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Abstract

DY* is a framework implemented in the proof-oriented programming language F*, aiming at
symbolic analysis of cryptographic protocols on the structural and on the implementation level.

In this master’s thesis, we analyse three selected authentication and key exchange protocols with
DY*: the Otway-Rees protocol, the Yahalom protocol and the Denning-Sacco protocol with public
keys. Each of these protocols is designed to establish a secure channel between two users while
involving a trusted third party in the authentication process. The Otway-Rees and Yahalom protocols
rely on pre-shared symmetric keys with this trusted third party, while the Denning-Sacco protocol
relies on digital signatures and public key encryption. In addition, the Denning-Sacco protocol
proposes the use of timestamps in messages to provide users with guarantees about the timeliness
of the conversation, a protocol feature that has not yet been attempted to be modeled and analyzed
in DY*.

We developed accurate models for each of the three protocols in DY*, documented possible attacks
and proposed improvements to prevent them, and finally proved the security of the protocol or its
improved version. We found several attacks on the Otway-Rees protocol that allow an adversary
to impersonate one or possibly both of the users involved in the protocol, and based on these
attacks, presented improvements to prevent them. For the Yahalom protocol, we show that it
satisfies security goals derived from its formal specification, and draw parallels to other approaches
with similar results. We also comment on the differences between our results and those of other
analyses that describe the Yahalom protocol as flawed. Moreover, we developed an extension to
DY* for modeling time-based properties of protocols with timestamps and demonstrated it on
the Denning-Sacco protocol. As a result, we provide the first symbolic security proof, including
timestamp-dependent security properties, of the Denning-Sacco protocol in DY*.
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Kurzfassung

DY* ist ein in der beweisorientierten Programmiersprache F* implementiertes Framework zur
symbolischen Analyse von kryptographischen Protokollen auf der Struktur- und Implemen-
tierungsebene.

In dieser Masterarbeit analysieren wir drei ausgewählte Authentifizierungs- und Schlüsselaustausch-
protokolle mit DY*: das Otway-Rees Protokoll, das Yahalom Protokoll und das Denning-Sacco
Protokoll mit öffentlichen Schlüsseln. Jedes dieser Protokolle ist darauf ausgelegt, einen sicheren
Kanal zwischen zwei Benutzern aufzubauen und dabei eine vertrauenswürdige dritte Partei in
den Authentifizierungsprozess einzubeziehen. Die Protokolle Otway-Rees und Yahalom beruhen
auf gemeinsam genutzten symmetrischen Schlüsseln mit dieser vertrauenswürdigen dritten Partei,
während das Denning-Sacco Protokoll auf digitalen Signaturen und Verschlüsselung mit öffentlichen
Schlüsseln beruht. Darüber hinaus schlägt das Denning-Sacco Protokoll die Verwendung von
Zeitstempeln in Nachrichten vor, um den Benutzern Garantien in Bezug auf die Aktualität der
Konversation zu geben – eine Protokolleigenschaft, die in DY* noch nicht modelliert und analysiert
wurde.

Wir haben präzise Modelle für jedes der drei Protokolle in DY* entwickelt, mögliche Angriffe
dokumentiert und Verbesserungen vorgeschlagen, um sie zu verhindern, und schließlich die
Sicherheit des Protokolls oder seiner verbesserten Version bewiesen. Wir konnten mehrere
Angriffe auf das Otway-Rees Protokoll finden, die es einem Angreifer ermöglichen, sich als einer
oder möglicherweise als beide am Protokoll beteiligten Benutzer auszugeben, und haben auf der
Grundlage dieser Angriffe Verbesserungen zur Verhinderung derselben vorgestellt. Für das Yahalom
Protokoll zeigen wir, dass es die aus seiner formalen Spezifikation abgeleiteten Sicherheitsziele
erfüllt, und ziehen Parallelen zu anderen Ansätzen mit ähnlichen Ergebnissen. Wir kommentieren
auch die Unterschiede zwischen unseren Ergebnissen und denen anderer Analysen, die das Yahalom
Protokoll als unsicher bezeichnen. Darüber hinaus haben wir eine Erweiterung von DY* für die
Modellierung zeitbasierter Eigenschaften von Protokollen mit Zeitstempeln entwickelt und diese
am Denning-Sacco Protokoll demonstriert. Als Ergebnis liefern wir den ersten symbolischen
Sicherheitsbeweis, einschließlich von Zeitstempeln abhängiger Sicherheitseigenschaften, für das
Denning-Sacco Protokoll in DY*.
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1 Introduction

Since Needham and Schroeder [26] proposed the use of public and symmetric key encryption to
authenticate communication entities – usually referred to as principals – in large computer networks,
the field has received a great amount of attention by security researchers. Many protocols that
use cryptography to achieve authentication have been proposed so far and at least as many flaws
and attack vectors have been found on such protocols. In a benign environment it would be rather
trivial to achieve authentication but not so in the case of a large and insecure network like the
Internet. In the presence of powerful attackers that may control network traffic, read and tamper
with messages or try to impersonate honest principals, authentication is a hard to achieve and very
subtle property.

Because of this, security researchers stressed the need of methods to verify the correctness of
authentication protocols to ensure that their use in presence of such powerful attackers still leads
to strong security guarantees between honest parties in the network. Methods that have been
proposed so far, roughly divide into two fields. The first field is the field of computational analysis
of the cryptographic primitives and their combination in cryptographic protocols, aiming to show
their probabilistic security. This approach, however, requires a detailed understanding of these
cryptographic primitives and possible attack vectors when combining them. Thus, such proofs are
usually carried out in long and complex reduction or sequence of games proofs that require a huge
amount of manual proof work and are hard to maintain.

The other field attempts to analyze protocols at a higher, symbolic level by making strong security
assumptions on the cryptographic primitives used in a protocol and finding attacks or proving
certain security properties based on the specifications of protocols. This approach is called the
symbolic analysis approach.

Analysing Cryptographic Protocols: Symbolic Approach

Dolev and Yao [17] pioneered in the field of symbolic protocol analysis with their model of
a powerful symbolic attacker controlling the network, which has been used in many symbolic
approaches that incorporate an active network attacker so far. Burrows et al. [11] proposed a logic
based on believes of honest principals for the symbolic analysis of authentication protocols, known
as BAN logic. The intention of the authors was to provide a formal logic to reason about principal’s
believes throughout the execution of protocols and express authentication properties of protocols
based on these believes. However, the logic was restricted to a context of honest principals, making
it not so well suited when reasoning about other properties of cryptographic protocols such as
secrecy. A more complete approach for security protocol verification was introduced by Ryan et al.
[31] with the CSP approach. CSP is a process algebra that can be used to model parallel processes
in which messages are exchanged. The work of Ryan et al. shows how CSP can be used in a trace
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1 Introduction

based approach – with a trace consisting of, e.g., messages sent, random numbers generated and
events that can assist in the specification of security properties – to verify the correctness and
security of cryptographic protocols. Moreover, the CSP approach allows for mechanical support of
proofs via the automatic model checker FDR, making it less prone to errors in the analysis and
also suited for more complex protocols. The CSP approach was also used by Lowe [23] to show,
with the help of FDR, that the Needham-Schroeder public key protocol that was proposed in [26] is
vulnerable to a man-in-the-middle attack.

Automated Symbolic Analysis

The ever growing number of new cryptographic protocols in the last twenty years has motivated the
development of fast and fully automated symbolic provers for the verification of such protocols.
Earlier tools like AVISPA [35] were already able to verify industrial-scale protocols within seconds
and helped in the detection of some previously unknown attacks on protocols, e.g., from the ISO-PK
family or the IKEv2 protocol with digital signatures. Newer provers like TAMARIN [25] can even
account for protocol features like loops or mutable global state and capture all possible execution
traces of a protocol within seconds, showing that they satisfy the security properties or giving a
counter example (attack on the protocol). Automated provers can do within seconds, what would
have required long and error prone manual proofs otherwise. However, there is a downside to the
full automation of such proofs.

Large protocols like TLS [30], which are an essential part of the infrastructure of the Internet today,
must account for a variety of protocol modes and rounds. This makes it extremely inefficient or
even impossible to perform an analysis of the whole protocol at once. In a non-modular approach
like the one of TAMARIN, the time and memory required for the analysis of a protocol may grow
exponentially with respect to the protocol’s size. In ratcheting protocols like the Signal protocol
[29], where each key 𝐾𝑛+1 is recursively dependent on the previous key 𝐾𝑛, the complexity of the
analysis grows with each ratcheting step. When considering an arbitrary number of rounds in the
analysis, induction is required, a feature that is only supported in combination with some manual
proof work in TAMARIN. Another problem with automated provers like TAMARIN is that they do
not account for low-level implementation details given in the specifications of protocols that are
often a root of attacks. For example, the Otway-Rees protocol [27] – one of the protocols analyzed
with DY* as part of this master’s thesis – has been proved secure by a number of researchers (e.g.,
[4]) using symbolic or partially symbolic approaches that ignore low-level implementation details.
However, the implementation of the protocol based on its original specification is at least vulnerable
to an impersonation attack, resulting from a missing check of the identities in the plain text part of
the second message by the authentication service. This attack and other attacks on the Otway-Rees
protocol are described in Section 4.3.5. A more complete explanation of the disadvantages of fully
automated symbolic provers, like TAMARIN, can be read in [6].
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DY* Framework

DY* [6] is a framework for the analysis and verification of cryptographic protocols and cryptographic
protocol code that aims to compensate for the problems of modern fully automated verification
tools. The framework combines the approaches of using dependent type systems for the modular
verification of cryptographic protocols with the approach of provers like TAMARIN that support
automated trace-based verification. DY* models the global runtime semantics of protocols in
terms of a mutable append-only global trace that tracks – in a sequential manner – all events that
occur during the concurrent execution of arbitrary protocol sessions. This explicit notion of a
global trace enables properties such as the knowledge of the attacker, secrecy lemmas about keys or
random nonces, as well as assumptions about cryptographic primitives to be expressed and proved
in terms of this trace and within the framework. This allows users of DY* to express and prove more
fine-grained security properties, where the exact order of events on the trace matters, like perfect
forward secrecy or post-compromise security, with the help of features such as long-lived mutable
state and dynamic compromise. Protocol steps, unlike with many fully automated provers, can be
modeled in full detail accounting for implementation details like message formats, message parsing
and message validation (or the lack of validation), making it suitable for investigating real-world
protocol implementations regarding their security. In fact, the authors of DY* have already used the
framework for a detailed symbolic security analysis of the Signal protocol [6], which is used by
messenger applications like WhatsApp. As a result of this analysis, they were able to provide the
first mechanized proof of forward secrecy and post-compromise security in the Signal protocol over
an unbounded number of protocol rounds.

When new approaches for the symbolic analysis of cryptographic protocols arise, it is often
interesting to demonstrate them on a couple of well-known protocols that are mainly of academic
interest. On the one hand, to show that they are able to model basic properties of these protocols that
are still found in many of today’s protocols, and on the other hand, to reason about differences and
similarities in the analysis results compared to other approaches. It has already been demonstrated
by the authors, that one can model Lowe’s attack on the NS-PK protocol in DY* and that the security
of the proposed fix can be proven. However, there are still many protocols that could be interesting
to reason about in DY*.

Aim of this work

The goal of this master’s thesis is to provide a symbolic analysis of three selected authentication
protocols, using the DY* framework. In particular, we investigate the Otway-Rees protocol that
was proposed by Otway and Rees in their attempt on Efficient and Timely Mutual Authentication
[27], the Yahalom protocol, first specified by Burrows et al. in [11], and the Denning-Sacco
protocol with public keys that was proposed by Denning and Sacco in their work on Timestamps in
Key Distribution Protocols [16]. The analysis shows that the Otway-Rees protocol, based on its
original specification, is vulnerable to multiple interception and impersonation attacks and that a fix
proposed by Boyd and Mao [7] is not sufficient to prevent all found attacks. Therefore, we provide a
minimal fix ourselves and prove it secure in DY* with respect to the security properties intended
when the protocol was designed. We also use DY* to prove that the Yahalom and Denning-Sacco
protocols are secure as long as none of the parties involved leaks secrets. Additionally, we present
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1 Introduction

an approach on how to include (security) properties about timestamps in our DY* models and
demonstrate our approach based on the Denning-Sacco protocol by showing that session keys, that
are compromised after their use, cannot be replayed.

The outline of the rest of the thesis will be as follows: In Chapter 2 we discuss basics of the DY*
framework as well as authentication protocols required for the analysis. Chapter 3 gives an overview
over other (earlier) symbolic approaches used for the analysis of authentication protocols with a
focus on analyses of the selected protocols. In Chapter 4, we model the selected protocols in DY*,
reason about the models and prove their security or provide mitigations against discovered attacks.
Finally, Chapter 5 summarizes our work and provides suggestions for improvements of DY* based
on the performed analyses.
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2 Basics

The purpose of this chapter is to give a brief introduction to DY* and its aspects relevant for the
analyses of the selected protocols performed in Chapter 4. We will, however, not cover all aspects
of the framework in great detail. Thus, we refer to the paper of Bhargavan et al. [6] for a more
general introduction to DY*. Furthermore, we discuss a few basics of authenticaton protocols in
this chapter.

2.1 Introduction to DY*

DY* is a framework for the verification and symbolic security analysis of cryptographic protocol
code written in the programming language F* [18]. The F* programming language is a purely
functional programming language with effects that aims at program verification. F* programs are
verified with the help of an SMT solver and can be extracted to efficient OCaml, F# or C code and
then executed. The novelty of DY* is that it bridges the gap between trace-based and type-based
approaches of symbolic protocol analysis by using F*’s effects to explicitly model the global trace
within the framework and by making use of the type system that F* offers. This provides the ability
to express fine-grained security properties for our models in terms of the global trace, using features
like long-lived mutable protocol state, fine-grained dynamic corruption, and events. Since F* is a
general purpose programming language, we can also use DY* to detect flaws in implementation
details of protocols, for example, in serialization and deserialization of messages.

It has already been said in Chapter 1 how DY* is a modular approach for modeling and analysing
cryptographic protocols. This modular approach also applies to the implementation of the framework
itself. DY* is implemented via 9 verified F* modules that are organized into two layers. The
lower layer is the symbolic runtime layer that provides libraries for low level features like symbolic
cryptography, symbolic random number generation, storage and mutation of long-lived state (e.g.,
to store long term secrets or information regarding a particular protocol session) and the simulation
of a network in which messages can be sent and received by principals. Moreover, it provides
an API for the attacker, which is, as the name of the framework suggests, a Dolev-Yao symbolic
attacker. The lower layer is already sufficient to create functional models of protocols in DY*.
However, the framework also comprises a second layer on top of the symbolic runtime layer that
allows for meaningful (security) proofs based on the semantics of the lower layer. Particularly, this
higher layer introduces the concept of labels to ease the proof of security properties like key secrecy.
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2 Basics

Labels are essentially an over-approximation of the intended audience of a term, say, an encryption
key. We could, for example, conclude that if the intended audience of a key does not contain a
corrupted principal session1, this particular key is secret (not known to the attacker).

In the following sections, the two layers are explained in more detail based on some selected
examples in order to demonstrate how the most important protocol features like (de-)serialization,
encryption and decryption, random number generation and state sessions can be modeled and what
their semantics are. Further, we illustrate how we can build security proofs based on these features
and their semantics.

Symbolic Runtime Layer

The essence of DY* is that principals run protocol code and exchange messages over an untrusted
network, controlled by the Dolev-Yao attacker, in arbitrary many parallel sessions. Everything that
happens within these protocol sessions is captured by a central component: the global execution
trace. In particular, the global trace records the history of all principal state sessions, generated
random numbers and sent messages. Additionally, it documents corrupted state sessions or versions
of state sessions. Therefore, the trace determines the attackers knowledge at any point in time
during the run of a protocol, which in turn, lets us precisely express security properties in terms of
the trace.

The trace is simply implemented as array of trace entries where each entry represents a protocol
action:

noeq type entry_t =

| RandGen: b:bytes -> l:label -> u:usage -> entry_t

| SetState: principal -> v:version_vec -> new_state:state_vec -> entry_t

| Corrupt: corrupted_principal:principal -> session:nat -> version:nat -> entry_t

| Event: sender:principal -> event -> entry_t

| Message: sender:principal -> receiver:principal -> message:bytes -> entry_t

type trace = Seq.seq entry_t

The RandGen b l u trace entry represents the generation of random bytes b with intended audience
l and usage u. The bytes type is the symbolic low-level respectively trace representation of data
structures that may be used in protocols, e.g., literals, nonces, public keys, ciphertexts and messages,
just to name a few. Usages tell us the scope in which a random value is or may be used; examples are
nonce_usage or pke_usage. Intuitively, a random bytes value annotated with nonce_usage indicates that
the value is simply used as nonce, while pke_usage means that the value is used as private decryption
key in public key encryption. Next, SetState p v new_state holds a newly created or updated state
of a principal p, where new_state is a vector of state sessions and v is a vector of versions matching
the state sessions by index. State sessions can be used by principals to store, e.g., long-term private
keys or current data associated with a particular protocol session. Versioning can be used to enable
for even more fine-grained corruption, which can be helpful in proofs of subtle security properties

1Principals can have multiple independent sessions within their state storage that can be corrupted by the attacker. The
corruption of one session only implies that the attacker gains knowledge of the terms in that particular session. We
will discuss the concept of sessions later in more detail.
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2.1 Introduction to DY*

of protocols like forward secrecy or post-compromise security. Corruptions are notated by the
Corrupt corrupted_principal session version entry, specifying which exact version of a principal’s
session has been corrupted. The entry Event sender event shows the occurrence of a specific event
during a protocol run; here, sender is the principal that “reported” the occurrence of the event.
Events consist of a meaningful name and an array of associated data and can ease and assist in the
formulation of security properties that require a specific order of certain protocol actions on the
trace2. Finally, messages are represented by an entry Message sender receiver message, where sender

and receiver are principals and message is usually a compound term. The symbolic runtime layer
exposes an API with functions to perform the above protocol actions that will create the respective
trace entries and append them to the global trace. For example, gen l u generates random bytes b

with label l and usage u, creates a trace entry RandGen b l u, appends it to the global trace and finally
outputs b. Analogous, there are functions to create and update a principal’s state or certain state
sessions, corrupt a principal’s state or state sessions, trigger events or send and receive messages.

The length of the global trace grows monotonically, so its length can be used as a symbolic timestamp
in invariants and constraints on the trace, for example, to ensure that an event occurred or a message
was sent before a given timestamp. The symbolic runtime layer defines an effect Crypto to capture
these trace invariants in our protocol code. Functions we define that shall respect certain invariants
on the trace are then defined in the Crypto effect, which comes with requires and ensures clauses to
require properties of the input trace and to ensure properties of the resulting trace and the result of
the computation, possibly depending on the input trace.

Another central component of DY* that is part of the symbolic runtime model is the bytes type. It is
a type for the symbolic low-level representation of data structures used in protocols; other symbolic
approaches often call this concept a “term”. Terms or bytes can be atomic, e.g., a nonce that has
been generated with the gen function, or they can be compound to build serialized messages or state
sessions that can be sent across the network or stored in a principal’s state. The runtime layer offers
concat and split functions to concatenate bytes or split them into their atomic parts.

type literal =

| ByteSeq of FStar.Seq.seq FStar.UInt8.t

| String of string

| Nat of nat

type bytes_ =

| Literal: literal -> bytes_

| Rand: n:nat -> l:label -> u:usage -> bytes_

| Concat: bytes_ -> bytes_ -> bytes_

| PK: secret:bytes_ -> bytes_

| PKEnc: pk:bytes_ -> n:bytes_ -> msg:bytes_ -> bytes_

| Extract: key:bytes_ -> salt:bytes_ -> bytes_

| Expand: key:bytes_ -> info:bytes_ -> bytes_

| AEnc: k:bytes_ -> iv:bytes_ -> msg:bytes_ -> ad:bytes_ -> bytes_

| VK: secret:bytes_ -> bytes_

| Sig: sk:bytes_ -> n:bytes_ -> msg:bytes_ -> bytes_

| Mac: k:bytes_ -> msg:bytes_ -> bytes_

| Hash: m:bytes_ -> bytes_

| DH_PK: s:bytes_ -> bytes_

2This can be particularly useful when showing authentication properties, as we will see later.
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| DH: k:bytes_ -> s:bytes_ -> bytes_

Atomic bytes are either literals or random values. The concrete value of a literal can be a byte
sequence, a string or a natural number. This definition of literals also allows for the extension
of DY* with concrete implementations of, say, cryptography, in order to proof protocols secure
under consideration of computational aspects. The symbolic runtime API has functions like
string_to_bytes, bytes_to_string, nat_to_bytes, bytes_to_nat, etc., for the conversion of literals from
and to its concrete values for use in higher-level data structures like message implementations
that might determine the control flow in protocol steps. All other constructors of bytes create
higher-order terms like public keys, ciphertexts, signatures, or even messages and state sessions.
Thus, bytes do not only serve as a way to represent data within protocols but also carry the semantics
of symbolic cryptographic primitives and of the model itself.

To demonstrate this, let us have a look at how public key encryption has been realized in DY*:

val pk:bytes -> bytes // interface

let pk s = (PK s) // implementation

val pke_enc:pub_key:bytes -> randomness:bytes -> msg:bytes -> bytes // interface

let pke_enc p n s = (PKEnc p n s) // implementation

val pke_dec:priv_key:bytes -> ciphertext:bytes -> result bytes // interface

let pke_dec s c = // implementation

match c with

| PKEnc (PK s') n m ->

if s = s' then Success m

else Error "pke_dec: key mismatch"

| _ -> Error "pke_dec: not a pke ciphertext"

The pk function takes a secret key of type bytes as input and outputs the corresponding public key
of type bytes. Under the hood, this is done by invoking the PK constructor of bytes. Symbolic
public key encryption has been implemented with a function pke_enc that accepts inputs public key,
randomness and some message in plaintext – all of type bytes – and outputs a ciphertext of type
bytes. Analogous to pk, the encryption function simply invokes the PKEnc constructor of bytes. Thus,
we need the decryption function pke_dec that only outputs the plaintext if the secret key passed
as input to the function corresponds to the public key that was used for encryption. Since the
actual implementation of the encryption and decryption functions is not part of the interface of the
symbolic runtime layer, F* Lemmas are used to prove semantically relevant properties of these
functions, like those outlined here, to the public.

For example, the pke_dec_enc_lemma ensures the correctness property of pke_enc and pke_dec:

val pke_dec_enc_lemma: sk:bytes -> n:bytes -> msg:bytes ->

Lemma (pke_dec sk (pke_enc (pk sk) n msg) == Success msg)

From the perspective of the interface, the semantics of real and symbolic cryptography are equivalent
(ignoring the negligible probability that real cryptography can be broken): We encrypt a plaintext of
type bytes and receive a ciphertext of type bytes but we cannot infer the structure of the ciphertext
without the help of the decryption function and the secret key because its visible structure does not
deviate from that of the plaintext.
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2.1 Introduction to DY*

Symbolic implemenations for other cryptographic primitives also exist in the symbolic crypto API.
The ones relevant for this thesis are symmetric encryption, which is realized by Authenticated
Encryption with Associated Data3 (AEAD) [24] in DY*, and signatures. AEAD is realized by
functions aead_enc and aead_dec for authenticated encryption and decryption with a symmetric key,
and signatures are created with a function sign and verified with a corresponding function verify.

val aead_enc: key:bytes -> iv:bytes -> msg:bytes -> ad:bytes -> bytes

val aead_dec: key:bytes -> iv:bytes -> ciphertext:bytes -> ad:bytes -> result bytes

val aead_dec_enc_lemma: k:bytes -> iv:bytes -> m:bytes -> ad:bytes ->

Lemma (aead_dec k iv (aead_enc k iv m ad) ad == Success m)

The aead_enc function takes as input the symmetric encryption key key, a symbolic random
initialization vector iv simulating randomness in the encryption, the message to encrypt denoted
by msg, and the public associated data ad to be authenticated. Returned is the ciphertext resulting
from the encryption. The corresponding decryption function aead_dec is given the key, initialization
vector and associated data from the encryption, as well as the ciphertext to decrypt, and it outputs
the previously encrypted plaintext. The ciphertext is returned only if the key, initialization vector,
and associated data match in the encryption and decryption. The correctness property for AEAD is
captured by a lemma called aead_dec_enc_lemma, analogous to the pke_dec_enc_lemma for public key
cryptography.

val sign: priv_key:bytes -> randomness:bytes -> msg:bytes -> bytes

val verify: pub_key:bytes -> msg:bytes -> tag:bytes -> bool

val verify_sign_lemma: sk:bytes -> n:bytes -> m:bytes ->

Lemma (verify (vk sk) m (sign sk n m) == true)

The sign function receives as input a private signing key priv_key, a symbolic randomness for
signing, and the message to sign dentoted by msg. Returned is the resulting signature tag. For
verification, the verify function accepts the public key pub_key corresponding to the private key used
for signing, the original message, again denoted by msg, and the signature tag to verify denoted by
tag. verify yields true on a valid signature, which is the case if the public key used for verification
matches the private signing key and the message verified matches the message signed; otherwise it
returns false. The verify_sign_lemma ensures that the verification is sound, i.e. the verify function
must return true for all valid signature tags.

It has already been pointed out that the attacker in DY* has the capabilities of a Dolev-Yao style
attacker [17]. That is, it is in control of the network, can read, modify, schedule or block messages,
compromise state sessions or call cryptographic functions on messages it already knows. DY* offers
an API for the attacker that defines messages and terms known to the attacker via a refinement type of
bytes called pub_bytes (i:timestamp). In particular, the type is defined as t:bytes{attacker_knows_at

i t}, meaning that the attacker knows the term t at trace index i. Functions in the attacker’s API
wrap the functions from the symbolic runtime layer but only accept inputs of type pub_bytes i

instead of the more general bytes type to ensure that the attacker uses terms already known to it when
calling these functions. For example, public key encryption is defined as val pke_enc: #i:timestamp

-> pub_key:pub_bytes i -> randomness:pub_bytes i -> msg:pub_bytes i -> pub_bytes i. Besides this

3AEAD combines symmetric encryption and message authentication (MACs) into a single cryptographic primitive that
provides confidentiality, as well as authenticity and integrity.
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subtle difference, the functions have syntax and semantics similar to the original functions used by
honest principals, which demonstrates that the attacker’s API provides the attacker with the same
capabilities as honest principals with respect to the processing of public bytestrings; this is also called
attacker typability. Similar to the Dolev-Yao intruder, the DY* adversary can grow its knowledge as
the global trace grows by using the (cryptographic) functions in the attacker’s API, e.g., to read
messages that were sent on the network, split messages into their atomic parts, or even decrypt
messages if the decryption key is known to the attacker. This behavior of the adversary is captured
by a predicate attacker_can_derive: idx:timestamp -> steps:nat -> t:bytes -> Type0, which is used
in statements about the derivability of a term t at trace index idx in a certain number of steps. If the
attacker can derive a term from terms it already knows, then it holds per definition that the derived
term is also part of the attackers knowledge (at a given trace index).

As we have seen so far, the symbolic runtime model already offers everything we need to create
models of cryptographic protocols. A model of a protocol can be constructed with a set of functions,
where each function models an honest principal taking on some role in the protocol and executing
a single protocol step. Protocol steps usually include that a principal retrieves its current state
associated with the protocol run; receives a message from the network; decrypts, parses and
validates the message or parts of it; builds, serializes and encrypts the response; and finally updates
it’s state. In principle, since F* is what we would call a Turing Complete programming language,
protocol steps could even perform arbitrary computations. The attacker cannot alter the protocol
steps because it cannot control how honest principals behave but it can schedule the execution of
protocol steps in any order and with arbitrary parameters and perform its own actions in between.
From the attacker’s point of view, the functions implementing the protocol steps are simply black
boxes that he can use to interact with honest principals. The executable part of a model thus consists
of attack scenarios, where the attacker uses the protocol step functions and its own API, trying to
find a way to break security. To verify the correctness of a model it generally makes sense to also
implement a function that represents a benign environment in which the attacker remains passive
and schedules the protocol steps as intended.

Labeled Security Layer

In the previous section we have learned how we can use the symbolic runtime layer of DY* to
create executable models of cryptographic protocols. However, our main goal is to formulate
and prove security properties for our models in DY* and mechanically verify these proofs using
F*’s typechecker. This venture – although feasible in theory – would still require a huge effort
with the symbolic runtime model because we would have to reason about secrecy implications
of cryptographic functions in the symbolic runtime library each time we want to prove a new
protocol secure. For this reason, the DY* framework consists of a second layer that was build on
top of the runtime layer, namely the labeled security layer. With this layer, the concept of labels is
introduced, which enables the formulation of reusable statements about the secrecy implications of
cryptographic primitives and other crypto-related functions in the runtime library.

Labels carry secrecy implications of terms by annotating them with the audience that is allowed to
know them. This is especially useful for terms like nonces, keys or other secrets that should remain
secret with respect to their intended audience. The labeled layer specifies another trace invariant,
namely valid_trace, which ensures that the secrecy implications of labels hold at each trace index
throughout protocol execution. Particularly, a valid trace is a trace containing only publishable
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messages, and state sessions and events valid with respect to state session and event invariants that
can be specified on the level of individual protocols. The valid_trace invariant also holds true in
presence of the DY* adversary, which was defined on the lower symbolic runtime layer. Functions
on the labeled layer are executed in terms of an effect LCrypto that wraps the Crypto effect from the
symbolic layer and additionally ensures the validity of the resulting trace. The LCrypto effect also
comes with requires and ensures predicates for specifying pre- and post-conditions of functions,
but has the additional advantage that the case of an erroneous computation may be ignored in the
post-condition.

There are four types of labels, namely public, readers (ids:list id), join and meet. A term annotated
with the public label can be safely published and transferred over the network without the use of
encryption. The readers label is used to specify the allowed readers of a term. The fine-granularity
of the readers is determined by the id type, which specifies the exact subset of state sessions
belonging to a principal that can read the annotated term; that can either be all state sessions of a
principal p (P p), a specific state session s of p (S p s), or only a specific version v of a state session
(V p s v). Lastly, the labels join and meet denote unions and intersections of labels. In addition to
the labels, the labeled layer annotates terms with a usage to ensure that keys are only to be used
within the context for which they were established. For example, private decryption keys should not
be used for signing as this might cause confidential information to leak if the adversary gets the
owner of the key to sign a ciphertext and send it back to the adversary. The labeled layer refines
all the cryptographic and stateful functions, originally defined in the symbolic runtime API, to
ensure the preservation of a valid trace as well as labeling and usage constraints for these functions.
Protocol code that builds on these refinements implicitly preserves or ensures the secrecy and usage
implications of their inputs respectively outputs. This tremendously eases the proof of security
properties involving keys and secrets, that are supposed to hold at a later time; particularly, after
a successful protocol run. Since the labeled layer does not restrict the DY* adversary and even
ensures that the attacker does not violate the valid trace property, all security properties that can be
proven on the labeled layer specifically hold in presence of the DY* adversary.

Let us take a look at our previous example of public key encryption and how it has been refined in
the labeled crypto API:

val pke_enc: #p:global_usage -> #i:timestamp -> #nl:label ->

public_key:msg p i public -> nonce:pke_nonce p i nl ->

message:msg p i (get_sk_label p.key_usages public_key){

can_flow i (get_label p.key_usages message) nl /\

(forall s.

is_public_enc_key p i public_key (get_sk_label p.key_usages public_key) s ==>

pke_pred p.usage_preds i s public_key message)} ->

msg p i public

val pke_dec: #p:global_usage -> #i:timestamp -> #l:label ->

private_key:lbytes p i l{is_publishable p i private_key \/

(exists s. is_private_dec_key p i private_key l s)} ->

ciphertext:msg p i public ->

result (msg p i l)
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The type msg p i l is a refinement type of bytes that restricts possible values to bytes, valid with
respect to some usage predicate p at trace index i and annotated with a label that can flow to l,
i.e., is covered by the allowed readers of l4. Analogously, lbytes p i l denotes valid bytes with
exact label l. is_publishable p i b holds true if b has type msg p i public; that is, if b’s label can
flow to the public label5. The pke_nonce p i l type constrains the randomness that may be used
for public key encryption to lbytes p i l with a fixed usage string that identifies it as randomness
used for public key encryption. Given arbitrary bytes b, get_label outputs the label of b. Similarly,
get_sk_label outputs the label of the corresponding private key if and only if b is a public key. The
predicate pke_pred is a protocol specific constraint on the key usages and keys that may be used for
encryption as well as the plaintexts that may be encrypted. The pke_enc function of the labeled
API expects implicit arguments #p, #i and #nl, where #p is a protocol specific usage predicate, #i
is a trace index and #nl denotes the label of the randomness used for encryption. The key used
for encryption is safely publishable and the nonce has been specifically generated to be used as
randomness in public key encryption. Further, the label of the message to be encrypted can flow to
the label of the private key corresponding to the public key. This is necessary so that no information
is encrypted that is more confidential than the key used for decryption. Finally, if the key material
used for encryption really is a public key, i.e., has been strictly generated for the purpose of being
used in public key encryption, then we have that the protocol specific usage constraint specified in
pke_pred must hold for the used public key and the encrypted message. If all the above constraints
are fulfilled, then the pke_enc function returns a publishable ciphertext that can be safely transmitted
over the network. The pke_dec function also expects a global usage predicate #p and a timestamp #i.
The label #l denotes the label of the key used for decryption. The key material used for decryption
must either be publishable or must really be a decryption key and the ciphertext must be publishable.
If all constraints are fulfilled and the decryption was successful, then pke_dec returns the original
plaintext, which can flow to l and is hence readable by the owner of the decryption key. A lemma
pke_dec_lemma ensures that if the correct key was used for decryption and pke_dec yields the plaintext,
then it is either publishable (e.g. if it comes from the adversary), or the pke_pred must hold for the
public key used in the encryption and the plaintext.

The labeled layer defines similar refinements and usage constraints for AEAD and signatures. The
refined aead_enc function requires that the key used for encryption is either publishable (for example,
a key compromised by the adversary) or a valid secret key for AEAD, and that the label of the
message can flow to the label of the key, i.e. that the message is not more secret than the key.
Moreover, aead_enc requires, analogous to public key encryption, that the protocol specific usage
constraint for AEAD (aead_pred) holds for the key and message. The corresponding decryption
function aead_dec in conjunction with the aead_dec_lemma ensures that the aead_pred holds if the
decryption was successful and the key is not publishable. Similarly, the labeled sign function
requires that the key is publishable or a valid signing key and that sign_pred holds for the message
to be signed and the verification key corresponding to the secret signing key if it is indeed a signing
key. sign guarantees that both the signed message and the signature tag flow to a common label, so
when signing confidential information labeled with a readers label, for example, the signature tag
must be additionally protected by encryption under a key with a label that is at least as restrictive.

4It should be noted that in general, less restrictive labels can always flow to more restrictive labels but not the other way
around, except for the case when the more restrictive label contains a corrupted identity.

5Since the can flow relation is reflexive, the public label can flow to itself. However, it is also possible that a more
restrictive label flows to public if one of its readers has been corrupted.
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The verify function and verify_lemma ensure that the usage predicate holds for the successfully
verified message and the used verification key, or that the sign key label is publishable, which means
that the signature guarantees do not apply.

In general, the functions in the labeled API are more subtle with respect to their inputs and outputs
and the types carry useful information about labels and usages of terms. While the symbolic runtime
layer was mostly concerned with establishing correctness, e.g., that pke_dec returns the plaintext
that was originally encrypted with pke_enc on a matching key pair, the labeled security layer is
mostly concerned with the secrecy and usage context of terms. We can use the usage predicates for
the cryptographic primitives to explicitly pass information about label and usage of an encrypted
secret, or about logged events with attached data that matches the data in the encrypted or signed
message, to the principal who will receive and decrypt or verify the message. As mentioned above,
the decrypting or verifying principal can infer from the lemmas pke_dec_lemma, aead_dec_lemma, or
verify_lemma that the respective usage predicate holds if the decryption or verification was successful
and the key is not compromised nor does the message originate from the attacker. The properties
ensured by the usage predicates can thus be carried across multiple protocol steps and can then
be used to formulate and proof, among other things, secrecy and authentication properties of
the respective protocols. Often, these properties are defined based on the final protocol state of
principals or relations of trace events, which are ensured to be valid by the implicit state and event
invariants also specified on the individual protocol level. The labeled layer already yields some
generic security lemmas that were proven sound once and for all based on the implementation of
the labeled API. A central lemma useful for secrecy proofs is the secrecy_lemma, which states that
the secrecy of a bytes value b depends on the honesty of the principals who can read b according to
its label:

val secrecy_lemma: #pr:preds -> b:bytes ->

LCrypto unit pr

(requires (fun t0 -> True))

(ensures (fun t0 _ t1 -> t0 == t1 /\

(forall ids. (is_labeled pr.global_usage (trace_len t0) b (readers ids) /\

attacker_knows_at (trace_len t0) b) ==>

(exists id. List.Tot.mem id ids /\ corrupt_at (trace_len t0) id))))

Precisely, the secrecy lemma states that if b is labeled with readers ids and the attacker knows b at
trace_len t0, then there must be a corrupt state session identifier within ids. Hence, we can use the
lemma to derive statements about a term’s secrecy if we know the label of that term.

2.2 Authentication Protocols

Authentication protocols or authentication and key exchange protocols (short AKE protocols) are
protocols that aim at establishing a secure channel for communication between two or more parties
as well as mutually authenticating the parties to each other, i.e., to provide each party with the
correct identities of the other parties. Strictly speaking, authentication protocols do not necessarily
perform key establishment between parties but for the sake of simplicity we assume so and use the
term interchangeably with the term AKE protocol. In this Master Thesis, we only take a look at the
case where two parties want to communicate with each other. We use the term user to denote any
principal that participates in a protocol with the goal of establishing a communication channel with
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another party – apparently, also a user. Trusted third parties tasked with session key generation or
public key certification, we call authentication server or simply server. The term principal is used
for any party participating in a protocol, including all users and possible servers. There are plenty
of different protocol architectures that aim to achieve authentication and key establishment. In the
context of this work, they can be classified in two categories based on the question, what keys have
to be established in advance to be able to run the protocol [8]. The rationale behind this question is
that there is no way to securely exchange keys if there is no previously established secure channel
already available for the key exchange. We call keys that are already available at the beginning of a
protocol run long-term keys and keys that are being established as a result of a protocol run session
keys or communication keys. An AKE protocol requires one of the following to provide each party
with guarantees about the channel that will be established:

• symmetric long-term keys, or

• asymmetric public keys

In protocols that require symmetric long-term keys readily available, these keys are established
either between

• the users directly, such that the presence of an authentication server is not required, or

• each user and an authentication server, where the server is in charge of the key exchange and
often also its generation.

The latter has the advantage that users do not need to maintain long-term keys with all the other
users they want to talk to, but only with a single principal who is trusted to never leak them. The
two protocols investigated in this master’s thesis that build on symmetric long-term secrets, i.e.,
the Otway-Rees [27] and Yahalom protocols [11], both rely on a trusted authentication server to
generate and securely exchange sessions keys using the established long-term keys.

Similarly, in protocols that rely on public key encryption and the availability of public keys, we
have that either

• users need to know the public keys of all other users they want to talk to, or

• an authentication server takes over the role of a certification authority to distribute public
keys to users that wish to communicate.

Public keys have the advantage that no symmetric long-term secrets need to be established in
advance. The second variant further simplifies key management because a user only needs to know
their own public key and that of the authentication server. On the other hand, public key encryption
adds computational overhead to the protocol [8]. The third protocol that we analyze, namely the
Denning-Sacco protocol [16], falls into the second category of AKE protocols that rely on public
key encryption.
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This chapter comprises a summary of available literature on authentication protocols and different
techniques and approaches for their symbolic analysis with a special focus on the three authentication
protocols that are discussed as part of this thesis. Because the analyzed protocols all date back more
than three decades ago, we will mainly present literature that was released in the nineties and early
two thousands. For an overview of more recent approaches with fully automated proof techniques,
we refer to the DY* paper by Bhargavan et al. [6].

3.1 Authentication Protocols

Detailed introductions to the nature of authentication and key establishment protocols are given in
“A Survey of Authentication Protocol Literature” by Clark and Jacob [14] (1997) and in the book
“Protocols for Authentication and Key Establishment” by Boyd et al. [8] (2003). Both give a detailed
overview over cryptographic tools, architectural styles, design patterns, security goals and attack
types that come with such protocols and hence complement the short introduction to authentication
protocols that we gave in Section 2.2. Clark and Jacob also summarize formal methods used to
analyze such protocols. Further, both literatures provide large lists with descriptions of well known
authentication protocols and possible attacks, including the protocols studied in this thesis. Clark
and Jacob document attacks on all three protocols, while Boyd et al. only present attacks on two of
them.

3.2 Symbolic Analysis Approach

The symbolic approach for the analysis of cryptographic protocols was introduced by Dolev and Yao
[17] (1983) with their work on the notion of a symbolic attacker that is still used in modern symbolic
provers like DY* as of today. Another milestone with respect to symbolic analysis methods is the
work of Burrows et al. [11] (1989) on the BAN logic for authentication protocols. The BAN logic
was the first approach to capture the goals and assumptions of authentication protocols in terms of
a formal language for principal beliefs. A BAN analysis always starts with a set of initial beliefs
representing a protocol’s prerequisites and a set of belief goals representing the authentication goals
of a protocol. Further beliefs can be derived from the initial beliefs using a fixed set of inference
rules, as messages are received. This process eventually results in a set of final beliefs representing
the actual assumptions that principals can make when running the protocol successfully. Burrows
et al. demonstrated their logic on multiple well known authentication protocols, including the
Otway-Rees and Yahalom protocols. Justified criticism against the BAN logic was mainly concerned
with optimizations, which the BAN authors proposed based on their analysis results, that turned
out to be less secure (e.g., [7] and [33]) and with its lack of sensibility against the permutation of
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protocol steps [32]. Based on this criticism, multiple extensions to the logic were proposed and later
unified in the so-called SVO logic by Syverson and Van Oorschot [34] (1994). The SVO logic has
been used by researchers to analyze and improve the Otway-Rees [12] and Yahalom [13] protocols,
among others.

Mid and late nineties Ryan et al. [31] developed a completely new approach to the symbolic
analysis of cryptographic protocols based on a process algebra named Communicating Sequential
Process (CSP). CSP itself is a mathematical notation to describe and analyze systems of processes
communicating with each other via messages. Ryan et al. present a trace-based approach that uses
CSP to model the roles of principals and the messages in a protocol. Additionally, they include
the notion of an active adversary that can be equipped with different capabilities. Secrecy and
authentication properties are defined with the help of trace events that claim messages secret or
commit to protocol runs. The verification of protocol models and security properties is automated
via the model checker FDR and a compiler named Casper that translates models and properties to
FDR code.

The CSP approach was followed by a whole series of new approaches with automated tool support.
For example, Brackin developed an Automatic Authentication Protocol Analyzer (AAPA) [9]
(1998) based on an extension of the GNY belief logic1 [19], the BGNY logic. The AAPA tool
was able to analyze 52 of the 53 protocols presented in “A Survey of Authentication Protocol
Literature” (see Section 3.1) and detected 9 flaws (including a flaw on the Yahalom protocol)
of which 3 flaws were previously unidentified. However, it also missed 19 flaws that Clark and
Jacob had found in their protocol library, including flaws on the Otway-Rees protocol and the
Denning-Sacco protocol with symmetric cryptography. Brackin was able to give an explanation
for 18 of these misses and sketched how the AAPA could be further improved to account for the
undetected flaws. Later fully automated provers like AVISS [3] (2002) or its successor AVISPA
[35] (2006) came with an expressive formal language for the specification of security protocols
and properties as well as support for multiple backends implementing different automatic analysis
techniques, like protocol falsification or abstraction-based verification, to account for a large variety
of protocols. Furthermore, the network over which messages are exchanged has been modeled
in terms of a Dolev-Yao style intruder to simulate an inherently insecure environment for the
execution of protocols. The AVISS tool could find 31 flaws in the protocol library of Clark and
Jacob; this also includes a flaw in the Otway-Rees protocol and a previously unreported flaw in the
Denning-Sacco protocol. The authors of AVISPA tested their tool on their own library consisting
of 33 industrial-scale security protocols, which have been used to derive a total of 215 security
problems. Their results include unreported flaws on protocols from the ISO-PK family as well
as on the IKEv2 protocol with digital signatures. Tools like AVISPA were followed by the latest
generation of fully automated provers like TAMARIN [25] (2013), which even support complex
protocol features such as loops or mutable global state and capture all possible traces of a protocol
in the time of a wink.

Other modern approaches try to combine the advantages of symbolic and computational methods
for the analysis of cryptographic protocols. Symbolic methods treat the ability to produce much
simpler and often automated proofs against weaker security guarantees because of restrictions
on the capability of an adversary. On the other hand, computational methods result in powerful
security guarantees in presence of a probabilistic polynomial-time attacker but proofs are usually

1A successor of the BAN logic that accounts for the permutation of protocol steps, motivated by [32]
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complex and more prone to errors. The results of the research on unifying the two approaches
and their advantages were captured in a survey by Cortier et al. [15]. The pioneers in this field
were Backes et al. [5] (2003) with their proposal of an abstract cryptographic library based on
Dolev-Yao style primitives, for which they proved that a real cryptographic implementation of their
library is as least as secure as the abstract library itself. Their abstract library accounts for all
kinds of protocol features like public-key encryption, digital signatures, nonces, list operations and
application data. Furthermore, active attacks are modeled by embedding the library in a stateful
Dolev-Yao system, where honest principals and the attacker can both perform any cryptographic
operation that is possible based on previous events. The proof provided by Backes et al. for the
security of the real cryptographic library is based on simulatability, i.e., that the abstract library
simulates the real library, which is a common proof technique used in computational proofs. To
proof the adequacy of their work, one of the authors (Backes) [4] used the ideal cryptographic
library to obtain a cryptographically sound security proof of the Otway-Rees protocol.

3.3 Selected Protocols and Conducted Analyses

In the previous section, we gave an overview over some of the most important milestones in the
symbolic approach to cryptographic protocol analysis. Many of the discussed methods have been
used, among other things, for the analysis of the protocols Otway-Rees, Yahalom, and Denning-
Sacco, which we investigate in this work. In the rest of this chapter, we present the three protocols
and discuss and reason about the results of their analyses under consideration of the assumptions
made by the used approaches and also by the authors who conducted the analyses.

3.3.1 Otway-Rees

The Otway-Rees protocol is an authentication protocol that performs a session key exchange between
two users via symmetric long-term keys and a trusted authentication server. The protocol was
proposed by Otway and Rees in their paper “Efficient and Timely Mutual Authentication” [27] and
goes as follows:

1. 𝐴→ 𝐵 : 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵, {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑎𝑠
2. 𝐵 → 𝐴𝑆 : 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵, {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑎𝑠 , {𝑁𝑏, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑏𝑠
3. 𝐴𝑆 → 𝐵 : 𝑁𝑐𝑖𝑑 , {𝑁𝑎, 𝑘𝑎𝑏}𝑠𝑘𝑎𝑠 , {𝑁𝑏, 𝑘𝑎𝑏}𝑠𝑘𝑏𝑠
4. 𝐵 → 𝐴 : 𝑁𝑐𝑖𝑑 , {𝑁𝑎, 𝑘𝑎𝑏}𝑠𝑘𝑎𝑠

The users 𝐴 and 𝐵 initially share symmetric long-term keys 𝑘𝑎𝑠 and 𝑘𝑏𝑠 with an authentication
server 𝐴𝑆. The protocol is initiated by 𝐴 who first chooses a random conversation identifier 𝑁𝑐𝑖𝑑

and a challenge 𝑁𝑎. 𝐴 then sends 𝑁𝑐𝑖𝑑 along with its own identifier, the identifier of the responder
𝐵 and a part encrypted under 𝑘𝑎𝑠 that contains the initiator’s challenge as well as copies of the
identifiers to 𝐵. Upon receiving of the first message, the responder 𝐵 chooses its own random
challenge 𝑁𝑏, appends a part encrypted under 𝑘𝑏𝑠 with a structure similar to 𝐴’s part to the message
and forwards it to the server. The server uses the identifiers of 𝐴 and 𝐵 in the plaintext part of the
second message to retrieve 𝐴’s and 𝐵’s long term-keys, decrypts the encrypted parts and checks
whether the components 𝑁𝑐𝑖𝑑 , 𝐴 and 𝐵 match in these parts. If they match, it chooses a fresh
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key 𝑘𝑎𝑏 for communication between 𝐴 and 𝐵 and encrypts the key respectively with each of the
principals’ challenges. The server then sends the encrypted keys and challenges together with the
conversation identifier 𝑁𝑐𝑖𝑑 back to the responder who decrypts his part, verifies his challenge 𝑁𝑏

and obtains 𝑘𝑎𝑏. Finally, the responder forwards the rest of the message to the initiator such that it
can also verify its challenge and obtain the key.

Analyses and Results

The Otway-Rees protocol is one of the protocols that have been investigated in the BAN paper
[11]. In the paper, a short description of the protocol is given that essentially matches the original
description by Otway and Rees as well as ours. The BAN authors also account for the fact that the
identifiers 𝑁𝑐𝑖𝑑 , 𝐴 and 𝐵 in the plaintext part of the second message are never compared with their
copies in the encrypted parts. This is however disregarded in the BAN analysis, as the plaintext
parts of messages are discarded in the protocol idealization process that precedes the analysis. With
their BAN analysis, Burrows et al. come to the conclusion that the protocol is well designed and
provides strong guarantees regarding the exchanged key and timeliness of the messages. The initial
assumptions made by the authors are that 𝐴, 𝐵 and the 𝐴𝑆 trust their shared long-term keys to be
suitable for secret communication between them and that 𝐴 and 𝐵 trust in the 𝐴𝑆 to choose a key
that is suitable for secret communication between 𝐴 and 𝐵. From that, they conclude – using the
BAN logic – that 𝐴 as well as 𝐵 both belief that 𝑘𝑎𝑏 is a good key for communication between them,
i.e., is only known to them or parties trusted by them. Moreover, they state that 𝐵 authenticates to 𝐴
via the second message from 𝐵 to the 𝐴𝑆, which contains an encrypted part with 𝐴’s challenge in
it. However, they admit that the authentication is one sided in that 𝐵 cannot say the same about 𝐴
because 𝐴 never sends a message containing something that 𝐵 believes to be fresh.

Boyd and Mao [7] later pointed out the limitations of the BAN logic on the example of the
Otway-Rees protocol. They show that the Otway-Rees protocol is not secure under the assumptions
made in the BAN paper and that the optimizations proposed by Burrows et al. are dangerous in that
they do not result in a secure version of the protocol either. The attack pointed out by Boyd and
Mao on the original protocol is the following:

1. 𝐴→ 𝐼 (𝐵) : 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵, {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑎𝑠
2. 𝐼 (𝐵) → 𝐴𝑆 : 𝑁𝑐𝑖𝑑 , 𝐴, 𝐸, {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑎𝑠 , {𝑁𝑒, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑒𝑠
3. 𝐴𝑆 → 𝐼 (𝐵) : 𝑁𝑐𝑖𝑑 , {𝑁𝑎, 𝑘𝑎𝑒}𝑠𝑘𝑎𝑠 , {𝑁𝑒, 𝑘𝑎𝑒}𝑠𝑘𝑒𝑠
4. 𝐼 (𝐵) → 𝐴 : 𝑁𝑐𝑖𝑑 , {𝑁𝑎, 𝑘𝑎𝑒}𝑠𝑘𝑎𝑠

They explain that this attack is possible because the 𝐴𝑆 does not compare the conversation identifier
𝑁𝑐𝑖𝑑 and the user identifiers 𝐴 and 𝐵 in the plaintext part of the second message with their copies
in the encrypted parts. Boyd and Mao see the main problem in the idealization process applied to
protocols in order to derive initial assumptions for the BAN analysis. Their argument is that the
implementation-level behavior of the 𝐴𝑆 does not reflect in the abstractions made by the idealization
process and that an implementation-level fix to prevent the attack would not have affected the
BAN analysis in any way. Based on their research, they introduce the concept of robust protocols
as generic fix for the problem encountered in the Otway-Rees protocol and similar problems.
Intuitively, robust protocols are designed such that messages contain all the information necessary
to authenticate them. Boyd and Mao argue that this is not the case for the original Otway-Rees
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protocol since the third message, issued by the 𝐴𝑆, does not make explicit to the users who the
respective peer of the key 𝑘𝑎𝑏 is. Based on this observation, they propose the following fix for the
third message:

3. 𝐴𝑆 → 𝐵 : 𝑁𝑐𝑖𝑑 , {𝐴, 𝑁𝑎, 𝑘𝑎𝑏}𝑠𝑘𝑎𝑠 , {𝐵, 𝑁𝑏, 𝑘𝑎𝑏}𝑠𝑘𝑏𝑠
We show that the proposed fix is actually not sufficient to prevent the previously discussed
impersonation attack and present our own improved version of the Otway-Rees protocol in
Section 4.3.

A more recent effort to perform a symbolic analysis of the Otway-Rees protocol using a belief logic
has been made by Chen [12] who proposed a new improved version of the Otway-Rees protocol
and used the SVO logic [34] to show that their version fulfills the desired authentication properties.
They refer to the impersonation attack detected by Boyd and Mao [7] as well as their proposed
fix to include users’ identities in the third message and argue that it is not sufficient to establish
authentication between 𝐴 and 𝐵. Chen’s improved version of the Otway-Rees protocol goes as
follows:

1. 𝐴→ 𝐵 : 𝑁𝑐𝑖𝑑 , 𝐴, {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐵}𝑠𝑘𝑎𝑠
2. 𝐵 → 𝐴𝑆 : 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵, {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐵}𝑠𝑘𝑎𝑠 , {𝑁𝑏, 𝑁𝑐𝑖𝑑 , 𝐴}𝑠𝑘𝑏𝑠
3. 𝐴𝑆 → 𝐵 : 𝑁𝑐𝑖𝑑 , {𝑁𝑎, 𝐵, 𝑘𝑎𝑏}𝑠𝑘𝑎𝑠 , {𝑁𝑏, 𝐴, 𝑘𝑎𝑏}𝑠𝑘𝑏𝑠
4. 𝐵 → 𝐴 : 𝑁𝑐𝑖𝑑 , {𝑁𝑎, 𝐵, 𝑘𝑎𝑏}𝑠𝑘𝑎𝑠 , {𝑁𝑏, 𝐵}𝑠𝑘𝑎𝑏
5. 𝐴→ 𝐵 : 𝑁𝑐𝑖𝑑 , {𝑁𝑏 − 1, 𝐴}𝑠

𝑘𝑎𝑏

The initial assumptions that Chen defines for their improved protocol are the same as those made by
Burrows et al. [11] in their BAN analysis plus the assumption that 𝐴 and 𝐵 trust the 𝐴𝑆 to generate
a communication key that is fresh. The security goals are however slightly stronger than the goals
originally intended by Otway and Rees [27]. In particular, 𝐴 and 𝐵 should both be convinced that
the communication key 𝑘𝑎𝑏 is secret to 𝐴 and 𝐵 or parties they trust (including the 𝐴𝑆), and that
the key is also fresh. Moreover, users should be convinced that the other party has the same beliefs
about 𝑘𝑎𝑏 as they do. Chen then goes on to show that their improved protocol is in fact secure
by providing the respective SVO derivations for 𝐴 and 𝐵 that lead to the specified security goals.
However, the improved protocol significantly deviates from the original protocol in that all four
messages have been modified and two parts encrypted under 𝑘𝑎𝑏 have been added in the fourth and
respectively in an additional fifth message to reassure each user that the other user is in possession
of the same key and has the same beliefs about it. In Section 4.3, we show that less modifications
already suffice to achieve the originally intended security goals.

Yu et al. [37] very recently suggested multiple possible improvements to the Otway-Rees protocol
based on the results of their analysis with Enhanced Authentication Tests (EAT). Guttman and
Thayer [20] first proposed Authentication Tests (AT) as a symbolic method for the analysis of
cryptographic protocols regarding their authentication properties. The method was later improved
by Yang and Luo [36] to also reason about confidentiality aspects of protocols, which led to EAT.
The proposed improvements have the advantage over those of Chen in [12] that they achieve the
same strong security goals with only minimal alternations to the original messages of the protocol
and only one additional part encrypted with 𝑘𝑎𝑏 in the fourth message. Nonetheless, we will
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propose our own improved version of the protocol in Section 4.3 that does not even require the
additional encrypted component to achieve key secrecy of the communication key 𝑘𝑎𝑏 and mutual
authentication between the principals 𝐴 and 𝐵.

In contrast to the previously discussed analyses stands that of Backes [4], who used the abstract
cryptographic library [5] presented in Section 3.2 to receive “A Cryptographically Sound Dolev-Yao
Style Security Proof of the Otway-Rees Protocol”. The approach of Backes includes a symbolic
security proof of the Otway-Rees protocol in the abstract library and exploits the fact that the
abstract library can be safely realized using real cryptography – proven in [5] – to further derive
its security in a computational setting. The proof assumes that the protocol is implemented such
that commonly known type-flaw and implementation dependent attacks like those pointed out in
[14] or [8] are not possible. Backes defines the security of the Otway-Rees protocol in the ideal
(abstract) library in terms of a secrecy and consistency property. The secrecy property states that the
adversary cannot learn a key shared by two honest users after successfully running the protocol; the
consistency property refers to the consistency of users’ views regarding the peer of their respective
key session. Secrecy of the communication key 𝑘𝑎𝑏 is proven based on the fact that the key is only
exchanged over channels secured by the long-term keys 𝑘𝑎𝑠 and 𝑘𝑏𝑠 shared between 𝐴 and the 𝐴𝑆
respectively 𝐵 and the 𝐴𝑆; the proof for consistency is directly derived from the secrecy proof.
Backes then carries the properties over to the cryptographic setting by using the proof work in [5]
and showing that the so-called commitment problem does not occur in the Otway-Rees protocol, i.e.,
that the long-term keys used to encrypt the communication key are never leaked. This is derived
from the assumption that the long-term keys of honest principals are secret. Thus, Backes is able to
show that the secrecy and consistency properties also hold for an implementation of the library that
uses real cryptography.

3.3.2 Yahalom

The Yahalom protocol is an authentication protocol that, similarly to the Otway-Rees protocol,
performs a key exchange using symmetric long-term keys shared with an authentication server. The
protocol originates from personal communication and was formalized in [11]:

1. 𝐴→ 𝐵 : 𝐴, 𝑁𝑎

2. 𝐵 → 𝐴𝑆 : 𝐵, {𝐴, 𝑁𝑎, 𝑁𝑏}𝑠𝑘𝑏𝑠
3. 𝐴𝑆 → 𝐴 : {𝐵, 𝑘𝑎𝑏, 𝑁𝑎, 𝑁𝑏}𝑠𝑘𝑎𝑠 , {𝐴, 𝑘𝑎𝑏}

𝑠
𝑘𝑏𝑠

4. 𝐴→ 𝐵 : {𝐴, 𝑘𝑎𝑏}𝑠𝑘𝑏𝑠 , {𝑁𝑏}𝑠𝑘𝑎𝑏
The long-term keys that 𝐴 and 𝐵 share with the 𝐴𝑆 are denoted – similar as in Otway-Rees – 𝑘𝑎𝑠
and 𝑘𝑏𝑠. The first message is emitted by the initiator 𝐴 who chooses a random nonce 𝑁𝑎 and sends
its identity together with the generated nonce to 𝐵. On receipt of the first message, the responder 𝐵
chooses its own nonce 𝑁𝑏 and encrypts a message containing 𝐴’s identity and the two nonces under
𝑘𝑏𝑠. 𝐵 then sends the second message containing its own identity and the encrypted part to the 𝐴𝑆.
Using 𝐵’s identity, the 𝐴𝑆 is able to retrieve 𝑘𝑏𝑠 and decrypt the ciphertext in the second message.
Among other things, it obtains 𝐴’s identity, which it needs to retrieve the other long-term key
corresponding to 𝐴. The 𝐴𝑆 goes on to choose a fresh session key 𝑘𝑎𝑏 for the communication of 𝐴
and 𝐵 and then sends the third message containing two parts encrypted under the users’ long-term
keys to 𝐴. The first part is encrypted under 𝑘𝑎𝑠 and intended for 𝐴; it contains 𝐵’s identity, the

36



3.3 Selected Protocols and Conducted Analyses

session key 𝑘𝑎𝑏, and the nonces 𝑁𝑎 and 𝑁𝑏. Likewise, the second part is encrypted under 𝑘𝑏𝑠 and
intended for 𝐵; it only contains 𝐴’s identity and 𝑘𝑎𝑏. When the initiator receives the third message,
it decrypts the part encrypted under 𝑘𝑎𝑠 and verifies the responder’s identity as well as its own
challenge 𝑁𝑎. If the verification succeeds, it accepts 𝑘𝑎𝑏 as session key and uses it to encrypt 𝑁𝑏

for verification by the responder. 𝐴 then forwards the second encrypted part from the third message
together with 𝐵’s encrypted nonce to 𝐵. In the last step, 𝐵 receives the fourth message, decrypts the
part from the 𝐴𝑆 using 𝑘𝑏𝑠, verifies 𝐴’s identity, and, if successful, uses 𝑘𝑎𝑏 to decrypt 𝐴’s part
and verify its challenge 𝑁𝑏. Finally, if the challenge is correct, it also accepts 𝑘𝑎𝑏 as session key.

Analyses and Results

As mentioned, the Yahalom protocol was first formalized in the BAN paper [11] and was therefore
naturally subject to a BAN analysis. The initial assumptions made for Yahalom are quite similar to
those in the analysis of Otway-Rees – the principals believe in the appropriateness of their long-term
keys and the users believe in the freshness of their nonces and trust the authentication server to
choose an appropriate session key. However, in case of Yahalom, several additional assumptions
were needed due to the unusual protocol design. For example, 𝐵 requires a statement about the
freshness of 𝑘𝑎𝑏 to infer that the last message has been sent timely and 𝐴 must trust the 𝐴𝑆 to pass
on 𝐵’s challenge in the third message. From the initial assumptions and the third message Burrows
et al. easily derive that 𝐴 trusts in the suitability of 𝑘𝑎𝑏 as communication key. To derive the same
belief for 𝐵, a small adaption to the logic was necessary allowing 𝐵 to use the session key 𝑘𝑎𝑏 for
the decryption of 𝑁𝑏 before it can assume that the key is good by verifying 𝑁𝑏. This adaption and
the fact that 𝐵 trusts 𝐴𝑆 and 𝐴 to generate and respectively use a fresh session key 𝑘𝑎𝑏 suffice to
infer that 𝐵 also beliefs in the suitability of the session key. Further, 𝐵 is convinced 𝐴 has the same
beliefs about 𝑘𝑎𝑏 as itself and therefore 𝐵 would not notice if 𝐴 decides to replay an old key in the
fourth message. According to the authors this does however not impose a major flaw in the protocol
because principals are generally assumed to be honest in the context of a BAN analysis. Based on
the analysis results, the BAN authors have proposed a modified version of Yahalom that should lead
to the same outcome with less encryption and fewer assumptions. The modified version was later
proven insecure by Syverson [33] who documented an attack in which the attacker is able to make
𝐴 accept a public nonce chosen by 𝐵 as session key.

The results of the BAN analysis were later taken up by Chen and Shi [13] in an analysis of the
Yahalom protocol with the SVO logic [34]. Chen and Shi interpret the fact highlighted by Burrows
et al. [11] that a malicious 𝐴 could replay an old session key in the fourth message such that the
protocol cannot achieve the authentication goals it intends to achieve. To proof their point, they
first formalize the security goals of Yahalom in terms of the SVO logic and then show that the
goals are not achieved by the original protocol. The initial assumptions overlap with those of the
BAN analysis in assumptions about 𝐴’s and 𝐵’s trust in the long-term keys they share with 𝐴𝑆, the
secrecy and suitability of the session key generated by 𝐴𝑆, and the freshness of their respective
nonces, as well as 𝐵’s trust in a statement about the freshness of the session key from 𝐴𝑆. In
addition to the BAN assumptions, Chen and Shi assume that 𝐴 trusts 𝐴𝑆 equally regarding the
freshness of 𝑘𝑎𝑏. Further assumptions that were required in the BAN analysis to derive 𝐵’s belief in
the freshness and thus the secrecy of the session key are not included in the SVO analysis because
𝐴 may act maliciously. The goals defined by Chen and Shi are stronger than the ones raised by the
BAN authors. Naturally, the users 𝐴 and 𝐵 shall both be convinced that the session key is secret and
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a good communication key. However, they also shall be satisfied in their belief that the session key
is fresh and that the respective other party is equally convinced about its suitability and freshness.
The analysis shows that 𝐴 is not convinced that 𝐵 shares its beliefs about the key and 𝐵 itself is
not convinced that the key is fresh. This leads Chen and Shi to propose the following improved
protocol:

1. 𝐴→ 𝐵 : 𝐴, 𝑁𝑎

2. 𝐵 → 𝐴𝑆 : 𝐵, {𝐴, 𝑁𝑎, 𝑁𝑏}𝑠𝑘𝑏𝑠
3. 𝐴𝑆 → 𝐴 : {𝐵, 𝑘𝑎𝑏, 𝑁𝑎, 𝑁𝑏}𝑠𝑘𝑎𝑠 , {𝐴, 𝑁𝑏, 𝑘𝑎𝑏}𝑠𝑘𝑏𝑠
4. 𝐴→ 𝐵 : {𝐴, 𝑁𝑏, 𝑘𝑎𝑏}𝑠𝑘𝑏𝑠 , {𝐴, 𝑁𝑏}𝑠𝑘𝑎𝑏
5. 𝐵 → 𝐴 : {𝐵, 𝑁𝑎 − 1}𝑠

𝑘𝑎𝑏

They show that their improvements suffice to derive the remaining security goals and hence complete
the SVO derivations of 𝐴 and 𝐵. The improved Yahalom protocol’s structure is somewhat similar
to that of the improved Otway-Rees protocol proposed by Chen [12] and discussed in Section 3.3.1;
it therefore also achieves the same strong security goals. Although the improved Yahalom protocol
only slightly deviates from the original protocol in the third and fourth message, it still requires the
additional fifth message to achieve its security goals.

Besides symbolic analyses based on belief logics, the Yahalom protocol further was subject to an
analysis with the CSP approach [31]. Ryan et al. used the Yahalom protocol as running example
to demonstrate how to formalize and proof security properties using the CSP approach. We have
already explained in Section 3.2 how CSP supports the notation of trace events, which mark certain
points passed during a protocol run and allow for the deduction of assumptions about the state of
the particular principal triggering them. Ryan et al. denote the secrecy property in CSP as the
requirement that if a principal claims that a message is secret and sender as well as receiver of the
message are honest, then this message should never leak to the adversary. This must particularly
apply to the session key contained in the third message from the 𝐴𝑆 to 𝐴 and claimed to be only
known to 𝐴 and 𝐵. Mutual authentication is formalized in two separate properties for the initiator
and respectively, the responder. Authentication of the initiator to the responder requires that an
honest initiator 𝐴 triggers a running signal before 𝐵 commits to the run and both should agree on
their identities and nonces as well as the exchanged key. Responder authentication is a little weaker
in that Ryan et al. only require an honest 𝐵 to emit a running signal before 𝐴 completes the run
and that both parties should agree on their identities as well as nonces, but not necessarily on the
session key. This simply comes from the fact that 𝐴 gets no reassurance whether 𝐵 really receives
or accepts the key 𝑘𝑎𝑏 within the scope of the protocol (because 𝐵 never encrypts a message for 𝐴
using 𝑘𝑎𝑏). Finally, Ryan et al. use CSP to show that the specified security properties indeed hold
for the Yahalom protocol, i.e., the session key 𝑘𝑎𝑏 remains secret as long as principals do not act in
a malicious way, and initiator and responder achieve timely mutual authentication.

Another effort to analyze the Yahalom protocol was made by Paulson [28], who used an inductive
method based on possible protocol traces over time. Paulson’s approach also includes the model
of an active adversary that controls the communication and can occasionally compromise session
keys. Their work aims to confirm the results of the BAN analysis [11] regarding both, the original
Yahalom protocol, as well as the modifications proposed by the BAN authors. The secrecy property
for the Yahalom protocol is formalized and proven in terms of multiple theorems and lemmas. The
session key compromise theorem states that the loss of one session key does not affect the secrecy of
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other session keys. The session key secrecy theorem ensures that if the server issues a key to 𝐴 and
𝐵, only 𝐴 and 𝐵 will obtain the key. Additionally, the third message from which the users obtain
the session key and deduce timeliness guarantees must really originate from the 𝐴𝑆. This already
suffices to prove that the session key, which 𝐴 accepts, is unknown to the adversary. To conclude
the same for 𝐵, Paulson shows that, under certain condiditions, 𝑁𝑏 remains secret and therefore 𝐵
is able to deduce that the session key is fresh. Mutual authentication is directly derived from the
secrecy of the long-term keys and the session key. Paulson argues that if 𝐴 receives its certificate
from the 𝐴𝑆 in the third message and 𝐵 is honest, then 𝐵 must have sent the second message in
which it encrypted 𝑁𝑎 using 𝑘𝑏𝑠. 𝐵 on the other hand gets its guarantees from the fourth message
containing 𝑁𝑏 encrypted under the session key 𝑘𝑎𝑏, which 𝐵 believes to be only known to 𝐴 (and
the 𝐴𝑆, which it trusts not to act maliciously), and therefore, the encryption must have originated
from 𝐴. Our analysis in Section 4.4 confirms the results of Paulson’s analysis and formalizes the
security properties of the Yahalom protocol in a corresponding DY* model.

In contrast to security proofs such as those of Ryan et al. [31] or Paulson [28] are attacks such as
the replay attack described in [11] and mentioned in [13]. Another attack on the Yahalom protocol
was documented by Clark and Jacobs in ”A Survey of Authentication Protocol Literature“ [14]:

1. 𝐼 (𝐴) → 𝐵 : 𝐴, 𝑁𝑎

2. 𝐵 → 𝐼 (𝐴𝑆) : 𝐵, {𝐴, 𝑁𝑎, 𝑁𝑏}𝑠𝑘𝑏𝑠
3. omitted in the attack, but certainly relevant for the adversary to get a handle to the key

4. 𝐼 (𝐴) → 𝐵 : {𝐴, 𝑁𝑎, 𝑁𝑏}𝑠𝑘𝑏𝑠 , {𝑁𝑏}𝑠𝑁𝑎 ,𝑁𝑏

Here, the adversary plays the role of 𝐴 and the 𝐴𝑆 to establish a session key with 𝐵 that has not
been issued by the 𝐴𝑆. However, it is clear to see that in order for the adversary to benefit from
this attack, it must somehow learn 𝑁𝑏, which it can only do if it gets a handle to 𝐴’s long-term key
𝑘𝑎𝑠. As the BAN authors already clarified in their analysis, the Yahalom protocol is not designed to
protect against such attacks based on compromised long-term secrets like the attack outlined here or
the replay attack mentioned in the BAN paper. Therefore, these attacks are not in conflict with the
DY* security proof of the Yahalom protocol we give in Section 4.4.

3.3.3 Denning-Sacco

The Denning-Sacco protocol with public keys is an authentication and key exchange protocol based
on public key encryption and signatures. Public keys are known to an authentication server or
certification authority that helps distributing them. The protocol was outlined by Denning and
Sacco in “Timestamps in Key Distribution Protocols” [16] and has the following structure:

1. 𝐴→ 𝐴𝑆 : 𝐴, 𝐵

2. 𝐴𝑆 → 𝐴 : 𝐶𝐴, 𝐶𝐵

3. 𝐴→ 𝐵 : 𝐶𝐴, 𝐶𝐵, {{𝑘𝑐, 𝑇}𝑎𝑆𝐴
}𝑎
𝑃𝐵

𝐶𝐴 and 𝐶𝐵 are certificates issued by the 𝐴𝑆 for public key distribution, where 𝐶𝐴 = {𝐴, 𝑃𝐴, 𝑇}𝑎𝑆𝐴𝑆

and 𝐶𝐵 = {𝐵, 𝑃𝐵, 𝑇}𝑎𝑆𝐴𝑆
. 𝑃_ denotes public keys for usage in public key encryption or signature

schemes, 𝑆_ denotes the corresponding private keys for decryption of ciphertexts or signature
verification, 𝑘𝑐 is the communication key established as a result of the protocol, and 𝑇 denotes a
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timestamp. Denning and Sacco proposed the use of timestamps to ensure timeliness of messages
and certificates and to eliminate the need of handshake messages between users. They suggested that
principals should synchronize their local clocks by setting them according to some standard source.
A timestamp 𝑇 is valid as long as |𝐶𝑙𝑜𝑐𝑘 −𝑇 | < Δ𝑡1+Δ𝑡2 holds true, where Δ𝑡1 is a tolerance value
to account for discrepancies between users’ local clocks (more precisely, between possibly different
standard sources) and Δ𝑡2 is the time needed to send a message over the network, i.e., the network
delay time. Therefore, the timestamps can protect against replays of old messages, especially of the
third message containing the communication key. More precisely, if a communication key between
𝐴 and 𝐵 somehow leaks, the attacker cannot use it to establish communication with 𝐵 under the
name of 𝐴 at a later time, particularly any time 𝑇 ′ such that 𝑇 ′ >= 𝑇 + Δ𝑡1 + Δ𝑡2. Moreover, the
timeliness guarantees we get from the timestamps make a handshake between the users obsolete.

The protocol begins with 𝐴 telling the 𝐴𝑆 its own identity and the identity of the other user it wants
to talk to, here denoted as 𝐵, in the first message. The 𝐴𝑆 then retrieves the users public keys based
on the identities provided in the first message and issues the certificates 𝐶𝐴 for 𝐴 and 𝐶𝐵 for 𝐵,
with 𝑇 set to the 𝐴𝑆’s current local clock. The certificates are included in the second message to 𝐴
who first validates its own certificate by checking whether identity and public key are correct, and
whether 𝑇 is valid and the certificate therefore current. If 𝐶𝐴 is valid and has been issued timely, 𝐴
goes on by verifying the identity of 𝐵 and the timestamp 𝑇 in 𝐶𝐵, before it retrieves 𝐵’s public key
𝑃𝐵. 𝐴 then chooses a fresh communication key 𝑘𝑐 and signs it with its private key 𝑆𝐴, together
with the timestamp 𝑇 from the certificates 𝐶𝐴 and 𝐶𝐵. Finally, it encrypts the certificate for the
communication key under 𝑃𝐵 such that only 𝐵 can obtain 𝑘𝑐, and forwards it together with the
server certificates 𝐶𝐴 and 𝐶𝐵 to 𝐵. 𝐵 receives the last message and, similarly to 𝐴, validates its own
certificate and retrieves 𝐴’s public key from 𝐶𝐴. Afterwards, 𝐵 decrypts 𝐴’s certificate containing
𝑘𝑐 with 𝑆𝐵 and then verifies it with 𝑃𝐴. To ensure that 𝑘𝑐 is not a replay, 𝐵 moreover checks 𝑇
contained in the certificate issued by 𝐴, before it finally accepts 𝑘𝑐.

Ambiguities regarding the Message Structure

The paper of Denning and Sacco is not completely clear when it comes to the origin of the timestamp
in the communication key certificate issued by 𝐴 and sent to 𝐵 in message (3). Recognized literature
commonly interprets the protocol such that the timestamp in the certificate for the communication
key originates from 𝐴 instead of the 𝐴𝑆 (e.g., [1], [2], [8], [22]). This interpretation would leave
the third message with the following structure:

3. 𝐶𝐴, 𝐶𝐵, {{𝑘𝑐, 𝑇𝐴}𝑎𝑆𝐴
}𝑎
𝑃𝐵

𝑇𝐴 denotes a new timestamp with the value of 𝐴’s local clock at the time the third message is
created. This interpretation allows for an attack in which 𝐵 can masquerade as 𝐴 and reuse 𝐴’s
certificate to establish communication with a third user in the name of 𝐴. We will discuss this
attack in more detail in the next section.

It was a little bit surprising that none of the existing literature about the Denning-Sacco protocol with
public keys interpreted the protocol such that 𝐴 reuses the timestamp from the server certificates.
From our point of view, this is the more logical interpretation since all timestamps are denoted with
the same identifier 𝑇 . It also makes the protocol more efficient, since 𝐵 only needs to check that the
timestamps are the same and then ensure its validity for one of those timestamps. One could argue
that Denning and Sacco do not indicate in the scope of their paper that checks on the relation of
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timestamps in different certificates are performed. We claim that it is reasonable to assume that 𝐴
compares the timestamps in the server certificates before it reuses one of them in the certificate
for the communication key. Consequently, if 𝐴 performs such a check, so does 𝐵. We therefore
argue that our interpretation of the protocol and the behavior of principals is reasonable in itself.
Nevertheless, we also wanted to make sure that our research on the Denning-Sacco protocol is sound
with respect to the protocols originally intended structure. From personal communication with
Giovanni Maria Sacco, one of the protocol’s authors, we got the confirmation that our interpretation
of the protocol is valid and the timestamp in 𝐴’s certificate is actually the same timestamp that the
server used in the public key certificates.

Documented Attacks

Abadi and Needham [1] were the first to find an attack on the Denning-Sacco protocol with public
keys. Their attack bases on the interpretation of the protocol where 𝐴 uses the value of its current
local clock for the timestamp in the communication key certificate. It was later mentioned again by
Anderson and Needham in [2] and also recognized in general authentication protocol literature such
as [8]. Abadi and Needham regard the public key certificates provided by the 𝐴𝑆 as black boxes so
that no checks are performed regarding the relation of possible timestamps they contain. The attack
they describe can thus be carried out by a malicious 𝐵 in two parallel sessions as follows:

Session 1:

1. (3) 𝐴→ 𝐼 (𝐵) : 𝐶𝐴, 𝐶𝐵, {{𝑘𝑐, 𝑇𝐴}𝑎𝑆𝐴
}𝑎
𝑃𝐵

Session 2:

2. (1) 𝐼 (𝐵) → 𝐴𝑆 : 𝐴,𝐶

3. (2) 𝐴𝑆 → 𝐼 (𝐵) : 𝐶𝐴, 𝐶𝐶

4. (3) 𝐼 (𝐵) → 𝐶 : 𝐶𝐴, 𝐶𝐶 , {{𝑘𝑐, 𝑇𝐴}𝑎𝑆𝐴
}𝑎
𝑃𝐶

In Session 1, 𝐴 establishes communication with 𝐵. 𝐵 continues in a new session by requesting
new certificates for the public keys of 𝐴 and a third user 𝐶 from the 𝐴𝑆. The 𝐴𝑆 responds to 𝐵
by issuing the requested certificates. As stated, the attack abstracts from the actual contents of
the certificates, so we may just assume that they suffice to distribute public keys and to provide
reassurance of their correctness. Hence, 𝐵 obtains 𝐶’s public key 𝑃𝐶 from 𝐶𝐶 , re-encrypts the
certificate for 𝑘𝑐, which was originally issued by 𝐴 in the third message of Session 1, with 𝑃𝐶 , and
finally forwards the public key certificate and the re-encrypted communication key certificate to 𝐶.
When 𝐶 receives this message from 𝐵, it successfully verifies 𝐶𝐴 and 𝐶𝐶 , obtains 𝐴’s public key
𝑃𝐴, decrypts the last part using 𝑃𝐶 , and finally uses 𝑃𝐴 to verify the signature of 𝐴 containing 𝑘𝑐
and 𝑇𝐴, which consequently must originate from 𝐴. If 𝑇𝐴 is valid, 𝐶 accepts 𝑘𝑐 assuming it has
established a secure channel with 𝐴, when in fact it is talking to the attacker.

Although we clarified in Section 3.3.3 that the attack does not fully reflect the properties of the
original protocol as specified by Denning and Sacco in [16], it is still interesting because it highlights
the subtlety required in the specification of security properties regarding assumptions about the
protocol’s structure and also its implementation. Moreover, it once again shows the importance
of a core principle for the design of security protocols – robustness [7] –, that messages should
include all the information to unambiguously authenticate them. This particularly holds true for the
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inclusion of key peer identities where they are not clear, for example, the inclusion of 𝐵’s identity in
𝐴’s signature in the third message of the Denning-Sacco protocol containing the communication
key 𝑘𝑐, which is generated by 𝐴 for secret communication with 𝐵.

Security Proofs

There are no formal security proofs of the Denning-Sacco protocol in existing literature that we
know of. Generally, there seems to be a lack of effort regarding the symbolic analysis of the
Denning-Sacco protocol. This lack may come from the fact that the protocol includes timestamps,
which are hard to model, and for which it is hard to express security properties in a symbolic setting
because this presupposes the existence of a global notion of time that cannot be controlled by the
attacker, but does not restrict it either. One example for a symbolic prover that has been used to
analyze the Denning-Sacco protocol is the AVISS tool [3]. In their work, the authors state that they
could find one man-in-the-middle attack on the protocol, which was previously not documented.
However, they neither explain how the attack can be carried out nor what assumptions have been
made and what the exact outcome of the attack is. We counteract the shortage of sufficiently
documented formal analyses of the Denning-Sacco protocol with a detailed symbolic security proof
for the protocol with DY* in Section 4.5 of this thesis.
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In the course of this thesis, we performed an elaborate security analysis of three cryptographic
protocols concerned with authentication and key exchange with the DY* symbolic prover. The
investigated protocols are the Otway-Rees protocol [27], the Yahalom protocol [11], and the
Denning-Sacco protocol with public keys [16]. This chapter documents the procedure and results
of our analysis in full detail and further puts our results in a context with results of other approaches
– summarized in Section 3.3 – where they can be interpreted.

4.1 General Procedure

Each analysis follows roughly the same procedure. We start by creating a precise outline of the
protocol in question based on its formal description taken from the paper in which the protocol was
first presented or formalized. Our main goal in this phase of the analysis is to answer questions
about the following protocol properties or goals that are bound to those properties:

• principal roles, e.g., users, authentication servers, initiator, responder, etc.;

• initial knowledge of principals, e.g., other principals’ identities, or previously established
long-term or public keys;

• messages, i.e., origin, destination and structure of messages;

• generated nonces, i.e., origin, purpose and intended audience of generated nonces;

• exchanged keys or secrets, i.e., keys or secrets that are established as a result of a protocol run
and their intended audience; and

• authentication goals.

The question of message origin, destination, and structure has already been answered in Section 3.3.

Given the formal outline of the protocol, we continue by developing a symbolic model of the
protocol in the labeled security layer of DY*. To ensure the correctness of our model, we verify
it with F* and check whether its execution results in a reasonable trace. We also substantiate the
coherence of our model with the actual protocol as depicted in Section 3.3 and with the properties
elaborated in our outline by explaining the key parts of the model in greater detail. In case of
ambiguities in the protocol description, we furthermore justify the validity of our interpretation and
the resulting parts of the model. Having established correctness and validity, we derive security
properties that can be expressed in DY* from the protocol goals defined in our formal outline of the
protocol, complement them with our own suggestions, and finally formulate them in terms of our
DY* model. Since the security properties are bound to the model, they are verified together with the
model using F*. If the specified security properties cannot be proven, we explore resulting attack
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vectors and augment our DY* model based on found attacks. Additionally, we propose minimal
changes sufficient to counter the deficiencies of the protocol and then apply these fixes to the DY*
model with the ultimate goal to prove the remaining security properties in the enhanced model, and
hence complete the security proof of the protocol.

In the last part of the analysis, we compare our results to the results of other proof efforts or
analyses, i.e., those outlined in Section 3.3. That is, we look at other security proofs and the concrete
security properties proven by them as well as documented attacks, and put them into a context with
the security properties and attacks we were able to model and verify in DY*. We then interpret
differences and similarities in the results of our approach and other approaches under consideration
of the general proof setting, the attacker model (i.e., active or passive) and attacker capabilities, as
well as assumptions and abstractions made in this and in other approaches.

4.2 DY* Models and Source Code Repository

The complete source code of the DY* models of the authentication protocols analyzed as part of
this master’s thesis has been published in a GitHub repository [21]. In total, the repository contains
five DY* models, where each model represents one of the three investigated protocols or variations
of these protocols, possibly based on different assumptions. Each DY* model divides into a set of
modules that model different parts of the protocol, e.g. messages, protocol states, the individual
protocol steps performed by honest principals, or possible attacks carried out by the DY* adversary.
In particular, the repository comprises the following five DY* models:

• otway-rees: contains a model of the original Otway-Rees protocol

• otway-rees-fixed: contains a model of an improved version of the Otway-Rees protocol that
prevents known attacks on the protocol and renders it secure with respect to the goals of the
original version (see Section 4.3.1)

• yahalom: contains a model of the Yahalom protocol, including a security proof based on the
properties and goals stated in Section 4.4.1

• denning-sacco: contains a model of the Denning-Sacco protocol and a DY* extension to
capture protocol properties dependent on timestamps, resulting in an incomplete security
proof regarding the properties and goals stated in Section 4.5.1

• denning-sacco-central-auth: contains the Denning-Sacco model, but defines the authenti-
cation server as a global singleton to account for some shortcomings of DY* that render a
general security proof of the protocol in DY* as yet impossible

To illustrate our work and the results of our analyses, we will use selected code examples from the
DY* models listed above.
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4.3 Otway-Rees

This section comprises the analysis of the Otway-Rees protocol. We show that the protocol as
originally proposed and described by Otway and Rees [27] does not achieve intended secrecy and
authentication goals. To this end, we demonstrate multiple attacks on the protocol that break its
security. We then provide fixes that prevent all these attacks and prove that the improved protocol
is able to achieve all security goals. The message structure of the protocol has been outlined in
Section 3.3.1.

4.3.1 Properties and Goals

Prior to the analysis, we capture the protocol’s properties and goals that are essential for the
development of a coherent model in DY*.

Principal Roles

A run of the Otway-Rees protocol involves three principals: two users 𝐴 and 𝐵 that want to
communicate to each other and a trusted authentication server 𝐴𝑆 that helps in establishing a secure
communication channel for them. One user – 𝐴 – takes the role of the initiator and the other –
𝐵 – that of the responder. The initiator communicates only to the responder, while the responder
involves the authentication server for the key generation and key exchange before responding to the
initiator.

Initial Knowledge

The initiator initially knows the identities of the responder and of the trusted authentication server.
The responder is not necessarily aware of the initiator’s existence, but also has a handle to the
identity of the server. The server itself must know both principals in order to establish a channel
between them. Each of the users shares a symmetric long-term key with the server, which forms a
secure channel over which a key can be exchanged. The long-term key of initiator and server is
denoted by 𝑘𝑎𝑠; that of responder and server by 𝑘𝑏𝑠.

Generated Nonces

During a protocol run, the initiator generates two nonces 𝑁𝑐𝑖𝑑 and 𝑁𝑎. 𝑁𝑐𝑖𝑑 is a public conversation
identifier to identify the protocol run, while 𝑁𝑎 is a random challenge to assure the initiator of the
timeliness of the last message from the responder. Similarly to the initiator, the responder generates
a nonce 𝑁𝑏 to get assurance of the timeliness of the third message from the server. Since both 𝑁𝑎

and 𝑁𝑏 appear in the protocol messages only in encrypted form under 𝑘𝑎𝑠 and 𝑘𝑏𝑠, only the server
should have access to them besides the respective user who generated them.
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Exchanged Keys or Secrets

The server is in charge of key generation and distribution. Upon receiving the second message
from the responder, it generates a session key 𝑘𝑎𝑏 and distributes it to the initiator and responder
via the already installed channels secured by the long-term keys. The session key is supposed
to remain secret to the two users and the authentication server. In particular, this means that the
session key shall not leak to the attacker unless it is able to corrupt a principal with a handle to the
key. Moreover, the session key accepted by the users shall in fact be the key that was previously
generated in the protocol run by the server.

Authentication Goals

Authentication goals of the protocol involve mutual and timely authentication between two users 𝐴
and 𝐵. Precisely, if 𝐴 and 𝐵 accept a session key 𝑘𝑎𝑏, then there must be a corresponding protocol
run in which 𝐴 has taken the role of the initiator and 𝐵 that of the responder. After the successful
protocol run, both 𝐴 and 𝐵 should be convinced that the other’s identity is correct and that the other
was actually involved in the run. The authentication goals build on the same premise as the secrecy
goals, that the principals involved in the protocol run are honest.

4.3.2 Modeling the Protocol in DY*

Now that we have a clear idea of the properties and goals of the Otway-Rees protocol, we have
all the information we need to develop our DY* model. We begin by modeling the protocol’s
message structure and its stateful parts consisting of the protocol specific state sessions. Next, we
define characterizing events occurring during a regular run of the protocol and implement possible
protocol specific usage and trace predicates. Once we have modeled the protocol base, we define and
implement the individual protocol steps of honest principals and finally add execution capabilities
to our model.

Messages

/// Format of encrypted message parts

noeq type encval =

| EncMsg1: n_a:bytes -> cid:bytes -> a:string -> b:string -> encval

| EncMsg2: n_b:bytes -> cid:bytes -> a:string -> b:string -> encval

| EncMsg3_I: n_a:bytes -> k_ab:bytes -> encval

| EncMsg3_R: n_b:bytes -> k_ab:bytes -> encval

(* Serialized and encrypted encvals with tags *)

let ser_encval i l = (tag:string & msg i l)

let enc_encval i = (tag:string & msg i public)

noeq type message (i:nat) =

| Msg1: cid:bytes -> a:string -> b:string -> ev_a:enc_encval i -> message i

| Msg2: cid:bytes -> a:string -> b:string -> ev_a:enc_encval i -> ev_b:enc_encval i ->

message i
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| Msg3: cid:bytes -> ev_a:enc_encval i -> ev_b:enc_encval i -> message i

| Msg4: cid:bytes -> ev_a:enc_encval i -> message i

We modeled the message structure of the Otway-Rees protocol in a module OYRS.Messages via
the two types encval and message (i:nat) depicted above. encval captures parts of messages that
are protected by encryption. Each of the four constructors of encval corresponds to a specific
chunk of data that appears in the messages in encrypted form. For example, EncMsg1 n_a cid a b

corresponds to 𝐴’s encryption {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑎𝑠 in the first message. Because the messages of
the Otway-Rees protocol also contain data that is not protected by encryption, we need a second
type message i for the actual messages. The constructors of this type let us join unencrypted and
encrypted message parts into a single compound value representing messages that can be serialized
and then safely sent over the network. To allow for safe transmission of messages over the network,
terms used in unencrypted parts and the terms representing the encrypted parts of messages must
be publishable. The publishability of ciphertexts, i.e., the encrypted parts, is guaranteed by the
encryption function in the labeled layer. Hence, encryption is done before message construction,
i.e., the data that is to be encrypted, which is carried in values of type encval, is first serialized itself,
then encrypted, and afterwards passed to the respective constructor of message i. For simplicity, we
refer to values of type encval, i.e., values containing data to be protected by encryption, from now
on as encryption values. Two additional types ser_encval i l and enc_encval i are introduced as
wrappers for the results of the serialization and encryption processes of encryption values. They
respectively annotate the value msg i l resulting from serialization and the ciphertext msg i public

resulting from encryption with a tag identifying the constructor of encval that is to be used by the
parse function to reconstruct the original value from the serialized value or ciphertext. The type
msg i l is a refinement of bytes and denotes values valid at trace index i with respect to the protocol
specific usage predicate and labeled with some label that can flow to l. To construct the first message,
we would use the Msg1 cid a b ev_a constructor, where the first three parameters correspond to the
unencrypted part (that is, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵) containing the conversation identifier and the identities of the
two users, while the last parameter ev_a is the encrypted form of EncMsg1 n_a cid a b under 𝑘𝑎𝑠.

val serialize_encval: i:nat -> ev:encval -> l:label{valid_encval i ev l} -> sev:(

ser_encval i l)

{

let (|tag,_|) = sev in

match (tag, ev) with

| ("ev1", EncMsg1 _ _ _ _)

| ("ev2", EncMsg2 _ _ _ _)

| ("ev3_i", EncMsg3_I _ _)

| ("ev3_r", EncMsg3_R _ _) -> True

| _ -> False

}

val parse_encval: #i:nat -> #l:label -> sev:(ser_encval i l) -> r:(result encval)

{

match r with

| Success ev -> valid_encval i ev l

| Error _ -> True

}

val serialize_msg: i:nat -> m:(message i){valid_message i m} -> msg i public

val parse_msg: #i:nat -> sm:(msg i public) -> r:(result (message i))

{
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match r with

| Success m -> valid_message i m

| Error _ -> True

}

The serialization and parsing of messages is implemented with functions serialize_msg and parse_msg.
Encryption values are serialized and parsed separately – respectively, before encryption or after
decryption – using the functions serialize_encval and parse_encval. valid_msg i m and valid_encval

i ev l ensure the validity of the data in messages m and encryption values ev at trace index i.
valid_encval additionally requires that the data is labeled with labels readable by the readers of l.
That is, because the data in encryption values must be readable by anyone that has access to the
key used to encrypt them. The serialization functions only accept values valid with respect to the
valid_msg and valid_encval functions and, likewise, the parse functions only output values that are
valid. The tag of the result of type ser_encval i l of serialize_encval must match the constructor
used to construct the serialized encryption value ev. For messages, the tag is part of the serialized
value itself and is thus handled implicitly by the serialization API. We will explain later, why
we handle tags of encryption values explicitly in the model of the Otway-Rees protocol. Unlike
serialization, parsing may fail if serialized values are tagged incorrectly, which is why the output of
parse_msg and parse_encval is wrapped in a result.

State

noeq type session_st =

(* Auth server session for secret keys shared with principals *)

| AuthServerSession: p:principal -> k_ps:bytes -> us:string -> session_st

(* Initial knowledge of principals *)

| InitiatorInit: srv:principal -> k_as:bytes -> b:principal -> session_st

| ResponderInit: srv:principal -> k_bs:bytes -> session_st

(* Protocol states *)

| InitiatorSentMsg1: srv:principal -> k_as:bytes -> b:principal -> cid:bytes -> n_a:

bytes -> session_st

| ResponderSentMsg2: srv:principal -> k_bs:bytes -> a:principal -> cid:bytes -> n_b:

bytes -> session_st

| AuthServerSentMsg3: a:principal -> b:principal -> cid:bytes -> n_a:bytes -> n_b:

bytes -> k_ab:bytes -> session_st

| ResponderSentMsg4: srv:principal -> a:principal -> k_ab:bytes -> session_st

| InitiatorRecvedMsg4: srv:principal -> b:principal -> k_ab:bytes -> session_st

The stateful parts of the Otway-Rees protocol are captured by the OYRS.Sessions module. The
central component of this module is the type session_st with constructors for each set of data that
needs to be stored by some principal throughout execution of the protocol. The first part of the
constructor name refers to the principal role for which the constructor is intended and the second
part describes the context or type of the stored data. For example, at the end of the first protocol
step, after sending the first message to the responder, the initiator creates and stores a state session
InitiatorSentMsg1 srv k_as b cid n_a. In this state session, the initiator stores the identity of the
authentication server srv and the long-term key k_as it shares with srv, the identity of the responder
b, and the conversation identifier cid as well as the nonce n_a, which were generated by the initiator
during the first protocol step. That way, the initiator can access the stored data at a later time, i.e., in
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the last protocol step, where it must verify whether the server has encrypted the correct challenge n_a

and whether the responder has answered with the correct conversation identifier cid. We also model
state sessions for storing the long-term keys that initiator, responder, and authentication server must
have available at the beginning of protocol execution in the protocol specific state session type
defined in the OYRS.Sessions module, since DY* does not yet have a generic API to install symmetric
long-term keys. The authentication server can maintain key sessions with multiple users. In a server
session, the server stores the identity of the user p with whom he shares a key, the shared long-term
key k_ps itself, and the usage context us of the key. To construct a new server session, the server uses
the constructor AuthServerSession p k_ps us. The initiator and responder store the long-term keys on
their end, respectively, using the InitiatorInit srv k_as b and ResponderInit srv k_bs constructors.
In addition to the server’s identity srv and the long-term key k_as, the initiator also stores the identity
of the responder b, which he must know to address the first message to it. Hence, the server sessions
and the initial states of initiator and responder model the initial knowledge of the principals before
protocol execution.

let valid_session (i:nat) (p:principal) (si vi:nat) (st:session_st) =

match st with

| AuthServerSession peer k_peer_srv us ->

is_aead_key i k_peer_srv (readers [P peer; P p]) us

| InitiatorInit srv k_as b ->

is_aead_key i k_as (readers [P p; P srv]) "sk_i_srv"

| ResponderInit srv k_bs ->

is_aead_key i k_bs (readers [P p; P srv]) "sk_r_srv"

| InitiatorSentMsg1 srv k_as b cid n_a ->

is_aead_key i k_as (readers [P p; P srv]) "sk_i_srv" /\

is_labeled i cid public /\

is_labeled i n_a (readers [P p; P srv])

| ResponderSentMsg2 srv k_bs a cid n_b ->

is_aead_key i k_bs (readers [P p; P srv]) "sk_r_srv" /\

is_msg i cid public /\

is_labeled i n_b (readers [P p; P srv])

| AuthServerSentMsg3 a b cid n_a n_b k_ab ->

is_msg i cid public /\

is_msg i n_a (readers [P p]) /\

is_msg i n_b (readers [P p]) /\

is_labeled i k_ab (readers [P p; P a; P b])

| ResponderSentMsg4 srv a k_ab -> is_msg i k_ab (readers [P p])

| InitiatorRecvedMsg4 srv b k_ab -> is_msg i k_ab (readers [P p])

val serialize_session_st: i:nat -> p:principal -> si:nat -> vi:nat -> st:session_st{

valid_session i p si vi st} -> msg i (readers [V p si vi])

val parse_session_st: sst:bytes -> result session_st

Serialization and parsing is handled similarly as with messages by functions serialize_session_st

and parse_session_st. The valid_session predicate accepts additional parameters to make statements
about the labels of the terms stored in the respective state sessions, and in this context, to account for
the fine-grained labeling in DY* including principals p, specific state sessions si, or even versions
vi. For example, a server session AuthServerSession peer k_peer_srv us is valid if the stored key
k_peer_srv is an AEAD key with label readers [P peer; P p] and usage string us, where peer is the
stored user with whom the server shares the key. That is, if the key was specifically generated for
AEAD and only peer and p have access to it. The server is p in this case; the principal in whose state
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the given state session is stored. For stored terms that are not publishable by nature like strings or
natural numbers, we must at least require that they are valid bytes at trace index i (implicitly ensured
by the aliases for is_labeled, is_msg, and is_aead_key defined in the model) and that their labels flow
to readers [V p si vi]. Thus, we ensure that a principal p accessing version vi of a state session
si storing some arbitrary term, can also read the particular term. The result of the serialization is
of type msg i (readers [V p si vi]), which ensures that the principal can read the serialized state
session itself. For parse_session we do not explicitly require that the resulting state session is valid,
since this is implicitly ensured by the valid_trace predicate of the labeling layer. Parsing serialized
state sessions may fail for the same reason as parsing serialized messages. Therefore, the result of
parse_session_st is also wrapped in a result.

Events

let event_initiate (cid:bytes) (a b:principal) (n_a:bytes) : event =

("initiate",[cid;(string_to_bytes a);(string_to_bytes b);n_a])

let event_request_key (cid:bytes) (a b:principal) (n_b:bytes) : event =

("req_key",[cid;(string_to_bytes a);(string_to_bytes b);n_b])

let event_send_key (cid:bytes) (a b:principal) (n_a n_b k_ab:bytes) : event =

("send_key",[cid;(string_to_bytes a);(string_to_bytes b);n_a;n_b;k_ab])

let event_forward_key (cid:bytes) (a b:principal) (k_ab:bytes) : event =

("fwd_key",[cid;(string_to_bytes a);(string_to_bytes b);k_ab])

let event_recv_key (cid:bytes) (a b:principal) (k_ab:bytes) : event =

("recv_key",[cid;(string_to_bytes a);(string_to_bytes b);k_ab])

Five events are defined for the Otway-Rees protocol, which align with the five steps of protocol
execution that we define later. The initiate event (event_initiate cid a b n_a) is triggered by the
initiator a to signal that it has initiated a protocol run identified by cid with the responder b and
that it has generated a challenge n_a in association with the run. Similarly, the other events mark
other important milestones throughout protocol execution. The responder triggers the request key
event when it requests the session key from the server. When the server distributes the key to
the principals, it triggers the send key event. The responder receives the key first and triggers the
forward key event when it forwards the server message containing the key to the initiator. Finally,
the initiator receives the key and triggers the receive key event. The event definitions are part of the
OYRS.Messages module.

Protocol Specific Usage and Trace Predicates

We do not have to implement a protocol specific predicate for AEAD that further specifies the
properties of keys used for encryption and of the data to encrypt. Similarly, we also do not require
an event predicate, which specifies properties of the data attached to events. These predicates are
useful if we want to pass on statements about the label and usage of a key or nonce, or statements
about the order of events on the trace. In the context of this analysis, we show that multiple attacks
violate the secrecy and authentication goals of the Otway-Rees protocol, and that it is therefore
impossible to provide sufficient information through the encryption and event predicates to derive
useful secrecy properties or properties about the relation of events that lead to statements about
authentication.
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Protocol Steps

Finally, we model the protocol code in a module OYRS.Protocol in terms of five steps realized as five
independent functions that can be scheduled in arbitrary order. Functions for installing long-term
keys and setting up the states of principals according to their initial knowledge are also part of the
protocol API. For the initiator and responder, we have functions initiator_init and responder_init,
which set up their state with their respective initial knowledge including the generation of long-term
keys for secure communication with the authentication server. The server can then install these keys
and associate them with the respective key peer in server sessions via install_sk_at_auth_server.
Before one can schedule protocol steps, it is always required to first set up the initial knowledge of
the principals involved in the protocol run, or runs in case of multiple parallel sessions.

First Step (Initiator) The first protocol step is realized by a function initiator_send_msg_1 and
comprises the start of a new protocol run by the initiator, who emits a message to the responder
in which it provides data needed by the server to issue a verifiable session key certificate to the
initiator. For demonstration, the implementation of the first protocol step is given below:

val initiator_send_msg_1:

a:principal ->

a_ii:nat ->

LCrypto (sess_idx:nat * message_idx:timestamp) (pki oyrs_preds)

(requires fun t0 -> True)

(ensures fun t0 (si, msg_idx) t1 -> msg_idx < trace_len t1 /\ (trace_len t0 <

trace_len t1))

let initiator_send_msg_1 a a_ii =

// get initiator session

let now = global_timestamp () in

let (|_,ser_st|) = get_session #oyrs_preds #now a a_ii in

match parse_session_st ser_st with

| Success (InitiatorInit srv k_as b) -> (

// generate conversation id and initiator nonce

let (|_,cid|) = rand_gen #oyrs_preds public (nonce_usage "conv_id") in

let (|_,n_a|) = rand_gen #oyrs_preds (readers [P a; P srv]) (nonce_usage "nonce_i"

) in

// trigger event 'initiate'

let event = event_initiate cid a b n_a in

trigger_event #oyrs_preds a event;

// create and send first message

let ev1 = EncMsg1 n_a cid a b in

let now = global_timestamp () in

let (|tag_ev1,ser_ev1|) = serialize_encval now ev1 (get_label oyrs_key_usages k_as

) in

let c_ev1 = aead_enc #oyrs_global_usage #now #(get_label oyrs_key_usages k_as)

k_as (string_to_bytes #oyrs_global_usage #now "iv") ser_ev1 (string_to_bytes #

oyrs_global_usage #now "ev_i") in

let msg1:message now = Msg1 cid a b (|tag_ev1,c_ev1|) in

51



4 Analysis of the Selected Protocols

let ser_msg1 = serialize_msg now msg1 in

let send_m1_idx = send #oyrs_preds a b ser_msg1 in

// store initiator session

let new_sess_idx = new_session_number #oyrs_preds a in

let st_i_m1 = InitiatorSentMsg1 srv k_as b cid n_a in

let now = global_timestamp () in

let ser_st = serialize_session_st now a new_sess_idx 0 st_i_m1 in

new_session #oyrs_preds #now a new_sess_idx 0 ser_st;

(new_sess_idx, send_m1_idx)

)

| _ -> error "i_send_m1: wrong session"

The function receives two input parameters a and a_ii. The first parameter a is of type principal

and denotes the identity of the initiator – the principal who executes the protocol step. The second
parameter a_ii is the index of the state session containing the initiator’s initial knowledge. This
index is required by the initiator in order to retrieve its initial knowledge from its state at the
beginning of the protocol step. Since state sessions are stored in their serialized form, the initiator
next parses the retrieved state session. If the parsing is successful and the parsed state session has
the structure InitiatorInit srv k_as b, where srv is the server identity, k_as is the long-term key of
initiator and server, and b is the identity of the initiator, then the initiator continues with the first
step. Otherwise, it aborts and returns an error stating that the session index points to a wrong state
session. In case the state session has the expected structure, the initiator goes on to generate the
public conversation identifier cid and its challenge n_a only intended for the initiator a itself and the
server srv. With that, it has all the information to trigger the initiate event, signaling that it has
initiated a protocol run and is about to send the first message to the responder. Afterwards, the
initiator builds the first message for the responder. Therefore, it first builds the encryption value
EncMsg1 n_a cid a b corresponding to the concatenation 𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵. The encryption value is
then serialized via serialize_encval and encrypted via aead_enc under k_as, resulting in a ciphertext
that corresponds to the encryption {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑎𝑠 , which makes up the last part of the first
message. We abstract from the use of initialization vectors and associated data in AEAD by using
a static initialization vector "iv" and by associating data with the message that does not provide
additional context to it, essentially resulting in pure symmetric encryption. Given the encrypted part
of the message, the initiator can construct the first message as a whole using the Msg1 constructor of
the message i type and send it to the responder; the send function returns the index of the message on
the trace. Finally, the initiator stores a state session InitiatorSentMsg1 with information that it needs
to verify the message it receives in the last protocol step. The function returns the session index of
the newly created state session (needed by the initiator to retrieve the state session later), and the
message index (needed by the responder to receive the message in the second protocol step).

Second Step (Responder) The second protocol step is implemented in a function
responder_send_msg_2. In this step, the responder receives the first message that was previously
emitted by the initiator, augments it with more data such that the server can issue a similar session
key certificate to the responder, and finally forwards the request to the server. The implementation
of the second step is given below:
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val responder_send_msg_2:

b:principal ->

msg1_idx: nat ->

b_ii:nat ->

LCrypto (sess_idx:nat * message_idx:nat) (pki oyrs_preds)

(requires fun t0 -> msg1_idx < trace_len t0)

(ensures fun t0 (si, msg_idx) t1 -> msg_idx < trace_len t1 /\ (trace_len t0 <

trace_len t1))

let responder_send_msg_2 b msg1_idx b_ii =

// get responder session

let now = global_timestamp () in

let (|_,ser_st|) = get_session #oyrs_preds #now b b_ii in

match parse_session_st ser_st with

| Success (ResponderInit srv k_bs) -> (

// receive and parse first message

let (|_,a,ser_msg1|) = receive_i #oyrs_preds msg1_idx b in

match parse_msg ser_msg1 with

| Success (Msg1 cid a' b' (|tag_ev_a,c_ev_a|)) -> (

if b <> b' then error "r_send_m2: responder in message does not match with

actual responder"

else if a <> a' then error "r_send_m2: initiator in message does not match

with actual initiator"

else

// generate responder nonce

let (|_,n_b|) = rand_gen #oyrs_preds (readers [P b; P srv]) (nonce_usage "

nonce_r") in

// trigger event 'request key'

let event = event_request_key cid a b n_b in

trigger_event #oyrs_preds b event;

// create and send second message

let ev2 = EncMsg2 n_b cid a b in

let now = global_timestamp () in

let (|tag_ev2,ser_ev2|) = serialize_encval now ev2 (get_label

oyrs_key_usages k_bs) in

let c_ev2 = aead_enc #oyrs_global_usage #now #(get_label oyrs_key_usages

k_bs) k_bs (string_to_bytes #oyrs_global_usage #now "iv") ser_ev2 (string_to_bytes #

oyrs_global_usage #now "ev_r") in

let c_ev_a:msg oyrs_global_usage now public = c_ev_a in

let msg2:message now = Msg2 cid a b (|tag_ev_a,c_ev_a|) (|tag_ev2,c_ev2|)

in

let ser_msg2 = serialize_msg now msg2 in

let send_m2_idx = send #oyrs_preds b srv ser_msg2 in

// store responder session

let new_sess_idx = new_session_number #oyrs_preds b in

let st_r_m2 = ResponderSentMsg2 srv k_bs a cid n_b in
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let now = global_timestamp () in

let ser_st = serialize_session_st now b new_sess_idx 0 st_r_m2 in

new_session #oyrs_preds #now b new_sess_idx 0 ser_st;

(new_sess_idx, send_m2_idx)

)

| _ -> error "r_send_m2: wrong message"

)

| _ -> error "r_send_m2: wrong session"

Parameters are the responder identity b, the trace index of the first message msg1_idx, and the session
index of the state session modeling the responder’s initial knowledge b_ii. The responder starts –
similarly to the initiator – by retrieving its initial knowledge consisting of the server identity srv and
the long-term key with the server k_bs. Therefore, it expects the parsed state to have the structure
ResponderInit srv k_bs and aborts if not. Afterwards, the responder receives the message emitted
by the initiator in the first step, which it gets from the trace at msg1_idx. The receive function returns,
besides the serialized message, also the identity of the sender – the initiator a. The serialized
message is then parsed by the responder. If the parsing was successful and the message has the
structure Msg1 cid a' b' (|tag_ev_a,c_ev_a|), the responder verifies the contents of the message;
otherwise, it aborts. During content verification, the responder particularly checks whether the
initiator identity returned by the receive function and the responder identity passed as input to
the protocol step match with the principals a' and b' in the first message. After the message has
been verified, the responder generates its challenge n_b, which is supposed to remain secret to
itself and the server. The rest of the second step is basically equivalent to the first step. First, the
responder creates an encryption value similar to that of the initiator, but includes its own challenge
instead. Then, the ciphertext resulting from the encryption is appended to the first message, which
is serialized and sent to the server. Finally, the responder stores, among other things, conversation
identifier, principal identities, and its challenge in a new state session for later use. Similarly as in
the first step, the index of the created state session and the message trace index are returned.

All remaining protocol steps follow roughly the same pattern as the first two steps. First, any
previously stored state sessions of the executing principal containing data needed for the particular
protocol step are retrieved and parsed. Next, a possible message addressed to the principal, e.g.,
from a previous protocol step, is fetched from the trace, parsed, and possibly verified. Then, the
principal might do some computations individual to the protocol step, like nonce or key generation.
After that, a possible trace event is triggered and an output message is created and sent to the
principal for whom it is destined. Finally, the principal’s retrieved state session is updated or a
new state session is created to store the newly generated nonces or keys or data from the received
message. As this is essentially a universal pattern for implementing protocol steps, we will also use
it later in the implementation of the Yahalom and Denning-Sacco protocol models.

Third Step (Server) The third step server_send_msg_3 implements the authentication server’s role
in the protocol, which is the generation and distribution of a new session key as well as providing
the users with assurance of its freshness and suitability for secret communication between them.

val server_send_msg_3:

srv:principal ->

msg2_idx: nat ->

LCrypto (state_session_idx:nat * message_idx:nat) (pki oyrs_preds)
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(requires fun t0 -> msg2_idx < trace_len t0)

(ensures fun t0 (si, msg_idx) t1 -> msg_idx < trace_len t1 /\ (trace_len t0 <

trace_len t1))

The server first receives the second message, which was sent by the responder, from the trace. It
parses the message and expects it to have the form Msg2 cid a b' (|tag_ev_a,c_ev_a|) (|tag_ev_b,

c_ev_b|), where c_ev_a and c_ev_b are respectively the encrypted message parts of the initiator from
the first step and the responder from the second step. The server then verifies whether b' matches
the responder’s identity returned by the receive function. Afterwards, it uses the identities provided
in the message to find the long-term keys k_as and k_bs shared with the initiator, and respectively
the responder, in its state. With the long-term keys, the server is able to decrypt both the initiator’s
and the responder’s encrypted parts containing their respective challenges n_a and n_b and the
concatenation 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵. As suggested by Otway and Rees in their description of the protocol, the
server checks whether the conversation identifier and the user identities in the two encrypted parts
match. The principal identities in the unencrypted part are however used exclusively for long-term
key retrieval. After the server has performed all verifications, it continues by generating the session
key k_ab, which it labels with readers [P srv; P a; P b] indicating that the key is supposed to
remain secret to the server srv and the two users a and b. The server then triggers an event send
key to signal that it has generated and now distributes a key in response to the responder’s request,
i.e., the second message. Further, it creates the third message Msg3 cid (|tag_ev3_i,c_ev3_i|) (|

tag_ev3_r,c_ev3_r|) containing two encrypted parts EncMsg3_I n_a k_ab – encrypted under k_as –
and EncMsg3_R n_b k_ab – encrypted under k_bs –, respectively, for the initiator and the responder.
The third message is sent back to the responder, who forwards the initiator’s part to the initiator in
the fourth step. Although not mentioned by Otway and Rees, we also let the server store all terms it
receives from the second message as well as the generated key in a new state session. The stored
data allows us to specify and prove certain security properties from the server’s point of view. In
practice, the server may as well be stateless, except for the long-term key sessions that it must keep
for its entire lifetime. Like the first two steps, the function outputs state session index and message
index.

Fourth Step (Responder) Next, the responder performs the fourth protocol step
responder_send_msg_4. In this step, the responder receives the session key for direct and se-
cure communication with the initiator from the third message sent by the server, and forwards the
session key certificate intended for the initiator.

val responder_send_msg_4:

b:principal ->

msg3_idx:nat ->

b_ii:nat ->

b_si:nat ->

LCrypto (message_idx:nat) (pki oyrs_preds)

(requires fun t0 -> msg3_idx < trace_len t0)

(ensures fun t0 msg_idx t1 -> msg_idx < trace_len t1 /\ (trace_len t0 < trace_len t1))

The responder therefore retrieves and parses two state sessions at the beginning of the protocol step
– the state session it stored at the end of the second step ResponderSentMsg2 srv k_bs a cid n_b and
the state session representing its initial knowledge ResponderInit srv' k_bs'. The server principal
srv and the long-term key k_bs are included in ResponderSentMsg2 because the model was first
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implemented such that the responder simply updates its initial knowledge with the terms learned
and generated in the second step. However, this implementation did not account for the possibility
of multiple parallel protocol sessions and was thus changed such that the responder creates a
separate state session in the second step. Since we already had a running model at that time, server
identity and long-term key were not removed from the constructor of ResponderSentMsg2. Because
F* cannot know that srv = srv' and k_bs = k_bs', an explicit check by the responder is required.
Subsequent to state session retrieval, the responder uses the receive function to get the third message
from the trace. Before parsing, it verifies whether the server identity included in the two state
sessions matches the sender principal returned by the receive function. The responder expects the
parse function to return Msg3 cid' (|tag_ev_a,c_ev_a|) (|tag_ev_b,c_ev_b|). It checks whether the
conversation identifier in the message is the same as the one stored in its state session related to
the current protocol run with the initiator a. If the conversation identifiers match, the responder
decrypts the second encrypted part c_ev_b, which was encrypted under k_bs. The decrypted and
parsed message part should have the form EncMsg3_R n_b' k_ab. The responder verifies its challenge
n_b by checking that n_b = n_b' and triggers the forward key event to indicate that it accepts the
session key k_ab and is about to forward the first encrypted part c_ev_a – containing session key and
initiator challenge encrypted under the initiators long-term key – to the initiator. It then creates
the last message Msg4 cid (|tag_ev_a,c_ev_a|) and sends it to the initiator. Finally, the responder
updates the state session associated with the protocol run to ResponderSentMsg4 srv a k_ab. Since no
new state session is created, the function only outputs the message trace index.

Fifth Step (Initiator) The last step is initiator_recv_msg_4 and implements the initiator’s role in
the protocol during and after receiving the last message from the responder. The initiator receives
the session key intended for communication with the responder – in a similar way as the responder –
from a message originally emitted by the server, but forwarded to the intiator by the responder.

val initiator_recv_msg_4:

a:principal ->

msg4_idx:nat ->

a_ii:nat ->

a_si:nat ->

LCrypto unit (pki oyrs_preds)

(requires fun t0 -> msg4_idx < trace_len t0)

(ensures fun t0 _ t1 -> True)

The outline of this step is quite similar to the previous step performed by the responder, except
that the initiator does not send a message at the end. Again, two state sessions are retrieved: one
corresponding to the protocol run from the initiator’s point of view InitiatorSentMsg1 srv k_as

b cid n_a and one corresponding to the initiator’s initial knowledge InitiatorInit srv' k_as' b'.
Terms appearing in both state sessions are checked regarding their equality. Then, the last message
is received from the trace, the message sender is verified to be the stored responder b, and the
message is parsed. The initiator expects a message of form Msg4 cid' (|tag_ev_a,c_ev_a|) and
verifies whether cid = cid'. Next, it decrypts c_ev_a encrypted under k_as and parses the serialized
encryption value. If the encryption really comes from the server, the parsed encryption value has
the structure EncMsg3_I n_a' k_ab. The initiator verifies its challenge by checking that n_a = n_a',
triggers the receive key event to signal that the protocol has been completed and the key was
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accepted by the initiator, and finally updates its state session associated with the protocol run to
InitiatorRecvedMsg4 srv b k_ab. The last step of the protocol does not create any new state sessions
or send any messages; thus, the function outputs unit.

The result of a protocol run reflects in the state sessions of the principals in form of the established
session key and the identities of the key peers as well as in the trace itself in form of the trace events
associated with the protocol run. As we pointed out in Section 2.1, the principals’ state sessions
and the trace events can be used to specify and prove security properties involving terms stored in
the state sessions or associated with the trace events.

Execution

Protocol code modeled in DY* cannot only be verified in F* regarding its soundness, but can also
be compiled and executed to verify its correctness. To enable execution of our Otway-Rees model,
we specify an entry point, from which we can call scheduler functions for protocol steps. In DY*,
the network is under control of the attacker, which means that the attacker may embed protocol
steps in its own code implemented in terms of the attacker API and schedule them in any order and
arbitrarily often. The entry point for the Otway-Rees protocol is the module OYRS.Debug. At this
point, we simply want to verify whether our model is correct with respect to its original specification.
Therefore, we implement a scheduler function modeling a benign environment where the attacker
schedules the protocol functions in the intended order and does nothing besides monitoring the
network traffic, i.e., the messages sent by honest principals. The declaration and implementation of
the function benign_attacker is given below:

val benign_attacker:

unit ->

LCrypto unit (pki oyrs_preds)

(requires fun _ -> True)

(ensures fun _ _ _ -> True)

let benign_attacker () =

let a:principal = "initiator" in

let b:principal = "responder" in

let srv:principal = "server" in

let ((|t_as,us_as,k_as|), a_ii) = initiator_init a srv b in

let ((|t_bs,us_bs,k_bs|), b_ii) = responder_init b srv in

install_sk_at_auth_server #t_as #us_as srv a k_as;

install_sk_at_auth_server #t_bs #us_bs srv b k_bs;

let (a_si, msg1_idx) = initiator_send_msg_1 a a_ii in

let (b_si, msg2_idx) = responder_send_msg_2 b msg1_idx b_ii in

let (srv_si, msg3_idx) = server_send_msg_3 srv msg2_idx in

let msg4_idx = responder_send_msg_4 b msg3_idx b_ii b_si in

initiator_recv_msg_4 a msg4_idx a_ii a_si

The function accepts an input of type unit and outputs unit. The output is wrapped in the LCrypto

effect to account for an implicit global trace capturing protocol execution. Every expression
evaluated in the function must therefore maintain the validity of the trace. The first three expressions
declare the three principal roles involved in the protocol run, i.e., the initiator a, the responder b, and
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the authentication server srv. The next four expressions set up the states of the principals according
to their initial knowledge including generation and installation of long-term keys. This results in two
session indices pointing to the initial state sessions of initiator (a_ii) and responder (b_ii). After
that, the actual protocol is executed by scheduling the protocol steps in the intended order and with
intended inputs. The first three steps, respectively, output a session index and a message trace index;
the fourth step only outputs a message trace index; the last step outputs unit. The output session
indices of initiator (a_si) and responder (b_si) are later required in the fourth and fifth step to update
the respective state sessions to their final form. The output message trace indices are respectively
passed as input to the subsequent step for the principal receiving the message to fetch it from the
trace. Protocol execution ends when the last step initiator_recv_msg_4 finishes.

The scheduler function benign_attacker is wrapped in a function benign that first calls benign_attacker
and then prints the trace afterwards. The printed trace can help in debugging the model and verifying
its correctness. Finally, we have the main function that is the actual entry point of our executable
model:

let main =

IO.print_string "======================\n";

IO.print_string "Otway-Rees \n";

IO.print_string "======================\n";

let t0 = Seq.empty in

IO.print_string "Starting Benign Attacker:\n";

assume(valid_trace (pki oyrs_preds) t0);

let r,t1 = (reify (benign ()) t0) in

(match r with

| Error s -> IO.print_string ("ERROR: "^s^"\n")

| Success _ -> IO.print_string "PROTOCOL RUN: Successful execution of Otway-Rees

protocol.\n");

IO.print_string "Finished Benign Attacker:\n";

The main function initially creates an empty trace t0. Functions that are wrapped in the LCrypto

effect, like the benign function, implement the trace as implicit concept that is present during
verification and does not actually reflect in the execution. In order to materialize the trace, we need
the reify keyword, which takes the benign function and the initial trace t0 as input and executes
benign with t0 as global trace. reify returns the result of the protocol execution – which contains
either a value of type unit if execution was successful, or otherwise an error implicitly captured by
the LCrypto effect – and the output trace t1.

4.3.3 Correctness and Coherence of the Model

The correctness of our Otway-Rees model can be verified in two steps. We start by type checking
the individual modules of our model independently in F* to verify that the type restrictions made in
the model are sound. The type check is also performed as part of the compilation process. If type
check and compilation are successful, we can then run the protocol in a benign environment where
the attacker remains passive and protocol steps are scheduled in the correct order, and can inspect
the resulting global trace to see if it correctly depicts a regular protocol run. In Section 4.3.2, we
discussed the implementation of a module OYRS.Debug with functions benign_attacker and benign

for the simulation of such a benign environment and the main function being the entry point for
execution. We have executed the model ourselves and printed the trace, which is depicted in
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Appendix A.1. The trace shows a successful execution of our Otway-Rees model and captures all
important protocol actions performed within the five protocol steps. Moreover, we see that the
execution of our model results in the distribution of the session key generated by the authentication
server to initiator and responder, which both store the key in their state after the last step. Therefore,
we can verify that our model is correct and results in the expected outcome given a sufficiently
benign environment. Nonetheless, we still need to argue that our model is coherent with the original
protocol described by Otway and Rees in [27]. We support the coherence of our model with the
original Otway-Rees protocol based on the following points:

• The initial knowledge of the principals is correctly represented in the model. That is, initiator
and responder respectively share a long-term key with the authentication server, which implies
that they know the server’s identity and that the server also knows their identities. The
initiator must furthermore know the responder such that it can address the first message to it.

• The origin of generated nonces and keys in the model corresponds to the origin specified
in the protocol description. The initiator generates the conversation identifier 𝑁𝑐𝑖𝑑 and its
challenge 𝑁𝑎, the responder only generates its own challenge 𝑁𝑏, and the server generates
the session key 𝑘𝑎𝑏. The origin of the long-term keys 𝑘𝑎𝑠 and 𝑘𝑏𝑠 is not specified. We
assume that the respective long-term keys could be generated either by the associated user or
by the server. In our model, the users generate them and the server installs them afterwards.
However, the protocol is not less secure if it were the other way around.

• The labels of the generated nonces and keys correctly represent their intended audience. The
long-term keys are for secret communication between the users and the server (readers [P

a; P srv], readers [P b; P srv]), the conversation identifier is – by definition – public, the
challenges only appear encrypted under the long-term keys in messages and are therefore as
secret as the keys themselves, and the session key is distributed by the server and destined for
secret communication between the users (readers [P srv; P a; P b]).

• The types message i and encval from the module OYRS.Messages correctly represent the original
message structure, and the encryption values are encrypted under the correct long-term keys
in the protocol steps. EncMsg1 and EncMsg3_I are encrypted under the initiator’s long-term key
𝑘𝑎𝑠 (denoted k_as in the first, third, and fifth step), while EncMsg2 and EncMsg3_R are encrypted
under the responder’s long-term key 𝑘𝑏𝑠 (denoted k_bs in the second, third, and fourth step).

• The type session_st from the module OYRS.Sessions correctly captures the stateful parts and
outcome of the protocol, which is that the session key is stored in state sessions of the initiator
and the responder at the end of protocol execution. The exchange of a key was one of the
goals of the Otway-Rees protocol elaborated in Section 4.3.1 and thus defined for the model.
Based on this, we already concluded that the execution trace in Appendix A.1 verifies the
model’s correctness. Since Otway and Rees clearly state that initiator and responder both
obtain the session key, respectively, in the steps 4 and 5, we can also conclude that the model
is valid. The fact that the server stores the session key might impose a security risk in practice.
However, we have already argued that this is purely symbolic in order to be able to prove
certain security properties, such as the secrecy of the session key, from the servers point of
view.

• Checks performed on message contents in the protocol steps implemented in the module
OYRS.Protocol are reasonable with respect to the protocol description. In steps in which
messages are received, verification of the message sender identity is performed. This is not
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restrictive because the attacker is still able to spoof the message sender via the attacker API. In
the third step, the server checks the concatenation 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵 in the two encrypted parts. This
was required in the protocol description to ensure that initiator and responder agree on the
principals trying to establish a key between them. We deliberately omit checks involving the
concatenation 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵 in the unencrypted part, since nothing is mentioned in this regard.
In the fourth and fifth step, the initiator and responder respectively check the conversation
identifier and verify their challenges. According to Otway and Rees, the purpose of 𝑁𝑐𝑖𝑑 is
“to associate all the messages in the same authentication sequence” (p. 9). Since 𝑁𝑐𝑖𝑑 is not
encrypted in the third and fourth message, we cannot get any assurance from it regarding
security. We can however ensure the correctness of the protocol. The challenge verification
is explicitly mentioned by Otway and Rees in the description and is thus definitely required.

4.3.4 Security Properties

Having developed a model of the Otway-Rees protocol in DY* and having established its correctness
as well as its coherence with the original protocol specification, we can now define and prove
symbolic security properties for the protocol in DY* based on the security objectives that were
informally described in Section 4.3.1. We extend our Otway-Rees model with a module OYRS.

SecurityProps for the specification of security properties and their verification via F*. For properties
that cannot be proven, we identify reasons why the proof fails and argue whether an attack is
feasible. The security goals of the Otway-Rees protocol are divided into secrecy and authentication
goals. To capture the secrecy goals, we have expressed the following two requirements regarding
the exchanged key:

(S1) the session key is kept secret between the users – the initiator and responder – and the
authentication server; and

(S2) the key received and accepted by the users is in fact the session key generated by the server.

The authentication goals can also be divided into two requirements:

(A1) for users 𝐴 and 𝐵 that accept a session key 𝑘𝑎𝑏, there is a corresponding successful protocol
run with initiator 𝐴 and responder 𝐵; and

(A2) 𝐴 and 𝐵 shall be convinced that they were talking to each other.

Secrecy

The secrecy requirement S1 is expressed by the following lemma in terms of the DY* model of the
Otway-Rees protocol:

val session_key_stored_in_auth_server_state_is_secret:

(server:principal) ->

(set_state_idx:nat) ->

(vv:version_vec) ->

(server_state:state_vec) ->

(state_session_idx:nat) ->

(initiator:principal) ->

(responder:principal) ->
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(sess_key:bytes) ->

LCrypto unit (pki oyrs_preds)

(requires (fun in_tr ->

principals_and_session_key_stored_in_auth_server_state server set_state_idx vv

server_state state_session_idx initiator responder sess_key /\

set_state_idx < trace_len in_tr

))

(ensures (fun in_tr _ out_tr ->

in_tr == out_tr /\

(

is_unknown_to_attacker_at (trace_len in_tr) sess_key \/

(

corrupt_id (trace_len in_tr) (P server) \/

corrupt_id (trace_len in_tr) (P initiator) \/

corrupt_id (trace_len in_tr) (P responder)

)

)

))

The result of lemmas capturing security properties of protocol models in DY* is generally LCrypto

unit. The LCrypto effect is needed because security properties of protocol models often depend on
properties of DY*’s global trace, and the result type unit coupled with the property in_tr == out_tr

guaranteed by the function indicates that the function is indeed a lemma that neither produces a
meaningful result nor modifies the trace, but only establishes properties of the trace and hence the
protocol in F*’s proof context. In the pre-condition of the lemma specified by the requires clause,
the server’s state server_state is assumed to contain a state session with index state_session_idx in
which the principals initiator and responder and the session key sess_key are stored. The respective
state session must furthermore be stored on the input trace in_tr, which is a snapshot of the trace at
the time the lemma is instantiated. The ensures clause contains, among other things, the property to
prove. As mentioned above, the first property ensured guarantees that the global trace is not altered
by the function. It follows the actual secrecy property, which states that sess_key remains unknown
to the attacker as long as none of the state session identifiers P server, P initiator, or P responder,
is corrupted at trace_len in_tr. The state session identifiers respectively denote arbitrary state
sessions of the server, initiator, and responder. Therefore, an alternative formulation of the secrecy
property becomes: the session key is secret if there is no arbitrary state session of the server, initiator,
or responder that is corrupted.

To verify session_key_stored_in_auth_server_state_is_secret in F*, we need to instantiate the generic
secrecy_lemma defined in the labeled security layer of DY* in its implementation:

let session_key_stored_in_auth_server_state_is_secret

server

set_state_idx

vv

server_state

state_session_idx

initiator

responder

sess_key

=

match LabeledPKI.parse_session_st server_state.[state_session_idx] with
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| Success (APP ser_st) -> (

match OYRS.Sessions.parse_session_st ser_st with

| Success (AuthServerSentMsg3 a b cid n_a n_b k_ab) ->

secrecy_lemma #(pki oyrs_preds) sess_key

| _ -> ()

)

| _ -> ()

We first parse the state session of the server using the parse_session_st functions of LabeledPKI,
which is part of DY*’s labeled layer and models generic state sessions to store private keys, for
example, and OYRS.Sessions, which specifically models the stateful parts of the Otway-Rees protocol.
As required by principals_and_session_key_stored_in_auth_server_state, the state session has the
structure AuthServerSentMsg3 a b cid n_a n_b k_ab with a = initiator, b = responder, and k_ab =

sess_key. In the third protocol step, the server labels the session key with readers [P srv; P a; P b],
which we now know is equal to readers [P server; P initiator; P responder]. Given that the label
of sess_key is readers [P server; P initiator; P responder], the secrecy lemma provides that if the
attacker knows sess_key, then one of the readers, i.e., P server, P initiator, or P responder, must be
corrupted. From this, the property ensured by session_key_stored_in_auth_server_state_is_secret

is easily derived and can be verified in F*. We conclude that the session key generated by the
authentication server is secure if the server as well as the users obtaining the key from the server are
honest.

This does howbeit not mean that the key obtained by initiator and responder at the end of the protocol
is necessarily the session key generated by the server as required by the secrecy requirement S2. In
fact, there are several well-known attacks on the Otway-Rees protocol that violate this objective.
Consequently, we cannot proof lemmas in DY* that ensure the secrecy of the key stored in the
respective state sessions of initiator and responder.

Authentication

The fact that the attacker is able to convince the users to accept a key as session key that has not
been chosen by the authentication server does not only break secrecy, but also authentication. In
particular, requirement A1 is violated by one of the attacks we present, and in another attack, only
one user accepts a session key that it thinks it shares with the other user, so A1 is also violated.
Requirement A2 is violated by two attacks we present, i.e., there are at least two occasions where at
least one of the users is not convinced that he or she has talked to the other. Interestingly, there
is one attack that does not violate any of the authentication requirements, meaning that there is a
successful protocol run between an honest initiator and responder, where both accept the same
session key and both are convinced to talk to each other, but the key is known to the adversary, thus
not secret.

4.3.5 Attacks

We extend our DY* model of Otway-Rees with attacks related to unfulfilled secrecy and authentication
goals of the protocol described in Section 4.3.4. This ultimately leads to the proposal of an improved
version of the Otway-Rees protocol that is able to achieve all remaining security objectives not
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achievable by the original protocol. We implement the attacks with the attacker API provided by
the symbolic runtime layer of DY*. The steps executed by the attacker in order to carry out the
attacks are defined and implemented in a separate module OYRS.Attacker. The attacker can then
combine these steps with steps executed by honest principals from the module OYRS.Protocol in
order to realize the attacks. We implement the attacks in the module OYRS.Debug in a similar way as
the function benign_attacker, which simulates a protocol run where the attacker remains passive.

Impersonation Attack

In Section 3.3.1, we mentioned the attack of Boyd and Mao [7] on the Otway-Rees protocol.
In this attack, the attacker makes use of the fact that the server does not check whether the
concatenation 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵 in the plaintext part of the second message matches with the copies in the
two ciphertexts. This enables the adversary to impersonate the responder by replacing the second
protocol message with a message 𝑁𝑐𝑖𝑑 , 𝐴, 𝐸, {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑎𝑠 , {𝑁𝑒, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑒𝑠 , where 𝐸 is
a principal controlled by the attacker. The server believes that initiator and responder both agree
about who wants to establish communication with whom because the concatenations 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵 in
the encrypted parts match. As a result, it does not abort the third protocol step and issues certificates
to the users containing the session key. The initiator 𝐴 did however not actually agree to talk to 𝐸 ,
but instead wanted to talk to 𝐵. To carry out the attack, the attacker must impersonate the responder
in the second and in the fourth protocol step. The attacker logic for the second step is implemented
by a function attacker_send_mal_msg_2:

module A = AttackerAPI

let attacker_send_mal_msg_2 (#i:nat) (eve srv:principal) (msg1_idx:nat) (k_es:A.pub_bytes

i) :

Crypto (timestamp * g_trace)

(requires (fun t0 -> i <= trace_len t0 /\ msg1_idx < trace_len t0))

(ensures (fun t0 r t1 ->

match r with

| Error _ -> (t0 == t1 \/

(A.attacker_modifies_trace t0 t1 /\ later_than (trace_len t1) (trace_len t0)))

| Success (n, t01) ->

trace_len t1 = trace_len t0 + 3 /\ later_than (trace_len t1) (trace_len t0) /\

n = trace_len t1 - 1 /\ A.attacker_modifies_trace t0 t01 /\

A.attacker_modifies_trace t01 t1))

= // receive and parse first message

let (|t_m1,ser_msg1|) = A.receive_i msg1_idx eve in

match

A.split ser_msg1 `bind` (fun (tag_bytes, rest) ->

A.pub_bytes_to_string tag_bytes `bind` (fun tag ->

match tag with

| "msg1" ->

A.split rest `bind` (fun (cid, rest) ->

A.split rest `bind` (fun (a_bytes, rest) ->

A.split rest `bind` (fun (b_bytes, ev_a) ->

Success (cid,a_bytes,b_bytes,ev_a))))

| t -> Error ("attacker_send_mal_m2: wrong message: " ^ t)

))
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with

| Success (cid,a_bytes,b_bytes,c_ev_a) ->

// generate "responder" nonce

let (|now,n_e|) = A.pub_rand_gen (nonce_usage "nonce_attacker") in

let intermediate_trace = get () in

// create and send malicious second message

let cid = A.pub_bytes_later t_m1 now cid in

let a_bytes = A.pub_bytes_later t_m1 now a_bytes in

let b_bytes = A.pub_bytes_later t_m1 now b_bytes in

let e_bytes = A.pub_bytes_later 0 now (A.string_to_pub_bytes eve) in

let c_ev_a = A.pub_bytes_later t_m1 now c_ev_a in

let ev2 = A.concat n_e (A.concat cid (A.concat a_bytes b_bytes)) in

let k_es = A.pub_bytes_later i now k_es in

let iv = A.pub_bytes_later 0 now (A.string_to_pub_bytes "iv") in

let ad = A.pub_bytes_later 0 now (A.string_to_pub_bytes "ev_r") in

let c_ev2 = A.aead_enc #now k_es iv ev2 ad in

let msg2_tag = A.pub_bytes_later 0 now (A.string_to_pub_bytes "msg2") in

let ser_msg2 = A.concat msg2_tag (A.concat cid (A.concat a_bytes (A.concat e_bytes

(A.concat c_ev_a c_ev2)))) in

let send_mal_m2_idx = A.send #now eve srv ser_msg2 in

(send_mal_m2_idx, intermediate_trace)

| Error e -> error e

The prefix A on function names indicates that the respective functions are part of the attacker API
and are not to be confused with their possible counterparts from the regular API for cryptographic
functions provided by the symbolic runtime layer. Input parameters of the function are the principals
eve (the principal controlled by the attacker) and srv (the authentication server), the trace index of
the first message from the initiator msg1_idx, and the long-term key of eve and the server k_es. Since
the attacker API is part of the symbolic runtime layer, we annotate the function with the Crypto

effect instead of the LCrypto effect. The output type is a tuple timestamp * g_trace, where the first
part is the trace index of the second message from the attacker to the server, and the second part is
the intermediate trace after the attacker generates the nonce n_e. The intermediate trace is needed
in the ensures clause to ensure the validity of the output trace via the A.attacker_modifies_trace

predicate. The attacker first receives the first message from the initiator as eve using the A.receive_i

function from the attacker API. Next, the attacker parses the message, which results in the tuple
(cid,a_bytes,b_bytes,c_ev_a) if the message was correctly built by the initiator. a_bytes and b_bytes

are respectively the serialized principals a (the initiator) and b (the actual responder), cid is the
conversation identifier, and c_ev_a is the ciphertext {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑎𝑠 encrypted by the initiator. If
the attacker could successfully parse the first message, it generates a nonce n_e with A.pub_rand_gen

and stores a view of the current trace in intermediate_trace. Then, the malicious second message
is created. The A.pub_bytes_later function is used to ensure that the attacker knows all terms
contained in the created message at creation time (the trace length when the message is created).
The attacker creates its own encryption value matching that of the initiator from the first message
by concatenating n_e, cid, a_bytes, and b_bytes, and encrypts the resulting bytes value ev2 under
k_es to receive the ciphertext c_ev2. Since the attacker needs to ensure that the server can decrypt
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c_ev2, it replaces b_bytes from the unencrypted part of the first message with e_bytes (the bytes

representation of the principal eve) in the unencrypted part of the second message. The attacker
then appends the ciphertext c_ev_a from the first message and the ciphertext c_ev2 it just created to
the modified plaintext part of the first message and stores the resulting message in ser_msg2. Finally,
the attacker, on behalf of eve, sends the malicious message ser_msg2 to the server via A.send. The
message looks perfectly fine to the server because it can successfully decrypt the two ciphertexts
and it finds two matching encryption values with corresponding conversation identifier cid, and
principals a and b. The function outputs the trace index of the sent message and the snaphshot of
the trace directly after n_e was generated.

The function attacker_send_msg_4 implements the attacker logic of the fourth protocol step based
on a similar pattern. It takes four parameters: the three principals eve, bob and alice, and the trace
index of the third message from the server msg3_idx. Again, eve is the principal that the adversary
controls; bob and alice are, respectively, the actual responder and the initiator. The first action
performed by the attacker in this step is to receive the third message that the server sent as response
to the attacker’s malicious second message. The adversary then parses the message, which should
result in a tuple (cid,c_ev_a,c_ev_e). It decrypts the ciphertext c_ev_e using eve’s long-term key
k_es – which it can because it controls eve – and obtains the challenge n_e, which it ignores, as well
as the session key k_ae generated by the server. Finally, the adversary creates the fourth protocol
message by concatenating cid and c_ev_a, and sends it to alice for her to receive k_ae as well. Since
alice intended to talk to bob, she believes that k_ae is intended for secret communication with bob.
However, as this attack demonstrates, eve is the one that alice actually shares a key with. The
function attacker_send_msg_4 returns the trace index of the fourth message and the obtained session
key, which the attacker can use to masquerade as bob to alice.

We schedule the individual steps of the attack in a function impersonate_resp_to_init_attacker in
the module OYRS.Debug:

let impersonate_resp_to_init_attacker () =

let a:principal = "alice" in

let b:principal = "bob" in

let srv:principal = "server" in

let e:principal = "eve" in

let ((|t_as,us_as,k_as|), a_ii) = initiator_init a srv b in

let ((|t_bs,us_bs,k_bs|), b_ii) = responder_init b srv in

let before_idx_state_e = global_timestamp () in

let ((|t_es,us_es,k_es|), e_ii) = responder_init e srv in

install_sk_at_auth_server #t_as #us_as srv a k_as;

install_sk_at_auth_server #t_bs #us_bs srv b k_bs;

install_sk_at_auth_server #t_es #us_es srv e k_es;

let idx_comp_e = compromise e e_ii 0 in

let now = global_timestamp () in

let k_es = query_secret_key (before_idx_state_e + 1) idx_comp_e now e e_ii 0 in

let (a_si, msg1_idx) = initiator_send_msg_1 a a_ii in

let (msg2_idx, _) = attacker_send_mal_msg_2 e srv msg1_idx k_es in

let (srv_si, msg3_idx) = server_send_msg_3 srv msg2_idx in

let (msg4_idx, sess_key) = attacker_send_msg_4 e b a msg3_idx k_es in
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initiator_recv_msg_4 a msg4_idx a_ii a_si;

attacker_knows_session_key_stored_in_initiator_or_responder_state a a_si sess_key;

// responder "bob" was not involved in protocol run

initiator_believes_talking_to_responder a a_si b

We define four principals: a, b, srv, and e. a takes the role of the initiator, b and e that of
the responder, and srv that of the authentication server. We set up the initial knowledge of the
principals accordingly. Since the initiator a wishes to talk to b, its initial knowledge is set up via
initiator_init a srv b. This means that a generates a long-term key for communication with srv,
and stores srv along with the key and the principal b it wishes to communicate with in a state session.
The initial knowledge of the two responders includes only the server srv and a long-term key to
communicate with srv. After the server has installed the long-term keys of a, b and e, the attacker
compromises e’s long-term key state session in order to take control over e. It queries the secret
key k_es of e and the server stored in the long-term key state session. Being in control of e, the
adversary can carry out the attack by scheduling the protocol steps of the initiator a and the server
srv as intended and by impersonating b in the second and fourth step. The server is aware that the
second message comes from e but does not know that a actually wanted to establish a key with
b instead. With attacker_send_msg_4 the adversary obtains the session key sess_key and forwards
it to the initiator, which accepts it in the last step initiator_recv_msg_4. The last two expressions
are instantiations of two lemmas that fail if certain conditions are not met after the attack. With
attacker_knows_session_key_stored_in_initiator_or_responder_state a a_si sess_key, we explicitly
require that the attacker knows the session key stored in the initiator state as a result of the attack.
initiator_believes_talking_to_responder a a_si b requires that the initiator believes it shares a key
with b.

Like benign_attacker, we wrap impersonate_resp_to_init_attacker in a function impersonate_resp_to_init

, which additionally prints the trace. The output trace of the attack is depicted in Appendix A.2.
It shows that the attack is successful, which implies that the attacker has access to a session key
generated by the server for a and e, but a believes it shares the key with b. The responder b was not
involved in the protocol at all and therefore neither knows the session key nor does it believe it has
recently talked to a. Thus, the secrecy objective S2, as well as the authentication objectives A1 and
A2 from Section 4.3.4 are not fulfilled.

Intercept and Replay Attacks

Besides the impersonation attack described and modeled above, the Otway-Rees protocol is also
vulnerable to attacks in which the attacker intercepts and replays messages from the initiator and
possibly the responder to make them accept a session key known to the attacker. These attacks make
use of the fact that the encryptions {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑎𝑠 of the initiator and {𝑁𝑏, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑏𝑠 of
the responder in the second message could be confused with the encryptions {𝑁𝑎, 𝑘𝑎𝑏}𝑠𝑘𝑎𝑠 and
{𝑁𝑏, 𝑘𝑎𝑏}𝑠𝑘𝑏𝑠 in the response from the server if 𝑘𝑎𝑏 and 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵 had the same length. Although
this type of attack is easy to avoid at the implementation level, the Otway-Rees protocol specification
proposes an implementation that does not perform the necessary checks to prevent it, so we consider
this to be a vulnerability of the protocol.
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The easiest way for the adversary to carry out an attack would be to simply replay the initiator’s
encryption from the first message and remove the two principal identities after the conversation
identifier in the unencrypted part. We realize this attack in terms of our Otway-Rees model in a
function intercept_msg_1_attacker in the OYRS.Debug module:

let intercept_msg_1_attacker () =

let a:principal = "initiator" in

let b:principal = "responder" in

let srv:principal = "server" in

let ((|t_as,us_as,k_as|), a_ii) = initiator_init a srv b in

let ((|t_bs,us_bs,k_bs|), b_ii) = responder_init b srv in

install_sk_at_auth_server #t_as #us_as srv a k_as;

install_sk_at_auth_server #t_bs #us_bs srv b k_bs;

let (a_si, msg1_idx) = initiator_send_msg_1 a a_ii in

let (msg4_idx, sess_key) = attacker_intercept_msg_1 b a msg1_idx in

initiator_recv_msg_4 a msg4_idx a_ii a_si;

attacker_knows_session_key_stored_in_initiator_or_responder_state a a_si sess_key;

// responder was not involved in protocol run

initiator_believes_talking_to_responder a a_si b

The attacker logic is again implemented in the module OYRS.Attacker via a function
attacker_intercept_msg_1. In this kind of attack, the adversary does not require an additional
principal under its control. Therefore, we allocate roles to principals and set up their initial knowl-
edge similarly as in benign_attacker where we simulated a regular protocol run. The attack begins
again with the initiator a executing the first step and sending the first message to the responder b. The
message is however intercepted by the adversary, who executes attacker_intercept_msg_1 and replays
a’s encryption {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑎𝑠 in a message to a in the name of b. attacker_intercept_msg_1

also outputs the bytes value representing 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵 taken from the unencrypted part of the first
message that will later be accepted as session key by a. We then skip to the last step where a receives
the message and interprets 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵 (the second part of the encryption) as the session key coming
from the server. The outcome is the same as in the impersonation attack, that the attacker knows the
session key and that the initiator a believes it has exchanged a key with the responder b, leaving the
security requirements S2, A1 and A2 unfulfilled.

If we go further, we can even launch an attack in which both the initiator a and the responder b

accept the above term as session key. Therefore, we must await the second message of the responder
before we intercept and craft a message 𝑁𝑐𝑖𝑑 , {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑎𝑠 , {𝑁𝑏, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑏𝑠 that a and b

will interpret as the third message from the server. This attack is carried out in another function
intercept_msg_2_attacker in OYRS.Debug:

let intercept_msg_2_attacker () =

let a:principal = "initiator" in

let b:principal = "responder" in

let srv:principal = "server" in

let ((|t_as,us_as,k_as|), a_ii) = initiator_init a srv b in

let ((|t_bs,us_bs,k_bs|), b_ii) = responder_init b srv in

install_sk_at_auth_server #t_as #us_as srv a k_as;

install_sk_at_auth_server #t_bs #us_bs srv b k_bs;
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let (a_si, msg1_idx) = initiator_send_msg_1 a a_ii in

let (b_si, msg2_idx) = responder_send_msg_2 b msg1_idx b_ii in

// third message from auth server is discarded

let (msg3_idx, sess_key) = attacker_intercept_msg_2 srv b msg2_idx in

let msg4_idx = responder_send_msg_4 b msg3_idx b_ii b_si in

initiator_recv_msg_4 a msg4_idx a_ii a_si;

attacker_knows_session_key_stored_in_initiator_or_responder_state a a_si sess_key;

attacker_knows_session_key_stored_in_initiator_or_responder_state b b_si sess_key;

initiator_and_responder_talk_to_each_other a b a_si b_si

The set up phase is completely the same as in benign_attacker or intercept_msg_1_attacker. However,
we schedule the first two steps of the initiator a and the responder b as if we would run the protocol
regularly. Then, after the second step, the adversary executes attacker_intercept_msg_2 (again
defined in OYRS.Attacker) in which it proceeds in the same way as in the first interception attack. It
replays the second message without the two principal identities of a and b in the unencrypted part to
b on behalf of the server. From this point, the protocol execution continues regularly and both a and
b will interpret the second part of their respective encryption as the session key. The result of this
attack is that the initiator a as well as the responder b both accept 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵 as session key and
believe that they talk to each other. The particularity here is that both authentication objectives A1
and A2 are fulfilled, since both a and b have completed a protocol run in which a was the initiator
and b the responder, and they are convinced that they share the exchanged key with each other. The
attacker, who knows the session key, can therefore not only impersonate either of them to the other,
but also eavesdrop the communication between them. Appendix A.3 shows the respective output
traces of the two described intercept and replay attacks.

Unusual Message Model

In Section 4.3.2, we pointed out that messages and encryption values are tagged during serialization
such that they can be correctly reconstructed when parsed. For messages, this tag is directly included
in the serialized message and can be reconstructed during the parsing process. Since the messages
are publishable, this does not increase security by any means because the adversary can simply
recreate the message with a different tag and hence trick another principal into interpreting the
message in a different way than it was intended. The encryption values, on the other hand, are
protected by encryption; had we included the tag in the serialized value, the attacker would not be
able to use it in another context. Instead, the tag is added to the serialized value afterwards and
discarded when the corresponding message itself is serialized. The receiver of the message simply
infers the tag of the encryption value from the surrounding context (the tagged serialized message)
during the parsing process. Also, we cannot include information about the context of an encryption
value in the associated data of an AEAD ciphertext, since this would also lead to the detection of
encryption values used in the wrong context. These two features of the model allow the attacker
to replay messages in a different context than the one for which they were originally created, thus
making the two replay attacks possible.
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Significance of the Attacks

While the replay attacks are hardly feasible in practice unless the concatenation 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵 has the
same length as the session key 𝑘𝑎𝑏, the impersonation attack described first is more severe, because
it depends only on the insecure implementation of the authentication server in the Otway-Rees
protocol, which, according to the protocol description, does not check whether 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵 in the
plaintext part of the second message matches the two copies in the ciphertexts of the initiator and
responder. Even if the authentication server would perform said check, this would still not be ideal.
We emphasize the importance of the robustness principle proposed by Boyd and Mao [7] when
designing cryptographic protocols and therefore propose an improved Otway-Rees protocol in the
next section that suffices to achieve remaining security goals that were defeated by the attacks
described in this section. Later, we show why the fix provided by Boyd and Mao themselves is not
in accordance with their robustness principle and consequently does not prevent the impersonation
attack.

4.3.6 Improved Protocol and Model

Our goal is to achieve the remaining security objectives from Section 4.3.4 with as little alterations
of the protocol as possible. In this section we propose several changes to the structure and
implementation of the Otway-Rees protocol in order to achieve the secrecy goal S2, which states
that the session key accepted by the users must be chosen by the server, and the authentication goals
A1 and A2, which require a corresponding protocol run with one user as initiator and one user as
responder that convinces both of the correctness of each other’s identity.

Achieving Secrecy

For the secrecy objective S2, we propose the following modification of the original Otway-Rees
protocol depicted in Section 3.3.1:

1. 𝐴→ 𝐵 : 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵, {𝑁𝑐𝑖𝑑 , 𝐴, 𝐵, 𝑁𝑎}𝑠𝑘𝑎𝑠
2. 𝐵 → 𝐴𝑆 : 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵, {𝑁𝑐𝑖𝑑 , 𝐴, 𝐵, 𝑁𝑎}𝑠𝑘𝑎𝑠 , {𝑁𝑐𝑖𝑑 , 𝐴, 𝐵, 𝑁𝑏}𝑠𝑘𝑏𝑠
3. 𝐴𝑆 → 𝐵 : 𝑁𝑐𝑖𝑑 , {𝑁𝑎, 𝐵, 𝑘𝑎𝑏}𝑠𝑘𝑎𝑠 , {𝑁𝑏, 𝐴, 𝑘𝑎𝑏}𝑠𝑘𝑏𝑠
4. 𝐵 → 𝐴 : 𝑁𝑐𝑖𝑑 , {𝑁𝑎, 𝐵, 𝑘𝑎𝑏}𝑠𝑘𝑎𝑠

In particular, the changes made to the protocol messages are

• a restructuring of the encryption values in the first and second message so that the chal-
lenges are swapped with the conversation identifier (e.g., {𝑁𝑎, 𝐴, 𝐵, 𝑁𝑐𝑖𝑑}𝑠𝑘𝑎𝑠 becomes
{𝑁𝑐𝑖𝑑 , 𝐴, 𝐵, 𝑁𝑎}𝑠𝑘𝑎𝑠 ); and

• the inclusion of the respective key peers in the ciphertexts in the third and fourth message
(e.g., {𝑁𝑎, 𝑘𝑎𝑏}𝑠𝑘𝑎𝑠 becomes {𝑁𝑎, 𝐵, 𝑘𝑎𝑏}𝑠𝑘𝑎𝑠 ).
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The first modification prevents the two intercept and replay attacks described in Section 4.3.5.
If we take 𝐴 as example, the adversary cannot use the encryption {𝑁𝑐𝑖𝑑 , 𝐴, 𝐵, 𝑁𝑎}𝑠𝑘𝑎𝑠 from the
first message to replace {𝑁𝑎, 𝑘𝑎𝑏}𝑠𝑘𝑎𝑠 in the fourth message anymore, as both encryptions have a
fundamentally different structure now. In case the adversary tries to replay one of the ciphertexts
from the first two messages in the context of the third and fourth message, this will be detected by
the users. The second modification, on the other hand, prevents the impersonation attack in which
the intruder controls a malicious principal 𝐸 and impersonates 𝐵 to 𝐴. In the third step, the server
emits a message of the form 𝑁𝑐𝑖𝑑 , {𝑁𝑎, 𝐸, 𝑘𝑎𝑒}𝑠𝑘𝑎𝑠 , {𝑁𝑒, 𝐴, 𝑘𝑎𝑒}𝑠𝑘𝑒𝑠 . The attacker as 𝐸 is able to
obtain the key and then forwards 𝑁𝑐𝑖𝑑 , {𝑁𝑎, 𝐸, 𝑘𝑎𝑒}𝑠𝑘𝑎𝑠 to 𝐴, who thinks the message comes from
𝐵. When 𝐴 receives the last message, it decrypts {𝑁𝑎, 𝐸, 𝑘𝑎𝑒}𝑠𝑘𝑎𝑠 , realizes that the actual key peer
of the obtained key 𝑘𝑎𝑒 is 𝐸 , and aborts. If the protocol is realized with AEAD as operating mode
for encryption, we could realize the inclusion of the key peer identities in the server message at the
implementation-level by including them in the associated data attached to the AEAD ciphertext
instead of the ciphertext itself. This is however an implementation detail not addressed by Otway
and Rees in the protocol specification, so we felt that including them directly in the ciphertext was
the more general solution.

In addition to the changes made to the message structure, we also propose an implementation-level
measure to further improve the security of the Otway-Rees protocol: the server checks whether
𝑁𝑐𝑖𝑑 , 𝐴, 𝐵 in the unencrypted part of the second message matches the two copies in the encrypted
parts. With this change, we further ensure that the attacker cannot perform the impersonation attack
from Section 4.3.5 and that the secrecy goal S2 is met.

Achieving Mutual Authentication

The authentication goals A1 and A2 heavily depend on the secrecy of the session key. We can thus
show that the changes proposed so far in addition with two small modification of the events suffice
to proof mutual and timely authentication in the improved version of the protocol – which was the
main goal of Otway and Rees with their work. The first adaption is for all events to include the
identity of the authentication server, who plays an important role in the authentication process; the
second adaption is to include users’ nonces in the events forward key and receive key, since they are
relevant for timeliness guarantees when completing the protocol.

Adapting the DY* Model

We adapt our DY* model of the Otway-Rees protocol from Section 4.3.2 to incorporate the
modifications proposed above, and then define and prove the remaining security properties from
Section 4.3.4 for the improved model.

Messages The modifications to the message structure reflect in the type encval defined in the
OYRS.Messages module. encval represents the structure of the encrypted parts that appear in the
messages of the protocol.

noeq type encval =

| EncMsg1: cid:bytes -> a:string -> b:string -> n_a:bytes -> encval

| EncMsg2: cid:bytes -> a:string -> b:string -> n_b:bytes -> encval
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| EncMsg3_I: n_a:bytes -> b:principal -> k_ab:bytes -> encval

| EncMsg3_R: n_b:bytes -> a:principal -> k_ab:bytes -> encval

In EncMsg1 and EncMsg2, the parameter cid, which represents the conversation identifier, has been
swapped with the parameters n_a and n_b, which represent the initiator and responder challenge,
respectively. In EncMsg3_I and EncMsg3_R, parameters b and a for the respective key peers of k_ab have
been added.

State To show that the session key is secure from the initiator’s and responder’s point of view, we
need to adjust the valid_session predicate defined in OYRS.Sessions in the match arms of the initiator’s
and responder’s respective final states accordingly:

let valid_session (i:nat) (p:principal) (si vi:nat) (st:session_st) =

// other state sessions remain the same

| ResponderSentMsg4 srv a k_ab ->

is_msg i k_ab (readers [P p]) /\

(corrupt_id i (P p) \/ corrupt_id i (P srv) \/ corrupt_id i (P a) \/

is_labeled i k_ab (readers [P srv; P a; P p]))

| InitiatorRecvedMsg4 srv b k_ab ->

is_msg i k_ab (readers [P p]) /\

(corrupt_id i (P p) \/ corrupt_id i (P srv) \/ corrupt_id i (P b) \/

is_labeled i k_ab (readers [P srv; P p; P b]))

In Section 4.3.4, we used the secrecy lemma to prove the secrecy of k_ab stored in the state session
of the server, which is essentially a proof of the secrecy objective S1. For a similar proof regarding
k_ab stored in the state sessions ResponderSentMsg4 of the responder and InitiatorRecvedMsg4 of
the initiator, we require a statement on the label of the key. In case of the responder’s state
session, the statement we require is corrupt_id i (P p) \/ corrupt_id i (P srv) \/ corrupt_id i (P

a) \/ is_labeled i k_ab (readers [P srv; P a; P p]). This says that either one of the state session
identifiers P p, P srv or P a is corrupted, or the label of k_ab is readers [P srv; P a; P p]. Given the
label, we can later show that the adversary cannot learn k_ab unless one of its readers is corrupted.
The principal p here is the owner of the state session ResponderSentMsg4, i.e. the responder. To derive
these statements on k_ab in the initiator and responder state sessions, we must implement the usage
predicate for AEAD encryption in OYRS.Messages and the event predicate in OYRS.Sessions.

Events The first three events are adapted to include the identity of the server, denoted by srv:

let event_initiate (cid:bytes) (a b srv:principal) (n_a:bytes) : event =

("initiate",[cid;(string_to_bytes a);(string_to_bytes b);(string_to_bytes srv);n_a])

let event_request_key (cid:bytes) (a b srv:principal) (n_b:bytes) : event =

("req_key",[cid;(string_to_bytes a);(string_to_bytes b);(string_to_bytes srv);n_b])

let event_send_key (cid:bytes) (a b srv:principal) (n_a n_b k_ab:bytes) : event =

("send_key",[cid;(string_to_bytes a);(string_to_bytes b);(string_to_bytes srv);n_a;n_b

;k_ab])

The modified events forward key and receive key also contain the server’s identity, but additionally
include the respective challenges n_a of the initiator and n_b of the responder:
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let event_forward_key (cid:bytes) (a b srv:principal) (n_b k_ab:bytes) : event =

("fwd_key",[cid;(string_to_bytes a);(string_to_bytes b);(string_to_bytes srv);n_b;k_ab

])

let event_recv_key (cid:bytes) (a b srv:principal) (n_a k_ab:bytes) : event =

("recv_key",[cid;(string_to_bytes a);(string_to_bytes b);(string_to_bytes srv);n_a;

k_ab])

We show later that this is required to proof mutual authentication using relations of certain events on
the trace. The challenges have the purpose of assuring each user of the timeliness of the conversation
and therefore play an important role in authentication. The server, on the other hand, is the central
component in the authentication process and must hence also be included.

Protocol Specific Usage and Trace Predicates As already pointed out, we must adapt some
of the usage and trace predicates in OYRS.Messages and OYRS.Sessions. The AEAD usage predicate
is important to pass on statements about values protected by encryption to the receiver of the
respective message. We adapt it to pass on statements about the label of the key between the third
step executed by the server, and the fourth and fifth step executed by initiator and responder, as well
as statements about events that occurred prior to the creation of the respective ciphertext:

let can_aead_encrypt i s k ev ad =

exists p srv. get_label oyrs_key_usages k == readers [P p; P srv] /\

(match _parse_encval ev with

| Success (EncMsg1 cid a b n_a) ->

did_event_occur_before i a (event_initiate cid a b srv n_a)

| Success (EncMsg2 cid a b n_b) ->

did_event_occur_before i b (event_request_key cid a b srv n_b)

| Success (EncMsg3_I n_a b k_ab) ->

was_rand_generated_before i k_ab (readers [P srv; P p; P b]) (aead_usage "sk_i_r")

/\ (exists cid n_b.

did_event_occur_before i srv (event_send_key cid p b srv n_a n_b k_ab))

| Success (EncMsg3_R n_b a k_ab) ->

was_rand_generated_before i k_ab (readers [P srv; P a; P p]) (aead_usage "sk_i_r")

/\ (exists cid n_a.

did_event_occur_before i srv (event_send_key cid a p srv n_a n_b k_ab))

| _ -> False)

let oyrs_aead_pred i s k b ad =

forall (t:string{bytes_to_string ad = Success t}). can_aead_encrypt i s k (|t,b|) ad

The encryption predicate is denoted oyrs_aead_pred and depends on an internal helper predicate
can_aead_encrypt. The parameters i, s, k, b, and ad, are respectively the trace index at which the
predicate holds, the usage string of the key used for encryption, the encryption key, the serialized
but unencrypted encryption value, and the associated data of the AEAD ciphertext. We remember
that the tag identifying an encryption value is not included in the serialized value and thus discarded
before encryption. However, the parse function requires the tag to infer the structure of the
serialized value such that it can correctly recreate it. The associated data ad is hence used to
associate a ciphertext with the context in which it originally appeared. In particular, ad is the
serialized tag of the corresponding serialized encryption value. We thus define oyrs_aead_pred for a
serialized encryption value b and associated data ad such that can_aead_encrypt must hold for the
tagged serialized encryption value (|t,b|), where t is the tag resulting from deserializing ad. In

72



4.3 Otway-Rees

can_aead_encrypt, we require that there are principals p and srv such that the key used for encryption,
i.e., the long-term key of p and srv, has the label readers [P p; P srv]. Furthermore, we require that
if parsing ev results in EncMsg1 cid a b n_a from the first message, then the initiator a has triggered
event_initiate cid a b srv n_a before encrypting ev at trace index i. In case of EncMsg2 cid a b n_b

from the second message, the responder b has triggered event_request_key cid a b srv n_b before
i. For EncMsg3_I and EncMsg3_R from the third message, we have two similar conditions. The
first condition ensures that the session key k_ab was generated before trace index i with usage
aead_usage "sk_i_r" and, respectively, with label readers [P srv; P p; P b] or readers [P srv; P

a; P p], depending on the key peer p of k from the server’s point of view. This essentially
means that k_ab is dedicated to be used in AEAD encryption and only the server, the initiator and
the responder should have access to it. The second condition ensures that the server triggered,
respectively, event_send_key cid p b srv n_a n_b k_ab or event_send_key cid a p srv n_a n_b k_ab

prior to the encryption.

With the event predicate in OYRS.Sessions, we specify the conditions to be met before a principal can
trigger a certain event. Combined with the usage predicates for cryptographic primitives, principals
can thus infer information about the state of other principals that trigger events and about the data
associated with these events.

let epred idx s e =

match e with

| ("initiate",_) | ("req_key",_) -> True

| ("send_key",[cid;a_bs;b_bs;s_bs;n_a;n_b;k_ab]) -> (

match (bytes_to_string a_bs, bytes_to_string b_bs, bytes_to_string s_bs) with

| (Success a, Success b, Success srv) ->

srv = s /\

(did_event_occur_before idx a (event_initiate cid a b srv n_a) /\

did_event_occur_before idx b (event_request_key cid a b srv n_b) \/

corrupt_id idx (P a) \/ corrupt_id idx (P b) \/ corrupt_id idx (P srv)) /\

was_rand_generated_before idx k_ab (readers [P srv; P a; P b]) (aead_usage "

sk_i_r")

| _ -> False

)

| ("fwd_key",[cid;a_bs;b_bs;s_bs;n_b;k_ab]) -> (

match (bytes_to_string a_bs, bytes_to_string b_bs, bytes_to_string s_bs) with

| (Success a, Success b, Success srv) ->

b = s /\

(exists cid' n_a'.

did_event_occur_before idx srv (event_send_key cid' a' b srv n_a n_b k_ab)) \/

corrupt_id idx (P a) \/ corrupt_id idx (P b) \/ corrupt_id idx (P srv)

| _ -> False

)

| ("recv_key",[cid;a_bs;b_bs;s_bs;n_a;k_ab]) -> (

match (bytes_to_string a_bs, bytes_to_string b_bs, bytes_to_string s_bs) with

| (Success a, Success b, Success srv) ->

a = s /\

(exists cid n_b.

did_event_occur_before idx srv (event_send_key cid a b srv n_a n_b k_ab)) \/

corrupt_id idx (P a) \/ corrupt_id idx (P b) \/ corrupt_id idx (P srv)

| _ -> False

)

| _ -> False
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For the initiate and request key events, no constraints on the associated data are specified. To
trigger send key, the triggering principal s must play the role of the authentication server srv in the
corresponding protocol run. Moreover, it is required that the initiator a has previously triggered
event_initiate cid a b srv n_a and the responder b has previously triggered event_request_key cid

a b srv n_b, or at least one of the principals involved in the protocol is corrupted. The third constraint
concerns the session key k_ab and corresponds to the statements about k_ab in the AEAD usage
predicate for EncMsg3_I and EncMsg3_R. The forward key event can only be triggered by the responder
b. Furthermore, there must be a previous event event_send_key cid' a' b srv n_a n_b k_ab with
arbitrary conversation identifier cid' and initiator a' triggered by the server, or at least one of the
principals a, b or srv is corrupt. Similarly, receive key is restricted to the initiator role and also
requires a previous send key event by the server, but for arbitrary cid' and b', in case all principals
in the protocol are honest.

Protocol Steps Finally, the protocol steps are adapted to account for the changed message
structure and events. We must ensure that the verification of the protocol steps still succeeds with
the refined encryption and event predicates. The third step performed by the server is extended with
the additional check comparing the conversation identifier and user identities in the unencryprted
and encrypted parts. As indicated above, we also use the associated data of AEAD ciphertexts to
store the tags of underlying encryption values. This considerably facilitates proving the desired
security properties via the AEAD usage predicate by uniquely identifying the encryption value
referenced by a particular instance of the predicate, since the structure of the encryption values is
symmetric in the second and third message. The symmetry however only holds for message parts
encrypted or decrypted with different keys, such that the context can be inferred easily in practice.
Therefore, the security properties we will prove for the improved protocol also hold when simple
symmetric encryption is used instead of AEAD.

Correctness of the Improved Model

The correctness of the improved Otway-Rees model must be verified in a similar way as that of
the original model. With the improved model, we have introduced several refinements, such as
refinements in the usage predicate for AEAD on the encrypted data, in the event predicate on the
data we associate with events, or in the valid_session predicate in OYRS.Sessions on the data stored
in state sessions. These refinements assist in formulating and proving the remaining security goals
from Section 4.3.4. To establish the soundness of the refined model, we must once again perform a
type check of the modified F* modules. In order for the type check to be successful, F* may in some
cases need manual assistance with the type derivation of expressions that are subject to refinements
such as those described above. We must particularly prove that the ciphertexts encrypted, events
triggered and data stored during the improved protocol comply with the refined encryption and
event predicates. Later, we can use these predicates to establish remaining security properties.

One such refinement is a statement added in OYRS.Sessions.valid_session (i:nat) (p:principal) (

si vi:nat) (st:session_st) about the label of the session key k_ab stored in the initiator’s final state
session InitiatorRecvedMsg4 srv b k_ab:

(corrupt_id i (P p) \/ corrupt_id i (P srv) \/ corrupt_id i (P b)

\/ is_labeled i k_ab (readers [P srv; P p; P b]))
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This statement is passed on by the server in the third step when it encrypts the value EncMsg3_I n_a

b k_ab with the long-term key k_as shared with the initiator, who is p in this case. For the initiator
to be able derive this statement when it receives the corresponding ciphertext in the fifth step, we
must show that the AEAD usage predicate holds at the time the encryption is performed. In case of
EncMsg3_I n_a b k_ab, the encryption predicate consists essentially of the following statement:

exists p srv. get_label oyrs_key_usages k == readers [P p; P srv]

/\ was_rand_generated_before i k_ab (readers [P srv; P p; P b]) (aead_usage "sk_i_r")

The first part of the statement says that the key k used for encryption can be read by arbitrary state
sessions of principals p and srv. Since k = k_as, p must be the initiator a and srv the server. The
second part implies that k_ab is labeled readers [P srv; P p; P b]. When the initiator receives and
decrypts the ciphertext in the fifth step, it knows from the aead_dec_lemma that either the key used for
encryption (k_as) is publishable or that the encryption predicate holds true. In DY*, we have that if
a value of type bytes labeled with a readers label is publishable, it means that one of the readers is
corrupted. The initiator knows the label of k_as and can thus infer that the encryption predicate
holds if neither P a nor P srv are corrupted. Further, it knows that if the encryption predicate holds
true, then k_ab must be labeled readers [P srv; P p; P b] with p = a. This leads to the statement
about the label of k_ab that we added in valid_session. F* is not capable of performing the entire
proof chain automatically, so we need to guide it through the proof with useful assertions at places
where manual help is required. In this manner, we are able to prove all the refinements in the
modified Otway-Rees model, so that the model passes the type check.

Regarding trace verification, we can simply reuse the scheduler function that simulates a benign
attacker in the original protocol, since the protocol API is unchanged. The resulting trace is depicted
in Appendix A.4. The trace of the modified protocol slightly differs from that of the original
protocol but results in the same outcome – the key chosen by the server is stored in the respective
state sessions of initiator and responder. Besides the benign environment, we can also simulate the
three attacks presented in Section 4.3.5 in the improved model. The output in Appendix A.4 shows
that all attacks fail when executed in the improved model, which suggests that the changes suffice to
prevent them. It is howbeit still left to show that the protocol’s intended security goals are also
achieved in the presence of an arbitrary attacker.

Security Proof

We show that the new Otway-Rees protocol satisfies all secrecy and authentication goals defined
in Section 4.3.4. Therefore, we extend the module OYRS.SecurityProps with security properties for
these goals in terms of the improved model.

The original protocol did not guarantee that the initiator and responder receive the key gener-
ated by the authentication server as required by the secrecy objective S2. We have described
and modeled attacks in the course of this thesis that violate this exact property. In order to
ensure it in the improved model, we have to show that the key stored in the final state ses-
sions of initiator and responder is secret, similarly as in the secrecy proof from the server’s
point of view. Two new security lemmas session_key_stored_in_initiator_state_is_secret and
session_key_stored_in_responder_state_is_secret are hence defined. The property that both lemmas
ensure is the same property as that ensured by the previously defined server key secrecy lemma but
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from the perspective of the initiator and responder. This works because of the discussed refinements
in the encryption and event predicates, as well as in the valid_session predicate. Using the example
of the initiator, we have explained how a statement about the label of k_ab stored in the initiator’s
final state session is derived from a message originally coming from the server. The derivation for
k_ab in the responder’s state session is similar. Unlike in the proof from the server’s perspective, we
can only be sure about the label of the session key in cases where none of the principals involved in
the key exchange is corrupted. Since we can only prove the key secrecy for non-corrupted readers
using the secrecy lemma anyways, the result is the same in both cases. We are able to verify both
lemmas via F* and can thus show that the session key in the improved Otway-Rees protocol remains
secret if the principals involved in the key exchange are honest.

Mutual authentication was defined in terms of objectives A1 and A2. A1 requires that users sharing
a session key have fulfilled their designated roles in the protocol, and A2 requires that they trust each
other about their identities. We can prove both objectives in one lemma but need to differentiate
between initiator and responder authentication. If both properties hold simultaneously, we have
mutual authentication of initiator and responder. We define authentication of the initiator to the
responder in a lemma initiator_authentication:

val initiator_authentication: i:nat ->

LCrypto unit (pki oyrs_preds)

(requires (fun t0 -> i < trace_len t0))

(ensures (fun t0 _ t1 -> forall cid a b srv n_b k_ab.

did_event_occur_at i b (event_forward_key cid a b srv n_b k_ab)

==> ((exists cid' n_a. did_event_occur_before i a (event_initiate cid' a b srv n_a)

/\ did_event_occur_before i b (event_request_key cid' a b srv n_b))

\/ corrupt_id i (P a) \/ corrupt_id i (P b) \/ corrupt_id i (P srv))))

The natural number i must be a valid trace index. The lemma ensures that for arbitrary conversation
identifier cid, initiator a, responder b, server srv, responder challenge n_b, and session key k_ab, if
the responder has triggered event_forward_key cid a b srv n_b k_ab at trace index i, then there must
be corresponding events event_initiate cid' a b srv n_a and event_request_key cid' a b srv n_b

with arbitrary cid' and n_a that were triggered, respectively, by the initiator and by the responder
prior to the forward key event unless at least one of the principals involved in the run has been
corrupted. We do not know whether the conversation identifiers cid and cid' are the same. However,
we know that the conversation identifier matches in the events initiate triggered by the initiator and
request key triggered by the responder and that the responder challenge n_b matches in the events
request key and forward key both triggered by the responder. That is, if the responder b receives its
correct challenge n_b from the server srv and forwards the session key k_ab to a, then a has previously
initiated a conversation in which the responder has chosen n_b. In other words, this means that if a
user b as responder accepts a key k_ab with another user a, then there is a corresponding protocol
run initiated by a. This is exactly the authentication goal A1 from the responder’s perspective, who
requires the initiator to authenticate to him. Moreover, the correspondence of a and n_b among the
events initiate, request key and forward key establishes the responder’s trust in the identity a of
the initiator, which was required by the authentication objective A2. The initiator_authentication

property therefore perfectly captures the authentication goals intended for the protocol from the
responder’s point of view. We prove that initiator authentication holds for the improved Otway-Rees
protocol by verifying the lemma in the context of the modified model in F*.
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Having established initiator authentication, we can express responder authentication with a similar
lemma but different events:

val responder_authentication: i:nat ->

LCrypto unit (pki oyrs_preds)

(requires (fun t0 -> i < trace_len t0))

(ensures (fun t0 _ t1 -> forall cid a b srv n_a k_ab.

did_event_occur_at i a (event_recv_key cid a b srv n_a k_ab)

==> ((exists cid' n_b. did_event_occur_before i b (event_request_key cid' a b srv n_b)

/\ did_event_occur_before i a (event_initiate cid' a b srv n_a))

\/ corrupt_id i (P a) \/ corrupt_id i (P b) \/ corrupt_id i (P srv))))

The property states that if an arbitrary initiator a triggers event_recv_key cid a b srv n_a k_ab for
arbitrary cid, b, srv, n_a, and k_ab, at trace index i, then there are prior events event_request_key

cid' a b srv n_b triggered by the responder b and event_initiate cid' a b srv n_a triggered by a.
Again, we cannot say anything about the conversation identifiers cid and cid' themselves, but we
have the correspondence of cid' in the events initiate and request key, and of n_a in the events
initiate and receive key, which implies that there is a relation between the events request key
of the responder and receive key of the initiator. The precise implication for the initiator is the
following: the user b from whom he receives the key k_ab is actually the responder who requested
the key from the server prior to that in a conversation initiated by a, in which it chose the challenge
n_a. The responder_authentication lemma thus captures the authentication goals A1 and A2 from
the initiator’s perspective and is – similarly as the initiator authentication property – verified in
the improved model in F*. Together with the verified initiator authentication property, we fully
capture the authentication objectives for the Otway-Rees protocol and conclude that our improved
Otway-Rees protocol achieves mutual authentication.

F* is able to verify both authentication lemmas automatically based on the information we provide
in the model of the improved protocol. We used the event predicate to specify for each event what
events must have preceded it. The initiate and request key events of initiator and responder are
not subject to any restrictions, the send key event is triggered by the server after the initiator has
started a conversation in which the responder has requested a key, and the final events of initiator
and responder again depend on the send key event. The event predicate thus imposes relations on
user events before and after key distribution by the server. The authentication lemmas defined
above rely on these relations. Because the event predicate is not capable of passing statements
between protocol steps, this is done via the AEAD predicate. The soundness of the improved model
– including all usage and trace predicates – has already been proved in F*, so the soundness of the
authentication lemmas follows.

4.3.7 Discussion

So far, we have elaborated essential properties of the Otway-Rees protocol, developed a model of the
protocol in DY*, and shown that the protocol does not satisfy all the intended security goals within
the model. We then discussed possible attacks, extended our model accordingly, and proposed an
improved version of the protocol preventing the attacks and satisfying strong security goals. Finally,
we have modeled the improved Otway-Rees protocol in DY* and proven its security in the new
model. Section 3.3.1 summarized existing literature on the Otway-Rees protocol including different
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approaches to analyse the protocol regarding its security. In this section, we discuss the results of
our analysis in the context of other research on the Otway-Rees protocol with the aim to explain
possible inconsistencies and differences in the results.

The first formal analysis of the Otway-Rees protocol was performed by Burrows et al. [11] with the
BAN logic. With their analysis, they come to the conclusion that the protocol is well designed and
establishes the users’ trust in the secrecy of the exchanged key. The BAN analysis argues in terms of
believes rather than knowledge – the above statement should therefore not be misunderstood as an
actual claim of secrecy of the exchanged key. Howbeit, the attacks provided in Section 4.3.5 show
that the conclusion of the BAN authors is nevertheless dangerous, since the analysis is based on a
passive attacker setting. An active attacker can bring the users to accept a key consisting only of
publicly known terms, which has neither been chosen by the server nor originated from a message
emitted by the server. Therefore, the key that the users accept does not necessarily provide the
guarantees assumed in the BAN analysis. Even if we disregard the type flaw attacks, which heavily
depend on implementation details of the protocol, there is still the impersonation attack in which
the final belief of the initiator is to share a secret key with a user that has not been involved in the
corresponding protocol run at all. In fact, the server does not provide any guarantee regarding the
identity of the respective key peer of the key it distributes to the users. The users thus have no way to
know with whom they actually share the key they receive from the server. Regarding authentication,
the BAN authors state that the responder authenticates to the initiator via the second message in
the protocol, in which it forwards an encrypted part from the initiator to the server containing the
initiator’s challenge. Again, if we do not consider type flaw attacks, it is true that an initiator 𝐴
who initiates a protocol run with another honest user 𝐵 beliefs to talk to 𝐵 after completing the
run. The authentication goals derived from the protocol description are however violated because –
as mentioned above – 𝐵 was not necessarily involved in the protocol. Burrows et al. account for
the fact that the server does not verify the unencrypted part of the second message, and it is not
mentioned anywhere that they assume the users to perform type checks on the exchanged key. All
attacks on the Otway-Rees protocol we describe and incorporate in our model are thus also possible
in the setting described by the BAN authors. The problem of the BAN analysis is on the one hand
that the principals in the protocol are considered honest while there is no such thing as an active
attacker that can tamper with the protocol messages, and on the other hand that the abstractions
made by the idealization process preceding the analysis are dangerous.

The limitations of the BAN logic and the idealization process were first mentioned by Boyd and
Mao [7], who find the impersonation attack on the original Otway-Rees protocol that we described
and modeled in the course of our analysis. Based on their research, they present the concept of
robust protocols whose messages can be analyzed independently of each other, and propose a fix
to prevent the attack and make the protocol robust (see Section 3.3.1). However, the fix does not
actually prevent the attack. The adversary can still carry out the same impersonation attack as
before:

1. 𝐴→ 𝐼 (𝐵) : 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵, {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑎𝑠
2. 𝐼 (𝐵) → 𝐴𝑆 : 𝑁𝑐𝑖𝑑 , 𝐴, 𝐸, {𝑁𝑎, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑎𝑠 , {𝑁𝑒, 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵}𝑠𝑘𝑒𝑠
3. 𝐴𝑆 → 𝐼 (𝐵) : 𝑁𝑐𝑖𝑑 , {𝑁𝑎, 𝐴, 𝑘𝑎𝑒}𝑠𝑘𝑎𝑠 , {𝑁𝑒, 𝐸, 𝑘𝑎𝑒}𝑠𝑘𝑒𝑠
4. 𝐼 (𝐵) → 𝐴 : 𝑁𝑐𝑖𝑑 , {𝑁𝑎, 𝐴, 𝑘𝑎𝑒}𝑠𝑘𝑎𝑠
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Boyd and Mao tried to obviate the attack by making the key peer identities explicit in the third
message from the 𝐴𝑆. Though, they make the mistake to include the identity of the respective
long-term key owner to whom the ciphertext is destined instead. For the latter, however, the
information is of no value because it is already implied by successful decryption. When 𝐴 receives
the fourth message from the attacker, it decrypts the ciphertext using 𝑘𝑎𝑠, sees its own identity 𝐴,
and accepts. From the successful decryption, it already knows that the ciphertext was intended
for it, and therefore the identity 𝐴 in the encrypted part is obsolete. As a result of our analysis,
we propose an improved protocol based on Boyd and Mao’s robust design principle that actually
prevents the attack. Our fix includes the correct key peer identities in the encrypted parts of the
third message from the 𝐴𝑆, so that the encrypted part that 𝐴 receives in the last message would
contain 𝐸’s identity if the adversary attempted to carry out the attack. In addition, we extended
the protocol step executed by the server with a check comparing the unencrypted and encrypted
parts of the second message (more precisely, the concatenation 𝑁𝑐𝑖𝑑 , 𝐴, 𝐵 in these parts), so that
the server would already abort in case it detects inconsistencies. Nonetheless, it is always better to
eliminate attack vectors on the message structure level, rather than on the implementation level, in
order to make the properties of the protocol as clear as possible and enforce secure implementations
of the protocol, rather than leaving the responsibility to the implementor. The problem with the
improved Otway-Rees protocol presented by Boyd and Mao is hence not to be found in the robust
principle itself, which we have shown to obviate the attack and ease the analysis, but instead in their
implementation of the principle in the instance of the Otway-Rees protocol, i.e., that they still miss
to make the key peers explicit in the third message.

Another improved version of the Otway-Rees protocol was proposed by Chen [12] and proven secure
in the SVO logic. The protocol of Chen was explicitly designed to obviate the impersonation attack
of Boyd and Mao and it also prevents the other attacks described in this thesis. However, Chen’s
protocol comes with stronger security goals than those that we derived from the protocol description
by Otway and Rees. The stronger security properties particularly require an exchange of ciphertexts
encrypted under the session key 𝑘𝑎𝑏 to assure the users that the respective key peer knows the key
and also trusts it to be secret. In our analysis, we demonstrated that this exchange is not necessary
to achieve the original security goals of the protocol that we divided into four objectives regarding
secrecy and authentication in Section 4.3.4. The users get this assurance as they send and receive
messages in our improved protocol without deviating too much from the original structure. Chen’s
protocol, on the other hand, heavily deviates from the original structure and includes an additional
fifth message to achieve its stronger security goals. We have also mentioned the use of EAT to
investigate the security of the Otway-Rees protocol [37]. Multiple improved versions of the protocol
have been proposed based on EAT. They do not deviate as much from the original protocol and
come with the same strong security implications as Chen’s improved version. Howbeit, they still
include an additional ciphertext encrypted with 𝑘𝑎𝑏 to achieve this level of security, which is not
required to ensure that the key remains secret or that the users mutually authenticate. With only little
improvements to the Otway-Rees protocol, we were already able to ensure that the users only accept
a session key that originates from the server. The secrecy of the key then depends on the behavior
of the users as well as the server. As long as none of the principals leaks the key to the adversary, it
remains secret. Moreover, our improvements make sure that the attacker cannot impersonate an
honest party to break authentication anymore. We hence claim that our improvements are perfectly
sufficient to fix the vulnerabilities of the Otway-Rees protocol without moving too far from the
original structure, which results in a totally new protocol.
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Contrarily to the other approaches, Backes [4] provides a detailed security proof of the Otway-Rees
protocol based on an abstract cryptographic library. Their proof stands under the assumption that the
adversary cannot carry out the type flaw attacks that are possible in our DY* model. As we already
mentioned, the type flaw attacks are heavily dependent on implementation details that are out of
scope of the work of Otway and Rees, who simply propose a blueprint of the protocol messages and
provide a description of the actions performed by the principals involved in the protocol. Everything
beyond that, e.g., the length of the long-term keys or the session key, depends on factors that cannot
be determined in advance. The assumption made by Backes is thus reasonable. Though, we again
emphasize the importance of preventing attacks by design, rather than implementation, which is
why we considered type flaws in our model and proposed an alternative message structure that rules
out attacks of this kind. Besides the assumption regarding type flaw attacks, Backes also assumes
that the server performs the additional check on the second message from the responder, which is
however not mentioned by Otway and Rees in their description of the actions performed by the
server. Since Otway and Rees describe the actions performed by the principals clearly, we argue
that the missing check imposes a flaw that is part of the original specification of the Otway-Rees
protocol and therefore definitely relevant. The resulting threat is also easily resolved by design by
making the key peers explicit in the third message from the server. Backes uses the absence of this
vulnerability to prove their consistency property, which is concerned with the consistency of the
users’ views on the respective key peer of the accepted session key and intuitively results in the
secrecy of the session key as long as the long-term keys remain secret. In our model, the original
protocol does not fulfill this property, which is also demonstrated by the impersonation attack where
𝐴’s view on the key peer is inconsistent with that of 𝐸 (the adversary).

Whether an analysis of the Otway-Rees protocol concludes that it is secure and meets its secrecy and
authentication objectives, or that it is insecure and vulnerable to various types of attacks, depends
primarily on the assumptions made in the approach used for the analysis and the defined security
goals. If we assume a robust and secure implementation of the protocol that performs sufficient
checks on the data in messages, then there is no way for an adversary to break security without
compromising long-term keys. Regarding authentication, we must trust the authentication server to
distribute the session key to the correct users, and based on that, get timeliness guarantees. On
the other hand, if we build our assumptions on the original protocol specification by Otway and
Rees, we have that the server does not sufficiently check the user identities in the second message,
which imposes a security vulnerability and enables an attacker to break authentication. Also, if
the users do not further check whether the key they receive – supposedly from the server – has the
properties of a key generated by the server, an adversary can possibly replay the ciphertexts from
the first two messages as key certificates from the server to the users to make them accept a session
key which it can derive from its own knowledge. Besides the assumptions on which an analysis
is based and the security goals defined for the analysed protocol, the result of an analysis also
depends on the abstractions made in the used approach. For example, the BAN logic abstracts very
aggressively from the original form of a protocol to bring it into a form that serves as starting point
for the analysis. Boyd and Mao elaborate how the abstractions made by the BAN analysis make it
impossible to detect certain flaws in protocols on the example of the Otway-Rees protocol. In our
analysis, we have considered all the possible implementation flaws that the Otway-Rees protocol
has and thus also modeled all the resulting attacks. We further proposed an improved protocol with
small deviations in the message structure and in the behavior of the authentication server to make
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the Otway-Rees protocol secure against the modeled attacks and also in the presence of an arbitrary
attacker. The security of the improved protocol still depends on the security of the long-term keys;
if an adversary is able to compromise them, it completely breaks the security of the protocol.

4.4 Yahalom

We continue our analysis with the Yahalom protocol, which is an authentication protocol formalized
by Burrows et al. [11] in their paper on the BAN belief logic. The protocol is similar to Otway-Rees
insofar as both protocols rely on symmetric keys pre-shared with an authentication server that
performs a key exchange between two users. However, the Yahalom protocol comes with some
subtle properties and, as our analysis will show, achieves its designated secrecy and authentication
goals that we derive from the protocol specification and from the assumptions and goals stated by
Burrows et al. in their BAN analysis of the protocol. With our security proof, we also argue against
research that labels the protocol flawed and insecure and show that it fulfills its original purpose
based on what the BAN authors provide in their research. Our analysis of Yahalom is based on the
message structure given in Section 3.3.2.

4.4.1 Properties and Goals

Again, we start by capturing essential properties and goals of the protocol required for the
development of a fitting model in DY*.

Principal Roles

In the Yahalom protocol, we again have two users 𝐴 and 𝐵 that want to exchange a key and a
trusted authentication server 𝐴𝑆 that is in charge of key distribution. 𝐴 is the initiator who starts a
protocol run via the first message to 𝐵. 𝐵 is the responder who receives the first message from 𝐴

and requests a key from the 𝐴𝑆. The 𝐴𝑆 responds by generating and then distributing a key for
secret communication between 𝐴 and 𝐵. The roles reverse for the last two messages when the 𝐴𝑆
first sends the key to 𝐴, who then forwards it to 𝐵.

Initial Knowledge

The initial knowledge of the principals is exactly the same as in the Otway-Rees protocol. Each of
the users shares a long-term key with the 𝐴𝑆 and therefore also knows its identity. The initiator
additionally knows 𝐵 so that it can initiate the protocol. The 𝐴𝑆 stores the long-term keys and
identities of both users.
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Generated Nonces

Each user generates one challenge for the authentication server. The challenge 𝑁𝑎 of the initiator is
public, while 𝑁𝑏 generated by the responder only appears encrypted under the long-term keys 𝑘𝑏𝑠
and 𝑘𝑎𝑠, as well as under the session key 𝑘𝑎𝑏 and therefore has the properties of a shared secret.
Despite the use of 𝑁𝑏 as shared secret, both challenges have the same purpose as in the Otway-Rees
protocol – to provide the users with timeliness guarantees regarding the key exchange.

Exchanged Keys or Secrets

Similarly as in the Otway-Rees protocol, the authentication server generates and distributes the
session key as a response to the second message from the responder. The server protects 𝑘𝑎𝑏
by encrypting it under 𝑘𝑎𝑠 for the initiator and 𝑘𝑏𝑠 for the responder, so that only initiator and
responder can obtain it given the long-term keys are not corrupted. The protocol shall also ensure
that the users actually receive the key from the server, which they trust. Besides the session key, the
Yahalom protocol also results in the exchange of a shared secret – the nonce 𝑁𝑏 generated by the
responder. The nonce is intended as challenge for the server who delegates this task to the initiator
by encrypting it under 𝑘𝑎𝑠 in the certificate for the session key together with the session key 𝑘𝑎𝑏
itself. In the fourth message, the initiator then encrypts it under the session key 𝑘𝑎𝑏 to assure the
responder that the communication is timely. As a result, 𝑁𝑏 is a shared secret between the users.

Authentication Goals

The Yahalom protocol strives to mutually and timely authenticate two users 𝐴 and 𝐵 in a similar
way as the Otway-Rees protocol. Again, a session key 𝑘𝑎𝑏 accepted by the users shall result from a
recent successful protocol run with initiator 𝐴 and responder 𝐵, and both users shall be assured that
they recently talked to each other. The fact that 𝐴 already uses 𝑘𝑎𝑏 during the protocol, however,
results in one additional implication compared to Otway-Rees: at the end of the protocol, 𝐵 already
learns that 𝐴 accepted the same key as itself and therefore has the same beliefs about the key as 𝐵.
All assurances may not hold in case some principals act maliciously.

4.4.2 Modeling the Protocol in DY*

We now develop a model of the Yahalom protocol in DY*, based on its message structure and
the previously discussed properties and goals. We follow a similar approach to the model of the
Otway-Rees protocol.

Messages

/// Fromat of encrypted message parts

noeq type encval =

| EncMsg2: a:principal -> n_a:bytes -> n_b:bytes -> encval

| EncMsg3_I: b:principal -> k_ab:bytes -> n_a:bytes -> n_b:bytes -> encval

| EncMsg3_R: a:principal -> k_ab:bytes -> encval
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| EncMsg4: n_b:bytes -> encval

noeq type message (i:nat) =

| Msg1: a:principal -> n_a:bytes -> message i

| Msg2: b:principal -> ev_b:msg i public -> message i

| Msg3: ev_a:msg i public -> ev_b:msg i public -> message i

| Msg4: ev3_b:msg i public -> ev4_b:msg i public -> message i

We again have a module YLM.Messages with types encval representing the encrypted parts of messages
and message (i:nat) for the messages themselves. EncMsg2 is the responder’s encryption in the
second message. EncMsg3_I and EncMsg3_R are the encryptions performed by the server to distribute
the session key k_ab to the users. EncMsg4 is encrypted by the initiator in the last message to assure
the responder of the timeliness of the conversation. The messages are constructed from unencrypted
terms, such as the identifiers of the two users required by the server, and the ciphertexts resulting
from the encrypted parts. The serialized and encrypted ciphertexts in the constructors of message i

are denoted by the type msg i public, so that the constructors only accept valid and publishable
values of bytes. We no longer need the wrapper types for tagging encryption values from the
Otway-Rees model because we add the tag directly to the serialized value in the Yahalom model.

val serialize_encval: i:nat -> ev:encval -> l:label{valid_encval i ev l} -> sev:(msg i l)

val parse_encval: #i:nat -> #l:label -> sev:(msg i l) -> r:(result encval)

{

match r with

| Success ev -> valid_encval i ev l

| Error _ -> True

}

val serialize_msg: i:nat -> m:(message i){valid_message i m} -> msg i public

val parse_msg: #i:nat -> sm:(msg i public) -> r:(result (message i))

{

match r with

| Success m -> valid_message i m

| Error _ -> True

}

This also eases the serialization and parsing process. serialize_encval outputs values of type msg i l

coming from encryption values ev that are valid with respect to valid_encval i ev l. Similarly,
serialize_msg outputs values of type msg i public given valid messages. The parse functions get
serialized values with an implicit tag and return either valid encryption values or messages, or an
error if parsing fails. Besides the differences in how tags are handled, serialization and parsing
work exactly as in the Otway-Rees model, and valid_encval i ev l again ensures that the terms in
an encryption value ev are valid at trace index i and that their label flows to l. valid_message does
the same for messages and the public label.

State

noeq type session_st =

(* Auth server session for secret keys shared with principals *)

| AuthServerSession: p:principal -> k_ps:bytes -> session_st

(* Principal secret key session with auth server *)
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| PKeySession: srv:principal -> k_ps:bytes -> session_st

(* Protocol states *)

| InitiatorSentMsg1: b:principal -> n_a:bytes -> session_st

| ResponderSentMsg2: a:principal -> srv:principal -> n_b:bytes -> session_st

| AuthServerSentMsg3: a:principal -> b:principal -> k_ab:bytes -> session_st

| InitiatorSentMsg4: b:principal -> srv:principal -> k_ab:bytes -> session_st

| ResponderRecvedMsg4: a:principal -> srv:principal -> k_ab:bytes -> session_st

The protocol specific state sessions of the Yahalom protocol are modeled in the session_st type
in YLM.Sessions. The three state sessions for storing the principals’ initial knowledge from the
Otway-Rees model have been replaced with only two state sessions for the long-term key bindings
in the Yahalom model. The first state session AuthServerSession p k_ps represents a long-term key
session from the server’s point of view, in which it stores the respective principal p with whom it
shares a key, and the key k_ps itself. Likewise, PKeySession defines a user key session, where a user
stores server identity and long-term key. The other state sessions are protocol state sessions and thus
only store data associated with a particular protocol run. The naming of the state sessions has also
been adapted from the Otway-Rees model. The name of a state session constructor indicates who is
supposed to use it and in which context it is to be used. For example, InitiatorSentMsg1 b n_a is
used by the initiator after sending the first message to store the identity of the responder b – with
whom it wants to exchange a key –, and its challenge n_a, which it verifies when receiving the third
message from the server. The responder similarly stores the name of the initiator a and its own
nonce n_b in ResponderSentMsg2. However, it also needs the server’s identity srv, because it must be
able to express via n_b’s label that the server can read the nonce. The remaining three states all
store the session key k_ab and the peers of the key from the perspective of the state session owner.

let is_lt_key i b p srv = is_aead_key ylm_global_usage i b (readers [P p; P srv]) "YLM.

lt_key"

let is_comm_key i b srv p q = is_aead_key ylm_global_usage i b (readers [P srv; P p; P q])

"YLM.comm_key"

let valid_session (i:nat) (p:principal) (si vi:nat) (st:session_st) =

match st with

| AuthServerSession pri k_pri_srv ->

is_msg i k_pri_srv (readers [P p]) /\ is_lt_key i k_pri_srv pri p

| PKeySession srv k_ps -> is_lt_key i k_ps p srv

| InitiatorSentMsg1 b n_a -> is_labeled i n_a public

| ResponderSentMsg2 a srv n_b -> is_labeled i n_b (readers [P p; P a; P srv])

| AuthServerSentMsg3 a b k_ab -> is_comm_key i k_ab p a b

| InitiatorSentMsg4 b srv k_ab ->

is_msg i k_ab (readers [P p]) /\

(is_labeled i k_ab (readers [P srv; P p; P b]) \/ corrupt_id i (P srv) \/

corrupt_id i (P p))

| ResponderRecvedMsg4 a srv k_ab ->

is_msg i k_ab (readers [P p]) /\

(is_labeled i k_ab (readers [P srv; P a; P p]) \/ corrupt_id i (P srv) \/

corrupt_id i (P p))

Serialization and parsing are completely adapted from the Otway-Rees model. The valid_session

predicate is used to refine the terms stored in the state sessions, and like in the improved Otway-
Rees model, serves as basis for the secrecy proof of the session key. We also added predicates
is_lt_key and is_comm_key to express that a term is a long-term key or a communication (session)
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key. The states relevant for the secrecy proof are again the final state sessions of the principals, i.e.,
AuthServerSentMsg3, InitiatorSentMsg4, and ResponderRecvedMsg4. From the final state session of the
server, we get that k_ab is a communication key for AEAD and labeled with readers [P p; P a; P b]

(with server p). In the final state sessions of initiator and responder, the label of k_ab depends on the
honesty of the readers of the respective long-term key used to transmit it, which does howbeit not
affect the secrecy proof.

Events

let event_initiate (a b srv:principal) (n_a:bytes) =

("initiate",[string_to_bytes a;string_to_bytes b;string_to_bytes srv;n_a])

let event_req_key (a b srv:principal) (n_a n_b:bytes) =

("req_key",[string_to_bytes a;string_to_bytes b;string_to_bytes srv;n_a;n_b])

let event_send_key (a b srv:principal) (n_a n_b k_ab:bytes) =

("send_key",[string_to_bytes a;string_to_bytes b;string_to_bytes srv;n_a;n_b;k_ab])

let event_fwd_key (a b srv:principal) (n_a n_b k_ab:bytes) =

("fwd_key",[string_to_bytes a;string_to_bytes b;string_to_bytes srv;n_a;n_b;k_ab])

let event_recv_key (a b srv:principal) (n_b k_ab:bytes) =

("recv_key",[string_to_bytes a;string_to_bytes b;string_to_bytes srv;n_b;k_ab])

We define the same five events for the Yahalom protocol that we previously defined for Otway-Rees.
The main differences are in the associated data, which consists of different terms due to the different
message structure, and in the principals triggering the last two events. The initiate event is still
triggered by the initiator before it sends the first message to b. Afterwards, the responder signals that
it requests the key from the server and the server signals that it distributes the key to the users. The
forward key event is however now triggered by the initiator, who receives the session key directly
from the server, while the responder triggers receive key when it indirectly gets the key from the
initiator. In each event, we associate all data that is relevant to the current protocol run at the time
of the event.

Protocol Specific Usage and Trace Predicates

While we specifically omitted the relevant usage and trace predicates for the Otway-Rees protocol
because of several attacks violating its security objectives, we explicitly require them in the
Yahalom model. We want to prove the security of the Yahalom protocol and therefore require
statements regarding the label of the session key in all state sessions in which it is stored as a
result of the protocol. Particularly, we want to derive the label of the session key in the state
sessions InitiatorSentMsg4 and ResponderRecvedMsg4, as required by the valid_session predicate in
OYRS.Sessions. To be able to serialize and store state sessions, they must fulfill this predicate, so we
must derive these statements in the respective protocol steps where they will be stored. Therefore,
we again need the usage predicate for AEAD to pass statements about properties of encrypted terms
– such as the session key – between message sender and receiver.

let can_aead_encrypt i s k sev ad =

match parse_encval_ sev with

| Success (EncMsg2 a n_a n_b) ->

exists b srv. get_label ylm_key_usages k == readers [P b; P srv] /\

did_event_occur_before i b (event_req_key a b srv n_a n_b)
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| Success (EncMsg3_I b k_ab n_a n_b) ->

exists a srv. get_label ylm_key_usages k == readers [P a; P srv] /\

did_event_occur_before i srv (event_send_key a b srv n_a n_b k_ab)

| Success (EncMsg3_R a k_ab) ->

exists b srv. get_label ylm_key_usages k == readers [P b; P srv] /\

(exists n_a n_b. did_event_occur_before i srv (event_send_key a b srv n_a n_b k_ab

))

| Success (EncMsg4 n_b) ->

exists a b srv n_a. did_event_occur_before i a (event_fwd_key a b srv n_a n_b k)

| _ -> False

Since the tag of encryption values is included in the serialized value, we only need a single predicate
in the Yahalom model. The predicate divides into four branches for the different encryption values
that are encrypted in the protocol. The first encryption value is EncMsg2 a n_a n_b, for which we
require that there are principals b and srv such that the label of the key k used for encryption is
readers [P b; P srv]. This ensures that EncMsg2 is encrypted under the long-term key shared between
a responder b and the server srv. Secondly, we require that the responder triggered event_req_key

a b srv n_a n_b prior to the encryption. The responder event associates the principals involved
in the protocol run and the challenges of initiator and responder. For EncMsg3_I b k_ab n_a n_b,
we similarly require that it is encrypted with the long-term key of initiator and server, and that
the server signaled event_send_key a b srv n_a n_b k_ab before i. The server event – in addition
to the terms already included in the previous responder event – also associates the just generated
session key k_ab with the protocol run, which is important to prove the authentication property
later. EncMsg3_R a k_ab is in turn encrypted under the long-term key of responder and server, and
also requires that event_send_key a b srv n_a n_b k_ab was triggered before. The encryption value
does however not contain the nonces n_a and n_b, so that the responder does not get the timeliness
guarantees it needs from this statement alone. The last encryption value EncMsg4 n_b is the second
part of the fourth message, which is encrypted with the session key. Therefore, we require that
the initiator triggers event_fwd_key a b srv n_a n_b k before encrypting the value, signaling that it
forwards the session key k to the responder and uses it to encrypt the responder challenge n_b, which
gives the responder its timeliness guarantees. We deliberately omitted statements about the label of
the session key in the AEAD predicate, since we already include them in the event predicate and
wanted to avoid redundancies. The sole purpose of the AEAD predicate hence is to ensure that
encryption values are encrypted under the correct key and to establish relations between ciphertexts
and events. The event predicate, on the other hand, has the purpose to ensure all refinements we
make regarding the data that is relevant to a protocol run, including principal identities, nonces, and
the session key.

let epred idx s e =

match e with

| ("initiate",[a_bytes;b_bytes;srv_bytes;n_a]) ->

bytes_to_string a_bytes == Success s

| ("req_key",[a_bytes;b_bytes;srv_bytes;n_a;n_b]) -> (

match (bytes_to_string a_bytes,

bytes_to_string b_bytes,

bytes_to_string srv_bytes) with

| (Success a, Success b, Success srv) ->

b = s /\

is_msg idx n_a public /\
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was_rand_generated_before idx n_b (readers [P b; P a; P srv]) (nonce_usage "

YLM.nonce_b")

| _ -> False

)

| ("send_key",[a_bytes;b_bytes;srv_bytes;n_a;n_b;k_ab]) -> (

match (bytes_to_string a_bytes,

bytes_to_string b_bytes,

bytes_to_string srv_bytes) with

| (Success a, Success b, Success srv) ->

srv = s /\

was_rand_generated_before idx k_ab (readers [P srv; P a; P b]) (aead_usage "

YLM.comm_key") /\

(did_event_occur_before idx b (event_req_key a b srv n_a n_b) \/

(corrupt_id idx (P b) \/ corrupt_id idx (P srv)) /\ is_msg idx n_b public)

| _ -> False

)

| ("fwd_key",[a_bytes;b_bytes;srv_bytes;n_a;n_b;k_ab]) -> (

match (bytes_to_string a_bytes,

bytes_to_string b_bytes,

bytes_to_string srv_bytes) with

| (Success a, Success b, Success srv) ->

a = s /\

(did_event_occur_before idx srv (event_send_key a b srv n_a n_b k_ab) \/

(corrupt_id idx (P a) \/ corrupt_id idx (P srv))

/\ is_publishable ylm_global_usage idx n_b)

| _ -> False

)

| ("recv_key",[a_bytes;b_bytes;srv_bytes;n_b;k_ab]) -> (

match (bytes_to_string a_bytes,

bytes_to_string b_bytes,

bytes_to_string srv_bytes) with

| (Success a, Success b, Success srv) ->

b = s /\

((exists n_a n_b.

did_event_occur_before idx srv (event_send_key a b srv n_a n_b k_ab)) \/

corrupt_id idx (P b) \/ corrupt_id idx (P srv)) /\

((exists n_a.

did_event_occur_before idx a (event_fwd_key a b srv n_a n_b k_ab)) \/

corrupt_id idx (P b) \/ corrupt_id idx (P srv) \/ corrupt_id idx (P a))

| _ -> False

)

| _ -> False

The event predicate of the Yahalom model is slightly more complex than that of improved Otway-Rees.
This stems from the fact that the properties of the Yahalom protocol are more subtle with respect to
the unusual order and structure of messages, and that we capture all properties of the protocol in
the event predicate, while the encryption predicate merely imposes relations between ciphertexts
and events. The only restriction of the initiate event is that it must be triggered by the initiator
associated with the event. Similarly, request key must be triggered by the responder, but further
requires that the initiator’s nonce n_a can flow to the public label and therefore be publishable, and
that the responder generated a nonce n_b prior to the event, labeled with readers [P b; P a; P srv]

(for initiator a, responder b, and server srv) and annotated with a usage identifying it as nonce. The
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principal triggering send key must be the authentication server. To trigger the event, the server must
have generated the session key k_ab, which receives the label readers [P srv; P a; P b]. The usage
of the key indicates that it is destined to be used in AEAD. Moreover, we require that the responder
has requested a key for the same combination of principals as those associated in the event, or that
one of the state sessions of the responder or server is corrupted and n_b is publishable. The initiator
subsequently receives the key directly from the server and forwards it to the responder. In this
course, it triggers the forward key event to signal that it accepts the key and is about to pass it on.
The initiator requires that the server has previously triggered send key and agrees on the principals
as well as the nonces associated with the protocol run, unless the initiator or server is corrupted and
n_b is publishable. The last event receive key indicates completion of the protocol and acceptance of
the key by the responder. Its pre-condition is more complex due to the subtlety of the last protocol
step, where the responder must combine the information it gets from the two separately encrypted
parts of the last message. Two conditions must hold for the responder to accept the key. The first
condition is basically the equivalent of the condition ensured by the initiator when forwarding the
key regarding the occurence of send key minus the timeliness guarantee provided by the nonces.
Timeliness is implied by the second condition, which ensures that the initiator has forwarded the
key k_ab and matches the responder’s nonce n_b.

Protocol Steps

The protocol steps in the Yahalom model are again realized in form of five independent and
arbitrarily schedulable functions in a module YLM.Protocol. As in the Otway-Rees model, we also
include an API for long-term key installation in the protocol API. However, since there are no longer
state sessions that directly model the initial knowledge of principals, we only require two functions
new_lt_key_session and install_lt_key_at_auth_server for this purpose. Instead, we model terms
that count to the initial knowledge of principals other than the long-term keys as direct inputs to the
protocol functions.

First Step (Initiator) In the first step of the Yahalom protocol, the initiator starts a run of the
protocol by sending the first message.

val initiator_send_msg_1:

a:principal ->

kas_idx:nat ->

b:principal ->

LCrypto (msg_idx:timestamp * sess_idx:nat) (pki ylm_preds)

(requires (fun t0 -> True))

(ensures (fun t0 (mi, si) t1 ->

mi < trace_len t1 /\ trace_len t0 < trace_len t1))

The initiator is denoted by a. Its initial knowledge comprises the long-term key session with the
server stored at kas_idx in the initiator’s state and the identity of the responder b. The function
outputs a message trace index of the first protocol message and a session index pointing to a new
state session created by the initiator. The initiator first retrieves the long term key session of the
form PKeySession srv k_as containing the server srv and the long-term key k_as from its state and
generates a nonce n_a labeled public. Next, it triggers event_initiate a b srv n_a, signaling the start
of a protocol run involving the three principals a, b and srv in their respective roles and the challenge
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n_a for the server. After triggering the event, the initiator creates the first message Msg1 a n_a and
sends it to the responder in plaintext. Finally, it stores a new state session InitiatorSentMsg1 b n_a

with the identity of the responder and the challenge it just generated.

Second Step (Responder) The second step is executed by the responder, who requests a session
key from the server based on the first message from the initiator.

val responder_send_msg_2:

b:principal ->

kbs_idx:nat ->

msg1_idx:timestamp ->

LCrypto (msg_idx:timestamp * sess_idx:nat) (pki ylm_preds)

(requires (fun t0 -> msg_idx < trace_len t0))

(ensures (fun t0 (mi, si) t1 ->

mi < trace_len t1 /\ trace_len t0 < trace_len t1))

The first function parameter b denotes the responder. kbs_idx points to the long-term key session of
the responder with the server that was established prior to the protocol. The first message from
the initiator lies at msg1_idx on the trace. Similarly as the first step, the second step also outputs a
message trace index – of the second message – and an index of a new state session in the responder’s
state. The responder begins by receiving the first message, revealing the identity of the initiator a.
Next, it parses the received message, which it expects to be of the form Msg1 a' n_a. It checks if
a = a' and, if yes, goes on to retrieve the long-term key state session PKeySession srv k_bs from its
state. The responder generates its own challenge n_b, which is supposed to be secret among the
principals involved in the protocol, and therefore gets the label readers [P b; P a; P srv]. With that,
it has all it needs to request the key from the server, so it triggers event_req_key a b srv n_a n_b,
adding its nonce n_b to the data associated with the protocol run. The responder creates EncMsg2 a

n_a n_b and encrypts it under k_bs for the server. It then prepends its own identity to the resulting
ciphertext in Msg2 b c_ev2, and sends the message to the server. After sending the message, it stores
ResponderSentMsg2 a srv n_b in a new state session corresponding to the protocol run. As already
pointed out, the server identity is required here to make a statement about the label of n_b.

Third Step (Server) The key generation and distribution performed by the server as response to
the request from the responder is implemented in a function server_send_msg_3.

val server_send_msg_3:

srv:principal ->

msg2_idx:timestamp ->

LCrypto (msg_idx:timestamp * sess_idx:nat) (pki ylm_preds)

(requires (fun t0 -> msg_idx < trace_len t0))

(ensures (fun t0 (mi, si) t1 ->

mi < trace_len t1 /\ trace_len t0 < trace_len t1))

The first parameter srv is again the principal executing the step – the authentication server in this
instance. msg2_idx is the trace index of the second message coming from the responder. Again,
the protocol step returns a message trace index and a state session index. The first action of
the server is to receive the second message. From the receive function, it gets the serialized
message and the identity of the responder b. The message is then parsed, expectedly resulting in
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Msg2 b' c_ev_b. The server verifies the identity of the responder b with the one in the message and
decrypts the ciphertext c_ev_b encrypted by the responder. Therefore, the server first retrieves the
server key session AuthServerSession b k_bs via b. Successful decryption should then reveal the
encryption value EncMsg2 a n_a n_b. The server now knows the initiator a and can hence retrieve
the corresponding key session AuthServerSession a k_as for a and generate the session key k_ab.
The session key is annotated with the label readers [P srv; P a; P b] to express the requirement
that the key shall remain secret between a, b, and srv, as well as usage aead_usage "YLM.comm_key"

to identify it as AEAD key for direct communication between users. The server is now ready to
distribute the key and signals this via event_send_key a b srv n_a n_b k_ab, further extending the
data associated with the protocol run in the request key event with the session key k_ab. After
that, it creates two encryption values EncMsg3_I b k_ab n_a n_b and EncMsg3_R a k_ab and encrypts
them under the long-term keys k_as of the initiator and k_bs of the responder. The third message is
simply the concatenation of the ciphertexts for initiator and responder, i.e., Msg3 c_ev3_i c_ev3_r,
and is sent to the initiator. In order to be able to prove key secrecy from the server’s perspective,
the server must again store the key and the principals that get a handle to it in a state session
AuthServerSentMsg3 a b k_ab.

Fourth Step (Initiator) In the fourth step, the initiator receives the session key from the server,
and forwards it to the responder.

val initiator_send_msg_4:

a:principal ->

kas_idx:nat ->

msg3_idx:timestamp ->

a_sess_idx:nat ->

LCrypto (msg_idx:timestamp) (pki ylm_preds)

(requires (fun t0 -> msg_idx < trace_len t0))

(ensures (fun t0 mi t1 ->

mi < trace_len t1 /\ trace_len t0 < trace_len t1))

The parameters a and kas_idx are the same as in the first step. msg3_idx denotes the trace index of the
third message from the server. The state session of the initiator from the first protocol step associated
with the current protocol run is stored in the initiator’s state at index a_sess_idx. At the end of the
fourth step, the initiator updates the state session from the first step, so that the function only outputs
the trace index of the fourth message. The initiator first gets the state session InitiatorSentMsg1 b n_a

from the first step. It then receives and parses the third message Msg3 c_ev_a c_ev_b and gets the
long-term key session PKeySession srv' k_as. The server identity returned by the receive function is
compared with the identity stored in the key session. If they match, the initiator decrypts the first
encrypted part c_ev_a and expects a value EncMsg3_I b' k_ab n_a' n_b. It checks whether the server
generated a key for the correct responder b by checking that b = b' and whether the server message
originated from the current protocol run by checking that n_a = n_a'. After having validated the
message, the initiator triggers event_fwd_key a b srv n_a n_b k_ab to show that it accepted k_ab and
now forwards the second encrypted part – also containg the key – to the responder. Since the
responder does not get timeliness guarantees from the part encrypted by the server and therefore
cannot deduce that k_ab is not a replay, the initiator creates a second encryption value EncMsg4 n_b

and encrypts it with the session key k_ab. The ciphertext from the server and the ciphertext c_ev4
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from the initiator are concatenated in the fourth message Msg4 c_ev_b c_ev4, which is sent to the
responder. Finally, the initiator updates its state session corresponding to the protocol run to
InitiatorSentMsg4 b srv k_ab, storing the session key and its peers.

Fifth Step (Responder) The final step is the responder receiving the fourth message from the
initiator, from witch it gets the session key and can deduce that the key is not a replay.

val responder_recv_msg_4:

b:principal ->

kbs_idx:nat ->

msg4_idx:timestamp ->

b_sess_idx:nat ->

LCrypto unit (pki ylm_preds)

(requires (fun t0 -> msg_idx < trace_len t0))

(ensures (fun t0 _ t1 -> trace_len t0 < trace_len t1))

The first two parameters b and kbs_idx are again the responder and the index of the long-term key
session with the server. The fourth message from the initiator is stored at msg4_idx on the trace.
b_sess_idx is the index of the responder’s state session from the second step. Since the responder –
similar to the initiator – only updates its previous state session and also does not send any further
message in the step, the function just outputs unit. The last step begins with the responder retrieving
and parsing the state session ResponderSentMsg2 a srv n_b it stored at the end of the second step.
If it finds the expected session at b_sess_idx, the responder receives the fourth message from the
trace and verifies whether the actual sender returned by the receive function is the initiator a stored
in its state. The fourth message is then parsed, which should yield Msg4 c_ev3_b c_ev4_b. Given
the parsed message, the responder retrieves its long-term key session PKeySession srv' k_bs. If the
responder followed the protocol correctly, the server stored in its long-term key session srv' and
the server srv it associates with the protocol run should be the same. The responder can finally
start to decrypt the ciphertexts c_ev3_b and c_ev4_b. It starts with the first ciphertext from the server,
which it can decrypt with k_bs. The responder obtains EncMsg3_R a'' k_ab, and once again verifies
the identity of the initiator, this time included in the key certificate from the server as a''. Besides
this, the responder receives the session key k_ab, which it uses to decrypt the second ciphertext. The
decryption results in EncMsg4 n_b' containing the responder’s nonce, for which we must check that
n_b = n_b' to deduce the timeliness of the fourth message. Now that the responder has the session
key and is assured of the timeliness of the message, it updates its state session associated with the
protocol run to ResponderRecvedMsg4 a srv k_ab, similarly as the initiator did in the previous step.

Execution

The Yahalom model can be executed similarly to Otway-Rees in a benign environment implemented
via a scheduler function in which a passive adversary schedules the protocol steps of honest
principals in the correct order. This way, we can verify the correctness of the Yahalom model by
checking if the protocol runs successfully and achieves the desired effects based on its output trace.
The scheduler function simulating a benign adversary is again named benign_attacker and is defined
in a module YLM.Debug:
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let benign_attacker () =

let a:principal = "alice" in

let b:principal = "bob" in

let srv:principal = "server" in

let ((|t_kas,k_as|), kas_idx) = new_lt_key_session a srv in

let ((|t_kbs,k_bs|), kbs_idx) = new_lt_key_session b srv in

install_lt_key_at_auth_server #t_kas srv a k_as;

install_lt_key_at_auth_server #t_kbs srv b k_bs;

let (msg1_idx, a_sess_idx) = initiator_send_msg_1 a kas_idx b in

let (msg2_idx, b_sess_idx) = responder_send_msg_2 b kbs_idx msg1_idx in

let (msg3_idx, srv_sess_idx) = server_send_msg_3 srv msg2_idx in

let msg4_idx = initiator_send_msg_4 a kas_idx msg3_idx a_sess_idx in

responder_recv_msg_4 b kbs_idx msg4_idx b_sess_idx;

()

We start as usual, by initializing the principals a, b, and srv that are going to run the protocol together.
a and b are respectively the initiator and responder in the protocol, while srv is the authentication
server. The principal initialization is followed by the generation and installation of the long-term
keys between the users and the server, resulting in indices kas_idx and kbs_idx pointing to the
long-term key sessions of a and b. Note that the resulting state sessions do not necessarily model
the complete initial knowledge of the users at protocol start. To be able to initiate a protocol run,
the initiator must however know the responder. Therefore, b is input to the first protocol function
initiator_send_msg_1, which starts the protocol. The other protocol steps follow in the intended
order and the protocol completes with responder_recv_msg_4. benign_attacker in the Yahalom model
is also wrapped in a function benign that prints the trace after execution and is called from the
model’s main function in YLM.Debug.

4.4.3 Correctness and Coherence of the Model

To establish the correctness of our Yahalom model, we proceed in the same way as for Otway-Rees.
First thing, we perform a type check of the individual modules in F*. If the type check is successful,
we can compile our model into an executable. The entry point of the executable is the main function
in YLM.Debug, which executes the scenario of a benign Yahalom attacker defined above and prints
the resulting trace. Appendix B contains the trace produced by the benign attacker. It shows the
successful simulation of a regular protocol run with the desired outcome that initiator and responder
share a session key generated and distributed by the authentication server, which means that our
model works as expected. Knowing that our developed model runs successfully, it is left to show
that it also coheres with the description of the Yahalom protocol from Section 3.3.2. The coherence
of the Yahalom model can be demonstrated based on the same six points as that of the Otway-Rees
model:

• The model correctly represents the principals’ initial knowledge. In comparison to the
Otway-Rees model, the Yahalom model does not incorporate explicit state sessions for the
initial knowledge of principals. Instead, we have state sessions for long-term keys only and
model the remaining terms that are initially known to principals directly as input parameters
to the respective protocol functions. In case of the Yahalom protocol, this only concerns the
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identity of the responder, which is publishable and must be known to the initiator in advance.
The semantics of passing public initial knowledge directly as input parameters to protocol
functions or storing it in a state session and passing the index of the state session as input
parameter instead are equivalent. From the semantic equivalence and the coherence of the
initial knowledge in the Otway-Rees model, the coherence in the Yahalom model follows.

• The origin of nonces and keys corresponds in the model and in the protocol description. Two
nonces 𝑁𝑎 and 𝑁𝑏 are generated during the protocol, respectively, by the initiator and by
the responder. The server generates the session key 𝑘𝑎𝑏. Like in the Otway-Rees model,
the long-term keys 𝑘𝑎𝑠 and 𝑘𝑏𝑠 are generated by the users, as it is not made clear in the
description of the Yahalom protocol where they originate from.

• Nonces and keys are labeled with their correct intended audience. Intuitively, the long-term
keys are labeled readers [P a; P srv] and readers [P b; P srv], since they form the secure
communication channels of the respective user and server. 𝑁𝑎 is transmitted in plaintext
in the first message and is thus public. The responder nonce serves as challenge for the
server, first encrypted under 𝑘𝑏𝑠, and then indirectly sent back to the responder encrypted
under the session key 𝑘𝑎𝑏 by the initiator. The session key is generated by the server
as a means for direct and secure communication between the users and is thus labeled
readers [P srv; P a; P b]. Since 𝑁𝑏 is encrypted under 𝑘𝑎𝑏, it can only be so secret and gets
the label readers [P b; P a; P srv].

• The module YLM.Messages correctly represents the actual message structure. Similar to Otway-
Rees, we have two types encval and message i. One models encrypted parts of messages and
one models the messages as a whole. The encrypted parts are the responder’s encryption
EncMsg2 under 𝑘𝑏𝑠 (k_bs) in the second step, the two encryptions EncMsg3_I under 𝑘𝑎𝑠 (k_as)
and EncMsg3_R under 𝑘𝑏𝑠 performed by the server in the third step, and the initiator’s encryption
EncMsg4 under 𝑘𝑎𝑏 (k_ab) in the fourth step. Together, the two types can be used to form
messages that reflect the actual message structure.

• The stateful parts of the protocol are correctly represented in the module YLM.Sessions. The
session_st type provides a means to store terms related to a protocol run in state sessions
affiliated with principals. The main goal of the Yahalom protocol is – similar to Otway-Rees –
the exchange of a session key, which can then be used for direct communication between
the users. Therefore, we again store the exchanged session key in the final state sessions of
initiator and responder, where they can access it at a later time. Other terms like nonces
are exclusively relevant to a specific protocol run and can thus be abandoned when the run
completes. As in the Otway-Rees model, the server stores the session key as well, so when
proving the security of the protocol, we can express the key secrecy property from the server’s
perspective based on its state. The model is hence valid in that it correctly captures the
protocol’s outcome via the principals’ state sessions.

• The checks and message content verification performed in the protocol steps in YLM.Protocols

are reasonable and not too restrictive. Again, we perform verification of the message sender
identity whenever we can. As already explained for the Otway-Rees model, this does not
restrict the attacker in its capabilities. Besides this, in the fourth and fifth steps, the initiator
and responder verify each other’s identity contained in the key certificates issued by the server
in the third step. The inclusion of the key peer identity in the key certificates was crucial for
the key secrecy in the improved Otway-Rees protocol. So the fact that the Yahalom protocol
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includes them only makes sense if they are also verified by the respective recipient; otherwise
they would be useless. The verification of the challenges 𝑁𝑎 by the initiator and 𝑁𝑏 by the
responder – also in the fourth and fifth steps – is taken directly from the protocol description.
In the fifth step, the responder additionally checks whether the server identity stored in its key
session matches with the one stored in its state session affiliated with the protocol run. If the
responder executes the protocol correctly, this is already ensured by the implementation of the
protocol functions. The check is nevertheless required to make this information explicit to F*.
As demonstrated, we only perform verification of message contents if it is reasonable or if the
protocol description demands it, resulting in the validity of the model from a higher-level
implementation perspective.

4.4.4 Security Properties

In this section, we prove the security of the Yahalom protocol with respect to the security goals
elaborated in Section 4.4.1 by formulating concrete security objectives and defining corresponding
security lemmas for these objectives in an additional module YLM.SecurityProps, which we verify
together with the rest of the coherent Yahalom model in F*. Given the similarities in the procedures
of the protocols Yahalom and Otway-Rees, it is no surprise that they also have very similar security
goals. In fact, the secrecy objectives S1 and S2, and the authentication objectives A1 and A2
expressed for the Otway-Rees protocol in Section 4.3.4 also apply to the Yahalom protocol. Howbeit,
we have one additional authentication objective for the Yahalom protocol resulting from the use of
the session key 𝑘𝑎𝑏 to encrypt the responder’s challenge 𝑁𝑏 in the last protocol message:

(A3) the responder is assured that the initiator has accepted and therefore trusts the session key.

Secrecy

The secrecy objectives S1 and S2 can be shown exactly as in the Otway-Rees model by proving that
the key stored in the respective final state sessions of server, initiator, and responder, is unknown to
the attacker unless at least one of their state sessions is corrupted. The property from the server’s
perspective here proves objective S1, concerned with the secrecy of the generated key itself, while
the property from the initiator’s and responder’s perspective ensures objective S2, i.e. that the
users receive this secret key and accept it as session key as a result of the protocol, instead of some
other term that the attacker may possibly know. We omit the details of the secrecy proof in the
Yahalom model and refer to the identical secrecy proof of the (improved) Otway-Rees protocol in
Section 4.3.4 and Section 4.3.6, respectively.

Authentication

Due to the unusual message order and structure in the Yahalom protocol, the authentication
objectives result in slightly different lemmas than in the improved Otway-Rees model. We again
divide the mutual authentication property into two separate lemmas, initiator_authentication and
responder_authentication, both of which satisfy the objectives A1 and A2 from the perspective of
the respective user. The initiator_authentication lemma further ensures the new authentication

94



4.4 Yahalom

goal A3, specific to the Yahalom protocol. The authentication properties of the Yahalom protocol
are also specified in terms of trace event relations based on the events we defined in the model in
Section 4.4.2.

val initiator_authentication: i:nat ->

LCrypto unit (pki ylm_preds)

(requires (fun t0 -> i < trace_len t0))

(ensures (fun t0 _ t1 -> forall a b srv n_b k_ab.

did_event_occur_at i b (event_recv_key a b srv n_b k_ab)

==> (exists n_a. did_event_occur_before i a (event_fwd_key a b srv n_a n_b k_ab)

\/ corrupt_id i (P a) \/ corrupt_id i (P b) \/ corrupt_id i (P srv))))

The parameter i again denotes some valid trace index. For arbitrary initiator a, responder b, server
srv, responder challenge n_b, and session key k_ab, the lemma ensures that if the responder triggered
event_recv_key a b srv n_b k_ab at trace index i, the initiator must have previously triggered
event_fwd_key a b srv n_a n_b k_ab with arbitrary n_a, or at least one state session of initiator,
responder or server is corrupted. Disregarding corruption, this means that if the responder b receives
back its correct challenge n_b and accepts the session key k_ab in the fifth protocol step, then it has
been the initiator a who previously forwarded n_b and k_ab to the responder and both users have
the same view regarding the principals involved in the protocol run. From the correspondence
of n_b among the events, the responder gets the timeliness assurance contained in objective A2.
Furthermore, the correspondence of k_ab means the responder learns that the initiator has accepted
the same session key as a result of the protocol run and therefore also trusts it to be secret, essentially
proving objective A3. Finally, the relation imposed on the events and the principals matching in
the events imply that a executed the protocol as initiator and b executed the protocol as responder,
and both see each other’s correct identity. This shows, on the one hand, the remaining part of the
authentication objective A2, which is to convince the users that they have talked to each other, and,
on the other hand, the objective A1, which is for the users to comply with the principal roles in the
protocol. The lemma is automatically verified within the DY* model with F*, which proves it once
and for all.

Responder authentication is similarly proven, but based on a different event relation.

val responder_authentication: i:nat ->

LCrypto unit (pki ylm_preds)

(requires (fun t0 -> i < trace_len t0))

(ensures (fun t0 _ t1 -> forall a b srv n_a n_b k_ab.

did_event_occur_at i a (event_fwd_key a b srv n_a n_b k_ab)

==> (did_event_occur_before i b (event_req_key a b srv n_a n_b)

\/ corrupt_id i (P a) \/ corrupt_id i (P b) \/ corrupt_id i (P srv))))

In particular, responder authentication is expressed as relation between the events forward key
and request key of initiator and responder. The property states that if the initiator triggered
event_fwd_key a b srv n_a n_b k_ab at trace index i for the same arbitrary principals and terms as
in initiator authentication, and arbitrary initiator challenge n_a, then there has been a prior event
event_req_key a b srv n_a n_b triggered by the responder. Essential are here the correspondence
of the principals and the initiator challenge among the events, which ensures that the initiator
forwarding a key k_ab to the responder is preceded by a request of the responder to the server
including n_a and the same principals with the same role distribution. The initiator can conclude
that the request must have occurred in the same protocol run based on the timeliness and locality
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guarantees it gets from verifying its challenge. The fact that both users agree on the principals and
roles involved in the protocol run and that the initiator can deduce the timeliness of the request by
the responder covers the authentication objectives A1 and A2 from the initiator’s perspective. Since
the responder does not use k_ab for encryption in the course of the protocol, the initiator has no way
of knowing whether the responder will eventually obtain the same session key. Thus, the slightly
weaker responder authentication lemma already completes the mutual authentication property of
the Yahalom protocol. To prove the lemma’s soundness, it is also verified in F*.

4.4.5 Discussion

During the analysis, security related properties and goals of the Yahalom protocol have been detailed
and incorporated in a coherent model of the protocol developed in DY*. The security of the protocol
has been analysed based on the protocol’s properties and concrete secrecy and authentication
objectives were defined. Finally, we formalized the objectives through several security lemmas
in the DY* model and verified them using F*, resulting in a full Yahalom security proof. In
Section 3.3.2, different methods to analyse the security of the Yahalom protocol and their results, as
well as attacks on the protocol, have been summarized. Similarly as for Otway-Rees, we discuss
these analyses and attacks in the context of our own security proof to explain possible differences in
the outcome, but also to draw parallels with other security proofs.

Besides the protocol of Otway and Rees, the Yahalom protocol has also been analysed with the BAN
logic of Burrows et al. [11]. The BAN analysis shows that the protocol results in strong security
implications for honest users, but has a minor flaw that would allow the initiator to replay an old
session key without the responder noticing. For the BAN authors, this does not impose a major
problem because they assume principals to not act maliciously in the context of a BAN analysis.
With the active attacker model present in DY*, we cannot assume that principals do not deviate from
the protocol steps. In Section 4.3.4, we were however able to prove security objectives S2, which
states that the users must obtain a session key generated by the server as a result of the protocol, and
A2, which requires that the users recently talked to each other (particularly, in the protocol run in
which the key has been exchanged). To proof S2, we deduced a statement about the label of the key
stored in the state sessions of initiator and responder from the respective key certificates issued by
the server. Since the DY* adversary can just replay an old key certificate from the server on behalf
of the initiator, this alone is not enough to ensure that the key is not a replay. This is where the
authentication objective A2 comes into play. The proof of A2 bases on the timeliness and locality
implications of the challenges generated by the users during their respective first steps in a protocol
run. Verifying the challenge encrypted with the session key in the last step assures the responder
that the session key is fresh, because it has been used to encrypt a randomly generated nonce that the
responder associates with the current protocol run. The initiator itself could still trick the responder
into accepting an old key if it simply uses that key to encrypt the challenge of the responder in the
fourth message, but this is viewed as adversarial behavior in DY* and hence requires the adversary
to corrupt the initiator’s long-term key session in advance. While an analysis with the BAN logic
only considers the case where the protocol is run by honest principals, DY* defines the adversary
as a concept that covers all malicious behavior, directly or indirectly through principals under its
control. If a principal deviates from the protocol, it must be made explicit by corruption, which in
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turn reflects in the provable security properties for the protocol. In case of the Yahalom protocol,
the result is the same, that this detail does not make the protocol any less secure, as a malicious
initiator could just as easily leak a fresh session key to the adversary and therefore break security.

Still, the flaw pointed out by the BAN authors prompted Chen and Shi [13] to perform an elaborate
analysis of the Yahalom protocol with the SVO logic. They come to the result that the protocol does
not achieve its authentication goals. Thus, they propose an improved version of the protocol and
use the SVO logic to prove that it achieves the level of security they intend. While the BAN analysis
merely aims to study the authentication properties of the Yahalom protocol between honest parties,
Chen and Shi consider the possibility of a malicious initiator in their analysis. Therefore, they
slightly weaken their initial assumptions compared to the BAN analysis by omitting assumptions that
let the responder deduce the freshness of the session key. In the SVO derivation for the responder,
they are thus not able to show that the responder believes in the freshness of the session key, which
they identify as flaw in the protocol that could be exploited by an attacker to make the responder
accept an old key. On the other hand, Chen and Shi also define stronger security goals for the
protocol in terms of the SVO logic. Both users shall be convinced that the other shares its believes
about the session key. Intuitively, this is not possible because the initiator has no way of knowing
whether the responder ever receives the session key, as the responder never encrypts a message
under it during the protocol. This also reflects in the results of our analysis in a slightly weaker
responder authentication property compared with the initiator authentication property we were
able to prove. For this matter, Chen and Shi propose several modifications to the protocol to make
up for the deficits. The most important change is an additional fifth message from the responder
to the initiator encrypted with the session key accepted by the responder. This way, the initiator
is reassured that the responder actually received and accepted the session key forwarded by the
initiator with the fourth message, and can therefore assume that the responder trusts the session key
to be secret. Moreover, even a malicious initiator cannot replay an old session key in the fourth
message anymore, since the server includes the responder’s challenge in its key certificate, which
cannot be manipulated by the initiator. This finally lets the responder deduce the freshness of the
key, which the initiator also learns when it receives the fifth message. The modifications therefore
have the desired effects, but achieve a much stronger level of security than originally intended. We
have explained above, that the original protocol already assures the responder that the session key is
fresh as long as the initiator is not controlled by a malicious party (the DY* adversary). Further,
the intention of the original protocol was clearly not to reassure the initiator that the responder
accepts the session key; otherwise, the protocol would already contain a handshake between initiator
and responder where they both exchange messages encrypted under the session key. Like in our
improved version of Otway-Rees, the initiator gets this information when receiving the first message
from the responder after completing the protocol. Another attack on the Yahalom protocol – besides
the replay attack detected by the BAN authors – is described in [14] and has already been discussed
in Section 3.3.2. In the attack, the initiator replays the responder’s encryption from the second
message as key certificate from the server to make the responder accept the concatenation of the
two challenges as session key. In a way, this attack is the equivalent of the type flaw attacks on the
Otway-Rees protocol presented in Section 4.3.5. We have clarified that this attack – similarly to the
replay attack from above – requires the corruption of the initiator, who must somehow obtain the
challenge of the responder, and does thus not contradict our security proof in DY*. Instead, the
attack once more stems from different assumptions about the intended level of security that the
protocol shall achieve. As we have already precisely argued, our security proof attempts to show
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that the Yahalom protocol achieves the level of security targeted by Burrows et al. in the formal
description of the protocol and with the BAN analysis, and is therefore not in contradiction with
other research that tries to prove stronger or different security properties.

Not only that, but our security proof is also backed up by the results of analyses like that of Ryan et
al. [31] with the CSP approach or Paulson [28] with their inductive trace based method. Ryan et al.,
for example, define a general secrecy property stating that a message claimed secret by its sender is
in fact secret if both sender and receiver are honest. Among other things, Ryan et al. prove that this
also applies to the session key in the Yahalom protocol. This is similar to our secrecy proof in that
the server annotates the session key with a label and passes on a statement about this label to the
users via the encrypted key certificates. The encrypted certificates can therefore be understood as a
secrecy claim by the server. In our proof, the users are able to deduce the label of the session key
from their respective key certificate if the long-term key used to encrypt it is secret, which is exactly
the case if the state session of the server or the respective user storing the long-term key has not
been corrupted by the attacker. Assuming this is the case, the users can use their knowledge about
the label of the key to derive a statement about its secrecy. The authentication property is – like in
our proof in DY* – divided into an initiator and responder property. Another similarity is that Ryan
et al. define the properties using relations of trace events or points passed during protocol execution.
In particular, they say that either party must emit a running signal before the respective other party
commits to the run, in order to mutually authenticate both parties. For the authentication to be
meaningful, the parties must agree on certain terms like principals involved in the run, nonces, or the
exchanged key, and associate them with the signaled event. In our DY* model, the running signal
of the initiator is the event forward key, and the responder uses the event receive key to commit to
the run. In turn, the responder’s running signal is request key, while the initiator also commits with
forward key. With this definition of authentication, Ryan et al. are even able to account for the fact
that the initiator authentication property is slightly stronger in that initiator and responder agree
on the principals involved in the run, their nonces, and the exchanged key, while the initiator does
not get reassurances about the key from the responder through responder authentication. Paulson’s
secrecy proof is quite similar insofar as it relies on the fact that an honest server distributes the
session key on secret channels accessible only to the users, and the users accept only a key that
must have come from the server. Initiator and responder authentication are also similar because
they ultimately depend on matching key peers in the key certificates, as well as the initiator’s nonce
in the corresponding key certificate, and the responder’s nonce in the second encryption of the last
message under the session key by the initiator. We thus have two independent analyses that come
to a conclusion comparable to ours, that the Yahalom protocol is secure with respect to its formal
specification given in the BAN paper.
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4.5 Denning-Sacco

The third analysed protocol is the Denning-Sacco protocol with public keys [16]. Denning and
Sacco studied the use of timestamps in key distribution protocols, which resulted in a family of
protocols with interesting properties. Particularly, protocols with timestamps can protect against
replays of old session keys and make the handshake between the users exchanging a key obsolete.
In our analysis, we focus on one specific protocol from Denning and Sacco with the purpose of
exchanging a symmetric communication key via public keys and a trusted third party that functions
as certification authority (see Section 3.3.3). We prove that the protocol is secure under certain
assumptions insofar as that it has the properties described by its authors and achieves basic security
goals a simple key exchange protocol should achieve, including, inter alia, key secrecy and basic
authentication. The concrete properties are defined, formalized and finally verified in DY* as part
of the analysis. This thesis provides the first elaborate security proof of the Denning-Sacco protocol
with public keys and strives to give a more detailed insight into the security related properties of the
protocol than previous literature could.

4.5.1 Properties and Goals

We start once more by outlining the properties and goals of the protocol taken from the work
of Denning and Sacco and their description of the protocol. Based on that, we can later build a
representative DY* model of the protocol, which has the discussed properties and achieves the
defined goals.

Principal Roles

Like the other protocols, the Denning-Sacco protocol is run between two users 𝐴 and 𝐵 with the
ultimate goal to exchange a secret key for direct communication between the users. Therefore, the
protocol also involves a trusted third party – an authentication server 𝐴𝑆 – that serves as certification
authority for the users’ public keys. One speciality of the protocol is that while 𝐴 again takes the
role of the initiator who starts the protocol by requesting the public key certificates of itself and
𝐵 from the 𝐴𝑆, the other user 𝐵 is only involved in the protocol as receiver of the last message
containing the communication key, so that 𝐴 can never actually know whether 𝐵 has been online
until 𝐵 sends its first message encrypted under the key. This highlights the importance of the role of
the 𝐴𝑆 in the protocol, since all guarantees that the initiator gets build on its trust in the 𝐴𝑆.

Initial Knowledge

The initiator is in possession of a public and private key and knows the pair (𝐴𝑆, 𝑃𝐴𝑆), where 𝑃𝐴𝑆

denotes the public key of the 𝐴𝑆, and the user 𝐵 with whom it wishes to exchange a key. The 𝐴𝑆
must also possess a public and private key, and must furthermore store all pairs of users and public
keys, including the pairs (𝐴, 𝑃𝐴) and (𝐵, 𝑃𝐵). Finally, we have the user 𝐵 who also posses a public
and corresponding private key and knows (𝐴𝑆, 𝑃𝐴𝑆) as well. 𝐵 is however not necessarily aware of
𝐴’s existence before it receives the key.
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Timestamps

Denning and Sacco refrain from using nonces for timeliness and locality guarantees in their protocol,
and suggest the use of timestamps in their place. Similar to nonces, timestamps shall ensure that
messages are fresh and not replays from previous protocol runs. They trade off the additional locality
guarantee from nonces (i.e., the guarantee that a message originates from a particular protocol run)
for the omission of the obligatory handshake for nonce verification. To reliably use timestamps, the
principals must synchronize their respective local clocks to a reliable global source before running
the protocol. The server then obtains a timestamp from its clock and includes it in the certificates
issued to the initiator. The initiator receives the certificates and checks if they are fresh by obtaining
a timestamp from its own local clock and verifying that it falls within an acceptable tolerance range
of the timestamp in the certificates. If they turn out to be valid, the initiator forwards them to the
responder, who also validates their freshness. Along with the certificates, the initiator also sends a
signed and encrypted part containing the communication key and the same timestamp as in the
certificates. This allows the responder to verify that the communication key is fresh.

Exchanged Keys or Secrets

The purpose of the Denning-Sacco protocol with public keys is the exchange of a symmetric key 𝑘𝑐
for direct and secure communication between two users with the only commonality that they know
an authentication server 𝐴𝑆 and the corresponding public verification key 𝑃𝐴𝑆 . The authentication
server knows the public keys of a set of users including the keys 𝑃𝐴 of 𝐴 and 𝑃𝐵 of 𝐵 and issues
certificates for those keys using its private sign key 𝑆𝐴𝑆 . The users can then use 𝑃𝐴𝑆 to verify the
certificates containing the keys. 𝐴 proceeds by choosing a communication key 𝑘𝑐 intended for
secret communication with 𝐵, which it signs using its private sign key 𝑆𝐴 and then encrypts using
𝐵’s public encryption key 𝑃𝐵. 𝐵 in turn decrypts the message using its private decryption key
𝑆𝐵 and then uses 𝐴’s public verification key 𝑃𝐴 to verify the signature. The signature with 𝑆𝐴 is
necessary such that 𝐵 is able to verify the origin of the key, and the encryption under 𝑃𝐵 shall
ensure that only the possessor of 𝑆𝐵, i.e. 𝐵, obtains 𝑘𝑐.

Authentication Goals

Denning and Sacco are not precise regarding the authentication properties of their protocol. However,
a careful look at the message structure gives us an idea of how exactly the two users authenticate. The
𝐴𝑆 plays a central role in mutual authentication, as it issues certificates that prove the authenticity of
the users’ public keys. If the certificates are valid, and 𝐴 and 𝐵 honest, the users can be sure about
the origin of subsequent messages encrypted under the communication key 𝑘𝑐. 𝐴 because it has
transmitted 𝑘𝑐 encrypted under 𝑃𝐵 certified by the 𝐴𝑆, and 𝐵 because, as explained above, it can
verify the origin of 𝑘𝑐 via 𝑃𝐴, also certified by the 𝐴𝑆. 𝐵 is provided with even stronger guarantees
in that it is assured that 𝐴 emitted a message containing 𝑘𝑐 and intended for 𝐵. The authentication
properties are extended with timeliness guarantees via the timestamps in the certificates and in the
signature of 𝑘𝑐. As explained above, the timestamps ensure that the certificates and the signature of
𝑘𝑐 are current and therefore prevent possible replays of compromised session keys.
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4.5.2 Modeling Time-based Properties

One important goal of this thesis was to look for ways to model the described time-based or
time-dependent properties of the Denning-Sacco protocol in the DY* framework. In this section,
we explain the difficulties of modeling time-based properties in symbolic provers like DY*. We
present a possible generic solution to the problem and demonstrate it with an implementation in the
DY* model of the Denning-Sacco protocol. Finally, we discuss the implications of our solution
and the tradeoffs that must be made when abstracting from time-based properties of cryptographic
protocols in the real world.

Problem and Goal

Although the timestamps are supposed to protect from replays of old compromised session keys,
they cannot protect against such attacks with full certainty. If an adversary is able to compromise a
key while the server’s timestamp is still valid, the responder would accept the replayed key. This
tolerance window is necessary to ensure that the responder does not erroneously reject legitimate
key certificates. Denning and Sacco suggest a tolerance between one and two minutes to account
for discrepancies between the global time sources used by the principals to synchronize their local
clocks plus some additional time for the expected network delay. This results in a vague definition
of security due to the small remaining chance of a replay. Because it is very unlikely that a single
session key will be compromised in such a short time after the key exchange (given the protocol
sufficiently protects the key otherwise), this chance is considered negligible in reality. In contrast,
symbolic provers like DY* usually aim to prove security properties of cryptographic protocols in an
ideal world that does not allow uncertainty. Our goal is thus to abstract from the uncertainty of
time-based properties in the real world and model the property in DY* such that it clearly defines
when timestamps protect against replays.

Idea

First and foremost, to formulate the time-dependent security properties as ideal properties in
DY*, we must eliminate factors that bring non-determinism into our model. This requires certain
abstractions in our model from the real world, and from the way Denning and Sacco describe the use
of timestamps in their protocol. For example, we must neglect the discrepancy between clocks in our
model and instead use a single global source of time for all principals. DY* already uses the global
trace length to describe how certain events during protocol execution relate in time. In that sense,
the trace length is an ideal global source of time because of its monotonically increasing property
and the fact that it is globally accessible via the global_timestamp function in the symbolic runtime
layer. Another necessary abstraction is to determine the exact delay between messages instead of
estimating it. Since protocols are modeled in DY* as a set of fixed protocol steps that are intended to
execute in a particular order resulting in the same trace each time, this would generally be possible
using the length of the trace as measure of time. The problem with this approach is that a DY*
model of a protocol should generally allow to run multiple instances of the protocol concurrently.
If we use the current trace length as timestamp in the Denning-Sacco protocol and run multiple
instances of the protocol in parallel, the increase in trace length reflects in all protocol sessions and
thus invalidates timestamps, causing the protocol to fail in cases where the initiator actually sent a
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fresh key. Hence, we must somehow track time in different protocol sessions independently, while
the only global measure of time we have is the trace length. This problem is solved by using the
trace length as global clock that returns absolute timestamps, and then measuring the time in the
corresponding protocol run relative to the point marked by the timestamp and independent of other
runs. How this relative and protocol session independent measure of time is defined, and how it
changes the way a timestamp is validated, is discussed in detail in the following section.

Implementation

We implement our solution in a module DS.Clock as part of the DY* model of the Denning-Sacco
protocol. In the module, we introduce a type clock with the purpose of measuring the time elapsed
in a protocol run relative to an absolute timestamp. We define clock as Type0 in the interface of
DS.Clock to abstract from its concrete implementation.

val clock:Type0

Internally, clock is implemented by a type clock_, which is defined as a tuple of a natural number
counter – the clock counter representing the elapsed time – and the timestamp for which the elapsed
time is measured.

let clock_ = (counter:nat * timestamp)

let clock = clock_

By keeping the implementation private, it is hidden from other modules, thereby preventing an
adversary from creating clocks for arbitrary timestamps and setting the clock counter to zero to trick
honest principals into accepting invalid timestamps. Instead, clocks are created using a function
clock_new that obtains the current trace length as timestamp, appends to the trace to prevent the
instantiation of a second clock with the same timestamp, and initializes the clock counter to zero.

val clock_new: #pr:preds -> principal ->

LCrypto (c_new:clock & ts:timestamp) (pki pr)

(requires (fun t0 -> True))

(ensures (fun t0 (|c_new,ts|) t1 ->

trace_len t1 == (trace_len t0) + 1 /\

clock_get c_new == 0 /\

ts == trace_len t0))

The function accepts two arguments: the first argument pr is a set of usage and trace predicates
defined at the individual protocol level – in this instance the Denning-Sacco protocol –, and the
second argument is the principal instantiating the clock. Returned is a tuple consisting of the
new clock c_new and the timestamp ts at which c_new has been instantiated. ts can then be used
as timestamp in protocol messages, for example of the Denning-Sacco protocol, and c_new tracks
the elapsed time and is used for validation of ts later. Since clock_new implicitly effects the trace,
we annotate the result with the LCrypto effect. The desired properties of the function are captured
with the requires and ensures predicates. In particular, the function takes an arbitrary input trace t0

and results in an output trace t1 with one additional entry. Moreover, the counter of the new clock
returned by clock_get is zero, and the returned timestamp is equal to the trace length of the input
trace. A similar function att_clock_new is defined for usage by the DY* adversary.
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module A = AttackerAPI

val att_clock_new: unit ->

Crypto (c_new:clock & ts:timestamp)

(requires (fun t0 -> True))

(ensures (fun t0 r t1 ->

match r with

| Success (|c_new,ts|) ->

A.attacker_modifies_trace t0 t1 /\

trace_len t1 == (trace_len t0) + 1 /\

later_than (trace_len t1) (trace_len t0) /\

clock_get c_new == 0 /\

ts == trace_len t0

| Error _ -> t0 == t1

))

The attacker function is defined in terms of the Crypto effect instead of the LCrypto effect and thus
integrates well with other attacker functions defined in AttackerAPI. The two input arguments
of clock_new are omitted in case of att_clock_new and are replaced by a single input of type
unit. The validity of the trace, which is implicit in the LCrypto effect, is explicitly ensured by
A.attacker_modifies_trace for att_clock_new.

let clock_new #pr p =

let ts = global_timestamp () in

let _ = send #pr #ts p p (nat_to_bytes #pr.global_usage #ts 0 ts) in

(|(0, ts),ts|)

let att_clock_new () =

let ts = A.global_timestamp () in

let _ = A.send #ts "*" "*" (A.pub_bytes_later 0 ts (A.nat_to_pub_bytes 0 ts)) in

(|(0, ts),ts|)

Since the implementation of the clock type is private, the implementations of clock_new and
att_clock_new must also be internal to the DS.Clock module. Both implementations are quite similar.
To create a new clock, both first obtain the current length of the trace via global_timestamp, or
A.global_timestamp, in the adversary’s case. After that, a symbolic message containing the serialized
timestamp is sent and stored on the trace, resulting in a new trace entry. The new entry on the trace
ensures that the returned clock is unique with respect to its associated timestamp. In clock_new,
we use the send function from LabeledPKI for this purpose, which is defined in terms of the LCrypto

effect and thus takes the predicates pr as input. We define p, the principal instantiating the clock, to
be both sender and receiver of this symbolic message. On the other hand, att_clock_new uses the
send function of AttackerAPI and respectively replaces sender and receiver with wildcard strings.
Both functions finally return a tuple consisting of the new clock – which is itself a tuple (0, ts)

– and the timestamp ts. Returning ts separately is required, since we have no way to extract the
timestamp from the clock outside of the private DS.Clock implementation.

Given a timestamp and a corresponding clock, validation of the timestamp can be performed using
a function clock_lte.

val clock_lte: ts:timestamp -> max_delay:nat -> c:clock -> r:(result bool)

{

match r with
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| Success true -> clock_get c <= max_delay

| _ -> True

}

The function accepts parameters ts, the timestamp to validate, max_delay, the maximum expected
network delay, and c, the clock used to validate the timestamp. The returned result r is a refinement
type of result bool, and ensures that the clock counter is less or equal to max_delay in case that
r == Success true.

let clock_lte ts max_delay c =

let (cnt_c, ts_c) = c in

if ts_c = ts then Success (cnt_c <= max_delay)

else Error "[clock_lte] Timestamps do not match"

The implementation of clock_lte is again part of the private implementation file of the clock module.
We start by extracting the counter and timestamp of c into bindings cnt_c and ts_c. Then, we
check that ts is equal to the timestamp ts_c stored by the clock to make sure that the clock was
created at trace length ts and not at some other time. Matching timestamps are required such
that a comparison of the clock’s counter cnt_c and the expected network delay are meaningful.
The property we want to ensure is that the clock has not ticked more often since its creation than
specified by max_delay with ts as starting point for the measurement. If the timestamps match,
the comparison is meaningful and we return either Success true indicating that the timestamp is
valid, or Success false for an invalid timestamp. Otherwise, an error is returned stating that the
timestamps do not match.

Because network delay describes the time it takes to transmit messages over the network, we define
a clock tick in our model as the time it takes to send or receive a message. The clock counter
therefore describes the number of sends and receives of messages containing the timestamp for
which the time is measured by the clock. We only require honest principals to increment the clock
and hence define another module DS.SendRecv in the Denning-Sacco model, in which we wrap the
functions send and receive_i from LabeledPKI and simultaneously increment the clock counter. The
adversary, on the other hand, does not perform a clock tick when sending or receiving messages,
and thus can use the send and receive_i functions in AttackerAPI directly.

val send: (#i:timestamp) -> (c_in:clock) -> (sender:principal) -> (receiver:principal) ->

(message:msg i public) -> LCrypto (si:timestamp & c_out:clock) (pki ds_preds)

(requires (fun t0 -> i <= trace_len t0))

(ensures (fun t0 (|si,c_out|) t1 ->

si == trace_len t0 /\

trace_len t1 = trace_len t0 + 1 /\

was_message_sent_at (trace_len t0) sender receiver message /\

clock_get c_out = (clock_get c_in) + 1))

The interface of the new send function in DS.SendRecv has an additional parameter c_in of type clock,
the current clock before a message is sent. Similarly, the output type is changed to a dependent tuple
consisting of the trace index si of the sent message, and additionally the new clock c_out after the
message has been sent. The increment of the clock counter when sending a message is tracked by
the additional clause clock_get c_out = (clock_get c_in) + 1 in the ensures predicate of the LCrypto

effect.
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val receive_i: (index_of_send_event:timestamp) -> (c_in:clock) -> (receiver:principal) ->

LCrypto (now:timestamp & c_out:clock & sender:principal & msg now public) (pki

ds_preds)

(requires (fun t0 -> True))

(ensures (fun t0 (|now,c_out,sender,t|) t1 -> t0 == t1 /\

now = trace_len t0 /\

index_of_send_event < trace_len t0 /\

(exists sender receiver. was_message_sent_at index_of_send_event sender receiver t

) /\

clock_get c_out = (clock_get c_in) + 1))

In the same way, we modify receive_i. The new function has an additional input parameter c_in and
the dependent tuple returned by the function has an additional member c_out, both of type clock. The
ensures predicate is again extended to track the clock counter before and after a message is received.
To be able to increment the counter of a clock, the DS.SendRecv module needs access to the clock

implementation. Therefore, we need to split the module into an interface and an implementation
file, similar to DS.Clock, and then friend the DS.Clock module inside the implementation file.

Implications

The implication of the presented approach and its concrete implementation is that a communication
key exchanged over a secure channel cannot be replayed under any circumstances if compromised
later. This presupposes that we model the protocol steps such that the send and receive_i functions
from DS.SendRecv are used to send and receive messages with timestamps and that proper validation
of timestamps is performed. To still allow an adversary to carry out timely replay attacks, which
are typically not prevented by the lax timeliness guarantees of timestamps, we do not assume that
the adversary increments the clock counter when sending or receiving messages. In this way,
the adversary can easily compromise principals before or during a protocol run and replay keys
within the small time window in which timestamps are valid. However, if the attacker compromises
and replays a previously securely exchanged key, the honest recipient will perform a clock tick,
invalidating the corresponding timestamp and therefore rejecting the key. Hence, we have ideal
time-based security implications in protocol runs of honest principals, without limiting the DY*
attacker’s capability to compromise principals and successfully replay keys in the validity window
of the corresponding timestamps. We demonstrate the soundness of our approach in the following
sections by proving that the timestamps in the Denning-Sacco protocol do indeed prevent replays
of old compromised communication keys, and by modeling an attack on the protocol in which a
compromised server issues a fake certificate containing a valid timestamp accepted by the initiator,
allowing the adversary to break authentication and further replay the key in the name of the initiator
to any other principal while the timestamp is still valid.

4.5.3 Modeling the Protocol in DY*

With the presented solution for modeling and proving time-based properties of the Denning-Sacco
protocol or similar protocols, we are now able to develop a complete model of the Denning-Sacco
protocol in DY*. We presuppose the message structure from Section 3.3.3 and use an architecture
for the model similar to that of the Otway-Rees and Yahalom models.
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Messages

Again, a module DS.Messages defines and implements types modeling the message structure and
functions for serializing and parsing messages.

/// Format of signed message parts

noeq type sigval =

| CertA: a:principal -> pk_a:bytes -> t:timestamp -> sigval

| CertB: b:principal -> pk_b:bytes -> t:timestamp -> sigval

| CommKey: ck:bytes -> t:timestamp -> sigval

noeq type message (i:nat) =

| Msg1: a:principal -> b:principal -> message i

| Msg2: cert_a:msg i public -> sig_cert_a:msg i public -> cert_b:msg i public ->

sig_cert_b:msg i public -> message i

| Msg3: cert_a:msg i public -> sig_cert_a:msg i public -> cert_b:msg i public ->

sig_cert_b:msg i public -> enc_sig_ck:msg i public -> message i

While Otway-Rees and Yahalom used exclusively symmetric encryption – modeled as AEAD in
their respective DY* models – the Denning-Sacco protocol uses different cryptographic primitives:
a combination of digital signatures and public key encryption. Since public key encryption is only
used to encrypt a signature at one point in the protocol, we do not need to model it as an additional
sum type with multiple constructors. Howbeit, digital signatures are used in several places in the
protocol and are modeled by the sigval type (remember that we had an encval type for encrypted
values in the Otway-Rees and Yahalom models). Similar to encval, the type sigval reflects the
structure of the message parts that appear in the form of signatures in the protocol messages. There
are three signatures in total in the messages of the Denning-Sacco protocol. The two public key
certificates 𝐶𝐴 = {𝐴, 𝑃𝐴, 𝑇}𝑎𝑆𝐴𝑆

and 𝐶𝐵 = {𝐵, 𝑃𝐵, 𝑇}𝑎𝑆𝐴𝑆
are issued by the authentication server for

users 𝐴 and 𝐵, and are constructed via CertA a pk_a t, and CertB b pk_b t, respectively, in the model.
The third signature is the key certificate {𝑘𝑐, 𝑇}𝑎𝑆𝐴

issued by 𝐴 for 𝐵, which is additionally encrypted
under 𝐵’s public key because 𝑘𝑐 is confidential. To create the key certificate, the constructor
CommKey ck t may be used. Like in the other models, the message model is completed by a type
message i for entire messages consisting of signatures, ciphertexts, and terms appearing in plaintext.
In the Denning-Sacco protocol, there are three messages respectively constructed via the constructors
Msg1 a b for the first message 𝐴 → 𝐴𝑆 : 𝐴, 𝐵, Msg2 cert_a sig_cert_a cert_b sig_cert_b for the
second message 𝐴𝑆 → 𝐴 : 𝐶𝐴, 𝐶𝐵, and Msg3 cert_a sig_cert_a cert_b sig_cert_b enc_sig_ck for
the third message 𝐴 → 𝐵 : 𝐶𝐴, 𝐶𝐵, {{𝑘𝑐, 𝑇}𝑎𝑆𝐴

}𝑎
𝑃𝐵

. The constructors for the second and third
message accept two arguments for each of the two certificates, the plaintext and the corresponding
signature or tag. Denning and Sacco do not differentiate between public and private keys for public
key cryptography, and keys used for creating and verifying digital signatures. Instead, they simply
define signing and verification as the inverse of encryption and decryption under the same key pair.
For the Denning-Sacco protocol by itself, this does not impose a security risk, as neither party uses
its public-private-key-pair for both, public key encryption and digital signatures. However, DY*
only offers a secure symbolic implementation of signatures, which requires an extra key pair for
signing and verifying messages, and where the plaintext is not part of the signature returned by
the sign function. The verification algorithm, howbeit, requires the plaintext to verify a signature,
assuming that the verifying party either already knows the signed term or is able to derive it (which
is generally possible, since signatures by themselves should not contain confidential data). Since
the server is in charge of public key distribution in the Denning-Sacco protocol, and users are not
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supposed to know the public keys of all other users in advance, we simply include the certificates
in plaintext in the second and third message, such that the receiving party can easily verify the
certificates and obtain the public keys and peer identities, as well as the timestamp.

val encval_comm_key: i:nat -> ser_ck:bytes -> sig_ck:bytes -> l:label{

valid_encval_comm_key i ser_ck sig_ck l} -> enc_sig_ck:msg i l

val parse_encval_comm_key: #i:nat -> #l:label -> enc_sig_ck:msg i l -> r:(result (bytes *

bytes))

{

match r with

| Success (ser_ck, sig_ck) -> valid_encval_comm_key i ser_ck sig_ck l

| _ -> True

}

For the key certificate encrypted under the responder’s public key in the last message, we introduce a
function encval_comm_key that accepts as input the key certificate in plaintext form and in signed form,
both of type bytes and valid according to valid_encval_comm_key. The values are concatenated, and
the resulting msg i l is returned, which can then be encrypted. The corresponding parse function
accepts a single value of type msg i l and if parsing succeeds, returns a tuple consisting of a valid
key certificate in plaintext and its signature tag. Serialization and parsing of sigval and message i

values is implemented similarly as in the Yahalom model.

State

We also once more define a state session type session_st in a module DS.Sessions to construct states
for storing protocol relevant data.

noeq type session_st =

| InitiatorSentMsg1: b:principal -> session_st

| AuthServerSentMsg2: a:principal -> b:principal -> session_st

| InitiatorSentMsg3: b:principal -> ck:bytes -> session_st

| ResponderRecvedMsg3: a:principal -> ck:bytes -> session_st

Since the Denning-Sacco protocol uses signatures and public key encryption, we use the API for
private key generation and public key installation of LabeledPKI, which implicitly stores these keys in
state sessions defined in its own session_st type. The session_st type in DS.Sessions is thus explicitly
used for modeling protocol states and not for storing long-term keys. We have four constructors
corresponding to four protocol steps in which the Denning-Sacco protocol can be divided. The
constructor names contain again the role of the principal that stores the state session and can access
it, and the context or protocol step in which it has been created. After sending the first message,
the initiator creates and stores InitiatorSentMsg1 b, where b is the responder or the party receiving
the key at the end of the protocol, respectively. Similarly, the authentication server constructs and
stores AuthServerSentMsg2 a b after the second message, with a and b being the users (initiator and
responder) for which public key certificates were issued. The initiator receives the certificates first
and forwards them together with the communication key it generates, in the third message, after
which it then stores InitiatorSentMsg3 b ck, where b is again the key recipient or responder and ck

the communication key. At the end, the responder should be in a similar state and therefore stores
ResponderRecvedMsg3 a ck for initiator a.
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let is_comm_key i b p q = is_aead_key ds_global_usage i b (join (readers [P p]) (readers [

P q])) "DS.comm_key"

let valid_session (i:nat) (p:principal) (si vi:nat) (st:session_st) =

match st with

| InitiatorSentMsg3 b ck ->

is_msg i ck (readers [P p]) /\

(is_comm_key i ck p b \/ corrupt_id i (P auth_srv))

| ResponderRecvedMsg3 a ck ->

is_msg i ck (readers [P p]) /\

(is_labeled i ck (join (readers [P a]) (readers [P p])) \/ corrupt_id i (P a) \/

corrupt_id i (P auth_srv))

| _ -> True

The smaller amount of state sessions in the Denning-Sacco model also leads to a simpler valid_session
predicate. Since the first two state sessions only store principals or principal names, there is

nothing to refine, and any state session constructed with their respective constructors is valid. For
InitiatorSentMsg3 b ck, we require that the initiator p can read ck, and that ck is a communication key
for the initiator and the responder b unless the authentication server is corrupted. Even though the
server is not involved in the key exchange directly, it still plays an important role because it certifies
the public key used to keep the communication key confidential between the initiator and the party
the initiator wants to communicate with. The adversary can corrupt the server and claim that the
public key of a principal controlled by the adversary belongs to the responder. The is_comm_key

predicate in the Denning-Sacco model tests for bytes b and for principals p and q, whether b is
an AEAD key labeled with the union of the labels readers [P p] and readers [P q]. The initiator
must make sure that the key certificate can be decrypted with the private key corresponding to the
public key that the server claims to be the responder’s, thus joining the labels of its own private
key (which it knows) and of the responder’s private key, which is readers [P b] given that the
server issues an honest certificate. If the server is corrupted and issues a wrong certificate for the
responder’s public key to the initiator, we cannot deduce the label of the corresponding private key
and therefore not conclude that ck is a communication key for the initiator and responder. A state
session ResponderRecvedMsg3 a ck is valid if the responder can read ck, and if its label is the union
of readers [P a] and readers [P p], with initiator a and responder p, unless there is an arbitrary
corrupted state session of the initiator or the server. The statements about the key’s label in the
respective state sessions are used – similarly as in the other analyses – to prove that the key is secret
as long as the authentication server and the users are honest.

The valid_session predicate involves a principal auth_srv that is neither an input argument of the
function nor stored in one of the state sessions. This is due to the problem that we cannot prove the
secrecy of the communication key in the responder’s final state for arbitrary authentication servers
in DY*. As elaborated, the label of the communication key depends on the honesty of the server
and we are not able to unambiguously associate a particular server with the key certificate for the
communication key given the information it contains. This is certainly not a problem in reality,
since the users must know the identity of the authentication server as well as the server’s public
verification key in advance, and impersonation by the attacker is not possible without corrupting the
servers signing key. If the users accept fake certificates, they must originate from the server owning
the verification key that the users used to verify them, and the respective signing key must have been
corrupted by the adversary. Otherwise, the server is honest and the secrecy of the communication
key depends on the authenticity of its origin, which can be assumed if the signing key is secret. To
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circumvent this problem, we restrict our model to a single authentication server, which we define
statically in DS.Messages. In all places where the server would be declared as a variable, e.g. as an
input argument of a function or as a variable bound to a quantifier in a predicate, we use the globally
defined principal auth_srv instead. For completeness, we also include a model of the Denning-Sacco
protocol in our repository that does not define the authentication server as a singleton, but instead
allows arbitrary principals to play the role of the server. However, some of the security properties
that we prove for the model presented here cannot be proved for the alternative model.

Events

let event_initiate (a b:principal) =

("initiate",[string_to_bytes a;string_to_bytes b])

let event_certify (a b:principal) (pk_a pk_b:bytes) (t:timestamp) (clock_cnt:nat) =

("certify",[string_to_bytes a;string_to_bytes b;pk_a;pk_b;nat_to_bytes 0 t;

nat_to_bytes 0 clock_cnt])

let event_send_key (a b:principal) (pk_a pk_b ck:bytes) (t:timestamp) (clock_cnt:nat) =

("send_key",[string_to_bytes a;string_to_bytes b;pk_a;pk_b;ck;nat_to_bytes 0 t;

nat_to_bytes 0 clock_cnt])

let event_accept_key (a b:principal) (pk_a pk_b ck:bytes) (t:timestamp) (clock_cnt:nat) =

("accept_key",[string_to_bytes a;string_to_bytes b;pk_a;pk_b;ck;nat_to_bytes 0 t;

nat_to_bytes 0 clock_cnt])

For the Denning-Sacco protocol, we define four events. The first event is again the initiate event
marking the start of a protocol run between the initiator a and the intended communication partner
or responder b. When the server issues the public key certificates and sends them to the initiator as
response to the first message, it triggers the certify event. With the certify event, we associate all
the data contained in the two certificates, i.e. the initiator, the responder, their respective public
keys pk_a and pk_b, and the timestamp t. After having received and verified the certificates and
generated the communication key ck, the initiator triggers the event send key to indicate that it sends
the public key certificates and a certificate for the communication key to the responder. The final
protocol event is the accept key event, which the responder triggers when it has verified the server
certificates and accepted the communication key it received from the initiator. The certify, send key,
and accept key events, which include the server timestamp in their associated data, also capture
the value of the clock counter at the time of each event, which we later use to prove that the key
accepted by the responder is not a replay.

Protocol Specific Usage and Trace Predicates

As mentioned, we aim to provide the first elaborate security proof for the Denning-Sacco protocol
with public keys based on our DY* model. In order to derive the statements in valid_session about
the label of the communication key stored in the final state sessions of initiator and responder
required to prove that the key is secret, and to make statements about relations of protocol events
for proving time-based authentication and replay mitigation properties, we need to refine the
data transmitted by messages and associated with events in the usage and trace predicates of our
model. As for the data contained in messages, we can only refine data that is protected by some
cryptographic primitive. Most of the data in the Denning-Sacco protocol is public knowledge
whose integrity is protected by digital signatures. In addition, the serialized communication key
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certificate is protected by public key encryption for confidentiality. However, the parsed data is
only available in the parsed certificate and therefore the signature predicate is sufficient to pass on
statements about keys ans relations of events between protocol steps. Before we can implement the
signature predicate, we have to define the network delays expected by the initiator when receiving
the second message from the server and by the responder when receiving the last message from the
initiator. Recall that the network delay specifies the validity window of a timestamp in terms of
clock ticks since the time represented by the timestamp.

let recv_msg_2_delay:nat = 2

let recv_msg_3_delay:nat = recv_msg_2_delay + 2

We define two values: the maximum delay expected by the initiator when receiving the second
message we denote by recv_msg_2_delay and set it to two clock ticks, one when the message is sent
and one when it is received, and the delay expected by the responder when receiving the third
message we denote by recv_msg_3_delay and set it to the sum of the expected delay of the second
message plus two more clock ticks for sending and receiving the third message. Having defined the
network delays for timestamp validation, we can implement the signature usage predicate of the
Denning-Sacco protocol.

let can_sign (i:nat) s k ssv =

exists p. get_signkey_label ds_key_usages k == readers [P p] /\

(match parse_sigval_ ssv with

| Success (CertA a pk_a t) ->

(t+1) < i /\

(exists b pk_b. did_event_occur_at (t+1) p (event_certify a b pk_a pk_b t 0))

| Success (CertB b pk_b t) ->

(t+1) < i /\

(exists a pk_a. did_event_occur_at (t+1) p (event_certify a b pk_a pk_b t 0))

| Success (CommKey ck t) ->

i > 2 /\

(exists b pk_b.

was_rand_generated_before i ck (join (readers [P p]) (get_sk_label ds_key_usages

pk_b)) (aead_usage "DS.comm_key") /\

(exists clock_cnt.

clock_cnt <= recv_msg_2_delay /\ did_event_occur_at (i-3) p (event_send_key p b k

pk_b ck t clock_cnt)))

| _ -> False)

The signature predicate accepts as inputs a natural number i representing the trace index at which
the signature is created, which is also the trace index at which the predicate holds. The other
input parameters are a usage string s belonging to the used signing key, the verification key k

corresponding to the signing key, and the serialized bytes value ssv that is signed. The statement
in the first line means that the signing key is secret to some arbitrary principal p, whose concrete
identity depends on the key used for signing and the signed term. The rest of the predicate divides
into three branches for the three different signatures appearing in the protocol messages. For the
two server certificates CertA a pk_a t and CertB b pk_b t that confirm the key bindings (a,pk_a) and
(b,pk_b), we require that the next timestamp after t, i.e., t+1, is smaller than the timestamp of the
signature, and that p, being the authentication server, has triggered event_certify a b pk_a pk_b t 0

at t+1, either for arbitrary responder b and public key pk_b in case of CertA, or for arbitrary initiator a
and public key pk_a in case of CertB. Because events are logged in the trace, two different events
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cannot occur at the same trace index, so the two statements in the respective match arms for CertA

and CertB refer to the same occurrence of the certify event at index t+1. This allows us to combine
the two statements into one statement with concrete values for both key pairs, (a,pk_a) as well as
(b,pk_b). The occurrence of the certify event is central to proving mutual authentication, although
in a slightly weaker form than in the models of the improved Otway-Rees protocol or the Yahalom
protocol. The third branch for CommKey ck t contains one helper clause ensuring that the index at
which the signature was created is greater than two, which is relevant in a following clause. The
core statements for the communication key certificate are, on the one hand, that the communication
key ck must have been generated by p – the initiator – before trace index i, labeled with the union
of readers [P p] and the secret key label of some arbitrary public key pk_b and intended as AEAD
key between two parties who completed the Denning-Sacco protocol together, and on the other
hand, that there exists some value for clock_cnt less than or equal to recv_msg_2_delay such that the
initiator triggered event_send_key p b k pk_b ck t clock_cnt at index i-3 (which is a valid index due
to i > 2) for some arbitrary responder b owning pk_b. That pk_b is the public key of b is implied by
the structure of the events, but we still need the event predicate to further refine the terms associated
with events, including the values of b and pk_b in the send key event. For a secrecy proof of the
communication key ck, we must be able to deduce the label of the secret key corresponding to
pk_b.

let is_pub_enc_key i b p =

is_public_enc_key ds_global_usage i b (readers [P p]) "DS.pke_key"

let is_ver_key i b p =

is_verification_key ds_global_usage i b (readers [P p]) "DS.sig_key"

let epred idx s e =

match e with

| ("initiate",[a_bytes;b_bytes]) ->

bytes_to_string a_bytes == Success s

| ("certify",[a_bytes;b_bytes;pk_a;pk_b;t_bytes;clock_cnt_bytes]) -> (

match (bytes_to_string a_bytes, bytes_to_string b_bytes, bytes_to_nat t_bytes,

bytes_to_nat clock_cnt_bytes) with

| (Success a, Success b, Success t, Success clock_cnt) ->

s = auth_srv /\

clock_cnt = 0 /\

is_ver_key idx pk_a a /\ is_pub_enc_key idx pk_b b

| _ -> False

)

| ("send_key",[a_bytes;b_bytes;pk_a;pk_b;ck;t_bytes;clock_cnt_bytes]) -> (

match (bytes_to_string a_bytes, bytes_to_string b_bytes, bytes_to_nat t_bytes,

bytes_to_nat clock_cnt_bytes) with

| (Success a, Success b, Success t, Success clock_cnt) ->

a = s /\

clock_cnt <= recv_msg_2_delay /\

(get_sk_label ds_key_usages pk_b == readers [P b] /\

(t+1) < idx /\

did_event_occur_at (t+1) auth_srv (event_certify a b pk_a pk_b t 0) \/

corrupt_id idx (P auth_srv)) /\

was_rand_generated_before idx ck (join (readers [P a]) (get_sk_label

ds_key_usages pk_b)) (aead_usage "DS.comm_key")

| _ -> False

)
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| ("accept_key",[a_bytes;b_bytes;pk_a;pk_b;ck;t_bytes;clock_cnt_bytes]) -> (

match (bytes_to_string a_bytes, bytes_to_string b_bytes, bytes_to_nat t_bytes,

bytes_to_nat clock_cnt_bytes) with

| (Success a, Success b, Success t, Success clock_cnt) ->

b = s /\

clock_cnt <= recv_msg_3_delay /\

((t+1) < idx /\

did_event_occur_at (t+1) auth_srv (event_certify a b pk_a pk_b t 0) \/

corrupt_id idx (P auth_srv)) /\

((exists clock_cnt'.

clock_cnt' <= recv_msg_2_delay /\

did_event_occur_before idx a (event_send_key a b pk_a pk_b ck t clock_cnt'))

/\

was_rand_generated_before idx ck (join (readers [P a]) (readers [P b])) (

aead_usage "DS.comm_key") \/

corrupt_id idx (P a) \/ corrupt_id idx (P auth_srv))

| _ -> False

)

| _ -> False

Regarding the initiate event, the predicate ensures that the initiator is the one triggering it. For
the certify event, we require that it is triggered by the authentication server, that the counter of
the clock attached to the timestamp t is zero, since the event occurs before the server first sends
the certificates to the initiator, and that the public key pk_a is the verification key of the initiator a

and pk_b the public encryption key of the responder b. Based on the correspondence of the public
keys, we can also determine the labels of the respective secret keys, like the secret key label of
pk_b needed for the secrecy proof of ck. The send key event is again triggered by the initiator.
The associated clock counter value must be less than or equal to the expected network delay for
receiving the second message such that t is considered valid. Furthermore, we now have explicit
that the secret key label of pk_b is readers [P b], where b is the responder, and the server triggered
event_certify a b pk_a pk_b t 0 at trace index t+1 before idx, the index of the send key event, unless
an arbitrary server state session is corrupted. With the last statement, we ensure the same thing
as in the signature predicate for the communication key certificate, that the communication key
ck was generated by the initiator to be used as AEAD key by anyone with access to the private
keys corresponding to pk_a and pk_b. The private key of an honest initiator is only known to the
initiator itself; thus, we can assume that it is labeled with readers [P a]. The accept key event can
only be triggered by the responder, and the clock counter at the time the event is triggered must be
smaller than or equal to recv_msg_3_delay, which is essential for the replay mitigation proof. Beyond
that, the responder is able to derive the same statement about the occurrence of the certify event
triggered by the server, although we can omit the explicit statement about the secret key label of pk_b,
which is known to an honest responder. Since the responder receives a certificate containing the
communication key ck issued by the initiator along with the public key certificates from the server,
it can further assume that the initiator has triggered event_send_key a b pk_a pk_b ck t clock_cnt'

for some value of clock_cnt' less than or equal to recv_msg_2_delay, meaning that the responder can
assume that the initiator trusts the correctness of the responder’s public key binding. Although
implicitly ensured by send key, we explicitly require that the label of the communication key is
known to the responder as join (readers [P a]) (readers [P b]) for honest initiator and server. The
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clauses in valid_session on the label of ck stored in the final state sessions of the initiator and
responder are then derived directly from the statements in the event predicate regarding the events
send key and accept key.

Protocol Steps

The Denning-Sacco protocol can be realized in four protocol steps in which the three protocol
messages are exchanged and processed. We therefore follow the example of our previous analyses
of Otway-Rees and Yahalom, and define and implement the protocol steps in a module DS.Protocol.
Since DY* comes with the necessary functionality to generate and install keys for public key
encryption or digital signatures, we do not require additional functions to set up the initial state of
the principals in the protocol anymore.

First Step (Initiator) The first step in the Denning-Sacco protocol is run by the initiator, who
sends the first message to the authentication server, requesting certificates for the public keys of the
initiator and its intended communication partner, called “responder” for consistency.

val initiator_send_msg_1:

a:principal ->

b:principal ->

LCrypto (msg_idx:timestamp * sess_idx:nat) (pki ds_preds)

(requires fun t0 -> True)

(ensures fun t0 (mi, si) t1 -> mi < trace_len t1 /\ trace_len t0 < trace_len t1)

The initiator is denoted by a and the responder by b. We model initial knowledge other than the
private and public key sessions similarly as in the Yahalom model, by specifying them as direct
input arguments to the respective protocol steps, which is here the case for the responder’s identity
known to the initiator in advance. The first step returns a tuple consisting of the trace index of the
first message and a session index pointing to the initial protocol state session of the initiator. The
initiator initiates the protocol by triggering event_initiate a b, signaling that a protocol run between
a and b has been started. Then, it creates the first message Msg1 a b consisting of the identities of
initiator and responder in plaintext, and sends it to the authentication server. The first message
functions as request for the public key certificates of the users, whose identities are included in the
message. After sending the first message, the initiator then stores the responder’s identity in a new
state session InitiatorSentMsg1 b in its protocol state and outputs the message index along with the
index of the new state session.

Second Step (Server) In the second step, the server receives the first message with the user
identities from the initiator and responds with public key certificates for the respective users in the
second message.

val server_send_msg_2:

msg_idx:timestamp ->

LCrypto (msg_idx:timestamp * sess_idx:nat * c_out:clock) (pki ds_preds)

(requires fun t0 -> msg_idx < trace_len t0)

(ensures fun t0 (mi, si, c_out) t1 ->

mi < trace_len t1 /\ trace_len t0 < trace_len t1 /\

clock_get c_out = 1)

113



4 Analysis of the Selected Protocols

Since the server is defined as global instance in this version of the Denning-Sacco model, we do not
need to specify it as input parameter to the protocol step. However, we need the trace index of the
first message, in order for the server to fetch it from the trace. The function definition of the second
step of the protocol is more interesting, because this is where the time-based properties come into
play. Similar to the first step, the returned tuple contains the trace index of the sent message – the
second message in the protocol – and the session index of the newly created state session stored in
the server state, but in addition, the protocol step also outputs a clock c_out, which is attached to
the timestamp included in the public key certificates from the server. We demand that c_out has
ticked once since its creation, particularly when the server emitted the second message with the
certificates. To demonstrate the usage of the clock API for modeling time-dependent properties of
protocols, we put the implementation of the second protocol step below. However, we omit the
usage of lemmata and assertions in this step, which have the sole purpose of assisting F* during the
verification process.

module SR = DS.SendRecv

let server_send_msg_2 msg1_idx =

// receive and parse first message

let (|now,a,ser_msg1|) = receive_i #ds_preds msg1_idx auth_srv in

match parse_msg ser_msg1 with

| Success (Msg1 a' b) -> (

if a <> a' then error "[srv_send_m2] initiator from received message does not

match with actual initiator"

else

// look up public keys of initiator and responder

let pk_a = get_public_key #ds_preds #now auth_srv a SIG "DS.sig_key" in

let pk_b = get_public_key #ds_preds #now auth_srv b PKE "DS.pke_key" in

// obtain timestamp and initialize clock

let (|c_new,t|) = clock_new #ds_preds auth_srv in

// trigger event 'certify'

let event = event_certify a b pk_a pk_b t (clock_get c_new) in

trigger_event #ds_preds auth_srv event;

// look up sign key of server and generate sign nonce

let now = global_timestamp () in

let (|_,sigk_srv|) = get_private_key #ds_preds #now auth_srv SIG "DS.sig_key"

in

let (|_,n_sig|) = rand_gen #ds_preds (readers [P auth_srv]) (nonce_usage "

SIG_NONCE") in

// create and sign initiator certificate

let cert_a = CertA a pk_a t in

let now = global_timestamp () in

let ser_cert_a = serialize_sigval now cert_a public in

let sig_cert_a = sign #ds_global_usage #now #(readers [P auth_srv]) #public

sigk_srv n_sig ser_cert_a in

// create and sign responder certificate

let cert_b = CertB b pk_b t in

114



4.5 Denning-Sacco

let ser_cert_b = serialize_sigval now cert_b public in

let sig_cert_b = sign #ds_global_usage #now #(readers [P auth_srv]) #public

sigk_srv n_sig ser_cert_b in

// create and send second message

let msg2 = Msg2 ser_cert_a sig_cert_a ser_cert_b sig_cert_b in

let ser_msg2 = serialize_msg now msg2 in

let (|msg2_idx,c_out|) = SR.send #now c_new auth_srv a ser_msg2 in

// create and store server session

let new_sess_idx = new_session_number #ds_preds auth_srv in

let st_srv_sent_m2 = AuthServerSentMsg2 a b in

let now = global_timestamp () in

let ser_st = serialize_session_st now auth_srv new_sess_idx 0 st_srv_sent_m2

in

new_session #ds_preds #now auth_srv new_sess_idx 0 ser_st;

(msg2_idx, new_sess_idx, c_out)

)

| _ -> error "[srv_send_m2] wrong message"

The server first fetches the first message from the initiator from the trace at msg1_idx, using the
receive_i function from LabeledPKI. This returns, among other things, the identity of the sender as
well as the serialized first message. Next, the first message is parsed, resulting in the high-level
structure Msg1 a' b. The server checks if the initiator identity a returned by receive_i matches with
the identity a' included in the message. If so, the server looks up the public keys of the initiator a

and the responder b, which should be installed in its state in advance; otherwise, an error indicating
a mismatch in the identity of the initiator is returned. After looking up the public keys, the server
creates a new clock c_new for a timestamp t holding the value of the current trace length. Therefore,
it uses the clock_new function that is part of the clock API provided by the module DS.Clock. Now that
all information that will be included in the certificates is available, the server continues by triggering
event_certify a b pk_a pk_b t (clock_get c_new). clock_get c_new outputs the counter of the fresh
clock, which is zero initially. Before it can create and sign the certificates, the server must first
retrieve its private signing key sigk_srv from a respective state session stored in its state and generate
a secret nonce n_sig used as randomness in the signing algorithm. Then, it creates the certificates
CertA a pk_a t and CertB b pk_b t, serializes them, and finally signs them with sigk_srv. The
server is now able to create the second message Msg2 ser_cert_a sig_cert_a ser_cert_b sig_cert_b

containing the certificates for the initiator’s and the responder’s public key in serialized form only
and in signed form so that the users can verify that the certificates really come from the trusted server.
The second message is then serialized and sent back to the initiator. Howbeit, instead of the regular
labeled send function from LabeledPKI, we use the respective wrapper function in the DS.SendRecv

module, which accepts an additional parameter of type clock and increments its counter. The server
passes the just created clock corresponding to the timestamp in the certificates as argument to the
function to account for the symbolic network delay imposed by the sent message. The wrapped
send function returns, in addition to the trace index of the sent message, also the resulting clock
after incrementing the counter. Finally, the server creates a new state session AuthServerSentMsg2 a b
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containing the identities of the users for whom it just issued public key certificates, and stores it in
its state. The function outputs the trace index of the second message, the index of the new state
session, and the clock returned by the SR.send function.

Third Step (Initiator) In the third step of the protocol, the initiator validates the public key
certificates from the authentication server and generates the communication key. The communication
key is signed and encrypted, and then sent to the responder along with the public key certificates.

val initiator_send_msg_3:

c_in:clock ->

a:principal ->

msg_idx:timestamp ->

sess_idx:nat ->

LCrypto (msg_idx:timestamp * c_out:clock) (pki ds_preds)

(requires fun t0 -> msg_idx < trace_len t0)

(ensures fun t0 (mi, c_out) t1 -> mi < trace_len t1 /\ trace_len t0 < trace_len t1 /\

clock_get c_out = (clock_get c_in) + 2)

The third step takes four input parameters: the input clock, denoted by c_in, which must be the clock
returned by the server step, the initiator a, the trace index of the second message from the server
msg_idx, and the session index of the state session stored by the initiator at the end of the first step,
denoted by sess_idx. Returned is a tuple of the message index of the third message sent in this step,
and the output clock c_out. Again, the ensures predicate contains a property of the output clock,
stating that the clock must have ticked twice during the protocol step. The first action performed
by the initiator is to retrieve and parse the state session stored at sess_idx in the initiator state. If
the parsed state session matches InitiatorSentMsg1 b, the initiator receives the second message
stored at msg_idx on the trace using the receive_i function from DS.SendRecv, which increments the
clock counter and returns, among other things, the message sender as auth_srv', the serialized
message as ser_msg2, and the resulting clock as c_rm2. The initiator checks that auth_srv' is the
authentication server defined as global singleton in the DS.Messages module, and parses ser_msg2 next.
A message of the form Msg2 cert_a sig_cert_a cert_b sig_cert_b is expected, containing the public
key certificates for the initiator a and the responder b in plaintext, as well as the respective signatures.
The initiator must verify the signatures sig_cert_a and sig_cert_b to be sure that they really originate
from the server. Therefore, it looks up the server’s verification key, which it installed in its own state
before initiating the protocol. If the signatures come from the server, the initiator parses the plaintext
forms cert_a and cert_b of the certificates in order to validate its own certificate and to obtain the
public key of the responder. The parsed certificates should be of the form CertA a' pk_a t and
CertB b' pk_b t'. The initiator first validates the principal identities in the certificates by checking
that a = a' and that b = b'. Moreover, it compares the timestamps t from the initiator certificate
and t' from the responder certificate, which should be equal. After that, the initiator validates t by
checking whether the clock c_rm2 was obtained at t and has not ticked more often than specified by
recv_msg_2_delay, the maximum expected network delay of the second message. If the certificate
fulfills the timeliness requirements, the initiator first looks up its sign key sigk_a, and then uses
the vk function from LabeledCryptoAPI to obtain the corresponding verification key verk_a. Given
verk_a, it can finish the validation of its own certificate, by checking that pk_a = verk_a, i.e., that
the public key included in the certificate by the server is really the verification key of the initiator.
After the validation of the certificates is completed, the initiator can generate the communication
key ck, which it labels with join (readers [P a]) (get_sk_label ds_key_usages pk_b). Joining the
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known secret key label of the initiator’s public key with the secret key label of pk_b is necessary
so that the communication key certificate can later be encrypted under pk_b, as we need to ensure
consistency between the readers of an encrypted message and the key used for encryption. Next,
the initiator triggers event_send_key a b pk_a pk_b ck t (clock_get c_rm2) to signal that it is about
to forward the public key certificates and ck to the responder. The initiator then generates two
randomnesses for signing and for encryption, respectively. Now it can create the third message,
for which it first creates the communication key certificate CommKey ck t with t being the same
timestamp as in the public key certificates. The certificate for ck is then serialized and signed
with sigk_a, resulting in ser_comm_key and sig_comm_key. Afterwards, the responder concatenates
the resulting values with the encval_comm_key function from DS.Messages, which yields the final
certificate and encryption value ev_comm_key. The certificate is then encrypted under pk_b, which
results in the ciphertext c_comm_key. The initiator now creates and sends the third message Msg3

cert_a sig_cert_a cert_b sig_cert_b c_comm_key to b, containing the public key certificates and the
encrypted communication key certificate. Finally, the initiator extends its state session from the first
step with ck to be able to use it later for communication with b, resulting in an updated state session
of the form InitiatorSentMsg3 b ck.

Fourth Step (Responder) It follows the last protocol step, in which the responder receives the
public key certificates along with the communication key from the initiator and decides whether to
accept the key based on the timeliness guarantees provided by the timestamps in the certificates.

val responder_recv_msg_3:

c_in:clock ->

b:principal ->

msg_idx:timestamp ->

LCrypto (sess_idx:nat * c_out:clock) (pki ds_preds)

(requires fun t0 -> msg_idx < trace_len t0)

(ensures fun t0 (si, c_out) t1 -> trace_len t0 < trace_len t1 /\

clock_get c_out = (clock_get c_in + 1))

The protocol step accepts input parameters c_in, the input clock, b, the responder, and msg_idx, the
trace index of the third message. Outputs are the session index of a new state session stored in the
responder’s state and the output clock c_out with the clock counter advanced by one. The responder
proceeds as follows: it first fetches the third message sent by the initiator from the trace, again
using the wrapped receive_i function defined in DS.SendRecv. From the function, the responder
obtains the serialized message ser_msg3 along with a clock c_out, which is the input clock advanced
by one clock tick, and the sender identity a. Next, the responder parses ser_msg3 to obtain the
third message Msg3 cert_a sig_cert_a cert_b sig_cert_b c_comm_key sent by the initiator in the third
protocol step. In order to verify the public key certificates, the responder retrieves the server’s
verification key verk_srv, which should be installed in its state. Given verk_srv, the responder
verifies the signatures sig_cert_a and sig_cert_b, and parses the respective plaintexts cert_a and
cert_b, in case the verification was successful. The parse function returns the two certificates
CertA a' pk_a t and CertB b' pk_b t'. The responder validates and checks both certificates in
much the same way as the initiator did in the previous step, by verifying the identities a' and b'

as well as the timestamps t and t' in the certificates, and also by verifying that pk_b is actually
the responder’s public key based on its secret key sk_b and the pk function from LabeledCryptoAPI

returning the corresponding public key. After verification, the responder continues by decrypting
the encrypted communication key certificate c_comm_key with sk_b. This results in a bytes value
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ev_comm_key that can be split into the serialized form ser_comm_key and signed form sig_comm_key of
the certificate. Again, signature verification is performed, this time of sig_comm_key using pk_a. If
the communication key turns out to be correct, the responder parses the corresponding plaintext
ser_comm_key. The parsed certificate is expected to have the form CommKey ck t''. The timestamp
t'' is supposed to be equal to the timestamps in the public key certificates; the responder therefore
checks that t = t''. Now that the responder knows that all timestamps in the certificates are
equal, it can validate them with a single call to clock_lte, checking that c_out was obtained at t
and that the value of the clock counter is at most recv_msg_3_delay. Afterwards, the responder
triggers event_accept_key a b pk_a pk_b ck t (clock_get c_out), signaling that it trusts the public
key binding of the initiator and accepts the communication key ck. The timestamp t and clock
counter of c_out associated with the event can be used to prove that the key accepted by the
responder is not a replay if none of the parties involved in the protocol have been corrupted. Finally,
the responder stores a state session ResponderRecvedMsg3 a ck – the equivalent to the updated state
session of the initiator – in its state, providing it with the ability to use ck for communication with a

at some later time.

Execution

Similar to the models of the other protocols, the Denning-Sacco model can also be executed in
a benign environment with the protocol steps scheduled in the intended order and without the
adversary actively interfering in the execution. This again allows us to verify that our model is
correct based on the trace resulting from execution. Since we have modeled time-based properties
of a protocol for the first time in DY*, we further demonstrate the correctness of our implementation
regarding attacker capabilities with an attack of a corrupted server breaking authentication. All the
executable functions of the Denning-Sacco protocol are implemented in a module DS.Debug. The
benign adversary is once more simulated via a function benign_attacker:

let benign_attacker () =

let a:principal = "alice" in

let b:principal = "bob" in

let now = global_timestamp () in

let sigk_a_idx = gen_private_key #ds_preds #now a SIG "DS.sig_key" in

let now = global_timestamp () in

let sk_b_idx = gen_private_key #ds_preds #now b PKE "DS.pke_key" in

let now = global_timestamp () in

let sigk_srv_idx = gen_private_key #ds_preds #now auth_srv SIG "DS.sig_key" in

let now = global_timestamp () in

let pk_a_srv_idx = install_public_key #ds_preds #now a auth_srv SIG "DS.sig_key" in

let now = global_timestamp () in

let pk_b_srv_idx = install_public_key #ds_preds #now b auth_srv PKE "DS.pke_key" in

let now = global_timestamp () in

let verk_srv_a_idx = install_public_key #ds_preds #now auth_srv a SIG "DS.sig_key" in

let now = global_timestamp () in

let verk_srv_b_idx = install_public_key #ds_preds #now auth_srv b SIG "DS.sig_key" in

let (msg1_idx, a_sess_idx) = initiator_send_msg_1 a b in

let (msg2_idx, srv_sess_idx, c_sm2) = server_send_msg_2 msg1_idx in
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let (msg3_idx, c_sm3) = initiator_send_msg_3 c_sm2 a msg2_idx a_sess_idx in

let (b_sess_idx, c_end) = responder_recv_msg_3 c_sm3 b msg3_idx in

()

Since we have defined the authentication server as central instance in DS.Messages, we must only
initialize two principals a and b, where a will take the role of the initiator, and b that of the other
party. We then set up the initial knowledge by generating private signing keys for a and the server,
and a private decryption key for b. The public keys of the two users a and b are installed in the state
of the server such that it can issue certificates for these later. Also, the verification key of the server
is installed in the user’s state for verification of the certificates. Having installed public keys, we can
then schedule the four protocol steps in the intended order, beginning with the first step executed by
the initiator a. In addition to the message and session indices that were also present in the previous
models, we additionally have to pass the clocks correctly through the protocol steps if we want
the protocol to succeed. The last step returns not only a session index because the responder b

has not been involved in the protocol before, but also a final clock c_end that would have to be
passed to further protocol steps in case messages containing timestamps from this protocol session
are replayed. If an honest principal receives such a message, it increments the clock counter and
hence rejects the message when validating the timestamp. The adversary, on the other hand, shall
still be able to carry out attacks in which it compromises principals upfront and replays messages
immediately within the validity window of the timestamps. For this reason, we do not require
the attacker to perform a clock tick when sending or receiving messages with the attacker API.
To demonstrate that the adversary has the capabilities to carry out attacks, even when clocks are
involved, we implement a second scheduler function fake_cert_attacker, in which a corrupted server
breaks authentication by emitting a false certificate that is accepted by the initiator.

let fake_cert_attacker () =

let a:principal = "alice" in

let b:principal = "bob" in

let e:principal = "eve" in

// perform key generation and installation for alice, bob, eve and the server

// compromise eve's secret decryption key 'sk_e'

// compromise server's secret sign key 'sigk_srv'

// query public key's of eve 'pk_e' and alice 'pk_a' stored in the server state

let (msg1_idx, a_sess_idx) = initiator_send_msg_1 a b in

let (|msg2_idx,c_sm2|) = attacker_issue_fake_cert e sigk_srv pk_a pk_e msg1_idx in

let (msg3_idx, c_sm3) = initiator_send_msg_3 c_sm2 a msg2_idx a_sess_idx in

let (|t_ck,ck|) = attacker_recv_msg_3 e sk_e msg3_idx in

attacker_knows_comm_key_stored_in_initiator_state a a_sess_idx ck

We have left out the steps in the implementation that set up private and public keys and in which the
attacker compromises and queries the keys it requires for the attack. The keys for a, b and the server
are set up in the same way as in benign_attacker. The principal e will be controlled by the attacker
and is used to impersonate b. Therefore, it gets private and public keys for public key encryption,
similar to b. Public key installation is then performed just as in benign_attacker. At this point, the
server has not been compromised yet; we thus install the public key of e in the server state as well.
The adversary then compromises the secret decryption key of e, the server’s secret sign key, and the
state sessions of the server storing the public keys of a and e. Now the attacker is ready to carry
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out the attack. The protocol starts regularly with the initiator a requesting public key certificates
for itself and b from the server. The adversary takes this chance and issues a false certificate for
b to a, in which it claims that pk_e is the public key of b. Since a trusts the server, it accepts the
certificate and thus falsely believes b to be the only one that is able to decrypt the communication
key when encrypting it under pk_e. attacker_issue_fake_cert emits, besides the trace index of the
second message containing the false certificate, also a clock c_sm2, obtained by the adversary via
the function att_clock_new from the DS.Clock module. The attacker does howbeit not increment the
clock counter when sending the message. This is not noticed by the initiator, because it only verifies
that the time elapsed since the timestamp in the certificates is not greater than the maximum delay
specified by recv_msg_2_delay. The initiator hence generates a communication key, signs it with its
own private sign key, and encrypts it under pk_e, believing that this is the public key of b. During
the protocol step of the initiator, the clock counter of c_sm2 is incremented twice, resulting in a new
clock c_sm3. In the last step, the attacker receives the message and is able to decrypt the encrypted
communication key certificate using sk_e, which it knows because it controls e. The decryption
already reveals the plaintext form of the certificate containing the communication key ck, which is
easily obtained by the adversary. As attacker_recv_msg_3 does not accept an input parameter of type
clock, c_sm3 is already the final clock resulting from this particular attack, which has only ticked
twice during the third step run by the initiator. Since the adversary knows ck and has never ticked
the clock, it should be able to replay the key in the name of a to some arbitrary party, e.g., b, who
will not notice the replay. Both scheduler functions are wrapped in functions that print the trace
after running the protocol, and are called in the main function of the Denning-Sacco model in
DS.Debug.

4.5.4 Correctness and Coherence of the Model

The individual modules of the Denning-Sacco model have been successfully verified in DY* and
have been compiled to an executable executing the main function in DS.Debug. In particular, the
model executes two scheduler functions, one simulating a benign attacker, hence executing a regular
protocol run, and one where the attacker compromises the server’s sign key and issues a false
certificate to break authentication. The output and trace resulting from a regular protocol run are
depicted in Appendix C.1. It shows a successful protocol run that leads to a communication key
being exchanged and stored in the states of the initiator and responder, and the clock count at the
time the responder accepts the key being equal to recv_msg_3_delay, meaning that the timestamp in
the certificates is valid, which also shows that the time-dependent properties of the protocol are
modeled correctly if the protocol steps are executed in the intended order. Appendix C.2 shows the
output and trace of the second scheduler function executing the fake certificate attack. The trace
shows that the attack is carried out successfully by the adversary, who is able to get the initiator to
encrypt the certificate for the communication key with a public key whose corresponding private
key is controlled by the attacker, while the initiator believes to share the key with another user.
Thus, our implementation for capturing time-based protocol properties does not restrict the attacker
in its capabilities to carry out attacks that are not prevented by the lax timeliness guarantees of
timestamps. As the trace further shows, this also includes attacks in which the communication
key is replayed timely. In our example attack, the clock counter is 1 when the initiator triggers
send key and is incremented to 2 when it sends the message containing the key. The clock counter
is therefore 2 at the time the adversary receives the key. If the adversary replays it to an honest
user, the final clock counter will be 3, which is still lower than recv_msg_3_delay – the user will

120



4.5 Denning-Sacco

hence accept the key. The attack thus demonstrates that the time-dependent properties of our model
correctly integrate with the DY* attacker model and hold in the presence of arbitrary adversaries.
The coherence of the developed model with the actual protocol as described in Section 3.3.3 can be
reasoned similarly to the previous analyses, but slightly different in that we have timestamps instead
of nonces and an additional restriction regarding the principals involved in the protocol:

• Defining the authentication server as a global singleton in the model does not constrain
the attacker’s capabilities and thus does not diminish the model’s power. The fact that the
authentication server issues signed certificates to assure the users of the authenticity of
the contained data makes it impossible for the adversary to impersonate the server without
compromising its secret sign key. In DY*, we are not yet able to link the communication
key certificate to the public key certificates from the server without additional information
in the former. However, this correspondence is implied by the message structure of the
protocol, where the initiator receives and validates the certificates from the second message,
chooses a communication key, and then sends the certificates along with a third certificate for
the communication key to the party with whom it wants to establish a key. This message
exchange will not succeed unless both parties in the key exchange agree on the identity of the
authentication server, and thus use the same verification key to check the public key certificates.
In our model, we have realized this by encapsulating this behavior in a single protocol step
initiator_send_msg_3, which models an honest initiator performing exactly the steps described
above. We therefore argue that this restriction regarding the authentication server is necessary
because there is no way to explicitly express this property of the Denning-Sacco protocol in
DY*, not because the protocol is actually insecure.

• The initial knowledge of principals is correctly represented in the model. We took an
approach similar to that used in the Yahalom model for representing initial knowledge,
where we had established long-term key sessions prior to the protocol and modeled other
terms, such as principal identities, as direct inputs to the respective protocol steps. In the
Denning-Sacco protocol, we first generate private keys for each of the principals involved
in the protocol according to their designated roles, store them in respective state sessions
of these principals, and then install the corresponding public keys in state sessions of their
initial peers. In particular, the server – as certification authority for public keys – stores all
the users’ public keys in its state and can certify them as requested based on the identities of
the corresponding users given in the first message. The users, on the other hand, must only
know the authentication server and its verification key in order to verify the certificates. To
start a protocol run, the initiator must also know the identity of the party with whom it wishes
to exchange a key in order to request a corresponding public key certificate from the server.
As we have already argued with respect to the Yahalom protocol, there is no difference in
modeling knowledge intended for the public, speaking principal names for example, as direct
input to protocol steps, or in an additional state session for which we need to pass the session
index as an input argument to the protocol step.

• The goals the authors had in introducing timestamps to the Denning-Sacco protocol also
apply to the model, and the implementation for modeling time-based properties of protocols
comes with strict semantics. The main purpose of the timestamps is to prevent replays of
old compromised session keys. While in reality the timeliness guarantees of timestamps
are lax, since replays are possible in a short window of time when the timestamps are valid,
they are clear in the model. In fact, our model prevents the reuse of any key exchanged in a
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protocol run of honest principals, while accounting for the fact that compromise can also
take place prior to or in the middle of a protocol run. In case of an honest protocol run, the
clock attached to the timestamp in the certificates ticks exactly as often as specified by the
maximum expected network delay. If one or more compromised principals are involved, they
use the attacker API, which does not perform clock ticks when sending or receiving messages,
creating a symbolic validity window for the timestamp that allows the adversary to replay
the exchanged key. Another property of the Denning-Sacco protocol based on timestamps
is the lack of a handshake between initiator and responder. Since the message structure of
the protocol directly transfers to our model, the handshake is not present in the model either.
Considering that DY* only offers a symbolic indicator of time with the length of the global
trace, there is no way to accurately model the real-world properties of the protocol based on
timestamps in the model. However, our model defines clear semantics for timestamps that
ultimately serve the same goals, to prevent replays of old compromised keys and to eliminate
an additional handshake message.

• The origin of keys in the model matches with the origin defined in the protocol description.
Private and public keys are set up using the API provided by DY*; the coherence of private
and public key origins in the model is thus ensured by DY*, not by the model we have
developed. The communication key 𝑘𝑐 is signed in the third message by the initiator using its
private signing key, and therefore must be generated by the initiator in the third protocol step.

• Labels of keys in the model correctly represent their intended audience. Intuitively, a private
key is supposed to be a secret to the principal who generates it. Therefore, the private sign
key of the initiator 𝐴 (denoted by a in respective protocol steps), the decryption key of the
responder 𝐵 (denoted by b), and the sign key of the authentication server (denoted by auth_srv

in the model), are labeled, respectively, readers [P a], readers [P b], and readers [P auth_srv

]. The corresponding public keys are labeled public as defined in DY*. When 𝐴 generates
the communication key in the third protocol step, it labels it with the union of the private key
labels of its own private key – which it knows to be readers [P a] – and the private key of 𝐵 –
which is readers [P b], unless the server has been compromised and issued a false public key
certificate for 𝐵. As explained, 𝐴 must trust the authentication server here, because only then
can it use 𝐵’s supposed public key to encrypt the communication key.

• DS.Messages correctly depicts the message structure of the protocol. The high-level message
structure of the Denning-Sacco protocol is modeled by the types sigval and message i. sigval

represents signed message parts, and includes the two public key certificates CertA for the
initiator and CertB for the responder, issued by the authentication server and thus signed with
𝑆𝐴𝑆 (sigk_srv), as well as the communication key certificate CommKey, which the initiator signs
with 𝑆𝐴 (sigk_a). The communication key certificate is additionally encrypted under 𝑃𝐵, but
since this is the only encryption performed in the protocol, we do not need an additional
type for encrypted message parts. message i then models the top-level message structure
including the signed and encrypted message parts, and parts sent in plaintext form. A notable
characteristic of our model is that we model the certificates in the protocol as pairs of the data
to be signed in plaintext form and the corresponding signature tag. This is necessary, since
the description of the Denning-Sacco protocol simplifies signing and verifying as the inverse
of encryption and decryption under the same key pair, while DY* demands that different keys
are used for public key encryption than for digital signatures. Furthermore, the symbolic
verification algorithm provided by DY* does not output the contents of the signature, but
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instead takes the plaintext data as input and verifies that the signature tag corresponds to the
plaintext, returning true if the signature is valid or false otherwise. Since the keys used in the
Denning-Sacco protocol only serve a single purpose anyways and therefore do not impose a
security risk, the semantics of both approaches are equivalent.

• DS.Sessions correctly models the protocol state and outcome. We again have a type session_st

modeling the states of principals over the course of a protocol run. Since the Denning-Sacco
protocol does not rely on nonces for timeliness guarantees and the authentication server is
defined as a central instance in the model, the state sessions of the initiator and responder only
store the exchanged communication key and the respective identity of the key peer. Based
on the key peer stored in the state session, the user can look up the session and retrieve the
key at any later time, allowing them to communicate with the peer. The fact that the server
records the identities of users requesting certificates in the certification step has no particular
impact on the completeness or security of the protocol and could therefore be omitted. It was
simply included for consistency with the other models, where the server stored data required
in security proofs.

• The protocol steps in DS.Protocol perform proper checks and a proper verification of the
contents of messages. Like in the other protocol models, the identity of the message sender is
verified based on the information provided in messages or in the context of the protocol steps,
which does not restrict the attacker in its ability to spoof the sender. In the third and fourth
steps, the initiator and responder respectively validate their own certificate by verifying their
identity and the public key contained in the certificate, and they also verify that the other
certificate belongs to the intended or expected communication partner. Validating the contents
of the public key certificates is deliberate according to the protocol description. Further, the
timestamps in the certificates are validated based on the current clock to ensure the timeliness
of the messages. It was clarified in Section 3.3.3 that the two public key certificates and
the communication key certificate use the same timestamp. Therefore, at each protocol step
involving messages with timestamps, we first check that the timestamps are identical, which
has the added benefit that we only need to validate one of the timestamps instead of each
timestamp separately. Although Denning and Sacco only mention that timestamps should
be validated based on the current clock, we reason that the fact that they are supposed to be
the same timestamp is sufficient to justify the way we implemented timestamp validation.
Finally, there is one more check in the last protocol step, where the initiator 𝐴 makes sure
that 𝐴 and 𝐵 are not the same user, which is a property required by F* for the protocol step to
pass the type check. Since a key shared with oneself has no actual use, there is no harm in
establishing such a property in the model.

4.5.5 Security Properties

This section comprises a detailed security proof of the Denning-Sacco protocol with public keys
based on the model developed in DY*. As in the analyses of Otway-Rees and Yahalom, we proceed
by formulating security properties of the model in DY*, which we derive from the protocol properties
and goals described in Section 4.5.1. For this purpose, we extend the model by an additional module
DS.SecurityProps, where we define and prove the security properties. This module is also subject to
verification in F* to ensure that the security properties and their respective proofs are sound. We
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divide the protocol’s security goals into goals for the exchanged key and authentication goals. The
goals of the Denning-Sacco protocol regarding the exchanged key are captured by the following
objectives:

(K1) the exchanged communication key is kept secret between the initiator and the responder;

(K2) the communication key accepted by the responder originates with the initiator; and

(K3) the responder will only accept a fresh key, i.e. one generated in the same protocol run.

Likewise, the authentication goals can also be broken down into different objectives:

(A1) when an initiator 𝐴 sends a communication key 𝑘𝑐 to a responder 𝐵 who accepts the key,
there is a corresponding protocol run with public key certificates from the authentication
server that guarantee 𝐵 that the key originates with 𝐴, and 𝐴 that only 𝐵 will obtain 𝑘𝑐; and

(A2) 𝐵 is convinced that 𝐴 has recently sent a message containing 𝑘𝑐 to 𝐵.

Properties of the Exchanged Key

The Denning-Sacco protocol differs from the Otway-Rees or Yahalom protocols in that the
authentication server is not responsible for key distribution itself, but only certifies the public
keys needed by users to exchange keys securely over a possibly insecure network. For this reason,
the objectives of the Denning-Sacco protocol regarding the exchanged key do not involve the
authentication server at all. Otherwise, the goals for the key are similar to the secrecy goals of the
other protocols. The unusual structure of the protocol, which omits a handshake message between
the users, also requires that we choose a different label for the communication key than in the other
protocols, in particular combining the secret key labels of the initiator and the responder. The
secrecy properties we aim to prove regarding the objectives K1 and K2 of the Denning-Sacco
protocol can be formulated similarly as the properties for the objectives S1 and S2 of the Otway-Rees
or Yahalom protocols. However, we need to take into account the different role of the authentication
server, and we need to adapt the proof slightly, considering that the key is labeled with the union
of two separate labels. Specifically, this means that we again prove the secrecy goals K1 and
K2 by showing that the key stored in the final state sessions of the initiator and the responder
remains unknown to the attacker unless one of the principals involved in the protocol has been
corrupted. The resulting lemmas in the Denning-Sacco model are similar to those defined in
Section 4.3.6, which establish the secrecy of the key stored in the initiator and responder states
in the improved Otway-Rees protocol. There, the validity of the secrecy properties was proved
using the secrecy_lemma. Recall that the secrecy lemma ensures that a term labeled with a readers

label is unknown to the attacker unless one of its readers is corrupted. For the Denning-Sacco
protocol, we need the secrecy_join_label_lemma instead, which proves the same property, but for a
term labeled with the union of two readers labels. In Section 4.5.3, we explained how we modeled
the stateful parts of the protocol. This includes the valid_session predicate, which ensures the
validity of protocol related state sessions and refines the terms stored in them. For the final state
session of the initiator and responder, the predicate ensures that the key stored in the respective
state session is labeled with join (readers [P a]) (readers [P b]) for initiator a and responder b,
or that state sessions of the authentication server or the initiator have been compromised. The
secrecy lemma for join labels thus applies to the label of the communication key in the initiator and
responder state sessions, and proves the properties we sought to ensure.
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The objective K3 is a property of the key that depends on the timestamps in the Denning-Sacco
protocol. Denning and Sacco proposed the usage of timestamps in key distribution protocols [16]
mainly with the goal to prevent replays of old compromised session keys, which they see as a
serious threat in such protocols. In this thesis, we presented a solution that allows us to model
time-based properties in the DY* framework so that we can develop models of protocols that
make use of timestamps to receive timeliness guarantees, such as the Denning-Sacco protocol,
and prove their security, including time-dependent security properties, in DY*. We prove that the
security objective K3 holds for the communication key in the Denning-Sacco protocol via a lemma
responder_comm_key_is_not_replay in DS.SecurityProps.

val responder_comm_key_is_not_replay: i:nat ->

LCrypto unit (pki ds_preds)

(requires (fun t0 -> i < trace_len t0))

(ensures (fun t0 _ t1 -> forall a b pk_a pk_b ck t clock_cnt.

did_event_occur_at i b (event_accept_key a b pk_a pk_b ck t clock_cnt)

==> clock_cnt <= recv_msg_3_delay /\

(did_event_occur_at (t+1) auth_srv (event_certify a b pk_a pk_b t 0) \/ corrupt_id

i (P auth_srv))))

The lemma receives an input argument i, which is required to be a valid trace index in the requires

predicate. The property guaranteed is that when any responder b accepts a communication key ck

from any initiator a, signaled by an event event_accept_key a b pk_a pk_b ck t clock_cnt at trace
index i for some arbitrary timestamp t and clock counter value clock_cnt, then clock_cnt does not
exceed the expected delay for receiving the third message and the authentication server has triggered
event_certify a b pk_a pk_b t 0 for the same timestamp t at trace index t+1, or is corrupt. For an
honest server, this means that the timestamp t was obtained by the server and associated with a
fresh clock during the public key certification step. When the responder accepts ck, the public key
certificates from the server and the communication key certificate from the initiator contain this
particular timestamp t, and the associated clock has ticked at most recv_msg_3_delay times. This
and the correspondence of the initiator’s verification key pk_a in both events lead to the conclusion
that ck is a product of the current protocol run and originates with the initiator a. A dishonest a
could still replay a compromised key, and a compromised server could issue a certificate with a
false public key pk_a, but these are cases not targeted by Denning and Sacco with their proposal of
timestamps for replay mitigation. By verifying the responder_comm_key_is_not_replay lemma in F*,
we thus prove that objective K3 is satisfied in the Denning-Sacco protocol.

Authentication

The use of signatures combined with public key encryption instead of symmetric encryption and
timestamps instead of nonces, and the omission of a handshake message from the responder to
the initiator to confirm the nonces, leads to very different authentication properties from those
of the other protocols analysed. Denning and Sacco argue that the handshake becomes obsolete
with the timestamps, since both users get timeliness guarantees from the timestamps even without
the handshake message. However, the timestamps do not provide locality guarantees like the
nonces, and without the handshake, the initiator has no confirmation that the responder was online
and received the communication key until the responder first sends a message encrypted with the
key. Because of this, the Denning-Sacco protocol cannot provide the same level of strong mutual
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authentication as, say, the Yahalom protocol. Authentication objective A1 basically describes how
users authenticate each other in the Denning-Sacco protocol. We express and prove this objective in
our DY* model via a single lemma mutual_authentication.

val mutual_authentication: i:nat -> j:nat ->

LCrypto unit (pki ds_preds)

(requires (fun t0 -> i < trace_len t0 /\ j < trace_len t0 /\ i < j))

(ensures (fun t0 _ t1 -> forall a b pk_a pk_b ck t clock_cnt_a clock_cnt_b.

did_event_occur_at i a (event_send_key a b pk_a pk_b ck t clock_cnt_a) /\

did_event_occur_at j b (event_accept_key a b pk_a pk_b ck t clock_cnt_b)

==> (t+1) < i /\ did_event_occur_at (t+1) auth_srv (event_certify a b pk_a pk_b t 0)

\/ corrupt_id i (P auth_srv)))

We again have two inputs of type nat, valid trace indices i and j, so i < j holds. For two related
events, event_send_key a b pk_a pk_b ck t clock_cnt_a at trace index i and event_accept_key a b

pk_a pk_b ck t clock_cnt_b at trace index j, we have that (t+1) < i and that the authentication server
triggered event_certify a b pk_a pk_b t 0 at t+1, or was otherwise corrupted. This property holds
for arbitrary values associated with the events, and ensures that if an honest server issues valid
certificates for public keys pk_a and pk_b of users a and b, then any key ck exchanged using these
public keys and corresponding secret keys is guaranteed to be actually shared between a and b,
which means that any message received by a or b encrypted under ck is guaranteed to come from b

or a, respectively, as long as neither of them leaks the key. So we have that b is convinced that ck
originates from a, and likewise a is convinced that no one other than b has obtained ck. We verify
the lemma in F* and thus prove that authentication objective A1 regarding mutual authentication
is satisfied by the Denning-Sacco protocol. Though, as mentioned, mutual authentication here
does not include b confirming to a that it was online and accepted the key, because it simply never
does during the protocol. Receipt of the session key is only confirmed by b when it encrypts a
message for a under ck, but this is not part of the protocol itself and is therefore not captured by the
authentication property we proved.

Since the initiator generates and sends the communication key to the responder, the responder gets
stronger guarantees from the protocol than the initiator. These stronger guarantees are captured in
the authentication goal A2, which is formulated in another lemma initiator_authentication in our
DY* model.

val initiator_authentication: i:nat ->

LCrypto unit (pki ds_preds)

(requires (fun t0 -> i < trace_len t0))

(ensures (fun t0 _ t1 -> forall a b pk_a pk_b ck t clock_cnt.

did_event_occur_at i b (event_accept_key a b pk_a pk_b ck t clock_cnt)

==> (exists clock_cnt'. clock_cnt' <= recv_msg_2_delay /\

did_event_occur_before i a (event_send_key a b pk_a pk_b ck t clock_cnt') \/

corrupt_id i (P a)) /\

(t+1) < i /\ did_event_occur_at (t+1) auth_srv (event_certify a b pk_a pk_b t 0)

\/

corrupt_id i (P auth_srv)))

The initiator authentication lemma states that each event event_accept_key a b pk_a pk_b ck t

clock_cnt of the responder b at some valid trace index i is preceded by a recent corresponding
event event_send_key a b pk_a pk_b ck t clock_cnt', where clock_cnt' is at most recv_msg_2_delay,
triggered by the initiator a if it is not corrupt, and an event event_certify a b pk_a pk_b t 0 at
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t+1 with (t+1) < i triggered by the authentication server if it is not corrupt either. The matching
principals and public keys in the events send key and certify, as well as the events accept key and send
key, inform b that a has successfully validated its own key binding and also trusts the key binding of
b, both of which have been certified by the server. This, the matching communication key ck in the
accept key and send key events, and the fact that the clock counter does not exceed the expected
maximum delay of the second message, confirms to b that it was indeed a who recently initiated
communication with b and thus sent the third message containing ck destined for b. In that sense,
the initiator authentication property in the Denning-Sacco protocol is about as strong as that in the
Yahalom protocol without the explicit locality guarantees of the nonces. However, as mentioned
above, mutual authentication in the Denning-Sacco protocol is more lax and only becomes strong
when messages are actually exchanged encrypted under the key. Since communicating over a secure
channel is the ultimate goal of any key exchange protocol, this is certainly not a flaw in the protocol.
Similar to the lemmas proving the objectives K3 and A1, the initiator authentication lemma and
therefore authentication objective A2 can be proved in F* without further proof work, because
the event relations are ensured by the signature usage predicate in combination with the event
predicate.

4.5.6 Discussion

In this thesis, we gave a detailed analysis of the Denning-Sacco protocol with public keys, resulting
in the first symbolic security proof of the protocol in DY*. The proof bases on an extension
of the DY* framework for modeling time-based properties of cryptographic protocols. Using
this extension, we have developed a coherent model of the Denning-Sacco protocol in DY*, and
formulated and proved security properties of the protocol derived from its description and from its
properties observed during the analysis. To establish the soundness of our security proof, we have
verified the properties defined in the model with F*.

In Section 3.3.3, an attack on the protocol documented by Abadi and Needham was presented. We
have already explained that this attack bases on a different assumed message structure than the
structure represented in our DY* model. Abadi and Needham assume that the initiator obtains
the timestamp it includes in the communication key certificate from its own local clock, implying
that it is different from the timestamp in the public key certificates, and that each timestamp is
validated separately by comparison with the local clock of the respective receiver. Because the
communication key certificate received from the initiator does not contain the identity of the
intended key peer, the responder could then simply replay the certificate – and thus the key – while
the timestamp in the certificate is valid. This attack would impose a serious flaw in the protocol,
since it enables a malicious responder to impersonate the initiator to any other party it wishes. Our
implementation of the Denning-Sacco protocol in DY* is based on the original message structure
proposed by Denning and Sacco, and thereby prevents this attack because the initiator reuses the
timestamp contained in the public key certificates in the communication key certificate, and the
responder only accepts a key if the timestamps in all certificates match. We argued that it is valid
to assume that timestamps from different certificates are compared if we presuppose that there
is only a single timestamp used in all messages, obtained by the server and later reused by the
initiator. Nonetheless, we highly recommend the inclusion of the identity of the communication
key peer in the corresponding certificate – as demanded by the robustness principle of Boyd and
Mao [7] – such that any possible receiver of the third message can verify this identity, and abort if
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the key appears to be intended for someone else. In addition, principals should still adhere to the
timestamp validation procedure used in our model, which requires only a single comparison of the
timestamp to the current local clock value to validate the timeliness of all certificates in a message
at once. Since the attack assumes a different message structure, it is clearly not in contradiction
to the security proof we provided in the previous chapter. Instead, the attack adds to our proof by
highlighting a subtle property of the last message that would allow the communication key to be
replayed if the certificates are not sufficiently checked by the recipient, and further that this is a
crucial assumption we make in our proof.

Denning and Sacco’s research was primarily concerned with the properties and benefits of timestamps
in key exchange protocols, so we had to define other security objectives of the protocol, e.g. regarding
secrecy of the communication key or authentication of the users, based on the properties and
goals we observed while examining the protocol in detail in the course of our analysis. Also, with
timestamps being used instead of nonces in the protocol, we had to come up with novel formulations
for certain security properties in the Denning-Sacco model, e.g., for the authentication or the
replay mitigation properties. We tried to emphasize the accuracy of our security proof including
time-based properties by giving a detailed explanation of why we believe that our approach for
modeling such properties in DY* is sound, and by demonstrating our implementation in a passive
adversary setting, as well as in a setting with multiple malicious parties. The general applicability
of our approach could be further illustrated by conducting DY* analyses of other protocols, which
depend on timestamps, such as the Wide Mouthed Frog protocol [10].
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In this thesis, we analysed three authentication and key exchange protocols using the DY* symbolic
prover: the Otway-Rees protocol, the Yahalom protocol and the Denning-Sacco protocol with public
keys. In Section 3.3, we described the three protocols and summarized related research containing
previous security analyses of these protocols and illustrating found attacks. The protocols were then
analysed in detail in Chapter 4. For each of the protocols, we developed an accurate model in DY*
based on the provided description, and expressed security properties for the model, also based on
the protocol description and complemented with properties observed during the analysis. We tested
the functional correctness of our models by executing them and inspecting the resulting trace, and
further established their soundness and proved the security properties by verifying both together in
F*. For security goals of protocols for which we could not prove respective security properties
in the DY* model, we explored resulting attack vectors, extended the DY* model with possible
attacks, and finally proposed an improved version of the respective protocol, for which we proved
that remaining security goals are achieved by adapting the model accordingly and again verifying
its soundness in F*. We then discussed the results of our analysis of each of the protocols in the
context of the results of other analyses presented, on the one hand, to confirm our own results, and
on the other hand, to explain possible differences in the outcomes with different methods used and
different assumptions made for the analyses.

The analysis of the Otway-Rees protocol revealed what was already shown by multiple analyses
before, that the protocol – if implemented strictly according to the protocol description – is at least
vulnerable to an attack in which a malicious party can impersonate the intended target of the key
exchange to the initiator of the protocol. Further, we also identified the well-known type-flaws in
the protocol that possibly allow an attacker to replay parts of messages to the initiator as well as the
responder, and thus substitute the key generated by the server with some publicly known term. We
modeled three attacks in total based on the flaws of the protocol and proposed improvements that
manage to prevent the attacks and make the protocol achieve the intended security goals, such as
secrecy of the session key and timely mutual authentication, assuming that the parties completing the
protocol together are all honest. Finally, we discussed improved versions of the protocol proposed
by Boyd and Mao [7], which we showed to not actually prevent the impersonation attack, and by
Chen [12], who suggested a strongly modified version achieving even stronger security goals than
those intended by Otway and Rees. In contrast, our improved protocol uses minimal changes to
achieve the goals that were not fulfilled with the original version.

Our analysis of the Yahalom protocol argues against research like [13] and [14] that labels the
protocol as flawed, and shows that it achieves the security goals described by the BAN authors, who
were the first to specify the protocol in a formal setting. The security properties of the Yahalom
protocol include key secrecy and mutual authentication with additional timeliness guarantees,
similar as in the (improved) Otway-Rees protocol, and again under the assumption that the involved
principals are honest. Our security proof also accounts for the fact that the responder gets even
stronger guarantees insofar that the initiator confirms with the last message that it knows and trusts
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the exchanged session key coming from the server. This guarantee is eventually returned to the
initiator, when the responder sends the first message encrypted under the shared key. We claim that
any attack breaking the security of the Yahalom protocol involves the compromise of at least one of
the three principal roles involved in the protocol.

For the analysis of the Denning-Sacco protocol, we have developed an extension of the DY*
framework that lets us model protocols with timestamps, and typical properties of such protocols.
We have demonstrated our implementation on a DY* model of the Denning-Sacco protocol and
shown that time-based properties can be captured while not restricting the DY* adversary in its
ability to launch attacks that would not violate the time-based properties of the protocol in reality.
Our work shows that expressing properties involving timestamps is not an easy task in DY*, because
while the timeliness guarantees of timestamps in combination with real clocks are rather lax and can
possibly even differ in multiple executions of the protocol, symbolic provers like DY* are exactly
built to express and prove strict security properties using a symbolic measure of time that results in
the same outcome regarding the protocol’s security in all possible protocol runs. Therefore, we
expressed the real-world properties of the protocol as idealized properties in the DY* model. For the
Denning-Sacco model, we were able to prove that the exchanged key is secret and shared between
the initiator and responder, unless one of them is compromised, and further that keys exchanged
between honest parties cannot be replayed once compromised. Regarding authentication, we could
show that if all parties remain honest, the exchanged key indeed provides a means for authenticated
and confidential communication between initiator and responder, meaning that both users have a
reliable view on the origin of messages encrypted under this very key. Similarly as in the Yahalom
protocol, the responder gets the added guarantee at the end of the protocol that the initiator possesses
the same communication key as itself and that the initiator indeed intended to share this key with
the responder. Notably, this ultimately strong unidirectional authentication is achieved without the
need for the responder to be involved in requesting the public key certificates and thus without a
handshake between the users. The results of our analysis stand against research like [1] and [2],
describing an attack on the protocol based on a different structure of the last message assumed by
the authors, where the timestamp in the communication key certificate created by the initiator is
independent of the timestamp in the public key certificates. In Section 3.3.3, we have clarified what
the actual structure of the last message looks like. Precisely, one of the authors of the protocol
(Giovanni Maria Sacco) confirmed that the initiator reuses the timestamp from the other certificates
provided by the server. Our analysis bases on the originally intended structure of the last message,
and that the timestamps are validated in the most efficient and secure way, resulting in the first
symbolic security proof of the Denning-Sacco protocol with public keys.

Outlook

While developing the DY* models for the Otway-Rees and Yahalom protocols, we had to write
our own API to install the symmetric long-term keys that are pre-shared between initiator and
authentication server, and responder and server in both protocols. Also, the keys were stored within
the protocol specific application state defined in modules OYRS.Sessions for the Otway-Rees protocol
and YLM.Sessions for the Yahalom protocol, even though the long-term keys could potentially be
used in any authentication protocol based on symmetric long-term keys. Storing keys in the protocol
state also led us to first model the Otway-Rees protocol so that each principal could only participate
in a single protocol run, which is a restriction we usually do not want to make when modeling a

130



protocol. Hence, we think it is important that DY* offers a generic API for generating and installing
symmetric long-term keys, in addition to the API for public keys, as part of the LabeledPKI module in
the labeled layer, so that this is no longer a problem faced by developers of cryptographic protocol
code written in DY*.

Besides this, there are also a couple of lemmas we defined in helper modules on the level of our
protocol code that are generally useful when modeling protocols involving an authentication server
or any other kind of third party. To give just one example, we had to define lemmas similar to
readers_is_injective, which shows the injectivity between a label readers [P p] and the principal p
in the state session identifier P p that can read the label, for readers labels with two or even three
state session identifiers, since we used symmetric keys shared between two or even three parties
to encrypt messages in the Otway-Rees and Yahalom protocols. We recommend extending DY*
with lemmas that may be useful in a wider range of protocols, thus avoiding the hassle of having to
define them anew for each protocol model.

As mentioned, we have further presented an extension of the DY* framework in this thesis that
allowed us to model the Denning-Sacco protocol and capture its properties depending on timestamps.
To verify the general applicability of our proposed approach, we encourage other protocols based on
timestamps to be modeled with our DY* extension, for example the Wide Mouthed Frog protocol
[10], which uses symmetric long-term keys like Otway-Rees and Yahalom, but requires only two
messages to exchange a key, and see if we can adequately capture the security properties of these
protocols. Moreover, it makes sense to integrate the extension (currently consisting of the two
modules DS.Clock dedicated with timestamp validation, and DS.SendRecv, which contains wrappers
for the send and receive functions that increase the value of a clock) directly into the DY* framework,
such that they are no longer part of the protocol model itself.

We also hope that with the first elaborate symbolic security proof of the Denning-Sacco protocol
with public keys using DY* in this thesis, we can guide future research more towards investigating
protocols with time-based properties. As we find and as our analysis shows, such protocols have
very interesting properties: they typically require very few messages to perform a secure key
exchange, and they protect very effectively against the replay of compromised keys if none of the
parties sharing the key acts with malicious intent at the time of the key exchange.
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A Output of the Otway-Rees Model

A.1 Benign Attacker Trace

======================

Otway-Rees

======================

Starting Benign Attacker:

start

0. Generated AE sk_i_srv(0)

Label: [initiator;server]

Usage: AE sk_i_srv

1. SetState initiator:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | responder)))))

2. Generated AE sk_r_srv(2)

Label: [responder;server]

Usage: AE sk_r_srv

3. SetState responder:

Session 0(v0): ((APP | (r_init | (server | AE sk_r_srv(2)))))

4. SetState server:

Session 0(v0): ((APP | (srv_sess | (initiator | (AE sk_i_srv(0) | sk_i_srv)))))

5. SetState server:

Session 0(v0): ((APP | (srv_sess | (initiator | (AE sk_i_srv(0) | sk_i_srv)))))

Session 1(v0): ((APP | (srv_sess | (responder | (AE sk_r_srv(2) | sk_r_srv)))))

6. Generated NONCE conv_id(6)

Label: Public

Usage: NONCE conv_id

7. Generated NONCE nonce_i(7)

Label: [initiator;server]

Usage: NONCE nonce_i

8. Event initiator: initiate(NONCE conv_id(6),initiator,responder,NONCE nonce_i(7))

9. Message initiator->responder: (msg1 | (NONCE conv_id(6) | (initiator | (responder |

aead_enc(AE sk_i_srv(0),iv,(NONCE nonce_i(7) | (NONCE conv_id(6) | (initiator | responder))),

ev_i)))))

10. SetState initiator:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | responder)))))

Session 1(v0): ((APP | (i_sent_m1 | (server | (AE sk_i_srv(0) | (responder | (NONCE

conv_id(6) | NONCE nonce_i(7))))))))

11. Generated NONCE nonce_r(11)

Label: [responder;server]

Usage: NONCE nonce_r

12. Event responder: req_key(NONCE conv_id(6),initiator,responder,NONCE nonce_r(11))
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13. Message responder->server: (msg2 | (NONCE conv_id(6) | (initiator | (responder | (aead_enc

(AE sk_i_srv(0),iv,(NONCE nonce_i(7) | (NONCE conv_id(6) | (initiator | responder))),ev_i) |

aead_enc(AE sk_r_srv(2),iv,(NONCE nonce_r(11) | (NONCE conv_id(6) | (initiator | responder))),

ev_r))))))

14. SetState responder:

Session 0(v0): ((APP | (r_init | (server | AE sk_r_srv(2)))))

Session 1(v0): ((APP | (r_sent_m2 | (server | (AE sk_r_srv(2) | (initiator | (NONCE

conv_id(6) | NONCE nonce_r(11))))))))

15. Generated AE sk_i_r(15)

Label: [server;initiator;responder]

Usage: AE sk_i_r

16. Event server: send_key(NONCE conv_id(6),initiator,responder,NONCE nonce_i(7),NONCE nonce_r

(11),AE sk_i_r(15))

17. Message server->responder: (msg3 | (NONCE conv_id(6) | (aead_enc(AE sk_i_srv(0),iv,(NONCE

nonce_i(7) | AE sk_i_r(15)),ev_i) | aead_enc(AE sk_r_srv(2),iv,(NONCE nonce_r(11) | AE sk_i_r

(15)),ev_r))))

18. SetState server:

Session 0(v0): ((APP | (srv_sess | (initiator | (AE sk_i_srv(0) | sk_i_srv)))))

Session 1(v0): ((APP | (srv_sess | (responder | (AE sk_r_srv(2) | sk_r_srv)))))

Session 2(v0): ((APP | (srv_sent_m3 | (initiator | (responder | (NONCE conv_id(6) | (NONCE

nonce_i(7) | (NONCE nonce_r(11) | AE sk_i_r(15)))))))))

19. Event responder: fwd_key(NONCE conv_id(6),initiator,responder,AE sk_i_r(15))

20. Message responder->initiator: (msg4 | (NONCE conv_id(6) | aead_enc(AE sk_i_srv(0),iv,(

NONCE nonce_i(7) | AE sk_i_r(15)),ev_i)))

21. SetState responder:

Session 0(v0): ((APP | (r_init | (server | AE sk_r_srv(2)))))

Session 1(v0): ((APP | (r_sent_m4 | (server | (initiator | AE sk_i_r(15))))))

22. Event initiator: recv_key(NONCE conv_id(6),initiator,responder,AE sk_i_r(15))

23. SetState initiator:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | responder)))))

Session 1(v0): ((APP | (i_rcvd_m4 | (server | (responder | AE sk_i_r(15))))))

PROTOCOL RUN: Successful execution of Otway-Rees protocol.

Finished Benign Attacker:

In the trace entries 0 to 5, the principal’s states are set up according to their initial knowledge,
including generation and installation of long-term keys shared between the initiator and server,
and responder and server, respectively. The event initiate(NONCE conv_id(6),initiator,responder

,NONCE nonce_i(7)) followed by the first message from the initiator to the responder indicates the
start of the protocol. The responder proceeds by augmenting the first message and requesting a
session key from the server. In turn, the key AE sk_i_r(15) is generated and distributed by the server
in two certificates – one for each user. The certificates are first received by the responder, who
then forwards the initiator’s certificate. Both store the key in their respective final protocol state
sessions.

A.2 Impersonation Attacker Trace

Starting Impersonate Responder to Initiator Attacker:

start

0. Generated AE sk_i_srv(0)

Label: [alice;server]

Usage: AE sk_i_srv
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1. SetState alice:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | bob)))))

2. Generated AE sk_r_srv(2)

Label: [bob;server]

Usage: AE sk_r_srv

3. SetState bob:

Session 0(v0): ((APP | (r_init | (server | AE sk_r_srv(2)))))

4. Generated AE sk_r_srv(4)

Label: [eve;server]

Usage: AE sk_r_srv

5. SetState eve:

Session 0(v0): ((APP | (r_init | (server | AE sk_r_srv(4)))))

6. SetState server:

Session 0(v0): ((APP | (srv_sess | (alice | (AE sk_i_srv(0) | sk_i_srv)))))

7. SetState server:

Session 0(v0): ((APP | (srv_sess | (alice | (AE sk_i_srv(0) | sk_i_srv)))))

Session 1(v0): ((APP | (srv_sess | (bob | (AE sk_r_srv(2) | sk_r_srv)))))

8. SetState server:

Session 0(v0): ((APP | (srv_sess | (alice | (AE sk_i_srv(0) | sk_i_srv)))))

Session 1(v0): ((APP | (srv_sess | (bob | (AE sk_r_srv(2) | sk_r_srv)))))

Session 2(v0): ((APP | (srv_sess | (eve | (AE sk_r_srv(4) | sk_r_srv)))))

9. Compromised eve(0)(0)

10. Generated NONCE conv_id(10)

Label: Public

Usage: NONCE conv_id

11. Generated NONCE nonce_i(11)

Label: [alice;server]

Usage: NONCE nonce_i

12. Event alice: initiate(NONCE conv_id(10),alice,bob,NONCE nonce_i(11))

13. Message alice->bob: (msg1 | (NONCE conv_id(10) | (alice | (bob | aead_enc(AE sk_i_srv(0),

iv,(NONCE nonce_i(11) | (NONCE conv_id(10) | (alice | bob))),ev_i)))))

14. SetState alice:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | bob)))))

Session 1(v0): ((APP | (i_sent_m1 | (server | (AE sk_i_srv(0) | (bob | (NONCE conv_id(10)

| NONCE nonce_i(11))))))))

15. Generated NONCE nonce_attacker(15)

Label: Public

Usage: NONCE nonce_attacker

16. Message *->*: NONCE nonce_attacker(15)

17. Message eve->server: (msg2 | (NONCE conv_id(10) | (alice | (eve | (aead_enc(AE sk_i_srv(0)

,iv,(NONCE nonce_i(11) | (NONCE conv_id(10) | (alice | bob))),ev_i) | aead_enc(AE sk_r_srv(4),

iv,(NONCE nonce_attacker(15) | (NONCE conv_id(10) | (alice | bob))),ev_r))))))

18. Generated AE sk_i_r(18)

Label: [server;alice;eve]

Usage: AE sk_i_r

19. Event server: send_key(NONCE conv_id(10),alice,eve,NONCE nonce_i(11),NONCE nonce_attacker

(15),AE sk_i_r(18))

20. Message server->eve: (msg3 | (NONCE conv_id(10) | (aead_enc(AE sk_i_srv(0),iv,(NONCE

nonce_i(11) | AE sk_i_r(18)),ev_i) | aead_enc(AE sk_r_srv(4),iv,(NONCE nonce_attacker(15) | AE

sk_i_r(18)),ev_r))))

21. SetState server:

Session 0(v0): ((APP | (srv_sess | (alice | (AE sk_i_srv(0) | sk_i_srv)))))

Session 1(v0): ((APP | (srv_sess | (bob | (AE sk_r_srv(2) | sk_r_srv)))))
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Session 2(v0): ((APP | (srv_sess | (eve | (AE sk_r_srv(4) | sk_r_srv)))))

Session 3(v0): ((APP | (srv_sent_m3 | (alice | (eve | (NONCE conv_id(10) | (NONCE nonce_i

(11) | (NONCE nonce_attacker(15) | AE sk_i_r(18)))))))))

22. Message bob->alice: (msg4 | (NONCE conv_id(10) | aead_enc(AE sk_i_srv(0),iv,(NONCE nonce_i

(11) | AE sk_i_r(18)),ev_i)))

23. Event alice: recv_key(NONCE conv_id(10),alice,bob,AE sk_i_r(18))

24. SetState alice:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | bob)))))

Session 1(v0): ((APP | (i_rcvd_m4 | (server | (bob | AE sk_i_r(18))))))

PROTOCOL RUN: Successful execution of Otway-Rees protocol.

Finished Impersonate Responder to Initiator Attacker:

We set up one additional responder eve in this attack, so that the first 8 trace entries correspond
to the setup phase. eve represents the malicious principal controlled by the attacker, who thus
compromises the long-term key of eve and the server. The initiator alice initiates a protocol run with
the intention of establishing a shared key with bob, as indicated by the event initiate(NONCE conv_id

(10),alice,bob,NONCE nonce_i(11)) and by the first message. The key of the attack is to be found in
the trace entries 15 to 17, where the attacker, on behalf of eve, generates a nonce nonce_attacker(15),
and emits a message that makes it look to the server like eve was the responder to which alice

wanted to talk to by replacing bob’s name with eve’s in the plaintext. The server accepts the message
and distributes a key destined for alice and eve. However, the final protocol state session of alice

shows that she still believes to share this key with bob.

A.3 Traces of Intercept and Replay Attacks

Starting Intercept Msg1 Attacker:

start

0. Generated AE sk_i_srv(0)

Label: [initiator;server]

Usage: AE sk_i_srv

1. SetState initiator:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | responder)))))

2. Generated AE sk_r_srv(2)

Label: [responder;server]

Usage: AE sk_r_srv

3. SetState responder:

Session 0(v0): ((APP | (r_init | (server | AE sk_r_srv(2)))))

4. SetState server:

Session 0(v0): ((APP | (srv_sess | (initiator | (AE sk_i_srv(0) | sk_i_srv)))))

5. SetState server:

Session 0(v0): ((APP | (srv_sess | (initiator | (AE sk_i_srv(0) | sk_i_srv)))))

Session 1(v0): ((APP | (srv_sess | (responder | (AE sk_r_srv(2) | sk_r_srv)))))

6. Generated NONCE conv_id(6)

Label: Public

Usage: NONCE conv_id

7. Generated NONCE nonce_i(7)

Label: [initiator;server]

Usage: NONCE nonce_i

8. Event initiator: initiate(NONCE conv_id(6),initiator,responder,NONCE nonce_i(7))
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9. Message initiator->responder: (msg1 | (NONCE conv_id(6) | (initiator | (responder |

aead_enc(AE sk_i_srv(0),iv,(NONCE nonce_i(7) | (NONCE conv_id(6) | (initiator | responder))),

ev_i)))))

10. SetState initiator:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | responder)))))

Session 1(v0): ((APP | (i_sent_m1 | (server | (AE sk_i_srv(0) | (responder | (NONCE

conv_id(6) | NONCE nonce_i(7))))))))

11. Message responder->initiator: (msg4 | (NONCE conv_id(6) | aead_enc(AE sk_i_srv(0),iv,(

NONCE nonce_i(7) | (NONCE conv_id(6) | (initiator | responder))),ev_i)))

12. Event initiator: recv_key(NONCE conv_id(6),initiator,responder,(NONCE conv_id(6) | (

initiator | responder)))

13. SetState initiator:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | responder)))))

Session 1(v0): ((APP | (i_rcvd_m4 | (server | (responder | (NONCE conv_id(6) | (initiator

| responder)))))))

PROTOCOL RUN: Successful execution of Otway-Rees protocol.

Finished Intercept Msg1 Attacker:

This attack runs the same as the benign scenario to the point where the responder would complete the
session key request to the server. The adversary intercepts the first message from the initiator, and
replays its part of the request as session key certificate to the initiator, who accepts (NONCE conv_id(6)

| (initiator | responder)) consisting only of terms derivable by the attacker as supposed session
key for secret communication with the responder.

Starting Intercept Msg2 Attacker:

start

0. Generated AE sk_i_srv(0)

Label: [initiator;server]

Usage: AE sk_i_srv

1. SetState initiator:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | responder)))))

2. Generated AE sk_r_srv(2)

Label: [responder;server]

Usage: AE sk_r_srv

3. SetState responder:

Session 0(v0): ((APP | (r_init | (server | AE sk_r_srv(2)))))

4. SetState server:

Session 0(v0): ((APP | (srv_sess | (initiator | (AE sk_i_srv(0) | sk_i_srv)))))

5. SetState server:

Session 0(v0): ((APP | (srv_sess | (initiator | (AE sk_i_srv(0) | sk_i_srv)))))

Session 1(v0): ((APP | (srv_sess | (responder | (AE sk_r_srv(2) | sk_r_srv)))))

6. Generated NONCE conv_id(6)

Label: Public

Usage: NONCE conv_id

7. Generated NONCE nonce_i(7)

Label: [initiator;server]

Usage: NONCE nonce_i

8. Event initiator: initiate(NONCE conv_id(6),initiator,responder,NONCE nonce_i(7))

9. Message initiator->responder: (msg1 | (NONCE conv_id(6) | (initiator | (responder |

aead_enc(AE sk_i_srv(0),iv,(NONCE nonce_i(7) | (NONCE conv_id(6) | (initiator | responder))),

ev_i)))))

10. SetState initiator:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | responder)))))
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Session 1(v0): ((APP | (i_sent_m1 | (server | (AE sk_i_srv(0) | (responder | (NONCE

conv_id(6) | NONCE nonce_i(7))))))))

11. Generated NONCE nonce_r(11)

Label: [responder;server]

Usage: NONCE nonce_r

12. Event responder: req_key(NONCE conv_id(6),initiator,responder,NONCE nonce_r(11))

13. Message responder->server: (msg2 | (NONCE conv_id(6) | (initiator | (responder | (aead_enc

(AE sk_i_srv(0),iv,(NONCE nonce_i(7) | (NONCE conv_id(6) | (initiator | responder))),ev_i) |

aead_enc(AE sk_r_srv(2),iv,(NONCE nonce_r(11) | (NONCE conv_id(6) | (initiator | responder))),

ev_r))))))

14. SetState responder:

Session 0(v0): ((APP | (r_init | (server | AE sk_r_srv(2)))))

Session 1(v0): ((APP | (r_sent_m2 | (server | (AE sk_r_srv(2) | (initiator | (NONCE

conv_id(6) | NONCE nonce_r(11))))))))

15. Message server->responder: (msg3 | (NONCE conv_id(6) | (aead_enc(AE sk_i_srv(0),iv,(NONCE

nonce_i(7) | (NONCE conv_id(6) | (initiator | responder))),ev_i) | aead_enc(AE sk_r_srv(2),iv

,(NONCE nonce_r(11) | (NONCE conv_id(6) | (initiator | responder))),ev_r))))

16. Event responder: fwd_key(NONCE conv_id(6),initiator,responder,(NONCE conv_id(6) | (

initiator | responder)))

17. Message responder->initiator: (msg4 | (NONCE conv_id(6) | aead_enc(AE sk_i_srv(0),iv,(

NONCE nonce_i(7) | (NONCE conv_id(6) | (initiator | responder))),ev_i)))

18. SetState responder:

Session 0(v0): ((APP | (r_init | (server | AE sk_r_srv(2)))))

Session 1(v0): ((APP | (r_sent_m4 | (server | (initiator | (NONCE conv_id(6) | (initiator

| responder)))))))

19. Event initiator: recv_key(NONCE conv_id(6),initiator,responder,(NONCE conv_id(6) | (

initiator | responder)))

20. SetState initiator:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | responder)))))

Session 1(v0): ((APP | (i_rcvd_m4 | (server | (responder | (NONCE conv_id(6) | (initiator

| responder)))))))

PROTOCOL RUN: Successful execution of Otway-Rees protocol.

Finished Intercept Msg2 Attacker:

In this attack, the adversary waits even longer than in the previous attack and lets the responder
complete the session key request. The adversary intercepts the request to the server and replays
both parts of the request, respectively, to the iniator and responder. As a result, they both accept
(NONCE conv_id(6) | (initiator | responder)) as session key, allowing the attacker to impersonate
either user to the other.

A.4 Output and Trace of the Improved Model

======================

Otway-Rees

======================

Starting Benign Attacker:

start

0. Generated AE sk_i_srv(0)

Label: [initiator;server]

Usage: AE sk_i_srv

1. SetState initiator:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | responder)))))
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2. Generated AE sk_r_srv(2)

Label: [responder;server]

Usage: AE sk_r_srv

3. SetState responder:

Session 0(v0): ((APP | (r_init | (server | AE sk_r_srv(2)))))

4. SetState server:

Session 0(v0): ((APP | (srv_sess | (initiator | (AE sk_i_srv(0) | sk_i_srv)))))

5. SetState server:

Session 0(v0): ((APP | (srv_sess | (initiator | (AE sk_i_srv(0) | sk_i_srv)))))

Session 1(v0): ((APP | (srv_sess | (responder | (AE sk_r_srv(2) | sk_r_srv)))))

6. Generated NONCE conv_id(6)

Label: Public

Usage: NONCE conv_id

7. Generated NONCE nonce_i(7)

Label: [initiator;server]

Usage: NONCE nonce_i

8. Event initiator: initiate(NONCE conv_id(6),initiator,responder,server,NONCE nonce_i(7))

9. Message initiator->responder: (msg1 | (NONCE conv_id(6) | (initiator | (responder |

aead_enc(AE sk_i_srv(0),iv,(NONCE conv_id(6) | (initiator | (responder | NONCE nonce_i(7)))),

ev1)))))

10. SetState initiator:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | responder)))))

Session 1(v0): ((APP | (i_sent_m1 | (server | (AE sk_i_srv(0) | (responder | (NONCE

conv_id(6) | NONCE nonce_i(7))))))))

11. Generated NONCE nonce_r(11)

Label: [responder;server]

Usage: NONCE nonce_r

12. Event responder: req_key(NONCE conv_id(6),initiator,responder,server,NONCE nonce_r(11))

13. Message responder->server: (msg2 | (NONCE conv_id(6) | (initiator | (responder | (aead_enc

(AE sk_i_srv(0),iv,(NONCE conv_id(6) | (initiator | (responder | NONCE nonce_i(7)))),ev1) |

aead_enc(AE sk_r_srv(2),iv,(NONCE conv_id(6) | (initiator | (responder | NONCE nonce_r(11)))),

ev2))))))

14. SetState responder:

Session 0(v0): ((APP | (r_init | (server | AE sk_r_srv(2)))))

Session 1(v0): ((APP | (r_sent_m2 | (server | (AE sk_r_srv(2) | (initiator | (NONCE

conv_id(6) | NONCE nonce_r(11))))))))

15. Generated AE sk_i_r(15)

Label: [server;initiator;responder]

Usage: AE sk_i_r

16. Event server: send_key(NONCE conv_id(6),initiator,responder,server,NONCE nonce_i(7),NONCE

nonce_r(11),AE sk_i_r(15))

17. Message server->responder: (msg3 | (NONCE conv_id(6) | (aead_enc(AE sk_i_srv(0),iv,(NONCE

nonce_i(7) | (responder | AE sk_i_r(15))),ev3_i) | aead_enc(AE sk_r_srv(2),iv,(NONCE nonce_r

(11) | (initiator | AE sk_i_r(15))),ev3_r))))

18. SetState server:

Session 0(v0): ((APP | (srv_sess | (initiator | (AE sk_i_srv(0) | sk_i_srv)))))

Session 1(v0): ((APP | (srv_sess | (responder | (AE sk_r_srv(2) | sk_r_srv)))))

Session 2(v0): ((APP | (srv_sent_m3 | (initiator | (responder | (NONCE conv_id(6) | (NONCE

nonce_i(7) | (NONCE nonce_r(11) | AE sk_i_r(15)))))))))

19. Event responder: fwd_key(NONCE conv_id(6),initiator,responder,server,NONCE nonce_r(11),AE

sk_i_r(15))

20. Message responder->initiator: (msg4 | (NONCE conv_id(6) | aead_enc(AE sk_i_srv(0),iv,(

NONCE nonce_i(7) | (responder | AE sk_i_r(15))),ev3_i)))
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21. SetState responder:

Session 0(v0): ((APP | (r_init | (server | AE sk_r_srv(2)))))

Session 1(v0): ((APP | (r_sent_m4 | (server | (initiator | AE sk_i_r(15))))))

22. Event initiator: recv_key(NONCE conv_id(6),initiator,responder,server,NONCE nonce_i(7),AE

sk_i_r(15))

23. SetState initiator:

Session 0(v0): ((APP | (i_init | (server | (AE sk_i_srv(0) | responder)))))

Session 1(v0): ((APP | (i_rcvd_m4 | (server | (responder | AE sk_i_r(15))))))

PROTOCOL RUN: Successful execution of Otway-Rees protocol.

Finished Benign Attacker:

Starting Intercept Msg1 Attacker:

start

ERROR: i_recv_m4: decryption of part intended for initiator failed: aead_dec: key or ad

mismatch

Finished Intercept Msg1 Attacker:

Starting Intercept Msg2 Attacker:

start

ERROR: r_send_m4: decryption of part intended for responder failed: aead_dec: key or ad

mismatch

Finished Intercept Msg2 Attacker:

Starting Impersonate Responder to Initiator Attacker:

start

ERROR: srv_send_m3: principal names in encrypted parts do not match with principal names in

unencrypted part

Finished Impersonate Responder to Initiator Attacker:

The trace entries are similar as those in the trace of the benign attacker in the original protocol
depicted in Appendix A.1 except for the differences in the message structure and in the data
associated with events. The output resulting from the execution of the attacks on the original
protocol in the improved model shows that the modifications to the protocol prevent them. The
intercept and replay attacks fail in the improved model due to a mismatch in the associated data,
which happens because the attacker replays ciphertexts in a context different to the intended one.
The impersonation attack fails because the server performs checks on the conversation identifier
and principal identities in the encrypted and unencrypted parts of the third message and detects
inconsistencies.
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======================

Yahalom

======================

Starting Benign Attacker:

start

new long term key session of alice with server

new long term key session of bob with server

installed long term key of alice at server

installed long term key of bob at server

0. Generated AE YLM.lt_key(0)

Label: [alice;server]

Usage: AE YLM.lt_key

1. SetState alice:

Session 0(v0): ((APP | (p_key_sess | (server | AE YLM.lt_key(0)))))

2. Generated AE YLM.lt_key(2)

Label: [bob;server]

Usage: AE YLM.lt_key

3. SetState bob:

Session 0(v0): ((APP | (p_key_sess | (server | AE YLM.lt_key(2)))))

4. SetState server:

Session 0(v0): ((APP | (srv_sess | (alice | AE YLM.lt_key(0)))))

5. SetState server:

Session 0(v0): ((APP | (srv_sess | (alice | AE YLM.lt_key(0)))))

Session 1(v0): ((APP | (srv_sess | (bob | AE YLM.lt_key(2)))))

6. Generated NONCE YLM.nonce_a(6)

Label: Public

Usage: NONCE YLM.nonce_a

7. Event alice: initiate(alice,bob,server,NONCE YLM.nonce_a(6))

8. Message alice->bob: (msg1 | (alice | NONCE YLM.nonce_a(6)))

9. SetState alice:

Session 0(v0): ((APP | (p_key_sess | (server | AE YLM.lt_key(0)))))

Session 1(v0): ((APP | (i_sent_m1 | (bob | NONCE YLM.nonce_a(6)))))

10. Generated NONCE YLM.nonce_b(10)

Label: [bob;alice;server]

Usage: NONCE YLM.nonce_b

11. Event bob: req_key(alice,bob,server,NONCE YLM.nonce_a(6),NONCE YLM.nonce_b(10))

12. Message bob->server: (msg2 | (bob | aead_enc(AE YLM.lt_key(2),iv,(ev2 | (alice | (NONCE

YLM.nonce_a(6) | NONCE YLM.nonce_b(10)))),ev2)))

13. SetState bob:

Session 0(v0): ((APP | (p_key_sess | (server | AE YLM.lt_key(2)))))

Session 1(v0): ((APP | (r_sent_m2 | (alice | (server | NONCE YLM.nonce_b(10))))))

14. Generated AE YLM.comm_key(14)

Label: [server;alice;bob]

Usage: AE YLM.comm_key
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15. Event server: send_key(alice,bob,server,NONCE YLM.nonce_a(6),NONCE YLM.nonce_b(10),AE YLM.

comm_key(14))

16. Message server->alice: (msg3 | (aead_enc(AE YLM.lt_key(0),iv,(ev3_i | (bob | (AE YLM.

comm_key(14) | (NONCE YLM.nonce_a(6) | NONCE YLM.nonce_b(10))))),ev3_i) | aead_enc(AE YLM.

lt_key(2),iv,(ev3_r | (alice | AE YLM.comm_key(14))),ev3_r)))

17. SetState server:

Session 0(v0): ((APP | (srv_sess | (alice | AE YLM.lt_key(0)))))

Session 1(v0): ((APP | (srv_sess | (bob | AE YLM.lt_key(2)))))

Session 2(v0): ((APP | (srv_sent_m3 | (alice | (bob | AE YLM.comm_key(14))))))

18. Event alice: fwd_key(alice,bob,server,NONCE YLM.nonce_a(6),NONCE YLM.nonce_b(10),AE YLM.

comm_key(14))

19. Message alice->bob: (msg4 | (aead_enc(AE YLM.lt_key(2),iv,(ev3_r | (alice | AE YLM.

comm_key(14))),ev3_r) | aead_enc(AE YLM.comm_key(14),iv,(ev4 | NONCE YLM.nonce_b(10)),ev4)))

20. SetState alice:

Session 0(v0): ((APP | (p_key_sess | (server | AE YLM.lt_key(0)))))

Session 1(v0): ((APP | (i_sent_m4 | (bob | (server | AE YLM.comm_key(14))))))

21. Event bob: recv_key(alice,bob,server,NONCE YLM.nonce_b(10),AE YLM.comm_key(14))

22. SetState bob:

Session 0(v0): ((APP | (p_key_sess | (server | AE YLM.lt_key(2)))))

Session 1(v0): ((APP | (r_rcvd_m4 | (alice | (server | AE YLM.comm_key(14))))))

PROTOCOL RUN: Successful execution of Yahalom protocol.

Finished Benign Attacker:

Since the Yahalom protocol requires the same pre-shared keys as the Otway-Rees protocol, the
long-term keys are again installed in the first five trace entries. The initiator alice then begins a
protocol run with the responder bob, by triggering the event initiate(alice,bob,server,NONCE YLM

.nonce_a(6)) and sending a message to bob. Again, bob reacts by merging alice’s message into a
request for the server to generate and distribute a session key. In response, the server generates a
key AE YLM.comm_key(14) and sends key certificates for both users to alice, who then completes the
protocol run by forwarding the key to bob. The session key is again stored in the final state sessions
of the users.
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C Output of the Denning-Sacco Model

C.1 Output and Trace of Benign Attacker

======================

Denning-Sacco

======================

Starting Benign Attacker:

start

generating private key for alice

generating private key for bob

generating private key for server

installing public key for alice at server

installing public key for bob at server

installing public key for server at alice

installing public key for server at bob

0. Generated SIG DS.sig_key(0)

Label: [alice]

Usage: SIG DS.sig_key

1. SetState alice:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(0))))

2. Generated PKE DS.pke_key(2)

Label: [bob]

Usage: PKE DS.pke_key

3. SetState bob:

Session 0(v0): ((DecryptionKey | (DS.pke_key | PKE DS.pke_key(2))))

4. Generated SIG DS.sig_key(4)

Label: [server]

Usage: SIG DS.sig_key

5. SetState server:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(4))))

6. SetState server:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(4))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (alice | vk(SIG DS.sig_key(0))))))

7. SetState server:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(4))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (alice | vk(SIG DS.sig_key(0))))))

Session 2(v0): ((EncryptionKey | (DS.pke_key | (bob | pk(PKE DS.pke_key(2))))))

8. SetState alice:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(0))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (server | vk(SIG DS.sig_key(4))))))

9. SetState bob:

Session 0(v0): ((DecryptionKey | (DS.pke_key | PKE DS.pke_key(2))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (server | vk(SIG DS.sig_key(4))))))

10. Event alice: initiate(alice,bob)
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C Output of the Denning-Sacco Model

11. Message alice->server: (msg1 | (alice | bob))

12. SetState alice:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(0))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (server | vk(SIG DS.sig_key(4))))))

Session 2(v0): ((APP | (i_sent_m1 | bob)))

13. Message server->server: 13

14. Event server: certify(alice,bob,vk(SIG DS.sig_key(0)),pk(PKE DS.pke_key(2)),13,0)

15. Generated NONCE SIG_NONCE(15)

Label: [server]

Usage: NONCE SIG_NONCE

16. Message server->alice: (msg2 | (((cert_a | (alice | (vk(SIG DS.sig_key(0)) | 13))) | sign(

SIG DS.sig_key(4),NONCE SIG_NONCE(15),(cert_a | (alice | (vk(SIG DS.sig_key(0)) | 13))))) | ((

cert_b | (bob | (pk(PKE DS.pke_key(2)) | 13))) | sign(SIG DS.sig_key(4),NONCE SIG_NONCE(15),(

cert_b | (bob | (pk(PKE DS.pke_key(2)) | 13)))))))

17. SetState server:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(4))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (alice | vk(SIG DS.sig_key(0))))))

Session 2(v0): ((EncryptionKey | (DS.pke_key | (bob | pk(PKE DS.pke_key(2))))))

Session 3(v0): ((APP | (srv_sent_m2 | (alice | bob))))

18. Generated AE DS.comm_key(18)

Label: Join [bob] [alice]

Usage: AE DS.comm_key

19. Event alice: send_key(alice,bob,vk(SIG DS.sig_key(0)),pk(PKE DS.pke_key(2)),AE DS.comm_key

(18),13,2)

20. Generated NONCE SIG_NONCE(20)

Label: [alice]

Usage: NONCE SIG_NONCE

21. Generated NONCE PKE_NONCE(21)

Label: [alice]

Usage: NONCE PKE_NONCE

22. Message alice->bob: (msg3 | (((cert_a | (alice | (vk(SIG DS.sig_key(0)) | 13))) | sign(SIG

DS.sig_key(4),NONCE SIG_NONCE(15),(cert_a | (alice | (vk(SIG DS.sig_key(0)) | 13))))) | (((

cert_b | (bob | (pk(PKE DS.pke_key(2)) | 13))) | sign(SIG DS.sig_key(4),NONCE SIG_NONCE(15),(

cert_b | (bob | (pk(PKE DS.pke_key(2)) | 13))))) | pke_enc(pk(PKE DS.pke_key(2)),NONCE

PKE_NONCE(21),((comm_key | (AE DS.comm_key(18) | 13)) | sign(SIG DS.sig_key(0),NONCE SIG_NONCE

(20),(comm_key | (AE DS.comm_key(18) | 13))))))))

23. SetState alice:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(0))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (server | vk(SIG DS.sig_key(4))))))

Session 2(v0): ((APP | (i_sent_m3 | (bob | AE DS.comm_key(18)))))

24. Event bob: accept_key(alice,bob,vk(SIG DS.sig_key(0)),pk(PKE DS.pke_key(2)),AE DS.comm_key

(18),13,4)

25. SetState bob:

Session 0(v0): ((DecryptionKey | (DS.pke_key | PKE DS.pke_key(2))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (server | vk(SIG DS.sig_key(4))))))

Session 2(v0): ((APP | (r_rcvd_m3 | (alice | AE DS.comm_key(18)))))

PROTOCOL RUN: Successful execution of Denning-Sacco protocol.

Finished Benign Attacker:

This trace shows a successful execution of the Denning-Sacco protocol in our DY* model. In the
trace entries 0 to 9, the private and public keys used to run the protocol are set up in the states of the
respective principals. The protocol then begins with the initiate(alice,bob) event triggered by the
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C.2 Output and Trace of Fake Certificate Attacker

initiator alice, who wants to exchange a key with bob. Ultimately, the protocol leads to the exchange
of a communication key AE DS.comm_key (18), which is stored in the final protocol state sessions
of alice and bob. The time-based properties of the protocol are captured in terms of the last two
fields of the events certify, send key, and accept key, where the first field is the timestamp contained
in the certificates and the second field is the clock counter of the corresponding clock at the time
of the event. As the trace shows, the clock counter is always in the expected validity window
of the timestamp, which shows that our model succeeds to model the protocol’s time-dependent
properties.

C.2 Output and Trace of Fake Certificate Attacker

Starting Fake Certificate Attacker:

start

generating private key for alice

generating private key for bob

generating private key for eve

generating private key for server

installing public key for alice at server

installing public key for bob at server

installing public key for eve at server

installing public key for server at alice

installing public key for server at bob

compromised eve's secret key

compromised server's sign key

queried eve's public key in server state

queried alice's public key in server state

0. Generated SIG DS.sig_key(0)

Label: [alice]

Usage: SIG DS.sig_key

1. SetState alice:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(0))))

2. Generated PKE DS.pke_key(2)

Label: [bob]

Usage: PKE DS.pke_key

3. SetState bob:

Session 0(v0): ((DecryptionKey | (DS.pke_key | PKE DS.pke_key(2))))

4. Generated PKE DS.pke_key(4)

Label: [eve]

Usage: PKE DS.pke_key

5. SetState eve:

Session 0(v0): ((DecryptionKey | (DS.pke_key | PKE DS.pke_key(4))))

6. Generated SIG DS.sig_key(6)

Label: [server]

Usage: SIG DS.sig_key

7. SetState server:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(6))))

8. SetState server:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(6))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (alice | vk(SIG DS.sig_key(0))))))

9. SetState server:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(6))))
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C Output of the Denning-Sacco Model

Session 1(v0): ((VerificationKey | (DS.sig_key | (alice | vk(SIG DS.sig_key(0))))))

Session 2(v0): ((EncryptionKey | (DS.pke_key | (bob | pk(PKE DS.pke_key(2))))))

10. SetState server:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(6))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (alice | vk(SIG DS.sig_key(0))))))

Session 2(v0): ((EncryptionKey | (DS.pke_key | (bob | pk(PKE DS.pke_key(2))))))

Session 3(v0): ((EncryptionKey | (DS.pke_key | (eve | pk(PKE DS.pke_key(4))))))

11. SetState alice:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(0))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (server | vk(SIG DS.sig_key(6))))))

12. SetState bob:

Session 0(v0): ((DecryptionKey | (DS.pke_key | PKE DS.pke_key(2))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (server | vk(SIG DS.sig_key(6))))))

13. Compromised eve(0)(0)

14. Compromised server(0)(0)

15. Compromised server(3)(0)

16. Compromised server(1)(0)

17. Event alice: initiate(alice,bob)

18. Message alice->server: (msg1 | (alice | bob))

19. SetState alice:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(0))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (server | vk(SIG DS.sig_key(6))))))

Session 2(v0): ((APP | (i_sent_m1 | bob)))

20. Message *->*: 20

21. Generated NONCE SIG_NONCE(21)

Label: Public

Usage: NONCE SIG_NONCE

22. Message *->*: NONCE SIG_NONCE(21)

23. Message server->alice: (msg2 | (((cert_a | (alice | (vk(SIG DS.sig_key(0)) | 20))) | sign(

SIG DS.sig_key(6),NONCE SIG_NONCE(21),(cert_a | (alice | (vk(SIG DS.sig_key(0)) | 20))))) | ((

cert_b | (bob | (pk(PKE DS.pke_key(4)) | 20))) | sign(SIG DS.sig_key(6),NONCE SIG_NONCE(21),(

cert_b | (bob | (pk(PKE DS.pke_key(4)) | 20)))))))

24. Generated AE DS.comm_key(24)

Label: Join [eve] [alice]

Usage: AE DS.comm_key

25. Event alice: send_key(alice,bob,vk(SIG DS.sig_key(0)),pk(PKE DS.pke_key(4)),AE DS.comm_key

(24),20,1)

26. Generated NONCE SIG_NONCE(26)

Label: [alice]

Usage: NONCE SIG_NONCE

27. Generated NONCE PKE_NONCE(27)

Label: [alice]

Usage: NONCE PKE_NONCE

28. Message alice->bob: (msg3 | (((cert_a | (alice | (vk(SIG DS.sig_key(0)) | 20))) | sign(SIG

DS.sig_key(6),NONCE SIG_NONCE(21),(cert_a | (alice | (vk(SIG DS.sig_key(0)) | 20))))) | (((

cert_b | (bob | (pk(PKE DS.pke_key(4)) | 20))) | sign(SIG DS.sig_key(6),NONCE SIG_NONCE(21),(

cert_b | (bob | (pk(PKE DS.pke_key(4)) | 20))))) | pke_enc(pk(PKE DS.pke_key(4)),NONCE

PKE_NONCE(27),((comm_key | (AE DS.comm_key(24) | 20)) | sign(SIG DS.sig_key(0),NONCE SIG_NONCE

(26),(comm_key | (AE DS.comm_key(24) | 20))))))))

29. SetState alice:

Session 0(v0): ((SigningKey | (DS.sig_key | SIG DS.sig_key(0))))

Session 1(v0): ((VerificationKey | (DS.sig_key | (server | vk(SIG DS.sig_key(6))))))

Session 2(v0): ((APP | (i_sent_m3 | (bob | AE DS.comm_key(24)))))
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PROTOCOL RUN: Successful execution of Denning-Sacco protocol.

Finished Fake Certificate Attacker:

This trace displays the execution of a fake certificate attack by a compromised server. The setup
phase of the attack is covered by the trace entries 0 to 16 and includes, in addition to the setup phase
in the benign scenario depicted in Appendix C.1, the compromise of certain state sessions of the
server and another principal eve by the attacker. The initiator is honest and therefore begins the
protocol with the initiate event. The root of the attack can be found in trace entry 23, where the
server sends a false certificate to alice signed with the servers sign key SIG DS.sig_key(6), claiming
that the public key pk(PKE DS.pke_key(4)) of eve belongs to bob. In trace entry 25, alice triggers
send key, which means that it has accepted this false certificate. It sends the communication key to
bob, but encrypted under the public key of eve from the public key certificate, so that the adversary
can intercept the message and decrypt the certificate containing the communication key with eve’s
compromised secret key. The value of the clock counter is 1 at the time the send key event is
triggered, and 2 after alice sends the third message to bob in trace entry 28. When the adversary
obtains the key, the timestamp is thus still valid, giving the adversary the ability to replay the key to
another user without them noticing. For our model, this attack shows that timestamps cannot protect
against replays in scenarios where the attacker controls one or more principals actively involved in
the protocol.
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