
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterthesis

Application Integration and Team
Collaboration for Process

Optimization in Intralogistics

Sabri Bektas

Course of Study: Informatik

Examiner: Prof. Dr. Benjamin Uekermann

Supervisor: Dipl.-Ing. Thomas Rassmann

Commenced: January 26, 2023

Completed: July 26, 2023

Abstract

This work focuses on the potential benefits of integrating software applications and promoting team
collaboration to enhance intralogistic processes at Robert Bosch GmbH in Feuerbach. The current
study is a synthesis of a comprehensive review of pertinent literature and the practical application
of an architectural framework.

This research addresses the gap in literature, which lacks comprehensive guidelines for choosing
software architecture approaches aligned with non-functional requirements. The objectives are to
determine the necessary functionalities for an integrated solution, evaluate existing solutions and
technical models, design a target architecture and provide practical guidelines for implementation.

The key research question revolves around how already existing solutions can be integrated to
enhance intralogistics processes. To achieve these objectives, a comprehensive literature review
is conducted to identify suitable software architecture approaches. The study evaluates various
methodologies, considering non-functional requirements, culminating in an architecture ranking
matrix. Additionally, interviews with project teams and analysis of user stories guide architectural
decisions. The research emphasizes the microservices architecture as the selected approach for
seamless integration.

The message of this research is that the microservices architecture offers a scalable, modular,
and efficient solution for optimizing intralogistic processes. By integrating existing software
solutions and fostering effective teamwork, organizations can achieve enhanced sustainability and
customer experience. This research contributes valuable insights and practical recommendations
for leveraging existing solutions to develop comprehensive and efficient intralogistics application
systems. The proposed architecture serves as a template and guideline for the Virtual Development
Team at Robert Bosch GmbH, facilitating the realization of an optimized and sustainable target
system for intralogistics.

3

Contents

1 Introduction 13
1.1 Background . 13
1.2 Scope of this Research . 14
1.3 Structure . 15

2 Literature Review 17
2.1 Non-Functional Requirements . 18
2.2 Software Architecture Design Approaches . 19
2.3 Software Architecture Design Approaches Comparison 31
2.4 Software Architecture Design Approaches Ranking based on Non-Functional

Requirements . 32
2.5 Conclusion . 46

3 Integration Projects Overview 47
3.1 Business Understanding . 49
3.2 Stakeholder Overview . 53
3.3 System Context . 55

4 User Stories 57
4.1 User Stories Functional Requirements . 57
4.2 Non-Functional Requirements . 61

5 Architecture Modelling 65
5.1 Architecture Decisions . 66
5.2 Building Block View . 70
5.3 Component View . 71
5.4 Runtime View . 75
5.5 Deployment View . 76

6 Conclusion 79

Bibliography 81

A Project Team Interviews 87
A.1 ShipSmart . 87
A.2 Optical Inspection System . 89
A.3 Camera Area . 91
A.4 AutoID . 93
A.5 ShipQ . 94

5

B Architecture Decisions 97
B.1 Camera Hardware . 97
B.2 Customer Requirements Definition . 99
B.3 Customer Requirements Visualization (Packer User Interface (UI)) 101
B.4 Customer Requirements Fallback . 104
B.5 Packaging Validation Hardware Setup . 105
B.6 Packaging Validation Software . 107
B.7 Packaging Validation Fallback . 112
B.8 Delivery Model Backend . 113

6

List of Figures

2.1 Key Word Frequency . 20

3.1 User Interaction of Target System . 56

4.1 Use Case Coverage Diagram . 60

5.1 OIS and Camera Area . 66
5.2 Building Block View . 70
5.3 Component View - Shipment Validation Overall 72
5.4 Component View - Shipment Validation - Image Preprocessing Service 73
5.5 Component View - Shipment Validation - Detection Service 74
5.6 Component View - Shipment Validation - Validation Service 74
5.7 Runtime View - Shipment Validation . 75
5.8 Deployment View - Shipment Validation . 77

7

List of Tables

2.1 Architecture-Centric Design - Advantages & Disadvantages 21
2.2 Microservices Architecture - Advantages & Disadvantages 22
2.3 Cloud-Native Architecture - Advantages & Disadvantages 24
2.4 Waterfall Software Development - Advantages & Disadvantages 25
2.5 Domain-Driven Design - Advantages & Disadvantages 26
2.6 Service-Oriented Architecture - Advantages & Disadvantages 27
2.7 Event-Driven Architecture - Advantages & Disadvantages 28
2.8 Model-Driven Architecture - Advantages & Disadvantages 29
2.9 Reactive Architecture - Advantages & Disadvantages 31
2.10 Architectures - Advantages & Disadvantages & Key Features 32
2.11 Architecture Evaluation Matrix . 45
2.12 Architecture Ranking Table . 46

3.1 Project Comparison Matrix . 48
3.2 Stakeholder Overview . 54
3.3 Actor description . 55

4.1 Requirements of User Stories . 59
4.2 Non-Functional-Requirements Evaluation . 64

5.1 Architecture ranking table updated based on questionnaires 65
5.2 Architecture Decisions . 69

B.1 Camera Hardware . 99
B.2 Customer Requirements Definition . 101
B.3 Customer Requirements Visualization (Packer UI) 103
B.4 Customer Requirements Fallback . 105
B.5 Packaging Validation Hardware Setup . 107
B.6 Packaging Validation Software . 111
B.7 Packaging Validation Fallback . 113
B.8 Delivery Model Backend . 116

9

Acronyms

AD Architecture Decision. 66

AI Artificial intelligence. 13

AKS Azure Kubernetes Service. 76

API Application Programming Interface. 18

B2B Business-to-Business. 49

B2C Business-to-Consumer. 49

BOM Bill of Materials. 90

C&C Component-and-connector. 17

CA Camera Area. 59

CI/CD Continuous Integration/Continuous Deployment. 23

CNA Cloud-Native Architecture. 20

CQRS Command Query Responsibility Segregation. 30

DDD Domain-Driven Design. 20

DevOps Development and Operations. 24

EDA Event-Driven Architecture. 20

HTTP Hypertext Transfer Protocol. 27

HU Handling Unit. 89

IdM Identity Management. 90

ISO International Organization for Standardization. 87

JSON JavaScript Object Notation. 37

KPI Key Performance Indicators. 50

LDAP Lightweight Directory Access Protocol. 90

MDA Model-Driven Architecture. 20

OCR Optical Character Recognition. 73

OIS Optical Inspection System. 59

OS Operating System. 76

11

Acronyms

PIM Platform-Independent Model. 29

PoC Proof of Concept. 87

PSM Platform-Specific Model. 29

QA Quality Attribute. 18

QMH Queued Message Handler. 88

REST Representational State Transfer. 22

RFID Radio-Frequency Identification. 72

SaaS Software-as-a-Service. 113

SFTP Secure File Transfer Protocol. 88

SOA Service-Oriented Architecture. 20

SOAP Simple Object Access Protocol. 27

UI User Interface. 6

UML Unified Modeling Language. 15

UX User Experience. 48

VDT Virtual Development Team. 13

XML Extensible Markup Language. 37

YOLO You Only Look Once. 89

12

1 Introduction

1.1 Background

The fourth industrial revolution introduced innovative technologies that provide new opportunities
for improving production and logistics systems. Intralogistics, which entails the management of
resources such as materials and data within a warehouse or distribution centre, is essential for
guaranteeing efficient supply chain operations. For these facilities to meet customer demands and
maintain profitability, it is essential that they efficiently handle products. However, optimising
intralogistics processes is a difficult task that requires the coordination of multiple teams and the
integration of numerous technologies.

Companies can optimise their intralogistics processes by employing the appropriate software
applications and nurturing effective teamwork. This study examines the potential benefits of
application integration and team collaboration to enhance intralogistics processes within the context
of research conducted at Robert Bosch GmbH in Feuerbach. The research focuses on integrating
applications, enhancing sustainability and enhancing the consumer experience.

The automated identification of products within intralogistics processes is a challenge. In the
production route of Bosch, the automation of such processes is necessary. The benefits of automation
include the rapid categorization of goods in warehouses, which reduces barriers in the goods
receiving and disposal processes. Another advantage is the interface with other functions that
use this automation data for further goods administration. Artificial intelligence (AI) is a crucial
component of these automations, especially in goods recognition, which involves the analysis of
image data acquired from a camera system at a warehouse’s entrance.

The Bosch Corporation has a global presence, with departments and warehouses located in various
regions. To improve their processes, some of these stations have developed an intralogistics system
for automated product recognition. Currently, three geographically dispersed development teams
in Germany, Portugal and the Czech Republic are autonomously working on similar solutions.
These solutions include functionalities such as label recognition that are comparable. The proposed
concept of a Virtual Development Team (VDT) seeks to unify these disparate teams around a
central hub. This collaborative approach aims to promote knowledge exchange and mutual support,
resulting in solutions that are more effective, optimised and deployed more quickly. In addition, this
strategy endeavours to avoid duplicative solution development.

13

1 Introduction

1.2 Scope of this Research

Software architecture design is crucial to software projects. According to Chen et al. (2022), it
serves as a roadmap for the development team to follow while they create a system that can achieve
the project’s objectives [Cha20]. By outlining the framework and building blocks of the system,
software architecture design facilitates efficient collaboration amongst developers.

The success of a software project might be jeopardized by poor architectural planning. Bishung et
al. (2019) indicated that it might lead to technical debt, which would increase the difficulty and
expense of system maintenance [BKO+19]. System performance, scalability and dependability
might be negatively impacted as a result, leading to unhappy customers and financial losses for
businesses.

Software projects benefit from effective architectural designs. As a consequence, it has the potential
to provide a durable, scalable and low-maintenance system that boosts customer satisfaction and
organizational success. Sievi-Korte et al. (2019) argued that a flexible software architecture might
also aid in meeting evolving company needs [SRB19]. It is the reason that software architecture
design aids programmers in making a product that accomplishes the desired goals.

This work will investigate and propose a report for integrating and combining existing applications.
The main research question is: How can already existing solutions be integrated or combined? To
achieve this the study seeks to accomplish the following specific objectives:

• Determine the necessary functionalities for an integrated solution.

• Evaluate a variety of extant solutions and technical models to determine which ones best
meet the specified needs.

• Create a target architecture for combining and integrating the chosen solutions.

• Provide guidelines and recommendations for implementing the proposed framework in
real-world scenarios.

By addressing these objectives, the study intends to contribute to the field of software integration
by providing insights and practical recommendations for leveraging existing initiatives to develop
more comprehensive and efficient application systems.

During the course of my thesis, I received valuable support and guidance from my colleagues at
Bosch, who possess extensive expertise in the field of software architecture design. Their mentorship
proved instrumental in guiding me through the entire process. However, the specific area of the
shipment validation became the focal point of my individual efforts. I crafted the architectural draft
for this essential component. Subsequently, I presented and proposed the drafted architecture to the
VDT.

14

1.3 Structure

1.3 Structure

The work is structured as follows:

Chapter 2 – Literature Review: The literature review is presented in the second chapter, wherein
an analysis of contemporary software architecture approaches is conducted. Furthermore, a
ranking matrix is provided to facilitate the process of architecture selection.

Chapter 3 – Integration Projects Overview: This chapter showcases the various source projects
that require integration, alongside the presentation of the user interaction within the target
system.

Chapter 4 – User Stories: The fourth chapter focuses on the user stories that outline the functional
and non-functional requirements of the target system. These stories are prioritized based on
their importance.

Chapter 5 – Architecture Modelling: This chapter provides an in-depth analysis of the architec-
ture pertaining to the shipment validation component of the target system. It elucidates the
Component View, Runtime View and Deployment View through the utilization of Unified
Modeling Language (UML) notation.

Chapter 6 – Conclusion: In the last chapter, the results of the work are summarized and points
of reference are presented.

15

2 Literature Review

Software architecture designs refer to the overall structure and organization of software systems. The
purpose of software architecture is to provide a high-level overview of how the system is designed,
how its components interact with each other and how it fulfils its functional and non-functional
requirements. The fundamental principle of software architecture is that every software system is
designed and implemented to achieve an organization’s business goals.

Project teams can gain valuable insights into the benefits and drawbacks of various design
methodologies by conducting a comprehensive analysis of recent research and empirical studies. In
addition, a literature review can provide a greater understanding of the current state of industry
research and practice.

A collection of components joined by a relationship is referred to as a structure. These structures
cover the individual software parts, their interactions and the characteristics of each. Numerous
structures are used in the construction of software systems and none of those structures can be
regarded as “the architecture“. These structures can be classified into three primary categories, each
of which provides a valuable framework for understanding the architecture [Len12] [Kra15]:

• Component-and-connector (C&C) structures

• Module structures

• Allocation structure

C&C structures are concerned with the interactions between elements at runtime to accomplish
the functions of a system. C&C structures describe how a system is organized as a collection of
components, which represent the main units of computation. Connectors, on the other hand, act
as communication channels between components. Components can take various forms, including
services, peers, clients, servers and filters. Meanwhile, connectors facilitate communication between
components using methods like call-return, process synchronization operators and pipes. [Tov19a]
[ARI15]

Module structures are used to divide systems into implementation units, known as modules, which
indicate how a system is constructed or procured. Modules have specific computational tasks
and are used as a basis for work assignments for programming teams. In a module structure, the
system’s elements are modules of some kind, such as classes, packages, layers or other functional
divisions that are units of implementation. The focus of module structures is on static considerations
of the system, with less emphasis on how the software appears at runtime. Therefore, modules
represent a static way of analysing the system, with each module being assigned to a functional area
of responsibility. [NPHK15]

Allocation structures define how software structures are mapped to non-software structures
within a system, such as a system’s organization, development, testing and execution environments
[Len12].

17

2 Literature Review

All of the software architecture design techniques evaluated in the aforementioned literature review
provide full support for these three frameworks. The following literature is recommended for
obtaining additional information on the three structures and their associated patterns:

• L. Bass, P. Clements and R. Kazman, “Software Architecture in Practice (3rd Edition)”,
Architecture, 2012 [Len12]

• Mark Richards, “Software Architecture Patterns”, O’Reilly Media, 2015 [Ric15]

This evaluation will employ the non-functional requirements described in the subsequent section.
They are also referred to as Quality Attributes (QA) and are used to evaluate system architectures
during development and operation. Consequently, this evaluation employs these characteristics to
guide decision-making during the design phase of software architecture.

The prevalent modern approaches to software architecture are then described and compared. Next,
a subjective ranking value is assigned to the architecture design approaches, which may differ
depending on the specific implementation of the approach. Finally, a ranking table will be created
and used in the succeeding thesis to select an approach to software architecture.

2.1 Non-Functional Requirements

A QA is a measurable or testable aspect of a system that indicates how effectively the system
meets the needs of its stakeholders beyond the system’s core function. A quality characteristic
can be thought of as quantifying a product’s “utility“ along some dimension of importance to a
stakeholder.

• Availability: A Software’s ability to be active and prepared to perform its function whenever
you need it, is referred to as availability. By introducing the idea of recovery, availability
expands upon the idea of reliability by stating that when a system malfunctions, it fixes itself.

• Scalability: Is used to describe the capacity of a system to accommodate growing numbers
of users or data records without degrading performance. Horizontal and vertical scaling, as
well as load balancing and clustering, should all be considered while designing a scalable
architecture.

• Deployability: This is a property that describes how quickly and easily a piece of software can
be made available for use on a wide range of hardware and operating systems. Dependencies
should be kept to a minimum, configuration efforts should be kept to a minimum and
deployment consistency should be maintained across environments if the architecture is to be
considered deployable.

• Integrability: The capacity of software architecture to integrate without friction with other
systems and applications is referred to as Integrability. For an architecture to be easily
integrated with other systems, it must be built to accommodate a wide range of integration
patterns, data formats and protocols and have well-defined Application Programming
Interfaces (API).

18

2.2 Software Architecture Design Approaches

• Performance: Performance, in the context of software architecture, pertains to the capability
of the system to operate with effectiveness and efficiency across diverse contexts and under
varying workloads. A performant architecture is one that achieves the best possible results
in terms of throughput, scalability and resource usage, with the least possible latency and
reaction time.

• Testability: The capacity to test and verify the accuracy, resilience and performance of a
software design is known as its testability. A testable architecture is one that can facilitate
automated testing, has comprehensive documentation and provides accurate error reporting.

• Ease of Development: The simplicity and efficiency with which a software architecture may
be created, maintained and updated by its creators is what this quality metric is measuring.
Rapid prototyping, modularity and the obvious separation of responsibilities are all features
that should be supported by an easily-developable architecture.

• Modifiability: Software architecture modifiability is the trait of being easily and effectively
updated, expanded and changed.

• Usability: Usability is a quality characteristic that describes how easily, successfully and
satisfactorily users may use a software system to accomplish their objectives. It includes
features like user happiness, learnability, usability and fault tolerance. A software system
that is easy to use can increase user productivity, cut support expenses and training time and
increase user acceptance. [Len12]

2.2 Software Architecture Design Approaches

In the literature review, techniques based on the most prominent search terms for software architecture
are considered. The following search terms were used:

“software development“ OR “software engineering“
“modern software architecture“ OR “modern software designing“
“software architecture patterns“ OR “software design patterns“ AND “software architecture“ OR
“architectural design“

Google Scholar, IEEE, ACM, ResearchGate and Science Direct were utilised to locate articles and
publications. If the abstracts were considered suitable, papers whose topics corresponded to the
interests of the review were included.

Following the selection of relevant literature, the abstracts were combined to produce a word
diagram (Figure 2.1), with the magnitude of each word corresponding to its frequency in the list of
keywords.

19

2 Literature Review
5/4/23, 8:11 PM TagCrowd: create your own word cloud from any text

https://tagcrowd.com 1/1

services

applications

components
event

microservices

business

domain

method

process reactive
scalability

flexibility implementation
management mda

module needed

soa
testingused

advantages allows

cloud

increased

modularity

performance

waterfall

allocation approaches

cloud-native

connector ddd

deployment difficult eda event-driven

independently

resources

architecture-centric argued

consistency create deployed

language

responsiveness

stated step tasks team

technologies

Figure 2.1: Key Word Frequency

On the basis of the frequency of the associated terms, the following strategies were investigated:

• Architecture-Centric Design

• Microservices Architecture

• Cloud-Native Architecture (CNA)

• Waterfall Software Development

• Domain-Driven Design (DDD)

• Service-Oriented Architecture (SOA)

• Event-Driven Architecture (EDA)

• Model-Driven Architecture (MDA)

• Reactive Architecture

The explanations that follow will first describe the specific approach, followed by a description
of the phases involved, then list the advantages and disadvantages and lastly describe how the
fundamental structures are integrated.

20

2.2 Software Architecture Design Approaches

2.2.1 Architecture-Centric Design

Architecture-centric design is the process of designing software with an emphasis on architecture
over implementation. This method, according to Siek (2011), ensures that software architecture is
adhered to during implementation [Sie11].

The following are typical phases of an architecture-centric design:

1. The planning stage focuses on what the system requires and how it should be constructed.

2. The design stage plans the system’s architecture [MOTG17].

3. The authentication and confirmation phase includes analysing and evaluating the architecture
to ensure that it is of adequate quality and meets all system requirements [BKO+19].

4. The implementation phase entails the actual execution of the system architecture designed in
previous phases.

Advantages Disadvantages
Encourages early consideration of system ar-
chitecture [FYX20]

Can lead to over-engineering or premature
optimization [DL01]

Ability to develop and adapt to new circum-
stances by a well-architected system can keep
up with the evolving needs of a business
[SRB19]

May not accommodate changing requirements
or evolving technologies as easily as other
approaches [Dev17]

Can facilitate the creation of more robust and
scalable systems [CSW21]

May require significant up-front investment in
time and resources [Jai19]

May be easier to test and debug due to clearly
defined and modular architecture [RJ06]

Can limit creativity and innovation in the de-
velopment process [Cha20]

Can help identify potential risks and issues
before they become major problems [DL01]

May not be as adaptable to certain types of
projects or team structures [Cha20]

Table 2.1: Architecture-Centric Design - Advantages & Disadvantages

The Architecture-Centric Design methodology focuses on elucidating the system’s components
and connections. It emphasises breaking down complex systems into smaller, more manageable
components, each of which performs a narrowly defined set of duties and connecting those
components via suitable communication channels. The strategy recommends a modular architecture
that simplifies maintenance and adaptation, as well as a clear separation of concerns [XYBZ19]
[GPNV02]]. This method also takes allocation structures into consideration, as it attempts to assign
system components to actual hardware resources [Bos04]. The end result of this method is an
efficient system with well-defined interfaces between its components and judicious use of available
resources.

21

2 Literature Review

2.2.2 Microservices Architecture

The term “microservices architecture“ alludes to a type of software architecture in which an
application is divided into several small, independent components. Each service serves a distinct
purpose and may interact with other services via APIs that are well-defined. [AC22]

In recent years, microservices architecture has gained popularity due to its capacity to facilitate
rapid software development and deployment, as well as the straightforward scalability of individual
services. The process of implementing a microservices architecture includes isolating the various
services responsible for the application’s essential operations and features. [BQT22]

Microservice architecture prioritizes modularity, concern separation and scalability. It involves
deploying services independently using appropriate technology and resources. Kubernetes and
Docker Swarm can be used for service management and communication between services is enabled
through gateways or meshes. [AAE16]

The following are typical phases of a microservice architecture design [BQT22]:

1. Microservice architecture involves analyzing a monolithic application, identifying its compo-
nents and breaking them down into smaller, independent services.

2. Clear boundaries for each microservice are defined, determining their responsibilities and
communication protocols.

3. Effective communication mechanisms are designed using Representational State Transfer
(REST), APIs or message queues.

4. Deployment and scalability aspects are also crucial, with a robust infrastructure designed to
handle high traffic loads and scale up or down based on demand.

5. Monitoring and management of microservices are vital for smooth operation, with effective
logging, error handling and performance monitoring techniques helping identify issues and
optimize system performance.

Advantages Disadvantages
Can be scaled independently, allowing for
greater scalability and flexibility [WLS22]

Can add complexity, requiring careful design
and management [OHM+15]

Can be designed to be resilient, with the ability
to isolate and recover from failures [SAAA23]

With many services, there is a greater need
for monitoring, management and coordination
[MMd18]

Can be developed using different technologies,
allowing for greater flexibility and innovation
[WLS22]

May require additional infrastructure and tool-
ing, which can increase costs [RMM16]

Can enable greater autonomy for development
teams, allowing for faster decision-making and
innovation [AAE16]

Integrating multiple microservices can be com-
plex, requiring careful planning and manage-
ment [AAE16]
Susceptible to network delays and disruptions
[AAE16]

Table 2.2: Microservices Architecture - Advantages & Disadvantages

22

2.2 Software Architecture Design Approaches

The microservices architecture design concepts provide support for C&C, Module and Allocation
Structures. With this architecture, each microservice operates independently but can exchange
data with other microservices via well-defined communication channels [Len12] [Kra15]. The
modularity of microservices empowers developers to create a loosely coupled architecture wherein
each module assumes responsibility for a singular task and can be autonomously updated, deployed,
and scaled. This attribute of microservices allows for effective allocation of real or virtual resources
in response to demand.

2.2.3 Cloud-Native Architecture

The term CNA alludes to a style of construction that has been optimised for cloud-based computer
systems. It is the next stage beyond “conventional“ on-premise software development, in which
apps are developed with cloud compatibility in mind. Using CNA, developers construct and
release software applications utilising cloud-native tools such as containerization, microservices
and serverless computing [Lin17]. This technique decreases development and deployment durations
while enhancing scalability, robustness and portability[BHJ16].

The following are typical phases of a cloud-native design [KEP18]:

1. Design and Planning is the initial phase of cloud-native application development, gathering
requirements and defining the architecture. This includes defining microservices, selecting
appropriate cloud technologies, and planning the development process.

2. Development and Coding involves software development, implementing features, integrating
with external services, and ensuring the code is cloud-native and scalable.

3. Containerization and Packaging involves packaging the developed software into containers,
enabling consistent application running across various environments.

4. Continuous Integration/Continuous Deployment (CI/CD) practices are essential in cloud-
native development, automating code changes into a shared repository and testing it.

5. Orchestration and Management is the phase where a container orchestration platform like
Kubernetes is used to manage and automate container deployment, scaling, and monitoring,
ensuring the application is highly available, scalable, and resilient.

23

2 Literature Review

Advantages Disadvantages
Scalability: Easy to scale horizontally and
vertically [AP16]

Complex architecture, may require more exper-
tise[KEP18]

Resilience: High availability and fault toler-
ance [R G22b]

High cost, requires significant investment in
infrastructure [Pet17]

Agility: Fast and easy to deploy changes
[AP16]

Requires a mature Development and Opera-
tions (DevOps) culture and toolset [KEP18]

Portability: Can be deployed across different
cloud platforms [DL22]

Complexities in managing distributed data and
state [Pet17]

Efficiency: Optimized for cloud resources
[Clo20]

Increased network traffic and latency [Lin17]

Entails risk of vendor lock-in, in which appli-
cations are restricted to using a single cloud
service or set of technologies [BHJ16]

Table 2.3: Cloud-Native Architecture - Advantages & Disadvantages

In a study conducted by the Cloud-Native Computing Foundation in 2020, 83% of respondents
reported using Kubernetes as their container orchestration platform and 92% used containers in
production. This demonstrates the increasing popularity of cloud-native techniques. IBM found
that businesses utilising cloud-native technology experienced a 50% reduction in time-to-market
for new applications and a 25% increase in developer productivity. This suggests that companies
utilising CNA may gain substantial benefits. [Clo20]

The components of CNA are independently deployable and upgradable services. Components are
small, loosely coupled services and the connectors are the APIs and message protocols used by this
design [Len12]. Modules in CNA are frequently organised by enterprise-relevant functionalities or
domains. During development and deployment, each module is regarded as its own, independently
scalable function. Using this method, developing, testing and deploying distributed applications is
effortless [DL22]. CNA uses containerization and orchestration techniques to dynamically allocate
resources based on the needs of each application[Lin17]. This method is well-suited for cloud
deployment because it allows for dynamic resource allocation and efficient hardware utilisation.

2.2.4 Waterfall Software Development

Since the 1970s, waterfall development methodology has been the industry standard. According to
Ajmal and Ali (2016), the software is developed sequentially and each stage must be completed
before proceeding [AA16].

The phases of waterfall software development are as follows:

1. During needs collection, project requirements are evaluated and documented.

2. The criteria from the previous phase are used to construct the architecture and design of the
application.

3. Following software design, code is written to implement the plan.

24

2.2 Software Architecture Design Approaches

4. During testing, the software is evaluated to determine if it conforms to preexisting standards
and criteria.

5. Deployment is responsible for preparing the production environment for software operation.

Advantages Disadvantages
Clear structure and documentation throughout
the process [AA16]

Little room for flexibility or changes during
the development process [Sam19]

Phases and milestones are well-defined, mak-
ing it easier to manage and monitor progress
[AA16]

Testing is only done at the end, which can make
it difficult to identify and fix issues earlier on
[Sam19]

Easier to estimate time and resources needed
for each phase [Bas]

Can lead to a slower time-to-market due to the
sequential nature of the process [DM18]

Clients and stakeholders have a clear under-
standing of what to expect and when [Bas]

Lack of collaboration between team members
can lead to siloed work and less innovation
[DM18]

More suitable for projects with well-
understood requirements and a fixed scope
[Sam19]

Can lead to a higher risk of project failure if
initial requirements are incorrect or incomplete
[AA16]
Ineffective for developing complex software
[AA16]

Table 2.4: Waterfall Software Development - Advantages & Disadvantages

The Waterfall model focuses on the sequential flow of activities, with each phase having specific tasks.
It provides a framework for defining system requirements, identifying necessary components and
their interactions. The identification of components and connectors occurs during the requirements
gathering and analysis phase. The model does not explicitly prescribe a specific model structure, but
system requirements are documented and analyzed during the early phases, which serve as a basis for
creating high-level architectural models. The Waterfall model does not explicitly address allocation
structure, but during later stages, the system is divided into smaller modules or components, which
can be allocated to different development teams or individuals. [PWB09]

2.2.5 Domain-Driven Design

In 2003, Eric Evans published “Domain-Driven Design: Addressing Complexity at the Heart of
Software“, the first comprehensive DDD guidebook [Eva04]. DDD is a software development
technique that emphasises business domain knowledge, domain modelling and communication with
stakeholders.

The development team and business stakeholders must reach a consensus on standardised terminology.
Even when using specialised terminology, the language should be uncomplicated. This necessitates
dividing the system into smaller, more manageable components. Each environment must have a
scope-defining boundary.

The phases of DDD are as follows [Nic15] [Ver13]:

25

2 Literature Review

1. Identifying the core domain of the system. This includes understanding the main purpose
and unique aspects of the application that differentiates it from other systems.

2. Defining bounded contexts within the system. Bounded contexts help to clearly define and
isolate different subdomains or components within the larger application, enabling better
organization and separation of concerns.

3. Identifying and modelling the relationships and interactions between the different bounded
contexts. This helps to ensure that the components within the system work together seamlessly
and efficiently.

4. The final phase is the implementation phase, where the defined bounded contexts and
their relationships are implemented in the actual system. This involves coding, testing and
integrating the various components to create a functioning and cohesive application.

Overall, the process of identifying the core domain, defining bounded contexts, modelling re-
lationships and implementing the system is a crucial step in developing a successful software
application.

Advantages Disadvantages
Encourages collaboration between domain ex-
perts and developers [Ver13]

High learning curve for developers unfamiliar
with DDD [Eva04]

Focuses on the core business logic and domain
complexity [Eva14]

Can be more time-consuming to implement
compared to other approaches [Eva14]

Helps prevent technical debt and maintainabil-
ity issues [Abe07]

Requires a solid understanding of the business
domains [Nic15]

Allows for greater flexibility and adaptability
to changing business needs [Nic15]

May require more testing and validation to en-
sure business rules are accurately implemented
[Abe07]

Can lead to better scalability and modularity
in complex systems [HH06]

Can be over-engineered for simpler systems
[HH06]

Table 2.5: Domain-Driven Design - Advantages & Disadvantages

Each bounded context encapsulates a distinct domain of the application and domain entities represent
the domain objects and logic, in DDD’s C&C structure. Domain services, which offer a consistent
set of functions within a limited context, are an example of module structures, while aggregates,
which specify transactional consistency limits for a collection of domain entities, are an example of
allocation structures. [MMCF18] [Nic15]

2.2.6 Service-Oriented Architecture

When SOA is applied to the design of software architecture, applications can be viewed as a
collection of services. Since these services are interoperable, Hustad & Olsen (2021) assert that
they can be merged and reused to create more complex applications or to implement them into
existing infrastructure [HO20]. SOA, according to Mishra and Sarkar (2022), is founded on a

26

2.2 Software Architecture Design Approaches

design paradigm known as “service orientation“, which emphasises the production of modular,
reusable and replaceable components [MS21]. Some of the SOA’s phases and approaches include
the following [Erl] [MW07]:

1. The service identification phase entails identifying the architecture’s required services and
analysing business requirements and procedures to determine which functionalities can be
encapsulated.

2. The focus of service specification is the definition of specifications, such as inputs, outputs,
behaviour, constraints and policies.

3. Service realisation entails translating the architectural design into actual implementation,
choosing suitable technologies and frameworks and defining data models and communication
interfaces.

4. The deployment of a service entails setting up servers or cloud environments, configuring
networking and security settings and ensuring that all dependencies are implemented correctly.

5. Followed by service monitoring and management, which includes monitoring performance
metrics, administering service updates, addressing scalability concerns and ensuring efficient
resource allocation.

Advantages Disadvantages
Services can be developed and deployed inde-
pendently and reused across multiple applica-
tions [KK09]

The architecture is complex and requires sig-
nificant planning and design [Law04]

The modular design of SOA allows for scaling
of individual services as needed [MBKN09]

The added layers and communication between
services can impact performance [MBKN09]

Services can be added, removed or modified
without affecting the entire system [RGKS20]

Integration with non-SOA systems can be chal-
lenging [NIG+20]

Services can be deployed on different platforms
and locations, increasing availability [NIG+20]

Effective governance is needed to ensure con-
sistency and adherence to standards [KK09]

Table 2.6: Service-Oriented Architecture - Advantages & Disadvantages

Connectors in SOA are the communication protocols and mechanisms that permit interaction
between services. Using standardised protocols like Simple Object Access Protocol (SOAP) and
REST over Hypertext Transfer Protocol (HTTP), they facilitate data exchange and collaboration.
Components are independent services, whereas connectors facilitate their interaction. A module is
a logical unit that incorporates a specific set of functionalities or business processes in the context
of SOA. A module is typically a cohesive and independent element of code that is responsible for
implementing a particular aspect of the functionality of a service. On various physical or virtual
machines, containers or cloud platforms, services can be deployed. The allocation structure takes
scalability, performance, defect tolerance and resource utilisation into account. [NIG+20] [PH07]

27

2 Literature Review

2.2.7 Event-Driven Architecture

EDA software design encourages the production, monitoring and processing of system-level events.
Events are occurrences that have a significant effect on the system or its procedures. EDA decoupling
enables events to communicate across components that may be geographically distant. This strategy
increases the adaptability and scalability of the system. [IE06][BD14]

Typically, event detection and analysis consist of four steps: [IE06].

1. The event detection stage focuses on identifying system-relevant events as a first step.

2. In the second phase, event routing is taking place where message intermediaries and
publish-subscribe systems are employed.

3. The third stage involves gaining insight from the event and selecting future actions.

4. In the persistence phase, events are stored for auditing or additional analysis.

Advantages Disadvantages
Highly scalable and flexible [CB12] Complex to design and implement [DW05]
Supports real-time processing and asyn-
chronous communication [DW05]

Requires extensive event logging and monitor-
ing [CB12]

Decouples components and allows for indepen-
dent development and deployment [CB12]

Difficult to debug and troubleshoot [IE06]

Enables event-driven workflows and business
logic [Woo21]

Inconsistent performance due to variable event
processing times [IE06]

Can handle large volumes of data and events
[CB12]

Difficult to maintain consistency and transac-
tional integrity [IE06]

Promotes modularity and reuse of components
[DW05]

Requires specialized tools and expertise
[DW05]

Supports distributed and cloud-based systems
[Woo21]

Can result in a high number of redundant events
[DW05]

Can improve system responsiveness and agility
[Woo21]

Can result in increased network traffic and
latency [IE06]

Table 2.7: Event-Driven Architecture - Advantages & Disadvantages

Components in an EDA are typically categorised as either event producers or event consumers and
are connected via an event bus or message broker. Instead of considering the typical control flow
between components, the event-driven method focuses on the flow of events and the responses to
those events. Each module in an EDA system may contain multiple event producers and consumers,
with business capabilities serving as the organising principle. Allocation structure in EDA refers
to the distribution and assignment of event producers, event consumers and event processing
components within the architecture. [IE06] [Woo21]

28

2.2 Software Architecture Design Approaches

2.2.8 Model-Driven Architecture

MDA is a software development methodology that emphasises the use of models as the primary
artefacts for designing, defining and generating software systems. It provides a framework for
distinguishing the functionality of a system from its implementation. [09]

In MDA, the development process revolves around models, which are abstraction-level-specific
representations of the system. These models encapsulate the essential structure, behaviour and
functionality of the system. They serve as a common language for stakeholders such as business
analysts, developers and architects. [MAC+04]

MDA has several distinct phases, including the following [09] [GYE22]:

1. During the requirements collection phase, every need that the system must fulfil is meticulously
mapped out.

2. During the platform-independent modelling phase, a domain-specific modelling language is
used to convert the system requirements into Platform-Independent Model (PIM).

3. Automated model transformations are used to convert PIMs into Platform-Specific Model
(PSM). These PSMs are then utilised in later modelling phases.

4. During the phase labelled “code generation“ the PSMs are converted into machine-readable
code.

Advantages Disadvantages
Automates repetitive tasks [Bro04] Requires initial investment in MDA tools

[Joh01]
Improves development productivity [GYE22] Learning curve for MDA tools can be steep

[GYE22]
Provides consistency across the system [Sol00] Can be difficult to integrate with legacy systems

[AJW03]
Promotes code reuse and maintainability
[Bro04]

May be less flexible than traditional develop-
ment [Joh01]

Simplifies maintenance and updates
[MAC+04]

May require additional effort for customization
[09]

Enables faster time-to-market [GYE22] May not be suitable for all project types [Bro04]

Table 2.8: Model-Driven Architecture - Advantages & Disadvantages

MDA prioritises model structure over defining C&C structures. C&C can be represented as
encapsulated units of functionality with well-defined interfaces, with connectors serving as means of
communication and interaction. Modelling languages, such as UML, offer constructs for modelling
C&C, which depict architectural structure and relationships. MDA differentiates PIM and PSM,
enabling hierarchical relationships and transformations. MDA’s allocation structure incorporates
the distribution and allocation of system components and resources across the target architecture. It
provides a framework for capturing allocation influencing system requirements and design decisions.
This data can direct code generation or deployment processes to reflect the allocation of system
components and resources. [09] [AJW03]

29

2 Literature Review

2.2.9 Reactive Architecture

In modern software systems, Reactive Architecture is an architectural approach that prioritises
responsiveness, scalability and resilience. It emphasises managing and responding to large numbers
of concurrent and asynchronous events while maintaining a consistent user experience. Responsive-
ness, message-driven and event-based communication, elasticity and scalability, resilience, reactive
streams and backpressure, event sourcing and Command Query Responsibility Segregation (CQRS)
are key characteristics of reactive architecture. [DSM+17]

Reactive architecture prioritises delivering a high-quality user experience while guaranteeing the
stability and responsiveness of contemporary software systems.

The following are typical phases of the reactive architecture approach [AA15] [Sob10] [Tov19b]:

1. Collecting and analysing the application’s functional and non-functional requirements,
performance expectations and scalability needs.

2. Using modelling techniques such as event storming or domain-driven design for identification
of the system’s key components, data flows, interactions and relationships.

3. Reactive architecture significantly depends on event-driven design principles and emphasises
the utilisation of reactive components and patterns.

4. Data management is essential for effective data management and techniques such as distributed
databases, cache and stream processing are utilised.

5. Introduce mechanisms like fault-tolerant clustering, replication and self-healing capabilities,
reactive systems should be able to gracefully manage failures and maintain high availability.

6. Deployment and scaling are crucial stages in deploying the application to the desired
environment, including configuring infrastructure, establishing deployment pipelines and
scaling the system horizontally or vertically to accommodate increasing load or demand.

7. Continuous monitoring of a system’s health and efficacy requires monitoring and optimisa-
tion. Analysing collected data aids in identifying bottlenecks, optimising performance and
enhancing overall productivity.

30

2.3 Software Architecture Design Approaches Comparison

Advantages Disadvantages
Highly responsive and resilient [ELV+12] Requires significant expertise to design and

implement [DSM+17]
Scalable and adaptable to changing require-
ments [Tov19b]

Increased communication complexity and po-
tential for errors [Tov19b]

Promotes loose coupling and better separation
of concerns [SAM+19]

Increased network overhead [AA15]

Efficient use of resources [AA15] Debugging and tracing can be challenging in
distributed systems [Tov19b]

Supports event-driven and real-time systems
[SAM+19]

Not suitable for all types of applications or
systems [SAM+19]

Promotes modularity and reusability [AA15] Difficulty in testing and validating the system
as a whole [AA15]

Table 2.9: Reactive Architecture - Advantages & Disadvantages

Connectors are the means through which two or more components may exchange data with
one another in Reactive Architecture, with components themselves being tiny, self-contained
and autonomous entities. Connectors in Reactive Architecture are often event-driven, allowing
for non-blocking, asynchronous communication between components. Module organization in
Reactive Architecture often borrows ideas from microservices architecture, which breaks down
large systems into smaller, more manageable components. Services in a Reactive Architecture
are often implemented using a distributed allocation structure that optimizes performance and
availability and scales quickly to meet fluctuating demand. [DSM+17] [Tov19b] [AA15]

2.3 Software Architecture Design Approaches Comparison

Overall advantages, disadvantages and key features of all approaches are presented in following
Table 2.10.

Approach Advantages Disadvantages Key Features
Architecture
Centric De-
sign

Modularity, flexibility,
reusability, interoperabil-
ity, better system un-
derstanding, system-wide
consistency

Difficult to accommodate
late changes, requires sig-
nificant upfront design,
may be over-engineered
for smaller projects

Components, connectors,
interfaces, design pat-
terns

Micro-
services
Architec-
ture

Scalability, agility, re-
silience, independent
deployment, reusabil-
ity, fault isolation and
resilience

Complexity of testing, op-
erational overhead, la-
tency and overhead of net-
work calls

Services, API based com-
munication, load bal-
ancer, small and decou-
pled services, container-
ization
Continued on next page

31

2 Literature Review

Table 2.10 – Continued from previous page
Approach Advantages Disadvantages Key Features
Cloud-
Native
Architec-
ture

Scalability, high availabil-
ity, fault tolerance, porta-
bility, cost efficiency (pay-
as-you-go)

Complexity of orchestra-
tion, requires learning
new tools, security con-
cerns, vendor lock-in

Leveraging cloud ser-
vices and platforms or-
chestration, service dis-
covery, immutable infras-
tructure

Waterfall
Software
Develop-
ment

Well-defined phases, pre-
dictable outcomes, clear
documentation, rigorous
control, suitable for small
projects

Limited flexibility, diffi-
culty adapting to change,
poor collaboration

Sequential development,
comprehensive documen-
tation

Domain-
Driven
Architec-
ture

Modular design, im-
proved communication,
agile development, flex-
ibility

May require significant
refactoring of existing
code, complexity of im-
plementation, Learning
curve for DDD concepts

Bounded contexts, ubiqui-
tous language, aggregates
entities

Service
Oriented
Architec-
ture

Interoperability, scalabil-
ity, reusability, maintain-
ability, flexibility

Complexity of orchestra-
tion, service bloat, cou-
pling of services

Loose coupling, standard-
ized communication, fo-
cus on service and inter-
faces

Event-
Driven
Architec-
ture

Scalability, loose cou-
pling, extensibility, re-
sponsiveness, traceability,
fast responses

Debugging can be chal-
lenging, eventual consis-
tency, complexity of data
flow

Event bus, event sourc-
ing, event-driven messag-
ing (produces and con-
sumer)

Model
Driven Ar-
chitecture

Reusability, consistency,
automation, improved
communication, adapt-
ability to changes

Requires significant up-
front design, learning
curve, may be over-
engineered for smaller
projects

Models, transformations,
metamodels, platform in-
dependent modelling

Reactive
Architec-
ture

Scalability, responsive-
ness, fault tolerance, high
performance

Complex to implement,
requires skilled develop-
ers, debugging can be
challenging

Actors, streams, message
driven communication,
CQRS, asynchronous pro-
cessing

Table 2.10: Architectures - Advantages & Disadvantages & Key Features

2.4 Software Architecture Design Approaches Ranking based on
Non-Functional Requirements

One of the major characteristics of deciding on a software architecture approach is the non-functional
requirement evaluation.

32

2.4 Software Architecture Design Approaches Ranking based on Non-Functional Requirements

As discussed in Section 2.1 the nine non-functional requirements are evaluated regarding to the
architecture approaches. These variables aid in assessing and contrasting the efficacy of various
architectural strategies in achieving the required levels of these traits.

In this section, an assessment is conducted, followed by the construction of a matrix (Table 2.11)
wherein evaluation scores, ranging from 1 to 5, are assigned to each architecture method. A score
of 1 corresponds to a poor grade, while a score of 5 denotes an excellent grade.

2.4.1 Non-Functional Requirements Evaluation for Architecture Centric Design

Through the use of redundant components and systems, fault tolerance techniques and load balancing
techniques, architecture-centric design ensures availability. These measures guarantee continuous
operation in the event of a failure and evenly distribute the workload across multiple resources.
However, improper maintenance or testing of redundancy mechanisms can result in system failure
and load-balancing techniques may not always prevent component overburden in the presence of
unpredictable or unequally distributed workloads. [Dev17]
Availability Grade: 4

Scalability is achieved via modular components and adaptable infrastructure. By decomposing
a system into smaller, independent components, this method enables systems to accommodate
increased workloads and adapt to shifting requirements. A well-designed architecture has a flexible
infrastructure that permits the addition or withdrawal of resources without affecting the system as a
whole. Due to significant modifications and potential outages or performance disruptions, it may be
difficult to scale a monolithic architecture where components are tightly coupled. [Dev17]
Scalability Grade: 4

The procedures ensuring availability also guarantee continuous operation and eliminate singular
points of failure. On the other hand, they may encounter obstacles when systems rely on volatile or
unreliable external resources, resulting in deployment and maintenance difficulties. [DL01]
Deployability Grade: 4

Standardised interfaces and protocols are essential for architecture-centric design’s integrability.
Components can interact based on agreed-upon protocols by designating clear communication
interfaces, such as APIs or service contracts. However, interface incompatibilities and conflicts
can impede seamless integration. Custom adapters or middleware may be required to ensure
interoperability and compatibility between components by bridging the communication gap between
them. [GPNV02]
Integrability Grade: 4

Beginning the design process with performance in mind simplifies the achievement of performance
objectives. By including performance as a primary requirement, design decisions and compromises
can be made with performance in mind. Architecture-centric design often leverages well-known
architectural patterns, best practices and technologies such as caching, load balancing and asyn-
chronous processing can facilitate performance optimisation. [Bos04]
Performance Grade: 5

Modular architecture promotes testability by decomposing the system into independent, loosely
coupled components that can be isolated and tested separately. Well-defined interfaces enhance
testability by facilitating the replacement of external dependencies with controlled test data.

33

2 Literature Review

Nevertheless, this method may introduce additional complexities, such as dependency injection,
test-friendly interfaces and additional abstraction layers. Managing this complexity can be difficult,
particularly when it compromises the architecture’s clarity and simplicity. Test maintenance is
essential for preserving the efficacy and currency of the architecture over time. [RJ06]
Testability Grade: 3

By establishing a clear architecture and supplying well-defined guidelines, developers are better
able to comprehend architectural principles and design constraints. Clear guidelines on component
responsibilities, communication patterns and data flows allow developers to make well-informed
design decisions and create software that conforms to the architecture. [RJ06]
Ease of Development Grade: 5

Modifiability in architecture-centric design involves using modularity, component-based design,
separating concerns, minimizing coupling, providing open extension points, abstraction, encap-
sulation, leveraging design patterns, continuous refactoring and documentation sharing. These
key points enable flexible, adaptable and easily modifiable architecture. Balancing complexity
without hindering understandability or performance can be challenging and design decisions to
enhance modifiability may impact system performance, as loose coupling or abstraction layers can
add overhead to the system. [GPNV02]
Modifiability Grade: 3

Architecture-centric design prioritises user requirements, incorporates principles and provides
user-friendly interfaces, efficient workflows, explicit documentation, user testing and feedback.
Understanding requirements, conducting research, designing intuitive interfaces, simplifying
complex processes, providing documentation, tutorials and responsive support, as well as perpetually
iterating based on user feedback to improve system usability and user experience, are essential
elements. [Bos04]
Usability Grade: 5

2.4.2 Non-Functional Requirements Evaluation for Microservices Architecture

The approach microservices architecture incorporates availability through redundancy, load balanc-
ing, failover, circuit breaker and monitoring and alerting. Even in the event of faults or failures,
these strategies ensure that the system remains operational and accessible to its users. [WLS22]
Availability Grade: 5

The best possible grade for scalability was awarded to the microservices architecture since it allows
for highly scalable and flexible service deployments through its loosely coupled, independent and
exchangeable components. [Dav21]
Scalability Grade: 5

The continuous and simple deployment of individual services earned a good evaluation in the
deployability category. One counterargument to the evaluation of deployability is that managing
and deploying a large number of individual services can become complex and time-consuming,
potentially leading to deployment errors or delays. [BQT22]
Deployability Grade: 4

34

2.4 Software Architecture Design Approaches Ranking based on Non-Functional Requirements

The loose coupling and straightforward API and message-based communication fostered by microser-
vices architecture earned it a good grade in the integrability category However, a counterargument
to the microservices architecture’s evaluation in integrability is that coordinating and maintaining
the interactions between numerous services can become challenging, potentially resulting in
compatibility issues or communication failures. [AC22]
Integrability Grade: 4

Microservices architecture permits great performance via the usage of lightweight and focused
services. Since each microservice could be scaled independently and therefore adapt to the varying
workload, it can increase its performance by acquiring computational power on heavy-duty tasks.
[AC22]
Performance Grade: 5

With this approach, it is possible to test each service separately and additionally encourages
automated testing. However, testing each service separately does not guarantee that the overall
system will perform well when the services are interconnected and automated testing may not
capture all possible issues that can arise in complex systems. [WLS22]
Testability Grade: 4

Since it encourages the creation and deployment of services independently, microservices architecture
received a high grade for development simplicity. However, this independence can lead to difficulties
in coordinating and managing the interactions between different services, resulting in added
complexity and potential integration issues. [WLS22]
Development Simplicity Grade: 4

It encourages modularity and permits simple adjustment of specific services without impacting the
overall system. However, this modularity can also lead to a higher maintenance burden as changes
made to one service may require adjustments in other services that interact with it, potentially
increasing complexity and integration challenges. [Dav21]
Modifiability Grade: 4

The design can enhance the user experience by allowing for greater flexibility, customisation and
personalisation of services. A microservices architecture can facilitate the application of user-centric
design principles, such as user personas, user stories and user feedback, to guide the development
of individual microservices. [BQT22]
Usability Grade: 5

2.4.3 Non-Functional Requirements Evaluation for Cloud-Native Architecture

Availability is crucial for creating durable, controllable and observable loosely connected systems.
However, there are instances where availability can be compromised, such as when a cloud
provider experiences a major outage or system failure, causing widespread disruptions for users and
businesses. [Lin17]
Availability Grade: 4

Scalability is achieved through containerization and orchestration technologies, which allow for
automatic scaling of resources based on demand. This feature enables applications to efficiently
handle varying levels of traffic and adapt to changing business needs. [R G22a]
Scalability Grade: 5

35

2 Literature Review

Depolyability is crucial for easy application deployment across different environments. Container-
ization enables easy packaging and deployment of applications, but it can be counterproductive in
cases where external dependencies or resources are not easily containerized. Complex configuration
changes and setup may introduce delays and errors during deployment. [Lin17]
Deployability Grade: 4

Promoting the use of microservices and APIs to enable independent development and communication
between components. However, a lack of proper documentation or standardization in the development
process can lead to inconsistencies in APIs and communication protocols, leading to errors and
failures during the deployment process. [DL22]
Integrability Grade: 4

Advocating the utilization of automation and monitoring tools to enhance performance and address
bottlenecks is paramount. Nevertheless, it is important to note that a cloud-native application that
lacks performance optimization may still encounter challenges related to scalability and overall
performance. [R G22c]
Performance Grade: 4

Facilitating seamless and effective testing is achieved through the implementation of automated
testing, containerization orchestration technologies, and modular components. However, it should
be noted that complex architectures often lack distinct boundaries, which poses challenges in
isolating and testing individual components. CNA principles may not include proper testability
practices, such as modular components or automated testing. This can cause inefficient testing
processes and negatively impact the application’s overall quality. [R G22b]
Testability Grade: 3

It offers ease of development through containerization and orchestration technologies, simplifying
deployment and testing for developers. However, dealing with complex microservices can be
challenging due to their interconnected nature. This complexity can result in longer development
cycles, increased debugging efforts and increased risk of introducing bugs or errors during
deployment. [Tel22]
Ease of Development Grade: 3

Modifiability is achieved through containerization and orchestration technologies, such as Docker
and Kubernetes, which enable the deployment and management of microservices independently.
However, achieving modifiability through these technologies does not guarantee a seamless
deployment process, as complex interdependencies between microservices or multiple updates
simultaneously can still be challenging and prone to errors. [Lin17]
Modifiability Grade: 4

Usability is another aspect, incorporating intuitive user interfaces, clear documentation and robust
monitoring and troubleshooting tools. However, even with these measures in place, there may still
be instances where the usability of a CNA falls short. [DL22]
Usability Grade: 4

36

2.4 Software Architecture Design Approaches Ranking based on Non-Functional Requirements

2.4.4 Non-Functional Requirements Evaluation for Waterfall Software
Development

To prioritize availability-related decisions during the design phase, it is crucial to consider
redundancy, fault tolerance, scalability, and backup and recovery mechanisms. Implementing
failover strategies, load balancing techniques, and appropriate hardware or software architectures
are key to maximizing system availability. However, the rigid and sequential nature of the cascade
methodology can hinder the timely identification of availability issues, which may only surface
during the testing phase. Furthermore, the waterfall methodology lacks a continuous feedback cycle
between development and operations teams, resulting in delayed feedback on observed availability
issues in production environments. [AA16]
Availability Grade: 3

Prioritising scalability during the requirements gathering phase by working closely with stakeholders
to identify potential requirements such as user traffic, data volume and performance requirements.
Considering load balancing, caching, vertical and horizontal scaling and database partitioning
as scalability patterns. Changes in scalability requirements or the emergence of new factors can
make it difficult to alter the design and implementation phases to accommodate these modifications.
[AA16]
Scalability Grade: 4

Defining deployment requirements during the requirements gathering phase, including target envi-
ronments, hardware specifications, operating systems and constraints. Performing pre-deployment
testing in a staging environment that closely resembles the production environment in order to
verify the process and validate the functionality of the software. The waterfall methodology has
limited iterative feedback and adaptability, making it challenging to incorporate deployment related
feedback-based changes. [DM18]
Deployability Grade: 3

Specify inputs, outputs, communication protocols and data formats with precision to ensure
compatibility and interoperability. Stable, standard protocols and data formats, such as REST API
or Extensible Markup Language (XML)/JavaScript Object Notation (JSON), facilitate the seamless
integration of components or systems. As each phase is concluded before moving on to the next,
iterative integration can be difficult, causing delays in identifying and resolving issues and making
it more difficult to achieve a seamless integration. [Sam19]
Integrability Grade: 3

Defining performance requirements, such as response time, throughput and resource utilisation and
take into account variables such as data structures, algorithms, caching mechanisms and system
scaling. Reducing computation, reducing resource contention and using appropriate data structures
while optimising code for efficiency. The waterfall methodology follows a sequential, linear
approach, which limits performance enhancement flexibility. Changes to the design, architecture or
implementation may necessitate extensive revision or delay the completion of the project. [Sam19]
Performance Grade: 3

Testability requires specific, measurable requirements for the efficient development and evaluation
of test cases. Prioritising the allocation of time for test planning and design, determining testing
scope, defining objectives and developing a comprehensive test plan. Waterfall methodology, which

37

2 Literature Review

is frequently implemented at the conclusion of the development process, can result in a lack of
resources and make it difficult to resolve defects and issues discovered during testing. [Bas]
Testability Grade: 3

It is essential to have well-documented, clear and unambiguous requirements for a software
development process to run smoothly. This makes it easier for developers to comprehend and
implement the software. It is essential to invest time and effort in the design and planning phases,
as they guide the development process and help developers comprehend system architecture and
component interactions. The sequential, linear nature of the waterfall methodology makes it difficult
to incorporate changes or modifications. In addition, delayed validation can lead to the identification
of issues after substantial development effort has been invested, resulting in rework, additional effort
and delays in achieving the desired development simplicity. [Bas]
Ease of Development Grade: 2

Inflexible modifications can hinder the software’s modifiability, as they may necessitate extensive
revision or disrupt project timelines. Waterfall methodology delays change identification until later
phases, limiting consideration of changes during testing or deployment. Additionally, a lack of
iterations hinders the software’s modifiability. [PWB09]
Modifiability Grade: 1

Involving end users and stakeholders in the initial phases of the design process in order to comprehend
their requirements, preferences and workflows. Ensure that requirements are distinct and that
functionality, interfaces and interactions are defined. A sequential, linear methodology, waterfall
may restrict iterative design and refinement of usability aspects. [DM18]
Usability Grade: 4

2.4.5 Non-Functional Requirements Evaluation for Domain-Driven Design

DDD emphasises ensuring accessibility via techniques and principles, such as bounded contexts
and asynchronous communication patterns. Bounded contexts define distinct boundaries and
responsibilities within a system. This entails determining which portions of the system must be
available at all times and which can tolerate some downtime. DDD also encourages asynchronous
communication, which enables components to exchange data without impeding or waiting for
responses. Nevertheless, separating a system into bounded contexts may result in data inconsistency
and synchronisation problems, as changes made in one context may not propagate instantaneously
to other contexts. [Nic15]
Availability Grade: 4

Using bounded contexts DDD accomplishes scalability. These contexts can scale independently to
accommodate increased demand and traffic without affecting other contexts. Nonetheless, scaling
one bounded context may impact other contexts due to conflicts and discrepancies in shared data,
posing coordination challenges and the possibility of inconsistencies in the system’s overall state.
[Eva14]
Scalability Grade: 4

38

2.4 Software Architecture Design Approaches Ranking based on Non-Functional Requirements

DDD achieves deployability by its manageable bounded contexts, each focusing on a specific
subdomain. However, deployability can be challenging if interdependencies exist between these
contexts. For instance, if one context requires data from another, changes in the dependent context
can affect the entire system’s deployability. [Ver13]
Deployability Grade: 3

Utilising integration patterns and techniques to manage interdependencies between bounded contexts
effectively ensures integrability. Among these are mechanisms for defining interfaces, contracts,
messaging, EDA and data synchronisation. On the other hand, the lack of distinct boundaries and
communication protocols can result in conflicts, inconsistencies and system instability. Inadequate
integration patterns and methods can also lead to performance and scalability issues. [Nic15]
Integrability Grade: 3

Analyzing the domain model helps identify potential bottlenecks and high computational com-
plexity areas, allowing developers to optimize them. Domain-specific optimizations, like caching
or precomputing data, minimize repetitive calculations and reduce response times. However,
these optimizations may introduce additional complexity and maintenance overhead, potentially
outweighing potential performance gains in certain scenarios. [Ver13]
Performance Grade: 3

Separating concerns enables the isolation of domain logic from infrastructural dependencies,
allowing unit tests to concentrate on the model’s behaviour without requiring external systems
or databases. This method also permits the substitution or simulation of dependencies during
testing. But separating domain logic from infrastructure may increase development and maintenance
complexity and overhead. [Eva14]
Testability Grade: 3

Ease of development is enabled by focusing on a clear, well-defined domain model, allowing
developers to focus on core business logic without infrastructure concerns. Encapsulating domain
logic within entities, value objects and aggregates improves code understanding and modification,
leading to faster development cycles. Ubiquitous language and domain experts’ involvement ensure
accurate code reflects business requirements. This approach can make the codebase more complex
and harder to maintain, especially with frequent changes or updates. Additionally, relying heavily
on domain experts may limit system flexibility and adaptability in response to changing business
needs. [Eva04]
Ease of Development Grade: 2

The modular approach allows developers to modify and evolve a system’s domain logic without
disrupting other parts. Domain events and event sourcing enhance modifiability by capturing and
storing change history. However, this approach may not be suitable for complex interdependencies,
as changes may affect other domains, causing unexpected behaviour and difficult debugging.
Additionally, domain events and event sourcing introduce complexity and overhead, making the
system harder to understand and maintain for developers unfamiliar with these concepts. [Abe07]
Modifiability Grade: 3

Each bounded context focuses on a specific aspect of the system’s functionality and has its own
well-defined language and set of models. This allows developers to have a clear understanding of
the domain they are working on and enables them to build intuitive and user-friendly interfaces that
align with the users’ mental models. [Abe07]
Usability Grade: 4

39

2 Literature Review

2.4.6 Non-Functional Requirements Evaluation for Service-Oriented Architecture

SOA assures availability through mechanisms and best practices, including redundancy and fault
tolerance techniques. Multiple instances of services operate simultaneously, ensuring system
continuity even if one fails. Load balancing ensures optimal performance and availability by
distributing incoming requests equitably. [Law04]
Availability Grade: 5

The architecture uses load balancing and caching mechanisms to improve scalability by evenly
distributing requests and reducing service burden. Microservices architecture breaks down complex
applications into independent services, allowing flexibility and agility in scaling based on demand.
SOA, on the other hand, emphasizes loose coupling and interoperability between services. [KK09]
Scalability Grade: 4

SOA encourages loose coupling between services, enabling each service to be independently
developed and deployed without affecting the overall system. Services are accessed via standardised
protocols such as HTTP, SOAP or REST, allowing for simple platform and technology integration.
Service registries are also utilised by SOA to facilitate discovery and deployment. However, SOA
can be undermined when services have significant dependencies on each other’s data structures
or interfaces, causing changes to a service’s data structure or interface to have an effect on all
dependent services and thus contradicting the concept of independent development and deployment.
[Erl] [MW07]
Deployability Grade: 4
Integrability Grade: 5

Performance is achieved through optimizing communication between services, minimizing latency
and overhead, using efficient protocols, lightweight data formats and reducing network round trips.
Caching mechanisms store frequently accessed data and load balancing and horizontal scaling
distribute workload across multiple instances, improving overall system performance. Despite
efforts to minimize latency and overhead in message passing, certain situations may not be feasible.
For instance, in highly distributed systems with geographically dispersed nodes, physical distance
can introduce network delays and increase latency. [Law04]
Performance Grade: 4

Designing services with distinct interfaces and boundaries facilitates the isolating and testing of
individual components. Standard protocols such as SOAP and REST make testing easier. Injection
of dependencies and inversion of control help decouple services, making them easier to evaluate.
However, the use of non-standard or custom protocols can impede the testing process, as it may
necessitate additional effort to develop and maintain specific testing frameworks. [Law04]
Testability Grade: 4

SOA development can be facilitated by strategies such as modular design, which permits services
to be developed and deployed independently and standard protocols, which provide a common
language for communication and interoperability among services. [PH07]
Ease of Development Grade: 5

In SOA, modifiability is accomplished via service contracts, which define the interface and
behaviour of a service. These contracts permit autonomous evolution that does not influence
other dependencies. Loose coupling and abstraction reduce the influence of modifications on
other components. In contrast, when there is a tightly coupled service dependency, minor changes

40

2.4 Software Architecture Design Approaches Ranking based on Non-Functional Requirements

can cascade across multiple dependent services, making the process complex and prone to error.
[NIG+20]
Modifiability Grade: 4

It focuses on simplicity and ease of use through clear interfaces, well-documented APIs and
comprehensive user documentation. Interoperable services enable seamless integration and
interaction with other services. Standard protocols and formats enhance usability by facilitating
communication and data exchange between architecture components. [MBKN09]
Usability Grade: 5

2.4.7 Non-Functional Requirements Evaluation for Event-Driven Architecture

Through distributed systems and fault-tolerant mechanisms, availability is ensured. Implementing
redundancy permits multiple event processors to be deployed across multiple nodes, thereby
minimising downtime and guaranteeing uninterrupted service. Event-driven systems additionally
employ message queues or archives to store and buffer incoming events, ensuring scalability and
resilience against traffic spikes or event volume spikes. [CB12]
Availability Grade: 5

EDA achieves scalability through techniques like distributed systems, message queues and event
logs. These systems distribute workload across multiple processing units, allowing them to handle
higher event volumes. However, a counterexample to scalability is when a single node becomes
overloaded with events, causing a bottleneck. [DW05]
Scalability Grade: 4

EDA accomplishes deployability via containerization and microservices, separating the system
into independent units for simple deployment and scalability. This modular design increases
the system’s flexibility and adaptability to change. Event-driven system deployment necessitates
managing multiple components, ensuring proper configuration and managing dependencies, posing
complexities and increasing the likelihood of errors. [DW05]
Deployability Grade: 3

It accomplishes integration via event-driven messaging systems and application programming
interfaces. APIs provide a standard interface for integrating external systems or services, whereas
these systems enable seamless communication between components. Yet, outages or unavailable
messaging systems can disrupt the flow of information, resulting in data inconsistencies and system
failures. [IE06]
Integrability Grade: 4

EDA accomplishes performance via asynchronous messaging, parallel event processing and
component decoupling for enhanced responsiveness. However, it may not be the best option
in situations such as financial transactions where the precise order of events is essential. The
asynchronous nature of messaging can lead to problems with consistent event order and debugging
and troubleshooting can be complicated by the management of multiple independent components.
[BD14]
Performance Grade: 3

41

2 Literature Review

Testability in EDA entails simulating external system or dependency behaviour with mock or stub
components during testing. This permits developers to test individual components in a controlled
environment. Frameworks for automated testing validate the response and behaviour of a system
while monitoring and logging tools to trace event flow. However, there may be circumstances in
which the behaviour of an external system or dependency cannot be readily replicated or controlled
in a testing environment, such as when relying on real-time data from an external API. Event-driven
systems require thorough testing and debugging to ensure correct behaviour and interactions across
components and services, as events may be distributed and asynchronous. [Woo21]
Testability Grade: 3

By decoupling components and using event-driven messaging, EDA simplifies development. This
approach allows developers to concentrate on individual components or services without having to
consider their interactions. This modular approach promotes code reuse and scalability by allowing
components to be replaced or added as necessary. However, when there are too many events and
handlers, it becomes more difficult to monitor dependencies and interactions, which can lead to
bugs and inconsistencies. [IE06]
Ease of Development Grade: 4

It decouples events and handlers, allowing one component to be modified independently of the
others. Flexibility and adaptability in a system are essential but can be difficult to maintain efficiently
when synchronous communication is extensively utilised. Tightly coupled architectures can cause
ripple effects throughout the entire system and adding or removing new events and handlers
may necessitate substantial modifications to existing components, thereby limiting flexibility and
adaptability. [IE06]
Modifiability Grade: 3

Event processors are crucial for determining the behaviour and responsiveness of a system. Designers
should create handlers that are both intuitive and efficient to facilitate ease of use and navigation
for the end users. Clear documentation and guidelines enhance efficacy by assisting users in
comprehending how to interact with the system effectively. [Woo21]
Usability Grade: 5

2.4.8 Non-Functional Requirements Evaluation for Model-Driven Architecture

The modelling phase may incorporate redundancy considerations, such as duplicating critical
components or services, instituting failover mechanisms or employing load-balancing techniques.
Availability is a complex characteristic that requires fault tolerance, redundancy, failover mechanisms
and recovery strategies. It can be difficult to precisely and effectively model these aspects using
available abstractions. In some instances, modelling languages and tools may lack the necessary
expressiveness to convey the complexities of availability. [Bro04]
Availability Grade: 3

MDA abstracts and separates scalability concerns such as load balancing and partitioning by utilising
models to represent various system components. This methodology emphasises automated code
generation based on models, allowing for the construction and deployment of scalable components
or services using code generators and deployment tools. Modelling languages and tools for
capturing scalability requirements and mechanisms have limitations. Traditional models emphasise

42

2.4 Software Architecture Design Approaches Ranking based on Non-Functional Requirements

design-time modelling and code generation, which may not support real-time adaptation and
therefore limit dynamic scale systems in response to changing conditions. [Sol00]
Scalability Grade: 3

Well-defined and automated model transformations and code generation procedures are essential
for transforming models into deployable artefacts for target deployment platforms. The tools and
platforms for creating, transforming and deploying models may have their own requirements and
dependencies, which can create complications when moving or deploying models across various
environments or updating to newer versions. [09]
Deployability Grade: 4

The standardization of modelling languages, notations, and frameworks provides significant benefits
to MDA. It ensures interoperability among various tools, platforms, and systems, promoting
seamless communication and integration between them. MDA can aid in the generation of API
definitions and the corresponding code or configuration files. Modelling languages again may have
limitations when it comes to expressing integration-related concepts. [MAC+04]
Integrability Grade: 4

Using techniques such as queuing models, state models and performance annotations can enhance
performance. Runtime performance monitoring and optimisation mechanisms, collecting data
to identify bottlenecks, detect anomalies and initiate optimisations or auto-scaling actions are
possible. However, model transformations can introduce additional latency, such as processing time,
memory consumption or code complexity. In addition, modelling languages can limit the ability to
encapsulate performance requirements in their entirety. [AJW03]
Performance Grade: 3

Testability considerations are incorporated into the modelling process by designing testable models,
such as by separating concerns, modularizing components and defining explicit interfaces. However,
it can be difficult to generate tests from complex models, particularly when they are large or intricate.
Developing automated processes that accurately reflect the system’s behaviour and encompass all
relevant scenarios can have an effect on the system’s overall testability. [Joh01]
Testability Grade: 4

Utilize intuitive modelling languages and low learning curves to simplify system requirements,
behaviour and structure. MDA introduces new tools and concepts, which can be steep for developers
unfamiliar with them. Complex tool interfaces and languages can further complicate learning and
development. Debugging and troubleshooting generated code or artefacts can be more complex in
MDA compared to traditional coding approaches, affecting diagnosing and resolving issues during
development. [GYE22]
Ease of Development Grade: 3

Designing models that encourage abstraction and concern separation, delineating the responsibilities
and interactions of various system components. This permits autonomous modification without
affecting the system as a whole, thereby enhancing its modifiability. However, modelling languages
used in MDA may have limitations. Additionally, compatibility and interoperability between tools
and platforms can have a negative effect on the modifiability of generated artefacts, making it
difficult to employ newer versions. [Bro04]
Modifiability Grade: 3

43

2 Literature Review

Using user-friendly and intuitive modelling languages and tools with plain syntax and an intuitive
interface. Focusing on user-centred design principles, taking into account user preferences,
requirements and abilities. Creating interactive tools that provide immediate feedback and identify
potential errors or inconsistencies. Modelling tools in MDA may be limited by a lack of features,
performance issues or compatibility issues. [AJW03]
Usability Grade: 5

2.4.9 Non-Functional Requirements Evaluation for Reactive Architecture

Reactive architecture incorporates availability by designing systems to be highly resilient and handle
failures using techniques like replication, load balancing and fault tolerance. This ensures high
availability and responsiveness by distributing the workload across multiple instances and isolating
failures without affecting the overall system. [AA15]
Availability Grade: 5

It emphasizes scalability by designing systems to handle increasing workloads and adapt to changing
demands. Techniques like horizontal scaling distribute workload across nodes, ensuring capacity
increases without compromising performance. It promotes asynchronous communication patterns,
enabling simultaneous handling of multiple requests and improving overall performance. However,
when horizontal scaling is not effectively implemented it can result in decreased performance and
responsiveness rather than scalability. [Tov19b]
Scalability Grade: 4

Deployability is achieved through containerization and orchestration technologies, enabling seamless
system scaling. Nevertheless, reactive systems rely heavily on third-party dependencies or external
services, which can impact deployability. Critical dependency failures or performance issues can
lead to deployment failures or degraded system performance. [DSM+17]
Deployability Grade: 4

Through well-defined APIs integrability is accomplished, which enables seamless data and
message exchange between components and services. Event-driven communication patterns and
asynchronous messages indicating changes or actions, also contribute to seamless integration.
However, tightly coupled systems, where components and services are heavily dependent on each
other’s implementation details, hinder seamless integration and can lead to cascading failures.
[Sob10]
Integrability Grade: 4

Developers must design systems with testability in mind, implement unit tests, integration tests and
performance tests and use testing frameworks and tools. Clear boundaries between components and
services facilitate testing by facilitating isolation. Certain practices, such as a heavy reliance on
external dependencies that are difficult to mock or simulate, may not assure an efficient and testable
architecture. [SAM+19]
Testability Grade: 4

The architecture offers ease of development through loose coupling and modularity principles,
allowing developers to work independently on individual components. Complex interdependencies,
on the other hand, can make development harder. Changes or revisions to one component can

44

2.4 Software Architecture Design Approaches Ranking based on Non-Functional Requirements

inadvertently impact other components, causing development and testing issues and challenges.
[SAM+19]
Ease of Development Grade: 4

Modifiability is accomplished in reactive architecture through the loose coupling of its components
therefore modifying or updating one component does not inherently effect the other components.
Exceptions may arise when a change or update to one component necessitates modifications in
multiple other components due to complex dependencies or shared resources. This can result in
a cascading effect of changes throughout the system, making it difficult to maintain and modify
individual components without impacting the stability of the system as a whole. [DSM+17]
Modifiability Grade: 4

The objective of reactive architecture is to accomplish usability through intuitive, navigable and
responsive user interface design. This includes considering the requirements and preferences of end
users, providing timely feedback and adapting the interface based on the user’s device or location.
Still, cluttered and overwhelming user interfaces can reduce efficacy by making it difficult for users
to locate and utilise desired features. Moreover, a lack of clear feedback or prompt response to user
inputs can result in frustration and hinder the overall efficacy of a product. [Tov19b]
Usability Grade: 4

2.4.10 Non-Functional Requirements Evaluation Matrix

All QA evaluation marks are summarized in the following Table 2.11.

Approach/Criteria

Av
ai

la
bi

lit
y

Sc
al

ab
ili

ty

D
ep

lo
ya

bi
lit

y

In
te

gr
ab

ili
ty

Pe
rfo

rm
an

ce

Te
st

ab
ili

ty

Ea
se

of
D

ev
el

op
m

en
t

M
od

ifi
ab

ili
ty

U
sa

bi
lit

y

Architecture Centric Design 4 4 4 4 5 3 5 3 5
Microservices Architecture 5 5 4 4 5 4 4 4 5
Cloud-native Architecture 4 5 4 4 4 3 3 4 4
Waterfall Software Dev. 3 4 3 3 3 3 2 1 4
Domain-Driven Architecture 4 4 3 3 3 3 2 3 4
Service Oriented Architecture 5 4 4 5 4 4 5 4 5
Event-Driven Architecture 5 4 3 4 3 3 4 3 5
Model-Driven Architecture 3 3 4 4 3 4 3 3 5
Reactive Architecture 5 4 4 4 4 4 4 4 4

Table 2.11: Architecture Evaluation Matrix

45

2 Literature Review

2.5 Conclusion

Enterprises may use this rating to find the best software architecture design method for their
dispersed development teams. The rating represents a subjective evaluation of how well each
strategy satisfies the characteristics indicated as crucial in the supplementary research question and
as such, each strategy has advantages and disadvantages.

Businesses may make better judgments on the most appropriate software architecture design
strategies by taking these rankings and the reasoning behind them into account. The final ranking
of all software architecture design approaches is presented in Table 5.1 on the basis of the average
score calculated from the elements involved in decision criteria.

Approach Average Score Rank
Microservice Architecture 4.44 1
Service Oriented Architecture 4.44 1
Architecture Centric Design 4.11 2
Reactive Architecture 4.11 2
Cloud-Native Architecture 3.89 3
Event-Driven Architecture 3.78 4
Model-Driven Architecture 3.56 5
Domain-Driven Architecture 3.11 6
Waterfall Software Dev. 2.89 7

Table 2.12: Architecture Ranking Table

In conclusion, software architecture design success hinges on its ability to use the most effective
method of software architecture design while using remote development teams. Microservices
architecture, reactive architecture, cloud-native architecture, event-driven architecture, architecture-
centric design, domain-driven architecture, service-oriented architecture, model-driven development
and the traditional waterfall method were all considered in this literature review. Using quality
qualities including availability, scalability, deployability, integrability, performance, testability, ease
of development, modifiability and useability the efficacy of each of these methodologies may be
evaluated. Yet, the three fundamental structures of software design C&C, module and allocation
are incorporated by any approach.

While deciding on a software architectural design strategy, it is essential to take into account the
unique needs of the business and the development team. A strategic choice may boost software
development’s productivity, quality and efficiency, giving the business an edge in the market.

46

3 Integration Projects Overview

This chapter focuses on the source projects that have been analyzed and evaluated for potential
integration points. The analysis and evaluation of these source projects allow for a comprehensive
understanding of their strengths and weaknesses, enabling the design of the target system to
optimally combine their features. By integrating these projects, the target system can leverage
the best elements from each source project, ultimately resulting in a more robust and versatile
solution.

With the main goal of automating the scanning and organizing of pallets during warehouse operations,
the target system is built out of different Bosch solutions covering the same goals. In order to
successfully read the labels attached to the pallets, precisely detect their presence and decide on their
ideal placement within the warehouse facility, the system will make use of cutting-edge technologies,
such as cameras and visual AI. Additionally, the application will be created to meet unique customer
needs, giving users a tailored experience and offering real-time feedback during the process.

To get an overview of the single projects my colleagues and I conducted interviews with the
responsible teams working on the different projects which can be found in the Appendix A.

For a variety of reasons, interviewing project teams may be quite helpful. They may aid in
establishing clear project goals and objectives, gathering information, seeing possible problems,
developing relationships with team members and getting feedback. Using interviews, project teams
can make sure that everyone is on the same page and works toward the same goal, as well as
determine what features and functionalities are essential for success, address potential problems
before they arise, build relationships between team members and continuously improve processes.

The prepared questions are as follows:

1. How does a live demo into the system look like?

2. How is the system used on a daily basis?

3. What are the strengths and weaknesses of the system?

4. How is the system setup currently done?

5. What are the possibilities of integrating the system?

The following Table 3.1 shows a quick comparison matrix, which resulted as the outcome of the
project team interviews.

47

3 Integration Projects Overview

Description ShipSmart OIS Camera
Area

AutoID ShipQ

Plants How widely used is
the system

☀ ☀ ☀☀ ☀☀☀ ☀☀☀

Software
Rollout

How quickly and re-
liably can new fea-
tures be rolled out

☀☀ ☀☀☀ ☀☀ ☀ ☀☀

Hardware
Rollout

How simple is the
physical deploy-
ment and related
maintenance

☀☀ ☀☀ ☀☀ ☀☀ ☀☀☀

Tech-
nology

How mature and
state of the art are
the used technolo-
gies

☀ ☀☀☀ ☀☀☀ ☀☀ ☀

Extens-
ibility

How easy is it for
the system to be ex-
tended by features

☀ ☀☀ ☀☀ ☀ ☀

Integration How easy is it to in-
tegrate the system
with other systems

☀ ☀☀ ☀☀☀ ☀☀ ☀

Operations How mature is the
operational model
of the system

☀ ☀ ☀☀☀ ☀☀ ☀☀☀

User Ex-
perience
(UX)

How mature is the
user experience

☀ ☀☀ ☀☀ N/A ☀

Coverage scale: Low =☀ 𝑀𝑒𝑑𝑖𝑢𝑚 =☀☀ 𝐻𝑖𝑔ℎ =☀☀☀

Table 3.1: Project Comparison Matrix

48

3.1 Business Understanding

3.1 Business Understanding

This section describes the system from a business perspective, targeting questions like who the
customer is and what their key challenges are. Furthermore, the stakeholders’ roles with the related
amount of people and their connection to the target solution are listed.

Question: Who is the customer?

Explanation: This question does not address the final end-user, but rather who will be the system’s
contractual customer. In other words, who will pay for Bosch’s use of the system? The response
should indicate not only the client type (Business-to-Business (B2B) or Business-to-Consumer
(B2C)), but also the targeted market group. The rationale is to find out from which perspective
requirements should be analysed.

Response: Internal B2B - Bosch Production Plants or Logistics Entities

Question: What are the customer’s key challenges?

Explanation: Determine the customer segment’s primary challenges or pain points. This study
should already reveal a problem that the system under development will solve and the qualities that
it should have.

Response: Packaging of pallets for the outbound logistic process requires customer-specific
labelling in terms of size, placement, number of labels, straps, etc. This is manually checked based
on customer requirement documents and often leads to shipments that cannot be processed by the
customer, leading to complaints/claims and returns.

There is no central tool and database available for the plants that include all customer labelling and
packaging requirements with user-friendly visualization and guidance for the operator that can be
used on both monitor and mobile device.

Validation of customer requirements is a completely manual process at the moment. Operators
conduct a 4-eyes-check of the pallet before it is loaded into the truck, which leads to long process
times and mistakes. For Bosch: Each plant maintains and consolidates the customer requirements
on its own in different formats: PDF, PowerPoint, Excel or ShipQ App.
Goal: Zero complaints, returns and incorrect shipments based on wrong, insufficient or missing
labelling of pallets or generally incorrectly packaged shipments.

Question: What problem shall the system solve?

Explanation: This should be a brief, succinct description of why buyers should purchase the
solution. It indicates which functionality is vital and therefore has the highest priority in terms of
quality standards.

Response:

1. Provides one source of centrally maintained customer requirements with user-friendly
visualization to the packer and forklift driver.

2. Fast and automatic visual outer package/pallet validation based on the same requirements
during packaging to prevent labelling or packaging errors (correct placement of labels,
barcode readability, straps etc.).

49

3 Integration Projects Overview

3. Avoid time-consuming 4-eye principle check and generally speed up of validation process.

4. Enable easy claim checking by archived inspection result.

Question: Will the final product or solution include components that are special to the customer?

Explanation: The question probes the extent of the solution’s adaptability. If there are a lot of
customer-specific components needed, either the solution needs to be constructed from the ground
up to support that (cost driver) or it needs to support several versions, which require maintenance.
This could be a sign of the solution’s distribution model (Software-as-a-Service vs. separate
on-premise installations).

Response: Specific customer needs will be applied through input parameters and solution
configuration, such as required packaging, straps, label location and so forth. In addition, the
quantity and type of tests to be performed will differ depending on the customer.

Dashboards displaying Key Performance Indicators (KPI)s and status information may also need to
be adaptable to meet the needs of different customers. However, it is assumed that no unique features
(software codes) are provided per client, but that all customers can use the whole capabilities if
necessary.

Question: Is the intention to commercialize the system?

Explanation: What is the business strategy and techniques for profiting from the solution? Is it
necessary to be self-sufficient? Are there any thoughts on pricing methods (pay-per-use, one-time
license, free trial, etc.)?

Response: One aspect of commercialization is to end the existing practice of consumers levying
fees for incorrect delivery. Handling time is reduced or eliminated, as is the manual 4-eye-check
during validation.

Reduced time and effort in managing client requirements. Depending on the client portfolio and the
number of new projects, it is anticipated that the work for establishing a new requirement takes
around two hours per customer and maintaining the manual handbook takes around ten hours per
month.

Question: What are typical constraints in the target market?

Explanation: Depending on the target industry and market, there might be typical constraints that
have to be considered during the system design. For example, business-critical data is often required
to be kept on premises in large, conservative companies, especially in particular industries.

Response:

• Very diverse local environments regarding space, condition and network connectivity.

• Logistics processes are time critical and thus a very high resilience of the solution is needed
or a simple fallback.

• Inspection software should run on-premise (due to image transferring time to a cloud
infrastructure).

50

3.1 Business Understanding

• Ambient lighting conditions can be a challenge for the correct processing of tests and should
be mitigated (e.g. lightning system).

• Logistics processes must be flexible and cannot be entirely rigid. They also differ significantly
between plants and Bosch units. Validation setup must cater to tight/narrow spaces on-site
and thus hardware must be as less intrusive as possible.

Question: What is the product’s unique selling proposition?

Explanation: It should be clear how the system will differentiate itself from others on the market.
The rationale is to find out which parts might be more sensitive and critical to the overall success.

Response: Management and identification of correct labelling requirements by customers to
provide guidance. User-friendly and simple process guidance for pallet labelling and packing for the
shipping operator as well as for the forklift driver during the pallet validation. Packed and labelled
pallet is automatically validated by camera-based recognition before loading, based on the same
source of shipping requirements. A photo of the loaded pallet is archived for documentation in
case of claims/complaints. Test types are extensible and can be performed in a fast and automated
fashion. Overarching solution including hardware and software.

Question: What are the three most important quality characteristics of the system? (And why?)

Explanation: Ideally, the most important ones should become apparent by the answers provided to
the questions above. These are especially important since they should reflect or support the unique
selling proposition (e.g. usability, security, performance).

Response:

• Usability (ease of use for workers, clear feedback, clear instructions)

• Performance (validation speed to avoid any delay in loading speed)

• Availability (fallback possible but important for logistics processes)

• Modifiability (to add additional validation logics or steps)

Question: How many customers does the current system have?

Explanation: If there are already existing customers, how satisfied are they? If there are none, has
the product idea and business model been discussed with potential customers and are customer
representatives available?

Response: At least six plants in Germany and two plants in Portugal are willing to have the system
as soon as possible.

Question: Are there solutions in production? (If not, when is the release planned?)

Explanation: This should help to provide a timeline for any required tasks and prioritization.

Response: Yes, the Feuerbach solution is already in use. The other projects are in different states
of maturity.

Question: In which countries should the solution be offered?

51

3 Integration Projects Overview

Explanation: The questions should aim at countries that are “trickier“ to support such as Russia,
India or China given the customer is from Europe or North America. The impact can be additional
software hosting environments and strong requirements towards data location, privacy etc.

Response: Worldwide for any Bosch plant.

Question: How critical is the solution for the (business) success of the customer?

Explanation: The questions shall serve as input regarding the required level of support and
operation of the solution. It can also hint that an important quality aspect is the reliability of the
solution.

Response: Highly critical. It can significantly increase shipment quality and avoidance of com-
plaints and delivery delays.

Question: Are there any collaborating partners/suppliers on which the solution heavily depends?

Response: Yes.

• SAP

• Hardware (AutoID)

Question: What is the result of the Data Classification and Risk Analysis?

Explanation: Data classification can be driven from two perspectives: data privacy (e.g. is
person-relatable data processed?) and data security (e.g. what is the financial or reputational
impact of losing data?). This classification should be done as early as possible to drive architectural
decisions.

Response: System needs to consider that the label’s content will be recorded and needs to anonymize
persons in the camera’s field of view.

Question: Does the solution need to support Multi-Tenancy (i.e. need to manage users from
different organizations in multiple, isolated environments?)

Explanation: As soon as multiple users that share data are bundled into “working groups“, it can
be very likely assumed that multi-tenancy is required. This normally increases the complexity of the
solution regarding tenant isolation (performance, data, access) and often conflicts with the intended
type of software delivery or the presentation towards the customer (fully branded customer specific
environment).

Response: Yes, Salesperson, plant key user, packer, forklift driver.

Question: What is the typical way to become a customer and use the application?

Explanation: Are users onboarding themselves or are there more elaborate onboarding processes
requiring extensive validation? Are power users involved that manage a tenant’s users?

Response: Direct connection to the business unit and rollout within the corresponding plants.
Driven by the solution provider.

52

3.2 Stakeholder Overview

3.2 Stakeholder Overview

Stakeholders are people or organizations that are interested in a project’s success. Customers,
users, developers, project managers, executives, stockholders and regulatory authorities can all be
stakeholders in software projects.

Each stakeholder in the software project has a distinct function and it is their responsibility to
contribute to the project’s success by offering suggestions, criticism and support in a variety of
ways. Depending on their position, stakeholders in software projects, may have different duties.
However, the stakeholders regarding the target project include:

Project Lead: The project lead is in charge of leading the project team, planning and overseeing
the project schedule, keeping track of developments, controlling the project budget and making sure
the project is completed on schedule, on target and to the needed quality standards.

Solution Architect: An organization’s needs and overall business objectives must be met by the
proposed solution for the solution architect to provide technical knowledge and direction. They
collaborate closely with other stakeholders to establish the solution’s technical architecture, identify
and address technical risks and make sure the system is scalable, dependable and secure.

Process Owner: The procedures that support the aims and objectives of the organization must
be defined, documented and improved over time. The process owner collaborates closely with
stakeholders to suggest process enhancements, guarantee adherence to relevant regulations and
norms, assess the efficacy of the process and execute modifications as needed.

Coordination Lead: The coordination lead is in charge of overseeing how activities are coordinated
between various teams or departments within a company as well as with outside partners or
contractors. Their responsibilities also include identifying dependencies and risks, establishing
communication routes and protocols, resolving disputes or concerns, monitoring development,
spotting potential improvement areas and regularly updating stakeholders on the status of the
project.

Process Manager: As a stakeholder, the process manager oversees monitoring and enhancing
procedures within a division or company. This entails examining present procedures, finding
potential areas for improvement and putting new procedures into place to boost output, cut expenses
and improve quality. They converse with other parties to achieve alignment with company goals
and objectives, including top management and department leaders.

Product Expert: A product expert participates in numerous activities linked to the creation,
promotion and upkeep of a product. They interact with the development team, do research,
specify needs, solicit input, offer guidance on product features, produce documentation and training
materials and take part in launch and marketing efforts.

Technical Lead: A technical lead’s role includes ensuring that a product is developed, delivered
and maintained successfully. They are responsible for managing the development team, supervising
the technical architecture and design, taking part in product planning and roadmap creation, working
with cross-functional teams, conducting code reviews, troubleshooting technical problems, staying
current with the newest technologies and spotting opportunities for improvement.

53

3 Integration Projects Overview

Software Developers: Stakeholders who are in charge of creating the software are developers.
Their responsibility is to design, develop and test the program using their technical expertise. They
could also provide suggestions on how to improve the software’s usability and usefulness.

Project Managers: Stakeholders in charge of managing the software project are called project
managers. Their responsibility is to make sure the project is finished on schedule and on budget.
They could also engage with other stakeholders and offer the development team direction and
assistance.

Sponsors: Sponsors are stakeholders who have invested in the company developing the software.
Their job is to ensure that the project is profitable and provides a return on their investment.
Stakeholders in software projects have a collective responsibility to make sure the project is
successful and serves the needs of all parties involved.

Users: Once the software is finished, users are the stakeholders who will use it. Their responsibility
is to offer feedback on the user experience and give suggestions for enhancements or extra features
that would increase the software’s use for them.

Role Number Area of Knowledge Project
Project Lead 1 Standardize and create solution

for rollout
InTrack

Solution Architect 3 System understanding and archi-
tecture

N/A

Process Owner 2 Domain Understanding and User
Journey, Oder to cash

ShipSmart, ShipQ

Coordination Lead 3 at differ-
ent Plants

Plant Environments and Process
Journey

ShipSmart

Process Manager 1 SAP Co-Innovation ShipQ
Product Expert 1 SAP Sap
Technical Lead 4 Architecture, Integration, Tech-

nology Stack, Architecture, Com-
puter Vision

OIS, Camera Area,
InTrack

Software Developer 1 Architecture, Software Imple-
mentation and Image Recogni-
tion, Hardware

OIS, ShipSmart,
AutoID, CrossTalk

Program Integration
Manager

1 Packing instructions, SAP Pro-
gram integration manager

Nexeed Packaging
Control

Project Sponsors 3 N/A N/A
Project User Groups 3 N/A N/A

Table 3.2: Stakeholder Overview

54

3.3 System Context

3.3 System Context

The designed system will support a wide range of user jobs, including Managers, Packers, Forklift
Drivers, Logistics Key Users, Customer Managers, Local Support Engineers and Central Support
Engineers. Each user will be given access to purpose-built user interfaces that correspond to their
particular responsibilities and tasks inside the warehouse operation. The Table 5.2 presents the
actors involved in the target system and user interaction is illustrated in Figure 3.1.

Actor Description
Logistics Key User
(Planner)

Manages customer requirements, claims and notifies packers and/or
forklift operators of any changes. Gets packaging information per
consumer or item through a streamlined procedure and distributes it to
the shipping area.

Packer Responsible for the proper packaging and labelling of pallets, can access
customer requirements from the system, initiate the scanning process and
validate the scanning results.

Forklift Driver Transports deliveries to the loading dock using a forklift. May need to
manually initiate the scanning process or validate scanning results.

Salesperson Responsible for collecting and managing client requirements and effec-
tively disseminating them throughout the organisation.

Manager Displays aggregate packing quality control and flow data for one or more
facilities. Analyses procedure effectiveness.

Other Teams For example the shop floor team receiving notifications regarding instruc-
tion update etc.

Hardware Support
Engineer

Installing and maintaining on-site hardware for any edge-based processing
or data storage (e.g., image compression, image storage)

Table 3.3: Actor description

55

3 Integration Projects Overview

Retrieves shipping data
& triggers processes

Manage IdM

Stores & retrieves
imagesNotifications of

requirement changes

Target
System

Target
Hardware
(On-Prem)

Manages plant
specific requirements

Maintains onsite
fallback documents

Views claims

Logistics
Key User(s)

Installs &
supports

Hardware Support
 Engineer

Triggers scanning
and checks results

Forklift
Driver

Manages generic
customer requirements

Salesperson

View KPIs

Manager

Media-Asset-
Management

(or
Dedicated
Storage)

SAP

User
Management

Customer
Notifications

Follows
packing rules

Uses fallback
during downtime Packer

Required
Component

Legend
PDF or
paper
copy

Multiple
Possible Flows

Preferred
Flow

Other Teams
(e.g. label printing)

Figure 3.1: User Interaction of Target System

56

4 User Stories

User stories are created to convey the requirements of the project from the perspective of a user
or client. The purpose of a user story is to clearly and concisely describe what the user desires
for the product to accomplish. The user narrative consists of a concise statement outlining the
users’ objectives or problems. It also includes additional information, such as how the stories are
prioritized, the sort and perspective of each story and the maturity of each project’s cover.

The purpose of the user narrative is to ensure that the development team is aware of the users’ or
clients’ requirements and that the resulting software effectively meets those needs. User stories
are frequently used by agile software development methodologies to manage and prioritise the
development process based on the most important user requirements.

The following section describes the functional requirements regarding the target system. Furthermore,
the non-functional requirements of the target system are prioritised, which will later guide and
factor in the architecture selection.

4.1 User Stories Functional Requirements

The following Table 4.1 summarizes the resulting functional requirements in the form of user stories.
Regarding shipment validation, the most pertinent user stories are derived from the packer and
forklift driver perspectives.

Prioritizing the functional requirements in accordance with their importance is essential. This
approach proves particularly beneficial when multiple requirements coincide or certain deadlines
need to be met, ensuring that the one with higher priority is addressed first. “A“ represents the
highest priority, while “C“ denotes the lowest priority.

ID Prio-
rity

Requirements
(I want to ...)

Ship
Smart

OIS Camera
Area

AutoID ShipQ

Actor: Planner
PL1 A have packaging information

per customer
☀ ☀ nc nc ☀☀☀

PL2 A have a standardized template
for packaging information

nc ☀☀☀ nc nc ☀☀☀

PL3 C have a document manage-
ment system for customer un-
structured data like PDFs

nc nc ☀☀☀ nc ☀☀☀

Continued on next page

57

4 User Stories

Table 4.1 – Continued from previous page
ID Prio-

rity
Requirements
(I want to ...)

Ship
Smart

OIS Camera
Area

AutoID ShipQ

PL4 A have a structured worklist
and easy access to relevant
data

nc nc ☀ nc nc

PL5 B have access to a repository
of packaging information

nc ☀☀☀ nc nc ☀☀☀

PL6 C have an overview of claims nc nc nc nc nc
PL7 A have correct material mas-

ter data with weight, dimen-
sions etc.

nc ☀☀☀ ☀☀☀ ☀☀

PL8 B have overview of changes
made by customer with dead-
line of implementation

nc nc nc nc ☀☀☀

PL9 A have a digitalized form of
customer requirements in a
machine-readable format

nc ☀☀☀ nc nc ☀☀☀

PL10 C have a digitalized form of in-
ternal and external customer
requirements

nc nc nc nc nc

PL11 C have the correct time zone in
SAP

nc nc nc nc nc

PL12 A forward the updated info
about the customer require-
ments to operators, notify
operators, notify sales team
about changes

nc nc nc nc nc

Actor: Packer
PA1 A have packing instructions in

the right language
nc ☀ nc nc ☀☀

PA2 A have immediate (<3 sec)
feedback, if packaging ap-
plies to agreed instruction

☀☀☀ ☀☀☀ ☀ ☀☀☀ nc

PA3 A have easy access to packag-
ing information

☀☀☀ ☀☀☀ ☀☀☀ nc ☀☀☀

PA4 A avoid many clicks – easy to
handle

☀☀☀ ☀☀☀ ☀☀☀ ☀☀☀ ☀☀☀

PA5 B to have a process which is
guided (only focus on execu-
tion)

☀☀☀ ☀☀☀ ☀☀☀ ☀☀☀ ☀

PA6 C see how much time I have
left to finalize the packaging

nc nc nc nc nc

Continued on next page

58

4.1 User Stories Functional Requirements

Table 4.1 – Continued from previous page
ID Prio-

rity
Requirements
(I want to ...)

Ship
Smart

OIS Camera
Area

AutoID ShipQ

PA7 B be informed on time about
the customer changes

nc ☀ nc nc ☀☀

PA8 B to have a station/place where
the pallets are photographed
before loading

nc nc nc nc nc

PA9 C that the delivery documents
can be sent automatically
from SAP to the customers

nc nc ☀☀☀ nc nc

Actor: Forklifter
FD1 A handle the pallets that vali-

dation only takes 3 sec
☀☀☀ ☀☀☀ ☀☀☀ ☀☀☀ nc

FD2 A work manually as little as
possible

☀ ☀☀ ☀☀ ☀☀ nc

FD3 A have clear instructions and
visualization after validation

☀ ☀☀ ☀ ☀☀ nc

FD4 A have good and safe working
environment (camera station
safety e.g. cables, lights)

nc nc nc nc nc

Actor: Salesperson
SA1 A avoid incoming claims, be-

cause of wrong packaging
☀ ☀ ☀ ☀ ☀

SA2 A to have clear information to
whom to inform about cus-
tomer requirement changes

nc nc nc nc nc

SA3 A have a clear process flow (get
requirement, distribute) &
changes

nc ☀ nc nc ☀

SA4 B have feedback for fur-
ther conversations with cus-
tomers (e.g. when the plant
is ready)

nc nc nc nc nc

SA5 A know, which format is best to
distribute information about
customer requirements

nc nc nc nc ☀

Coverage scale: nc = not covered Low =☀ 𝑀𝑒𝑑𝑖𝑢𝑚 =☀☀ 𝐻𝑖𝑔ℎ =☀☀☀

Table 4.1: Requirements of User Stories

Figure 4.1 visualizes which requirements are satisfied to what extent by each project in order to
gain a more precise understanding. A combination of Optical Inspection System (OIS) and Camera
Area (CA) will aid the architecture modelling in the coming sections.

59

4 User Stories

0

1

2

3
PL1

PL2
PL3

PL4

PL5

PL6

PL7

PL8

PL9

PL10

PL11

PL12

PA1

PA2
PA3

PA4
PA5

PA6

PA7

PA8

PA9

FD1

FD2

FD3

FD4

SA1

SA2

SA3

SA4
SA5

ShipSmart

(a) ShipSmart

0

1

2

3
PL1

PL2
PL3

PL4

PL5

PL6

PL7

PL8

PL9

PL10

PL11

PL12

PA1

PA2
PA3

PA4
PA5

PA6

PA7

PA8

PA9

FD1

FD2

FD3

FD4

SA1

SA2

SA3

SA4
SA5

OIS

(b) OIS

0

1

2

3
PL1

PL2
PL3

PL4

PL5

PL6

PL7

PL8

PL9

PL10

PL11

PL12

PA1

PA2
PA3

PA4
PA5

PA6

PA7

PA8

PA9

FD1

FD2

FD3

FD4

SA1

SA2

SA3

SA4
SA5

Camera Area

(c) Camera Area

0

1

2

3
PL1

PL2
PL3

PL4

PL5

PL6

PL7

PL8

PL9

PL10

PL11

PL12

PA1

PA2
PA3

PA4
PA5

PA6

PA7

PA8

PA9

FD1

FD2

FD3

FD4

SA1

SA2

SA3

SA4
SA5

AutoID

(d) AutoID

0

1

2

3
PL1

PL2
PL3

PL4

PL5

PL6

PL7

PL8

PL9

PL10

PL11

PL12

PA1

PA2
PA3

PA4
PA5

PA6

PA7

PA8

PA9

FD1

FD2

FD3

FD4

SA1

SA2

SA3

SA4
SA5

ShipQ

(e) ShipQ

Figure 4.1: Use Case Coverage Diagram

60

4.2 Non-Functional Requirements

4.2 Non-Functional Requirements

Availibility
Question What is the system’s predicted uptime?
Answer • Warehouses require 24/7 operational systems

• Critical to ensure reliability and uninterrupted operations

Question Is there a specified time when the system must be available or unavailable?
Answer • System must be operational at all times

• Cannot be offline during peak shipping and receiving hours
• Interruption might cause shipment delays and disruptions

Question How soon should the system be able to recover from a malfunction or outage?
Answer • Rapid system recovery is crucial to prevent downtime and disruptions

• Requiring efficient disaster recovery plans and reliable fallback solutions

Scalability
Question What is the predicted rate of user growth over the next 1-3 years?
Answer • User base growth predicted at 15% annual pace due to warehouse

expansion

Question How many concurrent users must the system support?
Answer • System supports 5 concurrent users, varying by warehouse

Question What is the anticipated volume of data that the system must handle?
Answer • The system handles 65 pallets daily, capturing 30 MB photographs for

each pallet
• Resulting in a daily data volume of 7800 MB

Question What are the system’s performance objectives at various degrees of load?
Answer • System aims for a 29-second pallet scanning time for 95% receiving

operations
• Handling double load without significant performance loss

Deployability
Question How frequently do you anticipate the system being deployed?
Answer • Quarterly deployment of the system including upgrades and new features

Question What are the system’s deployment environments?
Answer Three deployment environments:

• Development environment: develop and test new features
• Staging environment: user acceptance testing
• Production environment: deployment

Question Is it necessary to employ any specific deployment tools or processes?
Answer • IT department approves Docker and Jenkins to ensure consistency and

efficiency

Continued on next page

61

4 User Stories

Table 4.2 – Continued from previous page
Question What are the system configuration and customization requirements during

deployment?
Answer • Flexibility during deployment, allowing for updates to parameters and

integration with other systems
• Adaptable to user roles and permissions, ensuring being customized to fit

specific warehouse needs

Integrability
Question What other systems must integrate with the system and how will they do so?
Answer • Integrate customer relationship management (CRM) system with REST

API for proper order and customer sync between platforms

Question What integration protocols or data formats are required?
Answer • JSON and XML are essential data transmission formats for lightweight,

widely used and easy-to-read data in enterprise systems

Question Are there any integration performance or security requirements?
Answer • Integration performance is crucial for real-time inventory and order status

updates, ensuring quick, dependable processing and preventing errors
• Security is essential for safeguarding customer information and preventing

data breaches
Question What are the system monitoring and logging needs during integration?
Answer Extensive logging and monitoring are essential for:

• Detecting issues during integration
• Providing real-time alerts and notifications
• Ensuring system performance and resource utilization

Performance
Question What are the system’s estimated response times under various usage scenarios?
Answer • System should respond to user requests for all pallet responses within 3 to

5 seconds, depending on the number of pallets scanned simultaneously

Question What are the performance objectives for user actions or system transactions?
Answer • Planner should rapidly edit and publish packaging information to keep

inventory and orders current
• In less than 5 seconds, forklift driver should scanning results to ensure

that products are packed correctly and effectively

Question What are the system monitoring and recording requirements for performance
testing?

Answer • Performance testing involves extensive logging and monitoring to ensure
system meets requirements, tracking response times, error rates and
resource utilization

• Simulate usage degrees, identifying bottlenecks and areas for improvement

Testability
Question What are the system’s expected testing scenarios?

Continued on next page

62

4.2 Non-Functional Requirements

Table 4.2 – Continued from previous page
Answer Functional testing:

• Confirm system’s functioning meets the business requirements
• Evaluate system’s ability to handle a variety of inputs and processes

Integration testing:
• Evaluate system’s ability to integrate with other systems
• Evaluate system’s capacity to exchange data and communicate with other

systems
Usability testing:

• Determine how simple it is for users to operate the system
• Identify any locations where users may struggle or have difficulty navi-

gating the system

Question What exactly are the testing requirements for each scenario?
Answer • Prior to functional testing, specific requirements and use cases must be

created and tested, including order status updates and order processing
• Integration testing involves data interchange, communication and overall

functionality
• User testing is crucial to ensure the system is easy to use and understand,

with focus on interface design, navigation and user experience

Ease of Development
Question What are the development tools and technologies that will be required for the

system?
Answer Development tools and technologies:

• Cloud services: Microsoft Azure and Google Cloud
• Container services: Docker
• Messaging backbones: Kafka and REST API
• Programming languages and frameworks: Python Django, Spring and

Angular
• Monitoring and visualization: Grafana and LabView

Question What are the documentation and knowledge transfer requirements during
development?

Answer • Documenting code inside the source code itself
• Additionally producing and maintaining extensive documentation in a

centralized location
• Documenting system architecture, processes, coding standards and testing

procedures, to ensure understanding of the system and its components

Question Is there a set of development rules or criteria that must be followed?
Answer • Software architects should create precise development rules and criteria

based on industry-standard methods
• Including test-driven development and CI/CD
• As well as covering coding standards, version control and code reviews

Modifiability
Question What changes to the system are expected in the future?

Continued on next page

63

4 User Stories

Table 4.2 – Continued from previous page
Answer • Expected to undergo upgrades, including new label types and integration

with inventory tracking systems
• Accurate real-time inventory updates may require linking to existing

systems
• Additional workflows for managing pallets and boxes are planned, ad-

dressing challenges in handling large or odd-shaped items

Question What are the system’s specific regions that are expected to change frequently?
Answer • Label recognition algorithms and integration points undergo frequent

changes, requiring updates as new labels or inventory tracking systems
are introduced

Question What are the requirements for system backward compatibility when making
changes?

Answer • Any changes made to the system should be thoroughly tested to ensure
that they do not interfere with the system’s existing functionality

Question Are there any design patterns or architectures that must be adhered to ensure
simplicity of modification?

Answer • A SOA that separates forklift tracking integration points from the system,
ensuring changes don’t affect each other

• Modular design pattern simplifies component changes without affecting
other parts

Usability
Question What user personas should the system expect?
Answer • Planner, packer, forklift operator and salesperson are the user personas

that are anticipated for the system
• System must be created to meet the needs of each user persona

Question What particular user actions or situations does the system need to support?
Answer • User duties like reading text from labels, processing data and deciding

what steps the warehouse delivery process will take next

Question What conditions must the system meet to handle errors and get user feedback?
Answer • Visual indicators and error notifications

• Gracefully handle errors and exceptions while guiding users on how to
fix the problem

• Prioritize usability and simplicity to increase user pleasure and productiv-
ity

Table 4.2: Non-Functional-Requirements Evaluation

64

5 Architecture Modelling

As a result of thorough analysis and evaluation of each project, the following applications have been
excluded from consideration for integration into the target system.

• ShipQ: This application is built on the SAP Solution and integrates Fiori UX tool suite. Since
it does not pertain to shipment validation and due to the long development processes, it will
not be considered further. But for future integration, it is unquestionably worthwhile to
prepare interfaces beforehand.

• AutoID: The AutoID team is more concerned with the tools in warehouse settings. The entity
has experimented with smart cameras, but the high costs makes them inappropriate for the
intended solution.

• ShipSmart: This initiative is based on the LabView application developed by a third party.
Since the entire project logic is incorporated into this application, it is not considered due to
its difficult integration options and high licence fees per user.

As discussed in the literature review, the ranking table (Table 5.1) is utilised at present to determine
the architecture approach. To adapt the ranking table to the requirements of the project, the results
of the questionnaire in the Section 3.1 are required. Usability, Performance, Availability and
Modifiability are deemed crucial in this section. Consequently, these attributes are double-weighted
and the architectures are reordered.

Approach Average Score Rank
Microservice Architecture 4.54 1
Service Oriented Architecture 4.46 2
Architecture Centric Design 4.15 3
Reactive Architecture 4.15 3
Cloud-Native Architecture 3.92 4
Event-Driven Architecture 3.85 5
Model-Driven Architecture 3.54 6
Domain-Driven Architecture 3.31 7
Waterfall Software Dev. 2.85 8

Table 5.1: Architecture ranking table updated based on questionnaires

Resulting from the updated ranking table the selected architecture for the target system is the
microservice architecture approach. The methodology described will be utilized and incorporated
into the architecture drafts, as further elaborated in Section 5.3.

65

5 Architecture Modelling

5.1 Architecture Decisions

As discussed in the aforementioned “Non-Functional Requirements“ section, the Figure 5.1 depicts
the integration of the OIS and CA projects. It is evident that the combination of these two projects
falls short of meeting several requirements. Notably, the integration of the ShipQ project would
effectively address a majority of the requirements. However, as previously explained, it will not be
pursued.

The target system requires significant attention to address the functional requirements that are either
absent or have a low level of implementation. Specifically, for the shipment validation, the PA6,
PA7, PA8 and FD4 should not be neglected.

0

1

2

3
PL1

PL2
PL3

PL4

PL5

PL6

PL7

PL8

PL9

PL10

PL11

PL12

PA1

PA2
PA3

PA4
PA5

PA6

PA7

PA8

PA9

FD1

FD2

FD3

FD4

SA1

SA2

SA3

SA4
SA5

OIS

Camera Area

Figure 5.1: OIS and Camera Area

Based on an understanding of the users needs and general assumptions regarding the target system,
the subsequent Architecture Decisions (ADs) were made. The problem and the decision of each
AD are disclosed. The detailed analysis can be found in Appendix B. The decisions encompass the
overall architecture, with particular emphasis on decisions 1, 5, 6 and 7, which significantly shape
the architecture for the shipment validation part.

66

5.1 Architecture Decisions

AD-01: Camera Hardware
Problem
Description

Validation of shipments require optical inspection using the 4-eye principle or
image capture through cameras and image recognition technologies.

Decision Plain Cameras
AD-02: Customer Requirements Definition

Problem
Description

Pallet packaging for shipping goods varies based on plant, shipping party and
customer requirements. Finalizing these requirements takes several iterations.
Currently, plants maintain their own set of requirements as PDF or offline
handbooks, which are not machine-readable and have limitations in re-use, com-
parison and searchability. They are also not suitable for automated validation.
Thus it is crucial to have customer requirements for packaging:

• in machine-readable and standardized format
• that can be used as a validation target for images
• that must be flexible to cater to all kind of edge cases
• that must reflect the different dimensions of an instruction (plant, product,

ship to party, etc.)
• that can be defined with a visual editor

Decision OIS
AD-03: Customer Requirements Visualization (Packer UI)

Problem
Description

The packaging for shipping goods via pallets varies based on plant, shipping
party and other factors. Those requirements by the customers must be available
during the pallet packaging to the packer to correctly label the package, add
straps, sticky dots etc.
Currently, every plant maintains its own set of requirements often as PDF or
offline handbooks. These are not always following the exact pattern and make it
harder for the planner. Also, offline instruction is sometimes not as convenient
as a digital version.

Thus the requirement is to have customer requirements visualized for packaging:
• usable on different end-devices (android tablet, computer, packaging

stations) that might not have full internet access
• web-based for interoperability
• with no room for interpretation and very clearly guides the packer (UX

relevance)
• automatic visualization based on an initial scan of the product via barcode

or manual input

Decision OIS Labeling App
AD-04: Customer Requirements Fallback

Continued on next page

67

5 Architecture Modelling

Table 5.2 – continued from previous page
Problem
Description

Shipping of goods is a critical process in the supply chain to ensure delivery to
other Bosch plants but to also avoid claims from customers that are waiting
for parts. A technical incident with the visualization system of customer
requirements (network, software bug, hosting provider issue, latency) should
thus not impact the shipping of the goods in a way that it comes to a standstill.
A fallback is required.

The fallback should work:
• without an IT system
• be easy to use
• not rely on another technical system that might face the same problems

(network, hosting outage)

Decision Digital Files: Local PC and remote storage
AD-05: Packaging Validation Hardware Setup

Problem
Description

The finished pallets have to be validated in a timely manner based on image
recognition. There are multiple implementations available that are based on
images.

Usually, multiple images from different angles are analyzed to deduct if the
package conforms to a defined rule set such as:

• label placement
• label existence
• number of sticky dots and their placement
• number of straps

The requirement is to quickly indicate to the forklift driver if the pallet is ready
for shipment. Thus the recognition must be:

• reliable in different conditions (dust, humidity, temperature, lighting)
• fast in terms of validation results (<2-3 seconds total)
• easy to use by means of pallet positioning (margin for error or enforced

accurate placement)
• fast in terms of usage (driving through the camera gate or quickly

positioning and picking it up again)
• should support future validation options (e.g. correct boxes, colour,

damage detection etc.)

Decision Suspended / Gate (Stopping)
AD-06: Packaging Validation Software

Continued on next page

68

5.1 Architecture Decisions

Table 5.2 – continued from previous page
Problem
Description

The finished pallets have to be validated in a timely manner based on image
recognition. There are multiple implementations available that are based on
images.

The requirement is to quickly indicate to the forklift driver if the pallet is ready
for shipment. Thus the recognition must be:

• fast in terms of validation results (<3 seconds total) until feedback
• easy to use in terms of indicating what is wrong
• should support future validation options (e.g. correct boxes, colour, wear

and tear)
• should have means to integrate towards a customer requirements specifi-

cation system and SAP
• must support proper long-term operations and maintenance of the software

stack
• must allow for a joint collaboration effort to bundle know-how and

resources

Decision Combination of OIS and CA
AD-07: Packaging Validation Fallback

Problem
Description

In case the intended system for validation fails different options for a fallback
exist.

We can assume there are multiple reasons for a validation outage such as:
• customer requirements for validation input are not available (e.g. OIS is

down)
• camera or other hardware is damaged
• the network connectivity is impaired
• the validation software has a bug or is not available
• there is a major outage at a provider or hosting environment

Decision Manual 4-eye principle
AD-08: Delivery Model Backend

Problem
Description

This decision will evaluate different delivery options for the planned solution,
meaning how will the solution be sold and delivered to the customer.

This is a fundamental decision when developing a new solution since it affects a
lot of aspects of the solution and has a lot of implications. Those implications
will be compared in the following.

An important requirement to fully evaluate the impact is the planned business
model to monetize the solution.

Decision Fully managed services offering (Software-as-a-Service)

Table 5.2: Architecture Decisions

69

5 Architecture Modelling

5.2 Building Block View

Shipment Validation

authentication

Shipment
Packaging

send
imagesCamera Gate

retrieve validation
results

view backup
instructions

Packer UI

view validation
metrics

KPI
Dashboard

persist
rendered

instructions

Packaging
Instruction

Fallback

Pallet Validation
Service

User
Serviceauthentication authentication

Scanner UI

SAP
Integration

Legend

integration /
 dependency

Building Block possible future
extensions

obtain validation requirement

obtain master data

view
instructions

Customer
Requirements

Notification
Service trigger

Customer
Requirements

Service

input customer
 requirements

Planning UI

define
notifications

Figure 5.2: Building Block View

The accompanying Figure 5.2 depicts the building block perspective. It incorporates the ADs
from Section 5.1 into one view and is built up of three parts: Customer Requirements, Shipment
Packaging and Shipment Validation. Each part comprises distinct authentication-related components
linked to the User Service. Let’s examine every element in greater detail.

The Customer Requirements section oversees all customer management aspects. There are three
main components. The Notification Service is responsible for transmitting timely notifications
to relevant users regarding the arrival of new pallets or any other urgent updates. Second, the
Customer Requirements Service is responsible for managing and processing the requirements of
each customer. It ensures that any special instructions or limits provided by the customer during
pallet management are taken into account by the application. Finally, the Planning UI incorporates
a Manager- and Logistics-specific user interface. Using this interface, they can effectively plan and
manage the placement and arrangement of pallets in the warehouse. They can review and modify
requirements, allot resources and monitor the entire process. This UI is a result of the second AD.
To ensure that only authorised users can access and interact with the application, all Customer
Requirement components are linked to the User Service for authentication.

The primary emphasis of the Shipment Packaging block is the packaging and preparation of pallets
for warehouse storage. This block is propelled by two significant components. The Packaging
Instruction Fallback applies when specific packaging instructions are unavailable or cannot be
processed, fallback serves as an alternative mechanism. It ensures that the packaging process
will proceed efficiently even if precise instructions are not provided. As discussed in the fourth
AD this fallback is realized through a local computer which accesses a remote storage to gather
the instructions. The second component, the Packer UI, provides an intuitive interface designed
specifically for the Packers. Shopfloor workers are guided through the packaging procedure with

70

5.3 Component View

step-by-step instructions and real-time feedback. The third AD is concerned with this component.
As they complete their duties, packers can update the system with pertinent information. As with
the other blocks, the components of the Shipment Packaging block are linked to the User Service
for authentication, allowing authorised Packers to access and utilise the Packer UI.

The final Shipment Validation block is concerned with the validation and verification of pallets
using cameras and AI vision. This block consists of four essential components. The Camera Gate
is a physical gate equipped with cameras that take pictures of incoming containers. The cameras are
plain cameras as decided in the first AD and hanging from a suspended gate setup. The images are
taken while the pallet stays still (fifth AD). These images are then transmitted to the Pallet Validation
Service for further processing. Using vision AI algorithms, the Pallet Validation Service reads and
analyses pallet labelling. It verifies the presence of every pallet and searches for any irregularities
or issues. It provides crucial feedback and direction for the next stages. This component will
be a combination of CA and OIS regarding the sixth AD. If the system experiences outages the
seventh AD guides to a manual 4-eye principal fallback (two sequential shopfloor workers visually
checking). The Scanner UI is an interface designed specifically for Forklift Operators. It permits
users to scan pallet labels with handheld scanners and receive real-time feedback on the authenticity
and placement of the containers. The KPI Dashboard contains a comprehensive dashboard for
Managers, Customer Managers, Local Support Engineers and Central Support Engineers. This
dashboard displays KPIs and metrics associated with scanning and validating pallets. Users can
utilise the provided insights to monitor overall performance, identify any obstacles and make the
necessary adjustments. As with the other blocks, the components of the Shipment Validation
block are securely connected to the User Service for authentication, ensuring safe access and data
protection.

The system is planned to be delivered as Software as a Service. This decision (eighth AD) is not
visualized in Figure 5.2, yet it bears equal significance to the other ADs.

In conclusion, these three building components consisting of numerous interconnected elements
create a system that facilitates the scanning, validation and organisation of pallets during warehouse
processes. The depicted system satisfies the ADs, thereby enhancing productivity and ensuring a
seamless workflow within warehouse operations.

5.3 Component View

The following architecture documentation only considers the shipment validation block. This
component view in Figure 5.3 is not yet implemented and serves as a guideline for the target
system. This architecture integrates components of CA and OIS as illustrated in Figure 5.3. In
the component view, the color scheme utilizes orange to represent the OIS components and green
to indicate the CA components. All remaining colors are employed to enhance the clarity of the
separation between different components. For simplicity reasons, the SAP and Bosch Identity
Manager components are not outlined in these architectures. The Bosch Identity Manager is used to
authenticate the users interacting with the shipment validation service. After initially authenticating
the session cookie is used during the connection to gain access and communicate with the Apache
Webserver.

71

5 Architecture Modelling

«component»
Image Preprocessing Service

«component»
Camera Gate

«component»
Scanner UI

«component»
KPI Dashboard

Shipment Validation
Block

«component»
OIS

Image Preprocessing

«component»
CA

 Camera Gate
Connector Service

send images

«component»
CA

Image Preprocessing

«component»
Detection Service

«component»
Validation Service

«component»
OIS Detection Service

«component»
CA Detection Service

Retrieve Validation Results

Label & Barcode
Reader Results

«architecture»
SAP

obtain
validation requirements

Pallet Validation Serice

Component View -
Shipment Validation

«architecture»
Bosch Identity

Manager
Connected to

Customer Requirements Block

Authenticate Users

Figure 5.3: Component View - Shipment Validation Overall

The Camera Gate Connector, originating from the CA project, is integrated into the OIS procedure.
This particular component serves to establish a connection with the Camera Gate and facilitate the
retrieval of pictures. Functioning as an intermediary, it acts as the interface between the Camera
Gate Hardware and the Computer situated within the warehouses. Ideally, both devices operate
within the same network, enabling seamless data transfer via Ethernet. In the most Bosch plants
the Radio-Frequency Identification (RFID) technology is used to identify the pallets and packages.
The RFID infrastructure including the computers are used to deploy this service. The Camera
Gate Connector Service encompasses an event-handler mechanism designed to process incoming
pictures. When the forklift driver initiates the picture-taking process, the event-handler promptly
receives the images and subsequently forwards them to the Image Preprocessing Service.

The image preprocessing module incorporates the integration of the CA and OIS image preprocessing
components, as depicted in Figure 5.4. The architecture has been intentionally designed to facilitate
the preprocessing on the same machine where the Camera Gate Connector is located. The integration
enables simultaneous processing of the images. The CA preprocessing component focuses primarily
on label detection. This detection is essential for extracting the Handling Unit number from the label,
which subsequently plays a crucial role in the validation service to ensure adherence to conformity

72

5.3 Component View

rules. On the other hand, the OIS preprocessing component is dedicated to detect various elements
of the pallet, such as sticky dots, straps, and the overall structure. Both processes include image
correction techniques to enhance the readability of the images for the AI algorithms.

«component»
Image Preprocessing Service

«component»
OIS Image Preprocessing

«component»
CA Image Preprocessing

«component»
Stitch Microservice

«component»
Label Detector
Microservice

«component»
Lens Undistortion

Microservice

«component»
Perspective Correction

Microservice

«component»
Detect Split
References

Microservice

«component»
Calculate Scale Factor

Microservice

«component»
Split Packages
Microservice

Component View -
Shipment Validation

Image Preprocessing Service

«component»
Homography
Microservice

«component»
Join OIS Preprocess

Microservice

Figure 5.4: Component View - Shipment Validation - Image Preprocessing Service

The decision to perform preprocessing on the on-premises computer is primarily driven by the time
it takes to upload images to the cloud. The upload speed is directly dependent on the internet speed,
and to mitigate potential delays, smaller preprocessed images and data are prioritized for upload.
Once on the cloud, the detection and validation services are executed. The detection service of the
CA is responsible for identifying the Handling Unit, a 13-digit number, as mentioned previously.
Herefore they use the Optical Character Recognition (OCR) functional service of the Google Cloud.
On the other hand, the OIS focuses on detecting items, their positions, and quantities on the pallet.
The collaborative relationship between these components is illustrated in Figure 5.5.

73

5 Architecture Modelling

«component»
Detection Service

«component»
CA Detection Service

«component»
CA OCR Microservice

«component»
CA Label Reader

Microservice

«component»
CA Barcode Reader

Microservice

«component»
OIS Detection Service

«component»
Detect & Classity
Packaging Items

Microservice

«component»
Segment Packaging
Items Microservice

«component»
Extract Item Features

Microservice

«component»
Join Face Results

Microservice

Label & Barcode
Reader Results

Component View -
Shipment Validation
Detection Service

Figure 5.5: Component View - Shipment Validation - Detection Service

The validation service serves as the crucial and final component where data from the preceding mod-
ules is consolidated. Initially, the Handling Unit number is employed to retrieve the corresponding
conformity rules from the customer requirements block. This retrieved data is then validated against
the results generated by the AI-based microservices, which determine the item types, quantities,
and positions. This particular component operates within an Apache Webserver, housed within
a Docker container. This setup allows for easy access to the results by the Scanner UI and any
potential future user interfaces. This architecture is shown in Figure 5.6

«component»
Validation Service

«component»
Request Conformity
Rules Microservice

API
Scanner UI

API
SAP Integration

API CA Detection
(Label & Barcode)

API OIS Detection

API
Costumer

 Requirements obtain validation
 requirements

Component View -
Shipment Validation
Validation Service

«component»
Validate Packaging

Item Types
 Microservice

«component»
Validate Packaging

Item Quantities
Microservice

«component»
Validate Packaging

Item Positions
Microservice

«component»
Join Validation Results

Microservice

API
 KPI Dashboard

API
Bosch Identity

Manager

Figure 5.6: Component View - Shipment Validation - Validation Service

74

5.4 Runtime View

5.4 Runtime View

The runtime view of the shipment validation service is depicted in Figure 5.7. The procedure
begins with the authentication of the forklift driver through the Bosch Identity Manager. Once
authenticated, the camera gate can be triggered to initiate the process. The overall process is
self-explanatory, but the preprocessing and detection stages warrant special mention.

During the preprocessing stage, microservices are applied to each picture captured by the four
cameras at the Camera Gate. As there are four cameras, the microservice of CA and OIS are scaled
accordingly and executed in parallel. Similarly, the OIS detection service follows a similar approach,
with processes running for each lateral side of the pallet.

The forklift driver is able to see the results in the Scanner UI which is a web application developed
inside OIS.

take pictures

transferImages()
invokePreprocessing()

caPreprocessing(),
oisPreprocessing()

preprocessing for each
lateral volume side

sendImageData()

detection for each
lateral volume side

oisPreprocessing()

transferDetectionData()

getConformityRules(session)

response 200

response (display updated validation results)

Runtime View -
 Shipment Validation

manual trigger

:Camera
Gate

Forklift Driver
Scanner UI

:CA Camera Gate
Connector Serive

:Image Preprocessing
Service :Detection Service :Validation Service (out of scope)

Customer Requirements Block

Before start forklift driver is authenticated at the validation service with his Bosch ID and has an active session

caLabelBarcodeDetection()

validateItemTypes(),
validateItemQuantities(),
validateItemPositions()

joinResults()

Figure 5.7: Runtime View - Shipment Validation

75

5 Architecture Modelling

5.5 Deployment View

Figure 5.8 provides insights into the devices and execution environments where the components
will operate, as well as the communication protocols employed for information exchange.

The camera gate will run on a camera controller, which is a pre-existing solution procured externally.
The Operating System (OS) for this controller is Windows 10. The controller will be integrated into
the same network as the host of the camera gate connector service and the image preprocessing
service. Therefore images can be transferred easily through the File Transfer Protocol (FTP).

For the RFID system, a Linux-based operating system is commonly utilized, as it is a widely
adopted platform for such applications. Since the gate connector and the image preprocessing will
piggyback on this system’s device, they also run on a Linux OS.

The camera gate connector service is developed using Kotlin by the CA team. Both preprocessing
services are developed in Python and can be easily managed and initialized by the overarching
“mother“ component.

The detection and validation services are deployed on the Microsoft Azure cloud platform, as the
CA team already operates within this environment.

To ensure logical separation and address security considerations, the detection service and validation
service are deployed in separate Docker containers.

The Microsoft Azure Kubernetes Service (AKS) cluster is responsible for managing these two
nodes. The deployment structure was recommended by the CA team, leveraging AKS for container
management. Additionally, AKS offers various advantages, such as the integration of the Azure
Kafka messaging backbone. This feature can be utilized to establish a health check and logging
system for the microservices.

The validation service operates directly on an Apache Webserver, which possesses the necessary
access to the customer requirements, Bosch Identity Manager, and SAP APIs. Communication with
these interfaces is facilitated through the use of the HTTPS protocol. Although the specific details
of these components are beyond the scope of this context, their involvement and functionality are
acknowledged.

The Scanner UI and KPI dashboard are both web applications designed to run on their respective
devices. For example, the Scanner UI is intended to be accessed and utilized on the tablet used by
the forklift driver.

76

5.5 Deployment View

«execution Environment, Azure Kubernetes Service Cluster»

«execution Environment, Docker Container,
Linux OS»

«Python»
Component View::
Detection Service

«Python»
Component View::

CA Detection Service

«Python»
Component View::

OIS Detection Service

«execution Environment, Docker Container,
Linux OS»

«execution Environment, Application
Server»

Apache Webserver

«Python»
Component View::
Validation Service

«device»

«execution Environment, Linux OS»

«Kotlin/JVM»
Component View::

CA
Camera Gate

 Connector Service

«Python»
Component View::

Image Preprocessing Service

Filesystem

«Python»
Component View::

OIS
Image Preprocessing

«Python»
Component View::

CA
Image Preprocessing

«device, Camera Controller»

«execution Environment,
Windows»

«device»

«execution Environment»
WebBrowser

Component View::
Scanner UI

Component View::
Camera Gate

Shipment Validation
Block

FTP

HTTPS(REST)

HTTPS(REST)

HTTPS(REST)

HTTPS(REST)

«device»

«execution Environment»
WebBrowser

Component View::
KPI Dashboard

HTTPS

Pallet Validation Serice

HTTPS

Deployment View -
Shipment Validation

Connected to
Customer Requirements Block

«unkown»

«unknown»

Architecture View::
Bosch Identity

Manager

«unkown»

«unknown»

Architecture View::
SAP

HTTPS

Figure 5.8: Deployment View - Shipment Validation

77

6 Conclusion

To answer the scientific question of integrating or combining preexisting solutions, the following
steps were taken. A comprehensive literature review was conducted to gain knowledge on software
architecture approaches, which was then used to decide on a software architecture approach. The
review revealed comprehensive insights into various approaches, outlining the necessary phases
required to design the corresponding architecture, along with their respective advantages and
disadvantages. Additionally, the review evaluated these methodologies based on non-functional
requirements, culminating in an architecture ranking matrix. This matrix can serve as a valuable
tool for making informed decisions regarding the most suitable architectural approach.

The target system’s roadmap included conducting multiple interviews with project teams, developing
user stories and analyzing constraints, designing the system context, making ADs and ultimately
formulating a target architecture.

The conducted interviews with the project teams provided valuable insights into their respective
projects, including their architecture and team capabilities. Substantial amounts of data were
gathered during these interviews, which were subsequently analyzed in-depth. Alongside the user
stories, a thorough evaluation of the projects was carried out to achieve the best possible outcome.

It was evident that each project exhibited varying levels of maturity and fulfilled user requirements
at different extents. Furthermore, the user stories played a crucial role in guiding the ADs, which in
turn, were instrumental in constructing the desired target system.

As a consequence of incorporating the non-functional requirements of the users, the ranking matrix
derived from the literature review was weighted accordingly to align with their specific needs.
The resulting architecture that emerged from this process is the microservices architecture. By
employing this method, the overall structure of the target system was systematically designed. As a
result, the component, runtime and deployment views were derived from this process.

Utilizing the microservices architecture facilitated the seamless integration of the source projects
into the system. Each component within the resulting target architecture is transformed into a
service derived from the source projects. This approach ensures a straightforward adaptation of the
overall synergy of components, accomplished by offering interfaces for each microservice.

The outcome of my thesis shows an application of the microservice architecture which is the result
of the literature review. My work functions as a template or guideline for the VDT. It is explicitly
not intended to serve as a comprehensive specification but rather as a concise report of the target
architecture.

79

6 Conclusion

The incorporation of the ShipQ project in the future is deemed crucial to enhance customer interest.
However, due to time constraints and the current engagement of the ShipQ team in transitioning
from R3 to S/4HANA, integrating this project before the end of 2023 is unfeasible. Consequently,
it is highly recommended to prepare the interface for ShipQ in advance to facilitate its integration at
a later stage.

To the best of my research, there is presently a lack of guidelines for choosing a software architecture
approach that is aligned with the non-functional requirements of a project. Non-functional
requirements are critical aspects of a system’s design that impact its overall quality and performance
characteristics. Different architecture models have varying strengths and weaknesses when it comes
to meeting specific non-functional requirements.

The objective of this work is to provide guidance to developers and software architects in the process
of selecting an architecture approach that takes the non-functional requirements into consideration.
However, as mentioned in Chapter 2, it is important to note that selecting an approach does not
necessarily mean defining “the architecture“ itself, but rather establishing a foundational structure
for organizing the software. It is recommended to follow the best practices and patterns for example
described in [Len12] [Ric15].

As I draw to the culmination of this thesis, I find myself reflecting on the journey of conducting this
research within the Bosch enterprise. Throughout this process, I have gained firsthand experience
and encountered unique challenges that have shaped my perspective on designing an architecture
for application integration. When I commenced my thesis, I was initially assigned to design an
integration software architecture and subsequently develop the proposed architecture with the team.
Initially, the plan was to analyze four projects. However, it eventually expanded to analyzing
seven integration solutions (only five of them were reported in this work), which were onboarded
by the project lead. This resulted in a significant amount of time being dedicated to conducting
interviews with different teams, analyzing compatibility and coordinating meeting schedules. Owing
to multiple delays in the planning process, the team encountered difficulties in developing the
integrated target solution as initially intended. This situation impeded the accomplishment of the
primary scientific objective, which aimed to compare the old systems with the newly envisioned
target system.

80

Bibliography

[09] BM-MDA ’09: Proceedings of the 1st Workshop on Behaviour Modelling in Model-
Driven Architecture. Enschede, The Netherlands: Association for Computing Machin-
ery, 2009. isbn: 9781605585031 (cit. on pp. 29, 43).

[AA15] R. Alexander, I. Alexei. “A reactive architecture for cloudbased system engineering”.
In: (2015) (cit. on pp. 30, 31, 44).

[AA16] S. Ajmal, S. Ali. “Agile-waterfall hybrid model for software development processes”.
In: Science International 28.6 (2016), pp. 5165–5170 (cit. on pp. 24, 25, 37).

[AAE16] N. Alshuqayran, N. Ali, R. Evans. “A Systematic Mapping Study in Microservice
Architecture”. In: 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA). 2016, pp. 44–51. doi: 10.1109/SOCA.2016.15
(cit. on p. 22).

[Abe07] A. Abel. Domain-driven design Quickly. Lulu, 2007 (cit. on pp. 26, 39).
[AC22] M. Almeida, E. Canedo. “Authentication and Authorization in Microservices Ar-

chitecture: A Systematic Literature Review”. In: Applied Sciences 12 (Mar. 2022),
p. 3023. doi: 10.3390/app12063023 (cit. on pp. 22, 35).

[AJW03] G. Anneke, B. W. Jos, B. Wim. MDA explained the model driven architecture practice
and promise. AddisonWesley Professional, 2003 (cit. on pp. 29, 43, 44).

[AP16] H. Abbas, J. Pooyan. “Microservices architecture enables DevOps: Migration to a
cloud-native architecture”. In: (2016) (cit. on p. 24).

[ARI15] D. Adjepon-Yamoah, A. Romanovsky, A. Iliasov. “A Reactive Architecture for Cloud-
Based System Engineering”. In: Proceedings of the 2015 International Conference
on Software and System Process. ICSSP 2015. Tallinn, Estonia: Association for
Computing Machinery, 2015, pp. 77–81. isbn: 9781450333467. doi: 10.1145/

2785592.2785611. url: https://doi.org/10.1145/2785592.2785611 (cit. on p. 17).
[Bas] Y. Bassil. “A simulation model for the waterfall software development life cycle”. In:

() (cit. on pp. 25, 38).
[BD14] R. Bruns, J. Dunkel. “Towards pattern-based architectures for event processing

systems”. In: Software: Practice and Experience 44 (Nov. 2014). doi: 10.1002/spe.
2204 (cit. on pp. 28, 41).

[BHJ16] A. Balalaie, A. Heydarnoori, P. Jamshidi. “Microservices Architecture Enables
DevOps: Migration to a Cloud-Native Architecture”. In: IEEE Software 33.3 (2016),
pp. 42–52. doi: 10.1109/MS.2016.64 (cit. on pp. 23, 24).

[BKO+19] J. Bishung, O. Koyejo, A. Okezie, B. Edosomwan, S. Ani, A. Ibrahim, A. Olushola,
I. Odun-Ayo. “A Critical Analysis of Topics in Software Architecture and Design”.
In: Advances in Science, Technology and Engineering Systems Journal 4 (Mar. 2019).
doi: 10.25046/aj040228 (cit. on pp. 14, 21).

81

https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.3390/app12063023
https://doi.org/10.1145/2785592.2785611
https://doi.org/10.1145/2785592.2785611
https://doi.org/10.1145/2785592.2785611
https://doi.org/10.1002/spe.2204
https://doi.org/10.1002/spe.2204
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.25046/aj040228

Bibliography

[Bos04] J. Bosch. “Architecture-Centric Software Engineering”. In: July 2004, pp. 22–24.
isbn: 978-3-540-22918-6. doi: 10.1007/978-3-540-28630-1_27 (cit. on pp. 21, 33,
34).

[BQT22] L. Baresi, G. Quattrocchi, D. Tamburri. Microservice Architecture Practices and
Experience: a Focused Look on Docker Configuration Files. Dec. 2022 (cit. on pp. 22,
34, 35).

[Bro04] A. W. Brown. “Model driven architecture Principles and practice”. In: (2004) (cit. on
pp. 29, 42, 43).

[CB12] T. Clark, B. S. Barn. “A Common Basis for Modelling Service-Oriented and Event-
Driven Architecture”. In: Proceedings of the 5th India Software Engineering Con-
ference. ISEC ’12. Kanpur, India: Association for Computing Machinery, 2012,
pp. 23–32. isbn: 9781450311427. doi: 10.1145/2134254.2134258. url: https:
//doi.org/10.1145/2134254.2134258 (cit. on pp. 28, 41).

[Cha20] W. S. Chao. “Model-Based Systems Engineering Using Structure-Behavior Coales-
cence Modeling Language”. In: (Sept. 2020) (cit. on pp. 14, 21).

[Clo20] Cloud Native Computing Foundation. Cloud Native Survey 2020: Containers in
production jump 300% from our first survey. 2020. url: https://www.cncf.io/blog/
2020/11/17/cloud-native-survey-2020-containers-in-production-jump-300-

from-our-first-survey/ (cit. on p. 24).

[CSW21] N. Chondamrongkul, J. Sun, I. Warren. “Formal Security Analysis for Software
Architecture Design: An Expressive Framework to Emerging Architectural Styles”.
In: Science of Computer Programming 206 (Mar. 2021), p. 102631. doi: 10.1016/j.
scico.2021.102631 (cit. on p. 21).

[Dav21] C. Dave. “Microservices Software Architecture: A Review”. In: International Journal
for Research in Applied Science and Engineering Technology 9 (Nov. 2021), pp. 1494–
1496. doi: 10.22214/ijraset.2021.39036 (cit. on pp. 34, 35).

[Dev17] N. M. Devadiga. “Tailoring architecture centric design method with rapid prototyping”.
In: (2017) (cit. on pp. 21, 33).

[DL01] J. Daniel, B. Len. “Architecture-centric software project management: A practical
guide”. In: (2001) (cit. on pp. 21, 33).

[DL22] K. Dürr, R. Lichtenthäler. “An Evaluation of Modeling Options for Cloud-native
Application Architectures to Enable Quality Investigations”. In: 2022 IEEE/ACM 15th
International Conference on Utility and Cloud Computing (UCC). 2022, pp. 297–304.
doi: 10.1109/UCC56403.2022.00053 (cit. on pp. 24, 36).

[DM18] A. Dima, M. A. Maassen. “From Waterfall to Agile software: Development models
in the IT sector, 2006 to 2018. Impacts on company management”. In: Journal of
International Studies 11 (June 2018), pp. 315–326. doi: 10.14254/2071-8330.2018/
11-2/21 (cit. on pp. 25, 37, 38).

[DSM+17] A. Debski, B. Szczepanik, M. Malawski, S. Spahr, D. Muthig. “A scalable, reactive
architecture for cloud applications”. In: IEEE Software 35.2 (2017), pp. 62–71 (cit. on
pp. 30, 31, 44, 45).

82

https://doi.org/10.1007/978-3-540-28630-1_27
https://doi.org/10.1145/2134254.2134258
https://doi.org/10.1145/2134254.2134258
https://doi.org/10.1145/2134254.2134258
https://www.cncf.io/blog/2020/11/17/cloud-native-survey-2020-containers-in-production-jump-300-from-our-first-survey/
https://www.cncf.io/blog/2020/11/17/cloud-native-survey-2020-containers-in-production-jump-300-from-our-first-survey/
https://www.cncf.io/blog/2020/11/17/cloud-native-survey-2020-containers-in-production-jump-300-from-our-first-survey/
https://doi.org/10.1016/j.scico.2021.102631
https://doi.org/10.1016/j.scico.2021.102631
https://doi.org/10.22214/ijraset.2021.39036
https://doi.org/10.1109/UCC56403.2022.00053
https://doi.org/10.14254/2071-8330.2018/11-2/21
https://doi.org/10.14254/2071-8330.2018/11-2/21

Bibliography

[DW05] V. Dheap, P. A. S. Ward. “Event-Driven Response Architecture for Event-Based
Computing”. In: Proceedings of the 2005 Conference of the Centre for Advanced
Studies on Collaborative Research. CASCON ’05. Toranto, Ontario, Canada: IBM
Press, 2005, pp. 70–82 (cit. on pp. 28, 41).

[ELV+12] B. Engineer, A. Lombide Carreton, T. Van Cutsem, M. STĲN, W. De Meuter. “A
Survey on Reactive Programming”. In: ACM Computing Surveys 45 (Jan. 2012). doi:
10.1145/2501654.2501666 (cit. on p. 31).

[Erl] T. Erl. “Serviceoriented architecture”. In: () (cit. on pp. 27, 40).

[Eva04] E. Evans. Domaindriven design tackling complexity in the heart of software. Addis-
onWesley Professional, 2004 (cit. on pp. 25, 26, 39).

[Eva14] E. Evans. DomainDriven Design Reference Definitions and Pattern Summaries. Dog
Ear Publishing, 2014 (cit. on pp. 26, 38, 39).

[FYX20] S. Fu, F. Yang, Y. Xiao. “AI Inspired Intelligent Resource Management in Future
Wireless Network”. In: IEEE Access PP (Jan. 2020), pp. 1–1. doi: 10.1109/ACCESS.
2020.2968554 (cit. on p. 21).

[GPNV02] J. Gustafsson, J. Paakki, L. Nenonen, A. Verkamo. “Architecture-centric software
evolution by software metrics and design patterns”. In: Feb. 2002, pp. 108–115. isbn:
0-7695-1438-3. doi: 10.1109/CSMR.2002.995795 (cit. on pp. 21, 33, 34).

[GYE22] S. Gottschalk, E. Yigitbas, G. Engels. “Model-driven Continuous Experimentation
on Component-based Software Architectures”. In: 2022 IEEE 19th International
Conference on Software Architecture Companion (ICSA-C). 2022, pp. 20–24. doi:
10.1109/ICSA-C54293.2022.00011 (cit. on pp. 29, 43).

[HH06] W. Harald, R. Harald. “Architectural improvement by use of strategic level domain-
driven design”. In: In Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems (2006) (cit. on p. 26).

[HO20] E. Hustad, D. Olsen. Creating a sustainable digital infrastructure: The role of
service-oriented architecture. Dec. 2020. doi: 10.13140/RG.2.2.34362.00963 (cit. on
p. 26).

[IE06] M. Ibrahim, O. Etzion. “Workshop on Event Driven Architecture”. In: Companion
to the 21st ACM SIGPLAN Symposium on Object-Oriented Programming Systems,
Languages, and Applications. OOPSLA ’06. Portland, Oregon, USA: Association
for Computing Machinery, 2006, p. 624. isbn: 159593491X. doi: 10.1145/1176617.
1176639. url: https://doi.org/10.1145/1176617.1176639 (cit. on pp. 28, 41, 42).

[Jai19] M. Jaiswal. “Software Architecture and Software Design”. In: SSRN Electronic
Journal (Jan. 2019). doi: 10.2139/ssrn.3772387 (cit. on p. 21).

[Joh01] D. John. “Model-driven architecture: Vision and dards, and emerging technologies”.
In: (2001) (cit. on pp. 29, 43).

[KEP18] A. Kamal, F. Erik, Z. Piyum. Cloud Native Architectures Design highavailability and
costeffective applications for the cloud. Packt Publishing Ltd, 2018 (cit. on pp. 23,
24).

[KK09] B. Kathryn, L. Kenneth. “Service oriented architecture”. In: (2009) (cit. on pp. 27,
40).

83

https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1109/ACCESS.2020.2968554
https://doi.org/10.1109/ACCESS.2020.2968554
https://doi.org/10.1109/CSMR.2002.995795
https://doi.org/10.1109/ICSA-C54293.2022.00011
https://doi.org/10.13140/RG.2.2.34362.00963
https://doi.org/10.1145/1176617.1176639
https://doi.org/10.1145/1176617.1176639
https://doi.org/10.1145/1176617.1176639
https://doi.org/10.2139/ssrn.3772387

Bibliography

[Kra15] L. Krause. Microservices: Patterns and Applications: Designing fine-grained services
by applying patterns. 2015 (cit. on pp. 17, 23).

[Law04] W. Lawrence. “Understanding service-oriented architecture”. In: The Architecture
Journal (2004) (cit. on pp. 27, 40).

[Len12] R. K. Len Bass Paul Clements. Software Architecture in Practice. 3rd Edition. 2012
(cit. on pp. 17–19, 23, 24, 80).

[Lin17] D. S. Linthicum. “Cloud-Native Applications and Cloud Migration: The Good, the
Bad, and the Points Between”. In: IEEE Cloud Computing 4.5 (2017), pp. 12–14.
doi: 10.1109/MCC.2017.4250932 (cit. on pp. 23, 24, 35, 36).

[MAC+04] G. Miller, S. Ambler, S. Cook, S. Mellor, K. Frank, J. Kern. “Model Driven
Architecture: The Realities, a Year Later”. In: Companion to the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications. OOPSLA ’04. Vancouver, BC, CANADA: Association for Computing
Machinery, 2004, pp. 138–140. isbn: 1581138334. doi: 10.1145/1028664.1028719.
url: https://doi.org/10.1145/1028664.1028719 (cit. on pp. 29, 43).

[MBKN09] H. Mohammad, A. Bavar, N. M. Khashayar, D. Negin. “A brief survey of software
architecture concepts and service oriented architecture”. In: (2009) (cit. on pp. 27,
41).

[MMCF18] H. Matheus, K. Martin, S. Christina, M. Florian. “Supporting largescale agile
development with domaindriven design”. In: (2018) (cit. on p. 26).

[MMd18] J. D. Michael, T. " u. o. m. a. c. Michal, future directions. “ACM SIGAPP Applied
Computing Review 17 no”. In: (2018) (cit. on p. 22).

[MOTG17] M. Mora, R. O’Connor, F. Tsui, J. Gómez. “Design methods for software architectures
in the service-oriented computing and cloud paradigms”. In: Software: Practice and
Experience 48 (Nov. 2017). doi: 10.1002/spe.2547 (cit. on p. 21).

[MS21] S. Mishra, A. Sarkar. “Service-Oriented Architecture for Internet of Things: A
Semantic Approach”. In: Journal of King Saud University - Computer and Information
Sciences 34 (Oct. 2021). doi: 10.1016/j.jksuci.2021.09.024 (cit. on p. 27).

[MW07] P. Mike, V. D. H. Willem-Jan. “Service oriented architectures approaches technologies
and research issues”. In: (2007) (cit. on pp. 27, 40).

[Nic15] T. Nick. Patterns principles and practices of domaindriven design. John Wiley Sons,
2015 (cit. on pp. 25, 26, 38, 39).

[NIG+20] N. Niknejad, W. Ismail, I. Ghani, B. Nazari, M. Bahari, A. Hussin. “Understanding
Service-Oriented Architecture (SOA): A systematic literature review and directions
for further investigation”. In: Information Systems 91 (July 2020), p. 101491. doi:
10.1016/j.is.2020.101491 (cit. on pp. 27, 41).

[NPHK15] D. Nakhaeinia, P. Payeur, T. Hong, B. Karasfi. “A hybrid control architecture for
autonomous mobile robot navigation in unknown dynamic environment”. In: Aug.
2015. doi: 10.1109/CoASE.2015.7294274 (cit. on p. 17).

[OHM+15] G. Oscar, C. Harold, V. Mauricio, S. Lorena, C. Rubby, G. Santiago. “Evaluating the
monolithic and the microservice architecture pattern to deploy web applications in
the cloud”. In: (2015) (cit. on p. 22).

84

https://doi.org/10.1109/MCC.2017.4250932
https://doi.org/10.1145/1028664.1028719
https://doi.org/10.1145/1028664.1028719
https://doi.org/10.1002/spe.2547
https://doi.org/10.1016/j.jksuci.2021.09.024
https://doi.org/10.1016/j.is.2020.101491
https://doi.org/10.1109/CoASE.2015.7294274

Bibliography

[Pet17] Q. Peter-Christian. “Understanding cloudnative applications after 10 years of cloud
computinga systematic mapping study”. In: (2017) (cit. on p. 24).

[PH07] M. Papazoglou, W.-J. Heuvel. “Service oriented architectures: Approaches, technolo-
gies and research issues”. In: International Journal on very large data bases (VLDB)
16 (Jan. 2007), pp. 389–415 (cit. on pp. 27, 40).

[PWB09] K. Petersen, C. Wohlin, D. Baca. “The Waterfall Model in Large-Scale Development”.
In: Product-Focused Software Process Improvement. Ed. by F. Bomarius, M. Oivo,
P. Jaring, P. Abrahamsson. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 386–400. isbn: 978-3-642-02152-7 (cit. on pp. 25, 38).

[R G22a] S. R Goniwada. Cloud Native Architecture and Design: A Handbook for Modern
Day Architecture and Design with Enterprise-Grade Examples. Jan. 2022. isbn:
978-1-4842-7225-1. doi: 10.1007/978-1-4842-7226-8 (cit. on p. 35).

[R G22b] S. R Goniwada. “Cloud Native Architecture Principles”. In: Jan. 2022, pp. 55–125.
isbn: 978-1-4842-7225-1. doi: 10.1007/978-1-4842-7226-8_3 (cit. on pp. 24, 36).

[R G22c] S. R Goniwada. “Introduction to Cloud Native Architecture”. In: Jan. 2022, pp. 3–26.
isbn: 978-1-4842-7225-1. doi: 10.1007/978-1-4842-7226-8_1 (cit. on p. 36).

[RGKS20] M. Rumez, D. Grimm, R. Kriesten, E. Sax. “An Overview of Automotive Service-
Oriented Architectures and Implications for Security Countermeasures”. In: IEEE
Access 8 (2020), pp. 221852–221870. doi: 10.1109/ACCESS.2020.3043070 (cit. on
p. 27).

[Ric15] M. Richards. Software Architecture Patterns. O’Reilly Media, Inc., 2015. isbn:
9781491925409 (cit. on pp. 18, 80).

[RJ06] L. Robert, E. T. James. “Software architecture-centric methods and agile development”.
In: (2006) (cit. on pp. 21, 34).

[RMM16] M. Ronnie, M. Matt, A. Mike. Microservice architecture: aligning principles. OReilly
Media Inc, 2016 (cit. on p. 22).

[SAAA23] M. Seedat, Q. Abbas, N. Ahmad, A. Amelio. Systematic Mapping of Monolithic
Applications to Microservices Architecture. Apr. 2023. doi: 10.22541/au.168110476.
68608378/v1 (cit. on p. 22).

[SAM+19] C. Santana, L. Andrade, B. Mello, E. Batista, J. V. Sampaio, C. Prazeres. “A Reliable
Architecture Based on Reactive Microservices for IoT Applications”. In: Proceedings
of the 25th Brazillian Symposium on Multimedia and the Web. WebMedia ’19. Rio
de Janeiro, Brazil: Association for Computing Machinery, 2019, pp. 15–19. isbn:
9781450367639. doi: 10.1145/3323503.3345027. url: https://doi.org/10.1145/
3323503.3345027 (cit. on pp. 31, 44, 45).

[Sam19] M. Samadi. “Waterative Model: an Integration of the Waterfall and Iterative Software
Development Paradigms”. In: X (Aug. 2019), pp. 75–81 (cit. on pp. 25, 37).

[Sie11] J. G. Siek. “Special issue on library-centric software design (LCSD 2006)”. In: 76.4
(Apr. 2011), pp. 225–226. issn: 0167-6423 (print), 1872-7964 (electronic) (cit. on
p. 21).

85

https://doi.org/10.1007/978-1-4842-7226-8
https://doi.org/10.1007/978-1-4842-7226-8_3
https://doi.org/10.1007/978-1-4842-7226-8_1
https://doi.org/10.1109/ACCESS.2020.3043070
https://doi.org/10.22541/au.168110476.68608378/v1
https://doi.org/10.22541/au.168110476.68608378/v1
https://doi.org/10.1145/3323503.3345027
https://doi.org/10.1145/3323503.3345027
https://doi.org/10.1145/3323503.3345027

Bibliography

[Sob10] S. Sobers. “Reactive Architecture”. In: ACM SIGGRAPH 2010 Posters. SIGGRAPH
’10. Los Angeles, California: Association for Computing Machinery, 2010. isbn:
9781450303934. doi: 10.1145/1836845.1836889. url: https://doi.org/10.1145/
1836845.1836889 (cit. on pp. 30, 44).

[Sol00] R. Soley. “Model driven architecture”. In: (2000) (cit. on pp. 29, 43).

[SRB19] O. Sievi-Korte, I. Richardson, S. Beecham. “Software architecture design in global
software development: An empirical study”. In: Journal of Systems and Software
158 (2019), p. 110400. issn: 0164-1212. doi: https://doi.org/10.1016/j.

jss.2019.110400. url: https://www.sciencedirect.com/science/article/pii/
S0164121219301748 (cit. on pp. 14, 21).

[Tel22] T. Telang. “Cloud-Native Application Development”. In: Dec. 2022, pp. 29–54. isbn:
978-1-4842-8831-3. doi: 10.1007/978-1-4842-8832-0_2 (cit. on p. 36).

[Tov19a] V. Tovarnitchi. “Designing Distributed, Scalable and Extensible System Using
Reactive Architectures”. In: May 2019, pp. 484–488. doi: 10.1109/CSCS.2019.00088
(cit. on p. 17).

[Tov19b] V. M. Tovarnitchi. “Designing Distributed, Scalable and Extensible System Using
Reactive Architectures”. In: 2019 22nd International Conference on Control Systems
and Computer Science (CSCS). 2019, pp. 484–488. doi: 10.1109/CSCS.2019.00088
(cit. on pp. 30, 31, 44, 45).

[Ver13] V. Vernon. Implementing domaindriven design. AddisonWesley, 2013 (cit. on pp. 25,
26, 39).

[WLS22] M. Waseem, P. Liang, M. Shahin. “Software Architecture Design of Microservices
Systems”. PhD thesis. July 2022. doi: 10.13140/RG.2.2.19569.56168 (cit. on pp. 22,
34, 35).

[Woo21] M. Woodside. “Performance Models of Event-Driven Architectures”. In: Companion
of the ACM/SPEC International Conference on Performance Engineering. ICPE ’21.
Virtual Event, France: Association for Computing Machinery, 2021, pp. 145–149.
isbn: 9781450383318. doi: 10.1145/3447545.3451203. url: https://doi.org/10.
1145/3447545.3451203 (cit. on pp. 28, 42).

[XYBZ19] F. Xu, F. Yang, S. Bao, C. Zhao. “DQN Inspired Joint Computing and Caching
Resource Allocation Approach for Software Defined Information-Centric Internet of
Things Network”. In: IEEE Access PP (May 2019), pp. 1–1. doi: 10.1109/ACCESS.
2019.2916178 (cit. on p. 21).

All links were last followed on July 21, 2023.

86

https://doi.org/10.1145/1836845.1836889
https://doi.org/10.1145/1836845.1836889
https://doi.org/10.1145/1836845.1836889
https://doi.org/https://doi.org/10.1016/j.jss.2019.110400
https://doi.org/https://doi.org/10.1016/j.jss.2019.110400
https://www.sciencedirect.com/science/article/pii/S0164121219301748
https://www.sciencedirect.com/science/article/pii/S0164121219301748
https://doi.org/10.1007/978-1-4842-8832-0_2
https://doi.org/10.1109/CSCS.2019.00088
https://doi.org/10.1109/CSCS.2019.00088
https://doi.org/10.13140/RG.2.2.19569.56168
https://doi.org/10.1145/3447545.3451203
https://doi.org/10.1145/3447545.3451203
https://doi.org/10.1145/3447545.3451203
https://doi.org/10.1109/ACCESS.2019.2916178
https://doi.org/10.1109/ACCESS.2019.2916178

A Project Team Interviews

A.1 ShipSmart

How does live view into the system look like?

A camera mount for the pallet must be properly situated to guarantee adequate image. The LabView
application operates directly on the on-site server for rapid data processing. Label validation is
critical for ensuring correctness, including checking for precise placement, type, size, silent zone,
and even sticky dots. Metadata may be utilized to forecast model setup as well as to assess printer
quality. When it comes to barcode grading, it should be at an appropriate level according to
International Organization for Standardization (ISO) criteria. If the barcode cannot be read by the
reader, it is critical resolving the problem to avoid data processing problems.

Summary of jobs done by the system checks: The demands for a Proof of Concept (PoC) are
generally to analyze the readability of the barcode, position of the customer label, quiet zone,
number of sticky dots, and number of straps. Following the initial request, more functionalities
and jobs were created, such as analyzing the damage to the customer label, label angle, number of
customer labels, the radius of sticky dots, and packaging colour.

The PoC scope was effectively accomplished, and it aided in identifying areas for improvement in
the packaging process. The team also evaluated the angle and positioning of the customer label, as
well as the box colour, to ensure that the product stood out on the shelf.

To make sure that each shipment was properly tagged, the amount of customer labels was taken
into consideration together with the sticky dots’ radius to gauge how effectively they clung to the
packing. How is the system used on a daily basis? The system is still a PoC. Currently, the tests in
the operative environment are ongoing.

What are the strengths and weaknesses?

Because of the system’s adaptability and flexibility, it is simple to change and adapt to new situations
quickly. Regardless of the needs of the individual plants, it is adaptable and can be used. The system
offers interface points with other systems, such as , allowing for smooth communication and process
simplification. It can also be expanded to include OCR, which can increase the efficiency and
accuracy of data gathering. To decrease the chance of errors, the system also has some capability to
dynamically identify the pertinent ship-to-party number and apply the proper rule set. Last but not
least, the system’s potential for expansion via AI-based techniques, such as pattern recognition, may
eventually boost its dependability and accuracy.

How is the system setup currently done?

87

A Project Team Interviews

The server is connected to the camera and lights, guaranteeing that the images are delivered and
processed instantly. Although it is thought that it is possible to match the ShipSmart requirements
with the AutoID common hardware, there may be limitations to take into account regarding plant
alignment. The use case’s specific requirements should be taken into consideration while defining
the hardware, followed by the business case, software requirements, and hardware requirements,
in that sequence. It is possible to make efficient use of resources by compiling LabView visual
code on the development edition of LabView and using it on the customer site with a runtime-only
license.

The system uses Queued Message Handler (QMH) as messaging and LabView libraries for image
recognition and middleware. Pallet position is verified using proximity sensors, ensuring accuracy
and lowering the possibility of mistakes. An OK or NOK result is obtained and delivered to the
cloud within another 3 seconds after the image collection and processing take about 3 seconds. All
data is currently kept on-premises, but on different Virtual Machines, and is currently persisted via a
batch job in Microsoft SQL once images and capture results have been transferred to an Secure File
Transfer Protocol (SFTP) server. All data and information exchanged are safe and secure because
the system is situated in a secure area. All of the system’s logic, including the vision-related libraries
and modules, is housed in LabView. The system’s licensed program can only be used once it has
been compiled and costs 555 euros for an unlimited license. Other integrations, such as , database
integration for client requirements, and database integration for outcomes, will be required at the
front- and backends.

What are integration possibilities or options towards a combined target system?

The OIS database acts as a source and input for the validation process and can give the operator a
good alternative for output display. The MS SQL database, which is currently being used in the PoC,
has a design frontend that enables the specification of customer needs such as labels and positioning.
The data structure might need to be expanded, but for the time being, it seems to be a decent fit.
Although the system is currently designed for Android, a Windows version would be required for
complete functioning. Without much automation for the shipping process itself, ShipQ is primarily
a PDF viewer for client needs based on SAP information. Its main purpose is to digitize documents.
The LabView technology stack can be used with other tech stacks, such as Python, to give the
system flexibility and scalability. Further increasing effectiveness and speed is the QMH messaging
system, which acts as an extension point and enables parallel and asynchronous processing.

What are the constraints?

There is a backup strategy ready in case there is a future system outage. This backup strategy entails
consulting a paper book that lists customer specifications for how to label things. If an OIS is not
accessible, the paper book would be the next best thing to using it for visualization. Currently,
the fallback plan requires qualified personnel, but if the technology is implemented more widely,
a more detailed manual could be required. The placement of cameras and lights will depend on
the specific plant or project because the logistical procedure varies between plants. It might be
necessary for cameras to be movable to accommodate various pallet and shipment heights.

The system should be able to operate offline and sync later when a connection is restored because
network circumstances at different sites can be unpredictable. Only one side either the long side or
both the long and one short side has the label. The Eisenach hardware is incompatible with the
ShipSmart system.

88

A.2 Optical Inspection System

The cost of the camera and its software must be established to meet the logistical procedure. It has
to be established whether the LabView visual editor is difficult to test and prone to errors. To make
the LabView code more reusable across various use cases and test kinds, it might be required to
modularize it. Depending on the unique use case, the system’s parameters must be adjusted.

What are the team capabilities?

No team, just a single developer.

How does live view into the system look like?

-

A.2 Optical Inspection System

How is the system used on a daily basis?

The RecorderApp can be configured to register inspection stations, including the number and kind
of cameras and dock station ports, and it offers thorough inspection data. The Recorder App enables
users to start scans from any device with a browser, while the RulesApp lets users create inspection
criteria and provides a visual designer for positioning products on pallets, layers, and labels.

The VisionApp employs Django as a software framework, YOLO as an AIframework, and rules
that are retrieved via the RulesApp. Dataset generation has been underway for a year, and training
is done using the You Only Look Once (YOLO) framework, with a minimum average precision of
90% for package item detection.

The LabelingApp, based on Unity 3D, allows shopfloor operators to access regulations on a
read-only basis via a scanner or by typing Handling Unit (HU) numbers, whereas the Braga plant
has considerable variability and covers most plants. The program, which works with Windows, also
enables users to scan a barcode to receive the appropriate rules and photos.

What are the strengths and weaknesses?

To convert pixels to millimetres, the system uses a height sensor instead of an expensive 3D camera,
which lowers hardware costs. Four cameras are currently used by each inspection station, and
the equipment is made to be suspended over the loading bay and take photographs diagonally
from above the pallet. Modular image processing makes it possible to modify the hardware. The
inspection stations’ calibration and configuration are done using the Recorder app. Additional
cameras might be required to read labels on package sides, which are currently being developed as
part of the label reading component. Although spotting straps can be difficult, the system can use
many cameras and zoom lenses for greater precision. The Center of Competence team is providing
feedback as the project is being developed, and a multi-tenancy idea is anticipated for shared data
and instances.

How is the system setup currently done?

The Recorder, Rules, and Vision apps are the three core apps that make up the project. jHipster
was used to create the Recorder and Rules apps, which had an Angular front end and a SpringBoot
backend. Each application has its own MySQL database.

89

A Project Team Interviews

The YOLO-based image recognition model is used by the Vision app, which was created using
Python/Django. Despite being in the PoC stage right now, it was just deployed to a logistics service
provider. The Vision app requires near deployment to gate stations (hardware) to reduce latency
on image transfers to a cloud solution. The Recorder app displays the results because the Vision
app lacks a front interface. Only metadata is immediately transferred to the Recorder app due to
performance concerns, while photos are locally saved on the Vision app and periodically sent on a
schedule to the Recorder app.

To manage roles and access, Identity Management (IdM) integrates Lightweight Directory Access
Protocol (LDAP) with on-premise AD. The Recorder and Rules applications do not yet support
single sign-on, which is a concern. SAP data that has been cloned in Dali. Internally, a caching
service is utilized due to Dali’s poor performance. This link only provides the barest of information:
the Bill of Materials (BOM), which comprises packing, pallet, and lid part numbers, as well as
ShipToParties for part numbers with 13 digits.

The services are hosted on OpenShift on the Bosch Private Cloud, which was selected because
it has experience with other private cloud applications and has fewer security-related overheads.
With a login associated with one or more plant IDs, multi-tenancy is accomplished in a single
instance. Although IdM roles have been defined, they have not yet been put into practice. This
will allow for more precise control over authorisation. The release procedure uses Bitbucket for
source control. The test and master branches, respectively, are used to maintain and deploy the test
and production environments. Test=0.6.1 and Prod=0.5.0, and Test=0.8.1 and Prod=0.8.1 are the
current versions. Red Hat OpenShift serves as the foundation for the build pipeline, although there
are certain limitations for full-fledged CI/CD (currently manual trigger), while Jenkins is planned
for automation and PR validation. Images from OpenShift are used by the services.

What are integration possibilities or options towards a combined target system?

ShipQ wants to develop a rules app, and they digitize paper by presenting their data in a PDF format.
An OIS-like solution for inspecting finished goods on pallets is presently unavailable from AutoID.
While ShipSmart now only focuses on one portion of the pallet, its functionality overlaps with that
of image recognition technology in the areas of classifying and locating objects. Speed is crucial
for the integration of label recognition with CA, which depends on hardware performance. RPC or
an SDK/library can be used as the integration technique.

What are the constraints?

Due to hardware overhead, two cameras per pallet side are needed to provide the required image
quality to read the label content. The images are then combined. To achieve accurate image capture,
operators must position the pallet in a specific spot with a tolerance of +/- 10 cm. Although this
may alter with the CoC hardware, sites must be able to suspend hardware over the pallet area. The
largest pallets used in the plants they spoke with had a tolerance of +/- 10 cm and measure 1.2
meters in length. The maximum pallet height allowed by heights under 2.4 meters is 1.2 meters,
which is the typical height for pallets used in the plants they contacted. Two pallets are normally
stacked while loading a truck, hence the maximum height is 2x1.2=2.4 meters.

What are the team capabilities?

It’s crucial to assess each team member’s skills and establish how they can contribute to the project
most effectively to ensure the success of the combined, virtual team.

90

A.3 Camera Area

Three OIS developers and 1.5 developers from a university make up the team. However, as of right
now, only 0.5 university-affiliated human resources are available, as one of the developers left the
team in February 2023 after completing their MSc dissertation.

The team consists of developers as well as mechanical engineers with substantial experience in
designing and constructing physical components. The team also has a CoC AutoID, which can
help with asset identification and tracking as it travels through the supply chain. The team may
complete a project that satisfies all of its goals and objectives by utilizing the special skills of each
team member.

How does live view into the system look like?

-

How is the system used on a daily basis?

Around 1400 reservations are made each month at various high-volume plants in Feuerbach. The
emphasis is on making sure that the receipt procedure is efficient, which entails going through
a camera gate and having an employee of the office go over the reservation. OCR and barcode
labels are both supported by the inbound process, while barcode labels are preferred. For reading
labels and barcodes, several engines are employed, including OCR and neural network frameworks.
Although the UIs have recently been redesigned in SAP/Landing Portal, not all functionalities have
been deployed, and different plants use various UIs.

The booked/failed status, the number of pallets, and SAP information are all displayed in the status
UI. The former CA UI, which offers access to imagery and archives, is still used by some websites.
In general, the status can only be displayed for items that have arrived; an expected item receipt
view is not available. In SAP Fiori, the forklift driver view is better developed and gives the driver
access to the booking status of the pallets on their fork. The forklift operator’s view displays the
number of pallets, green for successful booking, and red for unsuccessful booking.

A.3 Camera Area

What are the strengths and weaknesses?

The system can easily communicate and integrate with other systems because it is a part of the larger
InTrack ecosystem. Since it can read labels with text and is hence extendable for sending goods, it
is simple to combine with other shipping systems. The system can readily identify commodities,
track them, and indicate any problems or anomalies by making use of the label reading capabilities.
As a result, it is a very efficient and effective system for managing shipping and logistics. The
system’s extensibility also allows for customization to fulfil certain business requirements, such as
connecting with specialist shipping partners or integrating with proprietary labelling systems.

How is the system setup currently done?

Given that labels can already be read, including their text, the system can be expanded for delivering
items. The InTrack team includes approximately 40 developers working on the InTrack platform,
which enables more use cases including Dock Yard, Track Trace, etc. This system’s frontend and
backend are built on InTrack. The frontend will be converted to a single frontend and moved into

91

A Project Team Interviews

SAP Fiori, although it now lacks some functionality like photo archives and scanned photos. The
CA front end was cross-platform, including mobile, as it was created in Flutter. Due to the new
SAP UI incomplete feature set, there have been several issues.

The systems’ hardware is currently specific to this use case, and automation is handled by C/SCL.
Currently, only monochrome cameras are used for goods receipt because they are sufficient. For
various use situations, InTrack employs multiple hardware configurations. The CA team has also
tested colour cameras as part of a PoC for reading other information, such as the colour of straps
and pallets, however, this PoC has been put on hold because of this larger project/discussion. One
facility in Eisenach (outbound) has a special configuration where they just use the colour photos
(similar to Budweis for ShipSmart).

The system features a status tracking service with de-duplication and business rules relating to
receipt from recognition; these rules are the same for all plants (so far), according to our research.
The system allows numerous plants to connect to SAP, and SAP is used to create multi-tenancy.
A user may be given access to one or more plants, and a virtual machine is necessary to upload
photographs to the cloud’s camera connector.

The Python-based vision parts of this system use PyTorch, TensorFlow, and Azure ML. Kotlin and
Spring Boot are utilized for status tracking, together with Grafana, Prometheus, Azure blob/tables,
PostgreSQL, Key Vault, and Kafka. There are plans to replace Google Cloud Vision, which is
currently utilized for OCR, with an internal alternative. The entire system is deployed on-premises
using the Nuclio framework, though a hybrid deployment option is also possible.

This system’s integration into InTrack ties some functions to the cloud, making it simpler. Including
image upload time, the average duration for image processing is five seconds, and SAP is the
bottleneck. Azure DevOps pipelines based on CI/CD and MLOps for training are used in the release
process. There are numerous pipelines, however, it is unclear what their average maturity is. User
management is dependent on InTrack, and regression of recognition is performed using Allure to
learn more about accuracy. During automated testing, SAP is mocked, and SAP is in charge of UI
implementation.

The overall environments are Dev, QA, Staging, and Production, and there is a staging environment
with QA SAP. On Staging, manual testing is an option, but it’s not apparent if a release will need
this.

What are integration possibilities or options towards a combined target system?

There are currently no set client criteria for the label recognition system. Instead, the system makes
an automatic attempt to interpret labels without any user input. OCR, barcode reading, and machine
reading are just a few of the stages in the process, and any one of them could fail. Although
outbound processes are not the system’s primary focus, it is built to be easily extended, allowing for
future upgrades and the addition of new capabilities. The system’s business model is to provide a
range of services that sites can select from, making it a “plug-and-play“ solution that can be tailored
to each client’s unique requirements.

Four cameras make up the label recognition system, and each of them can recognize up to four
different labels. The technology is currently limited by the requirement that labels be applied to the
long side of pallets for it to work effectively. Despite this drawback, the label recognition system is
a strong and adaptable solution for companies wishing to streamline their supply chain management
and logistical procedures.

92

A.4 AutoID

What are the constraints?

-

What are the team capabilities?

The united virtual team is made up of people with a wide range of abilities and skills. These skills
must be taken into consideration to make sure that each team member can properly contribute to the
project.

Two data scientists are on the team, and they may contribute to the project by using their knowledge
of data analysis and machine learning. A QA professional is also available to guarantee that the
finished product upholds high-quality standards. The team also has a frontend developer who
can concentrate on the user experience and a DevOps expert who can handle infrastructure and
deployment.

Despite being a smaller team, the group still consists of the entire development team, so they have
access to a wide range of knowledge and abilities. With this team, businesses can be sure that they
have the skills necessary to accomplish their objectives and provide a high-quality product.

A.4 AutoID

The AutoID project is concerned with the hardware of the in-place RFID system. It is not concerned
with vision technology, but there are existing smart camera technologies in the open market tackling
the same issue. Therefore the AutoID project is also taken into account.

What is the AutoID competence about?

They began using RFID technology and have since diversified their offerings. They worked on code
reading with a camera for one to two years. They have about 700 different hardware devices in
their lab and a wide range of optical solutions. They routinely evaluate the performance of gear
from various vendors in their lab. They especially check devices for network security, compliance
and performance in a Bosch environment. Before making purchase selections, they also conduct
hardware testing to assess possible manufacturing partners.

What are you currently working on?

To identify pallets while they are in motion, the business uses a 3D, stereo camera. The camera
can calculate and recognize a pallet’s size, the number of boxes, colours, and pallet type. Future
iterations of the device will incorporate damage detection, according to the idea. To extract
information from photos, they employ Cognex OCR technology. The camera doesn’t take photos;
instead, it builds a data structure that represents a point cloud and can be used to extract the required
data. Processing is handled by the camera directly, so a backend or middleware system is not
required. This hardware-based method is more effective than sending photos via a robust network.
The development effort for programming the camera is handled by outside teams.

Updates are required for each installation separately as the project is still in its early phases. Even
though updates can be performed remotely, a person must still be present at the device to complete
them. For remote bulk updates to be compliant with Bosch Corporate Directives, some work and
research are needed.

93

A Project Team Interviews

What do you suggest regarding the hardware setup for the target solution? The business could
use both image-based or movement-based pallet recognition systems. The pallet must be still
and in a precise location with some tolerance when using the image-based method, which entails
transmitting images of the pallet to the backend. Pallets can move close to the scanner for detection
and processing with the movement-based solution. Although the precise price difference is not
stated, the movement-based solution is more expensive than the image-based one. It is assumed that
the more expensive Crosstalk solution—rather than the more recent, unfinished solution—is now
in use. As other Cognex technology was not yet available, a previous project for Goods Receipt
utilized a straightforward image-based hardware solution.

A.5 ShipQ

ShipQ is an application for sales and warehouse packer teams. It is already in use in several Bosch
plants.

How is the system used on a daily basis?

Before, all packing instructions were printed out at the working station on paper. However, a
digitalized version that displays packaging instructions is now accessible. With this modification,
there is no longer a need for paper-based instructions because accessing and using package
instructions is more effective.

The plant then translates and streamlines the customer needs after the sales team receives them,
which might be rather large (60–70 pages long). There is a standard template with visualizations
accessible, but not all customers use it.

To conduct a search based on criteria, the packer can enter or scan the handling unit, delivery note,
or ShipQ. The packer also has the option of searching in any plant, which was created to allow
plants to communicate content. A secondary ship location is occasionally connected to the primary
facility, which then displays documents from the secondary location.

Scanners that are not special to ShipQ are already in use by the facility, and the information they
read is temporary rather than persistent. There are two types of searches: generic and specific. The
specific search applies all search parameters, whereas the generic search displays all documents for
a plant regardless of other search criteria. For the same client, cross-searching of documents across
plants is possible.

The date is emphasized in yellow if a document has recently changed, less than or equal to two
weeks ago, to make sure the operator is aware of recent modifications. Although it is the plant’s
responsibility, it is not always practicable to promptly inform operators or other plants of changes.
Additional data that SAP keeps can be viewed by internal or plant management. Document usage
metadata, such as the date and how frequently a document was opened, is kept track of. This gives
a general idea of whether documents are being used when they ought to be. Theoretically, these
data may be used to generate monitoring rules for alerting.

A history or audit of document changes is now provided. This makes it possible for plant managers to
monitor any document changes and make sure that packers are using the most recent information.

What are the strengths and the weaknesses?

94

A.5 ShipQ

This product’s integration with SAP has given it a huge presence. However, it has already been
implemented in a few plants, and by the end of 2023, it is intended to be in use at close to 50 plants.
This product’s primary use case is for understanding and recording customer requirements. It can
also deliver PDF or JPG-based documents for manual review, but again, this is only applicable in
the context of its use case.

How is the system setup currently done?

The SAP-integrated Fiori app was created especially for POE=BBM Outbound Shipping SAP. The
app’s front (Fiori) and backend (ERP) are now both managed by the CI team, and they can be
installed on different SAP systems. Despite this effort, the app’s distribution continues because it is
an already-existing system that is now in use. If the system is down, each plant must have a unique
emergency plan, which the ShipQ team is unaware of. There is no user segregation, however, the
tenant identity is the SAP Plant code. Data sharing between plants is done to double-check for the
same clients.

The software can be set up to eliminate the common prefix in the UI for the operator’s convenience,
and a JPG file instead of a PDF can be uploaded. Approximately 6,300 documents are currently
available in the app. Overall, SAP’s Fiori app is a crucial tool for controlling POE and outward
shipping, and its features and functionalities are constantly growing.

What are integration possibilities or options towards a combined target system?

The UX survey was completed, and OIS was used to deliver the findings to the sales teams.
Although the OIS does provide support for the majority of client use cases, many edge situations
from numerous customers in various countries are not handled. Additionally, there are criteria for
plant levels that are not covered by the OIS. The frequency of the edge cases is still unclear, and this
is a subject that has to be addressed. To ensure that an OIS fulfils the demands of all clients, not just
the most frequent ones, it is crucial to take into account the numerous use cases and requirements
before adopting one.

95

B Architecture Decisions

B.1 Camera Hardware

Camera Hardware
Problem
Description

Validation of shipments require optical inspection using the 4-eye principle or
image capture through cameras and image recognition technologies.

Option A: New hardware with integrated image processing
Option
Description

• Images are processed internally by the system itself
• Validation result is delivered directly by the camera
• Cameras are updated with improved recognition models

Option
Implications

Flexibility/Maintainability/Operations:
• No infrastructure required for image recognition software or persistence
• Deployments are manual and performed individually (Remotely possible,

requires onsite assistance)
• Full remote updates require investigations to ensure compliance with Bosch
• Uniform combination of new software releases and camera models might

be hard to maintain (new camera generation in latest plant vs. old camera
model at first PoC plant) → variance expected.

• Development of new features and bug fixes are performed by an external
company

Features/Process/Cost:
• Pallets will not need to stop in a specific location (processed in motion)
• Timeline unclear (currently in development independent of this project)
• Higher price
• Will cover: dimensions, number of boxes, colours, pallet type, damage
• Images are not captured, rather a point cloud data structure (efficient

processing, transfer and storage)
• Persistence of images and integration with “bigger“ system still requires for

claims and archival in the long term

Option B: (Existing) Hardware with CrossTalk support
Option
Description

• CrossTalk is the middleware between RFID readers and the booking system
• Packaging is scanned in multiple ways
• Additional processing takes place in the CrossTalk middleware which is

already installed in 80 locations

Continued on next page

97

B Architecture Decisions

Table B.1 – continued from previous page
Option
Implications

Flexibility/Maintainability/Operations:
• Pallets will not need to stop in a specific location (processed in motion)
• Lock-in into vendor solution for recognition might limit integration &

extensibility options
• Limits hardware choices to CrossTalk support
• Development of new features and bug fixes are performed by an external

company
Features/Process/Cost:

• Integration into SAP already exists
• Only metadata is sent to the backend (performance)
• Some processing already possible in CrossTalk: barcode reading, OCR,

filtering
• History of CrossTalk with RFID focus leads to doubt in the applicability of

middleware for heavy-duty processing and transport
• Around 11 thousand existing installations
• Not capable of sending images to the backend
• Only basic processing supported: barcode reading, OCR, RFID)
• Higher price

Option C: Plain cameras
Option
Description

The camera remains dumb, as it only takes pictures

Option
Implications

Flexibility/Maintainability/Operations:
• Requires a local piece of hardware and software (i.e. gateway) to collect

and transfer images
• Requires pallet to be still and in a specific location
• Different hardware could be leveraged as long as the output image conforms

to a pre-defined set of criteria (resolution, angle, sharpness, colour, ...)
• New features and bug fixes would be controlled by the core team and much

quicker to roll out
• No lock-in to a particular vendor

Features/Process/Cost:
• Camera hardware is cheaper and more hardware options
• Existing hardware could potentially be reused
• Feature set can be tailored and increased as seen fit
• Requires common alignment on minimum hardware requirements
• Backend has to do all the heavy lifting

Decision Option C: Plain cameras
Continued on next page

98

B.2 Customer Requirements Definition

Table B.1 – continued from previous page
Justification Option A is not yet available and has a high risk of limiting the system to the

vendors’ speed of implementation and features. The flexibility is hampered and
the high cost of the camera equipment might be a hurdle. Also, the expected
variance and difficulties in managing the firmware on the individual cameras can
be a very tough challenge in the foreseeable future. Option B is well established
but the middleware’s history in RFID data which is very small does not bode well
to extend it easily for heavy-duty image processing. It faces similar challenges to
Option A in terms of flexibility and control of image processing. Thus Option
C seems to be the best fit to have a cheap, simple hardware setup for the plants
and shift the logic of image processing into a backend that can be adapted more
easily without vendor lock-in or tough camera device management. The local
gateway is a downside but would likely also be needed in case of options a and b
for advanced use cases.

Table B.1: Camera Hardware

B.2 Customer Requirements Definition

Customer Requirements Definition
Problem
Description

Pallet packaging for shipping goods varies based on plant, shipping party and
customer requirements. Finalizing these requirements takes several iterations.
Currently, plants maintain their own set of requirements as PDF or offline
handbooks, which are not machine-readable and have limitations in re-use, com-
parison and searchability. They are also not suitable for automated validation.
Thus it is crucial to have customer requirements for packaging:

• in machine-readable and standardized format
• that can be used as a validation target for images
• that must be flexible to cater to all kinds of edge cases
• that must reflect the different dimensions of an instruction (plant, product,

ship to party, etc.)
• that can be defined with a visual editor

Option A: ShipQ
Option
Description

• currently display PDFs created outside of the system
• ShipQ would be extended to include requirements definition
• Future ready solution also for S/4HANA

Option
Implications

• ShipQ is a pure viewer based on SAP R3 technology and not extensible
for customer requirements definition via UI, thus high effort needed

• Planned phase-out migration due to S/4HANA requires to recode
• Lock-in into SAP world expected and intended

Option B: SAP Co-Innovation: ShipQ successor (Buy + Feature Input)
Continued on next page

99

B Architecture Decisions

Table B.2 – continued from previous page
Option
Description

• Portfolio idea by SAP that allows requirements definition in an S4 Fiori
app

• Under investigation by SAP as generic SAP offering

Option
Implications

• Requires close collaboration and commitment to SAP
• High risk that feature will not come at all or way too late
• Flexibility is very likely limited to generic logistic outbound process that

applies to most customers
• Bosch specific might be hard to include (edge cases hard to support)

Option C: OIS
Option
Description

Custom development with UI to define customer requirements

Option
Implications

• Requires a high maturity of OIS and extension of the UI
• By far the most versatile offering with Bosch specifics in place
• Integration into third-party systems is possible since the system is fully

under Bosch control
• Already comes with UI and data format
• Current usage is complex to properly define all rules and there is no logical

check in place (consistency, correctness and logical sense of combined
ruleset)

• Development, maintenance and operation of service has to be covered by
Bosch or contracted developers (product ownership stays at Bosch)

Option D: New custom development
Option
Description

Specification and development of a Bosch specific customer requirements tool
(similar to OIS)

Option
Implications

Not further evaluated since it is basically replication Option C which would be
a waste.

Option E: Vendor analysis
Option
Description

• Investigation in tools available on the market and buy of service
• Assumption: There is a tool available that fits sufficiently

Option
Implications

Not further evaluated since it was done prior to OIS development

There is currently no tool available on the market that fulfils the Bosch re-
quirements and could be easily integrated to support the intended use cases.

Decision Option C: OIS
Continued on next page

100

B.3 Customer Requirements Visualization (Packer UI)

Table B.2 – continued from previous page
Justification Option C (OIS) is the most mature tool that was specifically created to exactly

solve the stated problem description. It has a UI and creates a machine-readable
format. Options D and E have been discarded due to obvious reasons (see
above). Option A is very limited in its scope and requires an upgrade to the
new SAP stack. The intended successor by SAP is not confirmed and might
not cover Bosch requirements in full without the flexibility for adjustments and
an unknown price tag. Thus, Option C is by far the best approach even for the
long-term and could theoretically also be extended with ShipQ functionalities.

Table B.2: Customer Requirements Definition

B.3 Customer Requirements Visualization (Packer UI)

Customer Requirements Visualisation (Packer UI)
Problem
Description

The packaging for shipping goods via pallets varies based on plant, shipping
party and other factors. Those requirements by the customers must be available
during the pallet packaging to the packer to correctly label the package, add
straps, sticky dots etc.
Currently, every plant maintains its own set of requirements often as PDF or
offline handbooks which are used. These are not always following the exact
pattern and make it harder for the planner.

Thus the requirement is to have customer requirements visualized for packaging:
• usable on different end-devices (android tablet, computer, packaging

stations) that might not have full internet access
• web-based for interoperability
• with no room for interpretation and very clearly guides the packer
• automatic visualization based on initial scan of product via barcode or

manual input

Option A: ShipQ
Option
Description

• Generate instructions via OIS
• OIS is extended to generate PDF
• Generation and upload of PDF to ShipQ (can also be automated in OIS)

Option
Implications

• No changes to ShipQ needed
• Ready to go visualization for PDFs
• Limited to PDF only and no further improvements possible
• Updates always have to come via reupload
• No future proof solution due to necessary phaseout of ShipQ
• No features such as interactively rotating pallet
• Requires implementation of PDF rendering in OIS including a visualiza-

tion

Continued on next page

101

B Architecture Decisions

Table B.3 – continued from previous page
Option B: OIS Labeling App

Option
Description

• OIS current labelling app view is extended to visualize the defined
customer requirements (packer view)

• Visualization of correct requirements based on:
– Scanning of barcode Handind Unit number
– manual input inserting part number and ShipQ party

Option
Implications

• Role concept and tenancy have to support visualization of image
• No PDF rendering necessary (can be done ad-hoc based on data format)
• More versatile for different devices and how it is visualized
• OIS is required to support many more users and plants (setups) → tenancy

must be more sophisticated
• Very easy to keep changes in data format and user interface aligned
• Functionality to render rules very likely required for specification as well

to improve UX
• On-premise hosting could make it easier for network connectivity

Option C: Third-Party Packaging Tools
Option
Description

• OIS provides a defined API that can be queried to obtain data
• Third-party tools such as Nexeed Package and Control (even though

focusing on the individual boxes) could integrate and obtain the shipment
requirements

• Rendering of the requirements based on the common format

Option
Implications

• Each tool has to implement rendering of common data format (customer
requirements)

• Can be always an additional integration alternative in case “out-of-the-box“
visualization is not needed or sufficient

• Currently for the packaging of pallets there are generally no user interfaces
in place (just for box packaging)

• Off-the-shelf solution would miss a crucial part of the use case and would
require additional integration if nothing is in place

Option D: Custom User Interface
Option
Description

• A new frontend is developed specifically for this purpose
• The data is directly obtained from OIS via the interface
• OIS is persisting the data to service a multi-tenant setup

Option
Implications

• Additional effort and overhead needed to provide UI decoupled from any
other system

• Separate team seems to be overhead and not very efficient
• Increase in service landscape does not bring a benefit
• Closely overlaps with Option C (third-party) and Option B or E

Option E: Part of validation software (CA, ShipSmart)
Continued on next page

102

B.3 Customer Requirements Visualization (Packer UI)

Table B.3 – continued from previous page
Option
Description

• The label validation software that shows the result is also used during the
packing

• UI is implemented e.g. in CA or ShipSmart

Option
Implications

• Validation software that displays OK / NOK for forklift drivers can also
implement an additional view for packer

• Integration and obtaining customer requirements is required for validation
in any case so data for rendering is already in place

• In case error should be visualized in the long-term rendering of instruction
might be beneficial

• Decoupling from the customer requirements definition tool can lead to
dependencies regarding data format (versioning is important)

• Users and tenancy is already required in labelling validation software.

Option F: SAP Fiori Frontend
Option
Description

• Implementation of a packer UI that is available on the shopfloor based on
sap Fiori

• Requires business function in the background (i.e. OIS)
• Similar to goods receiving approach

Option
Implications

• Rollout can be done via standard SAP launchpad and hosted on SAP
environment that the plant has access to

• Does allow for sap operations and hardware for the frontend
• Known to the shopfloor and preferred app delivery which would avoid

additional tech stack
• Implementation speed and capabilities for Fiori apps are limited and

generally not as good as custom development
• Very fancy implementations such as on-demand rendering might be harder

to implement
• Unclear if Fiori can support scanners without a full monitor or tablet on a

simple scanner.

Option G: Print-Out based on OIS
Option
Description

Not further evaluated since Option B would already be available and presumably
higher acceptance

Decision Option B: OIS Labelling App
Justification Option B seems like a natural fit since a visualization rendering is already

implemented. Option A would allow the immediate rollout of OIS generated
instruction to users based on PDF but with the downside of manual input to
display the correct instructions. Option F would be the logical successor of
Option A but might take some time but could be actually the way forward for
the ShipQ team.

Table B.3: Customer Requirements Visualization (Packer UI)

103

B Architecture Decisions

B.4 Customer Requirements Fallback

Customer Requirements Fallback
Problem
Description

Shipping of goods is a critical process in the supply chain to ensure delivery to
other Bosch plants but to also avoid claims from customers that are waiting
for parts. A technical incident with the visualization system of customer
requirements (network, software bug, hosting provider issue, latency) should
thus not impact the shipping of the goods in a way that it comes to a standstill.

The fallback should work:
• without an IT system
• be easy to use
• not rely on another technical system that might face the same problems

(network & hosting outage)

Option A: Digital Files: ShipQ (PDF Viewer)
Option
Description

• Customer requirements are always exported as PDFs and uploaded to
ShipQ

• In case the system is down a fallback to ShipQ can be used to obtain the
PDFs

Option
Implications

• Only works in case system outage does not also affect ShipQ and network
is still intact

• Requires constant duplication of data in two systems
• Requires ShipQ in the long term as a fallback
• Costly since ShipQ infrastructure has to be kept

Option B: Digital Files: Local PC and remote storage
Option
Description

• A local computer has access to remote storage and can view the require-
ments

• Storage can be a file share, network drive, cloud storage etc.

Option
Implications

• The fallback only works in case the network and cloud storage is unaffected
as well

• Remote storage could be more easily filled automatically and centrally,
e.g., by OIS in case of an update

• Central storage does cost and requires maintenance

Option C: Digital Files: Local PC and storage
Option
Description

• The files are stored within the plants’ local infrastructure (disk of a local
computer)

• A local computer can be used to visualize the files
• On-demand a print out is still possible for multiple lines

Continued on next page

104

B.5 Packaging Validation Hardware Setup

Table B.4 – continued from previous page
Option
Implications

• The fallback works for a large range of outages and is independent of the
network

• Single computer and storage can lead to bottleneck but prints can be done
• Unclear who and when exports of the PDFs happen to the local computer
• In case no automatism implemented instruction could be outdated →

requires a process
• Sharing of files via a single computer is not best practice (which user

account) → shared user account also not ideal
• Cost-efficient

Option D: Analog File: Printout on paper
Option
Description

• After every customer requirement change a printout is triggered and the
handbook is updated

• The printout is kept on-site at the plant in case of a system outage
• Printout can be duplicated if needed

Option
Implications

• Update in OIS would for example trigger a notification to update the
handbook

• No reliance on any technical system and thus very resilient.
• No additional infrastructure, system or tooling is required.
• Cost-efficient but neither digital nor eco-friendly

Decision Option B: Digital Files: Local PC and remote storage
Justification Option B is the best trade-off between providing the fallback in a simple manner

yet allowing for central provisioning of the files by the customer requirements
service. The downside of a needed network connection from the plant to the
data center is accepted since a failure would also impact other more critical
systems such as SAP.

Option C is not chosen since it is much harder to centrally provide the PDFs
automatically and relies on the shopfloor users to download the PDFs. Option
D with pre-printing everything every time might lead to a mess or outdated
versions and searching the manual documents is not user-friendly. Option A
requires a more elaborate integration between OIS and ShipQ to upload the
documents, otherwise, a manual upload would have the same processual burden
as Option D. However, this option can still be chosen by the shopfloor itself in
combination with Option B (at the time of fallback) in case ShipQ is available
by just uploading the needed files on-demand.

Table B.4: Customer Requirements Fallback

B.5 Packaging Validation Hardware Setup

Packaging Validation Hardware Setup
Continued on next page

105

B Architecture Decisions

Table B.5 – continued from previous page
Problem
Description

The finished pallets have to be validated in a timely manner based on image
recognition. There are multiple implementations available that are based on
images.

Usually, multiple images from different angles are analyzed to deduct if the
package conforms to a defined rule set such as:

• label placement
• label existence
• number of sticky dots and their placement
• number of straps

The requirement is to quickly indicate to the forklift driver if the pallet is ready
for shipment. Thus the recognition must be:

• reliable in different conditions (dust, humidity, temperature, lighting)
• fast in terms of validation results (<3 seconds total)
• easy to use by means of pallet positioning (margin for error or enforced

accurate placement)
• fast in terms of usage (driving through the camera gate or quickly

positioning and picking it up again)
• should support future validation options (e.g. correct boxes, colour,

damage etc.)

Option A: Gate (Moving Through)
Option
Description

• Cameras are mounted on a gate and the pallet is pushed through
• Images are taken during movement

Option
Implications

Not further evaluated since it would require a more sophisticated camera setup.
• Requires more lighting and more complex setup
• High costs (20k more per gate than any other option)
• Requires mobile validation UI / light on forklift

Option B: Suspended Gate (Stopping)
Option
Description

• Cameras are hanging from a suspended setup either from the ceiling or a
gate and the pallet has to be positioned underneath within certain limits

• Images are taken while the pallet stays still

Option
Implications

• Movement is not inhibited and approx. 10 cm margin is possible for the
forklift driver

• Slower throughput of pallets since the pallet has to be positioned
• Feedback can be based on hardware (light)

Option C: Fixed on Ground (Stopping)
Option
Description

• Pallet is positioned at a specific place and cameras are mounted around
on the frame around area

• Images are taken while the pallet stays still

Continued on next page

106

B.6 Packaging Validation Software

Table B.5 – continued from previous page
Option
Implications

• Movement is inhibited and harder to navigate
• Might need more space
• Slower throughput of pallets since the pallet has to be positioned

Decision Option B: Suspended / Gate (Stopping)
Justification Option A was evaluated but the hefty price increase per setup is not worth the

added value and increase in speed. Option B is the preferred option since it
allows easy movement of the pallet without the risk of damaging hardware or
manoeuvring. It is cheaper and a local validation result can be directly fed back
to the forklift driver without having a mobile UI.

Table B.5: Packaging Validation Hardware Setup

B.6 Packaging Validation Software

Packaging Validation Software
Problem
Description

The finished pallets have to be validated in a timely manner based on image
recognition. There are multiple implementations available that are based on
images.

The requirement is to quickly indicate to the forklift driver if the pallet is ready
for shipment. Thus the recognition must be:

• fast in terms of validation results (<3 seconds total) until feedback
• easy to use in terms of indicating what is wrong
• should support future validation options (e.g. correct boxes, colour, wear

and tear)
• should have means to integrate towards a customer requirements specifi-

cation system and SAP
• must support proper long-term operations and maintenance of the software

stack
• must allow for a joint collaboration effort to bundle know-how and

resources

Option A: Camera Area
Continued on next page

107

B Architecture Decisions

Table B.6 – continued from previous page
Option
Description

• CA is extended with the pallet validation use case since it
has the entire chain for image validation already in place.

– The extension is built into the CA technical stack and reuses most
components if applicable

– Reuse of code/knowledge/components from OIS (vision app, results
app) and ShipSmart possible

• VDT is contributing, developing and integrating the customer “pallet
validation module“ into the CA backend based on the CA standards

• ShipSmart is not further developed and replaced by CA → contribute
into development of CA

• OIS customer requirements service is further developed
(rules app, packer UI, planner UI) and used by CA (API)

– Assumption: The customer requirements part of OIS would be
independent

• OIS pallet validation (vision app, result app) is not further developed and
replaced in CA → contribute into the development of CA including reuse
of code or components

Option
Implications

Interoperability/Flexibility
• No pallet validation so far just a more sophisticated environment (infras-

tructure) for goods receipt
• Extension of CA backend with additional services possible
• SAP stack limits possibilities and full integration into CA backend

might come with processual limitations (enforced CI/CD, technology,
integrations etc.)

• VDT has to adhere to CA standards in terms of development, contribution
and tool stack

Operations/Maintenance / Rollout
• Operations and rollout could piggyback on SAP rollouts for other use

cases
• Operations Team of CA could do technical and application infrastructure

operations (split) while VDT support the application logic
• VDT has to onboard themselves into InTrack processes

Cost/Vendor
• Cost separation for use cases will be extremely difficult but not needed

since in the same teams portfolio (InTrack)
Performance/Reliability/Security

• Depending on setup reliability and security are in shared responsibility
between InTrack Team and VDT with the governance at InTrack

• Problems of existing InTrack services can impact label validation (shared
services/communication/infrastructure)

• Currently, there is no edge validation in place thus round-trip to send
images, validate them would be likely too slow → Likely requires
additional at the plant

Option B: OIS (Vision App + Result App)
Continued on next page

108

B.6 Packaging Validation Software

Table B.6 – continued from previous page
Option
Description

• OIS software is hosted as-is in the bosch private cloud including an edge
for the vision app to collect and process images

• The VDT operates and develops OIS further
• ShipSmart is not further developed and replaced by OIS → contribute to

development of OIS
• CA focus is remaining on the goods received use case and does not

develop pallet validation/goods sent use case capabilities. → contribute
to development of OIS

Option
Implications

Interoperability/Flexibility
• Tech-stack allows for further extension and integration of other services
• Custom development is flexible in change implementation

Operations/Maintenance/Rollout
• VDT would have to do the entire operation and maintenance of application

software
– If not desired, an operations team has to be found that takes over

those tasks
• Rollout in plants would be a separate process and could not be bundled

with the goods received use case
• Full flexibility in how to do operations, tooling and development workflows
• Plant is more cumbersome to rollout

Cost/Vendor
• No license costs but infrastructure and manpower
• Cost separation and charging can be implemented more easily than in

other options if needed
Performance/Reliability/Security

• Validation is performant due to setup with edge processing of the images
and does not require a change in the design

• No dependencies to other use cases

Option C: Combination of OIS and CA
Option
Description

• The OIS software stack is combined with the CA stack
• This is similar to Option A, however, the OIS services are fairly

independent and the apps are used as-is and are not tightly cou-
pled into the CA ecosystem (e.g. Nuclio, Kafka or similar).

– Assumption: Also the customer requirements part of OIS would
be merged to CA

Continued on next page

109

B Architecture Decisions

Table B.6 – continued from previous page
Option
Implications

Interoperability/Flexibility
• The OIS backend could use CA services where needed to extend func-

tionality (e.g. SAP integration)
• Flexibility of hosting environment allows for freedom in technology

choice
• No coupling between CA backend and OIS on application level allows

for decoupled development
• Long-term more and more integration could be done on a case-by-case

basis
Operations/Maintenance/Rollout

• Technical operations could be covered by CA (e.g. joint runtime)
• Application infrastructure and application itself operation would be in

responsibility of VDT
• Operations and rollout could piggyback on SAP rollouts for other use

cases (InTrack)
• Reuse of on-premise footprint within a plant () for ships received use case

possible (network connectivity is solved)
– Local plant s will be a pain for operations (follow-up decision)

Cost/Vendor
• Cost split might be tough to separate between CA and OIS components
• Lock-in into Azure provider in contrast to OIS Bosch Private Cloud that

is a significant business risk for the plants
Performance/Reliability/Security

• Depending on setup reliability and security are in shared responsibility
between InTrack Team and VDT

• Problems of existing InTrack services can impact label validation (shared
services/communication/infrastructure)

Option D: ShipSmart
Option
Description

• On-Site installation with central binary with the latest release for self-
installation

• VDT would develop and operate the validation suite of ShipSmart
integrating e.g. the customer requirements definition and rolling out the
software

• ShipSmart would be deployed in the plant on a
• Label validation happens on the edge

Continued on next page

110

B.6 Packaging Validation Software

Table B.6 – continued from previous page
Option
Implications

Interoperability/Flexibility
• The LabView technology hampers the interoperability in terms of clearly

defined interfaces, versatile runtime environment or modular contributions
• Lock-in into proprietary graphical programming language (extensibility

possible across languages but difficult to maintain)
• Hard to centralize individual parts such as the validation connecting many

tenants
• Tough to implement advanced features such as user management, SSO

via OAuth etc. without the use of custom web services
Operations/Maintenance/Rollout

• The maintenance of the solution across many installations is likely very
cumbersome

• CI/CD tooling is underdeveloped and not comparable with other program-
ming frameworks

• Rollout in many plants would likely be done with individual installations
• Operations/Maintenance in full responsibility of VDT which would

require long-term ops team
• Limited skill availability for LabView within the team

Cost/Vendor
• License fee required for every installation

Decision Option C: Combination of OIS and CA
Justification Option C provides a very fast way forward by re-using the already implemented

pallet validation by OIS and its interfaces while bundling resources in terms of
operations, environment setup, development and potential mid- to long-term
benefits of integrating more CA services in OIS and vice versa. The bundling of
the closely related use cases is beneficial for the customer since rollout, camera
gate and infrastructure could support goods received and sent use case together
with the same infrastructure and provider. It also allows for better collaboration
within development since the technical onboarding is reduced. Option A would
require OIS and ShipSmart developers to learn a new framework and rework
more things from scratch costing time and wasting resources.

Option B would be also a valid option but the separate setup and sole usage of
OIS comes with downsides: The image processing infrastructure would be dupli-
cated for both use cases, the maintenance and operations would have to be done
by VDT or a operations providers have to be found instead of relying on InTrack.
The customer would require a separate rollout for goods sent and goods received.

Table B.6: Packaging Validation Software

111

B Architecture Decisions

B.7 Packaging Validation Fallback

Packaging Validation Fallback
Problem
Description

In case the intended system for validation fails different options for a fallback
exist.

We can assume there are multiple reasons for a validation outage such as:
• customer requirements for validation input are not available (e.g. OIS is

down)
• camera or other hardware is damaged
• the network connectivity is impaired
• the validation software has a bug or is not available
• there is a major outage at a provider or hosting environment

Option A: Fallback system in different environment
Option
Description

• The backend is unavailable in its primary location
• The fallback means a redundant environment is activated that is for

example hosted in a different cloud provider region/Bosch data center or
provider

Option
Implications

• Would only be beneficial if the problem has its origin in backend itself or
the hosting provider

• Does not cover any plant-specific outage or connectivity issues
• Requires a lot of processual and technical overhead and cost based on

how mature the fallback implementation is
• Any manual fallback (e.g. reinstalling the system) is likely similar in time

in just restoring the primary environment back to a working state

Option B: Local validation on gateway
Option
Description

• The validation can be executed in a degraded state directly in the plant
without the main system being available

• Edge hardware does continue to process and once the full system is online
synch the results and images

Option
Implications

• Requires logic and processing power on the edge (directly within the
plant)

• Architecture design has to be built upfront to support this use case (e.g.
buffering results on the edge and uploading them later → resiliency)

• Covers most outage scenarios except plant-specific hosting environment
• In case camera hardware or local setup is affected an outage still occurs
• Would require a more powerful edge environment that is not relying on

Bosch data centers (otherwise similar outages could occur)

Option C: Manual 4-eye principle
Continued on next page

112

B.8 Delivery Model Backend

Table B.7 – continued from previous page
Option
Description

• The shipment is validated manually in a 4-eye principle approach (two
sequential shopfloor workers) as currently done

• The validation input comes either from the customer requirements fallback
option or from the customer requirements visualization system if still
available

Option
Implications

• Does not require any technical implementation
• Very cost efficient and no overhead to implement since already done
• Switch to manual process is more error-prone especially if no dedicated

workers are usually doing it (no experience anymore and short staffed)
• Can cover any kind of failure scenario

Decision Option C: Manual 4-eye principle
Justification The manual 4-eye principle is well established and the current approach. It does

cover any kind of outage and is the most cost-efficient and easiest approach
to implement. Options A and B come immediately with an intense technical
complexity while still not covering all possible outages (data center, plant
network, etc.). Option B could be potentially a feature in the mid- to long-term
depending on the resulting integration architecture but the benefit vs. the
required implementation effort is questionable and would require a revisit of
this decision.

Table B.7: Packaging Validation Fallback

B.8 Delivery Model Backend

Delivery Model Backend
Problem
Description

This decision will evaluate different delivery options for the planned solution,
meaning how will the solution be sold and delivered to the customer.

This is a fundamental decision when developing a new solution since it affects a
lot of aspects of the solution and has a lot of implications. Those implications
will be compared in the following.

An important requirement to fully evaluate the impact is the planned business
model to monetize the solution.

Option A: Fully managed services offering Software-as-a-Service (SaaS)
Continued on next page

113

B Architecture Decisions

Table B.8 – continued from previous page
Option
Description

• product team will host the solution for the customers in owned infrastruc-
ture/cloud account

• hosting for all customers by the product team required
• operations required by the product team
• Customers do not get any specific developments or features and can only

use built-in configuration options
• Integration into SAP systems is the responsibility of the product team

Option
Implications

Quality and Performance of service
• full control of product quality and performance
• immediate customer feedback and response

Operations effort
• easier to maintain as in control of the project team
• no effort in adapting solutions to different platforms
• flexibility and control for updates and changes

Cost
• infrastructure and operations costs charged to product team → covered

by customer payments
• synergies in costs as multiple customers might share a single infrastructure

and an operations team
• pay-per-use models are easier to offer (in contrast to licensing when

self-hosted at customer site)
Security

• shared responsibility of security is heavily tilted towards the product team
• Single security approach sufficient

Option B: Delivery to customer for self operation
Option
Description

• Customer operates the solution by himself on an infrastructure of his
choice

• No access of product team to customer hosting
• Handover just in terms of software artefact and installation instructions
• Update is the responsibility of the customer
• On-premise gateway for image transfer and camera setup is the responsi-

bility of the customer
• Integration into SAP systems is the responsibility of the customer

Continued on next page

114

B.8 Delivery Model Backend

Table B.8 – continued from previous page
Option
Implications

Quality and performance of service
• negative effect on quality and performance of product possible, as no

control over the environment
• limited feedback from customers and slow response

Operations effort
• separate hosting for each customer - maintenance effort for each deploy-

ment at customer
• no daily IT operations effort for the product team
• additional effort in documentation and customer support
• updates and changes in responsibility of the customer - multiple ver-

sions might be required to be supported → enforcement of updates via
contracting

• troubleshooting much more difficult due to diverging platforms
• no control over quality and performance of the product
• customer can define availability, maintenance window and update schedule

by himself
Cost

• infrastructure and operations costs charged to customer directly
• higher flexibility for customers in terms of hosting and costs
• pay-per-use difficult to realize (delivery of metrics to product team).

Different pricing models required (e.g. licensing per hosting,...)
• Pay for support possible

Security responsibility of security is tilted towards the customer

Option C: Provided Customer Deployment With Self-Operation
Option
Description

• Product team could bootstrap cloud deployment for a single customer
• Customer owns and has access to the cloud deployment and is responsible

for the operation
• product team could have operations and troubleshooting access
• on-premise gateway for image transfer and camera setup is the responsi-

bility of the customer
• Integration into SAP systems is the responsibility of the customer with

support
• similar tech stack between customers

Continued on next page

115

Table B.8 – continued from previous page
Option
Implications

Quality and Performance of service
• negative effect on quality and performance of product possible, as not in

control of daily operations
• limited feedback from customers and slow response

Operations effort
• deviations in customer environments (configuration) → more difficult

troubleshooting
• no daily IT operations effort for the product team
• additional effort in the documentation and customer support
• updates and changes in responsibility of the customer - multiple versions

might be required to be supported
• customer can define availability, maintenance window, update schedule

by himself
• easier to troubleshoot for product team (infrastructure equal for all hostings,

operation on behalf of the customer easier to realize)
• customer can benefit from deployment templates

Cost
• Infrastructure and operations costs are the responsibility of the customer
• no costs for infrastructure charged to product tea
• pay-per-use easy to realize, different licensing models possible

Security is a shared responsibility of security between the customer and the
product team (product team might deliver infrastructure definitions and blueprint)

Decision Option A: Fully managed services offering SaaS
Justification Option A facilitates CI/CD on the cloud premises. The whole development,

stage and production environment are easily managed. The maintenance
and adaptability to other platforms are beneficial for operations. On-premise
gateway for image transfer, image preprocessing and camera setup could be in
responsibility of the plant/customer. This necessitates on-premise installation
and processing of the software.

Table B.8: Delivery Model Backend

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Background
	1.2 Scope of this Research
	1.3 Structure

	2 Literature Review
	2.1 Non-Functional Requirements
	2.2 Software Architecture Design Approaches
	2.3 Software Architecture Design Approaches Comparison
	2.4 Software Architecture Design Approaches Ranking based on Non-Functional Requirements
	2.5 Conclusion

	3 Integration Projects Overview
	3.1 Business Understanding
	3.2 Stakeholder Overview
	3.3 System Context

	4 User Stories
	4.1 User Stories Functional Requirements
	4.2 Non-Functional Requirements

	5 Architecture Modelling
	5.1 Architecture Decisions
	5.2 Building Block View
	5.3 Component View
	5.4 Runtime View
	5.5 Deployment View

	6 Conclusion
	Bibliography
	A Project Team Interviews
	A.1 ShipSmart
	A.2 Optical Inspection System
	A.3 Camera Area
	A.4 AutoID
	A.5 ShipQ

	B Architecture Decisions
	B.1 Camera Hardware
	B.2 Customer Requirements Definition
	B.3 Customer Requirements Visualization (Packer ui)
	B.4 Customer Requirements Fallback
	B.5 Packaging Validation Hardware Setup
	B.6 Packaging Validation Software
	B.7 Packaging Validation Fallback
	B.8 Delivery Model Backend

