics.
A t-structure on a triangulated category simultaneously provides a decomposition of the category
and a generalised notion of homology taking values in an embedded abelian category. This con-
cept is crucial in defining perverse sheaves and stability conditions and has deep relations to tilting
theory, silting theory and uniqueness of enhancements.
Given a triangulated category, there is a natural partial order on its collection of t-structures

given by inclusion of aisles. This is the order introduced by Aihara and Iyama [1] for the particular
case of t-structures generated by silting objects and studied in silting theory. This poset is poorly
understood in general. In particular, one would like to know when meets and joins exist, or, even
more ambitiously, when the intersection of two or more aisles, or the extension closure of their
union, is again an aisle. This problemwas addressed by Bondal [6] for the intersection of aisles and
coaisles and by Broomhead, Pauksztello and Ploog [7] for the intersection of coaisles. Both provide
some sufficient condition for the intersection of two (co)aisles to be a (co)aisle, the former in terms
of consistent pairs and the latter in terms of a refined truncation algorithm. The question of when
these conditions hold remains open. In particular, [6] shows that the lattice structure obtained
from consistent pairs of t-structures satisfies strong modularity and distributivity conditions that
severely restrict the kind of lattices we can obtain in this way.
In this paper we present a class of categories whose t-structures form a lattice under inclusion

of aisles, with meet given by intersection: the discrete cluster categories of Dynkin type 𝐴, as
introduced by Igusa and Todorov in [14]. The lattices we obtain in this way are intimately related
to non-crossing partitions of type 𝐴. In particular, they are, in general, neither distributive nor
modular, and thus, do not fall under the framework setup in [6], providing a fresh perspective on
the question of when we can expect t-structures to form a lattice under the expected operations.
A discrete cluster category of Dynkin type 𝐴 is a triangulated category () associated to a

discrete subset ⊆ 𝑆1 of the unit circle with 𝑛 < ∞ limit points. It demonstrates cluster combina-
torics of Dynkin type𝐴. In particular, it has cluster tilting subcategories, classified by Gratz, Holm
and Jørgensen in [11], given by suitable triangulations of the closed disc with marked points .
While providing a familiar environment reminiscent of finite type 𝐴 cluster combinatorics, these
categories exhibit phenomena that remain hidden in the finite rank setting. Thus cluster tilting
subcategories have infinitely many isoclasses of indecomposable objects, as opposed to the finite
rank case, the suspension functor is no longer periodic, and we now find non-trivial t-structures.
For the case𝑛 = 1, thesewere firstly classified byNg in [20].We generalise this result for𝑛 ⩾ 2 and
connect it to non-crossing partitions of [𝑛] = {1, … , 𝑛}. More specifically, t-structures in () are
classified by-decorated non-crossing partitions, that is, by pairs ( , 𝐱), where is a non-crossing
partition of [𝑛] and 𝐱 is a compatible point in 

𝑛
, where  denotes the topological closure of 

(cf. Definition 4.5 for the precise definition).

Theorem 1.1 (Theorem 4.6). There is a one-to-one correspondence

{-decorated non-crossing partitions of [𝑛]} → {t-structures of ()}.
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It sends a-decorated non-crossing partition ( , (𝑥1, … , 𝑥𝑛)) to the t-structure with aisle

( , 𝐱) = add{{𝑦0, 𝑦1} arc of  ∣ 𝑦0, 𝑦1 ∈
⋃
𝑖∈𝐵

(𝑎𝑖, 𝑥𝑖] for some 𝐵 ∈ }.

A t-structure is uniquely determined by its aisle, and the correspondence from Theorem 1.1
explicitly connects a-decorated non-crossing partition with an aisle represented in terms of the
combinatorial model of the disc with marked points . The duality of the aisle–coaisle relation-
ship is reflected in the combinatorial model: The coaisle of a t-structure is naturally associated to
the Kreweras complement [16] of the non-crossing partition corresponding to its aisle. Using this
description, we also describe the approximation triangles for any t-structure on () combinato-
rially. Having classified all t-structures of (), we can restrict to those with specific properties.
While there are no bounded t-structures, we have bounded above t-structures, described by the
coarsest non-crossing partition {[𝑛]} of [𝑛], and bounded below t-structures, described by the
finest non-crossing partition {{1}, … , {𝑛}} of [𝑛]. Furthermore, the non-degenerate t-structures of
() correspond precisely to those -decorated non-crossing partitions whose decorations lie in
𝑛. The classification of t-structures on () allows us to prove that they form a lattice under
inclusion of aisles, as promised above.

Theorem 1.2 (Theorem 5.2, Proposition 5.3). The set of t-structures of () forms a lattice under
inclusion of aisles. The meet is given by the intersection of aisles.

Another prominent classes of subcategories of triangulated categories are thick subcategories.
They have been classified for a number of important classes of triangulated categories, for exam-
ple, in classical work by Devinatz, Hopkins and Smith [9] and Neeman [17] for the perfect derived
category of a commutative noetherian ring and by Benson, Carlson and Rickard [5] for the sta-
ble category of the group algebra of a finite group. Recent advances in the classification of thick
subcategories have been made in several areas, for instance, in tensor triangular geometry start-
ing with Balmer’s work [2], algebraic geometry such as in work by Takahashi [21] and Elagin and
Lunts [10] and representation theory such as inwork by Broomhead [8]. For a list of classifications
of thick tensor ideals, see the list in [3].
Contrary to aisles of t-structures thick subcategories always form a lattice under inclusion. Spe-

cific connections between lattices of thick subcategories and lattices of non-crossing partitions
have been established in the examples studied by Ingalls and Thomas [13] and Gratz and Steven-
son [12], and explored more generally by Krause in [15]. Thick subcategories in () are given by
non-exhaustive non-crossing partitions of [𝑛], that is, by non-crossing partitions of subsets of [𝑛].
We denote the lattice of non-exhaustive non-crossing partitions by 𝑁𝑁𝐶𝑛.

Theorem 1.3 (Theorem 3.7). There is an isomorphism of lattices

𝑁𝑁𝐶𝑛 ≅ Thick(()).

Having made implicit use of the beauty of non-crossing partitions to better our understanding
of various structures on (), it is only fair that they should make an unadulterated appearance.
Indeed, they describe the equivalence classes (in the sense of Neeman [19]) of non-degenerate
t-structures, see Corollary 5.7.
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F IGURE 1 Admissible subset  ⊆ 𝑆1 with |𝐿()| = 3. The limit points are marked with small circles.

2 SETUP

In this paper wewill consider𝕂-linear triangulated categories over some field𝕂. The shift functor
in a triangulated category will be usually denoted by Σ, we will also sometimes call it suspension.
All subcategories are assumed to be full and closed under direct sums and summands.
In order to discuss discrete cluster categories of type𝐴, we first introduce the appropriate com-

binatorial model via arcs in a closed disc. Let us denote by 𝑆1 the unit circle, considered with the
anti-clockwise order. Namely, for pairwise distinct 𝑥, 𝑦, 𝑧 ∈ 𝑆1 we write

𝑥 < 𝑦 < 𝑧

if and only if when we go in an anti-clockwise direction, we encounter first 𝑥, then 𝑦, then 𝑧. For
𝑚 ⩾ 3 and 𝑥1, … , 𝑥𝑚 ∈ 𝑆1 we write

𝑥1 < 𝑥2 < … < 𝑥𝑚

if and only if 𝑥𝑖 < 𝑥𝑖+1 < 𝑥𝑖+2 for all 1 ⩽ 𝑖 ⩽ 𝑚, where for this purpose we consider the indices
modulo𝑚. In particular, this also implies that 𝑥𝑚−1 < 𝑥𝑚 < 𝑥1 and 𝑥𝑚 < 𝑥1 < 𝑥2.
Let us fix a discrete, infinite set  ⊆ 𝑆1. Set 𝐿() =  ⧵ to be the set of limit points, where

 denotes the topological closure of , and assume that |𝐿()| = 𝑛 ∈ ℤ>0, and that every limit
point is a two-sided limit point. Note that usually such a subset is called admissible. We label the
limit points of  by 𝑎1, … , 𝑎𝑛, where

𝑎1 < 𝑎2 < … < 𝑎𝑛−1 < 𝑎𝑛,

see, for example, Figure 1. For ease of notation, throughout we will consider the indices modulo
𝑛.
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For 𝑎, 𝑏 ∈ , we denote the interval between 𝑎 and 𝑏when going in an anti-clockwise direction
by

(𝑎, 𝑏) = {𝑐 ∈  ∣ 𝑎 < 𝑐 < 𝑏}.

Note that this interval may contain limit points. Analogously we define the closed, and half-open
intervals [𝑎, 𝑏], [𝑎, 𝑏) and (𝑎, 𝑏] as subsets of. Each point 𝑧 ∈  has an immediate successor 𝑧+
and an immediate predecessor 𝑧−, that is, points 𝑧+, 𝑧− ∈  such that 𝑧− < 𝑧 < 𝑧+ and (𝑧−, 𝑧) =
(𝑧, 𝑧+) = ∅, see Figure 1.

Notation 1. For a point 𝑧 ∈  we iteratively set, for𝑚 ⩾ 0:

𝑧(0) = 𝑧; 𝑧(𝑚+1) = (𝑧(𝑚))+; 𝑧(−𝑚−1) = (𝑧(−𝑚))−.

Definition 2.1. An arc of is a 2-element subset {𝑧0, 𝑧1} ⊆  such that 𝑧1 ∉ {𝑧−0 , 𝑧0, 𝑧
+
0
}. We call

𝑧0 and 𝑧1 the endpoints of the arc {𝑧0, 𝑧1}.

Igusa and Todorov [14, Section 2.4] define the discrete cluster category () – a𝕂-linear, tri-
angulated, 2-Calabi–Yau, Krull–Schmidt category associated to. Its non-trivial indecomposable
objects correspond to arcs of. If {𝑦0, 𝑦1} is an arc of, by abuse of notation we also write {𝑦0, 𝑦1}
for the corresponding indecomposable object. Suspension Σ on () acts on indecomposable
objects as

Σ({𝑦0, 𝑦1}) = {𝑦
−
0 , 𝑦

−
1 }.

If {𝑦0, 𝑦1} and {𝑦′0, 𝑦
′
1
} are arcs of  with

𝑦0 < 𝑦
′
0 < 𝑦1 < 𝑦

′
1 or 𝑦0 < 𝑦

′
1 < 𝑦1 < 𝑦

′
0,

then we say that {𝑦0, 𝑦1} and {𝑦′0, 𝑦
′
1
} cross. The Hom-spaces in the category () can be read off

from the respective positioning of the arcs and are described as follows:

Hom()({𝑦0, 𝑦1}, Σ{𝑦
′
0, 𝑦

′
1}) =

{
𝕂, if {𝑦0, 𝑦1} and {𝑦′0, 𝑦

′
1
} cross,

0, otherwise.

A non-zero morphism from {𝑦0, 𝑦1} to {𝑦′0, 𝑦
′
1
} with 𝑦0 < 𝑦′+0 < 𝑦1 < 𝑦

′+
1
factors through an inde-

composable object 𝑆 if and only if 𝑆 is of the form {𝑠0, 𝑠1} with 𝑦0 ⩽ 𝑠0 ⩽ 𝑦′0 and 𝑦1 ⩽ 𝑠1 ⩽ 𝑦
′
1
, cf.

[14, Lemma 2.4.2]. In the case when the arcs {𝑦0, 𝑦1} and {𝑦′0, 𝑦
′
1
} cross, say with 𝑦0 < 𝑦′0 < 𝑦1 < 𝑦

′
1
,

we have the following triangle for every non-zero map 𝑓 ∈ Hom()({𝑦0, 𝑦1}, Σ{𝑦
′
0
, 𝑦′
1
}):

{𝑦′0, 𝑦
′
1} → 𝑋 ⊕ 𝑍 → {𝑦0, 𝑦1}

𝑓
'→ Σ{𝑦′0, 𝑦

′
1}, (1)

where 𝑋 and 𝑍 are the objects corresponding to the arcs {𝑦0, 𝑦′0} and {𝑦1, 𝑦
′
1
} (Figure 2). Note that

the morphisms {𝑦′
0
, 𝑦′
1
} → 𝑋, {𝑦′

0
, 𝑦′
1
} → 𝑍,𝑋 → {𝑦0, 𝑦1} and 𝑍 → {𝑦0, 𝑦1} appearing in the triangle

(1) are all non-zero, if the corresponding objects are non-zero.
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F IGURE 2 An illustration of the cocone 𝑋 ⊕ 𝑍 of a map corresponding to the intersection of the arcs
{𝑦0, 𝑦1} and {𝑦′0, 𝑦

′
1
}.

3 THICK SUBCATEGORIES

In this section we classify thick subcategories of () and describe the lattice of thick sub-
categories using non-exhaustive non-crossing partitions of [𝑛], where [𝑛] is the poset [𝑛] =
{1, … , 𝑛}.

Definition 3.1. Let  be a triangulated category. A full subcategory  of  is called thick if it
is closed under cones, direct summands and the action of Σ and Σ−1, that is, it is a triangulated
subcategory of  closed under direct summands.

The set of thick subcategories of an essentially small triangulated category  forms a complete
lattice under inclusion, which is a poset with arbitrary joins and meets. Indeed, since thick sub-
categories are defined by closure conditions (see Definition 3.1), an arbitrary intersection of thick
subcategories is still a thick subcategory and so arbitrary meets exist. The existence of arbitrary
joins follows automatically. Namely, the join of a set of thick subcategories can be given as the
intersection of all thick subcategories containing each subcategory from the set. We denote the
lattice of thick subcategories of  by Thick( ). For a set of arcs  we will denote by add() the
smallest subcategory containing the arcs from  and closed under direct sums and summands.
Mapping a set of arcs  to add() yields a bijection between sets of arcs of  and subcategories
of (). In particular, the empty set of arcs corresponds to the subcategory containing only 0. By
abuse of notation we will sometimes write  instead of add().
The following lemma describes a couple of elementary features of triangulated categories, see,

for example, Neeman’s exposition in [18, Chapter 1].

Lemma 3.2. Let𝑋 and𝑌𝑗 , 𝑗 = 1,… ,𝑚 be objects in () and let Σ−1𝑋
𝑓
'→

⨁𝑚
𝑗=1 𝑌𝑗 be amorphism

with components 𝑓𝑗 ∶ Σ−1𝑋 → 𝑌𝑗 for 1 ⩽ 𝑗 ⩽ 𝑚. Consider a triangle

Σ−1𝑋
𝑓
'→

𝑚⨁
𝑗=1

𝑌𝑗 → 𝐶 → 𝑋.
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(1) If 𝑓𝑘 is an isomorphism for some 1 ⩽ 𝑘 ⩽ 𝑚, then 𝐶 ≃
⨁𝑚

𝑗=1,𝑗≠𝑘 𝑌𝑗 .
(2) If 𝑓𝑘 is zero for some 1 ⩽ 𝑘 ⩽ 𝑚, then 𝐶 ≃ 𝑌𝑘 ⊕ 𝐶′, where 𝐶′ is given by the triangle:

Σ−1𝑋
𝑓′

''→

𝑚⨁
𝑗=1,𝑗≠𝑘

𝑌𝑗 → 𝐶′ → 𝑋, where 𝑓′ has components 𝑓′
𝑗
= 𝑓𝑗 for 𝑗 ≠ 𝑘.

Lemma 3.3. Let 𝑋 and 𝑌𝑗 , 𝑗 = 1,… ,𝑚 be indecomposable objects in (), corresponding to arcs
with endpoints in some set  ⊆ . Then for any triangle of the form

Σ−1𝑋
𝑓
'→

𝑚⨁
𝑗=1

𝑌𝑗 → 𝐶 → 𝑋, (2)

the object𝐶 decomposes as a direct sum of indecomposable objects represented by arcs with endpoints
in  .
Dually, for indecomposable objects 𝑋𝑖 , 𝑖 = 1, … , 𝑙 and 𝑌 in (), corresponding to arcs with

endpoints in some set  ⊆ , any object 𝐶 arising from a triangle of the form

Σ−1
𝑙⨁
𝑖=1

𝑋𝑖 → 𝑌 → 𝐶 →

𝑙⨁
𝑖=1

𝑋𝑖

decomposes as a direct sum of indecomposable objects represented by arcs with endpoints in  .

Proof. We will prove only the first statement, and the second statement follows analogously.
The statement holds for 𝑚 = 1 using triangle (1) in case the map Σ−1𝑋 → 𝑌 is non-zero and by
Lemma 3.2 (2) otherwise. In case 𝑓 is an isomorphism, we have 𝐶 = 0. We prove the statement by
induction on𝑚.
Let us consider the triangle (2). By Lemma 3.2 above we can assume without loss of general-

ity that the components 𝑓𝑗 ∶ Σ−1𝑋 → 𝑌𝑗 of 𝑓 for 1 ⩽ 𝑗 ⩽ 𝑚 are neither isomorphisms nor zero.
Let 𝑋 = {𝑥, 𝑥′} and let 𝑌𝑗 = {𝑦𝑗, 𝑦′𝑗}. We can pick 𝑘 ∈ {1, … ,𝑚} in such a way that 𝑥 < 𝑦𝑘 < 𝑥

′

and there are no 𝑦 = 𝑦𝑗 or 𝑦 = 𝑦′𝑗 for 𝑗 = 1,… ,𝑚 with 𝑥 < 𝑦 < 𝑦𝑘. The arc 𝑌𝑘 is not necessarily
unique, we fix one such arc. Renumbering the arcs, we can assume 𝑘 = 1. Consider the following
octahedral diagram, where 𝜋1 is the projection on 𝑌𝑘 = 𝑌1:
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In case 𝑦𝑘 = 𝑥+ or 𝑦′
𝑘
= 𝑥′

+ the object 𝐶′ is indecomposable, 𝐶′ = {𝑥′, 𝑦′
𝑘
} or 𝐶′ = {𝑥, 𝑦𝑘},

respectively. We obtain the statement applying the induction hypothesis to the triangle

Σ−1𝐶′ →

𝑚⨁
𝑗=2

𝑌𝑗 → 𝐶 → 𝐶′.

Otherwise, we get 𝐶′ = 𝐶1 ⊕ 𝐶2, where 𝐶1 = {𝑥, 𝑦𝑘} and 𝐶2 = {𝑥′, 𝑦′𝑘}. By assumption 𝐶1 does
not intersect any of the arcs 𝑌2,… , 𝑌𝑚. This implies that the triangle

𝑚⨁
𝑗=2

𝑌𝑗 → 𝐶 → 𝐶1 ⊕ 𝐶2 → Σ

𝑚⨁
𝑗=2

𝑌𝑗

decomposes as a direct sum of triangles

0 → 𝐶1 → 𝐶1 → 0 and
𝑚⨁
𝑗=2

𝑌𝑗 → 𝐶′′ → 𝐶2 → Σ

𝑚⨁
𝑗=2

𝑌𝑗.

Applying the induction hypothesis to the last triangle we obtain the statement. □

Lemma 3.4. Let𝑋𝑖 , 𝑖 = 1, … , 𝑙 and𝑌𝑗 , 𝑗 = 1,… ,𝑚 be indecomposable objects in (), correspond-
ing to arcs with endpoints in some set  ⊂ . Then any object 𝐶 appearing in a triangle of the
form

Σ−1
𝑙⨁
𝑖=1

𝑋𝑖 →

𝑚⨁
𝑗=1

𝑌𝑗 → 𝐶 →

𝑙⨁
𝑖=1

𝑋𝑖

decomposes as a direct sum of indecomposable objects, corresponding to arcs with endpoints in  .

Proof. We will prove the statement by induction again. Let 𝑙 be fixed, we will do the induction
on𝑚. Lemma 3.3 is the base of induction. For the general case consider the following octahedral
diagram
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where 𝜄1 is the inclusion of 𝑌1 into
𝑚⨁
𝑗=1

𝑌𝑗 as a direct summand. By induction hypothesis 𝐶′ is a

sum of indecomposable objects with endpoints in  . By Lemma 3.3 so is 𝐶. □

Definition 3.5. A non-exhaustive non-crossing partition of [𝐧] is a collection  = {𝐵𝑚 ⊆

[𝑛] ∣ 𝑚 ∈ 𝐼} of non-empty subsets of [𝑛], for some indexing set 𝐼, such that the following con-
ditions hold. Blocks 𝐵𝑚 do not intersect, that is, 𝐵𝑚1 ∩ 𝐵𝑚2 = ∅ for 𝑚1 ≠ 𝑚2 ∈ 𝐼. Furthermore
whenever 𝑖, 𝑗, 𝑘, 𝑙 ∈ [𝑛] with

1 ⩽ 𝑖 < 𝑘 < 𝑗 < 𝑙 ⩽ 𝑛

and 𝑖, 𝑗 ∈ 𝐵𝑚1 , 𝑘, 𝑙 ∈ 𝐵𝑚2 for some𝑚1,𝑚2 ∈ 𝐼, then we must have𝑚1 = 𝑚2.

Note that a collection  in Definition 3.5 may be empty. The notion of a non-exhaustive non-
crossing partition is a generalisation of thewell-knownnotion of a non-crossing partition.Namely,
a non-crossing partition of [𝐧] can be defined as a non-exhaustive non-crossing partition  =

{𝐵𝑚 ∣ 𝑚 ∈ 𝐼} covering the whole set [𝑛], that is ∪𝑚∈𝐼𝐵𝑚 = [𝑛]. A non-exhaustive non-crossing
partition of [𝑛] can then be viewed as a non-crossing partition of a subposet of [𝑛].
Consider a regular 𝑛-gonwith vertices labelled consecutively by 1, … , 𝑛. A non-exhaustive non-

crossing partition of [𝑛] gives a partition of a subset of the vertices of this 𝑛-gon into blocks with
the property that the convex hulls of the blocks are pairwise disjoint. We will denote the set of all
non-exhaustive non-crossing partition of [𝑛] by 𝑁𝑁𝐶𝑛.

Remark 3.6. The number of non-exhaustive non-crossing partition of [𝑛] can be computed by the
formula

|𝑁𝑁𝐶𝑛| = 𝑛∑
𝑘=0

(
𝑛

𝑘

)
⋅ 𝐶𝑘,

where 𝐶𝑘 denotes the Catalan number.

Let us fix two non-exhaustive non-crossing partitions  = {𝐵𝑚 ∣ 𝑚 ∈ 𝐼} and  ′ = {𝐵′
𝑚′
∣ 𝑚′ ∈

𝐼′} in 𝑁𝑁𝐶𝑛. The set 𝑁𝑁𝐶𝑛 forms a lattice under the following relation: We set  ⩽  ′ if for any
block 𝐵𝑚 ∈  there exists a block 𝐵′

𝑚′
∈  ′ such that 𝐵𝑚 ⊆ 𝐵′𝑚′ . The fact that this relation gives

a partial order on𝑁𝑁𝐶𝑛 is straightforward. The meet operation for  and  ′ is given as follows:

 ∧  ′ = {𝐵𝑚 ∩ 𝐵
′
𝑚′
∣ 𝑚 ∈ 𝐼,𝑚′ ∈ 𝐼′ and 𝐵𝑚 ∩ 𝐵′𝑚′ ≠ ∅}.

The poset 𝑁𝑁𝐶𝑛 has a least element — the empty collection of blocks — and a greatest element
— the collection consisting of one block [𝑛], which implies by definition that 𝑁𝑁𝐶𝑛 is bounded.
Since 𝑁𝑁𝐶𝑛 is finite, it automatically has a join operation, as any finite, bounded meet semi-
lattice (that is, a poset where all pairs of elements have a meet). The join can be described as
follows: Given  ∈ 𝑁𝑁𝐶𝑛 we can uniquely extend it to the non-crossing partition

 =  ∪ {{𝑘} ∣ there exists no 𝐵 ∈  such that 𝑘 ∈ 𝐵}
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by adding singletons. It is straightforward to check that the join of 1 and 2 in 𝑁𝑁𝐶𝑛 is given
by

1 ∨ 2 = (1 ∨ 2) ⧵ {{𝑘} ∣ there exists no 𝐵 ∈ 1 ∪ 2 such that 𝑘 ∈ 𝐵},

where 1 ∨ 2 is the join of non-crossing partitions as described by Kreweras [16].

Notation 2. Let  = {𝐵𝑚 ∣ 𝑚 ∈ 𝐼} be a non-exhaustive non-crossing partition of [𝑛]. We consider
the following full subcategory of () closed under direct sums and summands and containing
the 0-object:

⟨⟩ = add{{𝑦0, 𝑦1} arc of  ∣ 𝑦0, 𝑦1 ∈
⋃
𝑖∈𝐵𝑚

(𝑎𝑖, 𝑎𝑖+1) for some 𝑚 ∈ 𝐼}.

Recall that 𝑎1, … , 𝑎𝑛 denote the limit points of  in an anti-clockwise order.

Theorem 3.7. Let () be the discrete cluster category associated to. There is an isomorphism of
lattices

𝑁𝑁𝐶𝑛 ≅ Thick(()).

Under this isomorphism a non-exhaustive non-crossing partition  corresponds to the subcategory⟨⟩.
Proof. Wewill label the interval (𝑎𝑖, 𝑎𝑖+1) of by 𝑖 ∈ [𝑛]. Firstly, let us check that the assignment
in the statement above is well defined. For a non-exhaustive non-crossing partition  = {𝐵𝑚 ∣

𝑚 ∈ 𝐼} ∈ 𝑁𝑁𝐶𝑛 the corresponding full subcategory ⟨⟩ of  is closed under direct sums, direct
summands, shifts and extensions by Lemma 3.4, and hence is a thick subcategory of ().
Let us now take a thick subcategory  of () and let  = {𝐵𝑚 ∣ 𝑚 ∈ 𝐼} ∈ 𝑁𝑁𝐶𝑛 be the non-

exhaustive non-crossing partition of [𝑛] constructed from an equivalence relation on a subset 𝑆 of
[𝑛] as follows. An element 𝑖 is in 𝑆 if and only if there exists an arc {𝑥, 𝑦} ∈  with 𝑥 ∈ (𝑎𝑖, 𝑎𝑖+1).
Two elements 𝑖 and 𝑗 are equivalent if and only if there exists an arc {𝑥, 𝑦} ∈  with 𝑥 ∈ (𝑎𝑖, 𝑎𝑖+1)
and 𝑦 ∈ (𝑎𝑗, 𝑎𝑗+1). Note that we allow for 𝑖 = 𝑗.
We need to check that this assignment gives an equivalence relation. Symmetry is clear. Let

us check reflexively. Let 𝑗 ∈ 𝑆. Then  contains an arc {𝑥, 𝑦} with 𝑥 ∈ (𝑎𝑖, 𝑎𝑖+1), 𝑦 ∈ (𝑎𝑗, 𝑎𝑗+1),
for some 𝑖 ∈ 𝑆. Considering extensions between {𝑥, 𝑦} and Σ{𝑥, 𝑦} = {𝑥−, 𝑦−}, we get that {𝑥−, 𝑦},
{𝑥, 𝑦−} and Σ−{𝑥−, 𝑦} = {𝑥, 𝑦+} belong to  ; thus, any arc of the form {𝑥, 𝑦′} with 𝑦′ ∈ (𝑎𝑗, 𝑎𝑗+1)
belongs to  . Considering extensions between two crossing arcs {𝑥, 𝑦′} and {𝑥−, 𝑦′′}, we get that
{𝑦′, 𝑦′′} is in  for any 𝑦′, 𝑦′′ ∈ (𝑎𝑗, 𝑎𝑗+1), and hence 𝑗 ∼ 𝑗. Next we check transitivity. If we
have arcs {𝑥, 𝑦} ∈  with 𝑥 ∈ (𝑎𝑖, 𝑎𝑖+1), 𝑦 ∈ (𝑎𝑗, 𝑎𝑗+1) and {𝑦′, 𝑧′} ∈  with 𝑦′ ∈ (𝑎𝑗, 𝑎𝑗+1) and
𝑧 ∈ (𝑎𝑘, 𝑎𝑘+1) with 𝑖, 𝑗, 𝑘 distinct, then shifting one of the arcs we can assume that {𝑥, 𝑦} and
{𝑦′, 𝑧′} cross. Thus one of the extensions between the two arcs contains the arc {𝑥, 𝑧′} and 𝑖 ∼ 𝑗,
𝑗 ∼ 𝑘 implies 𝑖 ∼ 𝑘.
The assignment gives a non-exhaustive non-crossing partition of [𝑛]. Indeed, if we can find

𝑖, 𝑗, 𝑘, 𝑙 ∈ [𝑛] with 1 ⩽ 𝑖 < 𝑘 < 𝑗 < 𝑙 ⩽ 𝑛 and 𝑖, 𝑗 ∈ 𝐵𝑚1 and 𝑘, 𝑙 ∈ 𝐵𝑚2 for some 𝑚1,𝑚2 ∈ 𝐼, then
there are arcs {𝑥, 𝑦} ∈  with𝑥 ∈ (𝑎𝑖, 𝑎𝑖+1), 𝑦 ∈ (𝑎𝑗, 𝑎𝑗+1) and {𝑧, 𝑤} ∈  with 𝑧 ∈ (𝑎𝑘, 𝑎𝑘+1),𝑤 ∈
(𝑎𝑙, 𝑎𝑙+1). The arcs necessarily cross, so  contains the arcs {𝑥, 𝑧}, {𝑧, 𝑦}, {𝑦, 𝑤} and {𝑤, 𝑥}, which
implies that𝑚1 = 𝑚2.
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F IGURE 3 An illustration of the thick subcategory associated to the non-exhaustive non-crossing partition
{{1, 3}, {4, 5, 6}} of [6]. Its indecomposable objects correspond to arcs which, when drawn as straight lines between
their endpoints, lie completely in one of the two grey-shaded regions.

Let us check that the two assignments are mutually inverse. The composition ↦ ⟨⟩↦ ⟨⟩
clearly gives the identity. Starting from a thick subcategory , the inclusion ⊆ ⟨⟩ is also clear.
To get the other inclusion, we need to check that if  contains an arc {𝑥, 𝑦} with 𝑥 ∈ (𝑎𝑖, 𝑎𝑖+1),
𝑦 ∈ (𝑎𝑗, 𝑎𝑗+1), then it contains all the arcs of the form {𝑥′, 𝑦′}with 𝑥′ ∈ (𝑎𝑖, 𝑎𝑖+1), 𝑦′ ∈ (𝑎𝑗, 𝑎𝑗+1).
We have already seen that  contains any arc of the form {𝑥, 𝑦′′} with 𝑦′′ ∈ (𝑎𝑗, 𝑎𝑗+1). We can
shift {𝑥′, 𝑦′} in such a way that Σ𝑛{𝑥′, 𝑦′} = {𝑥, 𝑦′′} ∈  , which implies that {𝑥′, 𝑦′} ∈  , as  is
closed under shift.
Both assignments are order preserving, and hence, we have constructed an isomorphism of

lattices. □

Figure 3 provides an illustration of Theorem 3.7.

Remark 3.8. Note that we could have avoided Lemma 3.4 in the proof of the fact that given a
non-exhaustive non-crossing partition  the subcategory ⟨⟩ is thick. Indeed, if  consists of a
single block 𝐵, then ⟨⟩ is thick as it is a right or left orthogonal of a collection of arcs (one can
take all arcs, which do not intersect arcs from ⟨⟩). For a general  = {𝐵𝑚 ∣ 𝑚 ∈ 𝐼} we get that⟨⟩ is a union of mutually orthogonal thick subcategories of the form ⟨{𝐵𝑚}⟩ and hence is a thick
subcategory as well.

4 T-STRUCTURES AND NON-CROSSING PARTITIONS

In this section, we classify t-structures in () via decorated non-crossing partitions. Let us start
with some definitions.

Definition 4.1. Let  be a triangulated category. A torsion pair in  is a pair of subcate-
gories ( ,) of  closed under direct summands and such that the following two conditions
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hold. For any 𝑋 ∈  and 𝑌 ∈  we have Hom (𝑋, 𝑌) = 0. For every object 𝑇 ∈  there exists a
distinguished triangle

𝑋 → 𝑇 → 𝑌 → Σ𝑋, (3)

with 𝑋 ∈  and 𝑌 ∈  . If ( ,) is a torsion pair, we call  its torsion class and  its torsion-
free class.
A t-structure is a torsion pair ( ,) such that  is closed under suspension. If ( ,) is a

t-structure, we call its torsion class  its aisle and its torsion free class  its coaisle. In case of
t-structures, we will call the triangle (3) the approximation triangle of 𝑇. Note that in that case
any two triangles of the form 𝑋 → 𝑇 → 𝑌 → Σ𝑋, with 𝑋 ∈  and 𝑌 ∈  , are isomorphic.

Remark 4.2. A torsion pair ( ,) in a triangulated category  is uniquely defined by its torsion
class (or, equivalently, its torsion-free class). In fact, if ( ,) is a torsion pair, then

 = ⟂ = {𝑇 ∈  ∣ Hom (𝑋, 𝑇) = 0 for all objects 𝑋 ∈ }

and

 = ⟂ = {𝑇 ∈  ∣ Hom (𝑇, 𝑌) = 0 for all objects 𝑌 ∈ }.

In particular, in order to classify t-structures, it is sufficient to classify aisles of t-structures (or,
equivalently, coaisles of t-structures).

Torsion classes in the category () were described in [11] using combinatorial conditions PC
and PTO. The abbreviation PC stands for ‘precovering’, and PTO stands for ‘Ptolemy’. We will use
the following notation to describe these conditions.

Notation 3. If (𝑥𝑖)𝑖⩾0 is a sequence from  converging to 𝑎 ∈ , we write 𝑥𝑖 → 𝑎.

If (𝑥𝑖)𝑖⩾0 is a sequence fromwith 𝑥𝑖 → 𝑎, and there exists 𝑧 ∈  such that 𝑥𝑖 ∈ [𝑧, 𝑎] for large
enough 𝑖, we say that 𝑥𝑖 is a sequence converging to 𝑎 from below and write 𝑥𝑖 → 𝑎 from below.
Symmetrically, if there exists 𝑧 ∈  such that 𝑥𝑖 ∈ [𝑎, 𝑧] for large enough 𝑖, we say that 𝑥𝑖 is a
sequence converging to 𝑎 from above and write 𝑥𝑖 → 𝑎 from above.

PC Whenever ({𝑦𝑖
0
, 𝑦𝑖
1
})𝑖⩾0 is a sequence of arcs from such that 𝑦𝑖

0
→ 𝑎 frombelow, and 𝑦𝑖

1
→ 𝑏

with 𝑎 ≠ 𝑏, then there exists a sequence ({𝑧𝑖
0
, 𝑧𝑖
1
})𝑖⩾0 from  with 𝑧𝑖

0
→ 𝑎 from above and

𝑧𝑖
1
→ 𝑏 from above.

PTO Whenever {𝑦0, 𝑦1} ∈  and {𝑦′
0
, 𝑦′
1
} ∈  cross, then all arcs of  with both endpoints in

{𝑦0, 𝑦
′
0
, 𝑦1, 𝑦

′
1
} also lie in  .

Figure 4 provides an illustration for PC when 𝑎 ∈ 𝐿() and 𝑏 ∈ .

Theorem 4.3 [11]. There is a one-to-one correspondence between torsion classes in () and col-
lections of arcs of  satisfying PC and PTO. It sends a torsion class  to the collection of arcs
corresponding to its indecomposable objects.

We say that a set of arcs  of  is closed under clockwise rotation, if, whenever {𝑥, 𝑦} ∈ 

then {𝑥−, 𝑦−} ∈  . It is immediate that the one-to-one correspondence from Theorem 4.3 restricts
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to the following one-to-one correspondence:{
 set of arc of 

||||| is closed under clockwise rotation and
satisfies PC and PTO

}
1∶1
⟷

{
aisles of t-structures of ()

}
.

We will show that each t-structure on () is associated to a unique non-crossing partition of
[𝑛].

F IGURE 4 An illustration of PC when 𝑎 ∈ 𝐿() and 𝑏 ∈ .

Definition4.4. Let be a (non-crossing)partition of [𝑛]. An element 𝑖 ∈ [𝑛] is called a singleton
of  if {𝑖} is a block of  . An element 𝑖 ∈ [𝑛] is called an adjacency of  if 𝑖 and 𝑖 + 1 are in the
same block of  (where we think cyclically modulo 𝑛 and set 𝑛 + 1 = 1).

To completely classify t-structures in terms of non-crossing partitions, we need the notion of a
-decoration of  . Recall that  is the topological closure of .

Definition 4.5. Let  be a non-crossing partition of [𝑛]. A -decoration of  is an 𝑛-tuple
(𝑥1, … , 𝑥𝑛) such that

𝑥𝑖 ∈

⎧⎪⎨⎪⎩
[𝑎𝑖, 𝑎𝑖+1) if 𝑖 is a singleton of 
(𝑎𝑖, 𝑎𝑖+1] if 𝑖 is an adjacency of 
(𝑎𝑖, 𝑎𝑖+1) else.

Recall that we consider the indices modulo 𝑛, so 𝑎𝑛+1 = 𝑎1.
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F IGURE 5 An illustration of an aisle in the case 𝑛 = 6. Its associated -decorated non-crossing partition is
({{1, 3}, {2}, {4, 5, 6}}, (𝑥1, 𝑎2, 𝑥3, 𝑥4, 𝑎6, 𝑥6)), where for 𝑖 ∈ {1, 3, 4, 6} we have 𝑥𝑖 ∈ (𝑎𝑖, 𝑎𝑖+1). The indecomposable
objects of the aisle correspond precisely to those arcs which, when drawn as straight lines, lie in the grey-shaded
regions.

A pair ( , 𝐱) where  is a non-crossing partition of [𝑛] and 𝐱 is a -decoration of  is called a
-decorated non-crossing partition of [𝑛].

Note that depending on the partition  some of the decorations 𝑥1, … , 𝑥𝑛 can be limit points.

4.1 Classification of t-structures

Let  = {𝐵𝑚 ∣ 𝑚 ∈ 𝐼} be a non-crossing partition of [𝑛], and let 𝐱 = (𝑥1, … , 𝑥𝑛) be a-decoration
of  . Similarly to the case of thick subcategories in the proof of Theorem 3.7 we set

( , 𝐱) = add{{𝑦0, 𝑦1} arc of  ∣ 𝑦0, 𝑦1 ∈
⋃
𝑖∈𝐵𝑚

(𝑎𝑖, 𝑥𝑖] for some 𝑚 ∈ 𝐼}.

Theorem 4.6. There is a one-to-one correspondence

{-decorated non-crossing partitions of [𝑛]} → {t-structures of ()}.

It sends a pair ( , 𝐱) to the t-structure with the aisle ( , 𝐱).

Figure 5 provides an illustration of an aisle for the case 𝑛 = 6.

Remark 4.7. For the special case 𝑛 = 1, t-structures have been classified by Ng in [20]. In this case,
the element 1 should be interpreted as both a singleton and an adjacency in the unique partition
of [1]. Ng’s classification agrees with our classification from Theorem 4.6, and can be derived as
a special case of our proof of Theorem 4.6. For ease of notation, since the result is already known
for 𝑛 = 1, in what follows we will assume 𝑛 ⩾ 2. This will allow us, in the very few cases where
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it is relevant, to avoid a cumbersome case distinction for the degenerate case 𝑎𝑖+1 = 𝑎𝑖 for some
1 ⩽ 𝑖 ⩽ 𝑛, which occurs if and only if 𝑛 = 1.

We use the following two propositions to show Theorem 4.6.

Proposition 4.8. Let ( , 𝐱) be a-decorated non-crossing partition of [𝑛]. Then( , 𝐱) is the aisle
of a t-structure.

Proposition 4.9. Let  be the aisle of a t-structure in (). Then there exists a -decorated non-
crossing partition ( , 𝐱) of [𝑛] such that  = ( , 𝐱).

Theorem 4.6 is an immediate consequence of Propositions 4.8 and 4.9 and the observation that
if ( , 𝐱) ≠ (̃ , �̃�), then ( , 𝐱) ≠ (̃ , �̃�).

Proof of Proposition 4.8. Let ( , 𝐱) be a -decorated non-crossing partition of [𝑛] with  = {𝐵𝑚 ∣

𝑚 ∈ 𝐼} and 𝐱 = (𝑥1, … , 𝑥𝑛). Consider the set of arcs

 = {{𝑦0, 𝑦1} arc of  ∣ 𝑦0, 𝑦1 ∈
⋃
𝑖∈𝐵𝑚

(𝑎𝑖, 𝑥𝑖] for some 𝑚 ∈ 𝐼}

corresponding to the subcategory ( , 𝐱). By construction, it is closed under clockwise rotation.
It remains to show PTO and PC.
PTO: Assume that the arcs {𝑦0, 𝑦1} ∈  and {𝑦′

0
, 𝑦′
1
} ∈  cross. Since  is a non-crossing parti-

tion, we must have {𝑦0, 𝑦′0, 𝑦1, 𝑦
′
1
} ⊆

⋃
𝑖∈𝐵𝑚

(𝑎𝑖, 𝑥𝑖] for some𝑚 ∈ 𝐼. In particular, all arcs with both
endpoints in {𝑦0, 𝑦1, 𝑦′0, 𝑦

′
1
} lie in  .

PC: Let ({𝑦𝑖
0
, 𝑦𝑖
1
})𝑖⩾0 be a sequence from such that 𝑦𝑖

0
→ 𝑏0 from below and 𝑦𝑖

1
→ 𝑏1. We need

to construct a sequence {(𝑧𝑖
0
, 𝑧𝑖
1
)}𝑖⩾0 with 𝑧𝑖0 converging to 𝑏0 from above and 𝑧𝑖

1
converging to 𝑏1

from above. We have 𝑏0 ∈ [𝑎𝑗, 𝑎𝑗+1) and 𝑏1 ∈ [𝑎𝑘, 𝑎𝑘+1) for some 𝑗, 𝑘 ∈ [𝑛]. If both 𝑏0 and 𝑏1 are
in , then we are done. Similarly, if 𝑏0 ∈  and there is a subsequence �̃�𝑖

1
of 𝑦𝑖

1
converging to 𝑏1

from above, then a subsequence of {𝑏0, �̃�𝑖1} ⊆ {𝑦
𝑖
0
, 𝑦𝑖
1
} will serve as the desired sequence.

Assume next that 𝑏0 = 𝑎𝑗 . Then we must have 𝑥𝑗−1 = 𝑎𝑗 , and so 𝑗 − 1 is an adjacency in  . If
there is a subsequence �̃�𝑖

1
of 𝑦𝑖

1
converging to 𝑏1 from above, then 𝑘 is in the same block as 𝑗 and

𝑗 − 1. If there is a subsequence �̃�𝑖
1
of 𝑦𝑖

1
converging to 𝑏1 from below, then in case 𝑏1 = 𝑎𝑘 we get

that 𝑘 is in the same block as 𝑘 − 1 and so 𝑘, 𝑘 − 1, 𝑗 and 𝑗 − 1 are all in the same block; in case
𝑏1 ∈  we get that 𝑘, 𝑗 and 𝑗 − 1 are in the same block as well.
We are left with the case where we have a sequence ({�̃�𝑖

0
, �̃�𝑖
1
})𝑖⩾0 from  such that �̃�𝑖

0
→ 𝑏0

from below and �̃�𝑖
1
→ 𝑏1 from below, 𝑏0 ∈  and 𝑏1 = 𝑎𝑘. Changing the roles of 𝑏0 and 𝑏1 we can

reduce to the case considered above and conclude that 𝑘, 𝑘 − 1 and 𝑗 are in the same block. In all
the cases 𝑗 and 𝑘 are in the same block and are not singletons, so (𝑎𝑗, 𝑥𝑗) ≠ ∅ and (𝑎𝑘, 𝑥𝑘) ≠ ∅.We
can pick a sequence ({𝑧𝑖

0
})𝑖⩾.0 from (𝑎𝑗, 𝑥𝑗) converging to 𝑎𝑗 from above and a sequence ({𝑧𝑖

1
})𝑖⩾0

from (𝑎𝑘, 𝑥𝑘) converging to 𝑎𝑘 from above, yielding the desired sequence {(𝑧𝑖
0
, 𝑧𝑖
1
)}𝑖⩾0. □

To finish the proof of Theorem 4.6 it remains to show Proposition 4.9. Let  be the aisle of
a t-structure in (). Note that the set of arcs corresponding to  satisfies PC and PTO, and is
closed under clockwise rotation. In order to prove Proposition 4.9, we explicitly construct a -
decorated non-crossing partition ((), 𝐱()) with () = {𝐵𝑚 ∣ 𝑚 ∈ 𝐼} and 𝐱() = (𝑥1, … , 𝑥𝑛)
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(see Definition 4.11 and Equation (4)) such that

 = add{{𝑦0, 𝑦1} arc of  ∣ 𝑦0, 𝑦1 ∈
⋃
𝑖∈𝐵𝑚

(𝑎𝑖, 𝑥𝑖] for some 𝑚 ∈ 𝐼}.

For 𝑖 ∈ [𝑛] let us consider the set of all endpoints of arcs from  contained in (𝑎𝑖, 𝑎𝑖+1):

𝑆𝑖 = {𝑣 ∈ (𝑎𝑖, 𝑎𝑖+1) ∣ {𝑣, 𝑤} ∈  for some 𝑤 ∈ }

and

𝑥𝑖 =

⎧⎪⎨⎪⎩
𝑎𝑖 if 𝑆𝑖 = ∅;
max(𝑎𝑖,𝑎𝑖+1) 𝑆𝑖 if 𝑆𝑖 ≠ ∅, and the maximum exists;
𝑎𝑖+1 if 𝑆𝑖 ≠ ∅, and 𝑆𝑖 does not have a maximum.

(4)

Set 𝐱() = (𝑥1, … , 𝑥𝑛). This will be the -decoration for the non-crossing partition () we
are going to construct via the following relation: For 𝑖, 𝑗 ∈ [𝑛] set

𝑖 ∼ 𝑗 ⇔ 𝑖 = 𝑗 or there exists an arc {𝑦0, 𝑦1} ∈  such that 𝑦0 ∈ (𝑎𝑖, 𝑥𝑖] and 𝑦1 ∈ (𝑎𝑗, 𝑥𝑗].

Lemma 4.10. The relation ∼ is an equivalence relation on [𝑛].

Proof. Reflexivity and symmetry are clear, it remains to check transitivity. Assume thus that 𝑖 ∼ 𝑗

and 𝑗 ∼ 𝑘 and 𝑖, 𝑗, 𝑘 are pairwise distinct. Then there exist arcs {𝑦0, 𝑦1} ∈  and {𝑦′
0
, 𝑦′
1
} ∈  with

𝑦0, 𝑦
′
0
∈ (𝑎𝑗, 𝑥𝑗], 𝑦1 ∈ (𝑎𝑖, 𝑥𝑖] and 𝑦′1 ∈ (𝑎𝑘, 𝑥𝑘]. By applying an appropriate power of the suspen-

sion Σ to either {𝑦′
0
, 𝑦′
1
} or {𝑦0, 𝑦1}, we can assume that {𝑦0, 𝑦1} and {𝑦′0, 𝑦

′
1
} cross. So by PTO we

have {𝑦′
1
, 𝑦1} ∈  , which yields 𝑖 ∼ 𝑘. □

Definition 4.11. We define () to be the partition of [𝑛] induced by the equivalence relation
∼ , that is, its blocks are given by the equivalence classes under ∼ .

Lemma 4.12. The pair ((), 𝐱()) is a-decorated non-crossing partition of [𝑛].

Proof. Let us first prove that the partition() is non-crossing. Let 𝐵𝑚 and 𝐵𝑚′ be blocks of()
with 𝑖, 𝑗 ∈ 𝐵𝑚 and 𝑘, 𝑙 ∈ 𝐵𝑚′ such that 1 ⩽ 𝑖 < 𝑘 < 𝑗 < 𝑙 ⩽ 𝑛. Thus there exist arcs {𝑦0, 𝑦1} ∈ 

and {𝑦′
0
, 𝑦′
1
} ∈  with

𝑦0 ∈ (𝑎𝑖, 𝑥𝑖], 𝑦1 ∈ (𝑎𝑗, 𝑥𝑗], 𝑦
′
0 ∈ (𝑎𝑘, 𝑥𝑘], 𝑦

′
1 ∈ (𝑎𝑙, 𝑥𝑙].

In particular the arcs {𝑦0, 𝑦1} and {𝑦′0, 𝑦
′
1
} cross, so by PTO all arcs with both endpoints in

{𝑦0, 𝑦
′
0
, 𝑦1, 𝑦

′
1
} lie in  . Therefore 𝐵𝑚 = 𝐵𝑚′ and () is a non-crossing partition.

Let us now check that𝐱() gives a-decoration of . All we need to show is that𝑥𝑖 = 𝑎𝑖 implies
that {𝑖} is a singleton of () and if 𝑥𝑖 = 𝑎𝑖+1, then 𝑖 is an adjacency of (). Indeed, if we have
𝑥𝑖 = 𝑎𝑖 , then 𝑆𝑖 = ∅, so there exists no {𝑣, 𝑤} ∈  with 𝑣 ∈ (𝑎𝑖, 𝑎𝑖+1). Thus 𝑖 ∼ 𝑗 if and only if
𝑖 = 𝑗, and {𝑖} is a singleton of ().
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If we have 𝑥𝑖 = 𝑎𝑖+1, then 𝑆𝑖 ≠ ∅ and the maximum of 𝑆𝑖 does not exist. Thus, since  is
closed under clockwise rotation, every 𝑦 ∈ (𝑎𝑖, 𝑎𝑖+1) is an endpoint of an arc in  . We now show
inductively that in fact for every 𝑦 ∈ (𝑎𝑖, 𝑎𝑖+1) and 𝑚 ⩾ 2, the arc {𝑦, 𝑦(𝑚)} lies in  , thus con-
structing a sequence of arcs with endpoints 𝑦(𝑚) → 𝑎𝑖+1 from below. For the base case 𝑚 = 2 let
𝑦 ∈ (𝑎𝑖, 𝑎𝑖+1) and pick 𝑧 ∈  such that {𝑦(2), 𝑧} ∈  . If 𝑧 = 𝑦, we are done. Else, by Σ-closure,
the arc Σ2{𝑦(2), 𝑧} = {𝑦, 𝑧(−2)} also lies in  . If 𝑧(−2) = 𝑦(2), we are done. In all other cases, the
arcs {𝑦, 𝑧(−2)} and {𝑦(2), 𝑧} cross and by PTO we have {𝑦, 𝑦(2)} ∈  as desired. Assume now that
the assertion holds for all 2 ⩽ 𝑘 < 𝑚. By induction hypothesis, we have {𝑦+, 𝑦(𝑚)} ∈  and by Σ-
closure the arc {𝑦, 𝑦(𝑚−1)} lies in . Since these two arcs cross, by PTOwe have {𝑦, 𝑦(𝑚)} ∈  which
concludes the induction.
Fix now 𝑦 ∈ (𝑎𝑖, 𝑎𝑖+1). Then {𝑦, 𝑦(𝑚)}𝑚⩾0 is a sequence of arcs from  with 𝑦(𝑚) → 𝑎𝑖+1 from

below. By PC there exists a sequence of arcs {𝑦, 𝑧𝑖}𝑖⩾0 with 𝑧𝑖 → 𝑎𝑖+1 from above, without
loss of generality we can assume 𝑧𝑖 ∈ (𝑎𝑖+1, 𝑥𝑖+1]. Now 𝑦 ∈ (𝑎𝑖, 𝑎𝑖+1) = (𝑎𝑖, 𝑥𝑖], and so 𝑖 is an
adjacency. □

Proof of Proposition 4.9. Let  be the aisle of a t-structure in (). Consider the associated -
decorated non-crossing partition ((), 𝐱())with () = {𝐵𝑚 ∣ 𝑚 ∈ 𝐼} and 𝐱() = (𝑥1, … , 𝑥𝑛).
We show that  = ((), 𝐱()). The inclusion  ⊆ ((), 𝐱()) is clear from the construc-
tion. It remains to show((), 𝐱()) ⊆  . Let {𝑦0, 𝑦1} ∈ ((), 𝐱()). Sowehave 𝑦0 ∈ (𝑎𝑖, 𝑥𝑖]
and 𝑦1 ∈ (𝑎𝑗, 𝑥𝑗] for some 𝑖 ∼ 𝑗. We first prove that there is an arc {𝑏0, 𝑏1} ∈  with 𝑏0 ∈ [𝑦0, 𝑥𝑖]
and 𝑏1 ∈ [𝑦1, 𝑥𝑗].
Assume first that 𝑖 = 𝑗, and without loss of generality, 𝑎𝑖 < 𝑦1 < 𝑦0 ⩽ 𝑥𝑖 . By maximality of 𝑥𝑖 ,

there exists an arc {𝑏0, 𝑐} ∈  with 𝑏0 ∈ [𝑦0, 𝑥𝑖]. If 𝑐 ∈ (𝑎𝑖, 𝑎𝑖+1), thenwithout loss of generality we
may assume 𝑐 < 𝑏−2

0
⩽ 𝑥𝑖 , else we set 𝑏1 = 𝑐. Applying Σ2 and using PTO we get that {𝑏0, 𝑏

(−2)
0

} ∈

 and set 𝑏1 = 𝑏
(−2)
0

.
Assume now that 𝑖 ≠ 𝑗. By definition of ∼ there exists a {𝑐0, 𝑐1} ∈  such that 𝑐0 ∈ (𝑎𝑖, 𝑥𝑖]

and 𝑐1 ∈ (𝑎𝑗, 𝑥𝑗]. We will firstly find 𝑏0 ∈ [𝑦0, 𝑥𝑖] such that {𝑏0, 𝑐1} ∈  . If we already have
𝑐0 ∈ [𝑦0, 𝑥𝑖], set 𝑏0 = 𝑐0, else, take an arc {𝑑0, 𝑑1} ∈  such that 𝑑0 ∈ [𝑦0, 𝑥𝑖] ⊆ (𝑐0, 𝑥𝑖]. Such
an arc exists by maximality of 𝑥𝑖 . We distinguish four cases, depending on where the point 𝑑1
is positioned.
Case 1: Assume 𝑑1 = 𝑐1. Setting 𝑏0 = 𝑑0 yields a point 𝑏0 ∈ [𝑦0, 𝑥𝑖], with {𝑏0, 𝑐1} ∈  .
Case 2: Assume 𝑑1 ∈ (𝑐1, 𝑐0). Then {𝑐0, 𝑐1} and {𝑑0, 𝑑1} cross and by PTO, the arc {𝑑0, 𝑐1} lies in

 . Setting 𝑏0 = 𝑑0 yields a point 𝑏0 ∈ [𝑦0, 𝑥𝑖], with {𝑏0, 𝑐1} ∈  .
Case 3: Assume 𝑑1 ∈ [𝑐0, 𝑑0). Note that since {𝑑1, 𝑑0} ∈  , by Σ-closure and PTO we also have

{𝑑
(−𝑘)
1

, 𝑑0} ∈  for all 𝑘 ⩾ 0. Picking 𝑚 > 0 such that 𝑑(−𝑚)
1

= 𝑐−
0
, we get the arc {𝑑0, 𝑑

(−𝑚)
1

} ∈ 

reducing the situation to the previous case.
Case 4: Assume 𝑑1 ∈ (𝑑0, 𝑐1). If 𝑑1 ∈ (𝑑+0 , 𝑥𝑖], then 𝑑0 ∈ [𝑐0, 𝑑1) and exchanging the roles of 𝑑0

and 𝑑1 in Case 3 we find 𝑏0 ∈ [𝑦0, 𝑥𝑖], with {𝑏0, 𝑐1} ∈  . Else, if 𝑑1 ∈ (𝑥𝑖, 𝑐1) picking 𝑚 ⩾ 0 such
that 𝑑(−𝑚)

0
= 𝑐0, by Σ-closure of  the arc {𝑐0, 𝑑−𝑚1 } lies in  and crosses {𝑑0, 𝑑1} and by PTO, the

arc {𝑐0, 𝑑1} lies in  . The arc {𝑐−
0
, 𝑑−
1
} lies in  as well and crosses {𝑑0, 𝑑1}. By PTO we get that

{𝑐−
0
, 𝑑0} ∈  , hence we can reduce to Case 2 again.
In all the cases, we have found 𝑏0 ∈ [𝑦0, 𝑥𝑖] such that {𝑏0, 𝑐1} ∈  . Repeating this process with

𝑏0 in the role of 𝑐1 and 𝑐1 in the role of 𝑐0 yields the desired arc {𝑏0, 𝑏1} ∈  with 𝑏0 ∈ [𝑦0, 𝑥𝑖]
and 𝑏1 ∈ [𝑦1, 𝑥𝑗]. There exist an 𝑚, 𝑛 ∈ ℤ⩾0 such that 𝑏

(−𝑚)
1

= 𝑦1 and 𝑏
(−𝑛)
0

= 𝑦0. In case 𝑚 = 𝑛,
we immediately get that {𝑦0, 𝑦1} ∈  . In case 𝑚 ≠ 𝑛 the arcs {𝑏(−𝑚)

0
, 𝑦1} and {𝑦0, 𝑏

(−𝑛)
1

} cross and
belong to  , by PTO we obtain {𝑦0, 𝑦1} ∈  as desired. □
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F IGURE 6 An illustration of the aisle on the left, along with its coaisle on the right.

4.2 Coaisles and Kreweras complement

We will construct the coaisle of a 𝑡-structure on () from its aisle using the Kreweras comple-
ment, which provides the self-duality of the lattice of non-crossing partitions. Let us recall the
definition of the Kreweras complement of a non-crossing partition  = {𝐵𝑚 ∣ 𝑚 ∈ 𝐼}. For that
consider the poset [2𝑛] ≅ {1, 1′, 2, 2′, … , 𝑛, 𝑛′}with 1 < 1′ < 2 < 2′ < ⋯ < 𝑛 < 𝑛′. The partition
gives a non-exhaustive non-crossing partition of [2𝑛], if we identify elementswith the same labels.
There exists a unique maximal non-crossing partition ̃ = {�̃�𝑚 ∣ 𝑚 ∈ 𝐼} of [2𝑛], which contains
all the blocks  . The blocks ̃ ⧵  give a non-crossing partition of the poset [𝑛] ≅ {1′, 2′, … , 𝑛′}
with the induced order. We denote this partition of [𝑛] by 𝑐. It is called the Kreweras com-
plement of  , and was introduced by Kreweras in [16]. From the construction, we see that after
applying the construction of the Kreweras complement twice we obtain  rotated once in the
clockwise direction.

Remark 4.13. Note that if 𝑖 ≠ 𝑗 are elements in [𝑛] which lie in the same block of a non-crossing
partition  , then they do not lie in the same block of its Kreweras complement 𝑐. Else, in the
associated non-crossing partition ̃ of [2𝑛] ≅ {1, 1′, … , 𝑛, 𝑛′}, the block 𝐵 containing 𝑖 and 𝑗, and
the block 𝐵′ containing 𝑖′ and 𝑗′ would cross.

Let us describe the coaisle of a t-structure in terms of the combinatorial model. Figure 6 pro-
vides an illustration of the aisle and the coaisle for the example from Figure 5. The dark grey
regions on the right-hand side describe the coaisle, and mark the Kreweras complement 𝑐 =
{{1, 2}, {3, 6}, {4}, {5}} of the non-crossing partition = {{1, 3}, {2}, {4, 5, 6}}marked by the light grey
areas on the left-hand side describing the aisle. The heart of the corresponding t-structure is given
by the four indecomposable objects {𝑥−−

1
, 𝑥1}, {𝑥

−−
3
, 𝑥3}, {𝑥

−−
4
, 𝑥4} and {𝑥−−6 , 𝑥6} (see Corollary 4.15

for details).

Corollary 4.14. Let ( ,) be a t-structure in (), with aisle  corresponding to the -decorated
non-crossing partition ( , 𝐱) with decoration 𝐱 = (𝑥1, … , 𝑥𝑛). For 𝑖 = 1, … , 𝑛, set

𝑦𝑖 =

{
𝑥−
𝑖

if 𝑥𝑖 ∈ 

𝑥𝑖 else.
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and let 𝑐 = {𝐵′𝑚 ∣ 𝑚 ∈ 𝐼′} be the Kreweras complement of  . Then

 = add{{𝑧0, 𝑧1} arc of  ∣ 𝑧0, 𝑧1 ∈
⋃
𝑖∈𝐵′𝑚

[𝑦𝑖, 𝑎𝑖+1) for some 𝑚 ∈ 𝐼′}.

Proof. Let us compute Σ−1 . We show that

Σ−1 = add{{𝑧0, 𝑧1} arc of  ∣ 𝑧0, 𝑧1 ∈
⋃
𝑖∈𝐵′𝑚

[𝑥𝑖, 𝑎𝑖+1) for some 𝑚 ∈ 𝐼′}.

An arc {𝑤0, 𝑤1} belongs to Σ−1 if and only if it does not cross any arc from  . Assume that
that is the case. Clearly 𝑤0 and 𝑤1 cannot lie in (𝑎𝑖, 𝑥𝑖) for any 𝑖, that is, 𝑤0 ∈ [𝑥𝑖, 𝑎𝑖+1) and 𝑤1 ∈
[𝑥𝑗, 𝑎𝑗+1) for some 𝑖 and 𝑗. Assume that 𝑖 and 𝑗 are not in the same block of 𝑐. Consider the
non-crossing partition  ∪ 𝑐 of [2𝑛] ≅ {1, 1′, 2, 2′, … , 𝑛, 𝑛′}, where  is viewed as a non-crossing
partition of {1, 2, … , 𝑛} and 𝑐 is viewed as a non-crossing partition of {1′, 2′, … , 𝑛′}. Thus 𝑖′ and 𝑗′
are not in the same block of  ∪ 𝑐. Therefore, there must be 𝑘 and 𝑙 in the same block of  such
that 𝑖′ < 𝑘 < 𝑗′ < 𝑙 or 𝑘 < 𝑖′ < 𝑙 < 𝑗′. It follows that 𝑥𝑖 < 𝑥𝑘 ⩽ 𝑥𝑗 < 𝑥𝑙 or 𝑥𝑘 ⩽ 𝑥𝑖 < 𝑥𝑙 ⩽ 𝑥𝑗 . Since
the block of containing 𝑘 and 𝑙 is not a singleton, we can always find an arc in with endpoints
in (𝑎𝑘, 𝑥𝑘] and (𝑎𝑙, 𝑥𝑙] which crosses {𝑤0, 𝑤1}. This shows that the left-hand side is contained in
the right-hand side.
Conversely, assume that {𝑤0, 𝑤1} lies in {{𝑧0, 𝑧1} arc of  ∣ 𝑧0, 𝑧1 ∈

⋃
𝑖∈𝐵′𝑚

[𝑥𝑖, 𝑎𝑖+1) for some
𝑚 ∈ 𝐼′}. If 𝑖 and 𝑗 are in the same block of 𝑐, we cannot find 𝑘 and 𝑙 with the properties as
above and so the arc {𝑤0, 𝑤1} does not cross any arc from  and thus lies in Σ−1 . The claim
follows. □

The heart of the t-structure ( ,) is the subcategory  ∩ Σ . It is an abelian category, with
the short exact sequences induced by the triangles in () [4].

Corollary 4.15. Let ( ,) be a t-structure in () with associated -decorated non-crossing
partition ( , 𝐱) with 𝐱 = (𝐱𝟏, … , 𝐱𝐧). Its heart is the subcategory

add{{𝑥
(−2)

𝑖
, 𝑥𝑖} ∣ 𝑥𝑖 ∈ )} ≅ mod(𝕂 ×⋯ × 𝕂

⏟⎴⎴⏟⎴⎴⏟
𝑚 times

).

where𝑚 = |{𝑖 ∈ [𝑛] ∣ 𝑥𝑖 ∈ }|.
4.3 Approximation triangles

In this section we will describe approximation triangles for any t-structure on (). For that we
will use a more detailed version of Lemma 3.3 in a special situation.

Lemma 4.16. Let 𝑋 = {𝑥, 𝑥′} ∈ () and 𝑌𝑗 = {𝑦𝑗, 𝑦′𝑗} ∈ (), 𝑗 = 1,… ,𝑚 be arcs such that the
arcs 𝑌𝑗 are mutually non-crossing, but they all cross the arc 𝑋. We can assume that

𝑥 < 𝑦′1 < 𝑦
′
2 < …𝑦

′
𝑚 < 𝑥

′ < 𝑦𝑚⋯ < 𝑦2 < 𝑦1 < 𝑥.
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Let 𝑓 ∶
⨁𝑚

𝑗=1 𝑌𝑗 → Σ𝑋 be a map such that all its components 𝑓𝑗 ∶ 𝑌𝑗 → Σ𝑋 are not equal to zero.
There exists a triangle

𝑋 → 𝐶 →

𝑚⨁
𝑗=1

𝑌𝑗
𝑓
'→ Σ𝑋,

such that 𝐶 is isomorphic to a direct sum of arcs {𝑥, 𝑦1}, {𝑦′1, 𝑦2}, {𝑦
′
2
, 𝑦3}, … , {𝑦

′
𝑚−1

, 𝑦𝑚}, {𝑦
′
𝑚, 𝑥

′} (See
Figure 7).

F IGURE 7 An illustration for Lemma 4.16 in case𝑚 = 3. The dashed arcs correspond to the object 𝐶.

Proof. We will prove the lemma by induction on 𝑚 again. The case 𝑚 = 1 follows from triangle
(1). Now let us consider the following octahedral diagram in the general case.
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where 𝜄1 is the canonical inclusion of 𝑌1 into
⨁𝑚

𝑗=1 𝑌𝑗 . The object 𝑋1 decomposes into a direct
sum of {𝑥, 𝑦1} and {𝑦′1, 𝑥

′} (note that the arc {𝑥, 𝑦1}might be trivial). The arc {𝑥, 𝑦1} does not cross
any of the arcs 𝑌2,… , 𝑌𝑚. By the octahedral axiom 𝑤Σ−1𝑓 = Σ−1(g𝜋). If some component g𝑗 ∶
𝑌𝑗 → Σ{𝑦′

1
, 𝑥′} of g is zero, then the corresponding component𝑤Σ−1𝑓 ∣𝑌𝑗 is zero. The component

𝑤1 ∶ 𝑋 → {𝑦′
1
, 𝑥′} of𝑤 is non-zero, thus𝑤1 and Σ−1𝑓𝑗 , 𝑗 = 2,… ,𝑚 compose in a non-zero way by

the description of the composition of morphisms in (). Hence all components g𝑗 , 𝑗 = 2,… ,𝑚
are non-zero and we can apply the induction hypothesis to the triangle

{𝑦′1, 𝑥
′} → 𝐶′ →

𝑚⨁
𝑗=2

𝑌𝑗
g′

''→ Σ{𝑦′1, 𝑥
′},

where g ′ is the composition of g and the projection from Σ𝑋1 to Σ{𝑦′1, 𝑥
′}. We get that

𝐶′ ≃ {𝑦′1, 𝑦2} ⊕ {𝑦′2, 𝑦3} ⊕⋯⊕ {𝑦′𝑚−1, 𝑦𝑚} ⊕ {𝑦′𝑚, 𝑥
′},

and hence 𝐶 ≃ {𝑥, 𝑦1} ⊕ {𝑦′
1
, 𝑦2} ⊕ {𝑦′

2
, 𝑦3} ⊕⋯⊕ {𝑦′

𝑚−1
, 𝑦𝑚} ⊕ {𝑦′𝑚, 𝑥

′}, as desired. □

Let ( , 𝐱) be a -decorated non-crossing partition with () = {𝐵𝑚 ∣ 𝑚 ∈ 𝐼} and 𝐱() =
(𝑥1, … , 𝑥𝑛). For a marked point 𝑢 ∈  and a block 𝐵 ∈  we set 𝑢𝐵 = max[𝑢+,𝑢]{𝑧 ∈

⋃
𝑖∈𝐵(𝑎𝑖, 𝑥𝑖]}.

This is the first point lying in one of the intervals (𝑎𝑖, 𝑥𝑖] indexed by an element in𝐵whenwalking
from 𝑢 in a clockwise direction. Note that we have 𝑢𝐵 = 𝑢 if and only if 𝑢 ∈

⋃
𝑖∈𝐵(𝑎𝑖, 𝑥𝑖], and oth-

erwise 𝑢𝐵 = max[𝑢+,𝑢]{𝑥𝑖 ∣ 𝑖 ∈ 𝐵}. Let now 𝑇 = {𝑡, 𝑡′} be an arc in (). We say that 𝑇 and 𝐵 ∈ 

cross, if there exists an arc {𝑣0, 𝑣1} with 𝑣0, 𝑣1 ∈
⋃
𝑖∈𝐵(𝑎𝑖, 𝑥𝑖] crossing 𝑇. Let 𝐵1, … , 𝐵𝑙 ∈  be the

list of mutually distinct blocks that cross 𝑇, and for 𝑖 = 1, … , 𝑙 set 𝑧𝑖 = 𝑡𝐵𝑖 and 𝑧
′
𝑖
= 𝑡′

𝐵𝑖
. Without

loss of generality we can assume that 𝑡 ⩾ 𝑧1 > 𝑧2 > … > 𝑧𝑙 > 𝑡′. Since any two arcs {𝑧𝑖, 𝑧′𝑖 } and
{𝑧𝑗, 𝑧

′
𝑗
} do not cross by construction, this is equivalent to 𝑡′ ⩾ 𝑧′

𝑙
> … > 𝑧′

2
> 𝑧′

1
> 𝑡. We set

𝑇| = {non-trivial arcs {𝑧′𝑖 , 𝑧𝑖} for 1 ⩽ 𝑖 ⩽ 𝑙}
and

𝑇| = {non-trivial arcs {𝑡, 𝑧−1 }, {𝑧′𝑙 −, 𝑡′}, {𝑧′−𝑖 , 𝑧−𝑖+1} for 1 ⩽ 𝑖 ⩽ 𝑙 − 1}.
The following corollary describes the approximation triangle with respect to (( , 𝐱),( , 𝐱))

for an indecomposable object of (). For an arbitrary object one can obtain the approximation
triangle as a direct sum of approximation triangles for its summands.

Corollary 4.17. Let ( ,) be a t-structure on () with the associated -decorated non-crossing
partition ( , 𝐱). Let 𝑇 = {𝑡, 𝑡′} be an arc in (), then the approximation triangle of 𝑇 with respect
to ( ,) is of the form

𝑍 → 𝑇 → 𝑊 → Σ𝑍,

where 𝑍 is a direct sum of all arcs from 𝑇| and 𝑊 is a direct sum of all arcs from 𝑇|
constructed above.
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Proof. We have 𝑡 ⩾ 𝑧1 > 𝑧2 > … > 𝑧𝑙 > 𝑡′ ⩾ 𝑧′𝑙 > … > 𝑧
′
2
> 𝑧′

1
> 𝑡. Hence every arc in Σ(𝑇| )

crosses 𝑇. Applying Lemma 4.16 to the map with non-zero components Σ𝑍 → Σ𝑇 induced by
the intersections of 𝑇 and the arcs {𝑧′−𝑖 , 𝑧

−
𝑖
} in Σ(𝑇| ) we immediately see that

𝑍 → 𝑇 → 𝑊 → Σ𝑍

is a triangle in (), and by construction 𝑍 ∈  . Let us check that𝑊 ∈  . This is equivalent to
showing that for every arc 𝑤 ∈ 𝑇| , the arc Σ−1𝑤 does not cross any arc in  . We first consider
the case 𝑤 = {𝑡, 𝑧−

1
}. If 𝑡 is in

⋃
𝑖∈𝐵𝑚

[𝑥𝑖, 𝑎𝑖) for some 𝐵𝑚, then𝑚 = 1 and the arc {𝑡, 𝑧−
1
} is a trivial

arc, and hence so is the arc Σ−1𝑤. Otherwise, the arc Σ−1𝑤, which is given by {𝑡+, 𝑧1} does not
cross any of the arcs in  by construction. The fact that 𝑤 = {𝑧′−𝑙 , 𝑡

′} ∈  follows analogously.
Let now𝑚 ∈ {1,… , 𝑙 − 1} and consider the arc𝑤 = {𝑧′−𝑚, 𝑧

−
𝑚+1

}. Assume for a contradiction that
Σ−1𝑤 = {𝑧′𝑚, 𝑧𝑚+1} crosses an arc {𝑢0, 𝑢1} ∈  . By construction, we have 𝑧′𝑚 = 𝑥𝑝 and 𝑧𝑚+1 =
𝑥𝑞 for some 𝑝 ∈ 𝐵𝑚 and 𝑞 ∈ 𝐵𝑚+1. Furthermore, we have 𝑢0 ∈ (𝑎𝑘, 𝑥𝑘] and 𝑢1 ∈ (𝑎𝑙, 𝑥𝑙] for
some 𝑘, 𝑙 ∈ 𝐵 ∈  . Exchanging the roles of 𝑢0 and 𝑢1 if necessary we have 𝑢0 ∈ (𝑧𝑚+1, 𝑧′𝑚) =
(𝑧𝑚+1, 𝑧𝑚] ∪ (𝑧𝑚, 𝑧

′
𝑚) and 𝑢1 ∈ (𝑧

′
𝑚, 𝑧𝑚+1) and we obtain the inequality

𝑎𝑘 < 𝑢0 ⩽ 𝑥𝑘 ⩽ 𝑥𝑝 = 𝑧
′
𝑚 < 𝑎𝑙 < 𝑢1 ⩽ 𝑥𝑙 ⩽ 𝑥𝑞 = 𝑧𝑚+1.

If we had 𝑢0 ∈ (𝑧𝑚, 𝑧′𝑚), then {𝑢0, 𝑢1} ∈  would cross {𝑧𝑚, 𝑧′𝑚} ∈  , forcing 𝐵 = 𝐵𝑚. But then
we must have 𝑢1 ∈ (𝑧′𝑚, 𝑧

′
𝑚+1

), since otherwise {𝑢0, 𝑢1} and {𝑧′𝑚+1, 𝑧𝑚+1} cross, contradicting the
non-crossing of the blocks 𝐵𝑚 ≠ 𝐵𝑚+1. However, this in turn contradicts the maximality of 𝑧′𝑚
in the interval [𝑡, 𝑡′]. Therefore, we must have 𝑢0 ∈ (𝑧𝑚+1, 𝑧𝑚]. Symmetrically, we show that we
must have 𝑢1 ∈ (𝑧′𝑚, 𝑧

′
𝑚+1

].
In particular, this implies that the block 𝐵 crosses the arc 𝑇 = {𝑡, 𝑡′}, and so 𝐵 = 𝐵𝑖 for some

1 ⩽ 𝑖 ⩽ 𝑙. However, if 1 ⩽ 𝑖 ⩽ 𝑚, then we would have 𝑡 ⩽ 𝑧′
1
< … < 𝑧′𝑚 < 𝑢1 ⩽ 𝑡

′, contradicting
the maximality of 𝑧′

𝑖
, and if 𝑚 + 1 ⩽ 𝑖 ⩽ 𝑙, then we would have 𝑡′ ⩽ 𝑧𝑙 < … < 𝑧𝑚+1 < 𝑢0 ⩽ 𝑡,

contradicting the maximality of 𝑧𝑖 . □

Figure 8 illustrates the construction from Corollary 4.17.

Remark 4.18. We could have computed the approximation triangles for t-structure associated
to ( , 𝐱), using the factorisation properties of morphisms in (), but we find Lemma 4.16
aesthetically pleasing.

4.4 Non-degenerate and bounded t-structures

Let ( ,) be a t-structure in (). It is called left non-degenerate if
⋂
𝑛∈ℤ Σ

𝑛 = 0, and it
is called right non-degenerate if

⋂
𝑛∈ℤ Σ

𝑛 = 0. A t-structure that is both left and right non-
degenerate is called non-degenerate.
The description of non-degenerate t-structures in () is an immediate consequence of

Theorem 4.6, Corollary 4.14 and Corollary 4.15.

Corollary 4.19. Let ( ,) be a t-structure in () associated to a -decorated non-crossing par-
tition ( , 𝐱) with 𝐱 = (𝑥1, … , 𝑥𝑛). The t-structure ( ,) is left non-degenerate if and only if either
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𝑥𝑖 ∈  or 𝑥𝑖 = 𝑎𝑖 for any 𝑥𝑖 ∈ 𝐱. It is right non-degenerate if and only if either 𝑥𝑖 ∈  or 𝑥𝑖 = 𝑎𝑖+1
for any 𝑥𝑖 ∈ 𝐱. Finally, it is non-degenerate if and only if 𝑥𝑖 ∈  for any 𝑥𝑖 ∈ 𝐱, that is, if and only
if the heart of ( ,) is isomorphic to the module category of the product of 𝑛 copies of 𝕂.

F IGURE 8 An illustration of Corollary 4.17 for the arc 𝑇 = {𝑡, 𝑡′} and the aisle from Figure 5. The straight
arcs represent the indecomposable summands of 𝑍 and the dashed arcs represent the indecomposable summands
of𝑊 in the approximation triangle 𝑍 → 𝑇 → 𝑊 → Σ𝑍.

Throughout the rest of this section, for completeness we explicitly include the case where 
has exactly one limit point. As noted in Remark 4.7, in this case the classification of t-structures
only depends on the decoration 𝐱 = (𝑥1) and the lattice of t-structures is isomorphic to ℤ ∪ {±∞}
with linear order, which can be obtained by cutting  at the limit point.
We call a t-structure ( ,) bounded above if

⋃
𝑛∈ℤ Σ

𝑛 = (). We call it bounded below
if
⋃
𝑛∈ℤ Σ

𝑛 = (). A t-structure is called bounded if it is bounded above and bounded below.

Remark 4.20. For 𝑛 = 1, every non-trivial t-structure ( ,) (that is, such that  ≠ 0 and  ≠ 0)
in () is bounded.

Proposition 4.21. Let 𝑛 ⩾ 2 and let ( ,) be a t-structure in () with associated -decorated
non-crossing partition ((), 𝐱()) = ( ,). Then it is

(1) bounded above if and only if  is the coarsest partition of [𝑛]:  = {[𝑛]};
(2) bounded below if and only if  is the finest partition of [𝑛]:  = {{1}, {2}, … , {𝑛}}.

Proof. We start by showing (1). Assume first that  ≠ [𝑛]. Then we can find 𝑖 ≠ 𝑗 in [𝑛] which
are in different blocks of  = {𝐵𝑚 ∣ 𝑚 ∈ 𝐼}. Pick 𝑦0 ∈ (𝑎𝑖, 𝑎𝑖+1) and 𝑦1 ∈ (𝑎𝑗, 𝑎𝑗+1) and consider
𝑌 = {𝑦0, 𝑦1} ∈ (). For all 𝑁 ∈ ℤ we have

𝑌 ∉ Σ𝑁 = {{𝑧0, 𝑧1} arc of  ∣ 𝑧0, 𝑧1 ∈
⋃
𝑖∈𝐵𝑚

(𝑎𝑖, 𝑥
−𝑁
𝑖
] for some 𝑚 ∈ 𝐼},
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where by abuse of notation we set 𝑎−𝑁
𝑘

= 𝑎𝑘 for all 𝑘 ∈ [𝑛]. Thus ( ,) is not bounded above.
Conversely, assume  = {[𝑛]}, and let 𝑌 ∈ (). Without loss of generality, since () is

Krull–Schmidt and both  and  are closed under direct summands, we can assume 𝑌 to be
indecomposable, that is, 𝑌 = {𝑦0, 𝑦1} for some 𝑦0, 𝑦1 ∈ . Since  = [𝑛], there are no single-
tons in this partition, so 𝑥𝑖 ≠ 𝑎𝑖 for all 𝑖 ∈ [𝑛]. It follows that for 𝑁 ∈ ℤ⩾0 big enough, we have
𝑦0 ∈ (𝑎𝑖, 𝑥

𝑁
𝑖
) and 𝑦1 ∈ (𝑎𝑗, 𝑥𝑁𝑗 ) for some 𝑖, 𝑗 ∈ [𝑛] (where, by abuse of notation, we set 𝑎

𝑁
𝑘
= 𝑎𝑘 for

𝑘 ∈ [𝑛], to cover the case where 𝑥𝑖 = 𝑎𝑖+1 or 𝑥𝑗 = 𝑎𝑗+1). In particular, 𝑌 ∈ Σ−𝑁 , and so ( ,)
is bounded above.
The proof of (2) follows with a dual argument, using Corollary 4.14 and the observation that the

finest and the coarsest partitions of [𝑛] are each other’s mutual Kreweras complement. □

Corollary 4.22. For 𝑛 ⩾ 2 there exist no bounded t-structures in ().

4.5 Equivalence classes of t-structures

We use the notion of equivalence of t-structures introduced by Neeman.

Definition 4.23 [19, Definition 0.10]. We say that two t-structures ( ,) and ( ′, ′) are
equivalent if there exists an 𝑁 ∈ ℤ>0 such that

Σ𝑁 ⊆  ′ ⊆ Σ−𝑁 .

This motivates the following definitions.

Definition 4.24. Let ( , 𝐱) be a-decorated non-crossing partition with 𝐱 = (𝑥1, … , 𝑥𝑙). We call
the index set 𝑍(𝐱) = {𝑖 ∈ [𝑛] ∣ 𝑥𝑖 ∈ } the -indices of 𝐱.

Definition 4.25. Let ( , 𝐱) and ( ′, 𝐱′) be -decorated non-crossing partitions of [𝑛] with 𝐱 =
(𝑥1, … , 𝑥𝑛) and 𝐱′ = (𝑥′1, … , 𝑥

′
𝑛). We say that ( , 𝐱) and (

′, 𝐱′) are equivalent, andwrite ( , 𝐱) ∼
( ′, 𝐱′) if  =  ′ and 𝑍(𝐱) = 𝑍(𝐱′).

Remark 4.26. Note that if ( , 𝐱) ∼ ( ′, 𝐱′) and 𝑖 ∉ 𝑍(𝐱) = 𝑍(𝐱′), then automatically 𝑥𝑖 = 𝑥′𝑖 .
Indeed, we have 𝑥𝑖 ∉  if and only if 𝑖 is either a singleton or an adjacency in  =  ′. In the
former case, we must have 𝑥′

𝑖
= 𝑎𝑖 = 𝑥𝑖 and in the latter case 𝑥′𝑖 = 𝑎𝑖+1 = 𝑥𝑖+1.

We obtain the following characterisation of equivalent t-structures on ().

Proposition 4.27. Let ( ,) and ( ′, ′) be t-structures on () with associated -decorated
non-crossing partitions ( , 𝐱) and ( ′, 𝐱′), respectively. Then ( ,) and ( ′, ′) are equivalent if
and only if ( , 𝐱) and ( ′, 𝐱′) are equivalent.

Proof. Consider  and  ′ as sets of arcs, and let  = {𝐵𝑚 ∣ 𝑚 ∈ 𝐼} and  ′ = {𝐵′𝑚 ∣ 𝑚 ∈ 𝐼′}. We
have

 = {{𝑦0, 𝑦1} arc of  ∣ 𝑦0, 𝑦1 ∈
⋃
𝑖∈𝐵𝑚

(𝑎𝑖, 𝑥𝑖] for some 𝑚 ∈ 𝐼},
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 ′ = {{𝑦0, 𝑦1} arc of  ∣ 𝑦0, 𝑦1 ∈
⋃
𝑖∈𝐵′𝑚

(𝑎𝑖, 𝑥
′
𝑖
] for some 𝑚 ∈ 𝐼′},

for 𝐱 = (𝑥1, … , 𝑥𝑛) and 𝐱′ = (𝑥′1, … , 𝑥
′
𝑛). For 𝑘 ∈ ℤ observe that the set of arcs associated to Σ𝑘

is

−𝑘 = {{𝑦0, 𝑦1} arc of  ∣ 𝑦0, 𝑦1 ∈
⋃
𝑖∈𝐵𝑚

(𝑎𝑖, 𝑥
−𝑘
𝑖
] for some 𝑚 ∈ 𝐼}. (5)

Assume first that ( , 𝐱) ∼ ( ′, 𝐱′). For each 𝑖 ∈ [𝑛] we set

𝑁𝑖 =

{
0 if 𝑥𝑖 = 𝑥′𝑖
𝑚 if 𝑥𝑖 ≠ 𝑥′𝑖 and𝑚 ⩾ 0 is such that 𝑥(𝑚)

𝑖
= 𝑥′

𝑖
or 𝑥′(𝑚)

𝑖
= 𝑥𝑖 .

Note that, if 𝑥𝑖 ≠ 𝑥′𝑖 , then necessarily 𝑥𝑖, 𝑥
′
𝑖
∈ (𝑎𝑖, 𝑎𝑖+1) ⊆  and 𝑁𝑖 is well defined. Setting 𝑁 =

max{𝑁𝑖 ∣ 𝑖 ∈ [𝑛]} we observe that

𝑎𝑖 ⩽ 𝑥𝑖
−𝑁 ⩽ 𝑥

−𝑁𝑖
𝑖

⩽ 𝑥′
𝑖
⩽ 𝑎𝑖+1 and 𝑎𝑖 ⩽ 𝑥′𝑖 ⩽ 𝑥

𝑁𝑖
𝑖
⩽ 𝑥𝑁

𝑖
⩽ 𝑎𝑖+1.

In particular, for all 𝑖 ∈ [𝑛]wehave (𝑎𝑖, 𝑥−𝑁𝑖 ] ⊆ (𝑎𝑖, 𝑥
′
𝑖
] ⊆ (𝑎𝑖, 𝑥

𝑁
𝑖
]. Comparingwith (5) for 𝑘 = ±𝑁

it follows that Σ𝑁 ⊆  ′ ⊆ Σ−𝑁 . Therefore, ( ,) and ( ′, ′) are equivalent.
On the other hand, assume now that ( ,) and ( ′, ′) are equivalent t-structures with

−𝑁 ⊆  ′ ⊆ 𝑁 for the associated sets of arcs.We first show that =  ′. Let 𝑖 ≠ 𝑗 ∈ [𝑛] be in the
same block of  . Then there exists an arc {𝑦0, 𝑦1} ∈  with 𝑦0 ∈ (𝑎𝑖, 𝑥𝑖] and 𝑦1 ∈ (𝑎𝑗, 𝑥𝑗]. The arc
{𝑦−𝑁
0
, 𝑦−𝑁
1
} lies in the set of arcs−𝑁 ⊆  ′. Thus, wemust have 𝑦−𝑁

0
∈ (𝑎𝑖, 𝑥

′
𝑖
] and 𝑦−𝑁

1
∈ (𝑎𝑗, 𝑥

′
𝑗
],

and 𝑖 and 𝑗 are in the same block of  ′. A symmetric argument, using the inclusion  ′ ⊆ 𝑁 ,
shows that if 𝑖 and 𝑗 are in the same block of  ′, then they are in the same block of  . Therefore
we have  =  ′.
Finally, assume that for some 1 ⩽ 𝑖 ⩽ 𝑛wehave𝑥′

𝑖
∉ , that is,𝑥′

𝑖
= 𝑎𝑖 or𝑥′𝑖 = 𝑎𝑖+1. In that case,

for all 𝑘 ∈ ℤ we have (𝑎𝑖, 𝑥′
𝑘
𝑖 ] = (𝑎𝑖, 𝑥

′
𝑖
]. Using the inclusion −𝑁 ⊆  ′ ⊆ 𝑁 and Equation (5)

we must also have (𝑎𝑖, 𝑥𝑖] = (𝑎𝑖, 𝑥𝑘𝑖 ] for all 𝑘 ∈ ℤ and hence 𝑥𝑖 ∉ . Therefore, we have 𝑍(𝐱) =
𝑍(𝐱′). □

Note that for a -decoration 𝐱 of  the -indices 𝑍(𝐱) must contain all the elements 𝑖 ∈ [𝑛]
that are neither singletons nor adjacencies of  . Equivalence classes of-decorated non-crossing
partitions of [𝑛] are given by pairs ( , 𝑍), where  is a non-crossing partition of [𝑛] and 𝑍 ⊆
[𝑛] contains all elements of [𝑛] that are neither singletons nor adjacencies of  . A -decorated
non-crossing partition ( , 𝐱) of [𝑛] is a representative of the equivalence class ( , 𝑍(𝐱)).
Proposition 4.27 yields the following classification of equivalence classes of t-structures of ().

Corollary 4.28. The one-to-one correspondence between t-structures on () and -decorated
non-crossing partitions of [𝑛] induces a one-to-one correspondence between equivalence classes of
t-structures of () and pairs ( , 𝑍) such that  ∈ 𝑁𝐶𝑛 and 𝑍 is a subset of [𝑛] that contains all
elements of [𝑛] that are neither singletons nor adjacencies of  .

We immediately obtain the following corollaries.
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Corollary 4.29. The one-to-one correspondence between t-structures of () and-decorated non-
crossing partitions of [𝑛] induces a one-to-one correspondence between equivalence classes of non-
degenerate t-structures of () and non-crossing partitions of [𝑛].

Corollary 4.30. For 𝑛 ⩾ 2 all non-degenerate bounded below t-structures in () are equivalent.
Similarly, all non-degenerate bounded above t-structures in () are equivalent.

5 LATTICE STRUCTURE

We show that the set of t-structures of () forms a lattice under inclusion of aisles, with the
meet of two t-structures given by the intersection of their aisles. Note that neither of these facts is
generally true in an arbitrary triangulated category.
Kreweras [16] showed that the set of non-crossing partitions of [𝑛] forms a lattice under

refinement. Our construction of the lattice of non-exhaustive non-crossing partition is a slight
generalisation of Kreweras’ construction: The order and the meet operation are defined in the
same way, cf. Section 3.
We know from Theorem 4.6 that every t-structure is uniquely determined by a pair ( , 𝐱),

where  is a non-crossing partition of [𝑛] and 𝐱 is a-decoration of  . The following lemma fol-
lows immediately from the correspondence between t-structures and -decorated non-crossing
partitions.

Lemma 5.1. Let  and  ′ be aisles of t-structures in () with associated -decorated partitions
( , 𝐱) and ( ′, 𝐱′), respectively. Then  ⊆  ′ if and only if

( , 𝐱) ⩽ ( ′, 𝐱′),

that is, if and only if  ⩽  ′ and for 𝐱 = (𝑥1, … , 𝑥𝑛), 𝐱′ = (𝑥′1, … , 𝑥
′
𝑛) we have 𝑎𝑖 ⩽ 𝑥𝑖 ⩽ 𝑥

′
𝑖
⩽ 𝑎𝑖+1

for all 1 ⩽ 𝑖 ⩽ 𝑛.

For ease of notation, given two arbitrary non-crossing partitions  and  ′ with -decorations
𝐱 = (𝑥1, … , 𝑥𝑛) and 𝐱′ = (𝑥′1, … , 𝑥

′
𝑛), we write

min{𝐱, 𝐱′} = (𝑦1, … , 𝑦𝑛), where 𝑦𝑖 = min
[𝑎𝑖 ,𝑎𝑖+1]

{𝑥𝑖, 𝑥
′
𝑖
},

max{𝐱, 𝐱′} = (𝑧1, … , 𝑧𝑛), where 𝑧𝑖 = max
[𝑎𝑖,𝑎𝑖+1]

{𝑥𝑖, 𝑥
′
𝑖
}.

Theorem 5.2. The set of t-structures of () forms a lattice under inclusion of aisles. More precisely,
consider two t-structures ( ,) and ( ′, ′), with associated -decorated non-crossing partitions
( , 𝐱) and ( ′, 𝐱′), respectively. Then their meet is given by the t-structure with the aisle

( ∧  ′, min{𝐱, 𝐱′}),

and their join is given by the t-structure with the aisle

( ∨  ′, max{𝐱, 𝐱′}).
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Proof. Using our classification from Theorem 4.6, both ( ∧  ′, min{𝐱, 𝐱′}) and ( ∨

 ′, max{𝐱, 𝐱′}) are clearly aisles of t-structures, since min{𝐱, 𝐱′} is a -decoration of  ∧  ′ and
max{𝐱, 𝐱′} is a -decoration of  ∨  ′. The fact that the t-structure with the aisle  ∨  ′ =

( ∨  ′, max{𝐱, 𝐱′}) is the join of ( ,) and ( ′, ′) and that the t-structure with the aisle
( ∧  ′, min{𝐱, 𝐱′}) is the meet of ( ,) and ( ′, ′) follows directly from Lemma 5.1. □

The meet, as described in Theorem 5.2, is in fact given by the intersection of the aisles.

Proposition 5.3. With the notation from Theorem 5.2 we have ( ∧  ′, min{𝐱, 𝐱′}) =  ∩  ′.

Proof. Let  = {𝐵𝑚 ∣ 𝑚 ∈ 𝐼} and  ′ = {𝐵′𝑚 ∣ 𝑚 ∈ 𝐼′} and 𝐱 = (𝑥1, … , 𝑥𝑛), 𝐱′ = (𝑥′1, … , 𝑥
′
𝑛). Then

the subcategory  ∩  ′ corresponds to the set of arcs  ∩  ′, where

 = {{𝑦0, 𝑦1} arc of  ∣ 𝑦0, 𝑦1 ∈
⋃
𝑖∈𝐵𝑚

(𝑎𝑖, 𝑥𝑖] for some 𝑚 ∈ 𝐼} and

 ′ = {{𝑦0, 𝑦1} arc of  ∣ 𝑦0, 𝑦1 ∈
⋃
𝑖∈𝐵′𝑚

(𝑎𝑖, 𝑥
′
𝑖
] for some 𝑚 ∈ 𝐼′}.

We have  ∧  ′ = {𝐵𝑚 ∩ 𝐵
′
𝑚′
∣ 𝑚 ∈ 𝐼,𝑚′ ∈ 𝐼′, 𝐵𝑚 ∩ 𝐵

′
𝑚′

≠ ∅}. It is thus enough to show that

 ∩  ′ = {{𝑦0, 𝑦1} arc of  ∣ 𝑦0, 𝑦1 ∈
⋃

𝑖∈𝐵𝑚∩𝐵
′
𝑚′

(𝑎𝑖, min
[𝑎𝑖 ,𝑎𝑖+1]

{𝑥𝑖, 𝑥
′
𝑖
}] for some 𝑚 ∈ 𝐼,𝑚′ ∈ 𝐼′}. (6)

We have {𝑦0, 𝑦1} ∈  ∩  ′ if and only if 𝑦0, 𝑦1 ∈ (
⋃
𝑖∈𝐵𝑚

(𝑎𝑖, 𝑥𝑖]) ∩ (
⋃
𝑗∈𝐵′

𝑚′
(𝑎𝑗, 𝑥

′
𝑗
]) for some

𝑚 ∈ 𝐼 and 𝑚′ ∈ 𝐼′. This is the case if and only if 𝑦0 ∈ (𝑎𝑖, 𝑥𝑖] ∩ (𝑎𝑖, 𝑥′𝑖 ] and 𝑦1 ∈ (𝑎𝑗, 𝑥𝑗] ∩
(𝑎𝑗, 𝑥

′
𝑗
] and 𝑖, 𝑗 ∈ 𝐵𝑚 ∩ 𝐵′𝑚′ for some 𝑚 ∈ 𝐼 and 𝑚′ ∈ 𝐼′. Observing that (𝑎𝑖, 𝑥𝑖] ∩ (𝑎𝑖, 𝑥′𝑖 ] =

(𝑎𝑖,min[𝑎𝑖 ,𝑎𝑖+1]{𝑥𝑖, 𝑥
′
𝑖
}] and (𝑎𝑗, 𝑥𝑗] ∩ (𝑎𝑗, 𝑥

′
𝑗
] = (𝑎𝑗,min[𝑎𝑗,𝑎𝑗+1]{𝑥𝑗, 𝑥

′
𝑗
}] shows the equality in

(6). □

Remark 5.4. By [16], the lattice of non-crossing partitions is self-dual. In fact, so is the lat-
tice of -decorated non-crossing partitions. This corresponds to the fact that () is equivalent
to ()𝑜𝑝. This equivalence sends t-structures to t-structures and aisles to coaisles. So the lat-
tice of t-structures under inclusion of aisles in () is isomorphic to the lattice of t-structures
under inclusion of coaisles in ()𝑜𝑝 ≃ (), forcing self-duality of the lattice of -decorated
t-structures. The join in the lattice of t-structures corresponds to the intersection of coaisles.

Let now  be any triangulated category. If t-structures form a lattice under inclusion of aisles,
then this induces a lattice structure on the equivalence classes of t-structures.

Remark 5.5. The poset of t-structures on  under inclusion of aisles induces a poset structure
on the equivalence classes of t-structures: If [( ,)] and [( ′, ′)] are equivalence classes of t-
structures, thenwe say [( ,)] ⩽ [( ′, ′)] if for every (̃ , ̃) ∈ [( ,)] there exists a (̃ ′, ̃ ′) ∈

[( ′, ′)] such that ̃ ⊆ ̃ ′.
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Lemma 5.6. If the t-structures on  form a lattice under inclusion of aisles, then the induced partial
order on equivalence classes of t-structures on  is also a lattice.

Proof. We show that the meet of two equivalence classes is given by the equivalence class of the
meet of their respective representatives, the proof for the joins is analogous. Firstly let us check
that these operations are well defined. Assume that we have t-structures ( ,) ∼ (̃ , ̃) with
Σ𝑁̃ ⊆  ⊆ Σ−𝑁̃ and ( ′, ′) ∼ (̃ ′, ̃ ′)with Σ𝑀̃ ′ ⊆  ′ ⊆ Σ−𝑀̃ ′. Without loss of generality
we can assume𝑀 = 𝑁. Then we get that Σ𝑁(̃ ∧ ̃ ′) ⊆ Σ𝑁̃ ⊆  and Σ𝑁(̃ ∧ ̃ ′) ⊆ Σ𝑁̃ ′ ⊆  ′,
and thus Σ𝑁(̃ ∧ ̃ ′) ⊆  ′ ∧  . Analogously, we obtain  ∧  ′ ⊆ Σ−𝑁(̃ ∧ ̃ ′). Therefore, the
t-structures with aisles  ∧  ′ and ̃ ∧ ̃ ′, respectively, are equivalent.
Consider now an equivalence class [( ′′, ′′)] of t-structures that is smaller or equal to both

[( ,)] and [( ′, ′)]. Take a representative (̃ ′′, ̃ ′′) of [( ′′, ′′)]. Then there exist representa-
tives (̃ , ̃) and (̃ ′, ̃ ′) of [( ,)] and [( ′, ′)], respectively, such that ̃ ′′ ⊆ ̃ and ̃ ′′ ⊆ ̃ ′.
Hence ̃ ′′ ⊆ ̃ ∧ ̃ ′ and hence [( ′′, ′′)] is smaller or equal to the equivalence class of the
t-structure with the aisle  ∧  ′. Therefore what we defined is indeed the meet. □

The following is an immediate consequence of Corollary 4.29 and Proposition 4.27.

Corollary 5.7. The lattice of equivalence classes of non-degenerate t-structures is isomorphic to the
lattice of non-crossing partitions of [𝑛]. Its top is given by the equivalence class of non-degenerate
bounded below t-structures, and its bottom by the equivalence class of non-degenerate bounded
above t-structures.
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