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Abstract

Cloud computing has become an essential pillar in the development of modern
IT systems. IoT solutions such as smart factories and connected cars, or finance
and e-commerce systems, just to name a few, have formed a strong availability
dependency to the cloud. Consequently, it becomes increasingly important to as-
sess the availability of a cloud application during its development phase to choose
suitable cloud services to assure high service quality and to define robust service-
level agreements with clients. However, one single cloud data center is already
a highly complex system of hard- and software components, making availability
assessments of cloud applications a challenging task.
While researchers acknowledge the significance of infrastructure and communi-

cation faults in the cloud as important aspects of the availability prediction, they
usually model either the (compute) infrastructure or the communication part of a
cloud service, disregarding that a cloud application consists of multiple intercon-
nected services with potentially different replication degrees and common cause
failures. Especially with the introduction of the Function-as-a-Service (FaaS)
paradigm, which have a large number of redundant service instances, availabil-
ity models become computationally infeasible when modeling k-out-of-n services
with large n.
Usually, availability assessments guide design choices by probing for different

cloud services that fit availability requirements or other constraints such as cost
simultaneously. However, this task becomes also increasingly challenging in its
own right due to the vast amount of potential service offerings and individual con-
figuration options. As a result, recent developments in cloud application modeling
have introduced a wide range of technology-agnostic cloud modeling languages,
introducing abstractions or patterns that do not require ample knowledge on con-
crete cloud services anymore. However, the initial challenge remains: the more
abstract a pattern, the larger the solution space, and the longer the time to find
a suitable solution.
This thesis addresses both challenges. First, it proposes a hierarchical availabil-

ity model implementing a novel availability model utilizing Bayesian networks for
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the prediction task. Second, it presents a service recommendation system based
on a novel pattern-based cloud modeling language called Clams, which provides
a framework for custom search criteria in cooperation with meta-heuristics.
In detail, the availability model enables developers to model cloud applications

at any preferred level of component and network granularity, accounting for cas-
cading infrastructure and communication faults, including the individual replica-
tion semantics of services. Moreover, this work introduces scalable Bayesian net-
work structures to enable the modeling of FaaS offerings, or large-scale replicated
services, with many instances. The presented service recommendation system
provides a generic approach of utilizing meta-heuristics to exploit a component-
based architectural description of a cloud application. Cloud computing patterns
are used as architectural placeholders while at the same time encoding the solu-
tion space of concrete services. Combining the service recommendation system
with the availability model, this work demonstrates its results by implementing
a system that suggests services with minimal operational cost, while adhering to
availability constraints. To show the feasibility of the modeling concepts, this
thesis analyses a set of thirty-one real-life architectural examples. Performance
evaluations show that the service recommendation system can return a near-to-
optimal solution in a feasible time.
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Zusammenfassung

Cloud-Computing ist zu einem wesentlichen Bestandteil moderner IT-Systeme
geworden. Es ermöglicht eine automatische Provisionierung von skalierbaren und
kosteneffiziente Rechen- und Speicherkapazitäten, ohne dabei selbst die Infra-
struktur betreiben zu müssen. Das Internet der Dinge (Internet of Things, IoT),
sowie Smart-Factories und Connected-Cars, oder auch Finanz- und E-Commerce-
Systeme haben eine starke Abhängigkeit in ihrer Verfügbarkeit zur Cloud entwi-
ckelt. Folglich wird es immer wichtiger die Verfügbarkeit einer Anwendung in
der Cloud schon während ihrer Entwicklung zu bestimmen, um vorab geeignete
Cloud-Dienste auszuwählen, die später, während der Produktionsphase, eine ho-
he Dienstgüte gewährleisten können. Dabei sollten nachträgliche Kosten durch
Anpassungen wegen einer zu geringen Servicequalität vermieden werden. Je-
doch ist ein einziges Rechenzentrum bereits schon ein hochkomplexes System aus
Hard- und Softwarekomponenten, das eine Verfügbarkeitsbewertung von Cloud-
Anwendungen umso relevanter macht.
Während die Wissenschaft die Bedeutung von Infrastruktur- und Kommuni-

kationsfehlern in der Cloud als wichtige Merkmale der Verfügbarkeitsvorhersa-
ge anerkannt haben, beschreiben sie jedoch öfters Modellierungsansätze, die nur
den Infrastruktur- oder Kommunikationsteil eines Cloud-Dienstes berücksichti-
gen. Dabei besteht eine Cloud-Anwendung aus mehreren miteinander verbunde-
nen Diensten mit potenziell unterschiedlichen Replikationsgraden und gemeinsa-
men Fehlerursachen. Insbesondere mit der Einführung des Function-as-a-Service-
Paradigmas, das im Wesentlichen eine funktionale Replikation mit einer großen
Anzahl von Instanzen darstellt, werden existierende Verfügbarkeitsmodelle an ih-
re Grenzen gebracht. Solche hochskalierbare Dienste können nur durch ebenso
skalierbare Verfügbarkeitsmodelle gelöst werden.
Einerseits ist es wichtig, dass Verfügbarkeitsmodelle verwendet werden, um

zu bestimmen, ob Verfügbarkeitsanforderungen erfüllt werden, anderseits müssen
auch solche Cloud-Dienste gewählt werden, die möglichst geringe Kosten verursa-
chen. In der Regel werden Architekturentscheidung öfters durch Verfügbarkeits-
bewertungen geleitet. Dabei wird nach Cloud-Diensten, die bestimmten Verfüg-
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barkeitsanforderungen oder anderen Qualitätsmerkmalen entsprechen, gesucht.
Jedoch wird durch das mittlerweile große Angebot an Cloud-Diensten und indi-
vidueller Konfigurationsmöglichkeiten die Suche nach geeigneten Lösungen immer
anspruchsvoller. Infolgedessen haben die jüngsten Entwicklungen in der Model-
lierung von Cloud-Anwendungen eine breite Palette an technologieunabhängigen
Modellierungssprachen (Cloud-Modeling-Languages) eingeführt, die keine umfas-
senden Kenntnisse über konkrete Cloud-Dienste mehr erfordern. Jedoch sind Mo-
dellierungsabstraktionen weiterhin nur Stellvertreter für bestimme Lösungen. Je
abstrakter das Modell, desto größer der Lösungsraum an möglichen Diensten und
Konfigurationsmöglichkeiten, was wiederum die Suche nach kostengünstige Diens-
ten, die die Verfügbarkeitsanforderung der Cloud-Anwendung erfüllt, erschwert.
Diese Arbeit befasst sich dementsprechend mit den Herausforderungen der

Verfügbarkeitsmodellierung und Bewertung von Cloud-Anwendungen, um ver-
fügbarkeitsbasierte Architekturentscheidungen durch Empfehlungen von optima-
len Cloud-Diensten zu ermöglichen. Hierfür wird ein neuartiges Verfügbarkeits-
modell vorgestellt, das Bayes’sche Netze als mathematisches Modell zur Verfüg-
barkeitsvorhersage verwendet. Das Verfügbarkeitsmodell ermöglicht Entwicklern,
ihre Cloud-Anwendungen auf unterschiedlichen Ebenen der Komponenten- und
Netzwerkgranularität zu modellieren. Dabei kann das Modell abhängige Infra-
struktur- und Kommunikationsfehler, als auch die individuellen Replikationsgra-
de der verschiedenen Dienste berücksichtigen. Um auch moderne Cloud-Dienste
beschreiben und bewerten zu können, schlägt diese Arbeit skalierbare Bayes’sche
Netzstrukturen vor, die die Modellierung von Cloud-Diensten mit hohen Repli-
kationsgrad erst ermöglicht und berechenbar macht.
Um die zweite Herausforderung der Kostenoptimierung zu lösen, präsentiert

diese Arbeit eine auf Metaheuristik basierte Empfehlungssystem, das auf die hier
vorgestellte musterbasierten Cloud-Modellierungssprache namens Clams aufbaut.
Das Empfehlungssystem verfolgt das Ziel, Cloud-Dienste mit minimalen Betriebs-
kosten vorzuschlagen, während die Gesamtverfügbarkeit der Cloud-Anwendung
über einem bestimmten Schwellenwert liegen muss. Validiert wurden die vorge-
schlagenen Konzepte durch die Analyse von einunddreißig realen Architekturbei-
spielen. Schlussendlich zeigen ausführliche Leistungsbewertungen, dass das Ver-
fügbarkeitsmodell große Cloud-Anwendungen modellieren und bewerten kann, als
auch, dass das Empfehlungssystem eine nahezu optimale Lösung für die Archi-
tekturbeispiele in angemessener Zeit finden kann.
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Chapter 1.

Introduction

Cloud computing has become the de facto standard in modern Internet-based ser-
vices. Consequently, incidents in cloud computing have a more extensive reach on
businesses than ever before. Since cloud faults are no longer the exception, cloud
service failures cannot be entirely avoided. Therefore, designing reliable cloud
applications remains a challenge. As a result, actively assessing the availability
of a cloud application during its development stages becomes a common practice
in application development. Developers must be cautious in selecting appropri-
ate cloud services that fit their availability requirements but are still within their
budget. Failing to use appropriate services can have a negative influence on the
expected availability in production, even increasing development costs when ar-
chitectural decisions need to be revised later. The consequences are a decrease
in service quality and customer satisfaction or potential financial loss due to vi-
olations of service-level agreements (SLA). Hence, this thesis proposes a novel
availability model that considers dependent faults of cloud services and a heuris-
tic approach that recommends appropriate cloud services from the myriads of
possible service plans and offerings, intending to aid developers in implementing
best practices that reduce operative costs.
This chapter provides an introduction to the work and its contributions. It

begins with a motivation on cloud incidents in Section 1.1. Afterward, Section 1.2
provides a brief outline of the state-of-the-art in software availability prediction.
Section 1.3 introduces modeling challenges. And finally, Section 1.4 outlines the
contributions, followed by a description of the thesis structure in Section 1.5.

1.1. Motivation

Assessing the availability of a cloud application as early as possible during its de-
velopment phase enables developers to properly select appropriate cloud services
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that best fit their availability requirements. Nowadays, cloud computing forms
the backbone of many IT systems, including, but not limited to, smart home so-
lutions, connected cars services, smart cities, payment services, social networks,
and logistic management. These IT systems directly or indirectly influence our
day-to-day life and are responsible for comfort and security. Without a doubt,
if a cloud provider encounters an outage, multiple dependent businesses will be
unavailable simultaneously. This new magnitude of dependence on the cloud is
the primary motivation why developers should be deliberate in selecting appro-
priate cloud services for their applications. The following selection of incidents
exemplifies how dependent businesses are on cloud computing nowadays:

• The outage of Amazon.com in 2013, with a downtime of 30 minutes, led to
an estimated loss of 2 million dollars in sales revenue [1].

• The outage of Amazon Kinesis in 2020, a service that enables real-time
event (stream) processing, led to the unavailability of multiple customers
and other dependent Amazon Web Services (AWS) offerings [2].

• The OVHcloud data center fire incident led to the unavailability of thou-
sands of e-commerce businesses [3].

• The Google App Engine has encountered about 17 hours of downtime in
the year 2021, and about 15 hours of downtime in 2020, causing service
unavailabilities for several thousand dependent business [4].

• The Facebook outage in 2021, caused by a miss-configuration of the back-
bone routers [5], led to an estimated loss of 65 million dollars in revenue [6].

These incidents clearly show the financial consequences and impact of cloud
computing on their clients. Especially, the Facebook outage shows how network
faults have an equally important role in perceiving a service as available or not.
As Bailis and Kingsbury [7] showed, it is not reasonable to believe that the
network is reliable. Regarding a cloud application as working and reachable
from the end-user perspective is in line with the availability definition of the
ISO/IEC/IEEE International Standard on systems and software engineering. The
standard defines availability as the “degree to which a system or component
is operational and accessible when required” [8]. As such, availability analysis
plays an integral role in developing dependable systems. Especially in software
reliability engineering, examining the architecture to infer the availability of a
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potential software system is a recurring research topic due to the continuously
growing complexity of software systems.
Site reliability engineers and operation teams give their best to build and op-

erate reliable cloud services. However, developers choose what services to use
and how to interconnect them to build their cloud applications. As the inci-
dents show, cloud services are not independent since they share infrastructure
and communication components with other services. Cascading faults and com-
mon cause failures in the infrastructure, such as node failures, or communication
faults, such as switch or firewall failures, can render multiple services unavail-
able simultaneously. To mitigate the influence of such outages, whether major
or minor, developers must maintain best architectural practices and cultivate
an availability-driven mindset to select those cloud services that best fit their
availability requirements.
Availability is just one aspect of dependability, and it is just one property of a

more extensive set of quality of service (QoS) attributes. However, availability is
one of those attributes that developers or architects can assess initially, making
it possible to guide design decisions and implement best architectural practices.
Applying best architectural practices from the beginning strengthens the appli-
cation’s service quality. It increases maintainability and reduces the odds that
availability requirements are not met during testing or are insufficient during pro-
duction. In addition, since software projects have a narrow development schedule
and a tight budget, avoiding architectural changes in later development stages is
beneficial. Therefore, developers should address availability as early as possible
during the application’s design stage to avoid additional development costs due
to a misdemeanor in selecting the correct services and mitigating risks during
production.
As a result, this thesis proposes a novel cloud modeling language to design

cloud applications with the help of cloud computing patterns, introducing a novel
Bayesian network availability model to target specific modeling challenges that
enable the assessment of large-scale cloud services. With the help of the new
cloud modeling language and availability model, this thesis proposes a recom-
mendation system that suggests cost-minimal cloud services that adhere to given
availability constraints in order to assist developers in designing cloud applica-
tions accordingly.
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1.2. Software Availability and Reliability
Analysis

Software reliability engineering is a specialized domain of reliability engineer-
ing [9]. Due to historical reasons, reliability engineering strongly emphasizes hard-
ware systems, such as industrial appliances and electrical components, where fail-
ures are mainly caused by ware-out, human error, physical damage, temperature,
pressure, and humidity. Quantitative analysis approaches such as Bayesian [10]
and Markov-based [11] models aim to estimate failure rates, whereas qualitative
analysis approaches aim to identify failure modes. This includes models such as
fault trees [12], reliability block diagrams [13], or Failure Modes and Effects Anal-
ysis (FMEA). FMEA has been also adapted for software systems [14] known as
software FMEA and standardized under IEC 60812. Its main goal is to uncover
potential software defects during development.

According to J. D. Musa [9], Software systems fail systematically, i.e., the
same usage circumstances lead to the same failures when not fixed. Therefore,
assuming we have systems without hardware faults, the software does not fail due
to wear-outs as hardware components tend to do, making it challenging to apply
reliability and availability models from the classical field of reliability engineering.
Nevertheless, software systems still require probabilistic models to estimate failure
rates since the fault circumstances are often unknown due to uncertain user usage
or activation patterns caused by the runtime and execution environment [15,16].
These behavioral properties led to the novel research area of software reliability
engineering.

Software systems tend to get better when defects are fixed when they occur,
which increases the software’s maturity over time. Models that account for this
maturity process are so-called software reliability growth models (SRGM) [9, 17,
18]. The goal of SRGM is to estimate how many defects might still exist in
the software after a given time. SRGM is mostly based on data collection from
software testing or during operations. Hence, this approach is suitable for cloud
applications that are finished and in production or in their final development
stages when extensive testing is possible. Reliability engineers can apply SRGM
at the service level to compute failure probabilities of individual services from
history data and later compute the availability at the application level from the
failure probabilities of the services. While SRGM is a potential solution to esti-
mate the reliability of individual cloud services, cloud incidents are often caused
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by external failure causes, which also need to be considered. Therefore, soft-
ware reliability engineers often use SRGM to assess individual service instances
to compute failure rates, which they then can use as input parameters for more
sophisticated availability models, that form a hierarchy of multiple availability
models [19].
As Michael R. Lyu noted [20], it is not sufficient to assess the reliability or

availability of a software system in isolation, but considering the execution (op-
erational) environment, like the compute and network infrastructure, is equally
essential to create detailed models. Hence, multiple availability/reliability models
have been proposed throughout the decades to predict the failure probabilities
of software systems at various stages of the development process. In cloud com-
puting, Jammal et al. [21] introduce an availability model for multi-tier cloud
applications. They model fault propagation within a strict hierarchical compute
infrastructure, considering only the failures of the data center, servers, and vir-
tual machines (VMs). They provide little space to improve the model with new
failure modes.
Ghosh et al. [22] provide a more general approach, where they explicitly address

the scalability issue of large Infrastructure-as-a-Service (IaaS) offerings. Instead
of building one large availability model, they propose a hierarchical model of mul-
tiple smaller stochastic rewards nets. However, a cloud application is a collection
of interconnected services. Therefore, to assess the availability of a cloud applica-
tion, one needs models that can consider all service offerings, such as replicated
database services.
There exist few models that also combine network and infrastructure failure

modes. For example, Pitakrat et al. [23] use Bayesian networks for online failure
predictions of microservice architectures, which address the communication be-
tween multiple dependent services. However, they do not address the challenge
of modeling replicated services. Similarly, for the Palladio Component Model
(PCM) [24,25], which is a powerful performance analysis model, supporting com-
plex user usage profiles, network communication, and hardware models. Brosch
et al. [24] extended the capabilities of PCM to support reliability analysis, us-
ing discrete-time Markov chains (DTMC) as underlying mathematical formalism.
However, the PCMmodeling approach does not support service replication. Pérez
and Casal [26] enhanced PCM with cloud-specific metrics to support also per-
formance assessments of cloud services. For example, modeling the elasticity of
stateless-compute services, a service category we also identified as a modeling
challenge in the domain of availability analysis.
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Through the decades, multiple availability models have been published and
successfully applied [11,19], among which Bayesian networks have gained signifi-
cant acceptance within the industry and research [27–30]. This work will mainly
use Bayesian networks as a mathematical framework to predict the availability of
cloud applications, due to their powerful modeling formalism to express complex
fault dependencies and uncertainty between components [31–33]. Nevertheless,
similar to the state explosion problem of Markov models, Bayesian networks suf-
fer from the exponential memory blow-up problem [34], where the memory space
grows exponentially in the edge degree of the nodes in the network. This prob-
lem limits modeling capabilities, making it infeasible to model large-scale cloud
services.
Guiding architectural decisions and proposing concrete services is a recurring

research problem in the web service community, known as the web service com-
position problem. Research on web service composition is broad and ranges from
tooling and language support to suitable matching criteria and search algorithms
to find potential solutions rapidly [35]. The goal is to find and connect web
services to one (web) solution automatically, so the union of the individual web
services covers the desired functional requirements. Many proposed solutions also
include QoS constraints in their composition process. However, availability plays
a marginal role in most solutions and is often evaluated with a simple reliability
block diagram of the system [36–40]. Few proposals consider agnostic QoS func-
tions in their matching procedures, leaving it to the developers to interface with
their availability prediction method [41]. Availability prediction is not the pri-
mary concern in the composition problem. Therefore, most models only assume
independent fault probabilities between web services and do not provide flexi-
bility to change the granularity of the components. Needless to say, the cloud
service composition problem is strongly related to the web service composition
problem [42, 43]. The differences are subtle and mainly focus on service seman-
tics, discovery, and additional QoS attributes specific to cloud computing, such
as elasticity. However, approaches, as suggested by Bekkouche et al. [41], where
they regard availability as an agnostic function in their service matching routine,
provide untapped potential to use advanced availability models.
The web service community has rapidly realized that the resulting solution

space to compose a web service is getting large. Therefore, they experimented
with different search heuristics to increase performance by finding near-optimal
solutions in a feasible time. Their year-long experience with meta-heuristics such
as tabu search [44], genetic algorithms [36,38], ant colony optimization [39], har-
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mony search [41,45], or hybrid algorithms [46] to name a few, showed that meta-
heuristics provide good performance in approximating near to optimal solutions.
This begs the question, how to integrate meta-heuristics in the architectural

decision process for cloud computing? On the one hand, we have a rich set of so-
lutions to solve the web service composition problem. On the other hand, we have
a rich set of powerful modeling languages to design cloud applications. Bergmayr
et al. [47] published an in-depth survey on cloud modeling languages, discussing
models such as CAML [48,49], Blueprint [50,51], GENTL [52], and Tosca [53,54].
Most of these models focus on application orchestration and deployment and do
not provide matching mechanisms that consider QoS constraints and (operative)
cost simultaneously.

1.3. Challenges

Cloud computing has largely impacted how developers design and implement soft-
ware nowadays. Advances in virtualization technologies and novel architecture
paradigms like cloud-native applications and microservice architectures are just
some of the contributions brought by cloud computing. As such, cloud computing
divides its service offerings into three main categories: IaaS, which offers container
and VM services; Platform-as-a-Service (PaaS), which offers pre-configured and
deployed platform applications such as database systems and runtime environ-
ments; and Software-as-a-Service (SaaS), which offers complete software solutions
that run out of the box. Intermediate service categories such as Function-as-
a-Service (FaaS) or Data-center-as-a-Service (DCaaS) also exist. As a result,
Everything-as-a-Service (XaaS) has become an umbrella term for all service of-
ferings.
As discussed in the previous section, related work has focused mainly on pro-

viding specialized availability models for IaaS and PaaS offerings, considering
only failure modes caused by network communication or the cloud infrastruc-
ture. The challenge is building a cloud availability model that generally supports
XaaS. This means the model should be able to express and incorporate failure
modes caused by communication and infrastructure faults, while also addressing
the fault tolerance semantics of the services that constitute the cloud application.
However, with the popularity of e-commerce, the Internet of Things (IoT), and

video streaming, the FaaS paradigm has emerged. FaaS are stateless-compute
services. Their service instances can be started and killed rapidly, making it
possible to react fast to dynamic load demands. The availability definition of FaaS
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is strongly tied to performance and is a special case when discussing how FaaS
implements fault tolerance. It is clear that when the service fails, i.e., no service
instance can be reached, the service is unavailable. However, how does availability
change when no additional service instances start in the face of an increasing
load? The remaining service instances will receive the additional load, increasing
the service time until, eventually, the service overloads. From an availability
perspective, FaaS provides redundant instances, which are semantically similar to
redundant systems where at least k-out-of-n instances need to work to sustain the
load. Transaction-oriented database systems tend to have between three or five
replicas. However, FaaS offerings, or even key-value (NoSQL) data stores, tend to
have tenths or hundreds of instances, primarily for performance and data locality
reasons [55]. This new order of magnitude in the number of service instances
apparently influences existing availability models. The resulting state-space of the
availability model might become too large to solve. Reliability engineers generally
circumvent this problem by aggregating the model or simplifying the modeling
assumptions, reducing the expressiveness of the model in favor of computability.
Hence, we need scalable availability models to model large-scale cloud services.
Assessing the availability of cloud applications based on their architectures

is just a preliminary step. Developers and architects would use such models
to probe for different architectural alternatives and to search for services that
best fit their availability requirements. Providing an adequate cloud modeling
language that enables the automatic search for cloud services with the help of a
recommendation system is a desirable goal; however, it introduces new challenges.
In the early beginning of cloud computing, major competitors offered few services.
As for the year 2021, AWS offers over 200 services [56], Microsoft® Azure (Azure)
provides about 200 services [57], and Google Cloud offers about 170 services [58],
which does not include the various service plans and configuration options of each
service. For example, Azure and AWS offer more than 400 instance types for their
VM service, while simultaneously offering container services as well. Hence, it
becomes a tedious task to search for the correct service plan. Since complex
cloud applications use more than one service, finding services that best fit, even
in an automatic manner, becomes a computationally challenging task, due to the
potential large number of configuration combinations.
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1.4. Contributions

Figure 1.1.: The solution workflow.

This thesis is a combination and extension of the contributions presented
in [59–63]. This work has two goals. First, it aims to provide methodologies
for predicting the availability of cloud applications during the early stages of the
development process. Second, this work should support cloud developers and
architects in their architectural decision-process by designing and implementing
a recommendation system that suggests cost-optimal cloud services that fulfill
given availability constraints. To solve these goals, this work proposes a three-
part solution workflow, depicted in Figure 1.1. This is a high-level roadmap on
how to attain the thesis goals. The workflow is divided into three parts. The first
part focuses on providing modeling tools to model cloud applications. The ap-
plication models form then the input for the availability model in part two. The
second part focuses on predicting the availability of a cloud application, whereas
the third part focuses on the recommendation system that uses the results of
the second part to search for fitting services that fulfill the optimization criteria.
Once the recommendation system has found fitting services, it returns its results
to the architectural design tool. Blue circles highlight the contributions in the
corresponding blocks. In the following, we discuss each contribution in detail:

1. The first contribution is a novel cloud modeling language called Clams, a
CLoudApplicationModeling Solution, which was published in [59]. Clams
is a scenario-based cloud modeling language to model application archi-
tectures that act as input for the availability model and recommendation
system. Clams combines message sequence charts with cloud computing
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patterns [64] to describe application-level functionalities, referring to it as
application scenarios. Cloud computing patterns are used as structural
components to represent architectural placeholders. This provides the flex-
ibility to specify functional requirements on a higher level. A refinement
process will then replace the patterns with services that provide a con-
crete solution to the high-level functional requirements. As discussed later,
the recommendation system will perform the refinement. It will search for
cost-minimal services for a given availability threshold. An additional con-
tribution is an in-depth case study on cloud application architectures, which
consists of thirty-one real-live architectural examples from the Azure cloud.
The results show that refining architectural patterns to concrete services
can result in a high number of possible service matches, influencing the
performance when searching for optimal services in general. Finally, this
work also presents tooling support for Clams, called OpenClams1, which
offers a visualization tool to create and interact with Clams models. It
provides a programmable interface for external applications to implement
complex evaluation workflows like our recommendation system. Overall,
the author of this thesis has contributed 90% of the scientific content of the
paper.

2. The second contribution is a novel availability model to assess the avail-
ability of cloud applications. The model addresses the availability of cloud
applications from the end-user perspective by computing the availability of
the user’s usage profile, i.e., a set of application scenarios that users invoke
in a specific order to attain their desired outcome. The Clams model pro-
vides concepts to model usage profiles and scenarios. Modeling scenarios as
an interconnected set of cloud services that represent an application-level
functionality. To compute the availability of a usage profile, this work pro-
poses a hierarchical availability model as shown in Figure 1.1, where the
root model of the hierarchy uses an adaptation of the user-oriented software
readability model by Cheung [65]. This is a DTMC representation of the
usage profile, to compute its availability value. The DTMC model takes
the availability values of the corresponding scenarios that are part of the
usage profile as input parameters. Computing the availability of scenarios
is subject to the second layer of the hierarchical availability model, which
forms the principal contribution in the second part. Here, the second con-

1https://github.com/openclams [Last visited: 5 Mai 2022 ]
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tribution presents a novel Bayesian network availability model that predicts
the availability of cloud services. The model considers a flexible number of
failure modes caused by the network and the cloud infrastructure at any
preferred level of component granularity.

Especially in the case of replicated services, the model will also account
for the likelihood that sufficient replicas can communicate with each other
in the present of network partition failures, where sufficient refers to the
specific fault tolerance properties of the service, such as majority sets, for
example. The model supports multiple replication specifications such as
voting-based, weighted-voting and the special case of read-one/write-all
replication. Overall, the author of this thesis has contributed 80% of the sci-
entific content of the corresponding paper [62], which primarily introduced
the Bayesian network model to assess a single cloud service. Additionally,
the author introduced the hierarchical availability model and extended the
Bayesian network model to support scenarios in this thesis.

3. So far, Bayesian networks exhibit an exponential memory growth in the edge
degree of their nodes, making Bayesian networks infeasible to model large-
scale cloud service. To overcome these memory limits and to model large-
scale cloud services, scalable Bayesian network structures are needed. The
proposed availability model from the second contribution uses a k-out-of-n
voting gate representation in its Bayesian network model. Bayesian network
nodes representing these gates are susceptible to the exponential memory
growth problem [34]. The corresponding conditional probability table of
the random variable that encodes the boolean expression of the k-out-of-
n voting gate grows exponentially with the number of input events. This
work proposes a scalable k-out-of-n voting gate representation for Bayesian
networks published in [60,61], which can be used with any standard (exact
or approximate) inference algorithm, making it universally applicable in
other Bayesian network models as well. Numerical evidence shows that the
scalable k-out-of-n voting gate reduced the memory demand from initial
exponential to polynomial in the number of input events, making it possible
to model large-scale replicated service. Overall, the author of this thesis has
contributed 90% of the scientific content of the papers. Also, the author
has introduced the scalable noisy k-out-of-n model for Bayesian networks
in this thesis.

4. Predicting the availability of a cloud application based on its architecture
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is just one core topic of this thesis. The next step is applying the findings
to design and implement a service recommendation system. The recom-
mendation system uses a meta-heuristic approach that allows for a broader
set of optimization constraints, including but not limited to availability
and cost. As shown in Figure 1.1, the third part of the high-level overview
shows that the recommendation system uses the availability model to imple-
ment a feedback loop that probes for different service combinations. Once
the termination criteria is reached, the recommendation system returns the
most fitting services it has found. Generally, the recommendation system
refines a given high-level specification of a component-based architecture
to an architecture consisting of concrete service plans. The proposed re-
finement algorithm uses refinement trees to encode the potential solution
space of a cloud pattern, where this work shows how to get from a refine-
ment tree notation to a suitable input for a meta-heuristic to solve the
refinement problem. In general, meta-heuristics strive to optimize a given
search objective stated as a loss function. Hence, this work shows how
to design a suitable loss function to minimize cost while also considering
QoS constraints, i.e., availability. Evaluations based on the case study with
thirty-one architectural examples from the Azure cloud validate the feasi-
bility of the recommendation system, by using the Harmony Search [66]
algorithm as a meta-heuristic for the optimization approach. Overall, the
author of this thesis has contributed 85% of the scientific content of the
corresponding paper [63].

Finally, a number of student theses [67–73] have also contributed in parts to
the implementation of OpenClams and the search for suitable availability models.

1.5. Document Structure

The document structure of this thesis follows the solution workflow shown in
Figure 1.1.

Chapter 2 This chapter introduces Clams. Clams uses cloud computing patterns
as structural components to model abstract architectures. Developers can
use these abstractions to express architectural intentions, which work as
placeholders for later refinements. Examples show how to use Clams and
how to model a cloud application.
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Chapter 3 This chapter introduces the hierarchical availability model to compute
the availability of a usage profile.

Chapter 4 This chapter introduces the Bayesian network model to predict the
availability of application scenarios.

Chapter 5 This chapter discusses scalable Bayesian network structures and in-
troduces the scalable k-out-of-n voting gate representation for Bayesian
networks.

Chapter 6 This chapter introduces the general framework to design and imple-
ment the service recommendation system, providing an interface to express
custom search constraints. The system uses Clams as input to extract
abstract components, build the solution space, and propose appropriate
services according to a given loss function.

Chapter 7 The final chapter concludes this thesis and provides an outlook on
future research topics.
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Modeling Cloud Applications

Figure 2.1.: This chapter focuses on part one of the solution workflow.

To predict the availability of a cloud application during design time, we need to
describe the application in a formal language first. This modeling language forms
the beginning of the proposed workflow, as depicted in Figure 2.1. The model
should help developers express their architectural intentions, by using structural
elements that act as placeholders. Existing cloud-specific models, such as cloud
modeling languages, emphasize strongly on application deployment and little
on design-time evaluations and recommendations of cloud services. Therefore,
this chapter introduces a novel cloud modeling language called Clams, a CLoud
Application Modeling Solution [59]. Clams is a scenario-based modeling lan-
guage using cloud computing patterns as abstract components to model service
uncertainty and to guide developers in implementing best architectural practices.
To understand the implications of patterns on the actual solution size of con-

crete services, this chapter also introduces a case study with real-live applications
examples, which forms the baseline for cloud applications in this work.
Section 2.1 presents the motivation behind Clams, while Section 2.2 delivers a

brief overview of the main modeling concepts. Section 2.3 introduces the system
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model, followed by Section 2.4, which expands on the formal definition of Clams.
Next, Section 2.5 provides a case study, where we analyze application examples
from the Azure cloud. Afterwards, Section 2.6 describes the tooling support and
development framework of Clams. Section 2.7 discusses related work. Finally,
Section 2.8 summarizes this chapter.

2.1. Introduction

The previous chapter introduced the research goals and outlined a solution based
on the workflow shown in Figure 2.1. This chapter focuses on the first part of the
workflow, namely, the modeling language to describe the architecture of a cloud
application. We need a modeling language that enables developers to describe
their architecture in order to assess its availability and suggest cloud services that
suite application scenarios. Ideally, this modeling language should support the
developer in modeling a cloud application efficiently, in a cloud agnostic manner,
and enable multi-cloud application architectures. The model should comprise
sufficient information to evaluate its availability and offer an interface to suggest
cloud services by a recommendation system. As a result, the modeling language
needs to not only support service placeholders but also indicate what services
make semantically sense within the context of the architecture since the recom-
mendation system must propose those services which are sensible candidates to
substitute the architectural placeholders.
Considering the need for architectural placeholders and cloud agnostic model-

ing, the model-driven architecture paradigm (MDA) provides the general concept
of realizing the interface for this work. MDA distinguishes between platform inde-
pendent and dependent models, whereby the former gets refined into the later [74].
Several component-based architecture modeling solutions have adopted this idea
by introducing the notion of abstract components, which get replaced by com-
ponents that represent concrete solutions [75–77]. Since the second research goal
is to suggest cloud services, applying the MDA concept to architectural refine-
ment is reasonable. A developer models an application in a platform-independent
model using architectural components, representing abstractions of the concrete
service plans. The followup refinement can then be used to recommend services
that fulfill a given optimality criteria. How to realize this refinement and how to
build the recommendation system is part of Chapter 6. This chapter focuses on
the modeling language to design platform-independent and platform-dependent
architectural models.
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Cloud modeling languages provide a promising approach in modeling cloud ap-
plications in contrast to general-purpose modeling languages such as UML, or ar-
chitecture description languages. Bergmayr et al. [47] have surveyed a large body
of cloud modeling languages, arguing that a domain-specific approach focusing on
cloud computing vocabulary increases the modeling power by introducing more
semantics to a model that is otherwise difficult to express with, e.g., UML. Some
cloud modeling languages make use of cloud computing patterns [64], or pattern
languages in general [78], as structural components to model abstractions that
later get refined into concrete services. This approach fits the aforementioned
MDA concept. However, current cloud modeling languages focus on deployment
and orchestration of cloud applications, implying the existence of finished appli-
cation artifacts that are usually not available in the early development phases.
Moreover, since existing cloud modeling languages model an application from a
deployment perspective, it is difficult to infer how end-users perceive an applica-
tion from an availability point of view. A deployment model contains all the ser-
vices that comprise the application, while users typically issue requests to invoke
application-level functionalities that involve a subset of the deployed services. So
far, cloud modeling languages do not per se give rise to application-level func-
tionalities. Hence, assessing the availability that all services are up and reachable
can deviate from the availability of individual application-level functionalities.
Users exhibit behavior patterns in how they interact with cloud applications.

A user can be a human, an IoT device, or even some other cloud application
from a third party that consumes an API interface of the current application.
This work will refer to these entities simply as (end-)users or customers. The be-
havior of a user can contain requests to different application-level functionalities.
For example, let us consider a simple web application with user authentication.
First, a user logs in, which might involve a front-end service such as AWS Lambda
and a database service. Afterward, they tend to gather information via a home
screen, e.g., a product catalog from an e-commerce online store or statistics for
a business case loaded from an analytics service. The home screen might in-
volve different services to acquire the desired information independent of the use
case. Suppose the home-screen calls for action, and the user has to request yet
again a different application-level functionality that involves another subset of
services. Calling or invoking subsequent actions can be modeled as a usage pro-
file, including probabilities between the transition from one request to another
to model nondeterministic user behaviors. Generally, we will regard the service
subset comprising an application-level function as a scenario. Each user request

17



Chapter 2. Modeling Cloud Applications

invokes a specific scenario in the application. The usage profile is a graph-based
representation of a user’s behavior, where nodes refer to scenarios and directed
edges represent the transition from one scenario to another. Consequently, the
services that form the application deployment are the union of all the services in
all application scenarios.
So far, cloud modeling languages do not include the user perspective, but as

argued early, individual application-level functionalities can result in different
availability values. Hence, a usage profile is important to assess the availability
of a given behavior pattern. Modeling applications that combine user behavior
and scenarios are subject to several standards, such as the UML sequence and
communication diagram notions or the basic message sequence chart (MSC) and
high-level MSC standard by the International Telecommunication Union (ITU).
The latter has been used by Rodrigues et al. [79] to model and assess the reli-
ability of generic systems with complex usage profiles. Their model uses basic
MSCs to define scenarios and high-level MSCs as usage profiles. The basic MSC
represents the scenario as a message sequence chart where instances are (cloud
service) components, using message events to interact with other components.
The usage profile is a Markov chain model of the transitions between the sce-
narios. A transformation algorithm translates all scenarios and the usage profile
into a labeled transition system [80], which then gets again translated into the
existing user-oriented software reliability model proposed by R. C. Cheung [65].
Consequently, we could substitute components with cloud services and apply the
same transformations concepts. However, we need a modeling language that en-
ables platform-independent modeling with emphasis on cloud computing so that
a recommendation system has the required semantics to suggest optimal services.
This raises the questions of how to realize architectural placeholders and how to
implement a cost model that considers the wide variety of configuration options
of each cloud provider? To answer these questions, the standard MSC notion
has to be significantly extended with domain-specific elements for cloud comput-
ing. However, the promising results from Rodrigues et al. inspired this work to
investigate the potential solution of extending the MSC notion.
Therefore ,the final contribution of this chapter is the extension of the MSC

notion to a novel cloud modeling language called Clams, a CLoud Application
Modeling Solution. Clams is a scenario-based cloud modeling language, which
uses basic MSCs to model scenarios, i.e., application-level functionalities, and
usage profiles to enable a user-oriented availability assessment of the application.
Moreover, Clams uses cloud computing patterns [64] as structural components to
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represent architectural placeholders, which also guide developers in implementing
best practices in application development. A refinement process can then replace
these patterns with concrete service configurations that constitute the solution of
the respective cloud computing pattern. The refinement process uses the func-
tional semantics defined by the patterns as filtering criteria to propose only those
services with matching functional semantics. However, Clams is not only a the-
oretical language. It has been implemented as part of an open source project
called OpenClams1, which offers a visualization tool to create and interact with
Clams models. It provides a programmable interface to external applications,
such as a recommendation system, to implement complex evaluation workflows
for the refinement process. So, the contributions of this work also include the
design and implementation of tooling support. An additional contribution is a
case study of 31 cloud architectural examples from the Azure cloud to gather
statistics on the average size of existing architectures and the expected solution
size when refining architectures. These are important reference parameters for
the followup chapters when we build and evaluate availability models.

2.2. Overview

This section introduces Clams with the help of an example to provide an overview
of the main modeling concepts. A formal definition that covers all modeling el-
ements of Clams follows the next sections. Here, we discuss the architecture of
a back-end application for a smart home solution, where a mobile client applica-
tion consumes the back-end’s API. The back-end offers the following application
scenarios:

Login User authentication.

Dashboard Overview of all available smart home devices and their current
state.

Change State Change device state, such as setting the temperature for a
smart thermostat.

Logout Closing the current user session.

Let us assume the application uses cloud services from the Azure cloud. Fig-
ure 2.2 depicts the Clams model of the cloud application, showing four scenarios

1https://github.com/openclams
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Figure 2.2.: Scenarios and usage profile of the smart home back-end application.

represented by the four MSCs and one usage profile in the middle-right part.
First, let us start with the scenarios. The first box in the upper-left corner of
Figure 2.2 depicts the login scenario, which consists of an MSC with two ser-
vices. The scenario uses an instance of the App Service for the login logic, which
queries an Azure SQL database to check if the user credentials are correct. Each
component represents a concrete service or abstraction, such as a cloud comput-
ing pattern, and has a lifeline along which they exchange messages with other
services. The components of the logout scenario use the same services as the
login scenario. However, the dashboard scenario uses different components since
the developers wish to implement a more sophisticated dashboard that accesses
device logs from a key-value storage. Hence, they decided to use Azure Spring
Cloud to build the dashboard logic. The service queries the same database used
by the login and logout scenarios to retrieve a list of the user’s devices and then
load the corresponding device logs from the key-value storage. Now assume that
the developers might be uncertain about what key-value storage to use during the
current design phase. So they choose to express their design intention by using
the key-value storage pattern as an abstract component. This pattern acts, on
the one hand, as a placeholder and, on the other hand, as a functional description
of a service that should replace it so that in a followup step a recommendation
system can refine the key-value storage pattern to a concrete service. However,
abstract components are not limited to pattern expressions alone but can also rep-
resent service offerings at a categorical level. For example, consider the change
scenario from Figure 2.2 where an Azure Function captures user requests and
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forwards them to the Service Bus. The Service Bus component represents a wide
range of potential configuration options to instantiate a concert Service Bus of-
fering. Hence, this component can be further refined to a specific service plan.
In contrast, the VM instance is already a concrete service, consisting of a Linux
(Ubuntu) machine with the configuration option B4MS.
Usage profiles describe a user’s interaction with the application as a Markov

process to address the stochastic nature that constitutes a user’s behavior with
regard to invoking scenarios. Each node in the usage profile refers to a scenario.
Each edge contains a transition probability to indicate the likelihood for a user to
transition to the next scenario after the previous scenario was successful. A start
dot indicates the initial scenario. For example, in Figure 2.2, the login scenario
is the first to happen, followed directly by the dashboard scenario. Afterward,
the user changes with 80 % probability the state of a device and goes back to the
dashboard or logs out with a 20% chance. In the context of availability, those
users who log out directly after taking a glimpse at he dashboard would not notice
if the change state scenario is unavailable due to a VM failure. Hence, availability
is subject to the user’s interaction with the application.
In summary, the additional component semantics distinguishes Clams from the

general MSC notion. It includes cloud-specific information such as associations
of services to cloud providers and their regions (not shown in the figure) and a
uniform (monetary) service cost model. Moreover, Clams also supports abstract
modeling with patterns. Patterns are structural elements in Clams and encode the
solution space of potential service configurations. They can have different levels
of abstractions, from highly abstract, which narrows the service selection little,
to less abstract, narrowing the service selection to a few concrete service plans. A
less abstract pattern can result in a set of concrete services that are a reasonable
solution for a more abstract pattern. In this case, the less abstract pattern is
a refinement of the more abstract pattern. Clams organizes and encodes this
refinement relation as a tree graph, also called a refinement tree. The refinement
tree is an implicit structure hidden behind each component in the MSC and used
to navigate between different levels of abstractions. A detailed description of the
refinement tree notion follows in the upcoming sections.

2.3. System Model

This section introduces the main system assumptions with regard to cloud ap-
plications. The model assumes that a cloud application is an interconnected set
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of one or more cloud services distributed across multiple cloud regions of one or
more cloud providers, essentially defining a multi-cloud application. The model
only considers those services that are visible to developers. That is, a service is
visible only if developers perceive the service as an active part of their application,
self-serving interface, or if it can be booked from the service catalog.

Components have semantics that contain details about the services they repre-
sent. Concrete components contain sufficient information to identify a concrete
service configuration, including its cost plan, resource requirements, and QoS
information. However, the model also supports abstractions. An abstract com-
ponent contains the (abstract) functional specification of a service. Therefore,
multiple service plans can match the description of an abstract component. For
instance, abstract components can be structural patterns [64,81,82] which model
and express the best architectural practices for recurring problems. Services that
act as a platform to execute the customer code-base of the business logic are
components as well. These are the VM or container services that are part of
the IaaS layer or the runtime environments that are part of FaaS offerings. This
work does not consider the custom code-base or image artifacts that are deployed
to the services. The application model only accounts for the underlying cloud
services required to execute them.

The model does not further consider a division of service components into their
specific instances. For example, a database service that consists of three replica
instances is represented by one logical component in the model, which entails the
configuration that the replication degree is three for this service. Therefore, the
same database service with five replicas is a different configuration and repre-
sents a different component in Clams. Note that the model also allows multiple
instantiations of the same component if required to denote that the same service
plan has been booked several times.

Moreover, the model assumes that user behavior is stochastic, modeling the
transfer of control between scenarios as a DTMC, which this work refers to as a
usage profile. Hence, the invocation of a scenario depends solely on the previously
invoked scenario. A usage profile encompasses an average user interaction with
the application. A usage profile has an initiating scenario that starts the session
and at least one scenario that acts as its final state, forming the termination of
the session. Reaching and executing the final scenario without failure means that
the application is available from a user’s perspective.

22



2.4. Clams Model

2.4. Clams Model

The previous sections have introduced Clams informally. This section continues
with the formal description of Clams, introducing the underlying architectural
model and important concepts like cloud components, templates, and refinement
trees to design application architectures.

2.4.1. Scenarios and Usage Profiles

Cloud modeling languages often use existing modeling or architectural description
languages as their formal foundation and extend them by employing domain-
specific elements from cloud computing. As mentioned earlier, Clams uses the
MSC notation by the ITU as a formal foundation. More precisely, it uses a
slightly adapted version of the scenario and usage profile model used by Uchitel
et al. [80, 83].
Let us start by defining C as the set of all available abstract and concrete cloud

components to model a scenario. The core element of a scenario is a component,
which consists of a lifeline.

Definition 1 (MSC Component) A component is a three-tuple C = (ID, e, <e

) ∈ C which has a reference key ID that identifies a specific service plan/configu-
ration or abstract component such as a cloud computing pattern. e = ein ∪ eout

is a set of input and output events that have a linear ordering according to a set
relation <e ⊆ (e×e), which represent the temporal ordering of the events along
the life-line.

Each output event needs to be connected with one input event of another
component via an arrow representing a message. Each message event e ∈ eee can
also be annotated by a set of key-value attributes to enrich the message with
additional semantics if required. This feature has been introduced to enable
a richer set of analysis possibilities, apart from the here discussed availability
analysis methodologies.
Next, we group components to scenarios. A scenario is a vector of components

that form a message sequence chart. Each scenario should ideally represent one
application-level functionality.

Definition 2 (Scenario) A scenario is a structure S = (〈IDi, ei, <i
e〉ni=1, fe),

containing a finite set of components and fe a bijective function

fe : ∪n
i=1eout,i → ∪n

j=1ein,j
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that maps the output events eout,i ∈ ei of the i-th component with the input events
ein,j ∈ ej of a different component j, such that the passing of messages between
output and input events are causally ordered.

Figure 2.3.: Scenario examples with two component.

For example, Figure 2.3 shows the login and logout scenario from the smart
home application discussed at the beginning of the introductory section. Each
scenario has two components referring to cloud services from the Azure cloud:
an App Service and an Azure SQL database service. Since both App Service
components have the same name, Clams regards this as using the same service
component. Hence, component names in scenarios decide whether or not the
same service is used or if a separate service is meant.
Clams uses usage profiles to model the behavior of users. A usage profile is a

DTMC with an additional Init state to mark the start state. Nodes reference
scenarios, whereas the edges define transition probabilities from one scenario to
another. For example, Figure 2.4 shows the usage profile of the smart home exam-
ple. The profile defines the sequence of potential user requests with appropriate
scenario invocations. Hence, in this example, it is certain that a user session
always begins with the authentication followed by the display of the dashboard.
Afterward, it is uncertain whether or not the user logs out with an 80% chance
or continuously interacts with the smart devices with a 20% chance. Formally, a
usage profile is defined as follows.

Definition 3 (Usage Profile) A usage profile is a graph structure
U = (S, Init, EU , PU), where:
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Figure 2.4.: Usage profile example of the smart home application.

• S is a finite set of scenarios defining the nodes of the graph.

• Init ∈ S is the starting scenario that initiates the profile.

• EU ⊆ S × S are the edges between scenarios.

• PU : EU → R is a probability distribution where the probabilities of all
outgoing edges of a node sum up to one, i.e.

∀Si∀Sj : (Si,Sj) ∈ EU =⇒
∑

j

PU((Si,Sj)) = 1.

The usage profile allows for self and back-references. However, depending on
the evaluation and analysis tools, they might impose constraints with regard to
loops in the usage profile or might even require at least one absorbing state, i.e.,
a scenario that eventually terminates the session.

2.4.2. Component Model

Figure 2.5 shows the class diagram of the component meta-model. Clams orga-
nizes components by cloud providers. A component is either a concrete service
plan, also referred to as a concrete service, an abstract component, which is a
categorical grouping of services of the same type, or, even more generic, a cloud
computing pattern as introduced by Fehling et al. [64]. Moreover, a component
can also be a template, which is a set of nested components. Cloud computing
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Figure 2.5.: Cloud component meta-model

patterns can be either structural or behavioral. This work only considers struc-
tural patterns since they relate to concrete services. As for [84], a pattern consists
of an icon, a name, and implicitly of the description of the recurring problem,
the context in which the pattern can be applied, and the appropriate solution.
Abstract components, patterns, and templates are independent of cloud regions.
However, services might be offered only in certain regions; therefore, a service
has a reference to all regions where the service is available. In Figure 2.5, cloud
providers, regions, and components use a name and an ID key for identification
within scenarios. Cloud providers and components also have an image field to
display the component in the modeling application or other tools if required. Ad-
ditional fields are also possible, but not essential here. Moreover, the component
class can have multiple attributes. An attribute is a simple key-value pair, which
developers can use for component annotations. These annotations can provide
component descriptions or add more semantics to a cloud component if needed.
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Component Refinement

Component refinement is an essential feature of Clams which transforms tech-
nology-independent architectures into technology-dependent models. This work
uses the refinement definition by Davies et al. [85], which states that a component
Ci ∈ C is a refinement of Cj ∈ C, if and only if the concrete components that match
the functional specification of Ci also match Cj. Clams implements this refinement
notion by arranging components in so-called refinement trees, as introduced by
Falkenthal et al. [82] in the context of pattern refinement.
The cloud component meta-model contains an aggregation between the ab-

stract component class and the component class to implement the popular com-
posite design pattern, known from object-oriented programming [86]. This aggre-
gation enables the construction of tree structures where cloud components form a
parent-child dependency representing the refinement relation. The tree structure
should contain cloud components starting from the most abstract component and
provide more specific solutions with every subsequent component. Parent nodes
represent solutions to abstract architectural problems, whereas child nodes pro-
vide a more concrete problem description and a more specific solution set. Thus,
abstract components are the inner nodes of the refinement tree, and concrete
services are the leave nodes since they provide a concrete solution and cannot be
further refined.
For example, Figure 2.6 shows a small excerpt of a possible refinement tree

for stateful services. It has the stateful component pattern as the root node,
addressing the general intention to persist state. A more specific solution is
the blob storage or databases pattern, which has further child components that
narrow down the initial problem of persisting data. Next, one can refine the
database pattern using the relational database pattern or a key-value storage
pattern. These components have a more specific solution for the initial problem.
At this point, the refinement tree becomes more concrete. At the lower levels of
the tree, it further divides the services into their sub-categories. For example, for
the MariaDB components, further refinements distinguish between specific service
categories, such as MariaDB Basic, MariaDB General Purpose, and MariaDB
Memory Optimized. Finally, the leaves contain concrete service plans.
Abstract components do not make any assumptions about the (programming

and communication) interfaces offered by their successor nodes in the refinement
tree. An inner node, possibly a cloud computing pattern, defines the general
intent to solve a particular recurring problem according to best practice, explicitly
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Figure 2.6.: Refinement tree for stateful services in the context of the Azure cloud

or implicitly defining the solution as functional requirements according to the
corresponding level of abstraction. Child nodes represent potential solutions to
the parent’s problem. These nodes can be patterns again, which refine the stated
functional requirement of the parent node more explicitly, or a service plan that
implements the solution directly.

Each node in the refinement tree is a component that can be used when mod-
eling a scenario. The main goal of the refinement tree is to implement a pattern
language [78], which encodes the refinement association efficiently. It can be
used to navigate different levels of component abstractions, and constrain the
search space for service suggestions. The leave nodes in the refinement sub-tree
starting at the abstract component are the possible solution candidates. Hence,
if the developer uses the stateful component, a recommendation algorithm can
consider all the leaves of the refinement tree as its possible solution space. If the
developer selects the generic MariaDB component, then the selection algorithm
only considers specific MariaDB service plans. Consequently, developers can use
abstract components to express their uncertainty with regard to what service to
use. Depending on the design stage, a developer might not have decided yet
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what database system to use. Patterns can represent this decision uncertainty
according to their abstraction level. If a developer chooses a service directly, the
decision is certain. No further search is required. The more abstract a compo-
nent, the higher the selection uncertainty and the larger the potential solution
space. A potential measure to quantify the selection uncertainty is to compute
the complement of the likelihood of selecting an optimal service when refining a
component C ∈ C.

u = 1− |Copt|
|Cref|

Here, Cref ⊂ C is the set of service candidates resulting from the refinement of
C, and Copt ⊆ Cref the set of optimal services. However, an upper bound would be
to assume that only one service fits best the abstract component, i.e., |Copt| = 1.
The optimality criteria is subject to the requirements of the application and can
vary accordingly.

Component Templates

The aggregation between the template class and the component class in Figure 2.5
implements the composite design pattern again. This second aggregation orga-
nizes components into predefined architectural templates. A template is a nested
component containing multiple prearranged components. To exemplify this visu-
ally, Figure 2.7 shows a scenario using the three-tier cloud application template.
It portrays the template as a black border containing a name and an image in
the left corner. The template body contains the components that are typically
required by the three-tier architecture: a stateless component for the front end, a
message-passing middleware, a stateless component for the back end, followed by
a stateful component to persist data. Templates are specific to cloud providers.
For example, two cloud providers might group different components or use per-
haps fewer or more components to implement a three-tier cloud application. The
advantage of using templates as a modeling device is two-fold. The cloud provider
can express best practices for achieving specific architectural designs, whereas the
developer can use one component to insert a series of components into a scenario.
Developers can rely on the template containing the components considered best
practice by the cloud provider.
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Figure 2.7.: The three-tier architecture pattern is a template consisting of four
services.

Cost Model

As shown in the component meta-model in Figure 2.5, the cost of a service de-
pends on the selected service plan, which in turn depends on the cloud region
where the developer wishes to use the service. Hence, one needs to create a com-
ponent for every possible service plan, i.e., configuration option, and assign the
appropriate cost depending on the region. For example, consider the smallest
VM instance type at Azure. The cost of the A0 VM is the product of multiple
configuration options, such as its type (Standard, Basic, or Low Priority), and
its operating systems (Windows or Linux). Depending on the selection of these
properties, the cost varies significantly. In order to account for the actual cost
considering these properties, one can create a component for each combination of
the parameters and assign the corresponding cost accordingly. In this example,
six cloud components represent the different configuration options: VM A0 Basic
Windows, VM A0 Low Priority Window, etc., essentially computing the Carte-
sian product. The region property is not part of the Cartesian product since it is
already part of the service component. So, the component contains the cost for
each region where the service is offered.
Computing the Cartesian product for services with multiple configuration op-
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tions can lead to an exponential blow-up of components. While the discretization
of the configuration space leads to a large number of possible components, it
reduces the complexity of the cost model in exchange.
There are two solutions to mitigate the exponential increase of components

when discretizing the configuration space. Both solutions assume that a large
portion of developers uses just a small set of possible standard configurations per
service (long-tail distribution). The first solution is to use intelligent parameter
sampling. Suppose a service offers the option to extend its resources by an un-
bounded parameter such as memory. In this case, creating separate components
becomes infeasible, where each component just adds one more unit. Therefore,
selecting a subset of standard or popular values, e.g., 1GB, 10GB, and 100GB
for storage space, is sensible to address the most common cases. Moreover, ap-
proaches such as MICKY [87] might be useful in finding optimal configuration
options for different user loads, reducing the set of possible configurations in gen-
eral. The second solution is to ignore rarely changed parameters and set them
to their default values. For example, consider the A0 VM example from above,
an additional cost-factor is the support type (Included, Developer, Standard, Pro-
fessional, and Direct), which might not be of interest in the early development
stages.

2.5. Case Study

This section evaluates the feasibility of the Clams approach by introducing a
case study on real-live architectural examples from the Azure cloud. This case
study answers the general questions on how many components has a major cloud
provider and how many services and scenarios are used on average in an appli-
cation. It also discusses the performance to query refinement trees to collect all
service plans that form the solution space.

2.5.1. Data Acquisition and Preparation

It is a challenging task to collect information on real-life architectures. Companies
usually avoid disclosing their architecture to protect their intellectual property
or have security concerns. However, the documentation page of the Azure Cloud
provides a large and diverse set of architectural examples. These examples are
a general starting point for developers when developing new cloud applications.
They are publicly available and guarantee the reproducibility of the experiments.
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Note that the presented concepts are not limited to Azure but also support other
cloud providers. Unfortunately, other cloud providers did not provide such a data
set at the time of this writing. Therefore, due to the extensive documentation
of cloud architectures and an easy-to-access price calculator to extract service
components, this work chooses Azure for this case study.
The documentation page of the Azure Cloud provides 385 architectural exam-

ples [88]. All architectural examples are unstructured text pages, describing the
example in detail and providing, in many cases, a list of components like a recipe.
As part of this research, this work used a web crawler to gather and extract the
component data from the component list, resulting in 213 architectures with an
identifiable component list. The average number (and median) is six compo-
nents per architecture. The standard deviation is three services. The numbers
only consider how many different services are present in the architecture. This
does not include the number of instances of a particular service. However, most
architectures have two instances of the same service at most. Moreover, some
architectural examples also provide a data flow description list for user inter-
actions, which we interpret as informal scenario descriptions. These high-level
descriptions have insufficient information to extract the exact service interactions
to build a scenario. Whenever an example has such a list, the crawler returns
the list’s cardinality as the number of scenarios for the architecture. Note that
these data flow descriptions only include those scenarios important for the ap-
plication’s core features. Scenarios for standard features, such as changing user
profiles or passwords, were not considered. The final result is a set of 31 ar-
chitectural examples in which the component list had identifiable cloud services
that only use services from the Azure product catalog. The excluded examples
contained third-party components which could not be mapped to concrete ser-
vice offerings. Appendix A provides a complete list of all architectures with their
components.
A primary feature of Clams is its refinement capabilities which are only helpful

when cloud components are available. To collect components, this work sampled
the cloud service catalog of Azure by crawling its price calculator [89]. Each
cloud service has different configuration options, ultimately influencing the final
operational cost. The component extraction procedure of the crawler regards
each service configuration as one component. For example, the Azure VM service
has more than 400 instance types, each with three different tier types, resulting
in about 1200 components for the VM service alone. The crawler only considered
the four most common values for specific configuration parameters, which require
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numerical values such as the expected number of event calls or device connections,
e.g., 1, 10, 100, and 1000 for device connections. In total, the crawler extracted
18127 concrete service configurations with prices for four cloud regions. Each
configuration represents a component, which is stored in one database table. The
table has a self-referencing foreign key to implement the parent-child relationship
for the component refinement. The resulting component database and refinement
trees are publicly available as part of the tooling support, which will be discussed
in the next section.

2.5.2. Architecture Analysis

The scope of this work is to predict the availability of a cloud application and
to build a recommendation system that suggests an optimal set of concrete ser-
vices. Considering that the optimization criteria is operational cost with regard
to availability constraints, it can be stated with confidence that assessing the
availability of just one refinement candidate results in a non-trivial computation
time. Assuming that there is more than one refinement possibility, the second
goal can become a challenging task. The refinement of an abstract architecture
can result in a high number of valid service combinations. The next step is
to analyze the expected solution size, essentially the number of different service
combinations that form the potential refinement for a given abstract architecture.
The finding should indicate whether an exhaustive search is feasible to find an
optimal service combination or if an approximation approach is necessary later
when designing and implementing the recommendation system. To enumerate the
number of service combinations, it is sufficient to count the number of leaf nodes
in the corresponding refinement tree of each abstract component and compute
their product.
Table 2.1 provides a summary of the architectural examples, showing the num-

ber of components, the number of estimated scenarios, and the number of service
combinations to refine the architecture, i.e., the solution space. The table is
sorted according to the size of the solution space. The average number of services
and scenarios is five, and the number of refinement solutions per architecture
ranges from two (App 1) to over a quadrillion (App 31). The highest number of
scenarios has App 16 with ten scenarios. Looking at the data, we see a positive
correlation between the number of components and the solution space size. This
is no surprise since more components lead to more service combinations. How-
ever, one factor, which is not shown in Table 2.1 for readability reasons, is the
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Table 2.1.: Summary of the Azure case study.
Short Architecture Example # Components# Scenarios# Solutions

App 1 Speech Services 2 7 2
App 2 Unlock Legacy Data with Azure Stack 2 4 5
App 3 HPC System and Big Compute Solutions 2 6 131
App 4 SMB disaster recovery with Double-Take DR 3 1 180
App 5 Loan Credit Risk + Default Modeling 2 - 690
App 6 Predicting Length of Stay in Hospitals 2 - 690
App 7 Sharing location (. . . ) low-cost serverless Azure services 3 - 8460
App 8 Retail and e-commerce using Cosmos DB 4 - 42000
App 9 DevTest Image Factory 3 6 76608
App 10 Tier Applications & Data for Analytics 3 7 188640
App 11 Archive on-premises data to cloud 2 1 220800
App 12 Container CI/CD using Jenkins and Kubernetes on AKS 5 9 340200
App 13 SMB disaster recovery with Azure Site Recovery 4 1 414000
App 14 Adding a mobile front-end to a legacy app 2 8 666729
App 15 Custom Data Sovereignty & Data Gravity Requirements 5 3 4.0× 106

App 16 Design Review Powered by Mixed Reality 3 10 6.4× 106

App 17 Demand Forecasting + Price Optimization 4 3 1.8× 107

App 18 Defect prevention with predictive maintenance 5 - 2.0× 107

App 19 Enterprise-scale disaster recovery 6 1 4.6× 107

App 20 Hybrid ETL with Azure Data Factory 4 5 2.1× 108

App 21 Discovery Hub with Cloud Scale Analytics 5 5 5.5× 108

App 22 Modern Data Warehouse Architecture 6 4 7.4× 108

App 23 Master Data Management powered by CluedIn 5 8 9.3× 109

App 24 Advanced Analytics Architecture 7 6 7.4× 1010

App 25 Anomaly Detector Process 6 6 9.4× 1011

App 26 Personalized marketing solutions 8 - 1.1× 1012

App 27 Quality Assurance 7 8 1.1× 1012

App 28 Predictive Aircraft Engine Monitoring 7 - 2.3× 1012

App 29 Build web and mobile applications 7 - 2.2× 1013

App 30 Predictive Insights with Vehicle Telematics 8 - 2.7× 1015

App 31 Real Time Analytics on Big Data Architecture 8 7 2.7× 1015

number of concrete services per component refinement (c.f. Appendix A). De-
pending on the abstraction level of the components, the solution space can vary
accordingly. Consider App 14 and 11 in contrast to App 1 and 2, which have only
two components. The component list of App 1 and 2 has one concrete service
and a low-level abstract component, whereas App 14 and 11 use two high-level
abstract components. For example, App 14 uses the virtual machines pattern and
the abstract SQL Database components. The virtual machines pattern already
results in almost 1200 concrete service plans while the abstract SQL Database
component results in 660 concrete services. As a result, two factors determine
the size of the solution space. The first is the number of components, and the
second is the abstraction level of the components.

Consequently, the data in Table 2.1 indicates that an exhaustive search for
an optimal refinement is not feasible in general. When we search for a specific
service combination, the recommendation algorithm inevitably has to compute
the availability of the architecture for each service combination. As shown in the
next chapters, computing the availability takes milliseconds to seconds, depending
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on the architecture size. However, an average application with five components
can already have a solution size of billions (App 23). Hence, an exhaustive search
for an optimal refinement becomes infeasible for such examples. As a result, we
need to adopt approximation and accept a near-to optimal solution, as long as
we get a reasonable result within a feasible time frame. This conclusion is the
main driver for designing and implementing a recommendation system based on
approximation, which will be introduced in Chapter 6.

2.5.3. Performance Analysis

The preliminary step for the refinement process is to load the service candidates
that match each abstract component. Hence, an important aspect in evaluating
and refining abstract architectures is the performance in collecting all service
candidates from a component database. Therefore, the final part of this analysis
focuses on Clams and its ability to load concrete services. We need to recall that
Clams uses a homogeneous cost model, which assigns one price to each service
plan (configuration option) for a given cloud region. Consequently, in the worst
case, the number of components can increase exponentially in the number of
configuration options per service. For example, although the Azure cloud offers
about 200 different services in its official product catalog [57], the crawler has
collected 18127 concrete services due to the cost model. The high number of
components can significantly influence the performance to load services for the
refinement process.
As indicated in the data preparation section, all components are stored in one

database table. This work uses a breadth-first search to collect the leaf nodes in
the refinement tree. From a technical perspective, the schema of the component
table has a parent attribute, which contains a reference key to the correspond-
ing parent component to encode the refinement relation. In the following, we
analyze the performance to query the database for the leaf nodes of the refine-
ment tree. All experiments were performed on a 64-bit machine with 64 Intel(R)
Xeon(R) CPU E7-4850 v4 at 2.10GHz and 1 TB of main memory, running Arch
Linux 5.13.12 with GCC 11.1.0, and Python 3.9.6, using MySQL 8.0 to store the
component table.
Figure 2.8 shows the mean execution time to query the leaf nodes for a subset

of the architectures. For the sake of readability, the figure includes only those
architectures where the solution space size is more than one thousand. What
is interesting is that App 14 has the highest query time compared to all other
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Figure 2.8.: Execution time for querying service refinements for different archi-
tectures.

architectures but has only two components. The second and third highest archi-
tectures are App 28 and App 31. One might have expected that only the number
of components influences the query time, but apparently, a different factor plays
an important role as well. App 9 and 14 use highly abstract components. This
indicates that the traversal depth of the refinement tree influences the query time.
For example, the average traversal depth for App 14 is six, whereas App 31 has
an average traversal depth of about three, although it has eight components.
The correlation coefficient between query time and average tree depth is 0.56.

This confirms our assumption that tree depth positively influences query time.
However, the correlation coefficient between query time and the number of com-
ponents is −0.33, which indicates an inverse relation. It appears that having more
components leads to shorter query times. However, this should not be regarded
as the general case. When we analyze the component lists of the larger archi-
tectures, we will see that they tend to use less abstract components. Hence the
average tree depth is shorter compared to architectures with less components.
For example, App 12 has five components, but the average traversal depth to
load the service candidates is 1.4. As a result, we can conclude that the archi-
tectural examples from the Azure cloud tend to be more generic the smaller the
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architecture and more specific the larger the architecture.
In summary, this case study shows that Clams can feasibly handle a large

number of components from a major cloud provider. Thanks to the architectural
examples of the Azure cloud, we were able to gather insides on the expected
size of real-life examples and on the query time to prepare the solution space
for the refinement process. Finally, the overall query time to load the service
candidates depends on the number of components and the abstraction level of
those components.

2.6. Tooling Support

Tooling support is essential for any cloud modeling language. A graphical model-
ing environment and a framework that eases custom tooling extensions for model
evaluation and analysis are important to provide sustainable modeling and devel-
opment experience. Hence, an additional contribution of Clams is the design and
implementation of appropriate tooling to support model creation and manage-
ment. The tooling implements the first part of the workflow shown in Figure 2.1
on the first page of this chapter.

Figure 2.9.: OpenClams architecture with its tooling support.

The result is OpenClams2, a collection of open-source tools to manage and
interact with Clams models. OpenClams includes a graphical web application to
create and edit models and a component registry server to store, manage, and
publish cloud components to the web application or any other application that

2https://github.com/openclams
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processes Clams models and needs to discover and refine components. Addition-
ally, OpenClams provides a development library to build custom tools for further
evaluation and analysis of models.
Figure 2.9 shows an overview of the OpenClams architecture. The architecture

consists of three parts. These are the web application for graphical interactions, a
component registry server, and a set of one or more custom evaluation and anal-
ysis tools. These evaluation and analysis tools are web services with a common
REST API endpoint, so the web application can uniformly interface with them
and process their results. In our case, the evaluation tools will be responsible
for availability prediction and service recommendation. However, these custom
services, as well as web applications, require knowledge of existing components.
Therefore, a component registry server stores and publishes components centrally
to provide a consistent view of the existing components. Furthermore, to ease
the development of new tools, a Node.js package, called clams-ml, provides a
common programming framework to serialize and deserialize Clams models when
communicating with the web application.
The web application uses Angular3 for basic user interactions and to render

scenarios and usage profiles. Figure 2.10 shows the web application displaying a
scenario consisting of four cloud computing patterns. The right side contains the
main modeling pane for scenarios and usage profiles, whereas the left side depicts
the list of cloud components. The web application loads the component catalog
from the component registry server. This includes cloud computing patterns and
abstract components representing available service offerings. If developers wish
to use a concrete service plan, the web application offers a navigation dialog to
manually traverse the refinement tree until the required service plan is found.
The main advantage of the architecture in Figure 2.9 is that evaluation and

analysis applications are loosely coupled with the modeling interface. The web
application contains a configuration menu where developers can register their ex-
tensions. Any custom tooling needs to implement clams-ml and expose a REST
API endpoint to receive models. The developer can then register the API URL in
the web application. Multiple endpoints can be registered, allowing for multiple
extensions simultaneously. The web application expects as a result a summary
of the evaluation and optionally a list of concrete service components to replace
the abstract components. Figure 2.11 shows the web application displaying the
result of a recommendation service with its suggestions. For instance, the rec-
ommendation service suggests to replace the key-value storage pattern with a

3https://angular.io/
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Figure 2.10.: The web application supports the viewing and editing of Clams
models.

Cosmos DB Gen 5 service. Due to the loose coupling of the web and the eval-
uation applications, a cloud provider could host its evaluation application that
recommends optimal cloud services with regard to cost and availability. The
evaluation application would then use (internal) availability information of the
cloud provider, which is otherwise not accessible by a developer, to enrich the
submitted model and to assess its availability. As a result, it only returns a list
of service candidates without having to expose any critical internal metrics.
The component registry server is a database that contains a list of all available

cloud components. It provides a user interface to create, edit, and delete com-
ponents. It is written with the Laravel Framework4 and contains a design tool
to organize components into refinement trees. For example, Figure 2.12 shows
an excerpt of the component registry server, where one can organize patterns,
services, and other abstract cloud components within nested lists to express the

4https://laravel.com
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Figure 2.11.: The component replacement dialog from the web application.

refinement relation efficiently. With the help of the design tool, which is part
of the component registry server, the author could include cloud computing pat-
terns as abstract components and curate the refinement trees within a feasible
time frame.
Any developer can curate the component registry server, but it can also be

hosted as a service by a cloud provider or the IT department of a company.
Cloud providers can offer the component registry server as a service that pub-
lishes their components and patterns representing best practices for their cloud
environments. This has two advantages. The cloud provider can indirectly in-
fluence the quality of architectures depending on what components they publish.
At the same time, developers can use these components to design architectures
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Figure 2.12.: User interface to manage component refinements.

that meet the standards of the cloud provider without needing ample knowledge
of the existing services. Within an enterprise company, the IT department can
host their own on-premise component registry server and only make those cloud
components accessible, which comply with the company’s development and secu-
rity policies. The company is free to include custom patterns that are specialized
in their field of business or limit the possible set of available cloud components
accordingly.

In summary, developers model their architecture with the help of the web
application. At the same time, cloud providers can offer a custom evaluation
service that can (a) predict the availability based on the architecture defined in
Clams, and (b) suggest optimal services if required. To manage this choreography,
OpenClams offers the clams-ml package that handles the necessary boilerplate
code to read Clams models and to return results and the service suggested in an
appropriate format.
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2.7. Related Work

Recent developments in cloud application modeling have increased the need for
technology-agnostic modeling tools to enable developers to design applications
without the explicit knowledge of the vast landscape of cloud service offerings [90–
92]. One solution among many is the MDA approach, which introduces the
notion of platform-independent modeling [74]. In MDA, platform-independent
models get refined into platform-dependent models. Several component-based
architecture modeling solutions have adopted this idea by introducing the notion
of abstract components, which get replaced by components that represent con-
crete solutions [75–77]. Clams follows this notion and provides a MDA approach,
which focuses on cloud application modeling.
Bergmayr et al. [47] provided an in-depth survey on cloud modeling languages.

Based on their proposed cloud modeling language taxonomies, CAML [48, 49],
Blueprint [50, 51], GENTL [52], and Tosca [53, 54] have the most similarities to
Clams with regard to their component model. CAML and Blueprint do not con-
sider component abstractions. They expect that developers already know which
services they use. Moreover, current cloud modeling languages focus on deploy-
ment, orchestration, or migration of cloud applications. Therefore, a scenario-
based cloud modeling language like Clams would complement existing cloud mod-
eling languages by providing developers with a user-oriented modeling perspective
to guide architectural design decisions in the early development stages.
Fraj et al. [93] suggest a model-driven approach for service orchestration in

workflows, where they describe functional views of a workflow using the Busi-
ness Process Model and Notation (BPMN) notation and the behavioral view
with UML statechart diagrams. Their primary focus is cloud service orchestra-
tion and flexible service adaptation according to dynamic changes in the target
cloud. Their use of BPMN provides an alternative modeling concept similar to
the scenario approach of Clams.
A large and growing body of literature has investigated patterns and pattern

refinement in software architecture and service composition [42, 82, 94, 95]. So
far, current research uses architectural refinements for pattern-based deployment
models [77, 90, 91]. Specifically, Harzenetter et al. [90, 96] use Cloud Computing
Patterns [64] and Enterprise Integration Patterns [81] as abstract concepts to
express agnostic deployment models. They introduce pattern refinement models,
which are mappings from patterns to concrete deployment plans. Like existing
cloud modeling languages, Herzenteer et al. regard a cloud application as a graph
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of connected services [97], thus they do not distinguish between application-level
functionalities within the architecture.

2.8. Summary

Cloud computing continues to have a significant impact on the development of
modern software systems. As a result, researchers have introduced cloud mod-
eling languages to support developers in their endeavor to design high-quality
applications. However, current cloud modeling languages focus mostly on ap-
plication deployment and orchestration. A modeling language that resonates on
early design stages while guiding architectural design decisions is missing. There-
fore, this chapter introduced Clams, a scenario-based cloud modeling language,
that models application-level functionalities as scenarios, using cloud computing
patterns as building blocks to describe cloud architectures abstractly. Finally, a
case study analysis with 31 architectural examples from the Azure cloud showed
that Clams could feasibly handle the size of real-live architectural examples and
manage a large set of components of a major cloud provider.
The next chapter shows how to translate a Clams model into its appropriate

availability model.
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Hierarchical Availability Model

Figure 3.1.: This chapter focuses on part two of the solution workflow.

This chapter introduces a hierarchical availability model to compute the avail-
ability of a cloud application modeled in Clams. It initiates the second part of
the solution workflow as indicated in Figure 3.1, where we take a Clams model as
input for further processing. We focus on designing and implementing an avail-
ability prediction mechanism. In particular, this chapter introduces a hierarchical
availability model and discusses only the root model of the hierarchy in detail.
The model of the lower layer will be the topic of the next chapter.

Section 3.1 provides an overview of the proposed availability model. Sec-
tions 3.2 discusses usage profiles that exhibit different degrees of structural com-
plexities that influence the availability prediction. Afterwards, Section 3.3 dis-
cuss the availability model, while Section 3.4 provides a sensitivity analysis of
the model concerning generic Clams models. Section 3.5 introduces related work.
Finally, Section 3.6 summarizes this chapter.
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3.1. Introduction

The previous chapter introduced Clams, a modeling language to describe cloud
architectures with the help of scenarios and usage profiles. This chapter intro-
duces a hierarchical availability model [19] to compute the availability of a usage
profile, which we refer to as the user-oriented availability model. A usage profile
is available when a user can execute the final scenario. Hence, the availabil-
ity of a usage profile is the likelihood of reaching and executing a distinguished
end-scenario.
The proposed availability model is a hierarchical composition of two models.

The root model uses the well-known user-oriented software reliability model in-
troduced by R. C. Cheung [65] to account for the user behavior. In contrast,
the lower level uses a Bayesian network availability model, discussed in Chap-
ter 4, to compute the availability for the individual scenarios in the usage profile.
Rodrigues et al. [79] also used the user-oriented software reliability model as a
mathematical formalism to compute the reliability of usage profiles. They first
translate their scenarios and usage profile into a labeled transition system, which
they then translated into the user-oriented software reliability model for further
assessments. Without going into too much detail, their labeled transition sys-
tem approach assumes fault-independent services, whereas we want to account
for common and cascading failures, and service replication. A labeled transition
system is a process algebra that does not support these modeling requirements.
However, this work adapts the idea of the user-oriented software reliability model
as part of a hierarchical availability model.
Figure 3.2 shows an overview of the hierarchical availability model. The model

consists of five granularity levels, where each level includes additional fault aspects
to the overall availability assessment. The bottom level considers failure modes
of individual components. At this level, we model common-cause and cascading
failures propagating through a system. For example, if a data center catches
fire, we are confident that all racks and hosts are also failing. The next level
builds upon the first level and includes the availability model of individual service
instances, computing the likelihood of observing an instance as up and reachable,
introducing failure aspects caused by the network. The third level considers
service replication. Here, the level accounts for network partition failures to
address the likelihood that replicas cannot agree anymore upon user requests. The
next level computes the availability of a scenario as a function of the previously
modeled services. This level includes additional aspects of communication failures
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between the services. Finally, at the top level, we translate the usage profile into
the user-oriented software reliability model using availability values, that were
computed at the previous level. The first levels will be handled by a Bayesian
network availability model, which we will introduce next chapter in detail. This
chapter focuses on level five, assuming the input parameters are given for now.

Figure 3.2.: Overview of the hierarchical availability model.

While the user-oriented software reliability model is already known in the lit-
erature, this chapter will briefly introduce and show how to translate a given
usage profile into this model. However, an essential aspect of this work is pre-
diction performance since the goal is to build a service recommendation system
that considers availability constraints. Hence, computing the availability will be
the most time-consuming activity in the search process for optimal services. An
contribution of this chapter is a sensitivity analysis to understand which model-
ing parameters influence the performance of the hierarchical model in the end.
There are two dimensions to this analysis. The first dimension considers the
structural complexity of the usage profile, where we analyze two structural exam-
ples, whereas the second dimension considers the availability parameters. We first
start by introducing the usage profiles, which will be the subject of this analysis

3.2. Serial and Fully Connected Usage Profiles

To compute the availability of a cloud application from the user’s perspective,
this work introduced Clams, which uses the notion of usage profiles to model the
behavior of a user. Since usage profiles are graph models, they can vary in struc-
tural complexity. To understand how usage profiles influence the performance of
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computing the availability, we will consider two families of usage profiles, which
form two extremes concerning structural complexity, so that every other usage
profile is within the spectrum of these two graph families.

Figure 3.3.: A serial usage profile that defines a fixed order of scenario execution.

The first family of usage profiles represents the basic assumptions that users
invoke scenarios in a deterministic order. Such usage profiles are serial graphs of
n + 1 scenarios as shown in Figure 3.3. It starts with the first scenario and ends
with a distinguished termination scenario. Each successor scenario will be invoked
with probability of one until the termination state is reached. For example, such
usage profiles might be used in the domain of IoT, where sensors frequently
send state updates to a back-end cloud application, exhibiting a deterministic
invocation behavior at the back-end’s API.
The second family of usage profiles are fully connected graph models (complete

graphs), representing a user with a random behavioral pattern. Figure 3.4 depicts
the graph containing n scenarios and one termination scenario as the absorbing
state. Each node has a self-referencing loop and an outgoing edge to the remain-
ing n− 1 nodes. Due to the self-referencing, the transition probability from one
scenario to the next is 1

n
. The only exception is scenario n, which has an addi-

tional state transition to the termination scenario. Consequently, its transition
probability is 1

n+1 for every edge. The termination scenario has to be an ab-
sorbing state for the user to terminate its random session eventually; otherwise,
we cannot identify if the profile has ended successfully. Finally, the independent
variable is the number of scenarios in both graphs.

3.3. User-oriented Availability Model

This section introduces the central concept of computing the availability of a
cloud application from a user’s perspective, namely the probability of successfully
executing a usage profile by reaching a distinguished termination state. This
work uses the user-oriented software reliability model proposed by Cheung [65]
as a root model for the hierarchical model to address the problem of computing
the availability of a usage profile as the function of the availability values of its
scenarios.
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Figure 3.4.: An usage profile that defines a random execution of scenarios with
eventual termination.

The user-oriented software reliability model is originally meant for module-
based software systems, where a user’s input invokes different sequences of soft-
ware modules. The model assumes that user behavior is stochastic, modeling
the transfer of control as a Markov process between modules. Hence, the relia-
bility of a module is independent of the transition probability between modules.
Therefore, if a module fails, it does not necessarily lead to a system failure if the
user invokes a sequence of modules that do not require the former. In this work,
usage profiles have scenarios as nodes. Cheung’s model implies two modeling as-
sumptions. First, it assumes that the availability of a scenario is independent of
others. Hence, even though some scenarios might have components in common,
the model does not account that if a common component fails, all other depen-
dent scenarios also fail. This is an approximation since the usage profile does
not indicate the time between transitioning from one scenario to another. The
longer the waiting period between scenario invocations, the higher the chances

49



Chapter 3. Hierarchical Availability Model

that a failed component gets repaired during the waiting period, so that in the
end, the availability of a scenario, i.e., the likelihood to observe its services as up
and reachable when requested, is independent of other scenarios. For example,
users that consume web content typically exhibit such behavior where they take
their time to interact with the content, e.g., reading a website or streaming music,
before issuing a new request for new content to the cloud application. The second
assumption of Cheung’s model presumes that transferring from one scenario to
the next is a Markov process. Hence, a user decides the next scenario depend-
ing on the current scenario and not based on the history of previously invoked
scenarios. This is again an approximation based on the idea that the web uses
mainly HTTP for content delivery or to consume REST APIs, where navigation
is done by hyperlinks that usually do not take into account the history of previous
requests.

Let us assume an usage profile has n scenarios, S1 to Sn, with corresponding
availability values AS1 to ASn . For instance, Figure 3.5a shows the usage profile
from the example in Section 2.2 with its corresponding availability annotations. In
the following, nodes are referred to as states to emphasize the availability state of
a scenario. The next step is to extend the usage profile with an additional failure
(F ) and success (T ) state and to include a new edge from every other state to
the failure state with the transition probability 1−ASi

, respectively. Those final
states that represent a successful execution have an additional edge to the success
state with a probability of ASj

. In order to normalize the transition probabilities,
the intermediate transitions need to be scaled accordingly to their availability
values of the source state. For example, Figure 3.5b shows the corresponding
transformation for the usage profile from Figure 3.5a. For node S2, the transition
probabilities of the outgoing edges need to be scaled by AS2 due to the additional
edge leading to the failure state. The resulting augmented Markov chain has the
following general adjacency matrix.

M =



T F S1 S2 · · · Sn

T 1 0 0 0 · · · 0
F 0 1 0 0 · · · 0
S1 0 1− AS1 0 AS1 × PS1,S2 · · · AS1 × PS1,Sn

S2 0 1− AS2 0 AS2 × PS2,S2 · · · AS2 × PS2,Sn

... ... ... ... ... ... ...
Sn ASn 1 0 0 · · · 0


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(a) Annotated usage profile.

(b) Augmented graph model with availability values.

Figure 3.5.: Usage profile transformation.
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Assume S1 is the initial state and Sn is the final state. The goal is to determine
the probability of reaching the success state. According to the user-oriented
software reliability model, to compute the steady-state availability we can use
the transition matrix with:

Q = M2:n,2:n

Here, Q is the result of excluding the rows and columns of the T and F states. To
compute the steady-state probabilities, one needs to compute the complement.

P = (1−Q)−1

Finally, the scalar P1,n represents the probability to reach state Sn from S1.
Hence, the steady-state availability is the product of reaching Sn times its avail-
ability ASn , leading to the final result:

A = P1,n × ASn

For example, the following adjacency matrix represents the transformed graph
from Figure 3.5b.

M =



T F S1 S2 S3 S4

T 1 0 0 0 0 0
F 0 1 0 0 0 0
S1 0 1− AS1 0 AS1 0 0
S2 0 1− AS2 0 0 AS2 × 0.2 AS2 × 0.8
S3 0 1− AS3 0 AS3 0 0
S4 AS4 1 0 0 0 0



Next, consider the sub matrix Q with:

Q =



S1 S2 S3 S4

S1 0 AS1 0 0
S2 0 0 AS2 × 0.2 AS2 × 0.8
S3 0 AS3 0 0
S4 0 0 0 0

 =


0 0.94 0 0
0 0 0.19 0.76
0 0.98 0 0
0 0 0 0


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Finally, the model computes the steady-state probabilities P for all states:

P = (1−Q)−1


1 1.155 0.219 0.877
0 1.228 0.233 0.933
0 1.204 1.228 0.915
0 0 0 1


The steady-state availability is the probability of successfully reaching and

executing the last state of the usage profile U .

AU = P1,4 × AS4 = 0.877× 0.94 = 0.824

3.4. Sensitivity Analysis

Next, we analyze the influencing factors with regard to performance and results.
In brief, all experiments were performed on a 64-bit machine with 64 Intel(R)
Xeon(R) CPU E7-4850 v4 at 2.10GHz and 1 TB of main memory, running Arch
Linux 5.13.12 with GCC 11.1.0, Python 3.9.6, and Numpy 1.20.3.
The first set of evaluations focuses on the influence of input parameters, which

are the resulting availability values of the scenarios. For now, we assume the
values are given. However, in the follow-up chapter, this work introduces the
Bayesian network model to compute these values. For the analysis, we will use
the previously introduced serial and fully-connected usage profiles with two lev-
els of availability characteristics. The first availability level represents scenarios
with availability values sampled from a beta distribution, such that the aver-
age downtime is one hour per year. That is, every scenario Si has a value
ASi
∼ Beta(8760, 1). The second availability level considers scenarios with an

average downtime of ten hours per year, i.e., Si has ASi
∼ Beta(8760, 10). We

expect to observe a significant availability difference between the profiles that use
higher availability values compared to those with lower availability values.
Figure 3.6 shows the availability results for the serial usage profile for scenarios

with one (blue plot) and ten hours (red plot) average downtime per year. With
increasing scenarios, the serial usage profile exhibits a linear decrease in availabil-
ity. Clearly, the longer the chain in the profile, the higher the risk that a scenario
will fail during its execution before reaching the final state. This is, in particular,
true since we can argue that the serial usage profile resembles a serial reliability
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Figure 3.6.: Availability results for the increasing number of scenarios for the
serial usage profile.

block diagram, where all blocks (scenarios) need to work for the usage profile to
be available, i.e., executed successfully. Moreover, as expected, the availability
drops faster for usage profiles with a lower availability level.
Next, Figure 3.7 shows the availability results for the fully-connected usage

profile. With an increasing number of scenarios, the usage profiles with lower
availability values drop faster than the equally sized serial profiles. The fully-
connected usage profile resembles a user who randomly calls scenarios. The ran-
dom calls lead, on average, to a higher number of scenario executions than in
the serial profile. Hence, it takes longer to reach the final state, increasing the
likelihood of observing a failed scenario. The final availability is, therefore, sig-
nificantly lower for the fully connected usage profile than for the serial profile.
At the beginning of the plot, availability drops fast for profiles with less than

60 scenarios. Afterward, the slope gradually flattens. This flattening can be
argued as follows. The shortest path to the final stage in the fully connected
usage profile has three scenarios, independent of the number of scenarios. As a
result, the availability begins to slowly converge for a larger number of scenarios.
So, based on the analysis of the serial and fully-connected usage profiles, we
can conclude that the input parameters, as well as the structural complexity,
influences the outcome.
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Figure 3.7.: Availability results for the increasing number of scenarios for the
fully-connected usage profile.

Next, we analyze how input parameters and structural complexity influence
the performance to compute the final availability outcome. Figure 3.8 shows
the time to compute the availability for the fully-connected usage profile. The
plot shows that the computation time increases polynomially with an increasing
number of scenarios. All experiments were repeated 40 times to compute their
95% confidence intervals. Thus, it can be stated with 95% confidence that there is
no significant difference between equally sized profiles for both availability levels.
The fully connected usage profile generally consists of a dense transition matrix.
The availability values only change the values in the matrix and have no influence
on the actual computation time.
The largest usage profile has 100 scenarios, one order of magnitude larger than

the scenarios in the Azure case study. It took about 1ms to compute the availabil-
ity for the largest usage profile, which can be considered low. Hence, concerning
the proposed hierarchical model, the user-oriented software reliability model can
be excluded as the limiting factor in the overall prediction time. Computing
the availability of a single scenario will have a higher contribution to the overall
computation time in the end.
The serial usage profile has no time plot due to its trivial computation. Since

the serial usage profile resembles a serial reliability block diagram, we can express
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Figure 3.8.: Computation time for fully-connected usage profiles.

it in a closed form as the product of all its availability values.
In summary, the sensitivity analysis showed that the outcome is influenced by

the input parameters and the structural complexity, whereas structural complex-
ity only influences the performance of the assessment.

3.5. Related Work

Hierarchical compositions have proven to be a useful technique for computing the
availability of complex systems [98–100]. Availability and reliability engineering
distinguishes between non-state-space, such as fault trees [12] and reliability block
diagrams [101], and state-space modeling approaches, such as continuous-time
Markov chains and stochastic rewards nets [19], where the latter is a more pow-
erful modeling formalism than the former [102,103]. Nevertheless, both modeling
approaches have limitations. Multi-level models such as hierarchical compositions
have the potential to overcome these limitations, as shown in [19].
For example, Ghosh et al. [22] introduced a multi-level model for assessing

VM pools in IaaS clouds, using stochastic rewards nets to model individual sub-
components and an import graph as a root model to represent the pools. They
showed a significant performance difference between the multi-level and mono-

56



3.6. Summary

lithic models of the same system, with the former being significantly faster than
the latter. Smith et al. [99] use a two-level hierarchical composition to assess
the availability of IBM blade clusters. They use as root model a non-state-space
model, namely fault trees, and continuous-time Markov chains (CTMCs) to ac-
count for the dynamic behavior of the individual sub-systems, which then act
as input for the fault tree model. Similarly, Trivedi et al. [100] also use a com-
position of fault-tress and CTMCs to model availability of the session initiation
protocol [104] used again in the context of IBM blade clusters.
As already stated, Cheung [65] has initially proposed the user-oriented software

reliability model, using DTMC to model user behavior in module-based software
systems. Dazhi and Kishor [98] extended and generalized the approach of Cheung,
proposing a hierarchical composition that uses DTMC to account for the behavior
of the user and CTMCs to model the availability of individual components in
the system. Similarly, Rodrigues et al. [79] employed the scenario definitions by
Utchitel et al. [80] to transform scenarios into a labeled transition system first and
then applied Cheung’s user-oriented reliability model to compute the reliability
of the system.

3.6. Summary

This chapter introduced a hierarchical availability model to assess the availabil-
ity of Clams models, using usage profiles as a foundation for a user-oriented
availability perspective. In particular, this chapter focuses on the root model
of the hierarchical composition, which uses the user-oriented software reliability
model by Cheung [65]. We discussed how to translate a usage profile into Che-
ung’s model and analyzed the main factors influencing the prediction outcome
and the performance. The analysis showed that the model behaves as expected
when varying the availability inputs or when increasing the profile size. More-
over, the analysis also showed that the prediction performance only depends on
the structural complexity of the profile. Finally, evaluating large usage profiles
is in the range of milliseconds when considering the root model alone. Hence,
the root model will not be the main limiting factor in our availability prediction
task when we consider the computation of the lover level model, which will be
discussed next.
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Figure 4.1.: This chapter continues with part two of the solution workflow.

This chapter introduces a Bayesian network availability model to predict the
availability of scenarios. Similar to the previously introduced hierarchical avail-
ability model, this model also belongs to part two of the solution flow shown
in Figure 4.1. Manually modeling complex systems with Bayesian networks can
become error-prone and time-consuming. Hence, we first introduce a high-level
modeling formalism to describe cloud applications and their corresponding ser-
vices. Afterward, we design and implement an algorithmic approach to translate
the high-level model into its corresponding Bayesian network. Evaluations will
then verify if the Bayesian network model correctly implements our system de-
scriptions and analyze prediction performance.
Section 4.1 introduces this chapter. Section 4.2 provides the system model.

Next, Section 4.3 introduces a high-level model to describe cloud services and ap-
plications. Section 4.4 shows how to build a Bayesian network availability model
based on the high-level model. Section 4.5 evaluates and discusses the model.
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Afterwards, Section 4.6 discusses related work. Finally, Section 4.7 summarizes
this chapter.

4.1. Introduction

The previous chapter introduced a hierarchical availability model, where the root
model assesses the availability of a given usage profile, taking the availability of
scenarios as input. Consequently, in this chapter, we discuss how to model and
compute the availability of a scenario.
Bayesian networks have proven helpful in computing the availability of com-

plex systems since they provide a powerful modeling formalism to express com-
plex fault dependencies between components [31–33]. They support a rich set of
efficient inference algorithms suitable for fault diagnostic [105] and availability
prediction. This work argues that Bayesian networks can assess the availability
of large-scale redundant and replicated services.
Many availability models use the independence assumption to implement ef-

ficient prediction algorithms. However, with the growing complexity of modern
data centers, common cause failures are not the exception anymore; they are the
norm [106, 107]. Common cause and cascading failures can lead to multi-node
failures [108], while network failures can lead to network partitioning or total loss
of communication [7,109]. Therefore, the independence assumption does not rep-
resent real-life systems as such. While researchers acknowledge the significance
of infrastructure and communication faults [110, 111], they usually model either
the infrastructure [21, 101, 105], or the communication [112–114] part of a cloud
service. Most of these models are highly specialized in emphasizing individual
IaaS or PaaS services and rarely consider an application consisting of multiple
services.
In this work, we design and implement a Bayesian network availability model

that accounts for common-cause and cascading failures in the infrastructure and
the network between the services. However, modeling the availability of large and
complex systems with Bayesian networks is time-consuming and error-prone when
done manually. In order to ease the modeling procedure, a contribution of this
chapter is a high-level modeling formalism, which abstracts away the underlying
details and required knowledge necessary to model the availability of a scenario
with Bayesian networks. In detail, the high-level model is a conjunction of three
sub-models. Each sub-model defines different types of failure modes in the cloud.
The first sub-model represents the fault dependencies between components, the
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second model accounts for communication failures, and the third model represents
the availability requirements of the cloud service.
Another contribution is translating the high-level model into a Bayesian net-

work. This consists of designing and implementing a procedure that can auto-
matically translate the high-level model into its corresponding Bayesian network
model. However, building the Bayesian network has to overcome its own model-
ing challenges. Since network partitioning failures or total loss of communication
are frequent occurrences in cloud computing [7, 109], communication becomes a
critical modeling aspect. In general, we distinguish between stateless and state-
ful services. Stateless services do not persist user states across multiple sessions,
such as AWS Lambada, Azure Functions, or FaaS offering in general. In contrast,
stateful services can persist user requests across multiple sessions, e.g., database
or storage services. Replication is a common technique to increase fault tolerance
for many stateful services. Replicas are not just redundant copies of the same
instance; replication also involves communication between the instances to agree
upon the next state of the service. In the case of stateless services, multiple copies
of the same instance can be started and stopped on demand. These copies do not
need to communicate with each other in order to agree upon a global state.
We say that a service is available as long it is reachable and working. In general,

we call a service redundant when the service employs multiple copies of its in-
stances without the necessity to implement a replication protocol. In contrast, we
call a service replicated if its instances use a replication protocol to attain agree-
ment on the next system state. Thus, replication also involves the reachability
between sufficient working instances, where “sufficient” refers to the necessary
number of available instances to implement the state-consistency requirements
of the service, e.g., majority sets for services that implement strong consistency.
As a result, we have two communication schemas. For redundant services, we
only regard the reachability from client to instances, and for replicated services
we also consider that replicas can communicate with each other. Hence, one im-
portant modeling contribution in this work is the implementation of redundant
and replicated services with Bayesian networks, so we can assess the availability
of services as the probability that their instances are working and are reachable
given the likelihood of infrastructure and network failures. Moreover, we also
present a modeling approach to express custom fault tolerance requirements for
which a service is considered as up. Here, we provide efficient implementations
for voting, weighted-voting, and read-one/write-all replication schemes.
The last contribution is an evaluation, where we empirically verify the Bayesian
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network approach and analyze its limitations concerning performance and mem-
ory. The model verification compares the Bayesian network model with a fault
tree model that implements the same system description. Given that the fault
tree model uses a different mathematical formalism to compute the availability
of a scenario, and assuming that the fault tree correctly implements the scenar-
ios under test, evaluations show that the Bayesian network also implements the
scenario description correctly by comparing their availability results. Addition-
ally, the evaluations also show that the Bayesian network model exhibits a faster
prediction performance for large services and scenarios than the fault tree model.

4.2. System Model

The model considers a cloud application as a set of interconnected cloud services
that consist of individual instances. Service Instances are assumed to run on
virtual or physical hosts linked by a communication network. The host is an
aggregation of the operating system and the necessary runtime environment to
execute an instance. It is placed within the infrastructure of one or more data
centers. In detail, an instance is the aggregation of all software processes and
data objects that are run and stored on a host. A redundant service is a service
consisting of multiple stateless instances. Stateless instances are compute services
that do not share or store the application state across multiple user sessions. In
contrast, a replicated service consists of multiple stateful instances that imple-
ment a replication protocol to achieve state consistency. An instance is said to be
available if it is up and reachable through the communication network by a client
application. Although the instances are stateless, a redundant service might need
more than one instance to be available. A redundant service is available as long
k-out-of-n instances are available, where k is a parameter that can be chosen ac-
cordingly. If less than k instances are available, the system might be considered
as overloaded or not able to fulfill aspects of its SLA. In the case of replicated
services, it is assumed that instances cooperate to process a client request in a
transaction-oriented manner. A replicated service is considered available when
sufficient replicas are available. Furthermore, the model does not assume the
concurrency control method or the particular replication protocol. Either there
are enough replicas available that can reach a decision for some client request,
or too many replicas crashed, such that the remaining replicas cannot act upon
incoming requests.
A particular placement configuration of instances to virtual or physical hosts is

62



4.3. Cloud Application Model

called a “deployment” and is known beforehand. Instances do not migrate. If an
instance crashes, it does not recover on a different host, and it gets re-instantiated
or restarted back at its former host. If a host crashes, all its instances can only
recover when the host recovers. The model makes no restrictions on the number
of instances per host. Instances and client applications can communicate with
each other by exchanging messages via the communication network. The network
is assumed to consist of components such as switches, routers, and middleboxes,
e.g., firewalls, which are placed within the same infrastructure as the hosts. The
hosts and the communication network are part of the infrastructure, forming a
complex component-based system consisting of infrastructure components, such
as data centers, racks, power supplies, VMs, and network appliances. The model
assumes that hard – and software – components, including the instances, have
a crash-recovery model. As soon a component encounters a failure, it crashes,
stops, and eventually recovers. Here, the model does not assume a particular
recovery mechanism. The only assumption is that the component is ”good-as-
new“ after the recovery, i.e., the component has returned to a working state with
the same failure probability as before.
The end-to-end communication between a service instance to a client appli-

cation and a service instance to another can be synchronous or asynchronous.
A route along the network graph realizes the communication. A route becomes
unavailable when at least one network component along the route crashes. If
multiple potential routes exist to realize the communication, then an instance is
considered reachable as long as one route is available. Client applications might
be placed outside of the known infrastructure. In this case, the model considers
the paths starting from the network appliance that constitutes the entry point
to the data center; or its hosts if the client application is within the data center.
Moreover, all service instances have one or more dedicated network components,
e.g., firewalls or load balancers, that act as a gateway to communicate with the
instances. Hence, every client application has to enter the cloud network through
some defined entry points and then communicate with the desired service through
one of its defined gateways.

4.3. Cloud Application Model

Modeling the availability of a large and complex system with Bayesian networks
can become increasingly time-consuming and error-prone when done manually.
A common technique is to introduce a higher-level model that is domain-specific
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and focuses on the system description rather than on enumerating failure modes.
Afterward, a translation procedure transforms the high-level model into its spe-
cific Bayesian network model. Therefore, this section begins with the high-level
cloud application model as part of the overall availability prediction task. The
next section will then show how to translate this model into a Bayesian network
to compute an availability value.

4.3.1. Overview Example

Let us start with an example to introduce the high-level model, which we will use
throughout this chapter to demonstrate and explain how to build the respective
Bayesian network model.

Figure 4.2.: Example of a login scenario with two services.

Let us assume a developer designs a login feature with two Azure services in
Clams, as shown in Figure 4.2. The login feature consists of an App Service and
an Azure SQL Database instance. The latter is a transaction-oriented relational
database system using replication to increase fault tolerance. In contrast, the for-
mer is a FaaS offering, which employs redundant instances to scale up vertically.
The Clams model does not contain sufficient information to compute an avail-
ability prediction in its initial form. Additional information needs to be added
to build the proper model that gives rise to the necessary failure modes. While
application models in Clams consider services as logical units, the availability
model requires a different granularity level of the system. Hence, the high-level
model offers knowledge about service instances and their execution environments,
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including additional components such as cloud infrastructure and network com-
ponents. How do we get from a scenario model to this enhanced model? We
can simply implement this enhancement as part of a preprocessing procedure for
our availability evaluation service using the tooling offered in OpenClams. For
example, cloud providers can offer such an evaluation service since they have
ample knowledge of their cloud. However, for now, we assume that we have this
knowledge. We know how all relevant cloud components are connected and where
service instances are deployed. Hence, we assume the Azure SQL Database has
seven replicas denoted by the instance names IDB,1 to IDB,7, requiring the major-
ity of instances to be available, whereas the App Service runs two instances IAS,1

and IAS,2. If one App Service instance fails, the remaining one can still handle
the load demand to provide an available service.

Figure 4.3.: Compute and network infrastructure to execute the login scenario

In order to account for different failure modes, the replicas of the database
system and the instances of the App Service need to be mapped within a cloud
infrastructure model. Figure 4.3 shows the resulting cloud infrastructure model as
a graph of components and service instances. The infrastructure model consists of
two data centers DC1 and DC2, three racks Ra1 to Ra3, network appliances like
the firewall FW and switches N1 to N4, nine hosts H1 to H9, and the previously
mentioned service instances. Although the cloud infrastructure might be much
larger in real life, we only consider those components which serve the service
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instances. Also, this model does not regard the whole application, which might
contain more services, but rather those required to implement this scenario. If
developers wish to assess the full architecture, they can simply design one scenario
containing all services. So far, all instances are assigned to their potential hosts
as if the services were deployed. Black arrows denote external failure causes,
and blue edges represent the communication network. For instance, individual
instances might fail due to some intrinsic fault or if their hosts fail. A host is
susceptible to fail on its own, e.g., operating system failure, or if their rack fails,
possible due to a power outage. If rack Ra1 would fail, all built-in components,
such as the hosts H1 to H3, the firewall, and the switches N1 and N2 would also
fail. Hence, the replicas IDB,1 to IDB,3, and the App Service process IAS,1 would
fail as well, since Ra1 is a common cause failure for all of them.
The final availability model needs to consider the network to account for com-

munication failures. Therefore, Figure 4.3 has blue edges, representing commu-
nication links between network components. Let us assume that every instance
has the potential to communicate with every other instance. Consequently, on
the arrival of a user request at an instance of the App Service, the instance only
needs to communicate with at least one replica of the database service. However,
replicas need to be able to communicate with at least three other replicas to exe-
cute the replication protocol. A communication channel between any two replicas
is available if the two replicas that form the channel’s endpoint are working and
at least one route within the network graph with working network components
exist. Therefore, if switch N1 fails, the remaining instance can still execute the
login feature. However, if switch N2 fails, then the network gets partitioned into
three parts, in which none of them have sufficient instances or database replicas
to realize the login feature. Moreover, suppose that the firewall FW represents all
client applications suited outside the cloud infrastructure, communicating with
the services through the firewall. If FW fails, the whole scenario becomes un-
available from the user’s perspective because no service is reachable. However,
the internal network and all instances are still working and can communicate
with each other. The goal is to formalize what we just discussed as a high-level
model so that the developer can describe the cloud application without the need
to express all failure modes explicitly.
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4.3.2. Fault Dependency Graph

As shown in Figure 4.3, the high-level model has to account for fault dependencies
between cloud components. Hence the core element is, first of all, the compo-
nent, which represents any virtual or physical entity in the cloud. Afterward, we
describe the fault dependencies with the help of a graph model.

Definition 4 (Component) A component C ∈ C, from the finite set of all
considered components of the cloud system C = {C1, C2, . . . }, is an indivisi-
ble hard or software entity with the observable states {F, T}, and a Bernoulli
probability distribution P (C = F ) = qi to observe the component as faulty and
P (C = T ) = 1− qi to observe the component as working when required.

C is the set of all components, which also contains the set of all service in-
stances. So, we define I = {I1, . . . , In} ⊂ C as the set of instances. The remain-
ing components are infrastructure and network components.
Components can fail on their own or due to external causes. These external

causes arise from their dependency on another component, as indicated by the
black arrows in Figure 4.3, which we simply refer to as fault dependencies.

Definition 5 (Fault Dependency Graph) Given the set of all components
C, the model defines the fault dependency graph as a Direct Acyclic Graph (DAG)
GFD = (C, EINF, FT ), with edges EINF ⊆ C × C, and an associated fault tree
model FT for every component in C.

Directed edges are tuples (Ci, Cj), where Ci is said to be a parent component of
Cj, and Cj is said to be a child component of Ci. Components can have multiple
parent components. In this case, we need to define which specific failure com-
bination triggers a failure at the child component. Is it the failure of all parent
components? Is it the failure of just one parent component or a completely dif-
ferent component combination? For example, if a host has two redundant power
supplies, then it is certain to fail when both power supplies fail. To encode com-
plex failure relations between child and parent components, the fault dependency
graph associates each node with a fault tree FT (Ci) that describes the failure
semantics of a component Ci as a boolean expression of the observed failure state
of the parent components. These (usually small) fault tree models are local for
each component and only consider parent components.
Fault trees are graphs that describe how certain combinations of component

faults, known as base events, can lead to an undesired system failure, known
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as the top event. Gates can be used to create intermediate events by forming a
Boolean expression to describe what combinations of base events lead to a system
failure [115]. Each base event has a probability value to indicate the likelihood
of observing a component failure. There exist multiple fault tree variations in
literature. This work will only focus on the three basic gate types, which have all
fault tree variations in common: the AND, OR, and the k-out-of-n voting gate,
as shown in Figure 4.4. Gates accept as input either base events or output events
of other gates. The AND gate triggers a fault event if all its inputs receive a
failure event. Conversely, the OR gate triggers a fault event when at least one
input registers a failure event. The voting gate triggers a fault event when more
than k-out-of-n inputs register a failure event. Hence, the voting gate is suitable
to model groups of redundant components, where a group is considered working
as long as no more than n− k + 1 components are working.

(a) The AND gate propa-
gates a fault
if all input events trig-
ger a fault.

(b) The OR gate propa-
gates a fault
when one input event
has triggered a fault

(c) The k/n voting gate
propagates a fault
when more than k-
out-of-n input events
are fault events.

Figure 4.4.: Summary of the basic fault tree gates.

Figure 4.5a shows a fault dependency graph with a host component that de-
pends on three parent components to illustrate how to apply FT (.). The host
fails if the rack breaks, e.g., catching fire, or both power supplies stop working.
FT (host) encodes this failure relation at the host component, as shown in Fig-
ure 4.5a. Hence, the corresponding fault tree shown in Figure 4.5b has the power
supplies and the rack as basic input events and the host failure as the top event.
The fault tree uses an OR gate to trigger the top event. The hosts fails when
rack fails, or both power supplies fail, represented by the AND gate. The fault
tree is part of the host component to determine the likelihood of a host failure
due to an external cause, which depends solely on the failure probabilities of the
parent components. Therefore, each component has its own individual fault tree
model.
Note that the fault dependency model is a DAG, disallowing cyclic fault de-

pendencies since it leads to cycles in the final Bayesian network graph, which is
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not allowed by definition. However, in Section 4.4.2 we will discuss the modeling
conditions under which one can model cycles.

(a) Fault dependencies of a host.
(b) Local fault tree model of the host

component.

Figure 4.5.: Fault Dependency Graph Example.

4.3.3. Network Graph

To account for communication failures, e.g., network partitioning failures, the
high-level model needs to consider the network. In the network model, the host
acts as an interface for instances to communicate with other instances or client ap-
plications. Network appliances and hosts form the nodes of the network topology.
In our model, a host can be a virtual or physical machine that constitutes the ex-
ecution environment of the service instance aggregating several sup-components
such as the operating system, the execution runtime, and other processes that
are required to sustain and run the service instance.

Definition 6 (Network Graph) Given the set of host components H ⊂ C, a
set of network components N ⊂ C, and their union CNET = H ∪N , the network
is a unidirectional graph GNET = (CNET, ENET), where the edges ENET ⊆ CNET×
CNET define the communication links between any two network components.

Network components consist of infrastructure components representing net-
work appliances such as switches, routers, load-balancers, and firewalls. Network
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components are also part of the fault dependency graph, so the fault of infras-
tructure components can influence the fault of network components, which can
lead to communication failures in return. Unlike the fault dependency graph, the
network graph can have cycles.
With this graph notion, the reliability engineer can decide the granularity of

the network model. Suppose the reliability engineer has little or no knowledge
of the network. In that case, he can represent the network as ’one switch’ con-
necting all replicas and aggregating all potential failures in one super component.
However, reliability engineers can describe a more complex network graph with
ample network knowledge, improving the assessment due to a more realistic sys-
tem representation.

4.3.4. Service Model

So far, this section has introduced two graph models. These are a fault depen-
dency graph to infer fault relations between components and a network graph to
infer network communication failures. The service model needs to consider three
aspects to address the availability definition of ”working“ and ”reachable“. First,
the service’s deployment in the cloud infrastructure, which defines the external
failure causes of service instances, and second, how the service implements fault
tolerance. Lastly, how client applications or other instances of different services
reach the service through the network.

Definition 7 (Cloud Service) A cloud service S = (I, D,G, Q, c) is a five-
tuple consisting of the following elements:

• The set I = {IS,1, . . . , IS,n} ⊆ I of n instances that constitutes the service.

• The deployment function D : I → H that maps instances to hosts.

• A set of network components that constitute the entry points (gateways)
G ⊆ CNET to access the instances.

• A set of instance combinations Q ⊆ 2I (power set) for which the service is
considered working in the presence of instance failures.

• The communication scheme between instances as a Boolean value
c ∈ {false,true}, where c = true signifies that instances communicate with
each other, to indicate a replicated service.
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An instance aggregates all software processes and data objects to instantiate
and serve the service from one virtual or physical host. The set I and the function
D cover the first aspect of inferring failure causes of instances. Each instance is
connected to one host according to the deployment function D. In this manner,
instances become part of the fault dependency graph, connecting the instances
to the previous two models.
The set G covers the aspect of reachability by containing network components

that act as an entry point to the service. Commonly, cloud services use fire-
walls and load balancers to protect instances of unauthorized connections and
overloading. Some services might even have their own sub-network so that client
requests must pass a router to reach the service. We assume that every client
application that wishes to connect to some instance of the service has to pass
through such a network appliance, which we simply call a gateway. Once we
know the set of gateways, the translation producer computes only channels from
client to instances that traverse those network components. These channels then
form the basis for computing the reachability property in the final availability
model.
The last two parameters define the fault tolerance aspect of a service. Generally,

we assume instances can be either stateful or stateless. A stateful instance can
persist service state or user data across multiple user sessions, e.g., storage or
database services. Consequently, stateless instances do not persist state across
a user request. For example, HTTP servers are stateless by definition due to
their use of the HTTP protocol. FaaS offerings like AWS Lambda and Azure’s
Functions are also stateless.
A service is replicated if it has stateful instances. This implies the execution of

a replication protocol, meaning instances need to communicate with each other,
increasing the risk of communication failures. Hence, depending on the repli-
cation requirements, network partitioning failures can lead to the unavailability
of the service by creating partitions where insufficient instances can communi-
cate. Stateless instances do not communicate with each other to exchange states.
Hence, their availability assessment only considers the communication from the
client to the instances. Hence, the parameter c defines whether or not the in-
stances communicate with each other. The parameter Q defines all instance
combinations for which the service is considered in a working state in the pres-
ence of instance failures. This definition implies the enumeration of all instance
combinations to build Q. For example, let us assume a service has three in-
stances I = {I1, I2, I3} and the service works as long as two instances are up.
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As a result, Q is the enumeration of all combinations with at least two instances
Q = {{I1, I2}, {I1, I3}, {I2, I3}, {I1, I2, I3}}. In standard terms Q is a (minimal)
path set of the service instances.
The enumeration of all instance combinations can become inefficient, especially

when considering services with tenths of instances. To alleviate this burden, this
work introduces an implicit construction method for k-out-of-n redundancy and
voting-based replication models, as well as for the special cases of read-one and
write-all replication. As a result, for these specific models, it is sufficient to define
Q as a tuple (V, t), where V = (v1, . . . , vn) are instance votes and t a threshold
value. The availability model will then account for the probability of observing
sufficient working instances such that their votes exceed the threshold. For ex-
ample, we can express the previous examples as Q = ((1, 1, 1), 2) to implement
the majority set without enumerating all possible set combinations.
If the service has different thresholds, that is, different quorum size require-

ments per operation, like read-one/write-all replication, which has t = 1 for the
read operation and t = n for the write operation, then the service definition
refers to one specific operation. Multiple operations can be supported by defin-
ing a service model for each operation separately and compute their availability
values. At this point, it is up to the developers or reliability engineers to decide
on how to aggregate the availability of the different operations. They can use
the lowest resulting value as a means to assess the probability of the worst-case
service model, or they could compute the (weighted) average availability across
all operations. Independently of what aggregation method a developer or relia-
bility engineer chooses, this work shows how to build the availability model for
the operation accordingly.

4.3.5. Scenario Model

Our goal is to build a high-level model as an intermediary between the scenario
notation of Clams and the availability model that forms the second layer in the
hierarchical composition, c.f. Section 3. In the following, we discuss the scenario
model that encompasses the previously defined models into one definition. A sce-
nario consists of one or more services in a message sequence graph communicating
to serve an application-level functionality. Based on the message exchange in the
message sequence graph, the services form a communication graph, i.e., a service
topology. The communication between the services introduces a new source of
potential failures, which requires additional information to build the appropri-
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ate availability model of the scenario. First, for a scenario to be reachable and
working, all services must be working and communicate according to the service
topology. Second, the client application that invokes a scenario needs a location
in the infrastructure to infer the channels from the client to the instances of the
first service that initially receives incoming client requests. In general, client ap-
plications are normally suited outside the observable infrastructure, e.g., mobile
devices, which is why the model uses the network appliance that provides an en-
try point into the cloud network as a representative for the client. Multiple entry
points are possible, and if the client is suited within the cloud infrastructure, the
model simply uses the client’s host as an entry point to the network. These two
aspects and the previously defined models lead to the final model definition of a
scenario.

Definition 8 (Application Scenario Model) An application scenario

A = (C, S, GFD, GNET, GS,Gentry, Sinit)

is a seven-tuple consisting of the following elements:

C The set of all cloud components.

S The set of n cloud services S = {Si}n
i=1.

GFD The fault dependency graph.

GNET The network graph.

GS The service topology (S, ESERVICE), where services are nodes and the edges
ESERVICE ⊆ S × S define the communication links.

Gentry The set of network components that act as entry point for client applications
Gentry ⊆ CNET.

Sinit The initiating service Sinit ∈ S that handles incoming client requests.

This scenario definition is not limited to Clams, but can also be regarded as a
general structure to model architecture-based cloud models. The key parameter
is the service topology GS, which essentially defines the application architecture
at the service level.
The first three parameters of the scenario model will help us define the fault

relations between components and the instances of the services. The Bayesian
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network model will use these parameters to infer the probability of observing ser-
vice instances as working given the probability of cascading and common cause
failures of other cloud components. The last four parameters account for the
communication between client applications and services and between the services
themselves. Based on these parameters, the availability model infers the probabil-
ity of reaching service instances. Moreover, the scenario model has two different
sets of gateways. The network components in GS that define the entry points for
client applications into the cloud network, and the gateways of the services in S,
which define the entry point to the instances of the specific services.

Example Model

In the following, the remainder of this section shows how to model the login
example from Section 4.3.1 with the scenario definition. The model has the
following form:

ALogin = (C, S, GFD, GNET, GS,Gentry, Sinit)

First, we define the set of all components and assign the fault probabilities of
observing the components as unavailable.

C ={DC1, DC2, Ra1, Ra2, Ra3, FW, N1, N2, N3, N4, H1, H2, H3, H4, H5, H6,

H7, H8, H9, IDB,1, IDB,2, IDB,3, IDB,4, IDB,5, IDB,6, IDB,7, IAS,1, IAS,2}

P (DC1 = F ) = 0.0092 P (DC2 = F ) = 0.0069 P (Ra1 = F ) = 0.008 . . .

P (H7 = F ) = 0.0140 P (H8 = F ) = 0.0084 P (H9 = F ) = 0.0107

For the sake of readability, we assume that instances do not fail due to intrinsic
faults. Hence, they have an availability of one.
Afterwards, we describe the set of all services which contains the database

service and the App Service.
Hence, the scenario consists of S = {SDB, SAS}.

SDB = ({IDB,1, IDB,2, IDB,3, IDB,4, IDB,5, IDB,6, IDB,7}, DDB, {FW}, QDB, c = true)

The database service has seven replicas, i.e., stateful instances, that can tol-
erate three replica failures. With c = true, the service model will also con-
sider communication between instances. Finally, we use the shorthand notation
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QDB = ((1, 1, 1, 1, 1, 1, 1), 4) to define a voting-based replication scheme, where
each instance has one vote and a threshold of four to signify the necessity of a
majority set for a working service.

SAS = ({IAS,1, IAS,2}}, DAS, {FW}, QAS, c = false)

The App Service has two stateless instances, where one instance is sufficient
for a working service. Hence, QAS = {{IAS,1}, {IAS,1}, {IAS,1, IAS,2}} contains
all instance combinations, where at least one instance is working to define the
working state of the service. Moreover, since they are stateless, no communication
is needed between the two instances, i.e., c = false. Finally, both services use the
firewall component FW as a gateway to access their instances, which are placed
as follows:

DDB(IDB,1) = H1 DDB(IDB,2) = H2 DDB(IDB,3) = H3

DDB(IDB,4) = H4 DDB(IDB,5) = H5 DDB(IDB,6) = H7

DDB(IDB,7) = H7 DAS(IAS,1) = H1 DAS(IAS,2) = H9

Next, we build the fault dependency graph, where the instances use the de-
ployment function to identify their host within the fault dependency graph.

GFD = (C, EINF, FT )

EINF = {(DC1, Ra1), (DC1, Ra2), (DC2, Ra3), (Ra1, FW ), . . .

(DDB(IDB,6), IDB,6), (DDB(IDB,7), IDB,7),
(DAS(IAS,1), IAS,1), (DAS(IAS,2), IAS,2)}

Figure 4.6 shows the resulting graph of components and their failure relations.
In this example, we assume that a component automatically fails when its

parent component fails. So, FT is a simple mapping of the failure event of
the parent component pa(C) of C. If a component has no parent, e.g. DC1,
then pa(.) returns the empty set. Consequently, we get for all components that
∀C ∈ C : FT (C) = ∧

Ci∈pa(C) Ci.
The network graph GNET = (CNET, ENET) contains the network components

and hosts. Figure 4.7 depicts the communication links as blue edges.

CNET = {FW, N1, N2, N3, N4, H1, H2, H3, H4, H5, H6, H7, H8, H9}
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Figure 4.6.: Scenario model with all components and their fault dependencies.

ENET = {{FW, N2}, {N2, N1}, {N2, N3}, {N2, N4}, . . .

{N4, H7}, {N4, H8}, {N4, H9}}

In this example, we assume that the entry point is the firewall Gentry = {FW}
for all client applications.
Finally, the first service that accepts incoming requests is the App Service

Sinit = SAS, which then communicants with the database service, resulting into a
service topology GS = (S, ESERVICE) with one edge.

ESERVICE = {{SDB, SAS}}

Figure 4.7 shows the final service topology in the upper-left corner. This concludes
the scenario model. The next section shows how to translate this high-level model
into a Bayesian network availability model.

4.4. Bayesian Network Availability Model

The translation procedure consists of three steps. First, the procedure builds a
Bayesian network model of the fault dependency graph. Afterward, in the case of
replicated services, the procedure extends the Bayesian network model to account
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Figure 4.7.: Scenario model with service topology and network links.

for failures in communication between instances. Finally, the third step includes
the failure modes for client-to-service and service-to-service communication.

4.4.1. Background

Throughout this work, the availability model will primarily use the Bayesian
network formalism. Hence, this section provides the necessary background to
understand the Bayesian network notation and their equivalent fault tree repre-
sentation.
A discrete Bayesian network [116] is a DAG G = (X, E) that represents a

joint probability distribution P (X) over the set of discrete random variables X =
{X1, X2, . . . Xn}. The term variable or node are used interchangeably to denote
the vertices of the Bayesian network graph. For every edge (Xi, Xj) ∈ E between
the nodes Xi and Xj, Xi is said to be a parent node of Xj, and Xj is a child
node of Xi. We use the parent function pa(Xi) = {Xp : ∀(Xp, Xi) ∈ E} to
denote the set of all parent nodes for a given child node Xi. Each variable has a
conditional probability distribution P (Xi = xi|pa(Xi)) expressed as a conditional
probability table (CPT). The CPT contains the probability of observing a certain
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state Xi = xi given the observed state combinations of its parent nodes. Nodes
without parents are called root nodes and have a prior probability distribution
P (Xi = xi). Figure 4.8 shows on the right side a Bayesian network with three
root nodes and an inner node with their corresponding CPTs.
A Bayesian network entails the full joint probability distribution as the product

of all the nodes’ conditional probability distributions:

P (X) =
∏

x∈X

P (x|pa(x)) (4.1)

With the help of the joint probability distribution, we can use existing inference
algorithms to compute the posterior distribution P (Y |X ′) of some query Y ⊂ X

of uncertain variables from a given subset X ′ ⊂ X\Y of observations of the
remaining variables.

Figure 4.8.: Basic Bayesian network to represent the AND/OR, or k-out-of-n fault
tree gate (left). Example instance of a Bayesian network k-out-of-n
model (right).

The Bayesian network availability model will use CPTs to model probability
distributions that behave equivalent to fault tree gates to model the system’s
failure probability [117,118]. Bobbio et al. [117] introduced the general approach
to represent fault tree gates with the help of Bayesian networks, which this work
will use as building blocks. Next, we discuss how to represent the AND/OR and
the k-out-of-n voting gate as probability distributions with the help of CPTs.
Figure 4.8 shows the main Bayesian network structure on the left side to realize

the AND/OR and the k-out-of-n voting gate. The general structure has one or
more components (or base events) C1 to Cn with prior probabilities represented
by their eponymous binary random variables with states {F, T}, observing the
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component as either faulty or available, respectively. The individual semantics of
the gates are encoded as conditional probability distributions within the CPT of
the Gate node.
Fault tree gates are defined over the fault state of their input events. Whenever

an input triggers a fault event, the event takes the state true to indicate that a
fault occurred. However, in our model, the fault state of a component uses the
state value F instead, making, for example, the AND semantic for component
failures counter-intuitive to the basic AND expression in Boolean algebra. Nev-
ertheless, to stick to the original intention of the fault tree gates, the Boolean
expression of AND/OR and the voting gate acts upon the fault state of the com-
ponents. An example follows next when discussing the gates in detail.

AND Model

Figure 4.8 shows on the left side the basic structure of a Bayesian network to
model the AND failure semantic. For every state combination of the parent
nodes, we will observe Gate = F if all parent nodes are observed to be in state
F . Hence, for example, if we have two parent nodes C1 and C2, the CPT for
the Gate node results in the following shorthand definition, accounting for both
states:

P (Gate = F |C1 = F, C2 = F ) = 1, P (Gate = T |C1 = F, C2 = F ) = 0
P (Gate = F |C1 = F, C2 = T ) = 0, P (Gate = T |C1 = F, C2 = T ) = 1
P (Gate = F |C1 = T, C2 = F ) = 0, P (Gate = T |C1 = T, C2 = F ) = 1
P (Gate = F |C1 = T, C2 = T ) = 0, P (Gate = T |C1 = T, C2 = T ) = 1

As mentioned earlier, the AND acts upon the fault state of the parent nodes,
resulting into a logical OR evaluation to observe the state T . The resulting
conditional probability distribution has a certain outcome for every observed state
combination of C1 and C2, which can be generalized for an arbitrary number of
parent nodes by asserting every state combination of the parent nodes:

P (Gate=F |∀C∈ pa(Gate) : C =F )=1, P (Gate=T |∀C∈ pa(Gate) : C =F )=0
P (Gate=F |∃C∈ pa(Gate) : C =T )=0, P (Gate=T |∃C∈ pa(Gate) : C =T )=1

(4.2)

79



Chapter 4. Availability of Cloud Services and Scenarios

OR Model

Again we use Figure 4.8 as a basic structure to express the OR failure semantic.
For every state combination of the parent nodes, we will observe Gate = F if at
least one parent node is in state F . For example, if we have two parent nodes C1

and C2, the CPT for the Gate node results in the following definition:

P (Gate = F |C1 = F, C2 = F ) = 1, P (Gate = T |C1 = F, C2 = F ) = 0
P (Gate = F |C1 = F, C2 = T ) = 1, P (Gate = T |C1 = F, C2 = T ) = 0
P (Gate = F |C1 = T, C2 = F ) = 1, P (Gate = T |C1 = T, C2 = F ) = 0
P (Gate = F |C1 = T, C2 = T ) = 0, P (Gate = T |C1 = T, C2 = T ) = 1

This can be again generalized for an arbitrary number of parent nodes as follows:

P (Gate=F |∀C∈ pa(Gate) : C =T )=0, P (Gate=T |∀C∈ pa(Gate) : C =T )=1
P (Gate=F |∃C∈ pa(Gate) : C =F )=1, P (Gate=T |∃C∈ pa(Gate) : C =F )=0

(4.3)

k-out-of-n Model

The k-out-of-n voting gate triggers a fault event when k or more input events
are in a faulty state. Hence, the CPT of the corresponding Bayesian network
model has to address every observable state combination of the parent nodes.
Whenever a combination has more than k parent nodes in state F , the conditional
probability distribution returns Gate = F with probability one. For example the
CPT of Gate in Figure 4.8 shows the implementation of a two-out-of-three voting
gate. Again, we can express the CPT for arbitrary numbers of parent nodes. We
will use the indicator function 1F (x) when providing the CPT definition.

1F (x) :=

1 if x = F,

0 otherwise.

This function returns one whenever a random variable takes on the state X = F ,
otherwise zero. In the following, we will use the short hand notation ci instead of
Ci = ci ∈ {F, T} to indicate that the random variable is in a specific state. For
every state combination of the parent nodes c1, . . . , cn, the CPT of the k-out-of-n
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model has the following formal definition:

∀c1, . . . , cn ∈ {F, T}n

P (Gate = F |c1, . . . , cn) =

1 ∑n
i=1 1F (ci) ≥ k

0 otherwise

P (Gate = T |c1, . . . , cn) = 1− P (Gate = F |c1, . . . , cn) (4.4)

4.4.2. Infrastructure Failure

We begin with the Bayesian network model of the fault dependency graph. Per-
haps it is not apparent why the fault dependency graph forms the beginning.
However, due to the cause-effect semantics of Bayesian networks, it is essential to
start with root causes first and then successively attach the effects, which them-
selves are failure causes for other components. Hence, infrastructure failures form
the initial failure causes of the application. Given a scenario model A, the first
step is to build the Bayesian network for infrastructure failures.

Component Failure Model

A component C ∈ C fails either because of an intrinsic failure or an external
fault caused by its parent components. First, we define the Bayesian network
structure of a single component. This structure will then be used as a building
block for the upcoming Bayesian network representation of the fault dependency
graph.

Figure 4.9.: AND fault relation between infrastructure components.

First, the procedure creates a binary random variable for every component in
C with the states {F, T}, where each variable defines the probability of observing
the eponymous component as faulty or available. The procedure applies to each
component C the Bayesian network transformation of FT (C) according to [117],
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c.f. Section 4.4.1, where the fault of C is the top event, and C’s parent components
(from the fault dependency graph) are the base events. For example, Figure 4.9
shows the Bayesian network representation of a component C that expresses its
dependability to its parent components Cp1 to CpN

as a fault tree with one AND
gate represented as a node in the structure. Hence, the CPT uses the previously
introduced AND model from Equation 4.2. To also account for C’s intrinsic
failure probability q, we implement its CPT with a noisy-AND model.

P (C = F |AND = F ) = 1 P (C = T |AND = F ) = 0
P (C = F |AND = T ) = q P (C = T |AND = T ) = 1− q

(4.5)

The noisy-AND model is the same as the AND model for q = 0. However, for
q > 0, we introduce an additional probability to observe the component C = F

even though the AND node is observed to be in state T , i.e., all parent components
are working.

Translating the Fault Dependency Graph

For a given fault dependency graph GFD, we design a procedure that repeats the
above approach for each component. Algorithm 1 describes the translation proce-
dure to transform a given fault dependency graph GFD into a Bayesian network.
The notion (C, EINF, FT ) ← GFD means that a structure, say GFD, provides its
elements to the outer scope. In the context of functional programming, this is
known as pattern matching. First, Algorithm 1 creates the eponymous nodes
for all components (line 4). Then it creates their corresponding Bayesian net-
work fault tree representation defined in FT (C) (line 8). Afterward, it adds the
node representation of the instances to the host nodes according to a predefined
deployment from D (line 15).
Applying Algorithm 1 to the login example from Section 4.3.5 leads to the pre-

liminary Bayesian network shown in Figure 4.10. Here, without loss of generality
and for the sake of readability, the AND node can be combined with the noisy
AND model to one node. With this simplification, the Bayesian network corre-
sponds in its shape to the fault dependency graph, as illustrated in Figure 4.7.
Moreover, to visually assist the translation procedure, the nodes in Figure 4.10
are rearranged. All network components are on the left, and all hosts with their
processes are on the right side (gray dashed box).
This preliminary Bayesian network model can already be used to infer the

availability of individual service instances given the fault influenced by their sur-
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Algorithm 1 Building the Bayesian network infrastructure model.
1: procedure CreateFailureDependencyGraph(GFD,D,I)
2: BN = (X, E) with X = {} and E = {} . Initialize Bayesian network.
3: (C, EINF, FT )← GFD
4: for C ∈ C do
5: X = X ∪ C . Create node C with binary state {F, T}
6: end for
7: for C ∈ C \ I do
8: BNC = FT (C) . Create Bayesian network model of

FT (C) according to [117]
9: for Cpj ∈ pa(C) do

10: E = E ∪ (Cpj, BNC,j) . Add edge from Cpj to corresponding
base event node BNC,j

11: end for
12: E = E ∪ (TE(BNC), C) . Add edge from the top event (TE)

node from BNC to C
13: add CPT to C using Eq. 4.5

with q = P (C = F ))
14: end for
15: for Ii ∈ I do
16: E = E ∪ (D(Ii), Ii) . Add edge from host node D(Ii) = H to Ii

17: add CPT to Ii using Eq. 4.5
with q = P (Ii = F )

18: end for
19: return BN
20: end procedure

rounding infrastructure.

Discussion on Circular Fault Dependencies

The Bayesian network formalism does not support cycles in general. This is why
the fault dependency graph is a DAG. Its translation would lead to cycles in
the corresponding Bayesian network availability model. However, under certain
conditions, one might translate a cyclic fault dependency into a Bayesian network
without compromising the Bayesian network formalism.
Figure 4.11a shows a fragment of a fault dependency graph where two com-

ponents Ci and Cj have a cyclic fault dependency Both components Ci and Cj

might also have one or more parent components, shown by the incoming edges.
This fault dependency graph indicates that if Ci has a fault, then Cj and Cr fail.
Symmetrically, if Cj has a fault, then also Ci and Cr fail. Two random variables
cannot be parent nodes to each other. To solve this problem, helper variables can
break the cycle by detouring the parent edges of the variables that form the cycle.
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Figure 4.10.: Bayesian network infrastructure model of the login example.

Figure 4.11b shows the resulting Bayesian network, where the helper variables C ′i

and C ′j break the cycle. The parent variables of Ci and Cj are connected with the
original nodes, whereas the parent component that forms the cycle has an edge
with the helper variable C ′i in the Bayesian network representation. However,
this solution only provides the qualitative structure to handle fault dependency
cycles. The next question is how to split the CPTs of Ci and Cj?
A cycle can be broken only when the causal impact of the component in the

fault dependency cycle is independent of the causal impact of the remaining par-
ent components. For example, Ci is a child component of Cj. Therefore, from
Ci’s point of view, Cj is one of the multiple parent components. In the acyclic
fault dependency graph, the parents of a component Ci would have also been par-
ents or ancestors of the Bayesian network. The CPT of Ci would contain some
fault semantics that define exactly which combination of parent states leads to
a failure. However, in the presence of a cycle, the model splits the original node
into two nodes. Together, they represent the actual component Ci. However, the
parent nodes that form the cycles are now connected to the helper variable C ′i,
resulting in two CPTs. The first CPT belongs to Ci, which defines the conditional
probability distribution for the parent components with no cyclic dependencies.
The second CPT belongs to C ′i, which defines the conditional probability distri-
bution for those parent components that are part of the fault dependency cycle.
Technically, the helper variable, say C ′i, has a CPT that provides either an OR
model, where both parent variables, Ci and Cj, need to be in a working state for
C ′i to be in state T , or it provides an AND model, where Ci or Cj need to be in a
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(a) Direct fault dependency cycle.

(b) Structural representation to model a cy-
cle in a Bayesian network.

Figure 4.11.: The Bayesian network solution to solve cyclic dependencies in the
fault dependency graph.

working state for C ′i to work. Any other CPT definition, would either ignore the
edge (Ci, C ′i) or (Cj, C ′i), which ignores the cycle in the fault dependency graph.
In general, if Ci has no parents, then the transformation is valid. The variable

Ci represents just the availability of its corresponding component. Hence C ′i will
mirror and propagate the fault of Ci. However, when Ci has parent nodes, it
depends on the fault semantic defined in the fault dependency graph for Ci given
its parents. If the fault semantic of the parent nodes makes no difference between
the fault influence of the parent components that belong to the cycle and those
that do not, then the CPT cannot be split in two. If the underlying fault tree
semantics that constitutes the boolean expression of the CPT can be separated
by an AND/OR gate at the top event, then the CPT can be split, and the cycle
can be broken. Consequently, the helper variables implement this last AND/OR
gate as the final logical operation.

4.4.3. Channels

According to our availability definition, an instance is available as long it is up and
reachable. The reachability aspect depends on the capability of the network to
realize a communication channel between the client application and the particular
instance. In the context of the network infrastructure, a channel is realized along
a route of switching and routing devices. Layer three network protocols such
as IP can tolerate switch failures as long there is an alternative route to detour
the communication channel. Hence, from an availability perspective, the channel
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is the probability that two instances can communicate in the presence of route
failures. A channel is interrupted when there is no route available. A route
fails when at least one network component along the path of the route fails.
For example, let us examine the channel between the service instances IAS,1 and
IDB,6 in the network graph shown in Figure 4.7. The channel consist of one
route, which contains the network components N1, N2, and N4. The failure
modes that can impair the communication are when one of the two instances
fail, or the route fails. A route fails when one or more network components
along the route fail. Figure 4.12a shows the Bayesian network structure that
encompass these failure modes. The node CAS1−DB6 represents the probability of
observing a channel failure between the instances IAS,1 and IDB,6. For readability,
this section refers to the final node CAS1−DB6, simply as a channel node. Its
conditional probability distributions depends on the nodes of the instances and
the node R1 that represents the probability of observing a route failure. Similarly,
the conditional probability distribution of R1 depends on the component nodes
that form the route. Node R1 has a CPT that implements an OR model. Hence,
we observe the route working as long as all network components are working.
Similarly, the channel node CAS1−DB6 implements the OR model to indicate that
a channel works as long as both instances and routes are working.
This example can be generalized for channels that have multiple routes to their

disposal. Figure 4.12b shows the Bayesian network structure that contains the
channel node CA−B, representing the probability of a communication failure be-
tween two channel endpoints CA and CB. The channel node is conditionally
dependent on three nodes: an AND node and two nodes for the endpoints. The
AND node represents the failure probability that no route is working by imple-
menting the eponymous AND model as its CPT. As mentioned in the example
before, the CPT of the channel node entails an OR model, defining the probabil-
ity of observing a channel failure. Note, the notation CA−B represents a channel
and is not to be confused with Ci or C, which refers to components.
The nodes that define the failure of the endpoints, i.e., CA and CB, do not

necessarily need to be instance nodes. They could also represent different failure
causes that indirectly affect the channel. This could be the host of the client
or a common endpoint of a second channel. The latter is essential to chain two
channels, which is important for the replicated service model later.
Finally, nodes R1 to Rn define the failure probabilities of routes. All route

nodes implement an OR model and are conditionally dependent on the network
components N1 to Nm that are part of the appropriate route in the network
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(a) Channel Model of instances IAS,1 and
IDB,6.

(b) Bayesian network representation
of a general channel.

Figure 4.12.: Bayesian network representation of a single communication channel.

graph. This model also considers shared route failures. For example, if Ni fails,
route R1 and Rn are interrupted and thus unavailable, simultaneously.

Algorithm 2 describes the construction of a channel as a procedure. Inputs
are source Csrc and destination Cdst components and a pair of Bayesian network
nodes Xsrc and Xdst, which represent the failure causes of the channel’s endpoints.
As discussed briefly, the model distinguishes between the components for which
it computes the channels and the parent nodes that provide the failure causes
at the channel’s endpoints. The node ANDsrc−dst indicates that the AND node
belongs to the channel Csrc−dst to distinguish the AND nodes between multiple
channels. First, the procedure computes all routes based on the network graph at
line 3. Afterward, line 4 to 8 connects the channel node with its parents nodes.
Line 9 iterates over the list of routes and determines if the route has existed as
a node in the Bayesian network graph yet or not. If yes, then the corresponding
route node is directly added to the channel as shown in line 17. If not, then lines
11 to 13 create the new route node and connect it with its corresponding network
components. The remainder of the procedure finalizes the CPT of the channel
node and returns it as a reference.

Undoubtedly, the most resourceful operation is to compute all routes between
the two endpoints. The number of routes can get intractably large. In this case,
one might resort to simplifying the network graph or consider a limited number
of routes. However, while these simplifications increase performance, it comes at
the expense of a reduced model representation of the real system.

87



Chapter 4. Availability of Cloud Services and Scenarios

Algorithm 2 Create channel model.
1: procedure CreateChannel(BN , GNET, Csrc∈CNET, Cdst ∈ CNET,

Xsrc ∈ X, Xdst ∈ X)
2: (X, E)← BN
3: routes := compute all routes from Csrc to Cdst in GNET
4: X = X ∪ Csrc−dst . Create channel node Csrc−dst with bi-

nary state {F, T}
5: X = X ∪ ANDsrc−dst . Create node ANDsrc−dst with binary

state {F, T}
6: E = E ∪ (ANDsrc−dst, Csrc−dst) . Add edge from node ANDsrc−dst to

Chsrc−dst

7: E = E ∪ (Xsrc, Csrc−dst)
8: E = E ∪ (Xdst, Csrc−dst)
9: for R in routes do
10: if R /∈ X then . Check if no other route exists that rep-

resents the same path.
11: X = X ∪R . Create node R with binary state {F, T}
12: for C ∈ R.components do
13: E = E ∪ (C, R)
14: end for
15: add OR model to CPT of R
16: end if
17: E = E ∪ (R, ANDsrc−dst)
18: end for
19: add OR model to CPT of Csrc−dst

20: add AND model to CPT of ANDsrc−dst

21: return Csrc−dst

22: end procedure
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4.4.4. Redundant Services

First, we focus on modeling one service, as defined in Definition 7. We do not
consider the placement of clients or other services yet but pretend that commu-
nication starts from the service’s gateways.

Redundant services have stateless instances. However, even in the context of
stateless instances, a service might only be able to tolerate a certain number of
instance failures or even none at all. For example, let us assume we have a com-
pute service to process numerical data in a parallel manner. Every instance is
a worker task that performs the same operations on different data sets. The re-
sults are aggregated later. For the aggregation to finish successfully, all instances
must finish. Therefore, n-out-of-n instances need to be available for the service
to be available. Conversely, assume we have an HTTP service that employs mul-
tiple instances for web content distribution. One instance is enough to maintain
availability if the user load is sufficiently low. As a result, the HTTP service
can tolerate n − 1 instance failures. However, suppose user-load is high, and
latency requirements are part of the SLA. In that case, the service might have a
threshold, which requires that at least k-out-of-n instances need to be available
in order to provide a service that fulfills its service-level objectives. As a result,
even for redundant services, sufficient instances need to be available to consider
the service as available. Here, ”sufficient“ is defined by the instance path set Q,
which contains all valid instance combinations necessary to regard the service as
working.

The communication pattern for redundant services entails that clients directly
communicate with instances through at least one gateway. Since gateways form
the entry points, we create channels from every gateway to every instance. This
simulates the behavior that every client can reach every instance through any
gateway. So, if a gateway fails, then all channels from that gateway to every
instance fail. However, the service might still be available through another gate-
way. Hence, we assess the reachability property for each gateway individually
and infer the probability of observing a service as available through its gateways.
For example, in the login scenario shown in Figure 4.7, the firewall component
is the gateway to the database service. A channel starts at the firewall to every
instance. According to the channel model, a channel fails when either one of
the endpoints or all its routes fail. Let us assume the database implements the
special case of the read-one write-all replication protocol, so no inner-instance
communication is required, and the client can communicate with each instance
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directly. For the read operation, the service is available as long as one channel
starting at the firewall is working. For the write operation, the service is available
as long all channels are working. Therefore, the Bayesian network model aims
to infer the probability of observing at least one working channel for the read
operation, or all channels for the write operation.

Figure 4.13.: The Bayesian network of the database service using the redundant
service model.

Before we discuss how to implement the Bayesian network model in detail, let us
discuss the main concepts based on an example. Figure 4.13 shows the Bayesian
network model of the database service SDB embedded within the Bayesian net-
work model of the fault dependency graph. All clients communicate with the
instance via the firewall (represented by node FW). There are three routes R1

to R3, which are shared by all seven channels, emphasized by the dashed box.

90



4.4. Bayesian Network Availability Model

Each channel is connected to the firewall node and an instance. To assess the
probability that at least one channel is working for the read-one operation, we
need a node QF W , which is a child node to all channels of a gateway. The CPT
of QF W implements an AND model to describe the probability that no instance
is reachable through the firewall component. Conversely, suppose we assess the
write-all operation. In that case, the CPT of QF W has to implement an OR
model to infer the probability that all instances are working and reachable since
all channel nodes need to be observed in a working state.
For readability reasons, the figure only contains one gateway. In the case of

multiple gateways, we would have a channel from each gateway to each instance.
All channels would be connected to a separate node Qi, representing the prob-
ability of observing the service as available from the i-th gateway. In the end,
Qi implements the fault tolerance condition defined by the service parameter Q,
which we will discuss in detail at the end of this subsection. For now, let us
assume we assess the availability of the read-one operation where at least one
channel needs to work, so each CPT of Qi implements an AND model. Hence,
we separately assess the service availability starting from each gateway. Con-
sequently, to infer the final service availability, we connect all Qi nodes with a
service node S. The CPT of the S node implements an AND model so that we
can infer the probability P (S = T ) of observing an available service through at
least one gateway. For example, in Figure 4.13, where we have one gateway, the
node QF W is connected with the service node SDB through an intermediary node
GF W , which we discuss now.
Algorithm 3 describes how to extend the previously created Bayesian network

infrastructure model with the redundant service model. It introduces a new set of
binary random variables {Qi}m

i=1, with m = |G|, which will ultimately be used to
encode the requirements posed by the service parameter Q. A node Qi represents
the probability of observing the service as available through the i-th gateway,
given that sufficient instances are working. At line 11, the model creates the
channel nodes for each gateway to every service instance. It takes the network
component that acts as a gateway, the host of the instance as defined by its de-
ployment, and the two nodes that represent the failure of the channel’s endpoints.
Line 14 introduces a global gateway node Gi that represents the probability of
accessing sufficient instances through the i-th gateway Gi. These global gateway
nodes are intermediaries and used to model the communication between services
when building the scenario model later. Finally, Algorithm 3 finishes by introduc-
ing the final node S. This node accounts for the probability that no gateway has
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Algorithm 3 Bayesian network model for redundant services.
1: procedure RedundantServiceModel(BN ,GNET,S)
2: (X, E)← BN
3: (I, D,G, ., .)← S
4: X = X ∪ S . Create service node S
5: m = |G|
6: for i ∈ [1, m] do
7: X = X ∪Qi . Create a set of binary random variables Q1, . . . , Qm

8: end for
9: for Gi ∈ G do
10: for Ii ∈ I do
11: CGi−Ii

:= CreateChannel(BN ,GNET,Gi,D(Ii),Gi,Ii)
12: E = E ∪ (CGi−Ii

, Qi)
13: end for
14: X = X ∪ Gi

15: E = E ∪ (Qi,Gi) . Add edge from Qi to Gi

16: E = E ∪ (Gi, S) . Add edge from Gi to S
17: end for
18: add AND mode to CPT of S
19: end procedure

sufficient working channels to communicate with the service instances S. At this
point, one can compute the probability of a single service failure as the marginal
P (S = F ) or its availability P (S = T ).
When we discussed the service model, we introduced the parameter Q, c.f.

Definition 7, as the set of instance combinations where the service is considered
to work according to specification. Moreover, we argued that for k-out-of-n vot-
ing schemes, we could use the shorthand definition Q = (V, t), where V is a
set of votes per instance, and t is the threshold. In the following, we discuss
implementing both definitions of Q as part of the CPT belonging to every Qi.
The main advantage of the set definition of Q is that we can define any com-

bination of instances to express the working state of a service, but with the
potential drawback of explicitly stating each combination. A specific node Qi

already addresses every instance combination as part of its conditional probabil-
ity distribution through the channel nodes. A gateway has the same amount of
channels as instances. Since a channel fails when its endpoints are not working,
we can use the channel to represent the availability of an instance, i.e., a work-
ing channel means that the instance is reachable and working. Let us, assume
n = |pa(Qi)| is the number of instances connected to Qi. A channel node repre-
sents a random variable with the binary states Ci−j = ci−j ∈ {F, T}, where we
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use ci−j to distinguish a specific state from its random variable Ci−j. For every
state combination of channel nodes ci−1, . . . , ci−n and set Q, we define the CPT
of Qi by checking all instances that are reachable by those channels that are in
state T in the combination. P (Qi = T |ci−1, . . . , ci−n) is 1, whenever the set of
reachable instances are part of Q. Formally:

∀ci−1, . . . , ci−n ∈ {F, T}n

P (Qi =T |ci−1, . . . , ci−n)=

1 (⋃n
j=1{Ij : ci−j = T}) ∈ Q

0 otherwise

P (Qi =F |ci−1, . . . , ci−n)= 1− P (Qi =T |ci−1, . . . , ci−n) (4.6)

The notation ⋃n
j=1{Ij : ci−j = T} refers to the union of instances Ij where

their corresponding channels have the state ci−j = T within the given channel
combination. If this set of instances exists in Q then the conditional probability
distribution of P (Qi = T |ci−1, . . . , ci−n) is 1 for that specific combination of chan-
nel states. Conversely, P (Qi = F |ci−1, . . . , ci−n) is simply the counter probability
of the former.

However, if Q = (V, t) has the shorthand notation, with V = (V1, . . . , Vn)
containing the votes of each instance and t defining the threshold, then the CPT
of Qi has the following formal construction description:

∀ci−1, . . . , ci−n ∈ {F, T}n

P (Qi = T |ci−1, . . . , ci−n) =

1 ∑n
j=1 1T (ci−j)Vj ≥ t

0 otherwise

P (Qi = F |ci−1, . . . , ci−n) = 1− P (Qi = T |ci−1, . . . , ci−n) (4.7)

Again, 1T is the indicator function that returns one when the variable has the
value T . For every state combination ci−1, . . . , ci−m, the model builds the weighted
sum of those channels with the state T in that specific combination and checks if
the result is above the threshold. If the weighted sum of the accessible votes are
above the threshold, then we set the probability distribution
P (Qi = T |ci−1, . . . , ci−n) = 1, otherwise zero.

If we describe a k-out-of-n voting scheme where each instance has one vote, then
Equation 4.7 can be substituted with the k-out-of-n definition from Equation 4.4,
acting on state T instead of state F .
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∀ci−1, . . . , ci−n ∈ {F, T}n

P (Qi = T |ci−1, . . . , ci−n) =

1 ∑n
j=1 1T (ci−j) ≥ k

0 otherwise

P (Qi = F |ci−1, . . . , ci−n) = 1− P (Qi = T |ci−1, . . . , ci−n) (4.8)

In special cases, we can use the AND model for the 1-out-of-n voting scheme,
which models the probability that all channels might fail. Also, we can use the OR
model for the n-out-of-n voting scheme to define that the service is unavailable
when at least one channel fails.

4.4.5. Replicated Services

Next, we discuss the replicated service model. This model is similar to the previ-
ous model; however, it has a different communication pattern. Again, gateways
form the entry points to the service. A replicated service is available as long a
client can reach an instance that, in turn, can reach sufficient other instances.
The first condition is that a client can reach at least one instance, which is the
same model as for the redundant service model. Hence, the Bayesian network
model will have a set of channel nodes per gateway to assess the likelihood of
reaching at least one instance. This assessment must be combined with a sec-
ond assessment, where the model includes the likelihood of reaching sufficient
remaining instances starting from the first initiating instance. Consequently, the
Bayesian network will contain an additional set of channels per instance to every
other instance, behaving as if every instance is a potential gateway to reach the
remaining instances. To exemplify this communication pattern and the replicated
service model in general, we analyze the Bayesian network model of the database
service from the login scenario shown in Figure 4.7.
Figure 4.14 emphasizes the main structural aspects of the Bayesian network

of the database service. The top of the Bayesian network represents the fault
dependency graph. Again, the gateway component, i.e., the entry point, is the
firewall component represented by node FW. Due to the cause-effect modeling
paradigm of the Bayesian network formalism, we build the network in a top-
down fashion so that ”down“ is the service node that represents the probability
of observing the service as available, whereas ”top“ is the root cause, such as
components failures. We need to assess communication failures once we get past
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Figure 4.14.: The Bayesian network of the database service using the replicated
service model.

component failures. The root cause of communication failure are route failures.
For example, the network graph gives rise to eight routes that are shared by all
channels. The next higher cause of a communication failures is that instances
cannot communicate with each other, denoted by the dashed box in the middle,
showing the channel nodes. Here, we have a channel for every instance to every
other instance. Afterward, the next level is that instances cannot communicate
with sufficient other instances. Here, we introduce again the state nodes Qi, which
have a conditional probability distribution that encodes all state combinations of
reachable instances for which the service is considered working. So, we have a
node for every instance.

Consequently, the Bayesian network is the same as the redundant service model

95



Chapter 4. Availability of Cloud Services and Scenarios

so far, but the instances act as gateways themselves in this model. So, every node
Qi of the i-th instance encodes whether or not an instance can communicate with
sufficient other instances. Next, we need to assess that we can communicate with
at least one such instance, starting from our gateway. Instead of referring to the
instance nodes as the opposing endpoints directly, we use the nodes Q1 to Q7 as
representatives of the instances instead to account for the additional availability
aspect that they can communicate with sufficient other instances. We call this
second set of channels external channels.

Algorithm 4 Bayesian network infrastructure model for replicated services.
1: procedure ReplicatedServiceModel(BN ,GNET,S)
2: (X, E)← BN
3: (I, D,G, ·, ·)← S
4: X = X ∪ S . Create service node S
5: n = |I|
6: for i ∈ [1, n] do
7: X = X ∪Qi . Create a set of binary random variables Q1, . . . , Qm

8: end for
9: for (Ii, Ij) in I × I do . First Step
10: if CIi−Ij

/∈ X and CIj−Ii
/∈ X then . Only consider a channel

between two processes once
11: CIi−Ij

:= CreateChannel(BN ,GNET,D(Ii),D(Ij),Ii,Ij)
12: E = E ∪ (CIi−Ij

, Qi) . Add edge to Qi

13: E = E ∪ (CIi−Ij
, Qj) . Add edge to Qj

14: end if
15: end for
16: for Gi ∈ G do . Second Step
17: X = X ∪Gi

18: for j=1; j < n; j++ do
19: CGi−Pj

:= CreateChannel(BN ,GNET,Gi,D(Ij),Gi,Qj)
20: E = E ∪ (CGi−Ij

,Gi) . Add edge from channel node to S
21: end for
22: add AND model to CPT of Gi

23: E = E ∪ (Gi, S) . Add edge from Gi to S
24: end for
25: add AND model to CPT of S
26: end procedure

Algorithm 4 implements the Bayesian network representation of a replicates
service. Every state node Q1 to Qn is a child node of n−1 channel nodes (line 12
and 13). Next, the procedure builds a channel node for every gateway Gi to every
instance Ii by using Qi as failure cause (line 19). Instead of directly addressing
the failure probability of an instance, the model uses Qi to represent the process
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Ii. Hence, in the likelihood of a network partitioning failure, Qi would contain
the probability that Ii can still access sufficient instances in its partition.

All channel nodes between gateways and instances are connected to a gateway
node Gi, representing the probability of successfully initiating a request through
the i-th gateway. Hence, the CPT of every node Gi implements an AND model.
Finally, node S accounts for the failure probability that no client can access the
service through any gateway (line 25). Hence, one can now predict the availability
of the service by computing the marginalization P (S = T ).

However, one question remains. How do we define the CPT of the state nodes
Q1 to Qn? Since the sub-graph that contains this nodes is the same graph from
the redundant service model, but using instances as gateways instead, the CPTs
of every Qi are built the same way when using the set definition of the service
parameter Q. However, there is one detail to consider. Since the instance is con-
sidered as a gateway, both channel endpoints must be considered when building
the set of reachable instances in Equation 4.6. For the general case, when using
the shorthand notation Q = (V, t), with V = (V1, . . . , Vn) containing the votes
of each instance and t defining the threshold, the CPT of Qi has the vote of
the i-th instance implicitly, since it initiates the communication to the remaining
instances. Hence, we need to reduce the threshold by the individual vote of the
i-th instance when building the CPT of Qi. This leads to the following definition:

∀ci−1, . . . , ci−n ∈ {F, T}n

P (Qi = T |ci−1, . . . , ci−n) =

1 ∑n
j=1 1T (ci−j)Vj ≥ t−Vi

0 otherwise

P (Qi = F |ci−1, . . . , ci−n) = 1− P (Qi = T |ci−1, . . . , ci−n) (4.9)

Lastly, if all instances have unit votes, and the replicated system uses a classical
k-out-of-n voting scheme, e.g., majority sets where at least k = bn

2 c+ 1 instances
need to be available, we can use Equation 4.8 without modification. Again, since
the initiating instance acts like a gateway, it already contributes with its vote
when available. Every instance has n − 1 channels to the reaming instances, so
when the replicated service uses a voting scheme, any reachable instance needs
to have at least (k-1)-out-of-(n-1) working channels. As a result, we can use
Equation 4.8 to implement the CPT with a k′-out-of-n′ model for every Qi, with
k′ = k − 1 and n′ = n− 1.
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4.4.6. Scenario Model

So far, we have discussed how to model a single redundant or replicated service.
The next step is to fully extend the availability model to support the scenario
notation provided in Definition 8. To recap, an application scenario is a structure
A with the following elements:

(C, S, GFD, GNET, GS,Gentry, Sinit).

Until this point, we did not consider the set of services S, GFD, the service
topology GS, the set of client entry points, i.e. gateways, Gentry, and the service
that is first initiated by the client Sinit.
First, we start off with an example to discuss the main modeling concepts.

Figure 4.15a shows the service topology of a scenario, consisting of two services
S1 and S2. In this scenario model, S1 is first contacted by the client; then, a
message is passed from S1 to S2. The communication between clients and S1

uses the entry points defined by the components in the gateway set Gentry. A
scenario is available as long all services are reachable and working. This depends
in large on the communication defined in the service topology. In our example,
the client needs to reach S1 first. The availability model needs to account for
the probability of reaching the gateways from S1, starting from Gentry. This
probability is the likelihood of observing at least one working channel from some
component in Gentry to a component in the gateway set from S1. The cloud might
provide multiple entry points for clients to enter the network. Consequently, we
need to account for every channel from each component in Gentry to every other
component in the gateway set from S1. We define this aggregation of multiple
channels from client to service or from service to service as a service channel.
So, the resulting communication channels from Gentry to the gateways from S1

are aggregated as the service channel Cclient−S1 . Similarly, all channels from the
gateways S1 to S2 are aggregated as the service channel CS1−S2 .
Without going into further detail, let us first assume that a service channel

has the same semantics as an ordinary channel. It is up as long the connected
endpoints are working. A scenario is available when all service channels are
working. We introduced the global gateways nodes in our Bayesian network
model, c.f. Figure 4.13 and 4.14, to represent the probability of observing a
service as available through a specific gateway. As a result, using these global
gateway nodes, we model service availability from a gateway perspective. It is
sufficient only to regard channels between gateways and use the global gateway
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(a) Service topology of a scenario with two services.

(b) The Bayesian network of the scenario model.

Figure 4.15.: Transforming a scenario into a Bayesian network availability model.

nodes as failure causes of the channel’s endpoints instead.
The final Bayesian network is shown in Figure 4.15b. It summarizes the pre-
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viously introduced Bayesian network model as gray areas, only displaying the
service channels. First, we have the binary random variable A, which repre-
sents the probability of observing a given scenario as available. The CPT of
node A implements an OR model to define the conditional probability that at
least one service channel is not working, represented by the nodes Cclient−S1 and
CS1−S2 . These service channels are higher-order channel representations, so to
speak, since they have conditional dependencies solely on channel nodes. The
CPT of the service node Cclient−S1 implements a AND model, representing the
conditional probability of all corresponding channels. Similarly, for the service
channel CS1−S2 , which depends on the channel nodes of the gateways of S1 and
S2, and is conditional dependent on the corresponding global gateway nodes. The
global gateway nodes are part of the Bayesian network sub-structure that contains
the service availability model, which is part of the larger structure containing the
fault dependency graph.

Based on the example shown in Figure 4.15, we can design a procedure to
build the Bayesian network for an arbitrary scenario. Algorithm 5 finalizes the
construction of this Bayesian network model. It brings together all previously
discussed procedures. The routine consists of three blocks. The first block builds
the base structure that includes the fault dependency graph and all services (line 2
to 14). The second block includes the channel nodes that consider the reachability
of the first service (up to line 25). The last block includes the service channels
to model the service graph GS (line 39). Finally, one can infer a scenario’s
availability by inferring the marginalization P (A = T ).

4.5. Evaluation and Discussion

For this evaluation, we will use two families of scenarios. The first family of
scenarios implements a multi-tier service architecture and the second family of
scenarios implement a fully-connected service topology. We perform experiments
based on these two scenario models to verify if the Bayesian network model im-
plements the system assumptions correctly. We will do this by comparing it to a
fault tree model that implements the same system assumptions, using a different
mathematical formalism, namely binary decision trees, and check if they com-
pute the same availability value. Afterward, we focus on performance, where we
analyze what the main influencing parameters are.
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Algorithm 5 Building the application scenario model
1: procedure CreateApplicationModel(A)
2: (C, S, GFD, GNET, GS,Gentry, Sinit)← A
3: D := ⋃

S∈S DS . Gather all deployment functions
4: I := getAllInstances(C)
5: BN := CreateFailureDependencyGraph(GFD,D,I)
6: (X, E)← BN
7: for S ∈ S do . Include individual services
8: (·, ·, ·, ·, ·, c)← S
9: if c then

10: ReplicatedServiceModel(BN ,GNET,S)
11: else
12: RedundantServiceModel(BN ,GNET,S)
13: end if
14: end for
15: X = X ∪ A . Create application node
16: X = X ∪ Cclient−Sinit . Create client channel node
17: for Gentry,i ∈ Gentry do
18: (·, ·,G, ·, ·)← Sinit
19: for Gj ∈ G do
20: CGentry,i−Gj

:= CreateChannel(BN ,GNET,Gentry,i,Gj,Gentry,i,Gj)
21: end for
22: E = E ∪ (CGentry,i−Gj

, Cclient−Sinit)
23: end for
24: add AND model to CPT of Cclient−Sinit

25: E = E ∪ (Cclient−Sinit ,A)
26: (·, ESERVICE)← GS

27: for (Ssrc, Sdst) ∈ ESERVICE do . Include service graph
28: (·, ·,Gsrc, ·, ·)← Ssrc

29: (·, ·,Gdst, ·, ·)← Sdst

30: X = X ∪ Csrc−dst

31: for Gi ∈ Gsrc do
32: for Gj ∈ Gdst do
33: CGi−Gj

:= CreateChannel(BN ,GNET,Gi,Gj,Gi,Gj)
34: E = E ∪ (CGi−Gj

, Csrc−dst)
35: end for
36: end for
37: add AND model to CPT of Csrc−dst

38: E = E ∪ (Csrc−dst,A)
39: end for
40: add OR model to CPT of A
41: return A
42: end procedure
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4.5.1. Scenario Setup

The complexity of a scenario is a potential influencing factor with regard to
performance and the availability outcome. Hence, we will focus on two different
scenario families with different degrees of structural complexity with regard to
their service topology. Three dimensions constitute the complexity of a scenario.
First, the number of services, second, the service topology, and last, the size of the
service solution space when refining the model. The latter will receive a dedicated
chapter and will not be further discussed here. This section solely focuses on the
structural characteristics of a scenario.

Figure 4.16.: A scenario with n services forming a multi-tier application.

This work considers two service typologies that cover a variety of common
scenario cases. The first scenario implements a generalization of the well-known
multi-tier service architecture. Figure 4.16 shows a Clams scenario as a message
sequence between n services, where the first service initiates a new request to
the second service, the second service to the third service until the last service is
reached. Afterward, the last service returns its response to the previous service
until the first service receives its response from the second service. This scenario
has 2n messages in total. Hence, the number of messages grows linearly with
the number of services. If the number of messages grows sub-linearly, then some
components would not have in- and outgoing messages, meaning they are not used
and can be ignored in the scenario. Consequently, the multi-tier architecture is
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the most basic and non-trivial model. As a result, the corresponding service
topology is a serial graph.

Figure 4.17.: A scenario where every service performs a broadcast to every other
service.

At the other end of the complexity spectrum, the second Clams scenario imple-
ments an architecture where every service has to communicate with every other
service, forming a fully connected communication graph. Figure 4.17 depicts
the corresponding message exchange. The first service broadcasts messages to
the remaining services. Afterward, the second service sends its messages to the
other services until the last service receives its n− 1 messages and then sends its
responses back. The number of messages is n × (n − 1). This is a hypothetical
scenario; however, the resulting service topology is a fully connected graph. Thus,
every other service topology is a sub-graph of this model.

In summary, these two scenarios represent two completely different structural
aspects, which are important in determining what parameters influence the avail-
ability prediction performance. The first model is apt to evaluate the influence
of the increasing number of components. In contrast, the second scenario offers
a proper evaluation of the influence of the service connectivity density.
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4.5.2. Model Verification

First, we focus on whether the Bayesian network availability model correctly im-
plements and solves models based on the defined system assumptions. Trivedi
et al. [19] provide a list of possible verification techniques, from which two ap-
proaches are suitable for verifying the Bayesian network model. The first ap-
proach is the logical flow check, where we assess if the results of the model are
reasonable for a given input. The second approach is to compare the Bayesian
network model with an alternative model, using a different mathematical formal-
ism that implements the same system as described by the system model. Here,
we will use fault trees with repeated events (FTRE) as an alternative model. All
experiments will use the SCRAM risk analysis tool (ver. 0.16.2) for assessing
FTREs. SCRAM uses binary decision trees for exact inference and Min-Cut-
Upper-Bound (MCUB) for approximate computation [119]. Strictly speaking,
(static) fault trees cannot reuse the same input or base events multiple times in a
tree structure, e.g., having the same input event connected at two different gates.
However, FTRE extends the static fault tree notation by allowing precisely that.
Since, in our case, failure events can influence multiple components simultane-
ously, we have to use the FTRE formalism. FTREs are essentially fault trees;
hence, we will refer to them as fault trees for the remainder of this chapter for
readability reasons.

This evaluation performs an empirical verification by comparing the fault tree
results with the results of the Bayesian network model for the multi-tier and fully-
connect service topologies. The evaluation uses the simple cloud infrastructure
shown in Figure 4.7 and a large cloud infrastructure model with 440 components
as a basis for the fault dependency graph. The large infrastructure model con-
sists of three data centers with 40 hosts each, using a random network topology
with 20 network components to connect hosts and data centers. Moreover, each
data center has 100 additional infrastructure components influencing hosts and
network components. Evaluations that use the simple infrastructure examples
will use the failure probabilities shown in Figure 4.3, whereas evaluations with
the large infrastructure will use similar availability values as encountered in the
industry.

Cloud providers usually do not disclose insights on actual component depen-
dencies and availability values due to security or intellectual property reasons.
To roughly infer what availability values are standard in industry, this work uses
values based on the availability promises published in the SLA statements for
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the virtual machine and storage offering of the three major cloud providers. The
Google Cloud aims to provide an uptime of 99.95% per month for the Google
App Engine and the blob storage service [120,121]. AWS promises 99.99% for in-
stances running in their Elastic Compute Cloud (EC2) [122] and 99.90% for their
simple storage service (S3) [123]. Azure aims to provide an uptime of 99.90%
for its StorSimple service [124], and an uptime of 99.90% for its virtual machine
instances with standard solid states drives, and 95% with hard disk drives, re-
spectively [125]. So, major cloud providers aim to offer a service uptime in the
order of “three-nines” (99.90% to 99.95%) for their basic platform services. How-
ever, in real life, the Google App Engine service had accumulated a downtime of
about 17 hours in 2021, which resulted in an average availability of 99.8%. The
lowest availability was in Mai, 2021, when the service encountered a downtime of
10 hours, resulting in an availability of about 98.6% for that month [4].
Since a cloud service consists of more than one instance and infrastructure com-

ponent, it is reasonable to expect that the overall availability of the infrastructure
is higher than the resulting service availability. Throughout this work, we will
use the beta distribution as a source to sample availability values at random since
the distribution has a suitable value interval [0, 1]. The components of the large
infrastructure will have an availability value sampled from a beta distribution
with C ∼ Beta(10000, 1), which results in an average availability of “four-nines”
99.99%, which are higher than the SLA availability values. The standard devi-
ation is 0.009%; hence, sampling from this beta distribution will also result in
availability values commonly used to model high availability components.
We built a translation procedure that translates the high-level model into an

FTRE model, implementing the same system failure assumptions used for the
Bayesian model. In general, the procedure is similar to the algorithm shown in
Listing 5, but instead of Bayesian network nodes, it uses fault tree gates. The
changes are straight forward. The full implementation is available as open source
in OpenClams1. Nevertheless, there is one modeling restriction. Due to the voting
gate semantics in fault trees, we can only model voting-based replication schemes,
i.e., no weighted voting schemes are possible. With this limitation in mind, this
verification aims to show that the results of both models have no significant
difference in the performed experiments. This should be true for the exact and
the approximate computation methods. All experiments were performed on a 64-
bit machine with 64 Inter(R) Xenon(R) CPU E7-4850 v4 at 2.10 GHz and 1TB
of main memory, running Arch Linux 5.13.12 with GCC 11.1.0, Python 3.9.6,

1https://github.com/openclams/bn-availability-model
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and Numpy 1.20.3. If not stated otherwise, inference in Bayesian networks is
performed with approximate inference using the forward sampling method [34].
In some cases, experiments will also use exact inference. Exact inference will be
performed with the Lauritzen-Spiegelhalter Algorithm [126] implemented in the
gRain 1.3.2 package [127,128].
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Figure 4.18.: Comparing the availability of a replicated service with exact infer-
ence methods using the simple infrastructure model.

We begin by comparing the fault tree model with the Bayesian network model
of a replicated service, using the simple infrastructure model for the fault depen-
dency graph. Figure 4.18 shows the availability results for an increasing number
of instances. Here, the service is available as long as the majority of instances
are available. Instances are deployed in round-robin, starting from the first host.
We will generally focus on replicated services since they form the most complex
model instances, containing the redundant service model as a sub-problem. The
experiments use exact inference for the Bayesian network and fault tree models.
However, availability assessments were only possible for at most seven instances;
afterward, exact inference for the Bayesian network model became infeasible due
to memory limitations. A detailed discussion on performance follows at the end
of this section. Note that the results of the fault tree model overlap the data
points of the Bayesian network model in the plot, which is why only the data
points of the fault tree model are visible. The largest absolute error is 3× 10−8,
which can be regarded as an insignificant difference between the prediction results
since high availability is commonly in the magnitude of 10−5. When analyzing
the plot, one might notice that the model for six instances exhibits the lowest
availability, contrary to the general assumption that a higher replication degree
increases availability. The reason for this effect is the influence of the common
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cause failures posed by the potential faults of the infrastructure. All six instances
are placed in the first data center, requiring at least four instances for an available
service. This means that both racks and their corresponding network switches
need to work for the service to be available. In contrast, when a service has five
instances, it is sufficient if the first or second rack and their network switches
are working. Thus, the service with five instances can tolerate more infrastruc-
ture faults, increasing its availability, resulting in a higher availability than for a
service with six instances.
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Figure 4.19.: Comparing the availability of a replicated service with approximate
inference methods using the large infrastructure model.

Next, we perform the same experiments using the large infrastructure model.
Figure 4.19 shows the resulting availability predictions for an increasing number
of instances, using approximate computation methods for both models, including
confidence intervals. Predictions were only possible for up to 13 instances with
the fault tree model; afterward, assessing the fault tree model became infeasible
with SCRAM, due to an exponential increase in run-time. We repeated each
experiment 20 times and computed its 95% confidence interval with the help of
the Student’s t-distribution since the result of approximate inference in Bayesian
networks is non-deterministic and varies with every execution. However, ap-
proximate computation in fault trees is deterministic, so the plot does not show
confidence intervals for the fault trees. When comparing the approximate infer-
ence results, it becomes clear that all data points of the fault tree experiments
are within the 95% confidence intervals of the corresponding Bayesian network
experiments. Hence, it can be stated with 95% confidence that there is no sig-
nificant difference between the outcomes of the Bayesian network model and the
fault tree model for these experiments. Moreover, when analyzing the availabil-
ity progression in Figure 4.19, one might notice that availability increases until
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it converges towards 99.92%. Although the current instance deployment did not
utilize all hosts of the infrastructure, we do expect that availability does not con-
verge arbitrarily near 100% by just adding sufficient replicas. The benefits of
replication will eventually fade due to the influence of common cause failures.
This behavior follows the logical flow that, at some point, common cause failures
will balance out the benefits of replication.
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Figure 4.20.: Comparing the availability for different scenarios and different num-
ber of replicas, using the simple infrastructure model.

Next, we assess different scenarios with an increasing number of services. Fig-
ure 4.20 shows five scenarios where each scenario has a different number of ser-
vices, which have different numbers of instances. All services use replication and
have the same amount of instances as indicated by the x-axis. A service is avail-
able as long the majority of its instances are available. All scenarios use the simple
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infrastructure model for their fault dependency graph. The service instances are
deployed in round-robin across all hosts, starting with the first service at the first
host and continuing with the first instance of the next service where the previous
service left off. For each scenario, we compare the availability results between
the Bayesian network model and the fault tree model for the multi-tier and the
fully-connected service topology. Hence, the smallest scenario has three services,
each with three replicas, resulting in nine instances. In contrast, the largest sce-
nario has 15 services with 15 replicas per service, resulting in 225 instances. So
far, approximate inference in both models became infeasible for scenarios that
use the fully-connected service topology when they have more than six services.
However, inference was still possible for the remaining scenarios that used the
multi-tier service topology.
Again, we repeated each experiment 20 times and computed its 95% confidence

interval with the help of the Student’s t-distribution, shown as interval bars in
the plots. All data points of the fault tree experiments are within the 95%
confidence intervals of the corresponding Bayesian network experiments, except
for the last scenario with 15 services and 15 instances per service. Here, the
model size might have led to floating-point errors, which could have caused the
discrepancy. Nevertheless, with the exception of this outlier, it can be stated
with 95% confidence that there is no significant difference between the outcomes
of the Bayesian network model and the fault tree model.
The most interesting observation is the peak in every scenario when all services

have nine replicas, independent of the service number. Due to the round-robin
deployment scheme and the simple infrastructure model, which has nine hosts,
each service equally distributes its instances on all hosts from start to end. Only
five instances need to be available for each service; hence, services can tolerate
the fault of one data center or one full rack of hosts. Conversely, scenarios with
services where the replication degree is less than nine cannot tolerate a data
center failure. In contrast, a replication degree above nine cannot tolerate a rack
failure. Consequently, the deployment scheme with nine instances can tolerate
more component failures, which results in a higher availability.
Finally, Figure 4.21 shows the availability results for scenarios that use the

large infrastructure model in combination with the multi-tier and fully-connected
service typologies. Here, we analyze scenarios with three, six, and nine replicated
services with varying instances. Again, we use approximate inference to compute
the respective availability values. Availability predictions with fault trees were
only possible for at most nine services with nine instances per service for the multi-

109



Chapter 4. Availability of Cloud Services and Scenarios

3 6 90.9920
0.9940
0.9960
0.9980
1.0000

Av
ai
la
bi
lit
y

Scenario 1
3 Services

3 6 9

Scenario 2
6 Services

3 6 9

Scenario 3
9 Services

Bayesian Network with Multi-tier Service Topology
Fault Tree with Multi-tier Service Topology

Bayesian Network with Fully-connected Service Topology
Fault Tree with Fully-connected Service Topology

# Instances (Replicas)

Scenarios with Large Infrastructure

Figure 4.21.: Comparing the availability for different scenarios and different num-
ber of replicas, using the large infrastructure model.

tier service topology; afterward, computation became infeasible. For scenarios
with the fully-connected service topology, computation with the Bayesian network
and fault tree model was only possible for six services with up to nine instances
per service. All data points of the fault tree experiments are within the 95%
confidence intervals of the corresponding Bayesian network experiments. Hence,
it can be stated with 95% confidence that there is no significant difference between
the outcomes of the Bayesian network model and the fault tree model.
In summary, this empirical verification showed no significant difference between

the results of the fault tree model and Bayesian network model in these experi-
ments. Assuming that the fault tree model has correctly implemented the system
description of the scenario models, it can be concluded that the Bayesian network
has also correctly implemented the same model description.

4.5.3. Performance

The goal is to build a recommendation system that suggests cost-minimal cloud
services with respect to availability constraints. Hence, prediction performance
is important in building a recommendation system that suggests optimal services
within a manageable time frame. In the following, we will analyze the perfor-
mance of the previous experiments and discuss their main limiting factors.
Figure 4.22 depicts the computation time to predict the availability of a repli-
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Figure 4.22.: Comparing the prediction time of a replicated service with increas-
ing number of replicas, using the simple infrastructure model and
exact inference techniques.

cated service with an increasing number of instances, using the simple infrastruc-
ture model. The evaluation uses exact inference for the fault tree and Bayesian
network models. As previously said, inference for the Bayesian network model
was only possible for services with up to seven instances; afterward, memory lim-
itations made further assessments infeasible. In contrast, the fault tree model
exhibits a computation time uncorrelated by the number of instances. Exact
inference in Bayesian networks is faster than its equivalent fault tree model for
service with three to five instances. However, after five instances, the compu-
tation time increases exponentially, so the fault tree model is faster for services
with six to eight instances.

Nevertheless, the fault tree model also exhibits an exponentially increase in
computation time once we use the large infrastructure model. Figure 4.23 shows
the corresponding plots of the computation time. Predictions with the fault
tree model was only possible for services with up to 12 instances. Afterward, the
assessment became infeasible. All experiments were repeated 20 times to compute
their 95% confidence intervals. Since the confidence intervals overlap for services
with three to six instances, it can be stated with 95% confidence that there is
no significant difference between the computation time of the Bayesian network
model and the fault tree model. For services with seven and more instances,
the computation time of the fault tree model increases exponentially, whereas
the Bayesian network model remains below one second. For services with three
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Figure 4.23.: Comparing the prediction time of a replicated service with increas-
ing number of replicas, using the large infrastructure model and
approximate inference techniques.

to six instances, the fault tree model exhibits the same time behavior as in the
experiments shown in Figure 4.22. However, once the models get sufficiently
large, the computation time increases accordingly.

Next, we analyze scenarios with multiple services, using the simple infrastruc-
ture model as a basis. Figure 4.24 shows five scenarios with an increasing number
of instances per service. Again, all services use replication with majority sets, hav-
ing the same amount of instances as indicated by the x-axis. All five scenarios
implement the multi-tier and fully-connected service topologies. The figure plots
the 95% convenience intervals as bars at each data point. Bayesian network infer-
ence was only possible for the scenarios with up to six services and 15 instances for
the fully-connected service topology; afterward, inference became infeasible due
to memory limitations. However, predictions were still possible for all scenarios
and service sizes with the multi-tier service topology. For both service topologies,
the fault tree and the corresponding Bayesian network models show no signifi-
cant time difference for scenarios with three and six services, as indicated by the
overlapping confidence intervals. For scenarios with nine and more services, the
Bayesian network model is initially faster than the fault tree model for services
that have a replication degree of three. With an increasing number of replicas,
the Bayesian network exhibits a slower performance than the corresponding fault
tree models.

However, when comparing the computation time for the same experiments,
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Figure 4.24.: Comparing the prediction time for scenarios with increasing number
of services, using the simple infrastructure model and approximate
inference techniques.

using the large infrastructure model, we observe a similar effect as for the single
service experiments. The Bayesian network model gets up to two orders of mag-
nitude faster than the fault model for large problems, as shown in Figure 4.25.
Scenarios with twelve and fifteen services were impossible to compute in feasi-
ble time with both models. Similarly, scenarios with the fully-connected service
topology could only be evaluated for up to six services with nine instances per
service. We observe that with an increasing number of services, the differences
between the fault tree and Bayesian network models increase significantly after
six replicas per service in all three scenarios.

The evaluations show that Bayesian networks perform better than fault trees
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Figure 4.25.: Comparing the prediction time for scenarios with increasing number
of services, using the large infrastructure model and approximate
inference techniques.

for large availability models. Predictions with fault tree models outperformed
Bayesian network models whenever experiments used the simple infrastructure
model. In contrast, the Bayesian network models outperformed the fault tree
models whenever the experiments used the large infrastructure model. Hence, we
conclude that the size of the infrastructure model and the number of services are
limiting factors for fault trees. However, the reason why larger scenario models
could not be evaluated with Bayesian networks was memory. Here, the size of the
services had a larger influence on the performance (until the evaluation system
ran out of memory).

Due to the difference in the mathematical framework between fault trees and
Bayesian networks, performance limitations have different causes. For Bayesian
networks, the size of a CPT, i.e., the number of table entries, grows exponentially
with the number of parent nodes. Hence, regardless of the content of the CPT,
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Figure 4.26.: The memory size required to store the Bayesian network availability
model for a single service with increasing number of replicas, using
the simple and large infrastructure.

its size will always have O(2n) for parent nodes with binary states. Figure 4.26
illustrates the overall size of the Bayesian network of the replicated service for an
increasing number of replicas, using the simple and large infrastructure models.
At first, as expected, models that use the large infrastructure require more mem-
ory space than those that use the simple infrastructure model. However, when
adding more instances, the memory demand grows exponentially (linear grows in
log plot) until the large and the simple infrastructure become almost alike. The
main driving factors are those nodes Q1 to Qn, representing the probability that
instances can communicate with sufficient remaining instances. Each node Qi has
n−1 parent nodes. So with increasing n, those nodes ultimately outweigh the size
of the remaining Bayesian network. The presented infrastructure examples here
have about 184MB in size when considering 20 replicas. With this growth rate,
30 instances would already require 16 gigabytes of memory, making it infeasible
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to handle larger models.
However, fault trees use binary decision trees to compute minimal cut sets. The

resulting cut sets are then used to compute the probability of the top event, either
exact or via approximation with MCUB. Hence, for both solution approaches,
the fault tree must first be translated into a binary decision tree. The size of
the resulting binary decision tree and, therefore, the performance to find minimal
cut sets depends on the ordering of the base events. As Tani et al. [129] proved,
finding an optimal ordering is NP-complete. This explains why the size of the
infrastructure model has a greater influence on the fault tree analysis because
the infrastructure model contains all the components that form the base events
of the fault tree.
In summary, fault tree models suffer in principal from a computational com-

plexity issue, whereas the Bayesian network models suffer more from a represen-
tational issue. However, we found a solution to circumvent the representational
issue for redundant and voting-based replicated services, which we will discuss in
the next chapter. Nevertheless, the fact that Bayesian networks can also express
more generic availability requirements and assess larger infrastructure models
than fault trees makes Bayesian networks a suitable model for predicting the
availability of large-scale cloud services.

4.6. Related Work

Several methods exist to evaluate a system’s availability, among which Bayesian
networks have gained large acceptance within the industry and research [27–30].
Bobbio et al. [117,130] demonstrated the applicability and superiority of Bayesian

networks in modeling and evaluating equivalent fault trees [12]. Moreover, Boudali
and Dugan [118, 131] showed how to use dynamic Bayesian networks to model
dynamic fault trees, effectively proving that the Bayesian network formalism is
powerful enough to cover all non-state space models.
In network modeling, Bennacer et al. [105] use Bayesian networks for network

diagnostics by introducing a novel inference approach to increase diagnostic per-
formance for large-scale Bayesian network models. Their method exemplifies the
general approach in predicting QoS attributes for networks, considering com-
mon cause influences from network devices. Similarly, Giorgio and Liberati [132]
use dynamic Bayesian networks to model the reliability of critical infrastructures
such as power grids, where components have multi-valued fault states and dy-
namic fault behaviors. However, they only use a one-out-of-n semantic to model
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redundancy.
As for cloud applications, Pitakrat et al. [23] use Bayesian networks for online

failure predictions of microservice architectures. Their Bayesian network model
represents the interconnection between services. They use an online monitoring
tool to gather performance metrics from a real-live system to update the Bayesian
network’s probability tables and to infer service failures in advance. While they
consider fault propagation between services, they do not consider replication as
such.
Nevertheless, modeling cloud infrastructures is subject to various areas of reli-

ability and availability engineering [101, 113, 133]. Cloud infrastructures can get
large, consisting of several data centers and hundreds of hosts [134]. Hence, a
monolithic availability model might become computationally intractable. There-
fore, one approach to scale computation is using hierarchical composition model-
ing [19].
Kim et al. [133] introduce a hierarchical availability model for VMs running

on host systems. Their hierarchical model uses fault trees at the root level and
smaller CTMCs for the lower level to model the failure rates of individual com-
ponents, e.g., CPU, memory, and power of the host system. As for this work, the
hierarchical composition method from Section 3 can be further extended. One
can combine the here proposed Bayesian network model with state-space meth-
ods. Individual cloud components can be assessed using state-space methods to
compute failure rates or mean time to failure (MTTF). Afterward, their results
can be used as input values for the Bayesian network model, representing the
overall application model at a higher composition level.
Jammal et al. [21] provide an availability model for multi-tier cloud applica-

tions, where they describe applications in a domain-specific modeling language
using UML. However, they only consider fault propagation within a strict hier-
archical infrastructure model, accounting only for the failures of the data center,
server, and VM. Their domain-specific model strongly emphasizes IaaS and does
not consider network communication or the replication degree of services.
As for architecture-based reliability modeling, PCM [24,25] provides a holistic

modeling approach to evaluate the performance and reliability of complex soft-
ware systems by unifying hard – and software – into one model. PCM supports
complex usage profiles for different user roles. The reliability model translates
components into CTMCs to compute the overall failure rates. However, the model
provides limited support for replication, considering at most a one-out-of-n fault
requirement.
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4.7. Summary

This chapter introduced a Bayesian network availability model derived from a
high-level scenario description. The Bayesian network model unifies the fault
aspects from three sub-models: a fault dependency graph to express the failure
relation between cloud services and the execution environment, a network model
to address communication and network partitioning failures, and a service model
to define individual availability requirements at the instance level, supporting
two different communication patterns to express stateful and stateless services.
Evaluations show the feasibility of the Bayesian network approach to represent
services and scenarios containing hundreds of components. However, one issue in
modeling larger applications is the general limitation imposed by the exponential
memory growth of the CPTs. The next chapter tackles this problem by intro-
ducing scalable Bayesian network representations, reducing memory growth from
exponential to polynomial.
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Scalable Bayesian Network
Structures

Figure 5.1.: This chapter focuses again on part two of the solution workflow,
proposing a novel structural enhancement to model larger-scale ser-
vices with Bayesian networks.

A significant challenge of the previously introduced Bayesian network availabil-
ity model is the so-called exponential memory blow-up problem, where the CPTs
grow exponentially in the number of parent nodes. So far, the AND/OR nodes
already have scalable representations; however, a scalable k-out-of-n model that
defies the exponential memory blow-up problem is missing. The k-out-of-n model
is primarily used to implement the broad range of voting-based replicated ser-
vices. Therefore, a large number of modeling cases would benefit from a scalable
k-out-of-n model. Hence, this chapter focuses again on part two of the solution
workflow as shown in Figure 5.1, introducing a scalable k-out-of-n model [60,61]
based on the temporal noisy adder [135] that reduces the required space size from
exponential to polynomial in the number of parent nodes.
Section 5.1 introduces the exponential memory blow-up problem and motivates
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the need for the scalable k-out-of-n model. Section 5.2 gives an overview of how
to realize the scalable AND/OR models, followed by the main contribution of the
scalable k-out-of-n model and its noisy representation. Next, Section 5.3 provides
a memory and performance evaluation by comparing the previous modeling re-
sults from Chapter 4 with the results of equivalent models that use the scalable
representation. Section 5.4 discusses related work. Finally, Section 5.5 concludes
this chapter.

5.1. Introduction

Large-scale cloud services pose modeling challenges that require scalable avail-
ability models. Nowadays, the number of instances for redundant and replicated
services usually exceeds the typical size of three and five instances. FaaS offerings
such as AWS Lambda or key-value storage solutions such as Casandra [136] tend
to have tenths or hundreds of replicated instances. The previously defined avail-
ability model mainly depends on the Bayesian network representation of fault
tree gates. These Bayesian network nodes are so-called converging nodes, i.e.,
nodes in which multiple parent nodes converge. However, with an increasing
number of parent nodes, the CPT grows exponentially in size [34]. Especially
when modeling replicated services, the resulting CPTs of the state nodes Qi grow
exponentially in the number of instances.
So far, the Bayesian network representation for redundant and voting-based

replicated service uses the k-out-of-n model. Let us assume we model a repli-
cated service with n instances. The state nodes Q1 to Qn have a total CPT
size of O(n × 2n). Consequently, a node with n = 30 parent nodes already re-
sults in 30 × 230 CPT entries, which amounts to several gigabytes of memory.
Hence, a node with n = 60 parent nodes requires 60 × 260 CPT entries, which
amounts to several zettabytes of memory, making it impossible to store in to-
day’s state-of-the-art compute infrastructures. For small n, e.g., three or five, as
known from transaction-oriented database systems, the memory is not the limit-
ing factor. However, inference becomes intractable for larger n > 30 as used in
key-value storage such as Casandra [136]. Therefore, a scalable k-out-of-n model
is necessary to represent services with more replicas.
This chapter provides a solution to mitigate the exponential growth for the class

of services that use the k-out-of-n model to represent redundant, and voting-based
replicated services. Scalable Bayesian network structures already exist for the
AND/OR models [135]; however, a scalable structure for the k-out-of-n model is
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missing. Hence, the contribution of this chapter is a scalable k-out-of-n model [61],
which is compatible with standard inference algorithms while simultaneously re-
ducing the exponential growth of CPTs to polynomial growth. Moreover, further
contributions also include an approach to automatically replace non-scalable k-
out-of-n models with their scalable counterparts in existing Bayesian networks
and concepts to implement a scalable noisy k-out-of-n model. Finally, evalua-
tions show the superiority of the scalable k-out-of-n model by comparing it with
performance results from the previous chapter.

5.2. Scalable Gate Structures

The following section introduces the formal construction of the scalable k-out-
of-n model. It starts with a brief discussion on conditional independence, a key
requirement for the transformation. Afterward, for the sake of completeness, this
section briefly presents the scalable AND/OR models. Finally, this section shows
how to derive the scalable k-out-of-n model from its non-scalable counterpart
step-by-step.

5.2.1. Causal Independence

In general, input events of fault tree gates have an individual contribution to the
output event. Hence, the AND/OR and k-out-of-n voting gate representations for
Bayesian networks give rise to the possibility of exploiting causal independence,
representing their nodes in a memory-efficient manner. In this work, causal in-
dependence refers to the “temporal definition of causal independence” as defined
in [135,137].

Figure 5.2.: Bayesian network representing an effect influenced by its causes

Consider the common case of a converging node E with parent nodes C1 to
Cn as shown in Figure 5.2. The parent nodes are commonly referred to as cause
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variables, whereas the child node is the effect variable. The temporal definition
of causal independence assumes that when cause variables randomly change their
state over time, their temporal behavior has only an individual contribution to
the probability distribution of the effect variable. Roughly speaking, the effect
is the sum of its causes. In detail, assume Cj,t refers to the cause variable Cj

at time t, and Et to the effect variable E at time t. Suppose the cause variable
Cj changes its state within the time interval t and t′, while the remaining cause
variables remain unchanged. In that case, the effect variable changes its prob-
ability distribution depending solely on the state transition of Cj. Hence, the
change of the final probability distribution of the effect variable is independent
of the current states of the remaining cause variables. In order to determine if
a variable is conditionally independent, Heckerman and Breese [137] propose the
following assertion criteria.

Definition 9 (Causal Independence Assertion)

∀t < t′, Cj : (Et′ ⊥ C1,t, . . . , Cj−1,t, Cj+1,t, . . . , Cn,t|

Et, Cj,t, Cj,t′ , Ck,t = Ck,t′ for k 6= j)

This assertion reads as follows. Assume Cj changes its state, then the effect
variable E is conditionally independent (⊥) of the remaining cause variables,
given that the states of the remaining cause variables have not changed Ck,t =
Ck,t′ for k 6= j, while Cj,t makes its transition in the time interval t to t′.

Figure 5.3.: The temporal Bayesian network structure.

For instance, the causal independence assertion can be fulfilled by a chain-like
Bayesian network structure, as shown in Figure 5.3, also known as the temporal
representation. The space reduction is evident. While a child node with n parents
requires 2n tables entries for binary variables, the temporal representation requires
only 4n + 1 (plus one for the initial variable E0).
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According to Heckerman and Breese [137], for the causal independence assertion
to hold, the cause variables need to have a distinguished state that does not
contribute to the effect. For example, for binary random variables with states
{F, T} that represent the availability of components in a system, the state T

does not affect the system’s availability. In contrast, changing a component’s
state from working to unavailable might affect the system’s availability.
The variables E0 to En are so-called contribution variables. The result of the

final variable En represents the original effect variable E. A contribution variable
Ei adds the individual contribution of its connected cause Ci to the overall contri-
bution, as perceived by its former contribution variable Ei−1. If the cause variable
is in the distinguished state, its corresponding contribution variable only forwards
the effect of its predecessor. Hence, E0 represents the effect when all-cause vari-
ables are in the distinguished state. The general goal of knowledge engineers is to
find the appropriate CPT definitions for the contribution variables so that En is
equivalent to E. To exemplify this task, we first discuss the temporal definition
of the AND/OR models.

5.2.2. AND/OR Models

Appropriate definitions for scalable Bayesian network structures of the (noisy)
AND/OR models already exist [135]. This section briefly introduces these models
for completeness since they are also part of the performance evaluation at the end
of this chapter.

Figure 5.4.: The temporal AND model.

Figure 5.4 and 5.5 show the CPTs of the contribution variables to represent
the AND/OR models from Equations 4.2 and 4.3 as temporal structures. Since
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the contribution variables have at most two parent nodes, the CPT has only to
account for four entries. The counter probability does not need to be stored since
it can be computed from the first entries with P (Ei = F |Ci, Ei−1) = 1− P (Ei =
T |Ci, Ei−1). Thus, the temporal AND/OR models have linear memory growth in
the number of parent nodes.

Figure 5.5.: The temporal OR model.

For the AND model shown in Figure 5.4 , the contribution variables implement
a smaller AND model. E0 initializes the chain by being in state F . Similarly, for
the OR model shown in Figure 5.5, the contribution variables implement smaller
OR nodes for the OR model, whereas E0 initializes the chain by starting with
state T .

Both models can also introduce a leak probability for the system to fail despite
having sufficient working components available. This leak probability qleak can be
added as part of the last contribution variable. For the AND model, the system
can fail with probability qleak although some components might still work.

P (En = F |Ci = F, En−1 = F ) = 1
P (En = F |Ci = F, En−1 = T ) = qleak

P (En = F |Ci = T, En−1 = F ) = qleak

P (En = F |Ci = T, En−1 = T ) = qleak

And for the OR model, the system can fail with probability qleak although all
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components still work.

P (En = F |Ci = F, En−1 = F ) = 1
P (En = F |Ci = F, En−1 = T ) = 1
P (En = F |Ci = T, En−1 = F ) = 1
P (En = F |Ci = T, En−1 = T ) = qleak

Additionally, aside from the leak probability, the AND/OR model can also
include noise to address the chances of the system being still available even in
the advent of insufficient working components. Such events might have a low
probability, but it accounts for the potential of possible fail-over mechanisms
that have not been identified or are simply missing in the system design. For
example, a DNS server fails to update its registry (a partial failure that still
requires repair); however, cached requests can still be served, allowing some cloud
services to function correctly for an uncertain amount of time.
For the temporal noisy AND, the model adds a probability value qi

noise to its
contribution variable Ei to model the chance of the system working even though
Ci is in a faulty state.

P (Ei = T |Ci = F, Ei−1 = F ) = qi
noise

P (Ei = T |Ci = F, Ei−1 = T ) = 1
P (Ei = T |Ci = T, Ei−1 = F ) = 1
P (Ei = T |Ci = T, Ei−1 = T ) = 1

(5.1)

Conversely, for the temporal noisy OR, the model adds a probability value qi
noise

to its contribution variable Ei to describe the chance of the system to work even
if some Ci are observed in a faulty state given that the previous Ci−1 components
have not failed. However, if one component has failed at some point, the OR
semantics require that the whole system is considered unavailable.

P (Ei = T |Ci = F, Ei−1 = F ) = 0
P (Ei = T |Ci = F, Ei−1 = T ) = qi

noise

P (Ei = T |Ci = T, Ei−1 = F ) = 0
P (Ei = T |Ci = T, Ei−1 = T ) = 1

(5.2)

The temporal AND/OR models are special cases of the k-out-of-n model, with
AND being an n-out-of-n model and OR being a one-out-of-n model. Neverthe-
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less, other combinations for k are impossible with binary contribution variables.
Therefore, next follows the concepts on how to implement a temporal k-out-of-n
model.

5.2.3. k-out-of-n Model

The following section shows how to derive the scalable k-out-of-n model by grad-
ually changing the non-scalable k-out-of-n model representation into its scalable
form.
The foundation of the scalable k-out-of-n model is the temporal noisy adder [135],

which is the scalable version of the general noisy adder. A noisy adder is a random
variable representing a counter. Its probability distribution defines the likelihood
of observing how many causes are in a certain dedicated state. For example,
Figure 5.6 shows an adder model for the dedicated state F with three binary
parent nodes C1 to C3. The effect node N has an Integer domain with the states
dom(N) = [0, 3], which reflects the total count of causes that are in state F 1

within a particular instantiation. Consequently, for n causes, the domain of N

would be dom(N) = [0, n].

Figure 5.6.: The adder model.

To solve the exponential memory growth, Heckerman [135] proposed the tem-
poral (noisy) adder. For example, Figure 5.7 shows the corresponding temporal
adder (with no noise) for the three cause variables, where the contribution variable

1The corresponding publication [61] considers the dedicated state T . However, w.l.o.g., in
order to remain in line with the fault tree voting gate definition of the Bayesian network
availability model, F has been chosen instead.
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Ei stores the intermediate count of all cause variables that are in the dedicated
state up to the i-th cause variable Ci. Thus, Ei can count at most i observa-
tions, hence its possible states are dom(Ei) = [0, i]. Here, E0 has no utility other
than offsetting the counter if necessary. Consequently, the CPT of a contribution
variable Ei (except for E0) is as follows:

∀i ∈ [1, n], ∀m : m < i

P (Ei = m + 1|Ei−1 = m, Ci = F ) = 1
P (Ei = m|Ei−1 = m, Ci = F ) = 0

P (Ei = m + 1|Ei−1 = m, Ci = T ) = 0
P (Ei = m|Ei−1 = m, Ci = T ) = 1

(5.3)

Ei changes its count from m to m+1 with probability one, whenever Ci is in state
F . However, if Ci = T , then Ei propagates the current state of his parent node
Ei−1. E0 is initialized to P (E0 = 0) = 1 so that the adder can start from zero.
Finally, the last contribution variable En contains the count and is equivalent to
the node N .

Figure 5.7.: The temporal adder model.

Now consider the original (non-scalable) Bayesian network implementation of
the k-out-of-n model as exemplified in Figure 4.8. For readability reasons, lets
write again the CPT definition of the k-out-of-n model as introduced in Equa-
tion 4.4 from the previous chapter, assuming we have random variable K with a
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conditional probability distribution based on the variables C1 to Cn.

∀c1, . . . , cn ∈ {F, T}n

P (K = F |c1, . . . , cn) =

1 ∑n
i=1 1F (ci) ≥ k

0 otherwise

P (K = T |c1, . . . , cn) = 1− P (K = F |c1, . . . , cn) (5.4)

The conditional probability distribution P (K = F |c1, . . . , cn) is 1 if k and more
instances of the parent variables are in state F , and 0 otherwise, where c1, . . . , cn

represent one particular instance of states of the random variables C1 to Cn.

Assuming causal independence, defining T as the distinguished neutral state,
and F the dedicated state that increments the sum, P (K = F |c1, . . . , c2) can
be represented as P (K = F |N = m), where N is a random variable with the
domain [0, n]. N reflects the total count of parent variables in state F . Thus, N
implements an adder model since it counts the occurrences of a dedicated state
of its parent variables.

∀m ∈ [0, n], ∀c1, . . . , cn ∈ {F, T}n

P (N = m|c1, . . . , cn) =

1 ∑n
i=1 1F (ci) = m

0 otherwise.

The CPT of K has linear size now, due to its new conditional dependency to
N.

∀m ∈ [0, n]

P (K = F |N = m) =

1 m ≥ k

0 otherwise.

Nevertheless, the issue of the exponentially growing CPT shifts to N, due to its
conditional dependency on the variables C1 to Cn. However, the conditional prob-
ability distribution of N represents an adder and, therefore, can be substituted
with the temporal-adder model.

∀m ∈ [0, n],∀c1, . . . , cn ∈ {F, T}n

P (N = m|c1, . . . , cn) = P (E0 = 0)
∏

i∈[1,n]
P (Ei = ei|Ei−1 = ei−1, Ci = ci)
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Node K is now conditionally dependent on En instead of N , i.e. P (K|En),
concluding the scalable k-out-of-n model, which can be regarded as a temporal
k-out-of-n model.

Figure 5.8.: Temporal representation of the k-out-of-n model.

Figure 5.8 depicts the resulting Bayesian network of the scalable k-out-of-n
model as two parts. The first part (gray box) contains the temporal adder struc-
ture, whereas the second part is the node K, which encodes the k-out-of-n seman-
tics of the model. Since En represents the total count of the causes C1 to Cn,
the conditional probability distribution of K can enforce the Boolean expression
of the k-out-of-n voting gate. Whenever the count is k and more, we define K ’s
conditional probability distribution as P (K = F |En ≥ k) = 1, otherwise 0. Fi-
nally, this model does not deviate from the standard Bayesian network formalism,
making it compatible with general-purpose inference algorithms.

The CPT of node K grows linearly in the number of cause nodes. However,
the overall space complexity of the temporal noisy adder grows polynomially in
the number of cause variables. The total number of contribution variables equals
the number of cause variables. The table size of a contribution variable is at most
O(n2). Hence, since there are in total n CPTs, the resulting space complexity is
O(n3), constituting a polynomial growth in the number of causes, similarly to the
computational complexity. The computational complexity of the temporal noisy
adder is O(n3) according to Heckerman [135]. Hence, the overall computational
complexity of the k-out-of-n model is O(n3).
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5.2.4. Noisy k-out-of-n Model

For the scalable k-out-of-n model, there are two options to include noise. The
first option introduces a leak to model systems that might fail although less than
k components have failed. The second option introduces a probability to account
for the observation uncertainty of components that trigger faults, although no
faults have occurred (false positives). Both options can be combined to form the
noisy k-out-of-n model.
The first option allows for m leak probabilities qm

leak at node K, representing a
system to fail even if less than m < k failures occurred.

∀m ∈ [0, n]

P (K = F |N = m) =

1 m ≥ k

qm
leak m < k

Notice, that each possible count m can have its own leak probability qm
leak. This

enables sophisticated models, where the leak probabilities can be low for small m

and increase for growing m, describing a faster degradation of a system, where
the risk of premature failure increases the more components fail.
The second option is to implement the general temporal noisy adder for the k-

out-of-n model. The temporal noisy adder considers noise by adding a probability
qi

noise to each contribution variable Ei to represent the chance of incrementing the
counter when observing Ci = F . Consequently the CPT of a contribution variable
Ei (except for E0) is as follows:

∀i ∈ [1, n],∀m : m < i

P (Ei = m + 1|Ei−1 = m, Ci = F ) = qi
noise

P (Ei = m|Ei−1 = m, Ci = F ) = 1− qi
noise

P (Ei = m + 1|Ei−1 = m, Ci = T ) = 0
P (Ei = m|Ei−1 = m, Ci = T ) = 1

5.2.5. Transformation Algorithm

Existing Bayesian networks that already contain the non-scalable implementation
of the k-out-of-n model can be automatically changed into an equivalent scalable
model. Assume that C1 to Cn are parent nodes of a converging network structure
with child node K. Then, the conversion of this Bayesian network into a scalable
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k-out-of-n model includes the following steps:

1. For each Ci, a contribution variable Ei with the domain [0, i] must be cre-
ated.

2. Let Ei be a child of Ci and Ei−1. Also, let K be a child of En.
For each Ei define the temporal adder model:

∀m : m < i

P (Ei = m + 1|Ei−1 = m, Ci = F ) = 1
P (Ei = m + 1|Ei−1 = m, Ci = T ) = 0

P (Ei = m|Ei−1 = m, Ci = T ) = 1
P (Ei = m|Ei−1 = m, Ci = F ) = 0

3. Define the conditional probability distribution of P (K|En) with:

∀k ∈ [0, n]

P (K = F |En ≥ k) = 1
P (K = T |En ≥ k) = 0
P (K = F |En < k) = 0
P (K = T |En < k) = 1

This algorithm introduces new nodes into the Bayesian network. These nodes
should not have any other parent nodes except for their associated cause variables.
If the existing Bayesian network model has multiple voting gates, denoted by the
nodes K1 to Km, then we apply the transformation similarly to each gate. We
represent the contribution variable of the i-th cause node that belongs to the j-th
voting gate model as Ei,j, to certify that the association to the voting gate is
unambiguous.

5.3. Evaluation and Discussion

In the following, this section demonstrates the feasibility of the scalable k-out-
of-n model by re-evaluating the largest problem instances from the last chapter.
All experiments were performed on a 64-bit machine with 64 Intel(R) Xeon(R)
CPU E7-4850 v4 at 2.10GHz and 1 TB of main memory, running Arch Linux
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5.13.12 with GCC 11.1.0, Python 3.9.6, and Numpy 1.20.3. If not stated other-
wise, Bayesian network inference is performed with approximate inference using
the forward sampling method. Moreover, throughout this section, the scalable
Bayesian network availability model will also use the scalable AND/OR models.

5.3.1. Replicated Services

First, we analyze the scalable k-out-of-n model in the context of a voting-based
replicated service that requires majority sets. All experiments will use the large
infrastructure example, c.f. Section 4.5, since it entails the most complex problem
instance in this work. Other voting schemes would also be possible, but they
would only change the content of the corresponding CPTs and do not influence
their size.
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Figure 5.9.: Comparing the inference and build time between the scalable (sc.)
and non-scalable (non-sc.) Bayesian network models to compute the
availability of a replicated service for an increasing number of replicas
using the large infrastructure model.

Figure 5.9 compares the build and inference time to compute the availability of
a replicated service using the scalable and non-scalable Bayesian network model
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for an increasing number of replicas. With the successive increase of replicas,
the inference time and the build time of the non-scalable Bayesian network grow
exponentially. What stands out is that the build time for a service with 27
replicas is four orders of magnitude larger than the build time of the scalable
counterpart. It took 13h to build the non-scalable Bayesian network. Therefore,
evaluations with more than 27 replicas became infeasible for the non-scalable
Bayesian network. Nonetheless, it was still possible to continue the evaluations
to 100 replicas for the scalable Bayesian network model.
Moreover, the non-scalable Bayesian network exhibits an exponential increase

in built and inference time, while the scalable model shows a polynomial growth.
Comparing the two results, it can be seen that the build time is always higher
than the inference time for the non-scalable models, whereas its the exact opposite
for the scalable model. Overall, these results show that even for 100 replicas, the
scalable Bayesian network is three orders of magnitude faster in building and
five times faster in computing the availability than the time required with the
non-scalable network for a quarter of the replicas. This is primarily a result of
the reduced number of CPT entries. Fewer CPT entries mean that the forward
sampling algorithm needs fewer samples to converge since the maximum number
of samples is a function based on the total number of CPT entries. If the network
size grows exponentially, the number of required samples also grows exponentially,
leading to an exponential increase in the inference time. Conversely, if the number
of CPT entries grows polynomial, the inference time increases accordingly.
Surprisingly, the non-scalable model shows a better performance for a small

number of replicas, i.e., n ≤ 13. These results are likely related to the additional
nodes inserted into the scalable Bayesian network, which ultimately increase the
inference time compared to the non-scalable counterpart. This finding has im-
portant implications for building the Bayesian network of a replicated service. If
a replicated service has three or five replicas, it is best to use the non-scalable
k-out-of-n model. However, if the service has more than 18 replicas, one should
clearly use the scalable model instead.

5.3.2. Scenario Models

So far, we have analyzed the scalable k-out-of-n model and its impact on the
performance of the Bayesian network for one replicated service. Next, we will
analyze scenarios with three to fifteen replicated services. All evaluations will
use the large infrastructure example. Additionally, the scenarios will use the
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multi-tier and fully-connected service topology.
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Figure 5.10.: Comparing availability results between the scalable and non-scalable
models for an increasing number of services and an increasing num-
ber of instances per service, using multi-tier service topology and
the large infrastructure model.

Figure 5.10 and Figure 5.11 show the availability results of the scenarios intro-
duced last chapter in Section 4.5. All scenarios in Figure 5.10 use the multi-tier
service topology, whereas the experiments in Figure 5.11 use the fully-connected
service topology. The availability values of the non-scalable Bayesian network
models are the same as in Section 4.5. Again, each service has the same num-
ber of replicated instances as indicated by the x-axis. What stands out in Fig-
ure 5.11 is that it is now possible to compute the availability for scenarios with
a fully-connected service topology with more than six services. As shown in the
last chapter, and here again, this was not possible with the corresponding non-
scalable Bayesian network model. Moreover, all experiments were repeated 20
times to compute their 95% confidence intervals, shown as interval bars in the
plots. Comparing the result of the scalable and non-scalable models, it can be
stated with 95% confidence that there is no significant difference in the inference
results for this evaluation, suggesting that the scalable and non-scalable models
provide the same outcome. However, these results were expected since the scal-
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Figure 5.11.: Comparing availability results between the scalable and non-scalable
models for increasing number of services and increasing number of
instances per service, using fully-connected service topology and the
large infrastructure model.

able k-out-of-n model is directly derived from the non-scalable without changing
the semantics of the Bayesian network formalism.
Next, Figure 5.12 compares the corresponding inference times. Independent of

the service topology, the timing results of the scalable models are significantly
higher for nine replicas in every scenario. With successive increase of services and
instances per service, the non-scalable models outperform the scalable models.
However, these results are consistent with the experiments with one replicated
service. The presented evaluation goes only as far as to model services with 15
replicas. As Figure 5.9 already showed, the non-scalable models are more suitable
for a smaller number of replicas since they do not have the initial overhead of
additional nodes compared to the scalable models. Therefore, applications with
more than 15 replicas need to be analyzed to develop a complete picture of the
timing behavior.
Figure 5.13 shows the performance results for scenarios with six services. Since

this is the largest architectural size for which inference is still tractable for the
non-scalable model. What stands out is the exponential increase of the build time
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Figure 5.12.: Inference time between the scalable and non-scalable models for an
increasing number of services and an increasing number of instances
per service, using the multi-tier and fully-connected service topol-
ogy.

contrasting a low inference time for the non-scalable model. While the inference
time is surprisingly low compared to the built time, inference was only possible
for up to 24 replicas. The most stunning result provides the scalable model, which
enables inference with 60 replicas per service. This amounts to a scenario with an
application architecture that has in total 360 instances that share communication
and infrastructure faults.
In summary, the evaluation showed that the scalable k-out-of-n model reduces

the total CPT size from exponential to polynomial in the number of instances for
replicated services. This enables the Bayesian network representation for large-
scale services while reducing the build time simultaneously.

5.4. Related Work

As mentioned in the previous chapter, Bobbio et al. [117] established the concepts
for assessing static fault trees with Bayesian networks, introducing the CPT def-
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Figure 5.13.: Inference time for a scenario with six services and increasing number
of replicas in conjunction with the large infrastructure example.

initions to model the AND/OR and k-out-of-n voting gates. These are the same
definitions as used in the availability model from the last chapter. However,
the CPT that implements the corresponding Boolean expression of the gates
grows exponentially with the increasing number of input events. Boudali and
Dugan [118,131] extended the Bayesian network modeling concepts of Bobbio et
al. to encompass also dynamic fault trees. They noticed the exponential memory
growth and indirectly suggested the parent-divorce method at the fault tree level
to generate a memory-efficient Bayesian network as part of the transformation
process. They also noticed the exponential table growth of the k-out-of-n voting
gate, but they did not provide a solution.
Iris and Kiureghian [138] have tackled the exponential memory growth problem

of the k-out-of-n voting gate by proposing a lossless compression algorithm based
on run-length encoding and Lempel Ziv compression to reduce the size of the
CPT. Their evaluations indicated that their approach does not scale for systems
with hundreds of redundant components. Moreover, their solution also requires
a custom inference algorithm to handle the compression.
In the early beginnings of probabilistic graph modeling, knowledge engineers
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introduced the notion of causal independence to design efficient Bayesian networks
to ease knowledge acquisition and increase inference performance [116, 139, 140].
Casual independence is a property of the parent nodes describing their influence
on the conditional probabilities of their child nodes. It assumes that each parent
node has an individual contribution to the conditional probability distribution,
independent of the remaining parent nodes.

Figure 5.14.: The parent-divorce method applied to a converging AND node.

Efficient Bayesian network structures have already been proposed for the noisy
AND/OR [116, 140–142], noisy MAX [143], and the noisy adder [144, 145] mod-
els by exploiting this causal independence property. In particular, Olesen et
al. [139, 146] suggested the parent-divorce method as a solution to reduce the
memory demand of the AND/OR models. The parent-divorce method is sim-
ilar to the divide-and-conquer approach, where a converging node is split into
smaller cascading nodes resulting in a lower number of parent nodes per child
node. Each new node in the cascade structure implements the corresponding
semantic depending on the original semantic of the initial node. For example,
Figure 5.14 shows the resulting Bayesian network structure when applying the
parent-divorce method to an AND model. As a result the final Bayesian network
remains compatible with existing inference algorithms since only new nodes are
added.
While the parent-divorce method works well for the AND/OR models, it is not

apparent how to use this model to represent the k-out-of-n model. In contrast,
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the temporal noisy adder proposed by Heckerman [135, 137] is more promising
due to its much simpler representation and algorithmic realization. The temporal
representation is a special case of the parent-divorce method. Instead of building
a balanced tree structure, the temporal structure is a skewed tree, which eases
construction and inference due to its pipeline-like processing of the causes.

5.5. Summary

The main goal of this chapter was to find a solution that mitigates the exponential
growth of the Bayesian network availability model to enable the assessment of
large-scale cloud applications. While there exists no general solution to this
problem, this work found a solution for the class for redundant and voting-based
replicated services, which are primarily implemented with the help of the k-out-
of-n model. So far, the AND/OR models already have scalable representations;
however, a scalable k-out-of-n model was missing. Therefore, this chapter tackled
this problem and proposed a scalable k-out-of-n model based on the temporal
noisy adder. The final solution effectively reduces the required space size of the
Bayesian network from exponential to polynomial.
Empirical results showed a significant decrease in memory space while still

computing the same availability and preserving its compatibility with standard
inference algorithms. Nevertheless, experiments showed that the non-scalable
Bayesian network models perform better for small service models with less than
13 instances. However, it is best to use the scalable model for large-scale services.
Nonetheless, another important practical implication is that Bayesian network
representations of static fault trees can now be implemented fully scalable since
all basic gate types have scalable counterparts now. Hence, fault tree analysis
can now profit from the scalable Bayesian network models to assess large-scale
fault trees as well.
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Chapter 6.

Service Recommendation System

Figure 6.1.: This chapter focuses on part three of the solution workflow, propos-
ing a service recommendation system to guide architectural design
decisions.

This chapter introduces a service recommendation system to assist architectural
design decisions by suggesting optimal cloud services that meet availability and
cost constraints [63]. This forms the last part of the solution flow, as shown in
Figure 6.1.
Section 6.1 introduces the problem statement. Afterward, Section 6.2 formu-

lates the optimization problem. Next, Section 6.3 exemplifies the recommen-
dation system with the help of the Harmony Search algorithm, analyzing the
feasibility and performance of the approach based on the Azure case study. Sec-
tion 6.4 discusses related work. Finally, Section 6.5 summarizes this chapter.

6.1. Introduction

Clams uses cloud computing patterns to express architectural intentions and to
aid developers in implementing best practices. In order to compute the availabil-
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ity of an architecture that consists of abstract components, the architecture needs
to be refined to contain concrete services before any availability assessment can
take place. Refining abstract components becomes complex when the refinement
matches multiple services. This rises the question which matching services are
best, when considering QoS and cost constraints? A simple solution would be to
probe for all matches. However, due to the large number of today’s service of-
ferings, finding optimal services can become intractable for an exhaustive search,
e.g., see the Azure case study summary in Table 2.1. Therefore, one might need
approximation to find a near-to optimal solution in a feasible time. Researcher
on web service composition face a similar problem when multiple web services
match the same interface description. They propose the use of meta-heuristics
to solve the web service composition problem [37, 40, 41, 45]. As a result, their
findings inspired this work to use meta-heuristics to find optimal refinements in
component-based architectures as used in the context of Clams.
The contribution of this chapter is the design and implementation of a refine-

ment process that utilizes meta-heuristics to find optimal services for a given
abstract architecture with subject to availability constraints. Clams encodes the
design space of an abstract architecture in its corresponding refinement trees.
Hence, necessary transformations are required to translate the design space of the
potential service configurations into an appropriate input for the meta-heuristic.
This work focuses on meta-heuristics that operate on loss functions where the
main goal is to find a service configuration that minimizes the loss. Consequently,
the loss function needs to encode the search objective.
In general, the refinement problem can be defined as follows in the context

of this work. For a given usage profile U that consists of one or more scenarios
S. We define an architecture as a vector of components A = 〈C1, . . . , Cn〉 ∈ Cn,
where A is the union of all abstract and concrete service components in S. If
an architecture has at least one abstract component, then the architecture is
said to be abstract; otherwise, when all components are concrete services, then
the architecture is said to be concrete. L is the set of all concrete architectures
that result from the refinement of an abstract architecture A. The main goal
of the recommendation process is to find an architecture in L that minimizes a
given loss-function L. However, since the solution space can become too large,
we consider the problem of approximating the solution with the help of meta-
heuristics, leading to the final problem definition:

Amin ≈ arg min
A∈L

(L(A))
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Although this work emphasizes availability-driven design decisions, one can use
the proposed recommendation process in the broader scope of QoS-driven service
recommendations. In brief, this chapter shows how to transform the refinement
trees into a suitable input for a search heuristic and define an appropriate QoS-
aware loss function that minimizes operation cost. Evaluations will employ the
Harmony Search algorithm [66] as a meta-heuristic to exemplify this recommen-
dation approach and apply it to the Azure case study, searching for optimal
services that are cost-minimal and above a given availability threshold.

6.2. Service Recommendation

This section describes the service recommendation system. It shows how to trans-
form abstract components into an appropriate input for a search heuristic and
express QoS-aware loss functions that minimize service cost. Finally, these sec-
tions introduce the Harmony Search algorithm as an implementation option to
realize the recommendation system.

6.2.1. Overview

Figure 6.2.: Gathering the potential service configurations from the refinement
trees.
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This section provides an overview of the recommendation system at a high
level. We assume a meta-heuristics takes in general as input a loss function and
a set of variables, which is a collection of n variables V = {V1, . . . , Vn} with a
finite domain of values. In our case, variables correspond to abstract components
containing concrete services (e.g. their component id reference) as values. Hence,
the domain of a variable is the set of all concrete service components, which are
the leaves in the corresponding refinement sub-trees. As a result, the overall
solution space L is the Cartesian product L = dom(V1)×· · ·×dom(Vn) of all the
domains from the variables in V . For instance, Figure 6.2 shows a set of abstract
components C1 to C3 of an architecture with their refinement trees. To build the
value domains of the input variables VC1, VC2, and VC3, we query the leaf nodes
of the sub-trees accordingly. For C1, we traverse the first refinement tree; for C2,
we traverse the second refinement tree starting at the second hierarchy level; and
for C3, we traverse the same tree at the third level. As a result, the input for the
meta-heuristic has the following values:

VC1 : dom(VC1) = {S5, S6}
VC2 : dom(VC2) = {S1, S2, S3, S4}
VC3 : dom(VC3) = {S1, S2}

Based on this input notion, we can design a recommendation system, as shown
in Algorithm 6. The recommendation system takes as input an architecture A =
〈C1, . . . , Cn〉 ∈ Cn with n components. It iterates over all components to collect
their concrete services by querying the leaf nodes in the sub-trees using breadth-
first search (line 5). Afterward, it provides the resulting list of input variables
and a loss function to the search heuristic in order to compute the final solution
Amin ∈ L, which only contains a set of concrete services. If some components
in A are already concrete service components, then the leafNodesAt function
will return that component as the sole solution for that variable. The remainder
of this section will discuss how to design and implement the QoS-aware loss
function L and provide more details on the SearchHeuristic with a focus on
the Harmony Search algorithm.

6.2.2. QoS-aware Loss Function

To help developers design a suitable loss function, we discuss a class of loss func-
tions that can be used as a framework to find cost-minimal services while adhering
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Algorithm 6 High-level description of the service recommendation system.
1: Input: A = 〈C1, . . . , Cn〉 . Abstract architecture
2: V := 〈〉 . Initialize empty list for vari-

ables
3: for ∀C ∈ A : do
4: V := [V, 〈VC〉] . Create new Variable VC for C

and append to V
5: dom(VC) := leafNodesAt(C) . Add all concrete services based

on the refinement tree of C to
the domain of VC

6: end for
7: Amin = SearchHeuristic(V ,L)

to given QoS constraints. Algorithm 7 describes this class of loss function as a
procedure consisting of three abstract methods that need to be implemented ac-
cording to the specific model, which is Clams in our case. In detail, this procedure
is called by the search heuristic and receives as input a concrete architecture A

sampled from L. The first step is to replace all components in the cloud applica-
tion model under consideration, with the concrete service proposal in A (see line
4). Here, we use the abstract method substitute to indicate this replacement
step. In the case of Clams, substitute would replace all component instances
in the sequence message chart of each scenario with their corresponding concrete
service in A.
Next, the procedure takes the resulting (concrete) cloud application model as

input to compute a QoS value with the evaluate method, which is, in our case,
the hierarchical availability model presented in Section 3. Afterward, based on
the cost of each component in A, the procedure computes the total cost c of
the model in line 6. At this stage, one might also consider more complex cost
functions which take more properties into account. However, since components
in Clams represent one specific configuration of a service offering with its cost,
the procedure computes the total cost as the sum of the components.
Finally, the loss functions returns the cost c if the QoS value meet the QoS re-

quirements (line 8), or, it returns infinity to rule out this set of concrete services
if the requirements are not met. Here, the procedure defines a generic method
check, which compares the evaluation result with the given QoS requirements.
This method needs to be implemented based on the according QoS metric. For
example, suppose we wish to find a cost-minimal set of concrete services that
result in an availability above a given availability threshold. In that case, we
need to check if the availability result exceeds the threshold. Nevertheless, other
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loss functions are also possible. Instead of returning a cost in line 8, a devel-
oper can use a different property or combination of multiple properties, including
performance estimates and resource usage, to define different selection criteria.

Algorithm 7 Generic loss function for QoS-aware service selection with cost
minimization.
1: procedure Loss(A)
2: global model . Abstract architecture
3: global QoSRequirements
4: concreteModel := substitute(model, A)
5: QoSValue := evaluate(concreteModel)
6: c := ∑

C∈A cost(C)
7: if check(QoSValue,QoSRequirements) then
8: return c
9: else
10: return Infinity
11: end if
12: end procedure

6.2.3. Harmony Search Algorithm

The search heuristic aims to approximate a solution A ∈ L. While multiple
meta-heuristics are suitable for solving the refinement problem, this work uses
the Harmony Search algorithm due to its algorithmic simplicity, small memory
footprint, and a small number of tuning parameters as an example implemen-
tation to build the recommendation system. The Harmony Search algorithm is
a meta-heuristic with an analogy in music improvisation [66]. Harmony Search
mimics an orchestra that improvises harmonies until they find a fantastic har-
mony according to some aesthetic measure. Musicians improvise through pitch
changes of their musical instruments, and while doing so, they remember only a
finite number of good harmonies. In this analogy, music instruments translate
to variables; each instrument can play a range of notes representing the possible
domain of values. The aesthetic measure represents the loss function L : L → R,
which takes a harmony as input and computes a loss value. The description of
the loss function represents the objective of the optimization problem.
The Harmony Search algorithm creates harmonies of length n, where n is the

number of components in the architecture. Hence, a harmony is the set of concrete
services. The Harmony Search algorithm does not consider the semantics of the
values of its variables. This happens only in the loss function, which Harmony
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Search generally regards as a black box. Therefore, developers need to provide
an appropriate loss function to find a solution that meets their QoS and cost
requirements.
The Harmony Search algorithm generates new harmonies by partially building

them from previously calculated harmonies and randomly sampling new values.
Algorithm 8 describes the Harmony Search algorithm in detail. The algorithm
works as follows:

1. Initialize harmony memory (HM). A cache where the Harmony Search al-
gorithm stores a collection of the best harmonies found during its execution
(line 2). In the beginning, the HM has random harmonies. The harmony
memory size (HMS) parameter defines the size of the HM.

2. Improvise a new harmony. Until the termination criteria is reached, the
Harmony Search algorithm generates a new harmony by iterating through
each variable and randomly choosing either an already used value from
the HM or a random value from the whole domain of values. The harmony
memory consideration rate (HMCR) ∈ [0, 1] at line 7 defines the probability
of selecting a value used in the HM or a value from the full domain (line
8 and 13). If the Harmony Search selects a value from the HM, it applies
the pitch adjustment rate (PAR) ∈ [0, 1] (line 9) to decide if a neighboring
value (with fifty-fifty probability) should be chosen instead. After creating
a new harmony, the Harmony Search algorithm computes the loss of the
harmony.

3. Test and Replace. If the new harmony has a lower loss than the worst
harmony in HM (line 19), the Harmony Search algorithm replaces the latter
with the former to exclude the worst harmony from the HM.

4. Termination. Repeat steps 2 and 3 until the maximum number of iterations
has been reached, and then return the harmony with minimal loss from the
HM.

The Harmony Search algorithm has four parameters that influence the approx-
imation quality: HMS, HMCR, PAR, and the maximum number of iterations.
While the HMS defines the memory footprint, HMCR and PAR are probabilities
that strive to escape local minima. We can also stop the algorithm anytime and
retrieve the most current solution. However, the quality of the solution improves
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Algorithm 8 Harmony Search Algorithm
1: procedure HarmonySearch(V,L)
2: init HM[1 . . .HMS] . Step 1: Initialize HM
3: while not Terminated do
4: harmony := new List(|V |)
5: . Step 2: Create new harmony
6: for each Vi ∈ V do
7: if random() < HMCR then
8: vi := randomFrom(HM[:,i])
9: if random() < PAR then
10: vi := randomNeighbor(vi)
11: end if
12: else
13: vi := randomFrom(dom(Vi))
14: end if
15: harmony.push(vi)
16: end for
17: . Step 3: Update HM
18: j := worstEntryIndex(HM)
19: if L(harmony) < L(HM[j,:]) then
20: HM[j] := harmony
21: end if
22: end while
23: . Step 4: Return the best solution
24: return arg minA∈HM L(A)
25: end procedure
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over time; the longer the execution, the higher the probability of finding an op-
timal solution. If all solutions are infeasible, then all harmonies in the memory
will have a loss of infinity.

6.3. Evaluation and Discussion

This section evaluates the recommendation system with the help of the archi-
tectural examples from the Azure case study. This evaluation conducts a series
of experiments to demonstrate the effectiveness and performance of the heuristic
approach compared to the results of an exhaustive search for the optimal global
solution.

6.3.1. Setup

All experiments were performed on a 64-bit machine with 64 Intel(R) Xeon(R)
CPU E7-4850 v4 at 2.10GHz and 1 TB of main memory, running Arch Linux
5.13.12 with GCC 11.1.0, Python 3.9.6, and Numpy 1.20.3. The implementation
of the Harmony Search and the exhaustive search algorithms are multi-threaded
and use approximate inference to assess the corresponding Bayesian networks of
the scenario models.
The Harmony Search algorithm requires four parameters. Instead of exhaus-

tively searching for optimal parameters, this work will use frequently used pa-
rameter values from literature [41, 66], to minimize the parameter search space
when performing hyperparameter optimization. Common values for the harmony
memory size are the 10, 100, and 1000; for the HCR, the values 0.8, 0.85, 0.9,
and 0.95; for the PAR, the values 0.05,0.1,0.2, and 0.4; and for the termination
criteria, 1000, 5000, and 10000. As a result of the hyperparameter optimization
based on a small subset of the architectural examples, this evaluation uses a har-
mony memory size of 10, an HCR value of 0.85, and a PAR value of 0.05. As
for the termination criteria, the Harmony Search will stop after 10,000 iterations,
i.e., after creating 10,000 samples.
This evaluation uses the architectural examples from the Azure case study pre-

sented in Section 2.5. Appendix A as well as Table 2.1 provide an overview of all
architectures. The search objective is to find a set of concrete services with mini-
mal operational cost while the overall availability estimation of the architectures
is above a given threshold. All experiments will again use the simple and large
cloud infrastructure models as described in Section 4.5. The threshold is highly
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subjective and depends on the specific system at hand. Since the infrastructure
models have different failure rates, the evaluation will use two different threshold
values accordingly.

We will also consider failure probabilities for service instances for the large cloud
infrastructure model. However, finding realistic failure probabilities is difficult
since companies usually do not disclose availability information at the instance
level. Nevertheless, Google has published the log traces of its Borg clusters,
which we can use as guidance to roughly estimate the magnitude of the failure
rates for individual instances [147]. Borg is a container orchestration system to
schedule jobs in a compute cluster. Jobs can be part of any internal or external
google service. Some jobs might be part of a MapReduce or PageRank execution,
while other jobs represent continuous services like Gmail, or Google Docs [148].
The traces contain 29 days of log data with resource and scheduling information
on about 24 million jobs. All jobs are anonymized and have no information
about their concrete purpose. However, the data includes if jobs have finished
successfully or failed. As a result, 1.3% of the jobs have failed during the trace
period. Assuming that a job is the same as an instance in our model, we will
sample the failure probability of instances again from a beta distribution with
Beta(100, 10000), which results in an average instance availability of 99.00% with
a standard deviation of 0.09%.

All services in an architecture will have the same replication degree. Here,
we will use two sets of experiments. The first set of experiments will have three
replicas per service, and the second set will have fifteenth replicas per service. All
instances are placed in round-robin across the hosts. Due to the relatively large
failure rates of the simple cloud infrastructure model, we will use an availability
threshold of 90% for those experiments. For the large infrastructure model, we
will use an availability threshold of 99.50% respectively.

Algorithm 9 describes the corresponding loss function, using the framework
shown in Algorithm 7. The function takes a set of concrete service components
A and substitutes the corresponding components in a given Clams model with
the help of the InsertServices method. Afterward, the loss function computes
the availability according to the application model from Chapter 4, using the
scalable Bayesian network structures from Chapter 5. Next, the computeCost
method computes the operational cost, assuming the application is deployed in
the same cloud region, i.e., Central US. Finally, the function checks if the avail-
ability exceeds the threshold.
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Algorithm 9 Loss function to find a cost-minimal service combination for a
given availability threshold.
1: procedure Loss(A)
2: global ClamsModel
3: global threshold
4: concreteModel := InsertServices(S,ClamsModel)
5: availability := computeAvailability(concreteModel)
6: c := ∑

C∈A cost(C)
7: if availability > threshold then
8: return c
9: else

10: return Infinity
11: end if
12: end procedure

6.3.2. Search Results

Table 6.1 summarizes the evaluation result by comparing the Harmony Search
algorithm with the results of an exhaustive search. It shows the architecture
name, the number of components, and the solution size, which is also the sorting
order. Furthermore, it contains four columns that summarize the outcome of
the experiments. Each column indicates if the evaluation used the Simple or
Large infrastructure and the number of replicas per service. Each experiment
was first performed with the search heuristic and afterward compared to the
optimal result found by the exhaustive search. Due to tractability reasons, the
evaluation only performed the exhaustive search for architectures with a search
space size of less than ten million. All those architectures with larger search
spaces or an execution time longer then 24h have a (-) minus sign. We repeated
each experiment five times. A check mark indicates that the search heuristic
has returned the same result as the exhaustive search for all repetitions, i.e., the
Harmony search algorithm has returned a service combination with (globally)
minimal cost. A cross indicates that the search heuristic has returned a different
result as the exhaustive search repeatedly.

What stands out in the table is that for almost all architectures, where an
exhaustive search was possible, the search heuristic’s results matches the exhaus-
tive search results. However, the Harmony Search has a termination criteria of
10.000 iterations. Thus, it is no surprise that it has found an optimal service
combination for all architectural examples with a solution size smaller than the
maximum number of search iterations. What stands out are those architectures
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Table 6.1.: Summary of the Azure case study.
Short # Services/

Abstract
Components

# Solutions Simple
3

Replicas

Simple
15

Replicas

Large
3

Replicas

Large
15

Replicas

App 1 2 2 X X X X
App 2 2 5 X X X X
App 3 2 131 X X X X
App 4 3 180 X X X X
App 5 2 690 X X X X
App 6 2 690 X X X X
App 7 3 8460 X X X X
App 8 4 42000 X X X X
App 9 3 76608 X X X X
App 10 3 188640 X X X X
App 11 2 220800 X X X X
App 12 5 340200 X X X -
App 13 4 414000 X X X -
App 14 2 666729 X x x -
App 15 5 4.0× 106 X - - -
App 16 3 6.4× 106 X - - -
App 17 4 1.8× 107 - - - -
App 18 5 2.0× 107 - - - -
App 19 6 4.6× 107 - - - -
App 20 4 2.1× 108 - - - -
App 21 5 5.5× 108 - - - -
App 22 6 7.4× 108 - - - -
App 23 5 9.3× 109 - - - -
App 24 7 7.4× 1010 - - - -
App 25 6 9.4× 1011 - - - -
App 26 8 1.1× 1012 - - - -
App 27 7 1.1× 1012 - - - -
App 28 7 2.3× 1012 - - - -
App 29 7 2.2× 1013 - - - -
App 30 8 2.7× 1015 - - - -
App 31 8 2.7× 1015 - - - -

X Result of Harmony Search is equal to the exhaustive search.
- Exhaustive search evaluation was not possible.
x Result of Harmony Search is not equal to the exhaustive
search.

with a solution size of a hundred thousand and more service combinations. Here,
two experiments were unsuccessful on the first run, but subsequent repetitions
returned the same results as the exhaustive search. Nevertheless, even when the
Harmony Search did not find the optimal solution, the (monetary) loss of the
search heuristic was two dollars off compared in those particular examples to the
optimal loss from the exhaustive search.

6.3.3. Performance Analysis

So far, the results of the search heuristic are promising and have found the global
minimum solution for most architectures. Next, we analyze the execution time
between small and large application models, to identify the factors that influence
performance.
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Figure 6.3.: Execution Time for finding an optimal solution for the simple archi-
tectural examples with three and fifteen replicas per service

Figure 6.3 shows the execution time of the Harmony search algorithm compared
to the exhaustive search, using the simple infrastructure for three and 15 replicas
per service. App 7 has a solution size of almost ten thousand service combinations,
which is why it is the break-even point where the exhaustive search and the
Harmony search algorithm have a similar execution time. The execution time of
one iteration is proportional to the size of the Bayesian network model. Hence,
when comparing App 12, which has five components, with App 14, which has two
components, the execution time for the exhaustive search and Harmony Search
algorithm of App 14 is less than the time for App 12. App 12 has a significantly
larger Bayesian network model to evaluate than App 14, which in turn requires
more time per iteration for the availability prediction of one service combination.
So, although App 14 has a larger solution space than App 12, the Harmony Search
and the exhaustive search were faster for App 14.

What stands out in the figure is that the execution time for services with 15
replicas is one order of magnitude higher than the same architectures with three
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replicas per service. The Bayesian network model of a service with three replicas
has nine channel nodes per service, whereas the corresponding service with 15
replicas has 210 channel nodes per service, which concludes the difference in
magnitude of the execution time. The Harmony Search algorithm takes less than
three minutes to evaluate the largest architecture (App 31). In contrast, the
models with the simple infrastructure example required at most 30 seconds to
return a solution. As a result, even for the largest architecture, the execution
time can provide a near to real-time user experience, which is important when
developers wish to evaluate multiple architectural alternatives in a timely manner.
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Figure 6.4.: Execution Time for finding an optimal solution for the large archi-
tectural examples with three and fifteen replicas per service

Figure 6.4 shows the repetition of the experiments shown in Figure 6.3, using
the large infrastructure instead. The results show that the execution time has
increased by one order of magnitude compared to the same experiments that
used the simple infrastructure. The number of channel nodes is the same as
for the models with the simple infrastructure, so the additional infrastructure
components cause the increase in execution time.

154



6.4. Related Work

In summary, comparing architectures with three replicas per service with 15
replicas per service shows that the replication degree is the primary performance
driver, followed by the number of services and the infrastructure size. In all exper-
iments, the Harmony Search algorithm used ten thousands iterations. Lowering
the number of iterations reduces the execution time, but also the chances decrease
to find the best service matches. Users might need to repeat the Harmony search
algorithm several times and select the most frequent result in that case. Overall,
this evaluation shows that the Harmony Search algorithm can find stable results
by using ten thousands iterations for this particular architectural examples.

6.4. Related Work

Research on artificial intelligence has introduced many meta-heuristics such as
tabu search [46], evolutionary algorithms [149, 150], or ant colony optimiza-
tion [43, 151]; all of which are valid solutions for the here proposed refinement
problem. Nevertheless, the Harmony Search algorithm [66] has successfully been
applied to solve the web service composition problem [37, 40, 45]. Bekkouche et
al. [41] provided a detailed performance evaluation on the Harmony Search al-
gorithm and its various improvements for the web service composition problem,
showing how to match semantic web services and create new compositions by
considering multi-dimensional QoS requirements. As a result, their findings in-
spired the use of the Harmony Search algorithm as a concrete implementation to
solve the refinement problem in this work.
Karpova and Buhnova [152] provide concepts on performance-driven architec-

tural refinement within the context of PCM [25]. In the case of multiple re-
finement matches, they suggest using the solution with the best performance
measure. They also mention the use of search heuristics to find solutions for
more complex quality evaluations, but they did not present concrete examples or
implementation suggestions.
A large body of literature has investigated patterns and pattern refinement in

software architecture composition [42, 82, 94, 95]. Previous research [77, 90, 91]
uses architectural refinements for pattern-based deployment models, but their
selection mechanism takes the first concrete solution that fits the pattern. This
does not necessarily mean it is optimal with regard to cost or QoS. Specifically,
Harzenetter et al. [90, 96] use Cloud Computing Patterns [64] and Enterprise
Integration Patterns [81] as abstract concepts to express agnostic deployment
models. They introduce Pattern Refinement Models (PRMs), representing the
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mapping from patterns to concrete deployment plans. So far, the refinement
algorithm uses the first PRM that fits the pattern. Hence, the matching approach
does not consider properties like QoS in its selection process.

6.5. Summary

In summary, this chapter introduced a service recommendation system to propose
optimal services that minimizes a given QoS-aware search objective. The refine-
ment step, which transforms an abstract architecture into a concrete architecture,
might result in multiple possible solutions. This chapter showed how to translate
the refinement solutions encoded in refinement trees into a suitable input for the
search algorithm and introduced a framework for loss functions to aid developers
in designing custom search objectives that minimize service cost while adhering
to QoS requirements. The evaluation used the Harmony Search algorithm and
applied it to the architectural examples from the Azure case study to exemplify
and validate the accuracy of the approach. Comparing the results with the opti-
mal solution of an exhaustive search showed that the Harmony Search algorithm
finds the global optimum for all the architectures where an exhaustive search was
possible and provides a significant performance advantage.
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Chapter 7.

Conclusion and Outlook

In summary, this thesis addressed numerous challenges on availability prediction
and availability-driven service recommendation for cloud computing. As a result,
the contribution of this work is four-fold. First, this work introduced a novel cloud
modeling language called Clams. Developers can use Clams to describe their ar-
chitectural intentions and communicate these to the cloud provider for availability
prediction. It is a scenario-based cloud modeling language that utilizes cloud com-
puting patterns to design architectures according to best practices and express
architectural design uncertainties. Developers can define usage profiles in Clams
to describe the behavior of users and how they interact with scenarios. Sce-
narios represent application-level functionalities that define the sub-architecture
consisting of cloud services necessary to implement the respective functionality.
Second, this work showed how to implement a hierarchical availability model

to predict the availability of a cloud application as a function of the user behav-
ior defined in the usage profile. This so called user-oriented availability model
uses DTMC as a root model to express the availability of executing an usage
profile successfully and a Bayesian network availability model at the lower level
to compute the availability of the individual scenarios that constitute the usage
profile. The Bayesian network availability model unifies the fault aspects, derived
from a higher level description of the scenario that consists of three sub-models.
These sub-models are a fault dependency graph to express the failure relations
between cloud services and the execution environment, a network model to ad-
dress communication and network partition failures, and a service model to define
availability requirements as function of the service instances. Evaluations showed
the feasibility of the Bayesian network approach to represent large applications
with hundreds of fault dependencies. However, the replication degree of cloud ser-
vices are constrained to exponential grow of memory size posed by the Bayesian
network formalism in conjunction with the Bayesian network representation of
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the k-out-of-n voting gate model.
Consequently, this work presents a scalable k-out-of-n model as a third con-

tribution to express large replicated cloud services with Bayesian networks. The
scalable k-out-of-n model is based on the temporal noisy adder model, which ef-
fectively reduces the required space size of the Bayesian network from exponential
to polynomial.
Finally, this thesis introduced a service recommendation system to assist archi-

tectural design decisions by suggesting optimal cloud services that meet availabil-
ity and cost constraints. Developers that cultivate an availability or QoS-driven
mindset develop their architecture by trying alternative design variants to find
cloud services that best fit their QoS requirements. However, nowadays, the large
number of service offerings makes it almost impossible to perform an exhaustive
search to check all configuration possibilities. Hence, this work introduced con-
cepts to utilize meta-heuristics in combination with Clams to guide architectural
decisions by proposing optimal cloud services. Here, we use the Harmony Search
algorithm to exemplify the main concepts and applied our findings to a set of
real-live architectural examples to demonstrate its feasibility.
There are several directions on how to extend this work. The remainder of

this chapter provides an outlook on potential short and long-term topics for the
future.

• Implement a Clams2TOSCA extension to deploy cloud architectures after
the refinement process has found an optimal service configuration. TOSCA
is already a well-established standard for cloud application orchestration,
for which tooling support already exists [54, 153]. Hence, it is more ad-
vantageous to translate Clams to TOSCA and use its existing deployment
engines.

• Consider the effects of long-running requests and their implications on com-
ponent failures and recoveries. Long-running requests introduce new tem-
poral aspects, which would require a dynamic Bayesian network approach to
model the time dimension, which results in larger and more complex mod-
els. Consequently, an increase in model complexity might require scalable
Bayesian network representations for dynamic fault tree gates. Dynamic
fault trees provide new gates that have temporal properties. While dy-
namic Bayesian network solutions exist for dynamic fault trees, scalable
implementations for the new gates do not exist.

• Predict the placement of cloud services within the infrastructure. In cloud
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computing, modern placement schedulers often use explicit rules to con-
strain the placement of instances to decrease the risk of common cause
failures. For example, a constraint might be to place instances or replicas
in different availability zones or data center sites. The goal is to use the
knowledge of the rules to predict which placements are likely to occur. This
opens the un-tapped potential to determine the average availability by pre-
dicting the most probable placements. Or, if the worst-case availability is
of interest, search for viable placements according to the rules that lead to
a high number of shared components between processes.
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Appendix A.

Azure Case Study

This chapter introduces all 31 architectural examples in detail. A crawler ap-
plication extracted the architectures from the Microsoft Azure Documentation.
The documentation offers 385 examples 1. Only the here presented examples had
an identifiable component list. However, due to the unstructured architectural
descriptions, there is no guarantee that all components were captured in all exam-
ples. The here presented architectures consists of a title, the web source, a brief
description, the number of potential scenarios when the example has a data flow
description, and a table with the components. The table contains the component
name, the number of potential service candidates that match the components if
its abstract, the search depth when the breadth-first search algorithm searches
for the leaf nodes, and the total number of traversal steps. The here presented
data was last verified on November 3th, 2021.

App 1: Speech Services

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/speech-services

Description:

An application to transcribe and analyze calls.

Number of Scenarios: 7

Components:
Component Name # Matching servicesRT DepthTraversing Steps
Storage Accounts Managed
Disks Premium Blob Storage

2 2 3

Azure Cognitive Services
Speech Services

2 2 3

1https://docs.microsoft.com/en-us/azure/architecture/browse/

161

https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/speech-services
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/speech-services


Appendix A. Azure Case Study

App 2: Unlock Legacy Data with Azure Stack

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/unlock-legacy-data

Description:

A solution to extend on-premise legacy applications to the cloud.

Number of Scenarios: 4

Components:

Component Name# Matching servicesRT DepthTraversing Steps
Virtual Network 5 2 6
VPN Gateway 1 0 0

App 3: HPC System and Big Compute Solutions

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/big-compute-with-azure-batch

Description:

A solution for batch processing of large tasks like image rendering, or large
scale simulations.

Number of Scenarios: 6

Components:

Component Name# Matching servicesRT DepthTraversing Steps
Storage Accounts 131 6 222
Batch 1 0 0

App 4: SMB disaster recovery with Double-Take DR

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/disaster-recovery-smb-double-take-dr

Description:

Disaster recovery of on-premise VMs and database services to the cloud
with Double-Take DR.

Number of Scenarios: 1

Components:
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Component Name# Matching servicesRT DepthTraversing Steps
Traffic Manager 36 3 52
VPN Gateway 1 0 0
Virtual Network 5 2 6

App 5: Loan Credit Risk + Default Modeling

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/loan-credit-risk-analyzer-and-default-modeli
ng

Description:

An application for credit-risk analysis using machine learning to predict
credit scores.

Number of Scenarios: unspecified

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Azure Machine Learning 115 1 115
Power BI Embedded 6 1 6

App 6: Predicting Length of Stay in Hospitals

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/predicting-length-of-stay-in-hospitals

Description:

Prediction service to estimate length of stay in hospitals.

Number of Scenarios: unspecified

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Azure Machine Learning 115 1 115
Power BI Embedded 6 1 6

App 7: Sharing location in real time using low-cost serverless Azure services

Source:
https://docs.microsoft.com/en-us/azure/architecture/example-
scenario/signalr/

Description:
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A general solution to implement real-time messaging services to share live
location, push notifications to mobile devices, or offer chat services.

Number of Scenarios: unspecified

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Service Bus 282 3 375
Azure SignalR Service 2 1 2
Azure Functions 15 2 17

App 8: Retail and e-commerce using Cosmos DB

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/retail-and-e-commerce-using-cosmos-db

Description:

An e-commerce application with advanced product search options.

Number of Scenarios: unspecified

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Hybrid Multimedia Web Application 1 0 0
Azure Cosmos DB 100 4 154
Azure Data Lake Storage Gen1 60 3 80
Azure Cognitive Search 7 1 7

App 9: DevTest Image Factory

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/dev-test-image-factory

Description:

Organizes images to assist teams in application development according to
compliance and security requirements.

Number of Scenarios: 6

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Azure Lab Services 8 1 8
Virtual Machines 1197 3 1205
Azure DevOps 8 2 10

App 10: Tier Applications & Data for Analytics
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Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/tiered-data-for-analytics

Description:

An best practice implementation of the three-tier architecture for the Azure
Cloud.

Number of Scenarios: 7

Components:

Component Name# Matching servicesRT DepthTraversing Steps
Storage Accounts 131 6 222
Azure Functions 15 2 17
Azure Stack Edge 96 6 189

App 11: Archive on - premises data to cloud

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/backup-archive-on-premises

Description:

A solution to store back up data to the cloud.

Number of Scenarios: 1

Components:

Component Name# Matching servicesRT DepthTraversing Steps
StorSimple 384 7 574
Blob Storage 575 8 879

App 12: Container CI / CD (...) on Azure Kubernetes Service(AKS)

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/container-cicd-using-jenkins-and-kubernetes-
on-azure-container-service

Description:

An solution that setups build environments to continuously build and re-
lease applications.

Number of Scenarios: 9

Components:
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Component Name # Matching servicesRT DepthTraversing Steps
Azure Kubernetes Service (AKS) 378 1 378
Container Registry 3 1 3
Azure Cosmos DB 100 4 154
Azure Monitor 3 1 3
Visual Studio Codespaces 1 0 0

App 13: SMB disaster recovery with Azure Site Recovery

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/disaster-recovery-smb-azure-site-recovery

Description:

An solution for disaster recovery of on-premise VMs and database services
to the cloud.

Number of Scenarios: 1

Components:
Component Name # Matching servicesRT DepthTraversing Steps
Traffic Manager 36 3 52
Azure Site Recovery 4 2 6
Virtual Network 5 2 6
Blob Storage 575 8 879

App 14: Adding a mobile front - end to a legacy app

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/adding-a-modern-web-and-mobile-frontend-to-a
-legacy-claims-processing-application

Description:

A web and mobile front end solution to display data aggregated form one
or more different business systems.

Number of Scenarios: 8

Components:
Component Name # Matching servicesRT DepthTraversing Steps
Virtual Machines 1197 3 1205
Azure SQL Database 557 9 662

App 15: Custom Data Sovereignty & Data Gravity Requirements

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/data-sovereignty-and-gravity
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Description:

Solution to securely send and store data according to company policies.

Number of Scenarios: 3

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Virtual Network 5 2 6
VPN Gateway 1 0 0
Azure SQL Database 557 9 662
Azure Functions 15 2 17
Azure Stack Edge 96 6 189

App 16: Design Review Powered by Mixed Reality

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/collaborative-design-review-powered-by-mixed
-reality

Description:

An application that realizes the collaboration between users that use Mi-
crosoft HoloLens to work 3D holograms together.

Number of Scenarios: 10

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Azure Active Directory 112 3 196
Blob Storage 575 8 879
Azure Cosmos DB 100 4 154

App 17: Demand Forecasting + Price Optimization

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/demand-forecasting-price-optimization-market
ing

Description:

A solution for demand forecasting in retail to automatically adapt and
optimize pricing of products.

Number of Scenarios: 3

Components:
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Component Name # Matching servicesRT DepthTraversing Steps
Azure Data Lake Storage Gen1 60 3 80
HDInsight 1224 4 1286
Data Factory 40 4 44
Power BI Embedded 6 1 6

App 18: Defect prevention with predictive maintenance

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/defect-prevention-with-predictive-maintenance

Description:

Failure prediction with machine learning, based on real-time assembly line
data.

Number of Scenarios: unspecified

Components:
Component Name # Matching servicesRT DepthTraversing Steps
Azure Stream Analytics 2 1 2
Event Hubs 60 3 75
Azure Machine Learning 115 1 115
Azure Synapse Analytics 242 5 440
Power BI Embedded 6 1 6

App 19: Enterprise-scale disaster recovery

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/disaster-recovery-enterprise-scale-dr

Description:

A solution where on-premise services use the Azure Cloud as failover.

Number of Scenarios: 1

Components:
Component Name # Matching servicesRT DepthTraversing Steps
Traffic Manager 36 3 52
Azure Site Recovery 4 2 6
Blob Storage 575 8 879
Azure Active Directory 112 3 196
VPN Gateway 1 0 0
Virtual Network 5 2 6

App 20: Hybrid ETL with Azure Data Factory

Source:
https://docs.microsoft.com/en-us/azure/architecture/example-
scenario/data/hybrid-etl-with-adf
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Description:

A hybrid Extract, Transform and Load (ETL) application that also uses
on-premises ETL services in the enterprise.

Number of Scenarios: 5

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Blob Storage 575 8 879
Data Factory Azure Data Factory V2
SQL Server Integration Services

38 2 40

Data Factory Azure Data Factory V2 39 3 42
Azure Synapse Analytics 242 5 440

App 21: Discovery Hub with Cloud Scale Analytics

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/cloud-scale-analytics-with-discovery-hub

Description:

An application to analyze data lakes, build reports, and visualize the results
in a dashboard.

Number of Scenarios: 5

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Azure Data Lake Storage Gen1 60 3 80
Azure Databricks 288 3 297
Azure Synapse Analytics 242 5 440
Azure Analysis Services 22 2 33
Power BI Embedded 6 1 6

App 22: Modern Data Warehouse Architecture

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/modern-data-warehouse

Description:

A data warehouse solution supporting ETL and analytical services.

Number of Scenarios: 4

Components:
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Component Name # Matching servicesRT DepthTraversing Steps
Azure Synapse Analytics 242 5 440
Data Factory 40 4 44
Storage Accounts Managed
Disks Premium Blob Storage

2 2 3

Azure Databricks 288 3 297
Azure Analysis Services 22 2 33
Power BI Embedded 6 1 6

App 23: Master Data Management powered by CluedIn

Source:
https://docs.microsoft.com/en-us/azure/architecture/referenc
e-architectures/data/cluedin

Description:

An application for policy conform data management based on CluedIn.

Number of Scenarios: 8

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Azure SQL Database 557 9 662
Azure SQL Managed Instance 71 6 100
Azure Cosmos DB 100 4 154
Azure Data Lake Storage Gen1 60 3 80
Data Factory Azure Data Factory V2 39 3 42

App 24: Advanced Analytics Architecture

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/advanced-analytics-on-big-data

Description:

An application to create and orchestrate custom machine learning models
to derive insights from data at scale.

Number of Scenarios: 6

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Azure Synapse Analytics 242 5 440
Data Factory 40 4 44
Storage Accounts Managed
Disks Premium Blob Storage

2 2 3

Azure Databricks 288 3 297
Azure Cosmos DB 100 4 154
Azure Analysis Services 22 2 33
Power BI Embedded 6 1 6
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App 25: Anomaly Detector Process

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/anomaly-detector-process

Description:

Detecting and monitoring abnormalities in time series data.

Number of Scenarios: 6

Components:
Component Name # Matching servicesRT DepthTraversing Steps
Service Bus 282 3 375
Azure Databricks 288 3 297
Power BI Embedded 6 1 6
Storage Accounts 131 6 222
Azure Cognitive Services 34 2 47
Azure Logic Apps 432 4 518

App 26: Personalized marketing solutions

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/personalized-marketing

Description:

A data analysis solution with recommendation engine to offer personalizing
offers to clients.

Number of Scenarios: unspecified

Components:
Component Name # Matching servicesRT DepthTraversing Steps
Event Hubs 60 3 75
Azure Stream Analytics 2 1 2
Azure Cosmos DB 100 4 154
Storage Accounts 131 6 222
Azure Functions 15 2 17
Azure Machine Learning 115 1 115
Azure Cache for Redis 68 3 80
Power BI Embedded 6 1 6

App 27: Quality Assurance

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/quality-assurance

Description:
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A solution for assembly lines to predict manufacturing failures, based on
machine learning with data stemming from testing systems and domain
knowledge.

Number of Scenarios: 8

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Event Hubs 60 3 75
Azure Stream Analytics 2 1 2
Azure Machine Learning 115 1 115
Storage Accounts 131 6 222
Azure Logic Apps 432 4 518
Azure Synapse Analytics 242 5 440
Power BI Embedded 6 1 6

App 28: Predictive Aircraft Engine Monitoring

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/aircraft-engine-monitoring-for-predictive-ma
intenance-in-aerospace

Description:

An application for maintenance prediction and health monitoring of aircraft,
based on time series data and machine learning at scale.

Number of Scenarios: unspecified

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Azure Stream Analytics 2 1 2
Event Hubs 60 3 75
Azure Machine Learning 115 1 115
HDInsight 1224 4 1286
Azure SQL Database 557 9 662
Data Factory 40 4 44
Power BI Embedded 6 1 6

App 29: Build web and mobile applications

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/webapps

Description:

A microservice-based e-commerce solution with analytical platform and rec-
ommendation engine
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Number of Scenarios: unspecified

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Azure Database for MySQL 82 4 116
Azure Cosmos DB 100 4 154
Azure Cache for Redis 68 3 80
Azure Kubernetes Service (AKS) 378 1 378
Event Hubs 60 3 75
Azure Databricks 288 3 297
Power BI Embedded 6 1 6

App 30: Predictive Insights with Vehicle Telematics

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/predictive-insights-with-vehicle-telematics

Description:

An application to predict driver habits and vehicle health based on diag-
nostic events and information from vehicle telematics.

Number of Scenarios: unspecified

Components:

Component Name # Matching servicesRT DepthTraversing Steps
Event Hubs 60 3 75
Azure Stream Analytics 2 1 2
Azure Machine Learning 115 1 115
Storage Accounts 131 6 222
HDInsight 1224 4 1286
Data Factory 40 4 44
Azure Synapse Analytics 242 5 440
Power BI Embedded 6 1 6

App 31: Real Time Analytics on Big Data Architecture

Source:
https://docs.microsoft.com/en-us/azure/architecture/solution
-ideas/articles/real-time-analytics

Description:

An application for near-real time data processing of event streams.

Number of Scenarios: 7

Components:
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Component Name # Matching servicesRT DepthTraversing Steps
Azure Synapse Analytics 242 5 440
Data Factory 40 4 44
Azure Data Lake Storage Gen1 60 3 80
Azure Databricks 288 3 297
HDInsight 1224 4 1286
Azure Cosmos DB 100 4 154
Azure Analysis Services 22 2 33
Power BI Embedded 6 1 6
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