
Regression from Linear Models to
Neural Networks: Double Descent,

Active Learning, and Sampling

Von der Fakultät Mathematik und Physik sowie dem Stuttgarter
Zentrum für Simulationswissenschaften der Universität Stuttgart
zur Erlangung der Würde eines Doktors der Naturwissenschaften

(Dr. rer. nat.) genehmigte Abhandlung

vorgelegt von

David Holzmüller

aus Stuttgart

Hauptberichter: Prof. Dr. Ingo Steinwart
Mitberichter: Prof. Dr. Matthias Hein

Prof. Dr. Francis Bach

Tag der mündlichen Prüfung: 25.07.2023

Institut für Stochastik und Anwendungen

Universität Stuttgart

2023





Acknowledgments

First, I would like to express my deepest gratitude to my supervisor Prof. Dr. Ingo
Steinwart for providing me the opportunity to pursue this doctorate degree, giving me
the freedom to work on different topics, and frequently providing helpful feedback and
advice. I also appreciate the countless meetings with a relaxed and humorous atmosphere
as well as all the other support throughout my journey. I am also thankful to Prof. Dr.
Francis Bach for accepting me as a visiting researcher, taking the time to supervise me,
and examining this dissertation. In addition, I would like to thank Prof. Dr. Matthias
Hein for examining this dissertation and participating in my thesis advisory committee,
Prof. Dr. Philipp Hennig for also participating in the latter, Prof. Dr. Mathias Niepert for
being my second advisor for my milestone presentation, and Prof. Dr. Bernard Haasdonk
for agreeing to be an additional examiner at my defense.

I could not have undertaken this journey without funding by the German Research Foun-
dation through the Cluster of Excellence “Data-Integrated Simulation Science (SimTech)”
under Germany’s Excellence Strategy - EXC 2075 - 390740016. Moreover, I am thankful
to the IMPRS-IS graduate school for further support.

I am also very grateful to my colleagues and collaborators for supporting me in my
scientific endeavors and making them more enjoyable. In this regard, I want to mention
Dr. Viktor Zaverkin, Max Schölpple, Moritz Haas, Prof. Dr. Dirk Pflüger, Tizian Wenzel,
Dr. Felix Dangel, Dr. Hans Kersting, Daniel Winkle, Aleksandar Arsenijevic, Manuel
Nonnenmacher, Dr. Simon Fischer, Dr. Thomas Hamm, Dr. Ingrid Blaschzyk, Max
Thannheimer, Carolin Forster, Jun.-Prof. Dr. Marco Oesting, Dr. Anna Maria Aulbach,
Dr. Jürgen Dippon, and Elke Maurer. Especially, I would like to express my deepest
gratitude to Dr. Viktor Zaverkin for our very fruitful and enjoyable collaboration, of which
one of the papers ended up in this thesis, and the resulting friendship. I would also like
to thank Dr. Robin Merkle, Dr. Thomas Hamm, and Dr. Viktor Zaverkin for helping me
with the formatting and structure of this thesis, to Max Schölpple, Bernd Holzmüller, and
Prof. Dr. Ingo Steinwart for feedback on the introductory part, and to Prof. Dr. Dominik
Göddeke and Elke Gangl for feedback on formal requirements.

Last but not least, I would like to mention my family and friends. In particular, I
would like to thank my grandparents, my sister, and especially my parents, for their
continuous and unconditional support in ways that are too numerous to list here. They
have contributed significantly to my well-being during my Ph.D. time as well as before.

iii



iv



Abstract

Deep learning, that is, the training of deep neural networks, is a powerful and successful
approach to machine learning, allowing to fit complex models to various forms of data.
On the other hand, the flexibility of neural networks also poses great challenges of both
theoretical and computational nature, some of which are addressed in this thesis. In
particular, we will consider the task of regression, where for a given input, a continuous
output variable should be predicted.

On the theoretical side, it is still only partially understood why neural network
optimization works so well, why optimized neural networks perform well on new data, or
why certain neural networks work better than others. Neural networks can be studied in
an under-parameterized regime, where the number of parameters is much smaller than the
number of training samples, but also in an over-parameterized regime, where it is much
bigger than the number of training samples. In particular, researchers have been puzzled
by the so-called double descent phenomenon, where the accuracy of neural networks
deteriorates as they leave the under-parameterized regime, and improves again when they
become more over-parameterized. The double descent phenomenon has been proven for
linear regression models under various assumptions. In Chapter 5, we prove a lower bound
for the expected test error of unregularized linear regression that exhibits the typical
double descent peak between the over- and under-parameterized regimes while using much
weaker assumptions than previous work. We show that these assumptions are satisfied by
a large class of input distributions and feature maps, and in particular for certain random
deep neural network feature maps. Our results therefore also imply a lower bound with the
typical double descent shape for deep neural networks where only the last layer is trained.

On the practical side, the non-linear nature and the large number of parameters of
neural networks renders accurate and efficient uncertainty estimation difficult. Good
uncertainty estimates can help to make a neural network more trustworthy, but they are
also relevant for active learning, where the uncertainty estimates can be used to generate
more relevant training data for the neural network. In Chapter 6, we study efficient batch
mode active learning methods for regression with neural networks and propose a framework
in which such methods can be constructed by selecting a base kernel, applying kernel
transformations to the base kernel, and then using the resulting kernel in a kernel-based
selection method. We provide new components in our framework, allowing to leverage
linearizations of the full network efficiently through sketching and facilitating efficient
distribution-aware data selection through a novel clustering method. Our accompanying
open source code implements our framework in an efficient and flexible manner. We also
provide a benchmark consisting of 15 tabular data sets on which our new components
achieve state-of-the-art performance.

v



While our work on active learning uses simple uncertainty estimation methods for
efficiency, it is interesting in some cases to obtain more accurate Bayesian uncertainty
estimates using sampling methods. For neural networks, this requires the use of sampling
algorithms for non-log-concave Gibbs distributions, for which only weak guarantees have
been known. In Chapter 7, we conduct an extensive study of convergence rates of such
algorithms depending on the smoothness of the log-density and the magnitude of its
derivatives. First, we study the information-based complexity of the problem, showing that
algorithms only constrained by the number of function evaluations can achieve the same
convergence rates as for function approximation, and in some regimes even better rates. A
similar picture emerges for algorithms that estimate the log-normalization constant of an
unnormalized Gibbs distribution. We then study computational reductions between these
two problems and optimization, and we investigate the use of function approximations
to obtain faster convergence rates. Finally, we prove convergence rate bounds on several
simple algorithms as well as a recent variational approach.

vi



Kurzfassung

Tiefes Lernen, also das Trainieren tiefer neuronaler Netze, ist ein mächtiger und erfolgreicher
Ansatz für maschinelles Lernen, der es erlaubt, komplexe Modelle an verschiedene Formen
von Daten anzupassen. Allerdings stellt die Flexibilität neuronaler Netze aber auch große
Herausforderungen sowohl theoretischer als auch rechentechnischer Art, von denen einige
in dieser Dissertation adressiert werden. Insbesondere werden wir das Regressionsproblem
betrachten, bei dem für eine gegebene Eingabe eine kontinuierliche Ausgabevariable
vorhergesagt werden soll.

Auf der theoretischen Seite ist es immer noch nur teilweise verstanden, warum die
Optimierung neuronaler Netze so gut funktioniert, warum optimierte neuronale Netze sich
auf neuen Daten gut verhalten oder warum gewisse neuronale Netze besser funktionieren als
andere. Neuronale Netze können in einem unterparametrisierten Regime untersucht werden,
in dem ihre Parameterzahl deutlich kleiner ist als die Anzahl der Trainingsdaten, aber auch
in einem überparametrisierten Regime, in dem die Parameterzahl deutlich größer ist als
die Anzahl der Trainingsdaten. Insbesondere haben Forscher über das sogenannte Double-
Descent-Phänomen gerätselt, bei dem die Genauigkeit von neuronalen Netzen schlechter
wird, wenn sie das unterparametrisierte Regime verlassen, und wieder besser wird, wenn
sie stärker überparametrisiert werden. Das Double-Descent-Phänomen wurde für lineare
Regressionsmodelle unter verschiedenen Annahmen bewiesen. In Kapitel 5 beweisen wir
eine untere Schranke an den erwarteten Testfehler unregularisierter linearer Regression,
welcher den typischen Double-Descent-Hügel zwischen den über- und unterparametrisierten
Regimes aufweist, aber dabei deutlich schwächere Annahmen macht als vorangegangene
Arbeiten. Wir zeigen, dass diese Annahmen von einer großen Klasse an Eingabeverteilungen
und feature maps erfüllt sind, und insbesondere auch von solchen feature maps, die durch
gewisse zufällige tiefe neuronalen Netze gegeben sind. Unsere Resultate implizieren daher
auch eine untere Schranke mit der typischen Double-Descent-Form für tiefe neuronale
Netze, bei denen nur die letzte Schicht trainiert wird.

Auf der praktischen Seite macht die nichtlineare Natur und die große Parameterzahl
neuronaler Netze eine genaue und effiziente Unsicherheitsschätzung schwierig. Eine gute
Unsicherheitsschätzung kann helfen, ein neuronales Netz vertrauenswürdiger zu machen,
aber sie ist auch relevant für aktives Lernen, bei dem die Unsicherheitsschätzung genutzt
werden kann, um relevantere Trainingdaten für das neuronale Netz zu generieren. In Kapitel
6 untersuchen wir effiziente aktive Lernmethoden für Regression mit neuronalen Netzen
und führen ein Schema ein, in dem solche Methoden konstruiert werden können durch
die Wahl eines Basiskerns, die Anwendung von Kerntransformationen auf den Basiskern
und die Nutzung des resultierenden Kerns in einer kernbasierten Auswahlmethode. Wir
stellen neue Komponenten für unser Schema bereit, die es erlauben, eine Linearisierung

vii



des vollen Netzes auf effiziente Art durch Sketching zu nutzen, und eine effiziente und
verteilungsbewusste Datenauswahl durch eine neue Clustering-Methode zu treffen. Unser
begleitender öffentlicher Programmcode implementiert unser Schema auf effiziente und
flexible Art. Wir stellen darüber hinaus einen Benchmark bereit, der aus 15 tabellarischen
Datensätzen besteht, auf denen unsere neuen Komponenten eine neue Bestmarke in der
Qualität der resultierenden Netze erreichen.

Während unsere Arbeit zu aktivem Lernen aus Effizienzgründen einfache Unsicherheitss-
chätzungsmethoden verwendet, ist es in einigen Fällen interessant, genauere Bayesian-
ische Unsicherheitsschätzungen mit Sampling-Methoden zu erhalten. Für neuronale
Netze erfordert dies die Nutzung von Sampling-Algorithmen für nicht log-konkave Gibbs-
Verteilungen, für welche nur schwache Garantien bekannt waren. In Kapitel 7 führen
wir eine umfangreiche Untersuchung der Konvergenzraten solcher Algorithmen durch,
abhängig von der Glattheit der log-Dichte und der Größe ihrer Ableitungen. Zuerst
untersuchen wir die informationsbasierte Komplexität des Problems und zeigen dabei, dass
Algorithmen, die nur durch die Anzahl der Funktionsauswertungen beschränkt sind, die
gleichen Konvergenzraten wie Funktionsapproximation erreichen können, und in manchen
Regimes sogar bessere Raten. Ein ähnliches Bild ergibt sich für Algorithmen, die die
log-Normalisierungskonstante einer unnormalisierten Gibbs-Verteilung schätzen. Danach
untersuchen wir Reduktionen zwischen diesen zwei Problemen und Optimierung und wir
untersuchen die Nutzung von Funktionsapproximationen, um schnellere Konvergenzraten
zu bekommen. Schließlich beweisen wir Schranken an die Konvergenzraten verschiedener
einfacher Algorithmen sowie eines kürzlich publizierten variationellen Ansatzes.

viii



Contents

Acknowledgments iii

Abstract v

Kurzfassung vii

I Introduction 1

1 Introduction and Contribution of this Thesis 3
1.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Overall Structure of the Work . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical and Methodological Background 7
2.1 Statistical Learning Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Specific Regression Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Feature Maps and Kernels . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Bayesian Linear Regression . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Gibbs Distributions and Statistical Distances . . . . . . . . . . . . . . . . . 24

3 Main Results and Outlook 29
3.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Double Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Sampling and Log-Partition Function Estimation . . . . . . . . . . 33

3.2 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

II Cumulative part 37

4 Declaration to the Cumulative Part 39

ix



5 On the Universality of the Double Descent Peak in Ridgeless Regression 41
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Basic Setting and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Linear Regression With (Random) Features . . . . . . . . . . . . . . . . . 45
5.4 A Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 When are the Assumptions Satisfied? . . . . . . . . . . . . . . . . . . . . . 47
5.6 Quality of the Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Appendix 53
5.A Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.B Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.C Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.D A Counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.E Full-rank Results for Random Weight Neural Networks . . . . . . . . . . . 63
5.F Proofs for Section 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.G Discussion of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . 69
5.H Proofs for Section 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.H.1 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.H.2 Random Networks with Biases . . . . . . . . . . . . . . . . . . . . . 76
5.H.3 Random Networks without Biases . . . . . . . . . . . . . . . . . . . 79
5.H.4 Random Networks: Conclusion . . . . . . . . . . . . . . . . . . . . 84

5.I Random Fourier Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.J Proofs for Section 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.K Relation to Ridgeless Kernel Regression . . . . . . . . . . . . . . . . . . . . 93
5.L Novelty of the Overparameterized Bound . . . . . . . . . . . . . . . . . . . 95

6 A Framework and Benchmark for Deep Batch Active Learning for Re-
gression 97
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Regression with Fully-Connected Neural Networks . . . . . . . . . . 101
6.2.2 Batch Mode Active Learning . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.1 Uncertainty Measures and Kernel Approximations . . . . . . . . . . 104
6.3.2 Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.3 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4.1 Base Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4.2 Kernel Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.5.1 Iterative Selection Methods . . . . . . . . . . . . . . . . . . . . . . 114
6.5.2 Specific Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

x



6.6.1 Comparison to Existing Methods . . . . . . . . . . . . . . . . . . . 122
6.6.2 Evaluated Combinations . . . . . . . . . . . . . . . . . . . . . . . . 123
6.6.3 Best Kernels and Modes for each Selection Method . . . . . . . . . 126
6.6.4 Comparison of Selection Methods . . . . . . . . . . . . . . . . . . . 126
6.6.5 When should BMDAL be Applied? . . . . . . . . . . . . . . . . . . 131

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.7.2 Remaining Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendix 133
6.A Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.B Details on Base Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.B.1 NNGP Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.C Details on Kernel Transformations . . . . . . . . . . . . . . . . . . . . . . . 133

6.C.1 Gaussian Process Posterior Transformation . . . . . . . . . . . . . . 134
6.C.2 Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.C.3 ACS Random Features Transformation . . . . . . . . . . . . . . . . 136

6.D Details on Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.D.1 Iterative Selection Scheme . . . . . . . . . . . . . . . . . . . . . . . 138
6.D.2 Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.D.3 MaxDiag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.D.4 MaxDet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.D.5 Bait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.D.6 FrankWolfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.D.7 MaxDist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.D.8 KMeansPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.D.9 LCMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.E Details on Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.E.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.E.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.E.3 Neural Network Configuration . . . . . . . . . . . . . . . . . . . . . 158
6.E.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 Convergence Rates for Non-Log-Concave Sampling and Log-Partition
Estimation 169
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.2 Information-based Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.2.1 Deterministic Evaluation Points . . . . . . . . . . . . . . . . . . . . 175
7.2.2 Stochastic Evaluation Points . . . . . . . . . . . . . . . . . . . . . . 178

7.3 Relations Between Different Problems . . . . . . . . . . . . . . . . . . . . . 181
7.3.1 Runtime-Accuracy Trade-off . . . . . . . . . . . . . . . . . . . . . . 181
7.3.2 Relation between stochastic and deterministic evaluation points . . 182
7.3.3 Relation Between Sampling and Log-partition Estimation . . . . . . 182
7.3.4 Relation to Optimization . . . . . . . . . . . . . . . . . . . . . . . . 185

xi



7.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.4.1 Approximation-based Algorithms . . . . . . . . . . . . . . . . . . . 186
7.4.2 Simple Stochastic Algorithms . . . . . . . . . . . . . . . . . . . . . 188
7.4.3 Markov Chain Monte Carlo Algorithms . . . . . . . . . . . . . . . . 190
7.4.4 Variational Formulation for Log-Partition Estimation . . . . . . . . 191

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.5.1 Log-partition Estimation . . . . . . . . . . . . . . . . . . . . . . . . 193
7.5.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Appendix 199
7.A Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.B Proofs for Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.C Proofs for Information-based Complexity . . . . . . . . . . . . . . . . . . . 200

7.C.1 Deterministic Evaluation Points . . . . . . . . . . . . . . . . . . . . 202
7.C.2 Stochastic Evaluation Points . . . . . . . . . . . . . . . . . . . . . . 207

7.D Proofs for Relations Between Different Problems . . . . . . . . . . . . . . . 214
7.D.1 Proofs for Relation between Sampling and Log-Partition Estimation 215
7.D.2 Proofs for Relation to Optimization . . . . . . . . . . . . . . . . . . 218

7.E Proofs for Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
7.E.1 Proofs for Approximation-based Algorithms . . . . . . . . . . . . . 219
7.E.2 Proofs for Simple Stochastic Algorithms . . . . . . . . . . . . . . . 227
7.E.3 Proofs for Variational Formulation . . . . . . . . . . . . . . . . . . 232

Bibliography 237

xii



Part I

Introduction





Chapter 1

Introduction and Contribution of
this Thesis

1.1 Introduction and Motivation

Through the widespread adoption of computers, smartphones, and the internet, large
amounts of data are generated, processed, and stored. Machine learning (ML) algorithms
can leverage increasing amounts of data to improve their performance at various tasks.
In recent years, ML has enabled significant progress in areas such as image classification
(Cireşan et al., 2012; Krizhevsky et al., 2012), image generation (Goodfellow et al., 2014),
game playing (Mnih et al., 2015; Silver et al., 2016), audio generation (Oord et al., 2016),
machine translation (Vaswani et al., 2017), language understanding (Devlin et al., 2019),
text generation (Brown et al., 2020), and protein structure prediction (Jumper et al.,
2021).

While many of these most prominent successes stem from the areas of computer science
and signal processing, simulation science is also undergoing a revolution through the
integration of ML techniques (Lavin et al., 2021). For example, neural networks (NNs)
are being employed for the (data-integrated) solution of partial differential equations
(PDEs) (Raissi et al., 2019) including the electronic Schrödinger equation (Pfau et al.,
2020; Hermann et al., 2020), learning PDE terms and equations from data (Raissi et al.,
2019; Rackauckas et al., 2020; Kirkpatrick et al., 2021), and the solution of inverse problems
(Cranmer et al., 2020).

An important application of ML in simulation science is to approximate functions
f ∗ : X → Y that are computed by expensive simulations through a surrogate model
f : X → Y that can be evaluated more efficiently. Prominent applications of surrogate
models include the prediction of forces in atomistic simulations (see e.g. Behler and
Parrinello, 2007; Deringer et al., 2019) and the prediction of PDE solutions given initial
conditions (Li et al., 2021).

In this thesis, we will first study a branch of ML called supervised learning, where
an output (or label) y ∈ Y should be predicted from an input x ∈ X . Given a training
data set D = ((x1, y1), . . . , (xn, yn)) of input-output pairs, a supervised learning method
typically outputs a function fD : X → Y or a probabilistic model P (y|x, D). In particular,
supervised learning can also be used to create data-driven surrogate models. The two

3



Chapter 1. Introduction and Contribution of this Thesis

−1 0 1

x

−2

−1

0

1

2

y

−1 0 1

x

−1 0 1

x

f∗ Training data Test data fD

Figure 1.1: This figure shows training and test data generated from the function f∗(x) = sin(3x)
with additive noise, as well as different functions fD fitted to it. The function on the left does
not generalize well due to underfitting. The function in the middle generalizes pretty well. The
function on the right interpolates the training data, but generalizes poorly, which is an instance
of overfitting.

most prominent problems in supervised learning are classification, where Y is discrete, and
regression, where Y is continuous. In this thesis, we will focus on regression with Y = R.

To evaluate the learned function fD, one can measure an average error on an independent
test set Dtest = ((x̃1, ỹ1), . . . , (x̃ntest , ỹntest)). For example, a typical error measure for
regression is the mean squared error (MSE) given by

MSE =
1

ntest

ntest∑
i=1

(ỹi − fD(x̃i))2 ,

or the square root thereof, which is called root mean squared error (RMSE). Besides
these test error measures, the average error on the training set can be measured as well.
However, since the learned function fD is often optimized to have low training error, the
training error is not an unbiased estimate of the error that fD will make on new data.

Informally speaking, if a learning method achieves low test error, it is said to generalize.
Two complementary obstacles to generalization are underfitting, where the learning method
does not achieve a low training error, and overfitting, where the learning method achieves
a very low training error but a high test error. Underfitting typically occurs when a
learning method chooses the function fD from a limited set of functions that does not allow
achieving low training error. Overfitting typically occurs when a learning method has too
much freedom to choose the function fD, such that the chosen function can fit the training
data well but can exhibit irregular behavior outside of the training data. Underfitting and
overfitting are visualized in Figure 1.1.

A particularly popular class of ML methods is given by deep learning methods, where the
learned functions are represented by artificial (deep) NNs. NNs are parametric models, that
is, functions fθ that depend on a vector of (learnable) parameters θ. They allow for great
flexibility in specifying the functional form, also called architecture, of the learned function.
For surrogate models, they also offer various possibilities to incorporate symmetries and
other physical constraints. On the other hand, our theoretical understanding of why and

4



1.2. Contribution of this Thesis

under which assumptions NNs generalize is rather limited. For example, NNs often have
many learnable parameters, such that one might expect them to overfit, but yet they
often achieve a low test error in practice (Zhang et al., 2017). Moreover, many other
questions are only partially understood, such as why the optimization of NNs works so
well in practice, why NNs are so successful for high-dimensional data, or why and when
certain architectures of NNs are better than others. We will discuss some aspects of the
theory of NNs in Section 2.2.4 and contribute to this theory in Chapter 5.

To draw valid scientific conclusions, scientists need to be able to trust the output of a
surrogate model. Besides theoretical guarantees and a low test error, a desirable property
of a surrogate model is the ability to provide an estimate of the uncertainty of a prediction.
This can be achieved by Bayesian ML methods, which typically do not provide a single
function fD but a distribution over functions fD, from which uncertainty estimates can
be derived. To obtain a prediction from a distribution of functions, one could try to
sample some functions from the distribution using a sampling algorithm. Unfortunately,
for Bayesian NNs, sampling is very computationally expensive, and practical convergence
guarantees are lacking (Izmailov et al., 2021). We will discuss some aspects of Bayesian
NNs in Section 2.2.4 as well as in Chapter 6 and take a closer look at the sampling problem
in Chapter 7.

Another setting where uncertainty estimates are relevant is active learning. Active
learning methods do not receive a fixed data set but are instead allowed to choose the
inputs xi for which the labels yi are acquired. Active learning methods are also applicable
to the construction of surrogate models since the simulated function f ∗ can typically
be evaluated at arbitrary inputs xi. Compared to randomly sampling inputs xi, active
learning methods can potentially enable reaching the same accuracy with fewer labels, and
therefore fewer expensive evaluations of the simulation. Many active learning methods
require uncertainty estimates to prioritize inputs or are even specifically designed for
Bayesian models. We will study active learning for NNs in Chapter 6.

1.2 Contribution of this Thesis

This thesis consists of three papers. In the first paper (Holzmüller, 2021), we study the
so-called double descent phenomenon, which describes that learning methods sometimes
generalize badly when they have just enough parameters to perfectly fit the training data,
but generalize better when they have even more parameters (Belkin et al., 2019). In
particular, we study minimum-norm linear regression, a learning method that can be seen
as a simple special case of neural network training, in the presence of noisy labels yi. We
show a lower bound for the expected test error that only depends on the noise variance,
the number of samples n, and the input dimension. We show that our lower bound holds
under non-degeneracy assumptions that are much weaker than the assumptions under
which analytical formulas have been obtained. Especially, we show that our assumptions
allow studying deep neural networks in a setting where only the last layer is trained. We
also provide further theoretical and experimental results studying the sharpness of our
lower bound.

In the second paper (Holzmüller et al., 2023), we study active learning for regression
with NNs from a practical point of view. We study the batch active learning setting, where

5



Chapter 1. Introduction and Contribution of this Thesis

labels yi for multiple inputs xi are queried simultaneously. We introduce a kernel-based
framework that allows building efficient batch active learning methods out of a variety
of components. We provide open-source code containing efficient implementations of all
components of our framework. Our framework allows us to reproduce existing methods
and adapt classification methods to the regression setting. Moreover, we provide new
components to the framework. We introduce a benchmark of 15 large tabular data sets on
which we compare many different active learning methods. We find that a combination of
our newly introduced components achieves the best average results on our benchmark.

In the third paper (Holzmüller and Bach, 2023), we study sampling methods on
classes of probability distributions with smooth log-densities. Crucially, we do not assume
that the log-density is convex, which is often not satisfied, e.g., for Bayesian NNs or
equilibrium distributions of atomic configurations in molecular simulations. We first
investigate the information-based complexity of sampling from such distributions, that is,
the convergence rates that can be achieved when algorithms are only restricted by the
number of points in which they can evaluate the log-density. For smooth log-densities, we
show that sampling methods can in principle achieve good convergence rates through the
use of surrogate models of the log-density. The same holds for methods that estimate the
normalization constant of an unnormalized log-density. We study the relation between
these two methods and optimization, obtaining various results for different metrics on
probability distributions. Subsequently, we obtain various upper and lower bounds for
the convergence rates of simple algorithms, such as sampling from piecewise constant
approximations, approximating densities, simple Monte Carlo methods, and rejection
sampling. We also study a variational approach towards estimating normalizing constants
and show that all versions of it fail to come close to the information-based complexity rate
for smooth log-densities.

Several papers by the author have not been included in this thesis. In particular,
we have improved NN surrogate models for the prediction of potential energies and
atomic forces of configurations of atoms (Zaverkin et al., 2021) and studied active learning
(Zaverkin et al., 2022) and transfer learning (Zaverkin et al., 2023) for these surrogate
models.

1.3 Overall Structure of the Work
The remainder of this thesis is structured as follows: We provide theoretical and method-
ological background for the rest of the thesis in Chapter 2. We then discuss the main
results of this thesis in more detail in Chapter 3. In Chapter 4, we clarify the contributions
of the author of this thesis to the results. Chapter 5 contains the first paper on double
descent. Chapter 6 contains the second paper on active learning. Finally, Chapter 7
contains the third paper on sampling.

6



Chapter 2

Theoretical and Methodological
Background

In many parts of this thesis, we are interested in the ability of learning algorithms
to approximately reconstruct an unknown function f : X → Y from a data set D =
((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n. Specifically, we will consider regression with Y = R.
To study regression algorithms, we need to define how the reconstruction error will be
measured and how we assume the data to be generated. A framework for modeling
these aspects is given by statistical learning theory for supervised learning, which we
will introduce in Section 2.1. We will then introduce specific methods for regression in
Section 2.2, which are mainly relevant for Chapter 5 and Chapter 6. Finally, in Section 2.3,
we will discuss Gibbs distributions and statistical distances, which will be relevant for
Chapter 7.

2.1 Statistical Learning Theory
In this section, we will outline some basic assumptions and definitions from statistical
learning theory that can be used to analyze learning methods. Our notation and exposition
in this section roughly follow the one by Steinwart and Christmann (2008).

For supervised learning, we can consider the setting where we are given the following
information:

• An input space X , for example, X = Rd.
• An output space Y , for example, Y = R.
• A loss function L : Y × Y → R≥0, for example, the square loss L(y, t) = (y − t)2.
• A data set D = ((x1, y1), . . . , (xn, yn)), where (xi, yi) are i.i.d. samples from an

unknown data-generating distribution P on X × Y . We will sometimes use random
variables (X, Y ) ∼ P and we will denote the corresponding marginal distribution of
X by PX .

Technically, we need σ-Algebras on X and Y to define the measurability of functions
f : X → Y and to define a probability space on X × Y. In the following, measurability
will be implicitly assumed as needed even if not mentioned explicitly, for details see the
book by Steinwart and Christmann (2008).

7



Chapter 2. Theoretical and Methodological Background

Risk For a measurable function f : X → Y , we define the (population) risk RL,P (f) and
the empirical risk RL,D(f) by

RL,P (f) :=

∫
L(y, f(x)) dP (x, y) , RL,D(f) :=

1

n

n∑
i=1

L(yi, f(xi)) .

These two risks specify the average loss under P or D when predicting y with f(x). The
optimal achievable population risk is called Bayes risk and given by

R∗
L,P := inf

f :X→Y measurable
RL,P (f) .

If the infimum above is achieved by a unique (up to PX-null sets) function f , we denote it
by f ∗

L,P . The excess risk

RL,P (f)−R∗
L,P

quantifies the suboptimality of a given function f .

Example 2.1.1 (Binary classification). In binary classification, we have two classes and
want to predict which one of them an input belongs to. We can formalize the two classes
as Y = {−1, 1} and define the classification error

L(y, t) :=

{
0 , y = t

1 , y ̸= t .

The population risk RL,P (f) denotes the probability that a sample will be misclassified by
f . Using the conditional distribution P (Y = y|X = x), we can write the Bayes optimal
classifier as

f ∗
L,P (x) = argmax

y∈{−1,1}
P (Y = y | X = x) .

Of course, f ∗
L,P is only unique up to PX-null sets if P (Y = 1 | X = x) ̸= 1/2 for PX-almost

all x. The Bayes risk quantifies the average amount of noise on the labels and is given by

R∗
L,P = Ex∼PX

min
y∈{−1,1}

P (Y = y | X = x) .

Since the classification error is difficult to optimize using gradient-based optimization
techniques, surrogate loss functions are often employed, see e.g. Steinwart and Christmann
(2008). However, we will not need surrogate loss functions for regression. ◀

Example 2.1.2 (Regression with square loss). Let L be the square loss L(y, t) = (y − t)2
with Y = R. In this case, if EY 2 <∞, it can be shown that the function f ∗

L,P exists and
is given by the conditional expectation f ∗

L,P (x) = EP [Y |X = x]. Moreover, an elementary
calculation shows that the excess risk of a function f is given by

RL,P (f)−R∗
L,P = Ex∼PX

[(f(x)− f ∗
L,P (x))

2] = ∥f − f ∗
L,P∥2L2(PX) . ◀

8



2.1. Statistical Learning Theory

Consistency In practice, the risk or the excess risk cannot be computed since the
data-generating distribution P is unknown. However, if a test set Dtest drawn from
P independently of D is available, the population risk RL,P (f) can be estimated by
RL,Dtest(f). In the limit n→∞ of infinite training data, we would like the excess risk of
a learning algorithm to converge to zero. This is formalized by the notion of consistency :

Definition 2.1.3 (Learning methods and (universal) consistency). A learning method
L = (Ln)n∈N≥1

is a sequence of (measurable) functions Ln that map a data setD ∈ (X×Y)n
to a (measurable) function fD : X → Y. A learning method is called (L-risk) consistent
for a distribution P on X × Y if for all ε > 0, we have

lim
n→∞

P n({D ∈ (X × Y)n | RL,P (fD) > R∗
L,P + ε}) = 0 ,

where P n denotes the distribution of n i.i.d. random samples from P . In other words, this
means that the excess risk on the random function fD converges to zero in probability
as we let the number n of samples go to infinity. A learning method is called universally
(L-risk) consistent if it is (L-risk) consistent for every distribution P on X × Y . ◀

Remark 2.1.4. The definition above considers deterministic learning methods, but it is
straightforward to extend it to stochastic learning methods, where the mapping D 7→ fD is
not deterministic. As we will discuss in Section 2.2.4, this is relevant for neural networks,
which often use randomized initialization and training methods.

Besides stochastic convergence of the excess risk, one can consider convergence in
expectation or almost sure convergence. The corresponding notions of consistency are
called weak consistency and strong consistency, respectively (Györfi et al., 2002).

Universal consistency has been first established for the k-nearest neighbors method
(Stone, 1977) and has since been established for many more learning methods (see Devroye
et al., 1996; Györfi et al., 2002; Steinwart and Christmann, 2008). Besides consistency,
one might be interested in the rate of convergence of the excess risk, which is known as
a learning rate. Unfortunately, obtaining non-trivial learning rates requires additional
assumptions on the distribution P (Devroye, 1982; Devroye et al., 1996). ◀

Empirical risk minization A common approach towards constructing learning methods
is called empirical risk minimization (ERM). While the risk RL,P depends on the unknown
distribution P and hence cannot be optimized directly, we can instead optimize the
empirical risk RL,D. For example, for the square loss L(y, t) = (y − t)2, RL,D(f) is the
mean squared error (MSE) of f on the training data D. After choosing a suitable set F of
functions from X to Y , we can then consider the empirical risk minimizer (ERM)

fD = argmin
f∈F

RL,D(f) ,

provided that it (uniquely) exists. A common way to establish upper bounds on the excess
risk for such methods is to show that

(a) there is some f ∈ F with low population risk RL,P (f), (Approximation error bound)
(b) with high probability, for all f ∈ F , the empirical risk RL,D(f) is close to the

population risk RL,P (f). (Estimation error bound)

9



Chapter 2. Theoretical and Methodological Background

To achieve consistency, the approximation error bound (a) requires F to grow with n. On
the other hand, the estimation error bound (b) requires the function class F to be not
too large relative to n. Large function classes F can lead to overfitting, where the ERM
fD has much lower empirical risk than population risk. To prevent this, it is common to
consider instead the regularized ERM

fD = argmin
f∈F

RL,D(f) + λΩ(f) ,

where Ω(f) ≥ 0 is some measure of the complexity of f and λ > 0 can be used to adjust
the strength of the regularization. We will later see examples of such regularizers of the
form Ω(f) = ∥f∥2 for some Hilbert space norm ∥ · ∥.

An important class of learning methods is given by parametric methods, which consider
classes of functions such as F = {fθ | θ ∈ Rp}, where θ 7→ fθ is a parametric function.
The size of the function class is then related to the number of parameters p. We will
refer to methods with p≪ n as under-parameterized and methods with p≫ n as over-
parameterized. Typically, good estimation error bounds in the sense above for unregularized
methods can only be given in the under-parameterized case, while guarantees for over-
parameterized methods require the use of regularization. However, the necessity of
regularization for over-parameterized methods has recently been questioned due to the
successes of over-parameterized NNs (Zhang et al., 2017; Belkin et al., 2018). We will
therefore also study unregularized methods in the over-parameterized regime in Section 2.2.1
and Chapter 5.

Bias-Variance decomposition We now investigate how the expected excess risk
EDRL,P (fD)−R∗

L,P can be further decomposed into non-negative parts. For the square
loss, this can be done using a bias-variance decomposition (see e.g. Adlam and Pennington,
2020b), and we consider a straightforward generalization to convex loss functions using
Jensen’s inequality:

Theorem 2.1.5 (Jensen’s inequality, see e.g. Theorem 7.11 in Klenke (2014)). Let G ⊆ Rd

be convex, let φ : G → R be convex, and let X be an Rd-valued random variable with
E∥X∥ <∞ and P (X ∈ G) = 1. Then,

E[φ(X)] ≥ φ(E[X]) .

Jensen’s inequality is useful in many contexts, and it will also be one of our central
tools in the proof of Theorem 5.4.3 in Chapter 5. In the following, we use EDfD to denote
the point-wise expectation of the function fD over the draw of the data set D ∼ P n. We
consider the following decomposition of the expected excess risk:

EDRL,P (fD)−R∗
L,P = (ED[RL,P (fD)]−RL,P (EDfD)) +

(
RL,P (EDfD)−R∗

L,P

)
. (2.1)

The last term RL,P (EDfD) − R∗
L,P is always non-negative by definition of R∗

L,P . Now
suppose that the loss function (y, t) 7→ L(y, t) is convex in t for every y. If the risks are
finite, we can use the Fubini-Tonelli theorem to exchange the order of integration and
obtain

ED[RL,P (fD)]−RL,P (EDfD) =
∫

(ED[L(y, fD(x))]− L(y,EDfD(x))) dP (x, y)

10



2.2. Specific Regression Methods

≥
∫

0 dP (x, y) = 0 ,

where we bounded the integrand using Jensen’s inequality with φ(t) = L(y, t).
For convex loss functions, the argument above shows that Eq. (2.1) decomposes the

expected excess risk into two separate non-negative contributions. In the case of the square
loss L(y, t) = (y − t)2, we can further simplify

ED[L(y, fD(x))]− L(y,EDfD(x)) = ED[(y − fD(x))2]− (ED[y − fD(x)])2
= VarD(y − fD(x)) = VarD(fD(x)) ,

which yields

ED[RL,P (fD)]−RL,P (EDfD) = Ex∼PX
VarD(fD(x)) .

Hence, for the square loss, Eq. (2.1) yields the classical bias-variance decomposition.
When decomposing the data set D = (X,y) into the inputs X = (x1, . . . ,xn) and the

labels (y1, . . . , yn), we can further decompose the variance term as

ED[RL,P (fD)]−RL,P (EDfD) =
(
EX,y[RL,P (f(X,y))]− EX [RL,P (Ey|Xf(X,y))]

)
+
(
EX [RL,P (Ey|Xf(X,y))]−RL,P (EX,yf(X,y))

)
.

Again, both terms are non-negative for convex loss functions thanks to Jensen’s inequality.
In Chapter 5, we will prove a lower bound for the first term

ENoise := EX,y[RL,P (f(X,y))]− EX [RL,P (Ey|Xf(X,y))] ,

which can be seen as the contribution of the label noise to the expected excess risk. In the
case where the learned function fD depends on an additional source of randomness, for
example, a random feature map or random initialization, one obtains a further term in
the decomposition above. Such decompositions have been used, for example, by d’Ascoli
et al. (2020) and Adlam and Pennington (2020b).

2.2 Specific Regression Methods
In the following, we will introduce some regression methods relevant to this thesis. We
will start with plain linear regression in Section 2.2.1, introduce feature maps and kernels
in Section 2.2.2, and explain Bayesian linear regression in Section 2.2.3. Finally, we will
discuss neural networks in Section 2.2.4.

2.2.1 Linear Regression

In the following, we will introduce linear regression, which is one of the simplest regression
methods. For alternative expositions of linear regression, we refer to standard textbooks
(e.g. Hastie et al., 2009; Bishop, 2006). We consider the class of linear functions from
X = Rd to Y = R given by

Flin := {f : X → Y ,x 7→ x⊤θ | θ ∈ Rd} .

11



Chapter 2. Theoretical and Methodological Background

We consider the square loss L(y, t) = (y − t)2 and, for a function fθ(x) = x⊤θ, the ridge
(or Tikhonov) regularization Ω(fθ) := ∥θ∥22. By defining

X :=

x⊤
1
...
x⊤
n

 ∈ Rn×d, y :=

y1...
yn

 ∈ Rn ,

we can then write the regularized empirical risk as follows, using λ/n instead of λ to obtain
more convenient expressions later on:

Lλ(θ) := RL,D(fθ) +
λ

n
Ω(fθ)

=
1

n

n∑
i=1

(yi − x⊤
i θ)

2 +
λ

n
∥θ∥22

=
1

n
∥y −Xθ∥22 +

λ

n
∥θ∥22 . (2.2)

The expression above is quadratic in θ and its gradient and Hessian are given by

∇Lλ(θ) =
2

n

(
X⊤(Xθ − y) + λθ

)
=

2

n

((
X⊤X + λI

)
θ −X⊤y

)
,

HLλ(θ) =
2

n

(
X⊤X + λI

)
, (2.3)

where I denotes an identity matrix of matching size.

Regularized solution If λ > 0, the Hessian is positive definite. By setting the gradient
to zero, we can therefore obtain the minimizer

θ∗
λ := (X⊤X + λI)−1X⊤y .

Lemma 2.2.1 (Over-parameterized linear regression formula). We have the alternative
representation

θ∗
λ = X⊤(XX⊤ + λI)−1y .

Proof. From the Woodbury matrix identity

(A+UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1 ,

we obtain

(X⊤X + λI)−1 = (λI +X⊤IX)−1

= λ−1I − (λ−1I)X⊤(I +X(λ−1I)X⊤)−1X(λ−1I)

= λ−1(I −X⊤(XX⊤ + λI)−1X) . (2.4)

Using I = (XX⊤ + λI)−1XX⊤ + λ(XX⊤ + λI)−1, we obtain

(X⊤X + λI)−1X⊤ = λ−1X⊤(I − (XX⊤ + λI)−1XX⊤)

= X⊤(XX⊤ + λI)−1 .

12



2.2. Specific Regression Methods

Unregularized solutions For λ = 0, the situation can be more difficult because
there are multiple empirical risk minimizers if X⊤X is not invertible. This situation
will be relevant in Chapter 5 when studying over-parameterized models. We now show
that, as mentioned by Hastie et al. (2022), several approaches towards defining a unique
solution lead to the same parameters being selected. This is also relevant for the study
of over-parameterized neural networks, where the global optimum of the empirical risk
minimization problem is usually not unique and different global optima can have very
different generalization properties (Mücke and Steinwart, 2019).

Theorem 2.2.2 (Equality of unregularized solutions). Let X ∈ Rn×d,y ∈ Rn. Consider

(a) the zero-regularization limit θ∗
0 := limλ↘0 θ

∗
λ,

(b) the pseudoinverse solution θ+ = X+y, where X+ is the Moore-Penrose pseudoinverse
of X,

(c) the minimum-norm solution

θ∗ := argmin
θ∈B

∥θ∥2 , B := {θ ∈ Rd | ∥y −Xθ∥22 = min
θ̃∈Rd
∥y −Xθ̃∥22} ,

and
(d) the limit of zero-initialized gradient descent θη,∞ := limk→∞ θk, where

θk+1 := θk − η∇L(θk), θ0 := 0 ∈ Rd ,

for η ∈ (0, n/∥X∥22), where ∥X∥2 is the largest singular value of X.

Then, θ∗
0,θ

+,θ∗, and θη,∞ are well-defined and θ∗
0 = θ+ = θ∗ = θη,∞.

Proof.

(a) To show that the limit is well-defined, we consider a singular value decomposition of
X:

X = UΣV ⊤,

where U ∈ Rn×n and V ∈ Rd×d are orthogonal matrices and Σ ∈ Rn×d is a diagonal
matrix with non-negative diagonal elements σ1 ≥ . . . ≥ σmin{n,d} called singular
values. We can then write

(X⊤X + λI)−1X⊤ = (V Σ⊤U⊤UΣV ⊤ + λI)−1V Σ⊤U⊤

= (V (Σ⊤Σ+ λI)V ⊤)−1V Σ⊤U⊤

= V (Σ⊤Σ+ λI)−1Σ⊤U⊤ .

Here, the matrix (Σ⊤Σ + λI)−1Σ⊤ ∈ Rd×n is diagonal and its diagonal entries
σi/(σ

2
i + λ) converge to 1/σi for λ↘ 0, where we define 1/0 := 0. Let Σ+ denote

the limiting matrix. Then, the limit

lim
λ↘0

(X⊤X + λI)−1X⊤ = V Σ+U⊤

exists, hence θ∗
0 is well-defined.

13



Chapter 2. Theoretical and Methodological Background

(b) The Moore-Penrose pseudoinverse can be defined as X+ = V Σ+U⊤ (see e.g. the
proof of Theorem 5.2.1 in Wang et al., 2018), which shows θ+ = θ∗

0.
(c) A proof that θ∗ is well-defined and equal to θ+ is given in Theorem 1.1.6 in Wang

et al. (2018); we give an alternative proof here. First, we show that θ∗
0 ∈ B by

contradiction. Suppose that θ∗
0 /∈ B, such that there exists θ̃ with L0(θ̃) < L0(θ

∗
0).

But then,

lim
λ↘0
Lλ(θ̃) = L0(θ̃) < L0(θ

∗
0) = lim

λ↘0
Lλ(θ∗

λ) ,

which contradicts the optimality of θ∗
λ for λ > 0. Hence, θ∗

0 ∈ B.
It remains to show that θ∗

0 is the minimum-norm element in B. Identifying the matrix
X with its associated linear map, we denote its range by R(X), its null space by
N(X), and the orthogonal complement of N(X) by N(X)⊥. Since R(X) is a linear
space and θ∗

0 ∈ B, Xθ∗
0 must be the orthogonal projection of y onto R(X). Then, for

any θ ∈ Rd, Pythagoras’ theorem yields ∥y−Xθ∥22 = ∥y−Xθ∗
0∥22+ ∥Xθ∗

0−Xθ∥22,
which implies

B = {θ ∈ Rd |Xθ = Xθ∗
0} = θ∗

0 +N(X) .

On the other hand, for λ > 0, Lemma 2.2.1 yields

θ∗
λ = X⊤(XX⊤ + λI)−1y ∈ R(X⊤) = N(X)⊥ ,

which yields θ∗
0 ∈ N(X)⊥. This means that θ∗

0 is the minimum-norm element from
B.

(d) Since θ∗ is optimal, we have 0 = ∇L(θ∗) = 2
n
(X⊤Xθ∗ −X⊤y). We can therefore

rewrite the gradient descent update as

θk+1 := θk − η∇Lλ(θk) = θk − η
2

n
X⊤(Xθk − y) = θk − η

2

n
X⊤X(θk − θ∗) .

Consequently, the difference to the optimum θ̄k := θk − θ∗ satisfies

θ̄k+1 = θ̄k − η
2

n
X⊤Xθ̄k =

(
I − η 2

n
X⊤X

)
θ̄k .

Using the singular value decomposition X = UΣV ⊤ from (a), we have the diago-
nalization X⊤X = V Σ⊤ΣV ⊤ with eigenvalues

λ1 = σ2
1, . . . , λmin{n,d} = σ2

min{n,d}, λmin{n,d}+1 = 0, . . . , λd = 0 .

Therefore,

θ̄k =

(
I − η 2

n
X⊤X

)k
θ̄0 = V

(
I − η 2

n
Σ⊤Σ

)k
V ⊤θ̄0

= V diag((1− αλ1)k, . . . , (1− αλd)k)V ⊤θ̄0 .

Now, since we assumed η < n/λ1, we have 1−αλi ∈ (−1, 1] for all i and 1−αλi = 1
iff i > r, where r is the rank of X⊤X. Hence, we obtain in the limit

lim
k→∞

θ̄k = V DV ⊤θ̄0, D := diag(0, . . . , 0︸ ︷︷ ︸
r zeros

, 1, . . . , 1) .

14



2.2. Specific Regression Methods

We can compute N(V DV ⊤) = R(V DV ⊤)⊥ = N(X⊤X)⊥ = N(X)⊥. From
our proof of (c), it follows that θ̄0 = 0 − θ∗ ∈ N(X)⊥. Therefore, we have
limk→∞ θk − θ∗ = limk→∞ θ̄k = 0.

The Moore-Penrose pseudoinverse satisfies many properties, cf. Section 1.1.1 in Wang
et al. (2018), for example

• X+ = X−1 whenever X−1 exists, and
• X+ = (X⊤X)+X⊤ = X⊤(XX⊤)+.

Hence, the following formula is valid in both cases λ > 0 and λ = 0:

θ∗
λ = (X⊤X + λI)+X⊤y = X⊤(XX⊤ + λI)+y . (2.5)

2.2.2 Feature Maps and Kernels

A standard trick to use linear regression to learn non-linear functions is to consider
functions of the form fθ(x) = ϕ(x)⊤θ, where ϕ : Rd → Rp is a fixed (non-linear) function
called feature map. All results of Section 2.2.1 can then be applied to the transformed
data x̃i := ϕ(xi). In particular, we can define the feature matrix

ϕ(X) :=

ϕ(x1)
⊤

...
ϕ(xn)

⊤


and use Eq. (2.5) to obtain the following general formula for the regularized or minimum-
norm ERM solution with λ ≥ 0:

θ∗
λ = (ϕ(X)⊤ϕ(X) + λI)+ϕ(X)⊤y = ϕ(X)⊤(ϕ(X)ϕ(X)⊤ + λI)+y . (2.6)

Example 2.2.3 (Polynomial regression). Suppose that X = R. For a given dimension
p ∈ N≥1, we can define the polynomial feature map ϕ : X → Rp, x 7→ (1, x, x2, . . . , xp−1)⊤.
The resulting functions fθ(x) = ϕ(x)⊤θ are then exactly the polynomials of degree p− 1.
It is therefore possible to learn non-linear functions in x with a model that is still linear in
θ and therefore easy to optimize. It is also worth emphasizing that the feature map ϕ is
not surjective, and even if PX can be described by a Lebesgue density, the distribution
of ϕ(X), X ∼ PX , cannot be described by a Lebesgue density. Hence, the use of feature
maps can complicate distributional assumptions, and we will revisit this problem in
Section 5.4. ◀

Unregularized linear regression with feature maps is a central ingredient of the moving
least squares method (Lancaster and Salkauskas, 1981), which we use in Section 7.3 as an
example of a regression method that can achieve optimal convergence rates for smooth
functions f ∗ when the labels yi are the non-noisy function values f(xi).

15



Chapter 2. Theoretical and Methodological Background

Kernel trick By using the last formulation in Eq. (2.6), we see that the resulting learned
function only depends on the kernel k : X × X → R given by k(x,x′) := ⟨ϕ(x), ϕ(x′)⟩:

fθ∗
λ
(x) = ϕ(x)⊤θ∗

λ

= ϕ(x)⊤ϕ(X)⊤(ϕ(X)ϕ(X)⊤ + λI)+y

=

ϕ(x)
⊤ϕ(x1)
...

ϕ(x)⊤ϕ(xn)



ϕ(x1)

⊤ϕ(x1) . . . ϕ(x1)
⊤ϕ(xn)

... . . . ...
ϕ(xn)

⊤ϕ(x1) . . . ϕ(xn)
⊤ϕ(xn)

+ λI


+

y

=

k(x,x1)
...

k(x,xn)



k(x1,x1) . . . k(x1,xn)

... . . . ...
k(xn,x1) . . . k(xn,xn)

+ λI


+

y

=: k(x,X)(k(X,X) + λI)+y . (2.7)

The general idea of replacing the explicit use of a feature map ϕ in a learning method by
the kernel k is known as the kernel trick. It can be computationally beneficial if

(1) the kernel k(x,x′) can be evaluated much more efficiently than through the direct
formula k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩, or

(2) the feature space dimension p is larger than the number of samples n, such that the
matrix inverse

(k(X,X) + λI)+ = (ϕ(X)ϕ(X)⊤ + λI)+ ∈ Rn×n

can be computed more efficiently than the matrix inverse

(ϕ(X)⊤ϕ(X) + λI)+ ∈ Rp×p .

We will encounter the computational tradeoff between these two versions multiple times
in Chapter 6. The kernel version of (regularized) linear regression is known as kernel
ridge regression. For more details on the kernel trick and kernel methods, we refer to
standard textbooks such as the ones by Schölkopf and Smola (2002) and Shawe-Taylor
and Cristianini (2004).

Theory While the theory of kernels and kernel methods is not the subject of this
thesis, we will shortly discuss some of the major results. For a broader overview, we
refer to Steinwart and Christmann (2008). Formally, a function k : X × X → R is
called kernel if there exists a Hilbert space H and a feature map ϕ : X → H such that
k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H for all x,x′ ∈ X . Equivalently, kernels can be defined through
the condition that matrices of the form k(X,X) as above (for arbitrary n) must always be
symmetric and positive semidefinite. Note that the Hilbert space H in the first definition
need not be finite-dimensional. For example, the Gaussian kernel given by

kGauss(x,x
′) := exp

(
−∥x− x′∥22

2γ2

)
(2.8)

with parameter γ2 > 0 can only be represented by feature maps with infinite-dimensional
feature space H. Nonetheless, the Gaussian kernel can be evaluated efficiently and is
therefore an excellent example for case (1) in which the kernel formulation is beneficial.

16



2.2. Specific Regression Methods

There is a one-to-one correspondence between kernels k and reproducing kernel Hilbert
spaces (RKHSs) Hk, which are Hilbert spaces of functions f : X → R in which all point
evaluation functionals are continuous. The kernel k can be represented by the canonical
feature map ϕ : X → Hk with ϕ(x) = k(x, ·), and it is called reproducing kernel for Hk

due to the important identity

⟨k(x, ·), f⟩Hk
= f(x)

for all functions f ∈ Hk. The span of all functions k(x, ·) for x ∈ X is dense in Hk, and
especially Hk also contains the learned function fθ∗

λ
. For λ > 0, we can also obtain the

kernel regression solution through an infinite-dimensional optimization problem in the
RKHS Hk:

fθ∗
λ
= argmin

f∈Hk

RL,D(f) +
λ

n
∥f∥2Hk

.

Versions of the famous representer theorem (see e.g. Schölkopf et al., 2001) state that even
for a larger class of loss functions and regularizations based on ∥f∥Hk

, the optimum is
still of the form f(x) =

∑n
i=1 αik(xi,x) for some α1, . . . , αn ∈ R. In other words, infinite-

dimensional regularized ERM problems over Hk can typically be reduced to n-dimensional
optimization problems.

For kernel methods, there is a rich theory regarding consistency and learning rates
(Steinwart and Christmann, 2008). In particular, universal consistency can be achieved
for sufficiently expressive kernels such as the Gaussian kernel above, provided suitable
regularization. Moreover, kernel methods can achieve further good properties such as
the learning of derivatives of the target function (Fischer and Steinwart, 2020) and fast
learning rates for distributions on submanifolds (Hamm and Steinwart, 2021).

Further considerations It should be noted that while the kernel is uniquely determined
by the feature map ϕ, the converse is not true. Generally, if ϕ : X → H is a feature map
for k, then for every orthogonal linear operator U : H → H, U ◦ ϕ is also a feature map
for k. The calculation in Eq. (2.7) above shows that such orthogonal transformations
of the feature map do not alter the learned function fθ∗

λ
. In this sense, the use of the

kernel k circumvents a rotational ambiguity in the feature map ϕ. On the other hand,
regularization criteria based on other norms such as ∥θ∥1 are usually not invariant under
orthogonal transformations and can therefore not be represented by kernels. The kernel
formulation also allows comparing and taking limits of feature maps with different feature
space dimensions p. We will take advantage of this in Chapter 6, where we use sketching
to approximate a kernel by another kernel with a smaller feature space dimension p, which
facilitates more efficient computations.

2.2.3 Bayesian Linear Regression

While linear regression and kernel ridge regression can exhibit good generalization, they
do not provide an estimate of the uncertainty of their predictions. Uncertainty estimates
can be important in some settings, in particular, if decisions should be made based on
whether the output of the regression model can be trusted and where it needs to be

17



Chapter 2. Theoretical and Methodological Background

improved. A principled approach to provide such uncertainties is the Bayesian paradigm.
In the Bayesian approach, we model the data-generating distribution P not as a fixed
unknown distribution but instead consider P itself to be random. Then, the distribution
of P expresses our uncertainty about the truth, and we can reduce this uncertainty by
conditioning this distribution on observed data.

Probabilistic model In the following, we will derive a Bayesian version of linear
regression known as Bayesian linear regression, which also comes in a kernelized version
known as Gaussian Process regression (GPR). For more details, we refer to the textbooks
by Bishop (2006), Rasmussen and Williams (2005), and Murphy (2022). We first assume
that the target function to be learned is of the form fθ(x) = x⊤θ, where the unknown
parameter vector θ is drawn from a prior distribution. We omit the feature map here to
draw a closer analogy to Section 2.2.1, but all formulas generalize analogously to the use
of a feature map. For reasons of convenience that will become clear later, we assume the
prior distribution to be a normal distribution with given variance σ2λ−1:

θ ∼ N (0, σ2λ−1I) .

We then model the data labels as yi = fθ(xi)+ εi where ε1, . . . , εn ∼ N (0, σ2) are assumed
to be independent of each other and of the xi. In a more informal Bayesian notation,
which we will adopt in this section for simplicity, we can write this model in terms of
probability densities as

p(θ) = N (θ | 0, σ2λ−1I)

p(y |X,θ) := p(y1, . . . , yn | x1, . . . ,xn;θ) =
n∏
i=1

p(yi | xi;θ)

=
n∏
i=1

N (yi | fθ(xi), σ2) .

The latter term p(y |X,θ) is also commonly referred to as the likelihood. If we assume
that the inputs X are independent of θ, we can apply Bayes’ theorem to the probability
densities without having to model the input distribution p(X) = p(X | θ):

p(θ |X,y) =
p(X,y | θ)p(θ)

p(X,y)
=

p(y |X,θ)p(X | θ)p(θ)∫
p(y |X, θ̃)p(X | θ̃)p(θ̃) dθ̃

=
p(y |X,θ)p(θ)∫
p(y |X, θ̃)p(θ̃) dθ̃

.

The resulting distribution p(θ | X,y) is known as the posterior distribution. The nor-
malization constant in the denominator is often referred to as the evidence and can be
neglected in some calculations. Using C1, C2 to denote suitable constants independent of
θ, we obtain in our Gaussian model above:

− log p(θ |X,y) = C1 − log p(y |X,θ)− log p(θ)

= C2 +
1

2σ2

n∑
i=1

(yi − fθ(xi))2 +
λ

2σ2
∥θ∥22

Eq. (2.2)
= C2 +

n

2σ2
Lλ(θ) .

18



2.2. Specific Regression Methods

Relation to ERM It turns out that the neg-log-posterior is a shifted and rescaled
version of the classical regularized linear regression objective from Eq. (2.2). Hence, the
mode of the posterior distribution, known as the maximum a-posteriori (MAP) estimate,
is exactly the minimizer θ∗

λ = (X⊤X + λI)−1X⊤y for ridge regression that we have seen
in Section 2.2.1. The use of the quadratic loss function L(y, t) = (y − t)2 arises in the
Bayesian setting from the assumption that the label noise εi follows a normal distribution.
However, as we have discussed in Section 2.1, the use of the quadratic loss function is
well-motivated even with non-Gaussian label noise, as a consistent learning method will
converge to the conditional expectation f ∗

L,P (x) = EP [Y | X = x]. On the other hand,
the assumption of Gaussian noise is essential for the posterior distribution, which will
determine the uncertainty estimates about the parameters θ and later also about the
predictions y.

Analytic solution To derive a closed-form representation of the posterior distribution,
we observe that the neg-log-posterior above is a quadratic function in θ with a unique
minimum at θ∗

λ. Therefore, the posterior distribution must be of the form p(θ |X,y) =
N (θ | θ∗

λ,Σ), where we need to determine Σ. On the one hand, we can use the Hessian of
Lλ computed in Eq. (2.3) on page 12 to obtain

Hθ(− log p(θ |X,y)) = Hθ
n

2σ2
Lλ(θ) =

1

σ2
(X⊤X + λI) .

On the other hand, we can use the formula for the density of a normal distribution to
obtain

Hθ(− logN (θ | θ∗
λ,Σ)) = Σ−1 .

Therefore, we arrive at the posterior

p(θ |X,y) = N (θ | θ∗
λ,Σ), Σ = σ2(X⊤X + λI)−1 .

Using the posterior distribution, we can also compute the posterior predictive distribution
for the label ỹ = fθ(x̃) + ε̃ at a new test point x̃. Indeed, from a standard identity on the
behavior of normal distributions under linear transformations, we obtain that under the
posterior distribution p(θ |X,y), fθ(x̃) = x̃⊤θ is distributed as

fθ(x̃) |X,y ∼ N
(
x̃⊤θ∗

λ, σ
2x̃⊤(X⊤X + λI)−1x̃

)
. (2.9)

Since ε̃ ∼ N (0, σ2) is independent of x̃, X and y, it follows that

p(ỹ | x̃,X,y) = N
(
ỹ | x̃⊤θ∗

λ, σ
2 + σ2x̃⊤(X⊤X + λI)−1x̃

)
.

In this model, the posterior predictive variance σ2+σ2x̃⊤(X⊤X+λI)−1x̃ hence decomposes
into the aleatoric uncertainty σ2, which cannot be reduced by collecting more data, and
the epistemic uncertainty σ2x̃⊤(X⊤X + λI)−1x̃, which stems from the uncertainty about
the true parameter vector θ.

In addition to single-input predictive distributions and their variance, we can also
compute multi-input predictive distributions, which are always Gaussian. In particular,
we are interested in the covariance of the predictions at different inputs, which can again
be computed by applying a linear transformation to the posterior distribution in Eq. (2.9):

Cov(fθ(x̃), fθ(x̃
′) |X,y) = σ2x̃⊤(X⊤X + λI)−1x̃′ .

19



Chapter 2. Theoretical and Methodological Background

Kernel version Again, all of the derivations above apply analogously to a prior distri-
bution over functions of the form fθ(x) = ϕ(x)⊤θ, where ϕ : Rd → Rp is a given feature
map. To obtain a kernel version corresponding to the feature map version, we note that we
can write the posterior predictive mean as ϕ(x̃)⊤θ∗

λ = k(x̃,X)(k(X,X) + λI)−1y, which
we already derived in Section 2.2.2. Moreover, for the posterior predictive covariance, we
can use the Woodbury matrix identity as in Eq. (2.4) on page 12 and obtain

Cov(fθ(x̃), fθ(x̃
′) |X,y)

= σ2λ−1k(x̃, x̃′)− σ2λ−1k(x̃,X)(k(X,X) + λI)−1k(X, x̃′) .

To eliminate the occurrence of the factor σ2λ−1, one can instead consider the (prior)
covariance kernel given by

kcov(x̃, x̃
′) := Cov(fθ(x̃), fθ(x̃

′)) = Eθ∼N (0,σ2λ−1I)ϕ(x̃)
⊤θθ⊤ϕ(x̃′)

= σ2λ−1ϕ(x̃)⊤ϕ(x̃′) = σ2λ−1k(x̃, x̃′) .

The covariance kernel is a rescaled version of k with corresponding feature map ϕcov(x) =√
σ2λ−1ϕ(x) and weight prior θ ∼ N (0, I). Now, the posterior predictive covariance

simplifies to

Cov(fθ(x̃), fθ(x̃
′) |X,y)

= σ2 + kcov(x̃, x̃
′)− kcov(x̃,X)(kcov(X,X) + σ2I)−1kcov(X, x̃′) , (2.10)

and the posterior predictive distribution simplifies to

p(ỹ | x̃,X,y) = N
(
ỹ | kcov(x̃,X)(kcov(X,X) + σ2I)−1y,

σ2 + kcov(x̃, x̃)− kcov(x̃,X)(kcov(X,X) + σ2I)−1kcov(X, x̃)
)
.

In Section 6.4.2, we use the fact that the posterior predictive covariance also defines a
covariance kernel

kcov→post(X)(x̃, x̃
′) = Cov(fθ(x̃), fθ(x̃

′) |X,y) ,

and we will refer to the mapping kcov 7→ kcov→post(X) as a kernel transformation.

2.2.4 Neural Networks

As we have seen above, linear regression models can be solved easily due to their linearity
in θ, while they still allow learning nonlinear functions in x through the use of a nonlinear
feature map ϕ. However, the specification of a good feature map ϕ can be very difficult.
(Artificial) neural networks (NNs) allow learning the feature map ϕ from data, at the cost
of making the ERM problem non-convex and therefore potentially much more challenging.
To construct an NN, we have to choose a parametric feature map ϕθ̃ with a parameter
vector θ̃ that can then be optimized jointly with θ. Here, we will consider a particularly
simple form of NNs called fully-connected neural network (FCNN) or multilayer perceptron
(MLP). For a much broader introduction to neural networks, we refer to books such as the
one by Goodfellow et al. (2016).

20



2.2. Specific Regression Methods

Network architecture To specify an FCNN model, we have to make a few choices:

• Choose a number L ≥ 2 of layers, which will also be called the depth of the NN.
More layers will correspond to more sequential processing steps, and the term deep
learning refers to the use of (somewhat) deep neural networks.

• Choose an input dimension d0 and an output dimension dL. In the linear regression
setting we considered before, this corresponds to d0 = d and dL = 1.

• Choose hidden layer widths d1, . . . , dL−1 ∈ N≥1. For example, one could choose
d1 = . . . = dL−1 = 256.

• Choose a (non-linear) activation function φ : R→ R. A common activation function
is the rectified linear unit (ReLU) activation function given by φ(x) = max{0, x}.

Given an input x = x(0) ∈ Rd, an FCNN then computes an output z(L) iteratively via

z(l) := W (l)x(l−1) + b(l) ∈ Rdl ,

x(l) := φ(z(l)) ∈ Rdl ,

where the activation function φ is applied element-wise to the vector z(l). The weight
matrices W (l) ∈ Rdl×dl−1 and the bias vectors b(l) ∈ Rdl are learnable parameters of the
NN. We will write the NN again as a parametric function fθ(x

(0)) = z(L), where the
parameter vector θ comprises all weight matrices and bias vectors:

θ = (W (1), b(1), . . . ,W (L), b(L)) .

For L = 2, we can write the NN explicitly as

fθ(x) = b(2) +W (2)φ(b(1) +W (1)x) .

The use of the activation function φ is crucial: Without it, the NN could only represent
linear functions in x. On the other hand, the activation function is deliberately not applied
after the last layer of the neural network, since it could restrict the range of the learned
function. Besides the ReLU activation, there are a few other popular choices such as
the SiLU activation φ(x) = x

1+e−x (Elfwing et al., 2018). More activation functions are
discussed in Section 5.5.

Training To train an NN, that is, optimize its parameters, simple first-order optimization
methods are frequently employed. For example, NNs could be trained using gradient
descent (GD) starting from some initial parameter vector θ(0) by iterating

θ(t+1) := θ(t) − η∇L(θ(t)) ,

where η > 0 is a step-size parameter and L is a least-squares ERM objective similar to
Section 2.2.1:

L(θ) := 1

n

n∑
i=1

(yi − fθ(xi))2 .

21



Chapter 2. Theoretical and Methodological Background

When the data set size n is large, computing the sum in the definition of L(θ) at each
gradient descent step can be prohibitively expensive. To circumvent this, we can rewrite
the gradient of L as an expectation over sample gradients via

∇L(θ) = 1

n

n∑
i=1

∇θ(yi − fθ(xi))2 = Ei∇θ(yi − fθ(xi))2 ,

which can then be approximated using Monte Carlo sampling. Variants of this procedure
are known as (mini-batch) stochastic gradient descent (SGD). The very popular Adam
optimizer (Kingma and Ba, 2015), which we employ in Chapter 6, extends SGD with a
momentum term and a normalization using moving averages of squared gradients. While
none of these optimizers are guaranteed to find a global optimum of the objective L, they
are successfully applied in practice. We do not derive an analytical formula for ∇L(θ) here
since this gradient can be automatically computed in modern deep learning frameworks
by the use of automatic differentiation.

While we used an unregularized objective in our formulas above, neural networks
can also be regularized using a norm penalty on the parameters. Moreover, popular
regularization strategies include dropout (Srivastava et al., 2014), where some entries of
intermediate vectors are randomly set to zero during training, and early stopping, where
the optimization is stopped before convergence.

Initialization The first-order optimization methods discussed previously all require an
initial parameter vector θ(0) to start the optimization. However, a trivial initialization
θ(0) = 0 is problematic because the gradient ∇L(0) is zero, i.e., the zero vector is a
saddle point of the optimization problem. Even an initialization with identical non-zero
components will have permutational symmetries that cannot be broken by typical gradient-
based optimizers. To break these symmetries, θ(0) is often initialized randomly. For
example, a popular initialization method by He et al. (2015) initializes all components of
the weight matrices independently as

W
(l)
ij ∼ N (0, 2/dl−1)

and initializes the biases with zero. Here, the factor 1/dl−1 in the variance ensures that
the components of the pre-activation vector z(l) have roughly the same magnitude as the
components of x(l−1), while the factor 2 compensates for the ReLU activation setting half
of the values to zero.

Theory There are many approaches toward a theoretical analysis of NNs. A setting
that has gained particular interest is the analysis of over-parameterized NNs, which
are frequently employed in practice. Different theoretical results suggest that strongly
over-parameterized NNs can allow finding global optima by gradient-based optimization
methods (Chizat and Bach, 2018; Du et al., 2019; Allen-Zhu et al., 2019). An approach
that is particularly amenable to classical tools is to consider linearizations of NNs w.r.t.
their parameters. As a simple case, one can consider optimizing only over the last-layer
parameters of an NN, in which the NN is already linear. In this case, one obtains linear
regression with the rest of the NN acting as a feature map. As shown in Theorem 2.2.2,

22



2.2. Specific Regression Methods

when initializing the last layer to zero, gradient descent training converges to the minimum-
norm linear regression solution. We study this simplified setting in Chapter 5 and use
Bayesian linear regression in the last layer in Chapter 6.

A more realistic way to analyze NNs is to linearize them in all parameters, motivated
by the Taylor expansion

fθ(x) = fθ0(x) + (∇θfθ0(x))
⊤(θ − θ0) +O(∥θ − θ0∥2) ,

which holds if the activation function and therefore the NN is twice continuously dif-
ferentiable. One can then define the corresponding feature map ϕ(x) = ∇θfθ0(x) and
the corresponding kernel k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩, which is also known as a finite-width
neural tangent kernel (NTK) (Jacot et al., 2018). We use the finite-width NTK and an
approximation thereof in Chapter 6 for Bayesian linear regression as an alternative to
the last-layer-based approximation. Of course, the finite-width NTK depends on the lin-
earization point θ0, which could be a random initialization or the parameters at any point
during training. To study over-parameterized NNs, it is tempting to take an infinite-width
limit d1, . . . , dL−1 →∞ of this kernel. However, with our NN definition above, this limit
would be degenerate since the gradients are not appropriately normalized. This can be
fixed by using the so-called neural tangent parameterization (NTP) (Jacot et al., 2018;
Lee et al., 2019):

z(l) := σw

√
1

dl−1

W (l)x(l−1) + σbb
(l) ∈ Rdl

x(l) := φ(z(l)) ∈ Rdl .

with suitable scaling factors σw, σb ∈ R. In this case, it is possible to show that the
finite-width NTKs, when linearized at parameters during training that depend on the
training step and the random initialization, converge to an infinite-width NTK that does
not depend on the training step and the random initialization (Jacot et al., 2018; Lee
et al., 2019; Arora et al., 2019). Especially, the linearization is exact in the infinite-width
limit and the NN training essentially corresponds to the training of a corresponding kernel
method.

The neural tangent kernel correspondence has been used to prove universal consistency
for certain heavily over-parameterized NNs with early stopping (Ji et al., 2021), and similar
ideas have been used to prove the inconsistency of NNs in other cases (Holzmüller and
Steinwart, 2022). However, it should be noted that the limiting behavior to infinite-width
NTKs depends on the parameterization and does not capture certain practical observations
(Yang and Hu, 2021; Bietti and Bach, 2021).

Bayesian NNs Besides providing uncertainties, a Bayesian treatment of NNs also
promises better predictions, but approximating the posterior predictive distribution of
NNs is computationally very difficult (Izmailov et al., 2021). In particular, due to the
non-linear dependence of an NN on its parameters, the log-posterior log p(θ | D) is often
multimodal and non-concave, which renders efficient sampling difficult. We investigate the
non-log-concave sampling problem from a general standpoint in Chapter 7.

When cheaper approaches are needed, it is possible to resort to linearizations as
discussed above, for example in the last layer or in all parameters, which allow turning an

23



Chapter 2. Theoretical and Methodological Background

−2 0 2

x

−2

−1

0

1

2

y

−2 0 2

x

−2 0 2

x

f∗ Training data fD

Figure 2.1: Posterior mean (fD) and one posterior standard deviation around it (shaded area),
excluding the aleatoric uncertainty term σ2, for various Bayesian regression methods. Training
data generation and all methods use a noise variance of σ = 0.1. Left: Bayesian linear regression
with polynomial feature map as in Example 2.2.3 up to degree 14. Middle: Gaussian process
regression with Gaussian kernel using γ = 0.5, cf. Eq. (2.8). Right: NN with ReLU activation
function as in Chapter 6 with Bayesian uncertainty estimates given by linearization in all of the
parameters, i.e., using kgrad→Xtrain

as described in Chapter 6.

NN into a Bayesian linear regression model. Crucially, the linearization is usually done
around the trained parameters of the NN, such that the NN can still learn the feature map
from the training data. For an overview of such approaches, we refer to Daxberger et al.
(2021). We use linearization-based approaches in Chapter 6 for active learning with NNs.
Moreover, it is also possible to study Bayesian NNs in an infinite-width limit. In this case,
under suitable assumptions, the distribution of randomly initialized NNs converges to a
Gaussian process whose covariance kernel is the so-called neural network Gaussian process
(NNGP) kernel (Neal, 1994; Lee et al., 2018; Matthews et al., 2018). We also use this
kernel as a comparison in Chapter 6. Goan and Fookes (2020) provide a broader overview
of Bayesian NNs. Figure 2.1 shows a linearization-based approximate Bayesian NN in
comparison with Bayesian linear regression and GP regression on a toy data set.

2.3 Gibbs Distributions and Statistical Distances
As we have discussed previously, unlike learning methods based on empirical risk minimiza-
tion (ERM), Bayesian models naturally provide uncertainty estimates and are therefore
also well-suited for active learning. In our work on active learning in Chapter 6, we
employ Bayesian linear regression models based on linearizations of NNs, which allow
computing the posterior distribution analytically. However, it can be desirable to get a
more accurate posterior distribution for NNs and other non-linear models. A common
approach to approximately represent such a posterior distribution is through sampling, i.e.,
drawing i.i.d. random samples from the posterior. This is in contrast to ERM, where opti-
mization instead of sampling is used. However, the posterior may often be a multi-modal

24



2.3. Gibbs Distributions and Statistical Distances

distribution, and sampling from multi-modal distributions can be challenging. Sampling
from multi-modal distributions is also highly relevant to statistical mechanics, where the
thermodynamic equilibrium distribution of atomic configurations is considered.

Gibbs distributions In both Bayesian ML and statistical mechanics, a convenient
form to express the corresponding distribution is as a Gibbs distribution (or Boltzmann
distribution) Pf given by the density

pf (x) :=
exp(f(x))

Zf
, Zf :=

∫
X
exp(f(x)) dx ,

for a given domain X and function f : X → R. In statistical mechanics, the Gibbs
distribution is used with f(x) = −V (x)/(kBT ), where V (x) is the potential energy of
state x, kB is Boltzmann’s constant, and T is the temperature of the system (see e.g.
Swendsen, 2020). Another relevant quantity is the log-normalization constant

Lf := logZf .

We follow the convention of statistical mechanics, where Lf is considered to be a function
of additional parameters of f such as the temperature T , and call Lf the log-partition
function corresponding to f . In statistical mechanics, the log-partition function is of
great interest as it can describe relevant properties of a system (see e.g. Faulkner and
Livingstone, 2022).

In Bayesian ML, the suitability of a formulation in terms of Gibbs distributions is not
immediately obvious. Suppose that we have a Bayesian model specifying a prior p(θ) and
a likelihood p(D|θ). Given a data set D, we can set f(θ) := log(p(D|θ)p(θ)), such that
the resulting Gibbs distribution is exactly the posterior distribution:

pf (θ) =
exp(f(θ))

Zf
=

p(D|θ)p(θ)∫
p(D|θ̃)p(θ̃) dθ̃

= p(θ|D) .

Moreover, the log-partition function is equal to the log-evidence or log-marginal likelihood:

Lf = log

(∫
p(D|θ̃)p(θ̃) dθ̃

)
= log p(D) .

It can be used to compare Bayesian models, as models with higher marginal likelihood
p(D) are often preferable (Robert, 2007). The considerations above show that Gibbs
distributions can be used to express central quantities in Bayesian ML, but are they
also numerically favorable? Typically, numerical algorithms converge faster for smooth
functions with small (higher-order) derivatives. We have already seen in the case of
Bayesian linear regression in Section 2.2.3 that the log-likelihood log p(D|θ) and the log-
prior log p(θ) are quadratic functions, which have rather small (higher-order) derivatives.
More generally, in the case of i.i.d. samples D = (D1, . . . , DN), the likelihood p(D|θ) is a
product of individual likelihoods, which means that the log-likelihood is a sum of individual
log-likelihoods. Hence, the Gibbs distribution formulation is suitable for Bayesian ML in
the sense that the derivatives of f should approximately grow linearly with N , while the
derivatives of pf might grow much faster.

25



Chapter 2. Theoretical and Methodological Background

Distances for probability distributions Algorithms for sampling from Gibbs distri-
butions Pf will usually produce samples from an approximate distribution P̃f . Similarly,
algorithms for computing the log-partition function Lf will usually only compute an
approximation L̃f . While we can easily compare Lf and L̃f through the absolute difference
|Lf − L̃f |, there are many different options for comparing Pf and P̃f . We will introduce
some of these options in the following. For a broader overview of such statistical distances
and their properties and relations, we refer to Gibbs and Su (2002) and Section 2.4 in
Tsybakov (2009).

For probability measures P,Q on X ⊆ Rd that have densities p, q with respect to
another measure µ, the Kullback-Leibler divergence (or relative entropy) is defined as

DKL(P ∥ Q) :=
∫
X
p(x) log

(
p(x)

q(x)

)
dµ(x) = Ex∼P

[
− log

(
q(x)

p(x)

)]
.

The definition of the KL divergence is independent of the choice of µ. While the KL
divergence is not symmetric, it is non-negative. This follows from the inequality log(x) ≤
x− 1 for x ∈ (0,∞):

DKL(P ∥ Q) = Ex∼P

[
− log

(
q(x)

p(x)

)]
≥ Ex∼P

[
1− q(x)

p(x)

]
=

∫
(p(x)− q(x)) dµ(x) = 1− 1 = 0 .

Moreover, since log(x) = x − 1 only for x = 1, we have DKL(P ∥ Q) = 0 if and only if
p(x)/q(x) = 1 for P -almost all x, which is equivalent to P = Q. The non-negativity of
the KL divergence can also be proven by applying Jensen’s inequality (see Theorem 2.1.5)
to the convex function φ = − log.

Another statistical distance is the total variation (TV) distance given by (see e.g. Gibbs
and Su, 2002; Tsybakov, 2009)

DTV(P,Q) := sup
A⊆X measurable

|P (A)−Q(A)| = 1

2
sup

∥h∥∞≤1

∣∣∣∣∫ h dP −
∫
h dQ

∣∣∣∣
=

1

2

∫
|p(x)− q(x)| dµ(x) .

Here, the first two formulas are also defined when P or Q do not have a density. Moreover,
by defining Γ(P,Q) as the set of measures on X × X with marginal distributions P
and Q in the first and second component, we can define the 1-Wasserstein distance (or
Kantorovich-Rubinstein distance) as

W1(P,Q) := inf
µ∈Γ(P,Q)

∫
∥x− x′∥2 dµ(x,x′) .

By the Kantorovich-Rubinstein theorem, we have the alternative characterization

W1(P,Q) = sup
1-Lipschitz functions h

∣∣∣∣∫ h dP −
∫
h dQ

∣∣∣∣ .
26



2.3. Gibbs Distributions and Statistical Distances

The TV distance and the 1-Wasserstein distance are metrics. For the TV distance,
we have the trivial upper bound DTV(P,Q) ≤ 1 for all probability distributions P,Q.
Moreover, Pinsker’s inequality states that

DTV(P,Q) ≤
√

1

2
DKL(P ∥ Q) ,

and if X is bounded, we also have the inequality

W1(P,Q) ≤ diam(X )DTV(P,Q) ,

where diam(X ) := supx,x′∈X ∥x− x′∥2. In Chapter 7, we also introduce another metric

Dsup-log(P,Q) := ∥log(p/q)∥∞ ,

which we call the sup-log distance. Here, we assume µ to be the Lebesgue measure on X
for simplicity.

In Chapter 7, we will mainly compare probability distributions using the TV, 1-
Wasserstein, and sup-log distances. From these distances, bounds on the KL divergence
could be derived using Pinsker’s inequality and the trivial fact that the sup-log distance is
an upper bound for the KL divergence. The KL divergence will also play a different role
in an optimization objective in Section 7.4.4.

27



Chapter 2. Theoretical and Methodological Background

28



Chapter 3

Main Results and Outlook

3.1 Main Results

In this section, we describe the main results of this thesis, which are contained in the
following papers:

(1) David Holzmüller, On the universality of the double descent peak in ridgeless regres-
sion, published at the International Conference on Learning Representations, 2021.
Reference: Holzmüller (2021)
Link: https://openreview.net/forum?id=0IO5VdnSAaH
Link to arXiv version: https://arxiv.org/abs/2010.01851
This article (specifically version 8 on arXiv) is reproduced in Chapter 5.

(2) David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart, A frame-
work and benchmark for deep batch active learning for regression, published at the
Journal of Machine Learning Research, 2023.
Reference: Holzmüller et al. (2023)
Link: https://jmlr.org/papers/v24/22-0937.html
Link to arXiv version: https://arxiv.org/abs/2203.09410
This article (specifically version 4 on arXiv) is reproduced in Chapter 6.

(3) David Holzmüller and Francis Bach, Convergence rates for non-log-concave sampling
and log-partition estimation, preprint available on arXiv, 2023.
Reference: Holzmüller and Bach (2023)
Link: https://arxiv.org/abs/2303.03237
This article (specifically version 3 on arXiv) is reproduced in Chapter 7.

Chapter 4 contains a statement on the contributions of the author of this thesis to
the articles above. The following three subsections will present the main results of the
respective articles.

3.1.1 Double Descent

For many learning methods such as kernel methods, consistency guarantees have been
established in regimes where these learning methods are sufficiently regularized such that
the empirical risk is close to the population risk with high probability (Devroye et al., 1996;

29

https://openreview.net/forum?id=0IO5VdnSAaH
https://arxiv.org/abs/2010.01851
https://jmlr.org/papers/v24/22-0937.html
https://arxiv.org/abs/2203.09410
https://arxiv.org/abs/2303.03237


Chapter 3. Main Results and Outlook

Györfi et al., 2002; Steinwart and Christmann, 2008). However, NNs are often employed in
settings where they are over-parameterized, i.e., having more parameters than the number
n of training samples. Zhang et al. (2017) observed that such NNs can achieve low test
errors on practical data sets despite being able to fit random noise. Belkin et al. (2018)
found that kernel methods exhibit a similar phenomenon and showed that this could not
be explained by existing generalization bounds at the time. It has been observed multiple
times that learning methods can perform especially badly in a critical regime where they
are just able to interpolate the training data, and their performance improves when they
become more over-parameterized (Bös and Opper, 1997; Advani et al., 2020; Neal et al.,
2019; Spigler et al., 2019; Belkin et al., 2019). This phenomenon is now known as “double
descent” thanks to Belkin et al. (2019), and has been studied empirically for NNs in detail
by Nakkiran et al. (2021a).

The theoretical understanding of double descent is mostly limited to unregularized
linear regression models. Most of these investigations are limited to rather specific data
distributions PX or feature maps ϕ, and they consider a limit of n, p → ∞, where p is
the feature space dimension and n is the number of samples (Advani et al., 2020; Belkin
et al., 2020; Hastie et al., 2022; Mei and Montanari, 2022; d’Ascoli et al., 2020). We prove
a lower bound on the expected excess risk that does not require a limit and holds for
a broad class of “non-degenerate” feature maps and data distributions PX if the labels
yi are noisy. Note that a related probabilistic lower bound on the excess risk has been
proven by Muthukumar et al. (2020), but requires stronger assumptions as discussed in
Appendix 5.L. We first assume that the labels are corrupted by noise:

Assumption 3.1.1 (Label noise). Let X = Rd,Y = R, let L(y, t) = (y− t)2 be the square
loss, and let P be a probability distribution on X × Y . For (X, Y ) ∼ P , we assume

(INT) E[Y 2] <∞, which implies RL,P (0) <∞ and hence RL,P (f
∗
L,P ) <∞,

(NOI) Var(Y |X = x) ≥ σ2 for PX-almost all x ∈ X , ◀

Our notion of non-degeneracy can be defined as follows:

Definition 3.1.2 (Non-degenerate feature map). Let X ,Y , P be as in Assumption 3.1.1.
We say that a feature map ϕ : X → Rp is non-degenerate for P if the following conditions
are satisfied for random variables (X, Y ) ∼ P and X ∈ Rn×p with n i.i.d. rows sampled
from P :

(MOM) E∥ϕ(X)∥22 <∞, such that the moment matrix Σ := Eϕ(X)ϕ(X)⊤ is well-defined,
(COV) Σ is invertible,
(FRK) ϕ(X) ∈ Rn×p almost surely has full rank, i.e., rankϕ(X) = min{n, p}. ◀

Main result In the most general case, we consider a random feature map ϕ : Ω×X →
Rp, (ω,x) 7→ ϕω(x) that we assume to be measurable, where (Ω,A, P̃ ) is a given probability
space. For example, ϕω could be a neural network with random initial parameters ω,
or it could simply be a deterministic feature map independent of ω. For a given data
set D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n, we then define the minimum-norm linear
regression function using the Moore-Penrose pseudoinverse as in Section 2.2.2:

fD,ω(x) := ϕω(x)
⊤ϕω(X)+y .

30



3.1. Main Results

We then prove the following main result, where the form provided here is a slightly weaker
version of Corollary 5.4.4:1

Theorem 3.1.3 (Lower bound for minimum-norm linear regression). Let P be a probability
distribution satisfying Assumption 3.1.1 and let ϕ be a random feature map as above. Let
L(y, t) = (y− t)2 be the square loss. Suppose that ϕω is non-degenerate for P for P̃ -almost
all ω ∈ Ω. Then, the following lower bound for the expected excess risk holds:

Eω∼P̃ED∼PnRL,P (fD,ω)−R∗
L,P ≥

{
σ2 n

p+1−n , if p ≥ n

σ2 p
n+1−p , if p ≤ n .

Here, the lower bound for the under-parameterized case p ≤ n has been shown in
a slightly different setting by Mourtada (2022), while the lower bound for the overpa-
rameterized case p ≥ n is new. Both cases are proven using Schur complements and
Jensen’s inequality, although in different ways. The lower bound assumes that ω is drawn
independently from D, in particular, it assumes that ω is not learned from D. Since we
consider the expected excess risk, we cannot draw conclusions about consistency as defined
in Definition 2.1.3, but we could use it to disprove weak consistency of certain learning
methods, cf. Remark 2.1.4.

Non-degeneracy results We then analyze the non-degeneracy condition in detail in
Section 5.5, where we develop a theory to analyze the strongest assumptions (COV) and
(FRK) for analytic feature maps based on the identity theorem for analytic functions. In
particular, we prove in Theorem 5.5.6 that (COV) and (FRK) are satisfied for random NN
feature maps with non-polynomial analytic activation functions, which extends a result
by Nguyen and Hein (2017) to a larger class of activation functions and NNs without
biases. Due to the correspondence of minimum-norm linear regression to gradient descent
optimization discussed in Theorem 2.2.2, our results imply lower bounds for the expected
excess risk of certain NNs where only the last layer is trained with gradient descent. If
the last layer is not initialized to zero but randomly from a zero-mean distribution, a
bias-variance decomposition could be used to show that the lower bound holds as well.
Additionally, we also show (COV) and (FRK) for feature maps corresponding to polynomial
kernels and random Fourier features.

Further results In addition to the major results above, the paper discusses further
questions such as the (asymptotic) tightness of the lower bound and provides experimental
results showing that the shape of the lower bound is approximately achieved for various
feature maps.

3.1.2 Active Learning

In Section 3.1.1, we considered the case where the data set D consists of samples (xi, yi)
that are drawn independently from a distribution P . However, in some settings, it is

1Compared to Corollary 5.4.4, Theorem 3.1.3 directly lower bounds the expected excess risk instead of
the estimator variance. The bound for the expected excess risk follows from a bias-variance decomposition
as in Eq. (5.3). Moreover, the noise assumption (NOI) used in this section conditions directly on x, which
implies the noise assumption conditioning on ϕ(x) in Section 5.4 thanks to Lemma 5.H.1.

31



Chapter 3. Main Results and Outlook

possible for the inputs xi to be chosen by the learning method itself, such that only the
labels yi are drawn from an unknown conditional distribution P (yi | xi). For example,
given a function f ∗ that can be computed by executing a (slow) simulation method, one
might want to approximate it using a learned function fD that can be computed much
more efficiently. In this case, a label yi = f ∗(xi) can be computed for an arbitrary input
xi, but requires an evaluation of the (slow) simulation method. Hence, optimizing the
choice of inputs x1, . . . ,xn can potentially allow reducing the number of computed labels
to reach a desired accuracy.

Active learning refers to the setting where the inputs xi can be chosen sequentially
based on the previously chosen inputs and labels (x1, y1), . . . , (xi−1, yi−1). For NNs, active
learning can be computationally expensive if an NN needs to be re-trained after every
acquired label. Therefore, we study batch active learning, where multiple inputs are chosen
at once for labeling. Batch active learning can drastically reduce the number of times an
NN has to be trained compared to standard active learning, and it can also allow using
parallelized labeling methods. Batch active learning can be applied by alternating the
following two steps until the data set is considered good enough:

(1) Given a labeled dataset D and an unlabeled finite dataset Xpool ⊆ X , use a batch
active learning method to select a batch of unlabeled data Xbatch ⊆ Xpool, which
typically also involves training an NN on D.

(2) Label the batch Xbatch and add it to the training set D.

Framework Our goal is to evaluate and improve different methods for step (1) in the
regression setting. Batch active learning methods can be derived from different backgrounds
such as core-set construction or a combination of Bayesian ML and information theory. We
propose a kernel-based framework that allows to break down many batch active learning
methods from different backgrounds into different computational components, which can
then be recombined in a flexible manner. A batch active learning method in our framework
consists of the following steps:

(a) Train an NN on the training set D.
(b) Construct a base kernel k that represents the trained NN in some sense.
(c) Possibly transform the base kernel k, for example, to make it more efficient or

represent posteriors.
(d) Apply a selection method that uses k to select a batch Xbatch of points from Xpool.

We then study existing and novel options for (b)–(d). For example, it is possible to treat
the last layer of the NN as a Bayesian linear regression model with the rest of the NN as
a fixed feature map. Here, the fixed feature map corresponds to the base kernel used in
(b) and the Bayesian linear regression uncertainty can be obtained by a posterior kernel
transformation as in Eq. (2.10). This is used, for example, by ACS-FW (Pinsler et al.,
2019) and BAIT (Ash et al., 2021), with different selection methods. We also adapt other
methods such as BatchBALD (Kirsch et al., 2019) and BADGE (Ash et al., 2019) from
the classification to the regression setting and include them in our framework.

32



3.1. Main Results

New components We propose to replace the corresponding last-layer base kernel kll
with the finite-width neural tangent kernel (NTK)

kgrad(x,x
′) = ⟨∇θfθ(x),∇θfθ(x

′)⟩ ,

where θ are the trained parameters of the NN. This kernel is motivated by a linearization
of the NN around the trained parameters, while the last-layer kernel only linearizes in the
last-layer parameters (where the model is already linear). To reduce the dimensionality of
the feature space of kgrad, we propose to use a simple but efficient tensor sketching approach
that exploits a product structure in the network gradients. Moreover, we introduce a
novel clustering-inspired selection method, which we call largest cluster maximum distance
(LCMD).

Benchmark We introduce a benchmark consisting of 15 large tabular regression data
sets. We evaluate many combinations of base kernels, kernel transformations, and selection
methods on our benchmark and analyze them with different metrics. We find that in terms
of the geometric mean root mean squared error (RMSE) across data sets, all selection
methods benefit from replacing the last-layer kernel with a sketched gradient kernel, with
only little runtime overhead. Comparing selection methods, we find that our LCMD
selection method achieves the best results on most error metrics such as RMSE, closely
followed by the BAIT and k-means++ selection methods. When considering the maximum
error to get an indication of out-of-distribution performance, other methods that sample
the input space more uniformly perform better. Our experiments demonstrate that most
of the considered batch active learning methods are relatively insensitive to how frequently
the NN is re-trained. We also observe that the advantage of active learning over random
sampling varies strongly between data sets, and we found that the amount of this advantage
can be predicted rather well by considering the quotient of RMSE and mean absolute error
(MAE) on the initial training set, i.e., before the first batch active learning step.

3.1.3 Sampling and Log-Partition Function Estimation

As we have discussed in Section 2.3, sampling from Gibbs distributions Pf with density

pf (x) =
exp(f(x))

Zf
, Zf =

∫
X
exp(f(x)) dx

and computing the log-partition function Lf := logZf are two highly relevant tasks, for
example, for Bayesian ML and statistical mechanics.

In the paper reproduced in Chapter 7, we consider sampling algorithms and log-partition
function estimation algorithms that are allowed to evaluate a function f in n points. We
are then interested in how quickly their errors in the sampled distribution or the estimated
log-partition function converge to zero, as a function of n. Specifically, we study Gibbs
distributions on the cube X = [0, 1]d and investigate the worst-case errors over a class
Fd,m,B of m-times continuously differentiable functions whose derivatives are bounded by
B. Our analysis is motivated by a connection of sampling to optimization in the limit of
zero temperature. For optimization, it is known that without computational constraints
on the algorithms, a worst-case convergence rate of Om,d(Bn

−m/d) can be achieved, where

33



Chapter 3. Main Results and Outlook

the constant in Om,d can depend on m and d (Novak, 1988). Especially, this shows that
the convergence rates can be good even in high dimensions if the functions have high
smoothness m. Moreover, recently Rudi et al. (2020) have achieved convergence rates
close to the optimal ones for classes of m-smooth functions with a runtime like O(n3.5),
which is polynomial in n and d. Consequently, our paper poses the question of whether
similar rates can be (efficiently) achieved for the sampling and log-partition problems.

Information-based complexity First, we study the information-based complexity
of the sampling and log-partition problems. Informally speaking, information-based
complexity studies the optimal convergence rates that can be achieved when the algorithms
are not constrained computationally but only by the number of function evaluations n.
For the sampling problem, we consider different metrics to measure the distributional
error, such as the total variation (TV) distance and the 1-Wasserstein distance. We show
that when the function must be evaluated in deterministic points, the optimal rate is
Θ(Bn−m/d) for log-partition estimation and Θ(min{1, Bn−m/d}) for sampling in TV or
1-Wasserstein distances. This can be realized by optimal approximation of f , despite the
exponential in the definition of the Gibbs distribution. When randomized evaluation points
are allowed, we show that the optimal rate is the same in an optimization regime (roughly
Bn−m/d ≫ 1) but better otherwise. Better rates outside of the optimization regime can
be achieved by combining approximation with importance sampling or rejection sampling.

Relations between problems We study multiple ways to relate problems. First,
we demonstrate how surrogates obtained by smooth optimal approximation methods
allow trading runtime for better convergence rates, and turn algorithms with stochastic
evaluation points into algorithms with deterministic evaluation points. We then study how
convergence rates behave when sampling algorithms are used for log-partition estimation
through thermodynamic integration, and how they behave when log-partition estimation
algorithms are used for sampling through bisection sampling. Finally, we establish
guarantees for how approximate optimization can be performed by approximate sampling.

Algorithms Subsequently, we turn to the study of specific, usually efficient, algorithms.
We prove exact worst-case convergence rates for sampling and log-partition estimation
through piecewise constant approximation. We then show that for functions f ∈ Fd,m,B,
the density satisfies pf ∈ Fd,m,B̃ in general only for B̃ = Θ(max{1, B}d+m), which is
not exponential in B but still problematic for density-based approximation algorithms.
We obtain further bounds for simple Monte Carlo sampling and log-partition estimation
algorithms as well as rejection sampling with uniform proposal distribution, however, all
bounds are far from the optimal rate. Our experiments confirm some interesting regime
transitions found in the theoretical analysis. Finally, we study an approach by Bach (2022)
towards log-partition estimation and show that it cannot exceed the rate Om,d(Bn

−2/d) in
an intermediate regime B ∼ n2/d.

Relation to regression As we have discussed above, sampling algorithms can be
important for Bayesian regression problems. On the flip side, regression can also be
used for sampling. We use function approximation to obtain upper bounds on the

34



3.2. Summary and Outlook

information-based complexity of the two problems, and we also analyze the possibility to
apply algorithms to an approximant instead. However, there are some differences to the
regression setting studied in the other papers:

• We consider the options to evaluate the function f in n fixed, adaptive, or even
randomized points. This is similar to the setting of active learning, but not to the
standard regression setting in supervised learning.

• The functions f considered here can usually be evaluated exactly (up to numerical
precision), that is, without noise on the labels yi = f(xi).

• We measure the regression error by the L∞ norm, i.e. ∥f−g∥∞ = supx∈X |f(x)−g(x)|.
This is essential here since the function f is used in an exponential function, which
is very sensitive to large approximation errors.

The function approximation setting considered in this paper is well-studied, we refer to
Wendland (2004) for more details. However, in some cases, we also want the approximant
to be as smooth as the original function, for which we use more recent results from Li
(2016) and Mirzaei (2015) in Section 7.3.

3.2 Summary and Outlook

In the papers contained in this thesis, we have studied different machine learning problems,
mostly related to regression and neural networks. Our first paper proves a lower bound for
minimum-norm linear regression that applies to a large class of (random) feature maps,
including random neural network feature maps. Our lower bound exhibits a double descent
type behavior and extends the class of models where this behavior can be theoretically
analyzed further in the direction of simplified neural networks. Recently, Ghosh and
Belkin (2022) have found a lower bound similar to ours that also applies to overfitting but
non-interpolating linear models. While double descent is rather well understood for linear
models by now, a corresponding theory for practically relevant NNs is still lacking, and
creating such a theory is an interesting albeit difficult avenue for further research. Beyond
the double descent peak, generalization bounds for overfitted strongly over-parameterized
NNs are still not satisfactory, and even linearized NNs are only partially understood
in this regime (Liang et al., 2020; Mallinar et al., 2022; Lai et al., 2023). A further
avenue for theoretical research on NNs is to study the generalization properties of different
architectures like convolutional neural networks or Transformers, or to investigate other
settings such as active learning, transfer learning, or unsupervised learning.

In our second paper, we studied efficient batch active learning methods for regression
with neural networks. We introduced a kernel-based framework with an efficient imple-
mentation in our open-source code, which allows us to combine both existing and new
components to obtain a wide variety of batch active learning algorithms. We also provide
a benchmark consisting of 15 tabular data sets, on which we show that a combination of
our new components achieves state-of-the-art performance. We have subsequently applied
some of the considered active learning methods to atomistic NNs (Zaverkin et al., 2022).
Moreover, our framework has recently been extended to base kernels using predictions
of ensembles (Kirsch, 2023). Our framework could be further extended by developing
sketching methods that address other types of NN layers than fully-connected layers,

35



such that the sketched gradient kernel could be applied to other types of NNs, and it
would be interesting to see for which kinds of NNs such a sketched gradient kernel is
particularly beneficial compared to the last-layer kernel. Moreover, an interesting direction
for future research would be an extension to multi-output regression and classification,
perhaps by using Fisher information similar to how it is used in BAIT (Ash et al., 2021).
Similarly, an extension beyond pool-based active learning could be relevant. For example,
in atomistic ML, a good pool set is often not known a priori, since sampling from the
(Gibbs) distribution already requires the expensive computation of atomic force labels.

In our third paper, we investigated convergence rates of sampling and log-partition
estimation algorithms for non-log-concave Gibbs distributions. For smooth log-densities,
we find a strong discrepancy between known efficiently achievable rates, including the ones
proven by us, and the optimal rates provided by our analysis of the information-based
complexity of the sampling and log-partition estimation problems. We also provide new
results on the relation between the problems of sampling, log-partition estimation, and
optimization. Hopefully, our results can contribute to a new theory on non-log-concave
sampling and inspire the development of better non-log-concave sampling algorithms. In
particular, it would be interesting to see an analysis of more advanced sampling algorithms,
for example of the Markov Chain Monte Carlo (MCMC) family, in the non-log-concave
setting. On the complementary side, general lower bounds for achievable convergence rates
outside of the optimization regime would be desirable. In addition, our research could be
extended in many other directions, such as considering different statistical distances for
probability distributions or studying alternatives to thermodynamic integration for the
log-partition problem.



Part II

Cumulative part





Chapter 4

Declaration to the Cumulative
Part

In the cumulative part, this thesis contains three research papers (Chapters 5 – 7). Their
title and publication status are:

(1) David Holzmüller, On the universality of the double descent peak in ridgeless regres-
sion, published at the International Conference on Learning Representations, 2021.
Reference: Holzmüller (2021)
Link: https://openreview.net/forum?id=0IO5VdnSAaH
Link to arXiv version: https://arxiv.org/abs/2010.01851
This article (specifically version 8 on arXiv) is reproduced in Chapter 5.

(2) David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart, A frame-
work and benchmark for deep batch active learning for regression, published at the
Journal of Machine Learning Research, 2023.
Reference: Holzmüller et al. (2023)
Link: https://jmlr.org/papers/v24/22-0937.html
Link to arXiv version: https://arxiv.org/abs/2203.09410
This article (specifically version 4 on arXiv) is reproduced in Chapter 6.

(3) David Holzmüller and Francis Bach, Convergence rates for non-log-concave sampling
and log-partition estimation, preprint available on arXiv, 2023.
Reference: Holzmüller and Bach (2023)
Link: https://arxiv.org/abs/2303.03237
This article (specifically version 3 on arXiv) is reproduced in Chapter 7.

I, David Holzmüller, hereby declare that the co-author lists are complete and that I
have not reproduced, without acknowledgement, the work of another. I declare that I
majorly contributed to these articles, including in particular the phase of problem selection,
literature research, and the derivation of theoretical and numerical results as well as the
writing process. This applies to all three articles listed above.

Chapters 5 – 7 reproduce the original articles except for the following changes:

• for the first article, version 8 on arXiv is reproduced, which contains some minor
corrections compared to the publication at the ICLR conference (version 5 on arXiv).

39

https://openreview.net/forum?id=0IO5VdnSAaH
https://arxiv.org/abs/2010.01851
https://jmlr.org/papers/v24/22-0937.html
https://arxiv.org/abs/2203.09410
https://arxiv.org/abs/2303.03237


Chapter 4. Declaration to the Cumulative Part

• for the second article, version 4 on arXiv is reproduced, which contains some minor
corrections compared to the publication at JMLR.

• the articles have been formatted in the style of this thesis and the numbers of
theorems, definitions, etc. have been adjusted accordingly.

• some typing errors have been corrected.
• the bibliography for the three articles is reproduced at the end of the thesis together

with the bibliography for the introduction.

Except for these changes, Chapters 5 – 7 are reproductions of the corresponding papers
listed above.

Place, Date David Holzmüller

40



Chapter 5

On the Universality of the Double
Descent Peak in Ridgeless
Regression

David Holzmüller1

Published in International Conference on Learning Representations (2021)
Reference: Holzmüller (2021), link: https://openreview.net/forum?id=0IO5VdnSAaH

Abstract

We prove a non-asymptotic distribution-independent lower bound for the expected mean squared
generalization error caused by label noise in ridgeless linear regression. Our lower bound generalizes
a similar known result to the overparameterized (interpolating) regime. In contrast to most
previous works, our analysis applies to a broad class of input distributions with almost surely
full-rank feature matrices, which allows us to cover various types of deterministic or random
feature maps. Our lower bound is asymptotically sharp and implies that in the presence of label
noise, ridgeless linear regression does not perform well around the interpolation threshold for
any of these feature maps. We analyze the imposed assumptions in detail and provide a theory
for analytic (random) feature maps. Using this theory, we can show that our assumptions are
satisfied for input distributions with a (Lebesgue) density and feature maps given by random
deep neural networks with analytic activation functions like sigmoid, tanh, softplus, or GELU.
As further examples, we show that feature maps from random Fourier features and polynomial
kernels also satisfy our assumptions. We complement our theory with further experimental and
analytic results.

5.1 Introduction
Seeking a better understanding of the successes of deep learning, Zhang et al. (2017)
pointed out that deep neural networks can achieve very good performance despite being
able to fit random noise, which sparked the interest of many researchers in studying
the performance of interpolating learning methods. Belkin et al. (2018) made a similar

1ISA, University of Stuttgart, Stuttgart, Germany

41

https://openreview.net/forum?id=0IO5VdnSAaH


Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

observation for kernel methods and showed that classical generalization bounds are unable
to explain this phenomenon. Belkin et al. (2019) observed a “double descent” phenomenon
in various learning models, where the test error first decreases with increasing model
complexity, then increases towards the “interpolation threshold” where the model is first
able to fit the training data perfectly, and then decreases again in the “overparameterized”
regime where the model capacity is larger than the training set. This phenomenon has
also been discovered in several other works (Bös and Opper, 1997; Advani et al., 2020;
Neal et al., 2019; Spigler et al., 2019). Nakkiran et al. (2021a) performed a large empirical
study on deep neural networks and found that double descent can not only occur as a
function of model capacity, but also as a function of the number of training epochs or as a
function of the number of training samples.

Theoretical investigations of the double descent phenomenon have mostly focused on
specific unregularized (“ridgeless”) or weakly regularized linear regression models. These
linear models can be described via i.i.d. samples (x1, y1), . . . , (xn, yn) ∈ Rd, where the
covariates xi are mapped to feature representations zi = ϕ(xi) ∈ Rp via a (potentially
random) feature map ϕ, and (ridgeless) linear regression is then performed on the trans-
formed samples (zi, yi). While linear regression with random features can be understood
as a simplified model of fully trained neural networks, it is also interesting in its own
right: For example, random Fourier features (Rahimi and Recht, 2008) and random neural
network features (see e.g. Cao et al., 2018; Scardapane and Wang, 2017) have gained a
notable amount of attention.

Unfortunately, existing theoretical investigations of double descent are usually limited
in one or more of the following ways:

(1) They assume that the zi (or a linear transformation thereof) have (centered) i.i.d.
components. This assumption is made by Hastie et al. (2022), while Advani et al.
(2020) and Belkin et al. (2020) even assume that the zi follow a Gaussian distribution.
While the assumption of i.i.d. components facilitates the application of some random
matrix theory results, it excludes most feature maps: For feature maps ϕ with d < p,
the zi will usually be concentrated on a d-dimensional submanifold of Rp, and will
therefore usually not have i.i.d. components.

(2) They assume a (shallow) random feature model with a fixed distribution of the xi, e.g.
an isotropic Gaussian distribution or a uniform distribution on a sphere. Examples
of this are the single-layer random neural network feature models by Hastie et al.
(2022) in the unregularized case and by Mei and Montanari (2022); d’Ascoli et al.
(2020) in the regularized case. A simple Fourier model with d = 1 has been studied
by Belkin et al. (2020). While these analyses provide insights for some practically
relevant random feature models, the assumptions on the input distribution prevent
them from applying to real-world data.

(3) Their analysis only applies in a high-dimensional limit where n, p→∞ and n/p→ γ,
where γ ∈ (0,∞) is a constant. This applies to all works mentioned in (1) and (2)
except the model by Belkin et al. (2020) where the zi follow a standard Gaussian
distribution.

In this paper, we provide an analysis under significantly weaker assumptions. We
introduce the basic setting of our paper in Section 5.2 and Section 5.3. Our main
contributions are:

42



5.1. Introduction

• In Section 5.4, we show a non-asymptotic distribution-independent lower bound
for the expected excess risk of ridgeless linear regression with (random) features.
While the underparameterized bound is adapted from a minimax lower bound in
Mourtada (2022), the overparameterized bound is new and perfectly complements the
underparameterized version. The obtained general lower bound relies on significantly
weaker assumptions than most previous works and shows that there is only limited
potential to reduce the sensitivity of unregularized linear models to label noise via
engineering better feature maps.

• In Section 5.5, we show that our lower bound applies to a large class of input distri-
butions and feature maps including random deep neural networks, random Fourier
features, and polynomial kernels. This analysis is also relevant for related work where
similar assumptions are not investigated (e.g. Mourtada, 2022; Muthukumar et al.,
2020). For random deep neural networks, our result requires weaker assumptions
than a related result by Nguyen and Hein (2017).

• In Section 5.6 and Appendix 5.C, we compare our lower bound to new theoretical
and experimental results for specific examples, including random neural network
feature maps as well as finite-width Neural Tangent Kernels (Jacot et al., 2018). We
also show that our lower bound is asymptotically sharp in the limit n, p→∞.

Similar to this paper, Muthukumar et al. (2020) study the “fundamental price of
interpolation” in the overparameterized regime, providing a probabilistic lower bound
for the generalization error under the assumption of subgaussian features or (suitably)
bounded features. We explain the difference to our lower bound in detail in Appendix 5.L,
showing that our overparameterized lower bound for the expected generalization error
requires significantly weaker assumptions, that it is uniform across feature maps, and that
it yields a more extreme interpolation peak.

Our lower bound also applies to a large class of kernels if they can be represented
using a feature map with finite-dimensional feature space, i.e. p < ∞. For ridgeless
regression with certain classes of kernels, lower or upper bounds have been derived (Liang
and Rakhlin, 2020; Rakhlin and Zhai, 2019; Liang et al., 2020). However, as explained in
more detail in Appendix 5.K, these analyses impose restrictions on the kernels that allow
them to ignore “double descent” type phenomena in the feature space dimension p.

Beyond Double Descent, a series of papers have studied “Multiple Descent” phenomena
theoretically and empirically, both with respect to the number of parameters p and the
input dimension d. Adlam and Pennington (2020a) and d’Ascoli et al. (2020) theoretically
investigate Triple Descent phenomena. Nakkiran et al. (2021b) argue that Double Descent
can be mitigated by optimal regularization. They also empirically observe a form of Triple
Descent in an unregularized model. Liang et al. (2020) prove an upper bound exhibiting
infinitely many peaks and empirically observe Multiple Descent. Chen et al. (2021) show
that in ridgeless linear regression, the feature distributions can be designed to control the
locations of ascents and descents in the double descent curve for a “dimension-normalized”
noise-induced generalization error. Our lower bound provides a fundamental limit to this
“designability” of the generalization curve for methods that can interpolate with probability
one in the overparameterized regime.

Proofs of our statements can be found in the appendix. We provide code to reproduce

43



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

all of our experimental results at

https://github.com/dholzmueller/universal_double_descent

and, together with the computed data, at https://doi.org/10.18419/darus-1771.

5.2 Basic Setting and Notation
Following Györfi et al. (2002), we consider the scenario where the samples (xi, yi) of a data
set D = ((x1, y1), . . . , (xn, yn)) ∈ (Rd ×R)n are sampled independently from a probability
distribution P on Rd × R, i.e. D ∼ P n.2 We define

X :=

x⊤
1
...
x⊤
n

 ∈ Rn×d, y :=

y1...
yn

 ∈ Rn .

We also consider random variables (x, y) ∼ P that are independent of D and denote the
distribution of x by PX . The (least squares) population risk of a function f : Rd → R is
defined as

RP (f) := Ex,y(y − f(x))2 .

We assume Ey2 <∞. Then, RP is minimized by the target function f ∗
P given by

f ∗
P (x) = E(y|x) ,

we have RP (f
∗
P ) <∞, and the excess risk (a.k.a. generalization error) of a function f is

RP (f)−RP (f
∗
P ) = Ex(f(x)− f ∗

P (x))
2 .

Notation For two symmetric matrices, we write A ⪰ B if A−B is positive semidefinite
and A ≻ B if A − B is positive definite. For a symmetric matrix S ∈ Rn×n, we let
λ1(S) ≥ . . . ≥ λn(S) be its eigenvalues in descending order. We denote the trace of A by
tr(A) and the Moore-Penrose pseudoinverse of A by A+. For ϕ : Rd → Rp and X ∈ Rn×d,
we let ϕ(X) ∈ Rn×p be the matrix with ϕ applied to each of the rows of X individually.
For a set A, we denote its indicator function by 1A. For a random variable x, we say
that x has a Lebesgue density if PX can be represented by a probability density function
(w.r.t. the Lebesgue measure). We say that x is nonatomic if for all possible values x̃,
P (x = x̃) = 0.3 We denote the uniform distribution on a set A, e.g. the unit sphere
Sp−1 ⊆ Rp, by U(A). We denote the normal (Gaussian) distribution with mean µ and
covariance Σ by N (µ,Σ). For n ∈ N, we define [n] := {1, . . . , n}.

We review relevant matrix facts, e.g. concerning the Moore-Penrose pseudoinverse, in
Appendix 5.B.

2Although many of our theorems apply to general domains xi ∈ X and not just X = Rd, we set
X = Rd for notational simplicity. We require X = Rd whenever we assume that the distribution of the xi

has a Lebesgue density or work with analytic feature maps.
3For Borel measures as considered here, this is equivalent to the usual definition of non-atomic measures,

see section IV in Knowles (1967).

44

https://github.com/dholzmueller/universal_double_descent
https://doi.org/10.18419/darus-1771


5.3. Linear Regression With (Random) Features

5.3 Linear Regression With (Random) Features
The most general setting that we will consider in this paper is ridgeless linear regression
in random features: Given a random variable θ that is independent of the data set D and
an associated random feature map ϕθ : Rd → Rp, we define the estimator

fX,y,θ(x) := ϕθ(x)
⊤ϕθ(X)+y ,

which simply performs unregularized linear regression with random features. As a special
case, the feature map ϕθ may be deterministic, in which case we drop the index θ. An
even more specialized case is ordinary linear regression, where d = p and ϕθ = id, yielding
fX,y(x) = x⊤X+y.

As described in Hastie et al. (2022), the ridgeless linear regression parameter β̂ :=
ϕθ(X)+y

• has minimal Euclidean norm among all parameters β minimizing ∥ϕθ(X)β − y∥22,
• is the limit of gradient descent with sufficiently small step size on L(β) := ∥ϕθ(X)β−
y∥22 with initialization β(0) := 0, and

• is the limit of ridge regression with regularization λ > 0 for λ↘ 0:

β̂ = lim
λ↘0

ϕθ(X)⊤(ϕθ(X)ϕθ(X)⊤ + λIn)
−1y . (5.1)

For a fixed feature map ϕ, the kernel trick provides a correspondence between ridgeless
linear regression with ϕ and ridgeless kernel regression with the kernel k(x, x̃) := ϕ(x)⊤ϕ(x̃)
via

fX,y(x) = ϕ(x)⊤ϕ(X)+y = ϕ(x)⊤ϕ(X)⊤(ϕ(X)ϕ(X)⊤)+y = k(x,X)k(X,X)+y , (5.2)

where

k(x,X) :=

k(x,x1)
...

k(x,xn)

 , k(X,X) :=

k(x1,x1) . . . k(x1,xn)
... . . . ...

k(xn,x1) . . . k(xn,xn)

 .

5.4 A Lower Bound
In this section, we state our main theorem, which provides a non-asymptotic distribution-
independent lower bound on the expected excess risk.

The expected excess risk EX,y,θRP (fX,y,θ)−RP (f
∗
P ) can be decomposed into several

different contributions (see e.g. d’Ascoli et al., 2020). In the following, we will focus on the
contribution of label noise to the expected excess risk for the estimators fX,y,θ considered
in Section 5.3. Using a bias-variance decomposition with respect to y, it is not hard to
show that the label-noise-induced error provides a lower bound for the expected excess
risk:

ENoise := EX,y,θ,x

(
fX,y,θ(x)− Ey|XfX,y,θ(x)

)2
≤ EX,θ,x

[
Ey|X

(
fX,y,θ(x)− Ey|XfX,y,θ(x)

)2
+
(
Ey|XfX,y,θ(x)− f ∗

P (x)
)2]

45



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

= EX,y,θ,x (fX,y,θ(x)− f ∗
P (x))

2

= EX,y,θ(RP (fX,y,θ)−RP (f
∗
P )) . (5.3)

For linear models as considered here, it is not hard to see that ENoise does not depend on
f ∗
P and is equal to the expected excess risk in the special case f ∗

P ≡ 0.
In the following, we first consider the setting where the feature map ϕ is deterministic.

We will consider linear regression on z := ϕ(x) and Z := ϕ(X) and formulate our
assumptions directly w.r.t. the distribution PZ of z, hiding the dependence on the feature
map ϕ. While the distribution PX of x is usually fixed and determined by the problem, the
distribution PZ can be actively influenced by choosing a suitable feature map ϕ. We will
analyze in Section 5.5 how the assumptions on PZ can be translated back to assumptions
on PX and assumptions on ϕ.

Remark 5.4.1. For typical feature maps, we have p > d, PZ is concentrated on a
d-dimensional submanifold of Rp and the components of z are not independent. A sim-
ple example (cf. Proposition 5.5.4) is a polynomial feature map ϕ : R1 → Rp, x 7→
(1, x, x2, . . . , xp−1). The imposed assumptions on PZ should hence allow for such distribu-
tions on submanifolds and not require independent components. ◀

Definition 5.4.2. Assuming that E∥z∥22 <∞, i.e. (MOM) in Theorem 5.4.3 holds, we
can define the (positive semidefinite) second moment matrix

Σ := Ez∼PZ

[
zz⊤] ∈ Rp×p .

If Ez = 0, Σ is also the covariance matrix of z. If Σ is invertible, i.e. (COV) in
Theorem 5.4.3 holds, the rows wi := Σ−1/2xi of the “whitened” data matrix W := ZΣ−1/2

satisfy Ewiw
⊤
i = Ip. ◀

With these preparations, we can now state our main theorem. Its assumptions and the
obtained lower bound will be discussed in Section 5.5 and Section 5.6, respectively.

Theorem 5.4.3 (Main result). Let n, p ≥ 1. Assume that P and ϕ satisfy:

(INT) Ey2 <∞ and hence RP (f
∗
P ) <∞,

(NOI) Var(y|z) ≥ σ2 almost surely over z,
(MOM) E∥z∥22 <∞, i.e. Σ exists and is finite,
(COV) Σ is invertible,
(FRK) Z ∈ Rn×p almost surely has full rank, i.e. rankZ = min{n, p}.

Then, for the ridgeless linear regression estimator fZ,y(z) = z⊤Z+y, the following holds:

If p ≥ n, ENoise

(I)

≥ σ2EZ tr((Z+)⊤ΣZ+)
(II)

≥ σ2EZ tr((WW⊤)−1)
(IV)

≥ σ2 n

p+ 1− n .

If p ≤ n, ENoise

(I)

≥ σ2EZ tr((Z+)⊤ΣZ+)
(III)
= σ2EZ tr((W⊤W )−1)

(V)

≥ σ2 p

n+ 1− p .

Here, the matrix inverses exist almost surely in the considered cases. Moreover, we have:

• If (NOI) holds with equality, then (I) holds with equality.
• If n = p or Σ = λIp for some λ > 0, then (II) holds with equality.

46



5.5. When are the Assumptions Satisfied?

For a discussion on how Σ influences ENoise, we refer to Remark 5.G.1. We can extend
Theorem 5.4.3 to random features if it holds for almost all of the random feature maps:

Corollary 5.4.4 (Random features). Let θ ∼ PΘ be a random variable such that ϕθ :
Rd → Rp is a random feature map. Consider the random features regression estimator
fX,y,θ(x) = z⊤

θZ
+
θ y with zθ := ϕθ(x) and Zθ := ϕθ(X). If for PΘ-almost all θ̃, the

assumptions of Theorem 5.4.3 are satisfied for z = zθ̃ and Z = Z θ̃ (with the corresponding
matrix Σ = Σθ̃), then

ENoise ≥
{
σ2 n

p+1−n if p ≥ n,
σ2 p

n+1−p if p ≤ n.

The main novelty in Theorem 5.4.3 is the explicit uniform lower bound (IV) for p ≥ n:
The lower bound (V) for p ≤ n follows by adapting Corollary 1 in Mourtada (2022).
Statements similar to (I), (II) and (III) have also been proven, see e.g. Hastie et al. (2022)
and Theorem 1 in Muthukumar et al. (2020). However, as discussed in Section 5.1, Hastie
et al. (2022) make significantly stronger assumptions for computing the expectation. In
Appendix 5.L, we explain in more detail that the probabilistic overparameterized lower
bound of Muthukumar et al. (2020) is not distribution-independent and only applies to a
smaller class of distributions than our lower bound. For a discussion on how Theorem 5.4.3
applies to kernels with finite-dimensional feature space, we refer to Appendix 5.K.

5.5 When are the Assumptions Satisfied?

In this section, we want to discuss the assumptions of Theorem 5.4.3 and provide different
results helping to verify these assumptions for various input distributions and feature maps.
The theory will be particularly nice for analytic feature maps, which we define now:

Definition 5.5.1 (Analytic function). A function f : Rd → R is called (real) analytic
if for all z ∈ Rd, the Taylor series of f around z converges to f in a neighborhood of z.
A function f : Rd → Rp, z 7→ (f1(z), . . . , fp(z)) is called (real) analytic if f1, . . . , fp are
analytic. ◀

Sums, products, and compositions of analytic functions are analytic, cf. e.g. Section
2.2 in Krantz and Parks (2002). We will discuss examples of analytic functions later in
this section.

Proposition 5.5.2 (Characterization of (COV) and (FRK)). Consider the setting of
Theorem 5.4.3 and let FRK(n) be the statement that (FRK) holds for n. Then,

(i) Let n ≥ 1. Then, FRK(n) iff P (z ∈ U) = 0 for all linear subspaces U ⊆ Rp of
dimension min{n, p} − 1.

(ii) Let (MOM) hold. Then, (COV) holds iff P (z ∈ U) < 1 for all linear subspaces
U ⊆ Rp of dimension p− 1.

Assuming that (MOM) holds such that (COV) is well-defined, consider the following
statements:

47



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

(a) FRK(p) holds.
(b) FRK(n) holds for all n ≥ 1.
(c) (COV) holds.
(d) There exists a fixed deterministic matrix X̃ ∈ Rp×d such that det(ϕ(X̃)) ̸= 0.

We have (a) ⇔ (b) ⇒ (c) ⇒ (d). Furthermore, if x ∈ Rd has a Lebesgue density and ϕ is
analytic, then (a) – (d) are equivalent.

With this in mind, we can characterize the assumptions now:

• The assumption (INT) is standard (see e.g. Section 1.6 in Györfi et al., 2002) and
guarantees RP (f

∗
P ) <∞, such that the excess risk is well-defined.

• The assumption (NOI) is required to ensure the existence of sufficient label noise.
Importantly, Lemma 5.H.1 shows that (NOI), i.e. Var(y|z) ≥ σ2 almost surely over
z, holds if Var(y|x) ≥ σ2 almost surely over x. All Double Descent papers from
Section 5.1 make the stronger assumption that the distribution of y − E(y|x) is
independent of x or even a fixed Gaussian.

• The assumption (MOM) can be reformulated as E∥z∥22 = E∥ϕ(x)∥22 = Ek(x,x) <∞.
For example, if k or equivalently ϕ are bounded, or if ϕ is continuous and ∥x∥2 is
bounded, then (MOM) is satisfied. Such assumptions are frequently imposed (see
e.g. Chapters 6, 7, 8, 10 in Györfi et al., 2002). In this sense, (MOM) is a standard
assumption.

• The assumptions (COV) and FRK(n) are implied by FRK(p) and are even equivalent
to FRK(p) in the underparameterized case p ≤ n. In the following, we will therefore
focus on proving FRK(p) for various ϕ and PX . In the case p = n, FRK(p) ensures
that fX,y almost surely interpolates the data, or equivalently that the kernel matrix
k(X,X) almost surely has full rank. Importantly, assuming FRK(p) is weaker than
assuming a strictly positive definite kernel since strictly positive definite kernels
require p =∞. Example 5.D.1 shows that the assumption (FRK) in Theorem 5.4.3
cannot be removed.

For the analytic function ϕ = id with d = p, Proposition 5.5.2 yields a simple sufficient
criterion: If z has a Lebesgue density, then (FRK) holds for all n. This assumption is
already more realistic than assuming i.i.d. components. However, Proposition 5.5.2 is also
very useful for other analytic feature maps, as we will see in the remainder of this section.

Remark 5.5.3. Suppose that ϕ ̸≡ 0 is analytic, x has a Lebesgue density, and that
(INT), (MOM), and (NOI) are satisfied. If (d) in Proposition 5.5.2 does not hold, there
exists p̃ < p such that the lower bound from Theorem 5.4.3 holds with p replaced by p̃:
Let U := Span{ϕ(x) | x ∈ Rd}. Since ϕ ̸≡ 0, p̃ := dimU ≥ 1. Moreover, (d) holds iff
dimU = p. Take any isometric isomorphism ψ : U → Rp̃ and define the feature map
ϕ̃ : Rd → Rp̃,x 7→ ψ(ϕ(x)). Then, ϕ̃ is analytic since ψ is linear, and ϕ̃ satisfies (d), hence
Theorem 5.4.3 can be applied to ϕ̃. However, ϕ and ϕ̃ lead to the same kernel k since ψ is
isometric, hence to the same estimator fX,y by Eq. (5.2) and hence to the same ENoise. ◀

Proposition 5.5.4 (Polynomial kernel). Let m, d ≥ 1 and c > 0. For x, x̃ ∈ Rd, define
the polynomial kernel k(x, x̃) := (x⊤x̃+c)m. Then, there exists a feature map ϕ : Rd → Rp,
p :=

(
m+d
m

)
, such that:

48



5.5. When are the Assumptions Satisfied?

(a) k(x, x̃) = ϕ(x)⊤ϕ(x̃) for all x, x̃ ∈ Rd, and
(b) if x ∈ Rd has a Lebesgue density and we use z = ϕ(x), then (FRK) is satisfied for

all n.

Proposition 5.5.4 says that the lower bound from Theorem 5.4.3 holds for ridgeless
kernel regression with the polynomial kernel with p :=

(
m+d
m

)
if x has a Lebesgue density

and E∥z∥22 = Ek(x,x) = E(∥x∥22 + c)m < ∞. The proof of Proposition 5.5.4 can be
extended to the case c = 0, where one needs to choose p =

(
m+d−1
m

)
. In general, we discuss

in Appendix 5.K that Theorem 5.4.3 can often be applied to ridgeless kernel regression,
where p needs to be chosen as the minimal feature space dimension for which k can still
be represented.

We can also extend our theory to analytic random feature maps:

Proposition 5.5.5 (Random feature maps). Consider feature maps ϕθ : Rd → Rp with
(random) parameter θ ∈ Rq. Suppose the map (θ,x) 7→ ϕθ(x) is analytic and that θ and
x are independent and have Lebesgue densities. If there exist fixed θ̃ ∈ Rq, X̃ ∈ Rp×d with
det(ϕθ̃(X̃)) ̸= 0, then almost surely over θ, (FRK) holds for all n for z = ϕθ(x).

In Appendix 5.C, we demonstrate that Proposition 5.5.5 can be used to computationally
verify (FRK) for analytic random feature maps.

Up until now, we have assumed that x has a Lebesgue density. It is desirable to weaken
this assumption, such that x can, for example, be concentrated on a submanifold of Rd.
It is necessary for FRK(p) with p ≥ 2 that x is nonatomic, such that the xi are distinct
with probability one. In general, this is not sufficient: For example, if ϕ = id and x lives
on a proper linear subspace of Rd, FRK(p) is not satisfied. Perhaps surprisingly, we will
show next that for random neural network feature maps, it is indeed sufficient that x is
nonatomic.4 Especially, our lower bound in Corollary 5.4.4 thus applies to a large class of
feedforward neural networks where only the last layer is trained (and initialized to zero,
such that gradient descent converges to the Moore-Penrose pseudoinverse).

Theorem 5.5.6 (Random neural networks). Let d, p, L ≥ 1, let σ : R → R be analytic
and let the layer sizes be d0 = d, d1, . . . , dL−1 ≥ 1 and dL = p. Let W (l) ∈ Rdl+1×dl for
l ∈ {0, . . . , L− 1} be random variables and consider the two cases where

(a) σ is not a polynomial with less than p nonzero coefficients, θ := (W (0), . . . ,W (L−1))
and the random feature map ϕθ : Rd → Rp is recursively defined by

ϕ(x(0)) := x(L), x(l+1) := σ(W (l)x(l)) .

(b) σ is not a polynomial of degree < p − 1, θ := (W (0), . . . ,W (L−1), b(0), . . . , b(L−1))
with random variables b(l) ∈ Rdl+1 for l ∈ {0, . . . , L − 1}, and the random feature
map ϕθ : Rd → Rp is recursively defined by

ϕ(x(0)) := x(L), x(l+1) := σ(W (l)x(l) + b(l)) .
4This appears to be a convenient consequence of randomizing the feature map: For each fixed feature

map ϕθ̃, there may be an exceptional set Eθ̃ of nonatomic input distributions PX for which FRK(p) is
not satisfied. However, Theorem 5.5.6 shows that for each nonatomic input distribution PX , the set
{θ̃ | PX ∈ Eθ̃} is a Lebesgue null set. For (deterministic) feature maps where it is not possible to prove
FRK(p) for all nonatomic PX , there is a trick that works in certain cases: If x lives on a submanifold (e.g.
a sphere), we might be able to write x = ψ(v), where v has a Lebesgue density and ψ is analytic (e.g.
the stereographic projection for the sphere). Then, we can apply our theory to the analytic feature map
ϕθ ◦ ψ.

49



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

In both cases, if θ has a Lebesgue density and x is nonatomic, then (FRK) holds for
all n and almost surely over θ.

The assumptions of Theorem 5.5.6 on θ are satisfied by the classical initialization
methods of He et al. (2015) and Glorot and Bengio (2010). Possible choices of σ are
presented in Table 5.1. A statement similar to Theorem 5.5.6 has been proven in Lemma
4.4 in Nguyen and Hein (2017). However, their statement only applies to networks with bias
and to a more restricted class of activation functions: For example, the activation functions
RBF, GELU, SiLU/Swish, Mish, sin and cos are not covered by their assumptions. In
Appendix 5.E, we explain that the proofs of many other theorems in the literature similar
to Theorem 5.5.6 for single-layer networks are incorrect.

Table 5.1: Some examples of analytic activation functions that are not polynomials. The CDF
of N (0, 1) is denoted by Φ. Other non-polynomial analytic activation functions are sin, cos or erf.

Activation function Equation
Sigmoid sigmoid(x) = 1/(1 + e−x)
Hyperbolic Tangent tanh(x) = (ex − e−x)/(ex + e−x)
Softplus softplus(x) = log(1 + ex)
RBF RBF(x) = exp(−βx2)
GELU (Hendrycks and Gimpel, 2016) GELU(x) = xΦ(x)
SiLU (Elfwing et al., 2018) SiLU(x) = x sigmoid(x)
Swish (Ramachandran et al., 2017) Swish(x) = x sigmoid(βx)
Mish (Misra, 2019) Mish(x) = x tanh(softplus(x))

Under the assumptions of Theorem 5.5.6, if ∥x∥2 is bounded, (MOM) holds for all θ.
This follows since any analytic function ϕ is also continuous, and continuous functions
preserve boundedness. However, the activation functions from Table 5.1 even satisfy
|σ(x)| ≤ a|x|+ b for some a, b ≥ 0 and all x ∈ R. In this case, it is not hard to see that
(MOM) already holds for all θ if E∥x∥22 <∞.

Theorem 5.5.6 does not hold for ReLU, ELU (Clevert et al., 2015), SELU (Klambauer
et al., 2017) or other activation functions with a perfectly linear part. To see this, observe
that with nonzero probability, all weights and inputs are positive. In this case, the feature
map acts as a linear map from Rd to Rp, and if d < p = n, the output matrix ϕ(X) cannot
be invertible.

In Appendix 5.I, we show that (FRK) is satisfied for random Fourier features if x is
nonatomic and the frequency distribution (i.e. the Fourier transform of the shift-invariant
kernel) has a Lebesgue density.

5.6 Quality of the Lower Bound

In this section, we discuss how sharp the lower bound from Theorem 5.4.3 is. To this end,
we assume that Var(y|z) = σ2 almost surely over z.

In their Lemma 3, Hastie et al. (2022) consider the case where z has i.i.d. entries with
zero mean, unit variance, and finite fourth moment. They then use the Marchenko-Pastur

50



5.6. Quality of the Lower Bound

law to show in the limit p, n → ∞, p/n → γ > 1 that ENoise → σ2 1
γ−1

. In this limit, our
lower bound shows

ENoise ≥ σ2 n

p+ 1− n = σ2 1

p/n+ 1/n− 1
→ σ2 1

γ − 1
,

hence, in this sense, our overparameterized bound is asymptotically sharp. An analogous
argument shows that the underparameterized bound is also asymptotically sharp. To
better understand to which extent our lower bound is non-asymptotically sharp in the over-
and underparameterized regimes, we explicitly compute ENoise = σ2EZ tr((Z+)⊤ΣZ+) (cf.
Theorem 5.4.3) for some distributions PZ :

Theorem 5.6.1. Let PZ = U(Sp−1). Then, PZ satisfies the assumptions (MOM), (COV),
and (FRK) for all n with Σ = 1

p
Ip. Moreover, for n ≥ p = 1 or p ≥ n ≥ 1, we can

compute

EZ tr((Z+)⊤ΣZ+) =


1
n

if n ≥ p = 1,
1
p

if p ≥ n = 1,
∞ if 2 ≤ n ≤ p ≤ n+ 1,

n
p−1−n ·

p−2
p

if 2 ≤ n ≤ n+ 2 ≤ p.

The formulas in the next theorem have already been computed by Breiman and Freed-
man (1983) for p ≤ n− 2 and by Belkin et al. (2020) for general p. Our alternative proof
circumvents a technical problem in their proof for p ∈ {n− 1, n, n+ 1}, cf. Appendix 5.J.

Theorem 5.6.2. Let PZ = N (0, Ip). Then, PZ satisfies the assumptions (MOM), (COV),
and (FRK) for all n with Σ = Ip. Moreover, for n, p ≥ 1,

EZ tr((Z+)⊤ΣZ+) =


n

p−1−n if p ≥ n+ 2,
∞ if p ∈ {n− 1, n, n+ 1},

p
n−1−p if p ≤ n− 2.

For PZ = N (0, Ip) and the lower bound from Theorem 5.4.3, the formulas for the
under- and overparameterized cases can be obtained from each other by switching the
roles of n and p. Numerical data strongly suggests that this symmetry does not hold
exactly for PZ = U(Sp−1).

For p ≥ n+2, we can relate our lower bound (Theorem 5.4.3), the result for the sphere
(Theorem 5.6.1) and the result for the Gaussian distribution (Theorem 5.6.2) as follows:

n

p+ 1− n =
n

p− 1− n ·
(p+ 1− n)− 2

p+ 1− n ≤ n

p− 1− n ·
p− 2

p
<

n

p− 1− n .

These values are also shown in Figure 5.1 together with empirical values of NN feature
maps specifically optimized to minimize ENoise. Since Σ affects ENoise only for p > n (cf.
Remark 5.G.1), it is not surprising that the feature map optimized for n = 60 > 30 = p
performs badly in the overparameterized regime. The results in Figure 5.1 support the
hypothesis that among all PZ satisfying (MOM), (COV) and (FRK), PZ = U(Sp−1)
minimizes EZ tr((Z+)⊤ΣZ+). The plausibility of this hypothesis is further discussed in

51



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

100 101 102

Number of points n

0.7

0.8

0.9

1.0

1.1

E n
o
is

e
re

la
tiv

e
to
U(
Sp
−

1
)

(e
m

pi
ri

ca
l)

N (0, Ip) (analytic)

Optimized for n = 15

Optimized for n = 60

U(Sp−1) (empirical)

U(Sp−1), n ≤ p (analytic)

Lower bound

Figure 5.1: Various estimates and bounds for ENoise relative to ENoise for PZ = U(Sp−1), using
Var(y|z) = 1 and p = 30. The optimized curves correspond to multi-layer NN feature maps whose
parameters were trained to minimize ENoise for n = 15 or n = 60. More experiments and details
on the setup can be found in Appendix 5.C. We do not plot estimates for n ∈ {28, . . . , 32} since
they have high estimation variances.

Remark 5.G.3. We can prove the hypothesis for n = 1 or p = 1 since in this case, the
results from Theorem 5.6.1 are equal to the lower bound from Theorem 5.4.3.

When using a continuous feature map ϕ : Rd → Rp with d ≤ p − 2, it seems to be
unclear at first whether the low ENoise of PZ = U(Sp−1) can even be achieved. We show in
Proposition 5.J.2 that this is possible using space-filling curve feature maps.

The results in this section and in Appendix 5.C show that while our lower bound
presumably does not fully capture the height of the interpolation peak at p ≈ n, it is quite
sharp in the practically relevant regimes p≫ n and p≪ n irrespective of d.

Acknowledgments The author would like to thank Ingo Steinwart for proofreading
most of this paper and for providing helpful comments. Funded by Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy -
EXC 2075 - 390740016. The author thanks the International Max Planck Research School
for Intelligent Systems (IMPRS-IS) for support.

52



Appendix

5.A Overview
The appendix is structured as follows: In Appendix 5.B, we provide an overview of
some matrix identities used throughout the paper. We provide additional numerical
experiments for various (random) feature maps in Appendix 5.C. The counterexample given
in Appendix 5.D shows that the assumption (FRK) cannot be omitted from Theorem 5.4.3.
In Appendix 5.E, we provide an overview of full-rank theorems for random neural networks
in the literature and explain why their proofs are incorrect. We then prove our main
results in Appendix 5.F before discussing consequences in Appendix 5.G. In Appendix 5.H,
we give proofs for the theorems and propositions from Section 5.5. As an addition, we
prove (FRK) for random Fourier features in Appendix 5.I. Proofs for the statements from
Section 5.6 are given in Appendix 5.J. In Appendix 5.K, we compare our results to some
results for ridgeless kernel regression. Finally, in Appendix 5.L, we compare our result to
the one by Muthukumar et al. (2020).

Whenever we prove theorems or propositions from the main paper (like Theorem 5.4.3)
in the Appendix, we repeat their statement before the proof for convenience. In contrast,
new theorems or propositions are numbered according to the section they are stated in,
e.g. Proposition 5.I.1.

5.B Matrix Algebra
In the following, we will present some facts about matrices that are relevant to this paper.
For a general reference, we refer to textbooks on the subject (e.g. Golub and Van Loan,
1989; Bhatia, 2013).

Let n, p ≥ 1 and let k := min{n, p}. The singular value decomposition (SVD) of
a matrix A ∈ Rn×p is a decomposition A = UDV ⊤ into orthogonal matrices U ∈
Rn×k,V ∈ Rp×k with U⊤U = V ⊤V = Ik and a diagonal matrix D ∈ Rk×k with
non-negative diagonal elements s1(A) ≥ . . . ≥ sk(A) called singular values.

For a given symmetric square matrix A ∈ Rn×n with eigenvalues λ1(A) ≥ . . . ≥ λn(A),
the trace satisfies

tr(A) =
n∑
i=1

Aii =
n∑
i=1

λi .

The trace is linear and invariant under cyclical permutations. We use this multiple times
in arguments of the following type: If v ∈ Rp and A ∈ Rp×p are stochastically independent

53



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

(e.g. because A is constant), we can write

Evv
⊤Av = Ev tr(v

⊤Av) = Ev tr(Avv⊤) = tr(AEvvv
⊤) .

Moreover, if A ≻ 0, then for all i ∈ [n], λi(A) > 0 and we have

λn+1−i(A
−1) =

1

λi(A)
.

For a positive definite matrix Σ ∈ Rp×p, the SVD and the eigendecomposition coincide
as Σ = U diag(λ1(Σ), . . . , λp(Σ))U⊤ and we can define the inverse square root as

Σ−1/2 := U diag(λ1(Σ)−1/2, . . . , λp(Σ)−1/2)U⊤ ≻ 0 ,

which is the unique s.p.d. matrix satisfying (Σ−1/2)2 = Σ−1.
By the Courant-Fischer-Weyl theorem, two symmetric matrices A,B ∈ Rn×n with

A ⪯ B satisfy

λi(A) = max
V⊆Rd subspace

dimV=i

min
v∈V

∥v∥2=1

v⊤Av ≤ max
V⊆Rd subspace

dimV=i

min
v∈V

∥v∥2=1

v⊤Bv = λi(B) .

Let A ∈ Rn×p. The Moore-Penrose pseudoinverse A+ of A satisfies the following
relations (see e.g. Section 1.1.1 in Wang et al., 2018):

• Suppose A has the SVD A = UDV ⊤, where D = diag(s1, . . . , sk), k := min{n, p}.
Using the convention 1/0 := 0, we can write A+ = V D+U⊤, where D+ :=
diag(1/s1, . . . , 1/sk).

• A+ = (A⊤A)+A⊤ = A⊤(AA⊤)+.
• If A is invertible, then A+ = A−1.
• A+(A+)⊤ = (A⊤A)+.

We will also use a basic fact on the Schur complement that, for example, is outlined in
Appendix A.5.5 in Boyd and Vandenberghe (2004): If

0 ≺ A =

(
A11 A12

A21 A22

)
∈ R(m1+m2)×(m1+m2) ,

then A22 ≻ 0 and A11 −A12A
−1
22 A21 ≻ 0 and the top-left m1 ×m1 block of A−1 is given

by (A11 −A12A
−1
22 A21)

−1.

5.C Experiments
In the following, we experimentally investigate ENoise for different (random) feature maps.
We will first give an overview of the plots and then explain the details of how they were
generated and some implications. More details can be found in the provided code. All
empirical curves show one estimated standard deviation of the mean estimator as a shaded
area around the estimated mean, but this standard deviation is sometimes too small to
be visible. We assume Var(y|z) = 1 almost surely over z such that (I) in Theorem 5.4.3
holds with equality with σ2 = 1.

54



5.C. Experiments

100 101 102

Number of points n

10−1

100

101

102

103

104
E n

o
is

e
(n

oi
se

-i
nd

uc
ed

er
ro

r)

sigmoid NN
tanh NN
GELU NN
softplus NN
ReLU NN
SELU NN
ELU NN

U(Sp−1)

Lower bound

Figure 5.C.1: Estimated ENoise for random neural network feature maps (cf. Theorem 5.5.6)
with different activation functions and d0 = d = 10, d1 = d2 = 256, d3 = p = 30. We include the
results from PZ = U(Sd−1) as comparison, cf. Section 5.6.

Figure 5.C.1 shows ENoise for random three-layer neural network feature maps with
p = 30, different activation functions and varying n. Note that all neural networks produce
higher ENoise than PZ = U(Sp−1). The effect of non-isotropic covariance matrices in the
overparameterized regime can be clearly seen when comparing Figure 5.C.1 to Figure 5.C.2,
where features have been whitened separately for each set of random parameters θ, cf.
Remark 5.G.1. Figure 5.C.3 then shows ENoise for n = 30 and varying p.

Note that double descent is usually plotted as a function of the “model complexity” p
as in Belkin et al. (2019), but varying p is only possible when we have a (random) feature
map ϕ

(p)
θ : Rd → Rp for each value of p. For the following NTK and polynomial kernels,

there is no canonical way to define such a sequence of feature maps. For this reason, we
will plot their results only with varying n. Double descent as a function of the number
of samples n has for example been pointed out by Nakkiran et al. (2021a) and Nakkiran
(2019).

Figure 5.C.4 shows ENoise for various random finite-width Neural Tangent Kernels
(NTKs), cf. Jacot et al. (2018). These results mostly exhibit larger ENoise than the random
NN feature maps from Figure 5.C.1, perhaps because of correlations parameter gradients
in different layers. However, this comparison is not really fair since the NTK feature map
uses a much smaller underlying neural network and the input dimension d is smaller.

Figure 5.C.5 and Figure 5.C.6 show ENoise for two variants of random Fourier features
for two different scalings of the random parameters. Figure 5.C.6 shows that for random
Gaussian parameters with large variance (corresponding to an approximated narrow
Gaussian kernel), the values of ENoise for random Fourier features are very close to the

55



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

100 101 102

Number of points n

10−1

100

101

102

103

104

E n
o
is

e
(n

oi
se

-i
nd

uc
ed

er
ro

r)

sigmoid NN
tanh NN
GELU NN
softplus NN
ReLU NN
SELU NN
ELU NN

U(Sp−1)

Lower bound

Figure 5.C.2: As in Figure 5.C.1 but with whitened features, i.e. using E tr((WW⊤)−1) in the
overparameterized case n ≤ p, cf. Theorem 5.4.3 and Remark 5.G.1.

values for PZ = U(Sp−1). We decided to plot these values relative to each other as in
Figure 5.1 since the curves would overlap in a normal plot like Figure 5.C.5. Note that
the the version of random Fourier features with sin and cos features automatically yields
constant ∥z∥2 like for PZ = U(Sp−1).

Finally, Figure 5.C.7 shows that linear regression with the polynomial kernel is quite
sensitive to label noise. We use p = 35 for the polynomial kernel since there are no
particularly interesting polynomial kernels with p = 30.

Neural Network feature maps For Figures 5.C.1, 5.C.2 and 5.C.3, we use random
neural network feature maps without biases as in Theorem 5.5.6 with d0 = d = 10, d1 =
d2 = 256 and d3 = p. As the input distribution PX , we use N (0, Id). We initialize the NN
weights independently as W (l)

ij ∼ N (0, 1/Vl), where

Vl :=

{
d0 if l = 0,
dlVaru∼N (0,1)(σ(u)) if l ≥ 1.

Here, Varu∼N (0,1)(σ(u)) is approximated once by using 104 samples for u. This initialization
is similar (and for the ReLU activation essentially equivalent) to the initialization method
by He et al. (2015). The initialization variances are chosen such that for fixed input x
with ∥x∥2 ≈ 1, the pre-activations in each layer are approximately N (0, 1)-distributed.

NTK feature maps For Figure 5.C.4, we use an NTK parameterization similar to the
original one proposed by Jacot et al. (2018), but again with activation-dependent scaling.

56



5.C. Experiments

100 101 102

Number of parameters p

10−1

100

101

102

103

104
E n

o
is

e
(n

oi
se

-i
nd

uc
ed

er
ro

r) sigmoid NN
tanh NN
GELU NN
softplus NN
ReLU NN
SELU NN
ELU NN
Lower bound

Figure 5.C.3: As in Figure 5.C.1 but with n = 30 fixed and varying d3 = p.

Our neural network is given by5

ϕ̃θ : Rd → R1,x 7→ 1√
V1

W (1)σ

(
1√
V0

W (0)

)
with d0 = d = 4, d1 = 6, d2 = 1 and W

(l)
ij ∼ N (0, 1) i.i.d. Our input distribution is again

PX = N (0, Id). The NTK feature map is then defined as

ϕθ : Rd → Rp,x 7→ ∂

∂θ
ϕ̃θ(x) ,

where p = 6 · 4 + 1 · 6 = 30 is the number of parameters in θ. Note that moving the
variances Vl outside of W (l) does not affect the forward pass but only the backward pass
(i.e. the derivatives).

While we have not theoretically established the properties (FRK) and (COV) for such
feature maps, we can do this experimentally for analytic activation functions like sigmoid,
tanh, softplus and GELU: Since the random NTK feature map is a derivative of the
analytic random NN feature map, it is also analytic. By Proposition 5.5.5, if (FRK) does
not hold, then for every fixed θ̃, the range of ϕθ̃ must be contained in a proper linear
subspace of Rp, and therefore Z = ϕθ(X) never has full rank for n ≥ p. In this case,

5For random NN feature maps as in Theorem 5.5.6, one can interpret the linear regression as being an
extra layer on top of the neural network, and therefore the last layer of the feature map should contain an
activation function. For NTK feature maps, one can instead interpret the linear regression as performing
a “linearized” training of the whole NN, and the whole NN usually does not contain an activation function
in the last layer.

57



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

100 101 102

Number of points n

10−1

100

101

102

103

104

E n
o
is

e
(n

oi
se

-i
nd

uc
ed

er
ro

r)

sigmoid NTK
tanh NTK
GELU NTK
softplus NTK
ReLU NTK
SELU NTK
ELU NTK

U(Sp−1)

Lower bound

Figure 5.C.4: Estimated ENoise for Neural Tangent Kernel (NTK) feature maps given by various
random neural networks (cf. Theorem 5.5.6) with d0 = d = 4, d1 = 6, d3 = 1, resulting in
p = 4 · 6 + 6 · 1 = 30. We include the empirical results from PZ = U(Sd−1) as comparison, cf.
Section 5.6.

the singular value sp(Z) would be zero, and even accounting for numerical errors, the
“inverse condition number” sp(Z)

s1(Z)
should at most be of the order of 64-bit float machine

precision, i.e. around 10−16. However, among 104 samples of Z for n := 90 ≥ 30 = p,
the maximum observed “inverse condition number” was greater than 10−3 for all of the
activation functions sigmoid, tanh, softplus and GELU.6 Hence, by Proposition 5.5.2 and
Proposition 5.5.5, we can confidently conclude that (COV) and (FRK) hold for all n
almost surely over θ for this network size and these activation functions.

Estimation of ENoise To estimate ENoise, we proceed as follows: Recall from Section 5.3
that ridgeless regression is the limit of ridge regression for λ ↘ 0. We use a small
regularization of λ = 10−12 to improve numerical stability. Also for numerical stability, we
use a singular value decomposition (SVD) Z = U diag(s1, . . . , sk)V

⊤ with k := min{n, p}
as in Appendix 5.B. The regularized approximation of Z+ is then

Z+ ≈ (Z⊤Z + λIp)
−1Z⊤ = V diag

(
s1

s21 + λ
, . . . ,

sk
s2k + λ

)
U⊤ . (5.4)

We can then estimate

tr((Z+)⊤ΣZ+) = tr(Z+(Z+)⊤Σ) ≈ tr

(
V diag

(
s21

(s21 + λ)2
, . . . ,

s2k
(s2k + λ)2

)
V ⊤Σ

)
.(5.5)

6We use n > p since this usually improves the “inverse condition number” of Z.

58



5.C. Experiments

100 101 102

Number of points n

10−1

100

101

102

103

104
E n

o
is

e
(n

oi
se

-i
nd

uc
ed

er
ro

r)

RFF (cos with bias)
RFF (sin and cos)

U(Sp−1)

Lower bound

Figure 5.C.5: Estimated ENoise for the two versions of random Fourier features described
in Appendix 5.I. We use d = 10, PX = N (0, Id), p = 30 and the weight vector distribution
Pk = N (0, 1pId) (cf. Appendix 5.I).

We can then obtain m = 104 (non-ReLU NNs, polynomial kernel, high-variance
random Fourier features) or m = 105 (all other empirical results) sampled estimates for
tr((Z+)⊤ΣZ+) to obtain a Monte-Carlo estimate of E tr((Z+)⊤ΣZ+) by repeating the
following procedure m times:

(1) Sample a random parameter θ.
(2) Sample random matrices X ∈ Rn×d and X̃ ∈ Rl×d, l = 104, with i.i.d. PX-distributed

rows.
(3) Compute Z := ϕθ(X) and Z̃ := ϕθ(X̃).
(4) Compute the estimate Σ := 1

l
Z̃

⊤
Z̃.

(5) Compute a regularized estimate of tr((Z+)⊤ΣZ+) using the SVD of Z and Eq. (5.5).

For performance reasons, we make the following modification of steps (2) and (5): Since
we perform the computation for all n ∈ [256], we sample X ∈ R256×d and then, for all
n ∈ [256], perform the computation for n using the first n rows of Z. Hence, the estimates
for different n are not independent. In Figure 5.C.3, we perform an analogous optimization
for p by taking the first p ∈ [256] of the d3 = 256 output features in Z.

Curious ReLU results The curves for the ReLU NNs and ReLU NTKs in the under-
parameterized regime p ≤ n may seem odd. The locally almost constant “plateaus” are
presumably an artifact of the non-independent estimates for different n as explained in
the last paragraph. As discussed in Section 5.5, networks with ReLU, ELU, or SELU
activations do not satisfy (FRK). It seems plausible that, since both “halves” of the ReLU
function are linear, ReLU networks have a significantly higher chance than SELU or ELU

59



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

100 101 102

Number of points n

0.7

0.8

0.9

1.0

1.1

E n
o
is

e
re

la
tiv

e
to
U(
Sp
−

1
)

(e
m

pi
ri

ca
l)

N (0, Ip) (analytic)

U(Sp−1) (empirical)

U(Sp−1), n ≤ p (analytic)

RFF (cos with bias)
RFF (sin and cos)
Lower bound

Figure 5.C.6: Estimated ENoise for the two versions of random Fourier features described in
Appendix 5.I relative to PZ = U(Sp−1). We use d = 10, PX = N (0, Id), p = 30 and the weight
vector distribution Pk = N (0, Id) (cf. Appendix 5.I).

networks to be initialized with “bad” parameters that are likely to generate “degenerate”
feature matrices Z that do not have full rank at n = p and only become full rank for some
n > p. When inspecting the data underlying the plots, the estimate of ENoise for ReLU
networks in the underparameterized regime seems to be dominated by few outliers. It
seems that the distribution of tr((Z+)⊤ΣZ+) for ReLU networks is often so heavy-tailed
that computing more Monte Carlo samples does not significantly reduce the estimation
uncertainty.

Whitening For computing E((WW⊤)−1) = E((ZΣ−1Z⊤)−1) in the overparameterized
case in Figure 5.C.2, we regularize both matrix inversions on the right-hand side as
above: For a symmetric matrix A ∈ Rm×m, we use a symmetric eigendecomposition
A = U diag(s1, . . . , sm)U

⊤ and approximate

A−1 ≈ U diag

(
s1

s21 + λ
, . . . ,

sm
s2m + λ

)
U⊤ .

Optimization For our optimized feature maps in Figure 5.1 with p = 30, we use a
neural network feature map with d0 = d = p = 30, d1 = d2 = 256, d3 = p = 30 and tanh
activation function. We use NTK parameterization and zero-initialized biases, leading to

ϕθ(x) = σ(b(2) + V
−1/2
2 W (2)σ(b(1) + V

−1/2
1 W (1)σ(b(0) + V

−1/2
0 W (0)x)))

with independent initialization W (l)
ij ∼ N (0, 1), b(l)i = 0. As the input distribution, we use

PX = N (0, Id). For given θ, let Σθ := Exϕθ(x)ϕθ(x)
⊤, i.e. we define the second moment

60



5.D. A Counterexample

100 101 102

Number of points n

10−1

100

101

102

103

104
E n

o
is

e
(n

oi
se

-i
nd

uc
ed

er
ro

r)

Polynomial kernel
Lower bound

Figure 5.C.7: Estimated ENoise for the polynomial kernel (cf. Proposition 5.5.4) with d = 3,
m = 4, c = 1, PX = N (0, Id), resulting in p =

(
m+d
m

)
=
(
7
4

)
= 35.

matrix Σ as depending on θ. We then optimize the loss function

L(θ) := EX tr((ϕθ(X)+)⊤Σθϕθ(X)+)

using AMSGrad (Reddi et al., 2018) with a learning rate that linearly decays from 10−3

to 0 over 1000 iterations. To approximate L(θ) in each iteration, we approximate Σθ

using 1000 Monte Carlo points and we draw 1024 different realizations of X (this can be
considered as using batch size 1024). We also use a regularized version as in Eq. (5.4), but
we omit the SVD for reasons of differentiability.

5.D A Counterexample

Example 5.D.1. Let p ≥ 2. Consider the uniform distribution PZ on an orthonormal
basis {e1, . . . , ep} ⊆ Rp. Then, Σ = 1

p

∑p
i=1 eie

⊤
i = 1

p
Ip and hence (COV) is satisfied.

However, from Proposition 5.5.2 it is easy to see that for any n ≥ 2, (FRK) is not
satisfied. Indeed, if the vector ei occurs mi times among the samples z1, . . . ,zn, then
Z⊤Z = diag(m1, . . . ,mp). Assuming Var(y|z) = σ2 := 1 for all z, we then obtain from
Theorem 5.4.3 with the convention 1

0
:= 0:

ENoise = EZ tr((Z+)⊤ΣZ+) =
1

p
EZ tr(Z+(Z+)⊤) =

1

p
EZ tr((Z⊤Z)+)

61



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

=
1

p

p∑
i=1

E
1

mi

= E
1

m1

,

where m1 follows a binomial distribution with parameters n and 1
p
. Using E 1

m1
≤ E1 = 1,

it is easy to see that the lower bound is violated for some values of n. For example,
Figure 5.D.1 shows that for p = 30, the lower bound is violated in a large region, especially
in the overparameterized regime.7 The underlying reason is that the function x 7→ 1

x
is

convex on (0,∞), but not on [0,∞). If Z has singular values si, the pseudo-inverse Z+

has singular values 1
si

. If si = 0 is possible, we cannot use a convexity-based argument
anymore. ◀

100 101 102

Number of points n

10−1

100

101

E n
o
is

e
(n

oi
se

-i
nd

uc
ed

er
ro

r) Lower bound
Counterexample

Figure 5.D.1: The counterexample given in Example 5.D.1 for p = 30 often has lower ENoise than
the lower bound from Theorem 5.4.3, but violates its assumption (FRK). For the counterexample,
ENoise was approximated as explained in Example 5.D.1 using 106 Monte Carlo samples for each
n. We assume Var(y|z) = 1 almost surely over z.

Remark 5.D.2 (Histogram regression). The distribution PZ in Example 5.D.1 may seem
contrived at first, but such a distribution can arise in histogram regression (cf e.g. Chapter
4 in Györfi et al., 2002). For example, suppose that PX is supported on a domain D ⊆ Rd

and this domain is partitioned into disjoint sets A1, . . . ,Ap. Then, performing histogram
regression on this partition is equivalent to performing ridgeless linear regression with the
feature map ϕ : Rd → Rp with ϕ(x) := ei if x ∈ Ai. If all partitions are equally likely, i.e.
PX(Ai) = 1/p for all i ∈ {1, . . . , p}, then PZ is the uniform distribution on {e1, . . . , ep} as
in Example 5.D.1. ◀

7For n = 1, (FRK) holds and it is easy to see that the lower bound holds exactly in this case.

62



5.E. Full-rank Results for Random Weight Neural Networks

5.E Full-rank Results for Random Weight Neural Net-
works

In the literature on neural networks with random weights (Schmidt et al., 1992) and the
later virtually identical Extreme Learning Machine (ELM) (Huang et al., 2006), properties
similar to (FRK) have been investigated for random neural network feature maps. In the
following, we review the relevant approaches known to us and explain why most of them
are flawed.

First, Sartori and Antsaklis (1991) state a result where the assumptions are not clearly
specified, but which could look as follows:

Claim 1 (Sartori and Antsaklis (1991), informally discussed after Lemma 1). For n = p,
consider a single-layer random neural network with weights W (0) ∈ R(n−1)×d and signum
activation σ that appends a 1 to its output:

ϕθ : Rd → Rp,x 7→ (σ(W (0)x), 1) .

If x1, . . . ,xn ∈ Rd are distinct, then for almost all W (0), ϕθ(X) is invertible.

This claim is evidently false for n ≥ 2. For example, the following argument works
for n ≥ 3: For τ ∈ {−1, 0, 1}n, let Uτ := {w ∈ Rn | σ(w⊤xj) = τj for all j}. Then,⋃

τ∈{−1,0,1}n Uτ = Rn and since {−1, 0, 1}n is finite, there exists τ ∗ such that Uτ∗ is
not a Lebesgue null set. Hence the set W := {W (0) ∈ R(n−1)×n | at least two rows
of W (0) are in Uτ∗} is not a Lebesgue null set. But for all W (0) ∈ W, the matrix
ϕθ(X) = (σ(X(W (0))⊤) | 1n×1) has two columns equal to τ ∗ and is therefore not
invertible, contradicting Claim 1.

Second, Tamura and Tateishi (1997) state a result where the assumptions are not
clearly formulated, but which could look as follows:

Claim 2 (Tamura and Tateishi (1997)). For n = p, consider a single-layer random neural
network with weights W (0) ∈ R(n−1)×d, biases b(0) ∈ Rn−1 and sigmoid activation σ that
appends a 1 to its output:

ϕθ : Rd → Rp,x 7→ (σ(W (0)x+ b(0)), 1) .

If x1, . . . ,xn ∈ Rd are distinct, then for almost all W (0) and all a < b, there exists
b(0) ∈ [a, b]n−1 such that ϕθ(X) is invertible.

Tamura and Tateishi (1997) attempt to prove this claim via showing that the curve
ci : [a, b]→ Rn, bi 7→

(
σ((w

(0)
i )⊤xj + bi)

)
j∈[n]

is not contained in any (n− 1)-dimensional

subspace of Rn, which would allow them to pick a suitable bias bi for each curve ci such
that the ci(bi) and (1, . . . , 1)⊤ are linearly independent. Although this part is formulated
confusingly, it should work out. The major problem is that under the counterassumption
that ci lies in an (n− 1)-dimensional subspace, they construct an infinite (overdetermined)
system of equations involving derivatives of the sigmoid function which they claim has no
solution. However, in general, overdetermined systems can have solutions and they do not
prove why this would not be the case in their situation. Indeed, the only properties of

63



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

the sigmoid function they use is that it is C∞ and not a polynomial, and it is not hard
to see that the exponential function has these properties as well and leads to a solvable
overdetermined system since its derivatives are all identical.

This leads us to the next claim:

Claim 3 (Huang (2003), Theorem 2.1). Consider the setting of Claim 2 but with W (0) ∈
Rn×d instead of appending a 1 to all feature vectors. If x1, . . . ,xn ∈ Rd are distinct and θ
has a Lebesgue density, then ϕθ(X) is invertible almost surely over θ.

Huang (2003) uses the “proof” by Tamura and Tateishi (1997) to show that from any
nontrivial intervals one can choose W (0), b(0) such that ϕθ(X) is invertible, setting all
rows of W (0) to be equal. He then concludes without further reasoning that ϕθ(X) must
then be invertible almost surely over θ. This major unexplained step cannot be fixed by a
continuity-based argument since all b(0)i were chosen from the same interval and similarly,
all rows of W (0) were chosen from the same interval. Since the sigmoid function is analytic,
it would, however, be possible to prove this step using the multivariate identity theorem
for analytic functions, Theorem 5.H.3, in a fashion similar to the proof of (d) ⇒ (a) in
Proposition 5.5.2. The approach pursued in Huang (2003) thus introduces an additional
problem on top of the problem of Tamura and Tateishi (1997) although this additional
problem is in principle fixable.

A similar strategy is reused in the next claim issued in a particularly popular paper:

Claim 4 (Huang et al. (2006), Theorem 2.1). Claim 3 holds for all C∞ activation functions
σ.

Not only does the “proof” in Huang et al. (2006) inherit the problems from the previous
“proofs”, but now the result is obviously false as well: For σ ≡ 0, the matrix ϕθ(X) can
never be invertible, and for σ = id, it is also easy to find counterexamples. Moreover,
it is not sufficient to exclude (low-order) polynomials σ: For example, the well-known
construction (e.g. Remark 3.4 (d) in Chapter V.3 in Amann and Escher, 2005)

σ(x) :=

{
0 , x ≤ 0

e−1/x , x > 0

yields a C∞ function σ that is zero on (−∞, 0] but not a polynomial. For this function, it
is not hard to see that ϕθ(X) would be singular with nonzero probability since there is a
chance that W (0)x+ b(0) contains only negative components.

Despite these evident problems and the paper’s popularity, Claim 4 is restated years
later as Theorem 1 in a survey paper by the same author (Huang et al., 2015). In his
Theorem 1, Guo (2018) attempts to disprove Claim 4. However, this “disproof” is also
invalid: For certain saturating activation functions like tanh, Guo (2018) lets θ →∞ in
a certain fashion, which causes ϕθ(X) to converge to a singular matrix. The problem
with this approach is that just because the limiting matrix is singular, the matrices for
finite θ do not need to be singular. However, this limiting behavior might at least explain
the empirical results of Henriquez and Ruz (2017), which find in a certain setting with
sigmoid activation that numerically, ϕθ(X) is usually not a full-rank matrix. In contrast,
Widrow et al. (2013) numerically reach the opposite conclusion. This is not a contradiction,
considering that very small eigenvalues of ϕθ(X) may be numerically rounded to zero, and

64



5.F. Proofs for Section 5.4

the probability of having such small eigenvalues depends on the chosen distributions of x
and θ.

The only previously published correct result known to us is the following one:

Lemma 5.E.5 (Lemma 4.4 in Nguyen and Hein (2017)). Let σ : R → R be analytic,
strictly increasing and let one of the following two conditions be satisfied:

(a) σ is bounded, or
(b) there exist positive constants ρ1, ρ2, ρ3, ρ4 such that |σ(t)| ≤ ρ1e

ρ2t for t < 0 and
|σ(t)| ≤ ρ3t+ ρ4 for t ≥ 0.

Let ϕθ be a random NN feature map with biases as in Theorem 5.5.6 (b) and let x1, . . . ,xn ∈
Rd be distinct. If p ≥ n− 1, then the n× (p+ 1) feature matrixϕθ(x1)

⊤ 1
...

...
ϕθ(xn)

⊤ 1


has rank n for (Lebesgue-) almost all θ.

In Theorem 5.H.9, we generalize Lemma 5.E.5 (without the appended ones in the
feature matrix) to a substantially larger class of analytic activation functions.8 As argued
above, it is not possible to replace the assumption that σ is analytic with σ ∈ C∞ and as
shown in Remark 5.H.17, our exclusion of certain polynomials for σ is in general necessary.

5.F Proofs for Section 5.4

In this section, we prove our main theorem and corollary from Section 5.4. Recall from
Definition 5.4.2 that if E∥z∥22 <∞, we can define the second moment matrix

Σ := Ez∼PZ

[
zz⊤] ∈ Rp×p ,

and if Σ is invertible, we can also define the “whitened” data matrix W := ZΣ−1/2, whose
rows wi = Σ−1/2 satisfy Ewiw

⊤
i = Ip.

Theorem 5.4.3 (Main result). Let n, p ≥ 1. Assume that P and ϕ satisfy:

(INT) Ey2 <∞ and hence RP (f
∗
P ) <∞,

(NOI) Var(y|z) ≥ σ2 almost surely over z,
(MOM) E∥z∥22 <∞, i.e. Σ exists and is finite,
(COV) Σ is invertible,
(FRK) Z ∈ Rn×p almost surely has full rank, i.e. rankZ = min{n, p}.

8It is in principle possible to extend our results to the case with appended ones in the feature matrix by
choosing the activation function for one of the output neurons to be σ ≡ 1. As discussed in Remark 5.H.16,
our arguments have no problem handling different activation functions. In this case, we would only need
to adapt the corresponding Taylor series coefficients in Lemma 5.H.8.

65



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

Then, for the ridgeless linear regression estimator fZ,y(z) = z⊤Z+y, the following holds:

If p ≥ n, ENoise

(I)

≥ σ2EZ tr((Z+)⊤ΣZ+)
(II)

≥ σ2EZ tr((WW⊤)−1)
(IV)

≥ σ2 n

p+ 1− n .

If p ≤ n, ENoise

(I)

≥ σ2EZ tr((Z+)⊤ΣZ+)
(III)
= σ2EZ tr((W⊤W )−1)

(V)

≥ σ2 p

n+ 1− p .

Here, the matrix inverses exist almost surely in the considered cases. Moreover, we have:

• If (NOI) holds with equality, then (I) holds with equality.
• If n = p or Σ = λIp for some λ > 0, then (II) holds with equality.

Proof. By (FRK), we only consider the case where Z has full rank. For further details on
some matrix computations, we refer to Appendix 5.B.

Step 1: Preparation. Since the pairs (z1, y1), . . . , (zn, yn) are independent, we have
the conditional covariance matrix

Cov(y|Z) =

Var(y1|z1)
. . .

Var(yn|zn)

 (I)

⪰ σ2In

with equality in (I) if (NOI) holds with equality. Therefore,

ENoise
def
= EZ,y,θ,z

(
fZ,y,θ(z)− Ey|ZfZ,y,θ(z)

)2
= EZ,y,z

(
z⊤Z+y − Ey|Zz

⊤Z+y
)2

= EZ,zEy|Zz
⊤Z+(y − Ey|Zy)(y − Ey|Zy)

⊤(Z+)⊤z

= EZ,zz
⊤Z+Cov(y|Z)(Z+)⊤z

(I)

≥ σ2EZ,zz
⊤Z+(Z+)⊤z

= σ2EZ,z tr((Z
+)⊤zz⊤Z+)

= σ2EZ tr((Z+)⊤Σ(Z+)⊤) .

Step 2.1: Reformulation, underparameterized case. In the case p ≤ n, we have
Z+ = (Z⊤Z)−1Z⊤ thanks to (FRK) and thus

tr((Z+)⊤ΣZ+) = tr(Σ1/2Z+(Z+)⊤Σ1/2) = tr(Σ1/2(Z⊤Z)−1Σ1/2) = tr((W⊤W )−1) .

Step 2.2: Reformulation, overparameterized case. In the case p ≥ n, we have
Z+ = Z⊤(ZZ⊤)−1 thanks to (FRK). For Σ = λIp, we can show tr((Z+)⊤ΣZ+) =
tr((WW⊤)−1) similar to Step 2.1. For general Σ, we can obtain a lower bound by
“removing a projection”: First, let

S := (Z+)⊤ΣZ+ = (ZZ⊤)−1ZΣZ⊤(ZZ⊤)−1 ,

A := Σ1/2Z⊤ .

Now, since Z and Σ have full rank, we can compute

S−1 = ZZ⊤(ZΣZ⊤)−1ZZ⊤ = WA(A⊤A)−1A⊤W⊤ .

66



5.F. Proofs for Section 5.4

Since A(A⊤A)−1A⊤ is the orthogonal projection onto the column space of A, we have
S−1 ⪯ WW⊤ and hence λi(S−1) ≤ λi(WW⊤) by the Courant-Fischer-Weyl theorem.
This yields

tr((Z+)⊤ΣZ+) = tr(S) =
n∑
i=1

λn+1−i(S) =
n∑
i=1

1

λi(S
−1)

≥
n∑
i=1

1

λi(WW⊤)
=

n∑
i=1

λn+1−i((WW⊤)−1) = tr((WW⊤)−1) .

For n = p, A(A⊤A)−1A⊤ projects onto a p-dimensional space and is therefore the identity
matrix, yielding equality.

Step 3.0: Random matrix bound, p = 1 or n = 1. If n ≥ p = 1, wi = wi is a
scalar and we have

E tr((W⊤W )−1) = E
1

W⊤W
= E

1∑n
i=1w

2
i

≥ 1

E
∑n

i=1w
2
i

=
1∑n

i=1 tr(Ewiw⊤
i )

=
1

n

=
p

n+ 1− p
by Jensen’s inequality. Similarly, for p ≥ n = 1, we obtain

E tr((WW⊤)−1) = E
1

w⊤
1 w1

≥ 1

Ew⊤
1 w1

=
1

tr(Ew1w⊤
1 )

=
1

p
=

n

p+ 1− n .

Step 3.1: Random matrix bound, overparameterized case. We first consider
the overparameterized case p ≥ n ≥ 2 and block-decompose

W =:

(
w⊤

1

W 2

)
∈ R(1+(n−1))×p ⇒ WW⊤ =

(
w⊤

1 w1 w⊤
1 W

⊤
2

W 2w1 W 2W
⊤
2

)
.

Since Z has full rank, W has full rank. Because of n ≤ p, it follows that WW⊤ ≻ 0.
Therefore,(

(WW⊤)−1
)
11

=
(
w⊤

1 w1 −w⊤
1 W

⊤
2 (W 2W

⊤
2 )

−1W 2w1

)−1
=
(
w⊤

1 (Ip − P 2)w1

)−1
,

where

P 2 := W⊤
2

(
W 2W

⊤
2

)−1
W 2 ∈ Rp×p

is the orthogonal projection onto the column space of W⊤
2 . Thus, P 2 has the eigenvalues

1 with multiplicity n− 1 and 0 with multiplicity p− (n− 1), which yields tr(P 2) = n− 1.
Since the zi are stochastically independent, w1 and W 2 are also stochastically independent
and we obtain

Ew⊤
1 (Ip − P 2)w1 = E tr((Ip − P 2)(Ew1w1w

⊤
1 )) = E tr(Ip − P 2) = p+ 1− n .

Using Jensen’s inequality with the convex function (0,∞) → (0,∞), x 7→ 1/x, we thus
find that

E
(
(WW⊤)−1

)
11

= E
(
w⊤

1 (Ip − P 2)w1

)−1 ≥ 1

Ew⊤
1 (Ip − P 2)w1

=
1

p+ 1− n .

67



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

Since tr((WW⊤)−1) =
∑n

i=1((WW⊤)−1)ii and all diagonal entries can be treated in the
same fashion (e.g. via permutation of the wi), it follows that

E tr((WW⊤)−1) ≥ n

p+ 1− n .

Step 3.2: Random matrix bound, underparameterized case. In the case
n ≥ p ≥ 1, we follow the proof of Corollary 1 in Mourtada (2022), which can be applied in
our setting as follows: Introduce a new random variable wn+1 such that w1, . . . ,wn+1 are
i.i.d. Then,

E tr((W⊤W )−1) = EW tr((W⊤W )−1Ewn+1wn+1w
⊤
n+1) = Ew⊤

n+1(W
⊤W )−1wn+1 .

Now, Lemma 1 in Mourtada (2022) uses the Sherman-Morrison formula to show that

w⊤
n+1(W

⊤W )−1wn+1 =
ℓ̂n+1

1− ℓ̂n+1

with the so-called leverage score

ℓ̂n+1 := w⊤
n+1(W

⊤W +wn+1w
⊤
n+1)

−1wn+1 ∈ [0, 1) .

Since W⊤W +wn+1w
⊤
n+1 =

∑n+1
i=1 wiw

⊤
i and since w1, . . . ,wn+1 are i.i.d., we obtain

Eℓ̂n+1 = E tr

(n+1∑
i=1

wiw
⊤
i

)−1

wn+1w
⊤
n+1


=

1

n+ 1
E tr

(n+1∑
i=1

wiw
⊤
i

)−1 n+1∑
i=1

wiw
⊤
i


=

1

n+ 1
E tr(Ip) =

p

n+ 1
.

Finally, the function [0, 1)→ (0,∞), x 7→ x
1−x = 1

1−x − 1 is convex, and Jensen’s inequality
yields

E tr((W⊤W )−1) = E
ℓ̂n+1

1− ℓ̂n+1

≥ Eℓ̂n+1

1− Eℓ̂n+1

=
p

n+ 1− p .

Note that it is not possible to analyze Step 3.2 like Step 3.1 since the corresponding
matrix blocks are not stochastically independent.

Corollary 5.4.4 (Random features). Let θ ∼ PΘ be a random variable such that ϕθ :
Rd → Rp is a random feature map. Consider the random features regression estimator
fX,y,θ(x) = z⊤

θZ
+
θ y with zθ := ϕθ(x) and Zθ := ϕθ(X). If for PΘ-almost all θ̃, the

assumptions of Theorem 5.4.3 are satisfied for z = zθ̃ and Z = Z θ̃ (with the corresponding
matrix Σ = Σθ̃), then

ENoise ≥
{
σ2 n

p+1−n if p ≥ n,
σ2 p

n+1−p if p ≤ n.

68



5.G. Discussion of the Main Theorem

Proof. First, let p ≤ n. Since θ is independent from X,x,y,

ENoise = EX,y,θ,x

(
z⊤
θZ

+
θ y − Ey|Xz⊤

θZ
+
θ y
)2

= Eθ

[
EX,y,x

(
z⊤
θZ

+
θ y − Ey|Xz⊤

θZ
+
θ y
)2]

Theorem 5.4.3
≥ Eθσ

2 p

n+ 1− p = σ2 p

n+ 1− p .

The case p ≥ n can be treated analogously.

5.G Discussion of the Main Theorem
Remark 5.G.1 (Dependence on Σ). Hastie et al. (2022) discuss that Σ only influences the
expected excess risk in the overparameterized regime. In the following, we will illustrate
that Theorem 5.4.3 even implies that in the overparameterized case, Σ = λId yields the
lowest ENoise. This fact is also discussed in Muthukumar et al. (2020) in a slightly different
setting. Note that since PX is unknown in general, Σ is also unknown in general.

Assume that (NOI) holds with equality such that we have ENoise = σ2EZ tr((Z+)⊤ΣZ+)
by Theorem 5.4.3. Suppose that we perform linear regression on the whitened data
z̃ := Σ−1/2z. Then,

Z̃ = ZΣ−1/2 = W ,

Σ̃ = Ez̃z̃z̃
⊤ = Σ−1/2

[
Ezzz

⊤]Σ−1/2 = Ip ,

W̃ = Z̃Σ̃
−1/2

= Z̃ = W .

In the underparameterized case p ≤ n, we then obtain

EZ̃ tr((Z̃
+
)⊤Σ̃Z̃

+
) = EZ̃ tr((W̃

⊤
W̃ )−1) = EZ tr((W⊤W )−1) = EZ tr((Z+)⊤ΣZ+) .

Therefore, whitening the data does not make a difference if p ≤ n. In contrast, for p > n,
we only know

EZ̃ tr((Z̃
+
)⊤Σ̃Z̃

+
)
(II)
= EZ̃ tr((W̃W̃

⊤
)−1) = EZ tr((WW⊤)−1)

(II)

≤ EZ tr((Z+)⊤ΣZ+)

since (II) holds with equality for whitened features. From Step 2.1 in the proof of
Theorem 5.4.3, it is obvious that (II) in general does not hold with equality. Hence, in the
overparameterized case p > n, whitening the features often reduces and never increases
ENoise. Since ENoise is just a lower bound for the expected excess risk, whitening does not
necessarily reduce the expected excess risk.

This phenomenon also has a different kernel-based interpretation: Under the assump-
tions (MOM) and (COV), we can choose an ONB u1, . . . ,up of eigenvectors of Σ with
corresponding eigenvalues λ1, . . . , λp > 0. If z = ϕ(x) and k(x,x′) = ϕ(x)⊤ϕ(x′), we can
write

k(x,x′) = ϕ(x)⊤
(

n∑
i=1

uiu
⊤
i

)
ϕ(x′) =

p∑
i=1

λiψi(x)ψi(x
′) , (5.6)

69



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

where the functions ψi : Rd → R,x 7→ 1√
λi
u⊤
i ϕ(x) form an orthonormal system in L2(PX):

Exψi(x)ψj(x) =
1√
λiλj

u⊤
i

[
Exϕ(x)ϕ(x)

⊤]uj = 1√
λiλj

u⊤
i Σuj =

λj√
λiλj

u⊤
i uj

= δij. (5.7)

Therefore, Eq. (5.6) is a Mercer representation of k and the eigenvalues λi of Σ are also
the eigenvalues of the integral operator Tk : L2(PX)→ L2(PX) associated with k:

(Tkf)(x) :=

∫
k(x,x′)f(x′) dPX(x

′) =
n∑
i=1

λi⟨ψi, f⟩L2(PX)ψi(x) .

We can define a kernel k̃ with flattened eigenspectrum via

k̃(x,x′) :=
p∑
i=1

ψi(x)ψi(x
′) .

Its feature map x 7→ (ψi(x))i∈[n] by Eq. (5.7) satisfies Σ = Ip. By the above discussion,
ENoise(k̃) ≤ ENoise(k). However, this needs to be taken with caution: Assume for simplicity
that for independent x, x̃, the feature map ϕ yields ϕ(x), ϕ(x̃) ∼ N (0, 1

p
Ip). Then,

k(x,x) = 1 but Ek(x, x̃) = 0 and Var k(x, x̃) = 1
p2

∑p
i=1 Eu,v∼N (0,1)u

2v2 = 1
p
. In this sense,

for p→∞, k converges to the Dirac kernel k(x, x̃) = δx,x̃, which satisfies ENoise = 0 but
provides bad interpolation performance if f ∗

P ̸≡ 0. ◀

The next lemma and its proof are an adaptation of Lemma 4.14 in Bordenave and
Chafaï (2012).

Lemma 5.G.2. For i ∈ [n], let W−i := Span{wj | j ∈ [n] \ {i}}. Then, under the
assumptions of Theorem 5.4.3, in the overparameterized case p ≥ n,

tr((WW⊤)−1) =
n∑
i=1

dist(wi,W−i)
−2 . (5.8)

Proof. The case n = 1 is trivial, hence let n ≥ 2. In Step 3.1 in the proof of Theorem 5.4.3,
since P 2 is the orthogonal projection onto W−1, we have

w⊤
1 (Ip − P 2)w1 = ∥w1∥22 − ∥P 2w1∥22

Pythagoras
= dist(w1,W−1)

2 ,

where dist(w1,W−1) is the Euclidean distance between w1 and W−1.

Remark 5.G.3 (Is U(Sp−1) optimal?). From (I) in Theorem 5.4.3 it is clear that the best
possible lower bound for ENoise under the assumptions of Theorem 5.4.3 given n, p ≥ 1 is

ENoise ≥ σ2 inf
Distribution PZ on Rp satisfying (MOM), (COV), (FRK)

EZ∼Pn
Z
tr((Z+)⊤ΣZ+) . (5.9)

Here, we want to discuss the hypothesis that the infimum in Eq. (5.9) is achieved (for
example) by PZ = U(Sp−1). Figure 5.1 shows that we were not able to obtain a lower ENoise

by optimizing a neural network feature map to minimize ENoise. In the following, we want

70



5.H. Proofs for Section 5.5

to discuss some theoretical evidence as to why this is plausible in the overparameterized
case p ≥ n. Lemma 5.G.2 shows that Step 3.1 of the proof of Theorem 5.4.3 has a distance-
based interpretation. In this interpretation, Step 3.1 then applies Jensen’s inequality to
the convex function (0,∞)→ (0,∞), x 7→ 1/x using

E dist(wi,W−i)
2 = p+ 1− n . (5.10)

We can use this perspective to gain insights on how distributions PZ with small
ENoise in the overparameterized case p ≥ n look like. First of all, Remark 5.G.1 suggests
that for minimizing ENoise in the overparameterized case, Σ should be a multiple of
Ip, which is clearly satisfied for U(Sp−1) by Theorem 5.6.1. Since the lower bound
obtained from (5.10) is independent of the distribution of W , minimizing E tr((WW⊤)−1)
amounts to minimizing the error made by Jensen’s inequality, which essentially amounts
to reducing the variance of the random variables dist(wi,W−i). We can decompose
dist(wi,W−i) = ∥wi∥2 ·dist(wi/∥wi∥2,W−i), where dist(wi/∥wi∥2,W−i) only depends on
the angular components wj/∥wj∥2 for j ∈ [n]. This suggests that for a “good” distribution
PW ,

• the radial component ∥wi∥2 should have low variance, and
• the distribution of the angular component wi/∥wi∥2 should not contain “clusters”,

since clusters would increase the probability of dist(wi,W−i) being very small.

Clearly, both points are perfectly achieved for PZ = U(Sp−1). ◀

5.H Proofs for Section 5.5
In this section, we prove all theorems and propositions from Section 5.5 as well as some
additional results.

5.H.1 Miscellaneous

First, we prove a statement about conditional variances.

Lemma 5.H.1. In the setting of Theorem 5.4.3, we have

Var(y|z) = E(Var(y|x)|z) + Var(E(y|x)|z) .

Hence, if Var(y|x) ≥ σ2 almost surely over x, then Var(y|z) ≥ σ2 almost surely over z.
The converse holds, for example, if ϕ is injective.

Proof. For properties of conditional expectations, we refer to the literature, e.g. Chapter
4.1 in Durrett (2019). Since z = ϕ(x) is a function of x, we have E[·|z] = E[E(·|x)|z].
Thus,

Var(y|z) = E
[
(y − E(y|z))2

∣∣z]
= E

[(
(y − E(y|x)) + (E(y|x)− E(E(y|x)|z))

)2∣∣∣z]
= E

[
E
(
(y − E(y|x))2|x

)∣∣z]
71



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

+ E [E ((y − E(y|x))(E(y|x)− E(E(y|x)|z))|x)|z]
+ E

[
E
(
(E(y|x)− E(E(y|x)|z))2|x

)∣∣z] .
For the first term, we have E ((y − E(y|x))2|x) = Var(y|x) by definition. The second term
is zero: Since E(y|x)− E(E(y|x)|z) is already a function of x, we have

E ((y − E(y|x))(E(y|x)− E(E(y|x)|z))|x) = E ((y − E(y|x))|x) (E(y|x)− E(E(y|x)|z))
= (E(y|x)− E(y|x))(E(y|x)− E(E(y|x)|z))
= 0 .

Finally, the third term is by definition equal to Var(E(y|x)|z). Therefore,

Var(y|z) = E(Var(y|x)|z) + Var(E(y|x)|z) .

If ϕ is injective, then x is also a function of z and we obtain Var(y|z) = Var(y|x).

Our main ingredient for analyzing analytic activation functions will be the univariate
and multivariate identity theorems.

Theorem 5.H.2 (Identity theorem for univariate real analytic functions). Let f : R→ R
be analytic. If f is not the zero function, the set N (f) := {z ∈ R | f(z) = 0} has no
accumulation point. In particular, N (f) is countable.

Proof. See e.g. Corollary 1.2.7 in Krantz and Parks (2002) for the first statement. If N (f)
is uncountable, there exists k ∈ Z such that [k, k + 1] ∩N (f) is also uncountable, hence
it contains a strictly increasing and bounded sequence of points, and the limit of this
sequence is an accumulation point of N (f).

Theorem 5.H.3 (Multivariate version of the identity theorem). Let f : Rd → R be
analytic. If f is not the zero function, then N (f) := {x ∈ Rd | f(x) = 0} is a Lebesgue
null set.

Proof. Although less well-known than the univariate version, this multivariate version
has been proven several times in the literature. For example, different proofs are given
in Section 3.1.24 in Federer (1969), Lemma 1.2 in Nguyen (2015) and Proposition 0 in
Mityagin (2015). More proof strategies have been hinted at in Lemma 5.22 in Kuchment
(2015). Here, we provide an elementary proof following the proof strategy briefly mentioned
at the beginning of Section 4.1 in Krantz and Parks (2002).

Let λd be the Lebesgue measure on Rd and let λ := λ1. We prove the statement by
induction on d ≥ 1. For d = 1, if λ(N (f)) > 0, then N (f) is uncountable and hence f ≡ 0
by Theorem 5.H.2.

Now, let the statement hold for d− 1 ≥ 1 and assume λd(N (f)) > 0. For a ∈ R, define
the functions fa : Rd−1 → R, fa(x) = f(a,x). Then,

0 < λd(N (f)) =

∫
Rp

1N (f) dλ
d =

∫
R

∫
Rd−1

1N (f)(a,x) dλ
d−1(x) dλ(a)

=

∫
R
λd−1(N (fa)) da .

72



5.H. Proofs for Section 5.5

It follows that the set U := {x ∈ R | λd−1(N (fx)) > 0} satisfies λ(U) > 0. By induction,
for all x ∈ U , we have fx ≡ 0. Then, for all x ∈ Rd−1, we can conclude that the function
fx : R→ R, a 7→ f(a,x) satisfies N (fx) ⊇ U and therefore λ(N (fx)) ≥ λ(U) > 0. Using
the case d = 1 again, it follows that fx ≡ 0 and therefore f(a,x) = 0 for all a ∈ R and
x ∈ Rd−1.

The following lemma provides some intuition about null sets for readers less familiar
with measure theory. Recall that a property Q holds almost surely with respect to a
measure P on Rd if there exists a null set N , i.e. a measurable set with P (N) = 0, such
that Q(x) holds for all x ∈ Rd \N .

Lemma 5.H.4. Let λd be the Lebesgue measure on Rd and let P be a measure on Rd

with a Lebesgue density function (i.e. a probability density function) p. Then, a null set
with respect to λd is also a null set with respect to P . The converse holds if p(x) ̸= 0 for
(almost) all x.

Proof. A well-known fact from measure and integration theory states that if a measure µ
has a density with respect to a measure ν, then ν-null sets are also µ-null sets. Setting
µ = P and ν = λd yields the first fact. If p(x) ̸= 0 for (almost) all x, then µ := λd has
density 1/p with respect to ν := P , and hence the converse follows.

Proposition 5.5.2 (Characterization of (COV) and (FRK)). Consider the setting of
Theorem 5.4.3 and let FRK(n) be the statement that (FRK) holds for n. Then,

(i) Let n ≥ 1. Then, FRK(n) iff P (z ∈ U) = 0 for all linear subspaces U ⊆ Rp of
dimension min{n, p} − 1.

(ii) Let (MOM) hold. Then, (COV) holds iff P (z ∈ U) < 1 for all linear subspaces
U ⊆ Rp of dimension p− 1.

Assuming that (MOM) holds such that (COV) is well-defined, consider the following
statements:

(a) FRK(p) holds.
(b) FRK(n) holds for all n ≥ 1.
(c) (COV) holds.
(d) There exists a fixed deterministic matrix X̃ ∈ Rp×d such that det(ϕ(X̃)) ̸= 0.

We have (a) ⇔ (b) ⇒ (c) ⇒ (d). Furthermore, if x ∈ Rd has a Lebesgue density and ϕ is
analytic, then (a) – (d) are equivalent.

Proof. Step 1: Prove (i) and (ii).

(i) Denote the n (stochastically independent) rows of Z by z1, . . . ,zn. First, assume
P (z ∈ U) > 0 for some subspace U of dimension min{n, p} − 1. Then,

P
(
rank(Z) ≤ min{n, p} − 1

)
≥ P (z1, . . . ,zn ∈ U) = (P (z ∈ U))n > 0 .

For the converse, it suffices to consider the case n ≤ p since if n > p and if an
arbitrary p × p submatrix of Z ∈ Rn×p almost surely has full rank, then Z also
almost surely has full rank. We prove the statement for n ≤ p by induction on n. For

73



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

n = 1, the claim is trivial. Thus, let n > 1 and let z1, . . . ,zn be the (stochastically
independent) rows of Z. Assume P (z ∈ U) = 0 for all linear subspaces U ⊆ Rp of
dimension n− 1. Then, we also have P (z ∈ U) = 0 for all linear subspaces U ⊆ Rp

of dimension n − 2 and by the induction hypothesis, we obtain that z1, . . . ,zn−1

are almost surely linearly independent. Hence, almost surely, z1, . . . ,zn are linearly
independent iff zn /∈ Un−1 := Span{z1, . . . ,zn−1}. Then, since zn and Un−1 are
stochastically independent,

P (Z ∈ Rn×p has full rank) = P (z1, . . . ,zn are linearly independent)

= P (zn /∈ Un−1) =

∫∫
1Uc

n−1
(zn) dPZ(zn) dP (Un−1)

=

∫
PZ(zn /∈ Un−1) dP (Un−1) =

∫
1 dP (Un−1) = 1 .

For the case p ≤ n, (i) is also proven after Definition 1 in Mourtada (2022).
(ii) If (COV) does not hold, there exists a vector 0 ̸= v ∈ Rp with v⊤Σv = 0, hence

0 = v⊤ (Ezz⊤)v = E(v⊤z)2 ,

and therefore z is almost surely orthogonal to v. If U is the orthogonal complement
of Span{v} in Rp, then P (z ∈ U) = 1.
For the converse, if there exists a (p−1)-dimensional subspace U with P (z ∈ U) = 1,
then we can again take a vector 0 ̸= v ∈ Rp that is orthogonal to U , reverse the
above computation and obtain v⊤Σv = 0, hence (COV) does not hold.

Step 2: (a) ⇔ (b). The implication (b) ⇒ (a) is trivial and the implication (a) ⇒
(b) follows immediately from (i).

Step 3: (b) ⇒ (c). This also follows from (i) and (ii).
Step 4: (c) ⇒ (d). We will prove by induction on n that for all n ∈ {0, . . . , p}, there

exist x1, . . . ,xn ∈ Rd such that ϕ(x1), . . . , ϕ(xn) are linearly independent. For n = 0,
the statement is trivial. Now assume that the statement holds for x1, . . . ,xn−1, where
0 ≤ n−1 ≤ p−1. Since (COV) holds, by (ii) the subspace U := Span{ϕ(x1), . . . , ϕ(xn−1)}
satisfies P (ϕ(x) ∈ U) < 1, hence there is xn such that xn /∈ U and for this choice,
ϕ(x1), . . . , ϕ(xn) are linearly independent.

Finally, the statement for n = p yields the existence of X ∈ Rp×d such that ϕ(X) has
linearly independent rows, which implies det(ϕ(X)) ̸= 0.

Step 5: Analytic feature map. Assume that ϕ is analytic, x has a Lebesgue
density and (d) holds. Let n = p. For X̃ ∈ Rp×d, consider the analytic function
f(X̃) := det(ϕ(X̃)). (The determinant is analytic since it is a polynomial in the matrix
entries.) Since (d) holds, Theorem 5.H.3 shows that f(X̃) ̸= 0 for (Lebesgue-) almost all
X̃. Since x has a Lebesgue density and X has independent x-distributed rows, X has a
Lebesgue density. Therefore, f(X) ̸= 0 almost surely over X, hence (a) holds.

Proposition 5.5.4 (Polynomial kernel). Let m, d ≥ 1 and c > 0. For x, x̃ ∈ Rd, define
the polynomial kernel k(x, x̃) := (x⊤x̃+c)m. Then, there exists a feature map ϕ : Rd → Rp,
p :=

(
m+d
m

)
, such that:

(a) k(x, x̃) = ϕ(x)⊤ϕ(x̃) for all x, x̃ ∈ Rd, and

74



5.H. Proofs for Section 5.5

(b) if x ∈ Rd has a Lebesgue density and we use z = ϕ(x), then (FRK) is satisfied for
all n.

Proof. Let M := {(m1, . . . ,md+1) ∈ Nd+1
0 | m1 + . . . + md+1 = m} and for m =

(m1, . . . ,md+1) ∈M, let

C(m) :=

(
m

m1 . . . md+1

)
be the corresponding multinomial coefficient. Then, |M| =

(
m+d
d

)
= p. Define the feature

map ϕ : Rd → Rp by

ϕ(x) :=
(√

C(m)zm1
1 · · · zmd

d · (
√
c)md+1

)
m∈M

.

(a) We have

ϕ(x)⊤ϕ(x̃) =
∑
m∈M

C(m)(x1x̃1)
m1 · · · (xdx̃d)md · cmd+1

= (x1x̃1 + . . .+ xdx̃d + c)m = k(x, x̃) .

(b) Assume that x has a Lebesgue density. Let U be an arbitrary (p− 1)-dimensional
linear subspace of Rp. Then, there exists 0 ̸= v ∈ Rp such that U = (Span{v})⊥.
Since the monomials xm1

1 · · ·xmd
d for m ∈M are all distinct, the polynomial

v⊤ϕ(x) =
∑
m∈M

(
vm
√
C(m)cmd+1xm1

1 · · ·xmd
d

)
is not the zero polynomial. By the identity theorem (Theorem 5.H.3), since x has a
Lebesgue density and since polynomials are analytic,

P (ϕ(x) ∈ U) = P (v⊤ϕ(x) = 0) = 0 .

Hence, Proposition 5.5.2 shows that (FRK) is satisfied for n = p and hence for all
n.

We want to remark at this point that the proof strategy of Proposition 5.5.4, where
the identity theorem is applied to the functions v⊤ϕ(x) for all 0 ̸= v ∈ Rp, does not work
for random feature maps: The statements

• For all 0 ̸= v ∈ Rp for almost all x for almost all θ, v⊤ϕθ(x) ̸= 0
• For almost all θ for all 0 ̸= v ∈ Rp for almost all x, v⊤ϕθ(x) ̸= 0

are not equivalent since in the first statement, the null set for θ may depend on v,
and the union of the null sets for all v is an uncountable union. Perhaps the simplest
counterexample is n = p = 2, θ ∼ N (0, I2) and ϕθ(x) := θ, which satisfies the first but
not the second statement. For our rescue, we can replace the uncountable analytic function
family (x 7→ v⊤ϕθ(x))v∈Rp\{0} by the single analytic function (θ,X) 7→ det(ϕθ(X)):

Proposition 5.5.5 (Random feature maps). Consider feature maps ϕθ : Rd → Rp with
(random) parameter θ ∈ Rq. Suppose the map (θ,x) 7→ ϕθ(x) is analytic and that θ and
x are independent and have Lebesgue densities. If there exist fixed θ̃ ∈ Rq, X̃ ∈ Rp×d with
det(ϕθ̃(X̃)) ̸= 0, then almost surely over θ, (FRK) holds for all n for z = ϕθ(x).

75



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

Proof. Consider the analytic map (θ,X) 7→ det(ϕθ(X)). Suppose there exist θ̃ ∈ Rq and
X̃ ∈ Rp×d with det(ϕθ̃(X̃)) ̸= 0. Then, Theorem 5.H.3 tells us that det(ϕ̃(θ,X)) ̸= 0
for almost all (θ,X). This implies that for almost all θ, we have for almost all X that
det(ϕθ(X)) ̸= 0. Since by assumption, θ has a density, this implies that almost surely
over θ, there exists X such that det(ϕθ(X)) ̸= 0. Since all ϕθ are analytic, the claim
now follows using (d) ⇒ (b) from Proposition 5.5.2. (The proof of (d) ⇒ (a) ⇔ (b) in
Proposition 5.5.2 does not require (MOM).)

5.H.2 Random Networks with Biases

In order to prove (FRK) for random deep neural networks, we pursue slightly different
approaches for networks with bias (this section) and without bias (Section 5.H.3). In both
approaches, we consider a property related to the diversity of the x1, . . . ,xn ∈ Rd and
proceed as follows:

(1) Projections: Ensure that random projections of the x1, . . . ,xn almost surely
preserve the diversity property, such that it is sufficient to consider the case d = 1.

(2) Propagation: Using the projection result from (1), prove that if the inputs to a
layer have the diversity property, then the outputs also have the diversity property
almost surely over the random parameters of the layer.

(3) Independence: Prove that if the inputs to the last layer have the diversity property
and n = p, then the outputs of the last layer are almost surely linearly independent.

Our main tools will be the identity theorems for analytic functions (Theorem 5.H.2 and
Theorem 5.H.3), expanding σ into its power series around a point and the Leibniz formula
for the determinant of a n× n matrix, which is based on the permutation group Sn on [n].

We consider two diversity properties:

(a) The first property is that x1, . . . ,xn are distinct. This is the weakest possible
diversity property. However, it cannot always be used for networks without (random)
biases: For example, if σ is an even function and xi = −xj for some i ̸= j, the
propagation property is violated. As another example, if σ(0) = 0 and xi = 0 for
some i, the independence property is violated.

(b) The second property, which works for networks with and without bias, is the property
that x1, . . . ,xn are independent nonatomic random variables.

Using the first property yields shorter proofs and a slightly stronger theorem for networks
with bias, Theorem 5.H.9. If we only care about probability distributions PX on x that
almost surely generate distinct x1, . . . ,xn, these probability distributions are exactly the
nonatomic distributions. Hence from the viewpoint of probability distributions PX on x,
which we take in the main part of the paper, the first property (a) does not provide a
benefit over the second property (b) except for the shorter proofs.

The advantage of having biases is in being able to choose the point in which σ is
Taylor-expanded. The following lemma shows that this choice enables us to make certain
coefficients of the Taylor expansion nonzero:

76



5.H. Proofs for Section 5.5

Lemma 5.H.5. Let m ≥ 1. Let σ : R → R be analytic and not a polynomial of degree
less than m. Then, there exists b ∈ R such that the Taylor expansion

σ(x) =
∞∑
k=0

ak(x− b)k

of σ around b satisfies a0, . . . , am ̸= 0.

Proof. Since σ is not a polynomial of degree less than m, neither of the derivatives
σ(0), . . . , σ(m) is the zero function. Since all of these derivatives are analytic, the set

m⋃
k=0

{b ∈ R | σ(k)(b) = 0}

is (by Theorem 5.H.3) a finite union of Lebesgue null sets and hence a Lebesgue null set.
Hence, there exists b ∈ R such that σ(0)(b) ̸= 0, . . . , σ(m)(b) ̸= 0. This implies that the
corresponding coefficients a0, . . . , am in the Taylor expansion around b are nonzero.

We now prove our three-step program (1) – (3) from above for the distinctness property.

Lemma 5.H.6 (Projections of distinct variables). If x1, . . . ,xn ∈ Rd are distinct, there
exists u ∈ Rd such that u⊤x1, . . . ,u

⊤xd are also distinct.

Proof. We essentially follow the corresponding proof in Lemma 4.3 in Nguyen and Hein
(2017). By the identity theorem (Theorem 5.H.3), the functions

fij : Rd → R,u 7→ u⊤xi − u⊤xj

for i, j ∈ [n], i ̸= j are nonzero almost everywhere, hence there exists u ∈ Rp such that
u⊤x1, . . . ,u

⊤xn are all distinct.

Lemma 5.H.7 (Propagation of distinct variables). Let σ : R → R be analytic and
non-constant. If x1, . . . ,xn ∈ Rd are distinct, then for (Lebesgue-) almost all (W , b) ∈
Rp×d × Rp, the vectors σ(Wxi + b) (with σ applied element-wise) are also distinct.

Proof. Step 1: Bias. By assumption, σ is not a polynomial of degree less than m = 1.
By Lemma 5.H.5, there exist (ak)k≥0, b ∈ R and ε > 0 such that a0, a1 ̸= 0 and for all
x ∈ R with |x− b| < ε,

σ(x) =
∞∑
k=0

ak(x− b)k .

Step 2: Weight. By Lemma 5.H.6, we can choose u ∈ Rd such that u⊤x1, . . . ,u
⊤xn

are distinct. Now, consider i, j ∈ [n] with i ̸= j. The function

fij : R→ R, λ 7→ σ(λu⊤xi + b)− σ(λu⊤xj + b)

satisfies

fij(λ) =
∞∑
k=0

ak((u
⊤xi)

k − (u⊤xj)
k)λk

77



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

for sufficiently small |λ|. Here, the coefficient ak((u⊤xi)k − (u⊤xj)k) is nonzero for k = 1,
and hence fij is not the zero function. Using the identity theorem again (as in the proof of
Lemma 5.H.6), we find that there exists λ ∈ R with fij(λ) ̸= 0 for all i, j ∈ [n] with i ̸= j.

Step 3: Generalization. Now, choose

W :=

λu
⊤

...
λu⊤

 ∈ Rp×d, b :=

b...
b

 ∈ Rp .

Then, by construction, the first components (σ(Wxi + b))1 for i ∈ [n] are distinct. Hence,
the analytic function

(W , b) 7→
∏
i,j∈[n]
i ̸=j

((σ(Wxi + b))1 − (σ(Wxj + b))1)

is not the zero function. By the identity theorem (Theorem 5.H.3), for (Lebesgue-) almost
all (W , b), the first components of the vectors σ(Wxi+ b) are distinct, and therefore also
the vectors themselves are distinct.

Lemma 5.H.8 (Independence from distinct variables). Let p, d ≥ 1. Let σ : R→ R be
analytic but not a polynomial of degree less than p−1. If x1, . . . ,xp ∈ Rd are distinct, then
for (Lebesgue-) almost all W ∈ Rp×d and b ∈ Rp, the vectors σ(Wx1+b), . . . , σ(Wxp+b)
are linearly independent.

Proof. Step 1: Preparation. By Lemma 5.H.5, there exist (ak)k≥0, b ∈ R and ε > 0
such that a0, . . . , ap−1 ̸= 0 and for all x ∈ R with |x− b| < ε,

σ(x) =
∞∑
k=0

ak(x− b)k .

By Lemma 5.H.6, there exists u ∈ Rd such that xi := u⊤xi for i ∈ [p] are all distinct.
Using the fact that Vandermonde matrices of distinct xi are invertible and using the
Leibniz formula for the determinant (with the permutation group Sp on [p]), we obtain

Dx :=
∑
π∈Sp

sgn(π)

p∏
i=1

xi−1
π(i) = det

 x01 . . . x0p
... . . . ...

xp−1
1 . . . xp−1

p

 ̸= 0 . (5.11)

Step 2: Determinant expansion. Define the analytic function

f : Rp → R,w 7→ det

σ(w1x1 + b) . . . σ(wpx1 + b)
... . . . ...

σ(w1xp + b) . . . σ(wpxp + b)

 .

For small enough ∥w∥2, we can use the Leibniz formula for the determinant to write

f(w) =
∑
π∈Sp

sgn(π)

p∏
i=1

∞∑
k=0

ak(wixπ(i))
k

78



5.H. Proofs for Section 5.5

=
∑

k1,...,kp≥0

∑
π∈Sp

sgn(π)

p∏
i=1

akiw
ki
i x

ki
π(i)

=
∑

k1,...,kp≥0

(
p∏
i=1

aki

)∑
π∈Sp

sgn(π)

p∏
i=1

xkiπ(i)

wk11 · · ·wkpp .

For ki := i− 1, we find the coefficient of wk11 · · ·wkpp to be(
p∏
i=1

aki

)∑
π∈Sp

sgn(π)

p∏
i=1

xkiπ(i)

 (5.11)
=

(
p∏
i=1

aki

)
·Dx ̸= 0 ,

hence f is not the zero function and there exists w ∈ Rp such that f(w) ̸= 0.
Step 3: Generalization. Consider the analytic function

g(W , b) := det

σ(Wx1 + b)⊤

...
σ(Wxp + b)⊤

 .

When setting W := wu⊤ ∈ Rp×d and b := (b, . . . , b)⊤ ∈ Rp, we obtain from Step 2 that
g(W , b) = f(w) ̸= 0, hence g is not the zero function. But then, by the identity theorem
(Theorem 5.H.3), g is nonzero for (Lebesgue-) almost all (W , b).

Theorem 5.H.9. Let p, d ≥ 1, let σ : R → R be analytic but not a polynomial of
degree less than max{1, p − 1} and let x1, . . . ,xp ∈ Rd be distinct. Let L ≥ 1 and
d0 := d, d1, . . . , dL−1 ≥ 1, dL := p. For l ∈ {0, . . . , l − 1}, let W (l) ∈ Rdl+1×dl and
b(l) ∈ Rdl+1 be random variables such that θ := (W (0), . . . ,W (L−1), b(0), . . . , b(L−1)) has a
Lebesgue density. Consider the random feature map given by

ϕθ(x
(0)) := x(L), where x(l+1) := σ

(
W (l)x(l) + b(l)

)
.

Then, almost surely over θ, ϕθ(x1), . . . , ϕθ(xp) are linearly independent.

Proof. By Lemma 5.H.4, it suffices to consider the case where θ has a standard normal
distribution, since a standard normal distribution has a nonzero probability density
everywhere. Especially, in this case, all weights and biases are independent. Using
Lemma 5.H.7 and that σ is non-constant, it follows by induction on l ∈ {0, . . . , L − 1}
that x

(l)
1 , . . . ,x

(l)
p are distinct almost surely over θ. But if x(L−1)

1 , . . . ,x
(L−1)
p are distinct,

then x
(L)
1 , . . . ,x

(L)
p are linearly independent almost surely over θ by Lemma 5.H.8, which

is what we wanted to show.

5.H.3 Random Networks without Biases

As discussed at the beginning of Section 5.H.2, we will now consider the property of having
independent nonatomic random variables x1, . . . ,xn. We will again consider projection
and propagation lemmas first.

79



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

Lemma 5.H.10 (Projections of nonatomic random variables). A random variable x ∈ Rd

is nonatomic iff for (Lebesgue-) almost all u ∈ Rd, u⊤x is nonatomic.

Proof. Step 1: Decompose into subspace contributions. For k ∈ {0, . . . , d}, let

Sk := {w + V | w ∈ Rd, V linear subspace of Rd, dimV = k}

be the set of k-dimensional affine subspaces of Rd. Let A0 := {A ∈ S0 | PX(A) > 0}, which
corresponds to the set of atoms of PX . We then recursively define “minimally contributing
subspaces” for k ∈ [d]:

Ak := {A ∈ Sk | PX(A) > 0 and for all Ã ∈ Sk−1 with Ã ⊆ A, PX(Ã) = 0} .

We can define corresponding sets of “annihilating” vectors as follows: For A = w+V ∈ Sk,
let A⊥ := V ⊥ = {u ∈ Rd | for all v ∈ V , u⊤v = 0}. This is well-defined since it is
independent of the choice of w. Define

U :=
d⋃

k=0

⋃
A∈Ak

A⊥

N := {u ∈ Rd | u⊤x is not nonatomic} .

We want to show U = N .
Step 2: Show U ⊆ N . Let A = w+ V ∈ Ak for some k ∈ {0, . . . , d} and let u ∈ A⊥.

Then,

0 < PX(A) = P (x ∈ A) ≤ P (u⊤x ∈ {u⊤(w + v) | v ∈ V }) = P (u⊤x = u⊤w) ,

which shows u ∈ N .
Step 3: Show N ⊆ U . Let u ∈ N , i.e. there exists a ∈ R such that P (u⊤x = a) > 0.

Define A := {v ∈ Rd | u⊤v = a}. Then, A is an affine subspace of Rd and we have
PX(A) > 0 by construction of A. Among all affine subspaces Ã of A with PX(Ã > 0),
there exists one with minimal dimension. This subspace then satisfies Ã ∈ Adim Ã and it is
not hard to show that u ∈ A⊥ ⊆ Ã⊥, hence u ∈ U .

Step 4: For all k ∈ {0, . . . , d}, Ak is countable. To derive a contradiction, assume
that Ak is uncountable. Then, there exists ε > 0 such that

Ak,ε := {A ∈ Ak | PX(A) ≥ ε}

is also uncountable. Pick an integer n > 1/ε and pick n distinct sets A1, . . . , An ∈ Ak,ε.
We will show by induction on l ∈ [n] that Ãl := A1 ∪ . . . ∪ Al satisfies

PX(Ãl) = PX(A1) + . . .+ PX(Al) ,

which will then yield the contradiction

1 ≥ PX(Ãl) = PX(A1) + . . .+ PX(An) ≥ nε > 1 .

Obviously, PX(Ã1) = PX(A1). Assuming that the statement holds for l ∈ [n− 1], we first
derive

PX(Ãl+1) = PX(Ãl ∪ Al+1) = PX(Ãl) + PX(Al+1)− PX(Ãl ∩ Al+1)

80



5.H. Proofs for Section 5.5

= PX(A1) + . . .+ PX(Al+1)− PX(Ãl ∩ Al+1) .

For i ̸= j, the intersection Ai ∩ Aj of two distinct k-dimensional affine subspaces is either
empty or an affine subspace of dimension less than k, hence the definition of Ak yields
PX(Ai ∩ Aj) = 0. Therefore,

PX(Ãl ∩ Al+1) = PX((A1 ∩ Al+1) ∪ . . . ∪ (Al ∩ Al+1))

≤ PX(A1 ∩ Al+1) + . . .+ PX(Al ∩ Al+1)

= 0 + . . .+ 0 = 0 ,

which concludes the induction.
Step 5: Conclusion. Let A ∈ Sk, then A⊥ is a (d− k)-dimensional linear subspace

of Rd. If x is not nonatomic, the set A0 is not empty, and hence

N = U ⊇
⋃
A∈A0

A⊥ = Rd ,

which means that N is not a Lebesgue null set. Conversely, if x is nonatomic, the set A0

is empty, and therefore

N = U =
d⋃

k=1

⋃
A∈Ak

A⊥

is (by Step 4) a countable union of proper affine subspaces of Rd, all of which are Lebesgue
null sets. Therefore, N is a Lebesgue null set.

Lemma 5.H.11 (Propagation of nonatomic random variables). Let the random variable
x ∈ Rd be nonatomic.

(a) For all p ≥ 1 and (Lebesgue-) almost all W ∈ Rp×d, Wx is nonatomic.
(b) For all b ∈ Rd, x+ b is nonatomic.
(c) If σ : R→ R is analytic and not constant, then σ(x) ∈ Rd is nonatomic, where σ is

applied element-wise.

Proof.

(a) By Lemma 5.H.10, the set N := {u ∈ Rd | u⊤x is not nonatomic} is a Lebesgue
null set. If w1 is the first row of W , then clearly,

{W ∈ Rp×d |Wx is not nonatomic} ⊆ {W ∈ Rp×d | w1 ∈ N} ,
where the right-hand side is a Lebesgue null set. This proves the claim.

(b) This is trivial.
(c) Let z ∈ Rd. Since the function R→ R, x 7→ σ(x)− zi is analytic and not the zero

function by assumption, its zero set σ−1({zi}) is countable by the identity theorem,
Theorem 5.H.2. Therefore, the set

σ−1({z}) = {x̃ ∈ Rd | σ(x̃) = z} = σ−1({z1})× . . .× σ−1({zd})
is also countable. Thus, since x is nonatomic, we obtain

P (σ(x) = z) = P (x ∈ σ−1({z})) =
∑

x̃∈σ−1({z})
P (x = x̃) =

∑
x̃∈σ−1({z})

0 = 0 .

81



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

For proving independence from nonatomic random variables, we need some prepara-
tion. In the proof of the independence result for the case with biases (Lemma 5.H.8), a
Vandermonde matrix appeared. In the case of networks without bias, we will not be able
to use Lemma 5.H.5 to control the power series coefficients of σ, which requires us to treat
Vandermonde matrices with more general exponents.

Lemma 5.H.12 (Random Vandermonde-type matrices). For n ≥ 1, let x1, . . . , xn be
independent nonatomic R-valued random variables and let k1, . . . , kn be distinct non-
negative integers. Then, the random Vandermonde-type matrix

V := V k1,...,kn(x1, . . . , xn) :=

x
k1
1 . . . xk1n
... . . . ...
xkn1 . . . xknn


is invertible with probability one.

Proof. By swapping rows of V , we can assume without loss of generality that 0 ≤ k1 <
k2 < . . . < kn. We prove the statement by induction on n. For n = 1, V is invertible
whenever x1 ̸= 0, and this happens with probability one. Now assume that the statement
holds for n− 1 ≥ 1. For i ∈ [n], define the submatrices

V̂ i := V k1,...,kn−1(x1, . . . , xi−1, xi+1, . . . , xn) .

Since the statement holds for n− 1, V̂ n is invertible with probability one. Now, fix any
such x1, . . . , xn−1 where V̂ n is invertible. Especially, C := det(V̂ n) is a non-zero constant.
We will show that V is then invertible almost surely over xn. For this, we compute the
determinant of V using the Laplace expansion with respect to the last row of V as

f(xn) := det(V ) =
n∑
i=1

(−1)i+nxkni det(V̂ i) = Cxknn +
n−1∑
i=1

(−1)i+nxkni det(V̂ i) .

By the Leibniz formula, for i ∈ [n−1], det(V̂ i) is a polynomial in xn of degree ≤ kn−1 < k.
Hence, f is a nonzero polynomial in xn of degree kn and has at most kn zeros. Since any
finite set is a null set with respect to a nonatomic distribution, it follows that det(V ) ̸= 0
almost surely over xn. Since the assumptions on x1, . . . , xn−1 are also satisfied almost
surely, the statement follows.

As in the case of networks with biases, we will prove the independence result by first
reducing it to the case d = 1. Since we also want to perform this reduction for random
Fourier features in Proposition 5.I.1, we state the reduction to the d = 1 case as a separate
result, Lemma 5.H.14, and define the d = 1 case in the following definition.

Definition 5.H.13 (Non-degenerate function). Let p, q ≥ 1. We call a function f : Rq →
Rp non-degenerate if it is analytic and for arbitrary independent R-valued nonatomic
random variables x1, . . . , xp, there almost surely exists w = wx1,...,xp ∈ Rq with

det

f(wx1)
⊤

...
f(wxp)

⊤

 ̸= 0 . ◀

82



5.H. Proofs for Section 5.5

Lemma 5.H.14. Let f : Rq → Rp be non-degenerate, let W ∈ Rq×d be a random
variable with a Lebesgue density and let x1, . . . ,xp ∈ Rd be independent nonatomic random
variables. Then,

det

f(Wx1)
⊤

...
f(Wxp)

⊤

 ̸= 0

almost surely over W and x1, . . . ,xp.

Proof. By Lemma 5.H.10, there exists u ∈ Rd such that for all i ∈ [p], xi := u⊤xi ∈ R
is nonatomic. Obviously, x1, . . . , xp are independent. Fix x1, . . . , xp such that w =
wx1,...,xp ∈ Rq as in Definition 5.H.13 exists, which is true with probability one since f is
non-degenerate. Then, for W̃ := wu⊤, we have

g(W̃ ) := det

f(W̃x1)
⊤

...
f(W̃xp)

⊤

 = det

f(wx1)
⊤

...
f(wxp)

⊤

 ̸= 0 .

Since g is a non-zero analytic function, Theorem 5.H.3 shows that g is only zero on a
Lebesgue null set, and this null set is also a null set with respect to the distribution of W
since W has a Lebesgue density. Hence, g(W ) ̸= 0 almost surely over W .

The following lemma proves the d = 1 version of the independence result, which can
then be upgraded to the general case using Lemma 5.H.14.

Lemma 5.H.15 (Independence from nonatomic random variables). Let p ≥ 1. Let
σ : R→ R be analytic and not a polynomial with less than p nonzero coefficients. Then, the
elementwise application function f : Rp → Rp,x 7→ (σ(x1), . . . , σ(xp))

⊤ is non-degenerate
in the sense of Definition 5.H.13.

Proof. Let x1, . . . , xp be independent scalar nonatomic random variables.
Step 1: Power series coefficients. Since σ is analytic, there exists ε > 0 and

coefficients (ak)k≥0 such that

σ(z) =
∞∑
k=0

akz
k

for z ∈ R with |z| < ε. Let K := {k ≥ 0 | ak ̸= 0}. Then, |K| ≥ p: Assume that
|K| ≤ p− 1, then the polynomial

h : R→ R, z 7→
∑
k∈K

akz
k

equals σ on (−ε, ε). Hence, the function g := σ − h is zero on (−ε, ε). By Theorem 5.H.2,
g is the zero function and hence σ = h is a polynomial with less than p nonzero coefficients,
which we assumed not to be the case.

83



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

Step 2: Condition on the xi. By Step 1, we can choose indices k1 < k2 < . . . < kp
with k1, . . . , kp ∈ K. Then, by Lemma 5.H.12 and the Leibniz formula for the determinant,
we have

Dx :=
∑
π∈Sp

sgn(π)xk1π(1) · . . . · x
kp
π(p) = det

x
k1
1 . . . xk1p
... . . . ...
x
kp
1 . . . x

kp
p

 ̸= 0 (5.12)

with probability one.
Step 3: Determinant power series. Now, fix a realization of x1, . . . , xp such that

(5.12) holds. For w ∈ Rp with sufficiently small ∥w∥∞, we can write

g(w) := det

f(wx1)
⊤

...
f(wxp)

⊤


= det

σ(w1x1) . . . σ(wpx1)
... . . . ...

σ(w1xp) . . . σ(wpxp)


=
∑
π∈Sp

sgn(π)

p∏
i=1

∞∑
k=0

ak(wixπ(i))
k

=
∑

k1,...,kp≥0

∑
π∈Sp

sgn(π)

p∏
i=1

akiw
ki
i x

ki
π(i)

=
∑

k1,...,kp≥0

(
p∏
i=1

aki

)∑
π∈Sp

sgn(π)

p∏
i=1

xkiπ(i)

wk11 · . . . · wkpp . (5.13)

Now, consider the special values k1, . . . , kp chosen in Step 2. Since ki ∈ K, we have aki ̸= 0.
The coefficient of the multivariate monomial wk11 · . . . · wkpp in Eq. (5.13) is(

p∏
i=1

aki

)∑
π∈Sp

sgn(π)

p∏
i=1

xkiπ(i)

 (5.12)
= ak1 · . . . · akp ·Dx ̸= 0 .

If g was the zero function, all derivatives of g would be zero and therefore the coefficients
of all monomials would be zero, which is not the case. Hence, there exists w ∈ Rp with
g(w) ̸= 0. This shows that f is non-degenerate.

5.H.4 Random Networks: Conclusion

In the following, we will prove Theorem 5.5.6 and discuss some possible extensions and
limitations.

Theorem 5.5.6 (Random neural networks). Let d, p, L ≥ 1, let σ : R → R be analytic
and let the layer sizes be d0 = d, d1, . . . , dL−1 ≥ 1 and dL = p. Let W (l) ∈ Rdl+1×dl for
l ∈ {0, . . . , L− 1} be random variables and consider the two cases where

84



5.H. Proofs for Section 5.5

(a) σ is not a polynomial with less than p nonzero coefficients, θ := (W (0), . . . ,W (L−1))
and the random feature map ϕθ : Rd → Rp is recursively defined by

ϕ(x(0)) := x(L), x(l+1) := σ(W (l)x(l)) .

(b) σ is not a polynomial of degree < p − 1, θ := (W (0), . . . ,W (L−1), b(0), . . . , b(L−1))
with random variables b(l) ∈ Rdl+1 for l ∈ {0, . . . , L − 1}, and the random feature
map ϕθ : Rd → Rp is recursively defined by

ϕ(x(0)) := x(L), x(l+1) := σ(W (l)x(l) + b(l)) .

In both cases, if θ has a Lebesgue density and x is nonatomic, then (FRK) holds for
all n and almost surely over θ.

Proof. By Lemma 5.H.4, it suffices to consider the case where θ has a standard normal
distribution, since a standard normal distribution has a nonzero probability density
everywhere. Especially, we can assume that all parameters in θ are independent. By
Proposition 5.5.2, we only need to prove (FRK) for n = p. Let x(0)

1 , . . . ,x
(0)
p ∼ PX be i.i.d.

nonatomic random variables.

(a) If p = 1, σ is allowed to be a non-zero constant function. In this case, the feature
map ϕθ is constant and non-zero with p = 1, which means that (FRK) holds. In
the following, we thus assume that σ is non-constant. Let x(0) ∼ PX . Since x(0)

is nonatomic and σ is non-constant, an inductive application of Lemma 5.H.11
yields that almost surely over θ, x(L−1) is also nonatomic. Hence, x(L−1)

1 , . . . ,x
(L−1)
p

are independent and nonatomic almost surely over θ. But by Lemma 5.H.15, the
elementwise application of σ is non-degenerate, and hence by Lemma 5.H.14, we
almost surely have

det

σ(W
(L−1)x

(L−1)
1 )⊤

...
σ(W (L−1)x

(L−1)
p )⊤

 ̸= 0 ,

which implies that (FRK) holds for n = p almost surely over θ.
(b) If p = 1 and σ is a polynomial of degree p− 1 = 0, this means that σ is a non-zero

constant function. Like in case (a), this implies that ϕθ is constant and non-zero
with p = 1, which means that (FRK) holds. In the following, we thus assume again
that σ is non-constant, i.e. not a polynomial of degree less than max{1, p− 1}. Since
the distribution of the x

(0)
i := xi is non-atomic, they are distinct almost surely. By

Theorem 5.H.9, x(L)
1 , . . . ,x

(L)
p are linearly independent almost surely over θ, which

proves (FRK) for n = p almost surely over θ.

Remark 5.H.16 (Generalizations). The proof technique used in Theorem 5.5.6 is quite
robust and can be further generalized. For example, it is easy to incorporate different
activation functions for different neurons, and in all layers but the last layer, the activation
functions only need to be analytic and non-constant, as required by the corresponding
propagation lemmas. It is also possible to treat fixed but nonzero biases using a combi-
nation of Lemma 5.H.11 (b) and using shifted activation functions σ̃i(x) = σ(x+ bi) in

85



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

Lemma 5.H.15. Also, the propagation lemmas, which are used for all layers except the
last one, can be easily extended to DenseNet-like structures where the input of a layer is
concatenated to the output. ◀

Remark 5.H.17 (Necessity of the assumptions). For analytic σ, the assumptions on not
being a too simple polynomial in Theorem 5.5.6 are necessary. For this, consider the case
with L = 1 layer and d = 1.

(a) Assume that σ is a polynomial with less than p nonzero coefficients, i.e. σ(x) =∑
k∈K akx

k for |K| ≤ p − 1. For arbitrary weights w ∈ Rp×1 and data points
x1, . . . , xp ∈ R, we obtain the feature matrix ϕw(X) ∈ Rp×p with

ϕw(X)ij = σ(wjxi) =
∑
k∈K

akw
k
j x

k
i ,

which means that ϕw(X) is the sum of the |K| ≤ p − 1 matrices (akw
k
j x

k
i )i,j∈[p],

which have at most rank 1. Hence, ϕw(X) has at most rank p− 1 and is therefore
not invertible.

(b) Assume that σ is a polynomial of degree less than p − 1, i.e. σ =
∑p−2

k=0 akx
k. For

arbitrary weights w ∈ Rp×1, biases b ∈ Rp and data points x1, . . . , xp ∈ R, we obtain
the feature matrix ϕw,b(X) ∈ Rp×p with

ϕw,b(X)ij = σ(wjxi + bj) =

p−2∑
k=0

ak(wjxi + bj)
k

=

p−2∑
k=0

k∑
l=0

ak

(
k

l

)
bk−lj wljx

l
i

=

p−2∑
l=0

(
p−2∑
k=l

ak

(
k

l

)
bk−lj wlj

)
xli

=

p−2∑
l=0

u
(l)
j x

l
i ,

where u(l)j :=
∑p−2

k=l ak
(
k
l

)
bk−lj wlj does not depend on i. Hence, ϕw,b(X) is the sum of

the p− 1 matrices (u
(l)
j x

l
i)i,j∈[p], each of which has rank at most 1. Hence, ϕw,b(X)

has at most rank p− 1 and is therefore not invertible. ◀

5.I Random Fourier Features
In a celebrated paper, Rahimi and Recht (2008) propose to approximate a shift-invariant
positive definite kernel k(x,x′) = k(x− x′) with a potentially infinite-dimensional feature
map by a random finite-dimensional feature map, yielding so-called random Fourier
features. If k is (up to scaling) the Fourier transform of a probability distribution Pk on
Rd, two versions of random Fourier features are proposed:

(1) One version uses ϕW ,b(x) =
√
2 cos(Wx + b), where the rows of W ∈ Rp×d are

independently sampled from Pk and the entries of b ∈ Rp are independently sampled

86



5.I. Random Fourier Features

from the uniform distribution on [0, 2π]. This feature map is covered by Theorem 5.5.6
and hence, if Pk has a Lebesgue density and x is nonatomic, (FRK) is satisfied for all
n. For example, if k is a Gaussian kernel, Pk is a Gaussian distribution and therefore
has a Lebesgue density.

(2) The other version uses

ϕW (x) =

(
sin(Wx)
cos(Wx)

)
with the same distribution over W . It is not covered by Theorem 5.5.6 because of
the different “activation functions” and the “weight sharing” between these activation
functions. In the following proposition, we show that the proof of Theorem 5.5.6 can
be adjusted to this setting and the conclusions still hold.

Proposition 5.I.1. For x ∈ Rd, W ∈ Rq×d and p := 2q, define

ϕW (x) :=

(
sin(Wx)
cos(Wx)

)
∈ Rp .

If W has a Lebesgue density and x is nonatomic, then (FRK) holds for all n almost surely
over W .

Proof. Step 1: Reduction. According to Proposition 5.5.2, it suffices to consider the
case n = p. By Lemma 5.H.14, it is then sufficient to prove that the function

f : Rq → R2q,x 7→ (sin(x), cos(x))

is non-degenerate in the sense of Definition 5.H.13.
Step 2: Condition on the xi. We will proceed similar to Lemma 5.H.15. Let

x1, . . . , xp be independent scalar nonatomic random variables. For i ∈ [q], choose ki := 2i−1
and kq+i := 2i−2. Then, k1, . . . , kp are distinct non-negative integers, and by Lemma 5.H.12
and the Leibniz formula for the determinant, we have

Dx :=
∑
π∈Sp

sgn(π)xk1π(1) · . . . · x
kp
π(p) = det

x
k1
1 . . . xk1p
... . . . ...
x
kp
1 . . . x

kp
p

 ̸= 0

with probability one.
Step 3: Non-degeneracy. Now, suppose that we are indeed in the case where Dx ̸= 0.

Take the power series of sin and cos as

sin(x) =
∞∑
k=0

(−1)k x2k+1

(2k + 1)!
=:

∞∑
k=0

akx
k

cos(x) =
∞∑
k=0

(−1)k x
2k

(2k)!
=:

∞∑
k=0

bkx
k .

Similar to the proof of Lemma 5.H.15, we can compute

g(w) := det

f(wx1)
⊤

...
f(wxp)

⊤


87



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

=
∑

k1,...,k2q≥0

∑
π∈S2q

sgn(π)ak1 · · · akqbkq+1 · · · bk2qw
k1+kq+1

1 · · ·wkq+k2qq xk1π(1) · · ·x
k2q
π(2q)

=
∑

k1,...,k2q≥0

ak1 · · · akqbkq+1 · · · bk2q

∑
π∈S2q

sgn(π)xk1π(1) · · ·x
k2q
π(2q)


· wk1+kq+1

1 · · ·wkq+k2qq (5.14)

Define the set K := {(k1, . . . , k2q) ∈ N2q
0 | for all i ∈ [q], ki + kq+i = 4i − 3}. Then, the

coefficient c of the monomial w1
1w

5
2w

9
3 · . . . · w4q−3

q in (5.14) can be written as

c :=
∑

(k1,...,k2q)∈K
ck1,...,k2q ,

ck1,...,k2q := ak1 · · · akqbkq+1 · · · bk2q

∑
π∈S2q

sgn(π)xk1π(1) · · ·x
k2q
π(2q)

 .

Now, consider (k1, . . . , k2q) ∈ K. Note that ak ̸= 0 iff k is odd and bk ̸= 0 iff k is even. For
the choice ki := 2i− 1, kq+i := 2i− 2 for i ∈ [q] from Step 2, we have (k1, . . . , k2q) ∈ K and

ck1,...,k2q = ak1 · · · akqbkq+1 · · · bk2qDx ̸= 0 .

In the following, we will show that ck1,...,k2q = 0 for all other (k1, . . . , k2q) ∈ K, which
implies c ≠ 0 and therefore yields that g is not the zero function, which is what we want
to show. If ki = kj for some i ̸= j, we have

∑
π∈S2q

sgn(π)xk1π(1) · · ·x
k2q
π(2q) = det

x
k1
1 . . . xk1p
... . . . ...
x
kp
1 . . . x

kp
p

 = 0 ,

since the i-th and j-th rows of the matrix are equal, and hence ck1,...,k2q = 0. Now,
suppose that (k1, . . . , k2q) ∈ K with ck1,...,k2q ≠ 0. By induction, it is easy to show that
{ki, kq+i} = {2i− 1, 2i− 2} for all i ∈ [q]. But since

ak1 · · · akqbkq+1 · · · bk2q ̸= 0

and ak = 0 for even k, we need to have ki = 2i− 1, kq+i = 2i− 2 for all i ∈ [q]. This shows
the claim.

5.J Proofs for Section 5.6
In this section, we first prove the analytic formulas from Section 5.6 before discussing the
case of low input dimension d.
Theorem 5.6.1. Let PZ = U(Sp−1). Then, PZ satisfies the assumptions (MOM), (COV),
and (FRK) for all n with Σ = 1

p
Ip. Moreover, for n ≥ p = 1 or p ≥ n ≥ 1, we can

compute

EZ tr((Z+)⊤ΣZ+) =


1
n

if n ≥ p = 1,
1
p

if p ≥ n = 1,
∞ if 2 ≤ n ≤ p ≤ n+ 1,

n
p−1−n ·

p−2
p

if 2 ≤ n ≤ n+ 2 ≤ p.

88



5.J. Proofs for Section 5.6

Proof. Step 1: Verify (MOM). Let xi ∼ N (0, Ip) for i ∈ [n] be independent. Then,
zi := xi

∥xi∥2 ∼ U(S
p−1). Since E∥zi∥22 = E1 = 1, (MOM) is satisfied and thus, Σ is

well-defined.
Step 2: Compute Σ. We can use rotational invariance as follows: Let V ∈ Rp×p be

an arbitrary fixed orthogonal matrix. Then, V xi ∼ N (0,V V ⊤) = N (0, Ip) and hence
V zi =

V xi

∥xi∥2 = V xi

∥V xi∥2 ∼ U(S
p−1). Therefore,

Σ = Eziz⊤
i = EV ziz

⊤
i V

⊤ = V ΣV ⊤ . (5.15)

If 0 ̸= v ∈ Rp is an eigenvector of Σ with eigenvalue λ, then V v must by Eq. (5.15) also
be an eigenvector of Σ with eigenvalue λ. But since V is an arbitrary orthogonal matrix,
this means that V v is an arbitrary rotation of v. From this it is easy to conclude that
Σ = λIp, and from

pλ = tr(Σ) = E tr(ziz
⊤
i ) = Ez⊤

i zi = E1 = 1 ,

it follows that Σ = 1
p
Ip. Hence, (COV) is satisfied and wi =

√
pzi.

Step 3: Verify (FRK) for all n. By Proposition 5.5.2, it is sufficient to verify (FRK)
for n = p. Therefore, let n = p. It is obvious from Proposition 5.5.2 with ϕ = id that
N (0, Ip) satisfies (FRK). Hence, X almost surely has full rank. But then, since ∥xi∥2 > 0
almost surely,

Z = diag

(
1

∥x1∥
, . . . ,

1

∥xn∥

)
X

almost surely has full rank as well, which proves (FRK).
Step 4.1: Computation for n ≥ p = 1. In the underparameterized case n ≥ p = 1,

we can compute

EZ tr((Z+)⊤ΣZ+) = EZ tr((W⊤W )−1) = EZ
1∑n

i=1w
2
i

= EZ
1

n
=

1

n
.

Step 4.2: Computation for p ≥ n = 1. In the overparameterized case p ≥ n = 1,
we can compute

EZ tr((Z+)⊤ΣZ+) = EZ tr((WW⊤)−1) = EZ
1

w⊤
1 w1

= EZ
1

p
=

1

p
,

where we used that since Σ = 1
p
Ip, w⊤

1 w1 = ∥w1∥22 = ∥
√
pz1∥22 = p.

Step 4.3: Computation for p ≥ n ≥ 2. Now, let p ≥ n ≥ 2. Since Σ = 1
p
Ip, we

have

EZ tr((Z+)⊤ΣZ+) = EZ tr((WW⊤)−1)

by Theorem 5.4.3. Using that the wi are i.i.d., we obtain from Lemma 5.G.2 that
E((WW⊤)−1) = nE dist(w1,W−1)

−2, where W−1 is the space spanned by w2, . . . ,wn.
Define the subspace Un := {z ∈ Rp | zn = zn+1 = . . . = zp = 0}. By (FRK), we almost
surely have dim(W−1) = n− 1. Thus, there is an orthogonal matrix U−1 depending only
on W−1 that rotates W−1 to Un:

Un = U−1W−1 .

89



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

Because w1 is stochastically independent from W−1 and U−1 and its distribution is
rotationally symmetric, we have the distributional equivalence (using the zi and xi from
Step 1)

dist(w1,W−1)
2 = dist(U−1w1,U−1W−1)

2 distrib.
= dist(w1,Un)2 = p(z21,n + . . .+ z21,p)

= p
x21,n + . . .+ x21,p

∥x1∥22
= p

A

A+B
,

where A := x21,n + x21,n+1 + . . .+ x21,p has a χ2
p+1−n distribution and B := x21,1 + . . .+ x21,n−1

has a χ2
n−1 distribution. Hence,

E((WW⊤)−1) = nE dist(w1,W−1)
−2 =

n

p

(
1 + E

B

A

)
.

Since p ≥ n ≥ 2, n − 1 and p + 1 − n are positive. Since A and B are independent,
B/(n−1)
A/(p+1−n) follows a Variance-Ratio F -distribution with parameters n− 1 and p+ 1− n,
whose mean is known (see e.g. Chapter 20 in Forbes et al., 2011):

E
B

A
=

n− 1

p+ 1− nE
B/(n− 1)

A/(p+ 1− n) =

{
∞ , if p+ 1− n ≤ 2,
n−1
p+1−n

p+1−n
(p+1−n)−2

= n−1
p−1−n , if p+ 1− n > 2.

(5.16)

The infinite expectation for p+ 1− n ≤ 2 is not explicitly specified in Forbes et al. (2011),
but it is easy to obtain from the p.d.f. of the F -distribution: The p.d.f. f(x) of the
F (a, b)-distribution for x ≥ 0 is

f(x) = Ca,b
x(a−2)/2

(1 + (a/b)x)(a+b)/2
= Θ(x−b/2−1) (x→∞)

for some constant Ca,b (cf. Chapter 20 in Forbes et al., 2011), and the expected value is
therefore ∫ ∞

0

xf(x) dx =

∫ ∞

0

Θ(x−b/2) dx ,

which is infinite for p + 1 − n = b ≤ 2. For n ∈ {p, p − 1}, we therefore obtain
E((WW⊤)−1) =∞. For n ≤ p− 2, we compute

E((WW⊤)−1) =
n

p

(
1 +

n− 1

p− 1− n

)
=
n

p
· p− 2

p− 1− n .

In the following, we will prove Theorem 5.6.2 using the same proof idea as for Theo-
rem 5.6.1. The formulas in Theorem 5.6.2 have in principle already been computed by
Breiman and Freedman (1983) for p ≤ n − 2 and by Belkin et al. (2020) for general p.
However, our proof circumvents a technical problem in the proof of Belkin et al. (2020):
Consider for example the case p ≤ n. Belkin et al. (2020) mention that (W⊤W )−1 has
an inverse Wishart distribution, which for p ≤ n− 2 has expectation 1

n−1−pIp, and then
use E tr((W⊤W )−1) = tr(E(W⊤W )−1). However, for p ≥ n− 1, the latter expectation
is not specified in common literature9 on the inverse Wishart distribution (Mardia et al.,
1979; Press, 2005; von Rosen, 1988), presumably because it is ∞ for diagonal elements
but is not well-defined for off-diagonal matrix elements.

9Belkin et al. (2020) do not cite any source on the inverse Wishart distribution.

90



5.J. Proofs for Section 5.6

Theorem 5.6.2. Let PZ = N (0, Ip). Then, PZ satisfies the assumptions (MOM), (COV),
and (FRK) for all n with Σ = Ip. Moreover, for n, p ≥ 1,

EZ tr((Z+)⊤ΣZ+) =


n

p−1−n if p ≥ n+ 2,
∞ if p ∈ {n− 1, n, n+ 1},

p
n−1−p if p ≤ n− 2.

Proof. Step 1: Assumptions. Verifying (MOM), (COV) and Σ = Ip is trivial and
(FRK) for all n follows from Proposition 5.5.2 with x = z and ϕ = id.

Step 2: Overparameterized case. For the expectation, we first follow Step 4.3 in
the proof of Theorem 5.6.1 in the overparameterized case p ≥ n ≥ 1, the main difference
being that instead of wi =

√
p xi

∥xi∥2 , we now have wi = xi, which translates to the simpler
equation

dist(w1,W−1)
2 distrib.

= A

with A ∼ χ2
p+1−n. Let B ∼ χ2

1 be independent of A, then we can compute similar to
Eq. (5.16)

E tr((WW⊤)−1) = nE dist(w1,W−1)
−2 = nE

1

A
= n (EB)

(
E
1

A

)
= nE

B

A

=
n

p+ 1− nE
B/1

A/(p+ 1− n)

=

{
∞ if p+ 1− n ≤ 2,

n
p+1−n

p+1−n
(p+1−n)−2

= n
p−1−n if p+ 1− n > 2.

This proves the over-parameterized case.
Step 3: Underparameterized case. Since the rows wi of W ∈ Rn×p are independent

and follow a N (0, Ip) distribution, the rows of W⊤ ∈ Rp×n are independent and follow
a N (0, In) distribution. Therefore, the underparameterized case p ≤ n follows from the
overparameterized case n ≤ p by switching the roles of n and p.

Remark 5.J.1. An alternative (and presumably similar) way to prove Theorem 5.6.2 is
to use that the diagonal elements of a matrix with an inverse Wishart distribution follow
an inverse Gamma distribution as specified in Example 5.2.2 in Press (2005). ◀

The next proposition shows that a small input dimension d does not necessarily provide
a limitation:

Proposition 5.J.2. Let p, d ≥ 1. Then, there exists a probability distribution PX on Rd

(with bounded support) and a continuous feature map ϕ : Rd → Rp such that for x ∼ PX ,
ϕ(x) ∼ U(Sp−1).

Proof. For p = 1, the result is trivial, we will therefore assume p ≥ 2. We will prove
the result for any d by a reduction to the case d = 1, although substantially simpler
constructions are possible for d ≥ p− 1. First, introduce the spaces

Sp−1
+ := {z ∈ Sp−1 | zp ≥ 0} ⊆ Rp

91



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

Bp−1 := {z ∈ Rp−1 | ∥z∥2 ≤ 1}
X := [0, 3]× {0}d−1 ⊆ Rd .

Step 1: Space-filling curve on the sphere. In this step, we show that there
exists a continuous surjective map ϕ : X → Sp−1. First of all, let f1 : [0, 1]→ [0, 1]p−1 be
continuous and surjective, e.g. a Hilbert or Peano curve (see e.g. Sagan, 2012). We define
the following maps:

f2 : [0, 1]
p−1 → Bp−1,u 7→

{
0 if u = 0
∥u∥∞
∥u∥2 u if u ̸= 0 ,

f3 : Bp−1 → Sp−1
+ ,v 7→

(
v,
√
1− ∥v∥22

)
.

It is not hard to verify that f2 and f3 are continuous and surjective as well. For example,
f2 is continuous in 0 since ∥u∥∞ ≤ ∥u∥2 for all u ∈ Rp−1. Thus, the map f := f3 ◦ f2 ◦ f1 :
[0, 1]→ Sp−1

+ is continuous and surjective. Define the map

τ : Rp → Rp, z 7→ (z1, . . . , zp−1,−zp) .

Since we assumed p ≥ 2 at the beginning of the proof, the sphere Sp−1 is path-connected,
hence there exists a path h : [0, 1] → Sp−1 with h(0) = f(1), h(1) = τ(f(1)). By the
previous considerations, it is not hard to verify that the map

g : [0, 3]→ Sp−1, x 7→


f(x) if x ∈ [0, 1]

h(x− 1) if x ∈ [1, 2]

τ(f(3− x)) if x ∈ [2, 3]

is continuous and surjective. We can therefore define the continuous and surjective map
ϕ : X → Sp−1,x 7→ g(x1).

Step 2: Existence of a pull-back measure. We consider the Borel σ-algebras
B(X ),B(Sp−1) on X and Sp−1. The uniform distribution PZ = U(Sp−1) on the sphere is
defined with respect to B(Sp−1) and is therefore a Borel measure. Since ϕ is continuous, it
is Borel measurable. Moreover, since X and Sp−1 are complete separable metric spaces,
they are also Souslin spaces, cf. Section 6.6 in Bogachev (2007). Since ϕ is surjective,
Theorem 9.1.5 in Bogachev (2007) guarantees the existence of a measure PX such that if
x ∼ PX , then ϕ(x) ∼ U(Sp−1). Since PX(X ) = PZ(Sp−1) = 1, PX is a probability measure.

Step 3: Continuation. We can arbitrarily extend the mapping ϕ : X → Sp−1 to
a continuous mapping ϕ : Rd → Rp. Moreover, the domain X of PX can be extended
to Rd via PX(A) := PX(A ∩ X ), the support of PX is still bounded, and we still have
ϕ(x) ∼ U(Sp−1) if x ∼ PX .

Remark 5.J.3. The proof of Proposition 5.J.2 could be slightly shorter if we required
ϕ(x) ∼ U(Sp−1

+ ) instead of ϕ(x) ∼ U(Sp−1). This would be of similar interest since the
uniform distribution U(Sp−1

+ ) on the “half-sphere” leads to the same EZ tr((Z+)⊤Σ(Z+)) as
the uniform distribution U(Sp−1) on the full sphere: If zi ∼ U(Sp−1

+ ) and εi ∼ U({−1, 1})
are stochastically independent, then z̃i := εizi ∼ U(Sp−1). Therefore, Σ = Σ̃, Z̃ =
diag(ε1, . . . , εn)Z, and if UDV ⊤ is a SVD of Z, then (diag(ε1, . . . , εn)U)DV ⊤ is a

92



5.K. Relation to Ridgeless Kernel Regression

SVD of Z̃. Therefore, Z and Z̃ have the same singular values, hence W and W̃

have the same singular values, hence tr((WW⊤)−1) = tr((W̃W̃
⊤
)−1) for p ≥ n and

tr((W⊤W )−1) = tr((W̃
⊤
W̃ )−1) for p ≤ n. ◀

Remark 5.J.4. One might ask whether it is possible in Proposition 5.J.2 to choose PX
as a “nice” distribution, like a uniform distribution on a cube or a Gaussian distribution.
The answer to this question is affirmative if there exists an area-preserving space-filling
curve ϕ : [0, volume(Sp−1)]→ Sp−1. For p = 3, such a construction is informally described
by Purser et al. (2009) and it seems plausible that such a construction is possible for all
p. ◀

5.K Relation to Ridgeless Kernel Regression
In this section, we want to discuss the relation between this paper and recent work
on ridgeless kernel regression. To this end, we need to introduce some terminology on
representations of kernels with finite-dimensional feature maps.

Definition 5.K.1. Let k : Rd × Rd → R be a kernel, let p be an integer with 1 ≤ p <∞
and let ϕ : Rd → Rp be a (measurable) function. Then, (p, ϕ) is called a PX-representation
of k if

• k(x, x̃) = ϕ(x)⊤ϕ(x̃) almost surely for independent x, x̃ ∼ PX , and
• k(x,x) = ϕ(x)⊤ϕ(x) almost surely for x ∼ PX .

If k has a PX-representation, then we define

pk := min
(p,ϕ) is a PX -representation of k

p ,

i.e. pk is the smallest p for which a PX-representation exists. ◀

Usually, pk corresponds to the dimension of the RKHS associated with the restriction
of k to the support of PX , but since the feature map ϕ only needs to represent the kernel
PX-almost surely, pk may be smaller for pathological kernels. The following lemma states
that Theorem 5.4.3, if applicable, should be applied to ridgeless kernel regression with
p = pk:

Lemma 5.K.2. Let k be a kernel on Rd with PX(k(x,x) ̸= 0) > 0. Let (p, ϕ) be a
PX-representation of k.

(a) Then, (COV) in Theorem 5.4.3 is satisfied iff p = pk.
(b) The assumptions of Theorem 5.4.3 are satisfied for a PX-representation (pk, ϕ) of k

if and only if they are satisfied for all such representations.
(c) If the assumptions of Theorem 5.4.3 are satisfied for any PX-representation of k,

then the lower bound from Theorem 5.4.3 also holds for ridgeless kernel regression
with p = pk.

Proof. In the notation of Section 5.3, the definition of PX-representation implies that
k(X,X) = ϕ(X)ϕ(X)⊤ and k(x,X) = ϕ(x)⊤ϕ(X)⊤ almost surely.

93



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

(a) If (COV) is not satisfied and p ≥ 2, it is possible to construct a PX-representation
with smaller p using the construction from Remark 5.5.3, hence p > pk. If p = 1,
(COV) is satisfied due to the assumption on k.
Conversely, assume p > pk and let (pk, ϕ̃) be another PX-representation of k. Set
n = p. Then, we almost surely have

rankϕ(X) = rank(ϕ(X)ϕ(X)⊤) = rank(k(X,X)) = rank(ϕ̃(X)ϕ̃(X)⊤) ≤ pk

< p ,

hence ϕ(X) has full rank with probability zero. Since the rows ϕ(xi) of ϕ(X) are
i.i.d., this means that there must be a proper linear subspace U of Rp such that
ϕ(xi) ∈ U with probability one. But then, according to Proposition 5.5.2, (COV) is
not satisfied.

(b) Let (pk, ϕ) and (pk, ϕ̃) be two PX-representations of k such that z = ϕ(x) satisfies
the assumptions of Theorem 5.4.3. We need to show that z̃ = ϕ̃(x) also satisfies
the assumptions of Theorem 5.4.3: First of all, (INT) and (NOI) hold since they
are independent of the feature map. Moreover, (COV) holds by (a). We find that
(MOM) holds due to

E∥z̃∥22 = Eϕ̃(x)⊤ϕ̃(x) = Ek(x,x) = Eϕ(x)⊤ϕ(x) = E∥z∥22 <∞

and (FRK) holds since, almost surely,

rank ϕ̃(X) = rank(ϕ̃(X)ϕ̃(X)⊤) = rank(k(X,X)) = rank(ϕ(X)ϕ(X)⊤)

= rankϕ(X) = min{n, p} .

(c) Assume that there exists a PX-representation (p, ϕ) of k that satisfies the assumptions
of Theorem 5.4.3. By (a), we have p = pk. By Eq. (5.2) in Section 5.3, the ridgeless
kernel regression estimator and the linear regression estimator with the feature map
ϕ are almost surely equivalent, hence they have the same ENoise.

For kernels that cannot be represented with a finite-dimensional feature space, The-
orem 5.4.3 cannot be applied. In fact, any distribution-independent lower bound for
ridgeless kernel regression must be zero in this case: For example, the Kronecker delta
kernel given by

k(x, x̃) =

{
1 if x = x̃

0 otherwise

yields ENoise = 0 for any nonatomic input distribution PX . Of course, this kernel is not
well-suited for learning since the learned functions are zero almost everywhere. However,
there exist results for ridgeless kernel regression with specific classes of kernels. For
example, Rakhlin and Zhai (2019) show that in certain settings, ridgeless kernel regression
with Laplace kernels is inconsistent because ENoise = Ω(1) as n→∞. Note that Laplace
kernels in general do not allow for finite-dimensional feature map representations.

Liang and Rakhlin (2020) derive upper bounds for a certain class of kernels and input
distributions with (linearly transformed) i.i.d. components. Their analysis focuses on the
high-dimensional limit d, n → ∞ with 0 < c ≤ d/n ≤ C < ∞ and ignores the “effective

94



5.L. Novelty of the Overparameterized Bound

dimension” pk of the feature space. It appears that their analysis is not impacted by
Double Descent w.r.t. pk since their assumptions on the kernel imply either pk = ∞ or
pk/n→∞ as n, d→∞: In particular, they consider kernels of the form

k(x, x̃) = h

(
1

d
⟨x, x̃⟩

)
for a suitable smooth function h that is independent of d. Due to the factor 1

d
and the

limit d→∞, the kernel behaves essentially like a quadratic kernel

k(x, x̃) ≈ a0 + a1
1

d
⟨x, x̃⟩+ a2

(
1

d
⟨x, x̃⟩

)2

=: kquad(x, x̃) ,

where the curvature a2 should be positive in order to obtain good upper bounds on ENoise

(the variance term). For a2, a1, a0 > 0, it is possible to represent this quadratic kernel with
a feature map analogous to that of the polynomial kernel in Proposition 5.5.4 with feature
space dimension p = 1 + d+ d(d+1)

2
. An argument similar to the proof of Proposition 5.5.4

shows that this feature map satisfies FRK(p) if x has a Lebesgue density, hence (COV)
is satisfied. By Lemma 5.K.2 (a), we have pkquad = p = Θ(d2) = Θ(n2), which shows
pkquad/n→∞ as n, d→∞.

Liang et al. (2020) consider a similar setting with d ∼ nα, α ∈ (0, 1), and find that
ENoise converges to zero under suitable assumptions as d, n→∞. Again, it appears that
their assumptions on the kernel imply at least a strongly overparameterized regime with
pk =∞ or pk/n→∞ for d, n→∞, where our lower bound is vacuous.

5.L Novelty of the Overparameterized Bound
In their Corollary 1, Muthukumar et al. (2020) provide a lower bound in the case p ≥ n
holding with high probability for ε⊤(WW⊤)−1ε, where ε ∼ N (0, Ip) is a noise vector inde-
pendent of W . Since Eε⊤(WW⊤)−1ε = EZ tr((WW⊤)−1Eεεε

⊤) = EZ tr((WW⊤)−1),
their lower bound yields a lower bound for E tr((WW⊤)−1). However, the resulting lower
bound is weaker than ours and requires stronger assumptions:

(1) Assuming that the subgaussian norm ∥wi∥ψ2
:= supv∈Sp−1 supq∈N+

q−1/2(E|v⊤wi|q)1/q
(cf. Vershynin, 2010) is bounded by a constant K <∞, they obtain a lower bound
of the form cKσ

2 n
p

with a constant cK > 0 that depends on K and is only explicitly
specified for the case of centered Gaussian PZ . They note that ∥wi∥ψ2 ≤ K holds, for
example, if the components wi,j of wi are independent and all satisfy ∥wi,j∥ψ2 ≤ K.
However, as discussed in Remark 5.4.1, such independence assumptions are not
realistic. In contrast, our lower bound is explicit, independent of constants like K
and is larger: For example, at n = p, our lower bound is σ2n and theirs is σ2cK .

(2) Assuming ∥wi∥22 ≤ p almost surely, they obtain a lower bound of the form cσ2 n
p log(n)

.
First of all, this lower bound converges to zero as n = p → ∞. Moreover, since
we always have E∥wi∥22 = E tr(wiw

⊤
i ) = E tr(Ip) = p, the assumption implies

∥wi∥22 = p almost surely. Although we can sometimes guarantee constant ∥zi∥22, e.g.
for certain random Fourier features, we cannot guarantee the same for wi = Σ−1/2zi
since Σ depends on the unknown input distribution PX .

95



Chapter 5. On the Universality of the Double Descent Peak in Ridgeless Regression

By inspecting the proof behind (1), one finds that cK → 0 as K →∞. Hence, lower
bound of Muthukumar et al. (2020) might raise hope that it is possible to achieve low ENoise

by choosing features with a large (or even infinite) subgaussian norm. Our result shows
that this is not possible: Essentially the only possibility to avoid a large ENoise for ridgeless
linear regression around n ≈ p is to violate the property (FRK) that guarantees the ability
to interpolate the data in the overparameterized case, see Section 5.5. Otherwise, in
order to achieve ENoise < εσ2, ε ≪ 1, it is necessary to make the model either strongly
underparameterized (p < εn) or strongly overparameterized (p > n/ε).

96



Chapter 6

A Framework and Benchmark for
Deep Batch Active Learning for
Regression

David Holzmüller1, Viktor Zaverkin2, Johannes Kästner2, and Ingo Steinwart1

Submitted to Journal of Machine Learning Research
Reference: Holzmüller et al. (2023), link: https://arxiv.org/abs/2203.09410

Abstract

The acquisition of labels for supervised learning can be expensive. To improve the sample efficiency
of neural network regression, we study active learning methods that adaptively select batches
of unlabeled data for labeling. We present a framework for constructing such methods out of
(network-dependent) base kernels, kernel transformations, and selection methods. Our framework
encompasses many existing Bayesian methods based on Gaussian process approximations of neural
networks as well as non-Bayesian methods. Additionally, we propose to replace the commonly
used last-layer features with sketched finite-width neural tangent kernels and to combine them
with a novel clustering method. To evaluate different methods, we introduce an open-source
benchmark consisting of 15 large tabular regression data sets. Our proposed method outperforms
the state-of-the-art on our benchmark, scales to large data sets, and works out-of-the-box without
adjusting the network architecture or training code. We provide open-source code that includes
efficient implementations of all kernels, kernel transformations, and selection methods, and can
be used for reproducing our results.

6.1 Introduction

While supervised machine learning (ML) has been successfully applied to many different
problems, these successes often rely on the availability of large data sets for the problem
at hand. In cases where labeling data is expensive, it is important to reduce the required
number of labels. Such a reduction could be achieved through various means: First, finding

1ISA, University of Stuttgart, Stuttgart, Germany
2ITC, University of Stuttgart, Stuttgart, Germany

97

https://arxiv.org/abs/2203.09410


Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

more sample-efficient supervised ML methods; second, applying data augmentation; third,
leveraging information in unlabeled data via semi-supervised learning; fourth, leveraging
information from related problems through transfer learning, meta-learning, or multi-task
learning; and finally, appropriately selecting which data to label. Active learning (AL)
takes the latter approach by using a trained model to choose the next data point to label
(Settles, 2009). The need to retrain after every new label prohibits parallelized labeling
methods and can be far too expensive, especially for neural networks (NNs), which are
often slow to train. This problem can be resolved by batch mode active learning (BMAL)
methods, which select multiple data points for labeling at once. When the supervised ML
method is a deep NN, this is known as batch mode deep active learning (BMDAL) (Ren
et al., 2021). Pool-based BMDAL refers to the setting where data points for labeling need
to be chosen from a given finite set of points.

Supervised and unsupervised ML algorithms choose a model for given data. Multiple
models can be compared on the same data using model selection techniques such as
cross-validation. Such a comparison increases the training cost, but not the (potentially
much larger) cost of labeling data. In contrast to supervised learning, AL is about choosing
the data itself, with the goal to reduce labeling cost. However, different AL algorithms
may choose different samples, and hence a comparison of N AL algorithms might increase
labeling cost by a factor of up to N . Consequently, such a comparison is not sensible for
applications where labeling is expensive. Instead, it is even more important to properly
benchmark AL methods on tasks where labels are cheap to generate or a large number of
labels is already available.

In the classification setting, NNs typically output uncertainties in the form of a vector
of probabilities obtained through a softmax layer, while regression NNs typically output a
scalar target without uncertainties. Therefore, many BMDAL algorithms only apply to one
of the two settings. For classification, many BMDAL approaches have been proposed (Ren
et al., 2021), and there exist at least some standard benchmark data sets like CIFAR-10
(Krizhevsky, 2009) on which methods are usually evaluated. On the other hand, the
regression setting has been studied less frequently, and no common benchmark has been
established to the best of our knowledge, except for a specialized benchmark in drug
discovery (Mehrjou et al., 2021). We expect that the regression setting will gain popularity,
not least due to the increasing interest in NNs for surrogate modeling (Behler, 2016; Kutz,
2017; Raissi et al., 2019; Mehrjou et al., 2021; Lavin et al., 2021).

6.1.1 Contributions

In this paper, we investigate pool-based BMDAL methods for regression. Our experiments
use fully connected NNs on tabular data sets, but the considered methods can be generalized
to different types of data and NN architectures. We limit our study to methods that do
not require to modify the network architecture and training, as these are particularly easy
to use and a fair comparison to other methods is difficult. We also focus on methods
that scale to large amounts of (unlabeled) data and large acquisition batch sizes. Our
contributions can be summarized as follows:

(1) We propose a framework for decomposing typical BM(D)AL algorithms into the
choice of a kernel and a selection method. Here, the kernel can be constructed from
a base kernel through a series of kernel transformations. The use of kernels as basic

98



6.2. Problem Setting

building blocks allows for an efficient yet flexible and composable implementation
of our framework, which we include in our open-source code. We also discuss how
(regression variants of) many popular BM(D)AL algorithms can be represented in
this framework and how they can efficiently be implemented. This gives us a variety
of options for base kernels, kernel transformations, and selection methods to combine.
Our framework encompasses both Bayesian methods based on Gaussian Processes
and Laplace approximations as well as geometric methods.

(2) We discuss some alternative options to the ones arising from popular BM(D)AL
algorithms: We introduce a novel selection method called LCMD; and we propose
to combine the finite-width neural tangent kernel (NTK, Jacot et al., 2018) as a
base kernel with sketching for efficient computation.

(3) We introduce an open-source benchmark for BMDAL involving 15 large tabular
regression data sets. Using this benchmark, we compare different selection methods
and evaluate the influence of the kernel, the acquisition batch size, and the target
metric.

Our newly proposed selection method, LCMD, improves the state-of-the-art in our
benchmark in terms of RMSE and MAE, while still exhibiting good performance for the
maximum error. The NTK base kernel improves the benchmark accuracy for all selection
methods, and the proposed sketching method can preserve this accuracy while leading
to significant time gains. Figure 1 shows a comparison of our novel BMDAL algorithm
against popular BMDAL algorithms from the literature, which are all implemented in our
framework. The code for our framework and benchmark is based on PyTorch (Paszke
et al., 2019) and is publicly available at

https://github.com/dholzmueller/bmdal_reg

and will be archived together with the generated data at https://doi.org/10.18419/
darus-3394.

The rest of this paper is structured as follows: In Section 6.2, we introduce the basic
problem setting of BMDAL for tabular regression with fully-connected NNs and introduce
our framework for the construction of BMDAL algorithms. We discuss related work in
Section 6.3. We then introduce options to build kernels from base kernels and kernel
transformations in Section 6.4. Section 6.5 discusses various iterative kernel-based selection
methods. Our experiments in Section 6.6 provide insights into the performance of different
combinations of kernels and selection methods. Finally, we discuss limitations and open
questions in Section 6.7. More details on the presented methods and experimental results
are provided in the Appendix, whose structure is outlined in Appendix 6.A.

6.2 Problem Setting

In this section, we outline the problem of BMDAL for regression with fully-connected NNs.
We first introduce the regression objective and fully-connected NNs. Subsequently, we
introduce the basic setup of pool-based BMDAL as well as our proposed framework.

99

https://github.com/dholzmueller/bmdal_reg
https://doi.org/10.18419/darus-3394
https://doi.org/10.18419/darus-3394


Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

256 512 1024 2048 4096
Training set size Ntrain

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

m
ea

n
lo

g
R

M
SE

No BMAL
BALD
BatchBALD
BAIT
ACS-FW
Core-Set / FF-Active
BADGE
Ours

Figure 1: This figure shows how fast the averaged errors on our benchmark data sets decrease
during BMAL for random selection (no BMAL), BALD (Houlsby et al., 2011), BatchBALD
(Kirsch et al., 2019), BAIT (Ash et al., 2021), ACS-FW (Pinsler et al., 2019), Core-Set (Sener
and Savarese, 2018), FF-Active (Geifman and El-Yaniv, 2017), BADGE (Ash et al., 2019),
and our method. In Table 5 and Section 6.6, we specify how the compared methods are built
from components explained in Section 6.4 and Section 6.5, and discuss further details such as
modifications to apply them to regression. For the plot, we start with 256 random training
samples and select 256 samples in each of 16 BMAL steps. The lines show the average of the
logarithmic RMSE over all 15 benchmark data sets and 20 random splits between the BMAL
steps. The shaded area, which is barely visible, corresponds to one estimated standard deviation
of the mean estimator, cf. Section 6.E.4.

100



6.2. Problem Setting

6.2.1 Regression with Fully-Connected Neural Networks

We consider multivariate regression, where the goal is to learn a function f : Rd → R from
data (x, y) ∈ Dtrain ⊆ Rd × R. In the case of NNs, we consider a parameterized function
family (fθ)θ∈Rm and try to minimize the mean squared loss on training data Dtrain with
Ntrain samples:

L(θ) = 1

Ntrain

∑
(x,y)∈Dtrain

(y − fθ(x))2 .

We refer to the inputs and labels in Dtrain as Xtrain and Ytrain, respectively. Corresponding
data sets are often referred to as tabular data or structured data. This is in contrast to
data with a known spatiotemporal relationship between the input features, such as image
or time-series data, where specialized NN architectures such as CNNs are more successful.

For our derivations and experiments, we consider an L-layer fully-connected NN
fθ : Rd → R with parameter vector θ = (W (1), b(1), . . . ,W (L), b(L)) and input size d0 = d,
hidden layer sizes d1, . . . , dL−1, and output size dL = 1. The value z

(L)
i = fθ(x

(0)
i ) of the

NN on the i-th input x
(0)
i ∈ Rd0 is defined recursively by

x
(l+1)
i = φ(z

(l+1)
i ) ∈ Rdl+1 , z

(l+1)
i =

σw√
dl
W (l+1)x

(l)
i + σbb

(l+1) ∈ Rdl+1 . (6.1)

Here, the activation function φ : R → R is applied element-wise and σw, σb > 0 are
constant factors. In our experiments, the weight matrices are initialized with independent
standard normal entries and the biases are initialized to zero. The factors σw/

√
dl and σb

stem from the neural tangent parametrization (NTP) (Jacot et al., 2018; Lee et al., 2019),
which is theoretically motivated to define infinite-width limits of NNs and is also used in
our applications. However, our derivations apply analogously to NNs without these factors.
When considering different NN types such as CNNs, it is possible to apply our derivations
only to the fully-connected part of the NN or to extend them to other layers as well.

6.2.2 Batch Mode Active Learning

In a single BMAL step, a BMAL algorithm selects a batch Xbatch ⊆ Rd with a given
size Nbatch ∈ N. Subsequently, this batch is labeled and added to the training set. Here,
we consider pool-based BMAL, where Xbatch is to be selected from a given finite pool set
Xpool of candidates. Other AL paradigms include membership query AL, where data
points for labeling can be chosen freely, or stream-based AL, where data points arrive
sequentially and must be immediately labeled or discarded. The pool set can potentially
contain information about which regions of the input space are more important than
others, especially if it is drawn from the same distribution as the test set. Moreover,
pool-based BMAL allows for efficient benchmarking of BMAL methods on labeled data
sets by reserving a large portion of the data set for the pool set, rendering the labeling
part trivial.

When comparing and evaluating BMDAL methods, we are mainly interested in the
following desirable properties:

(P1) The method should improve the sample efficiency of the underlying NN, even for
large acquisition batch sizes Nbatch and large pool set sizes Npool, with respect to the

101



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Algorithm 1 Basic pool-based BMDAL loop with initial labeled training set Dtrain,
unlabeled pool set Xpool, BMDAL algorithm NextBatch (see Algorithm 2) and a list
Lbatch of batch sizes.

for AL batch size Nbatch in Lbatch do
Train model fθ on Dtrain

Select batch Xbatch ← NextBatch(fθ,Dtrain,Xpool, Nbatch) with |Xbatch| = Nbatch

and Xbatch ⊆ Xpool

Move Xbatch from Xpool to Dtrain and acquire labels Ybatch for Xbatch

end for
Train final model fθ on Dtrain

downstream application, which may or may not involve the same input distribution
as training and pool data.

(P2) The method should scale to large pool sets, training sets, and batch sizes, in terms
of both computation time and memory consumption.

(P3) The method should be applicable to a wide variety of NN architectures and training
methods, such that it can be applied to different use cases.

(P4) The method should not require modifying the NN architecture and training method,
for example by requiring to introduce Dropout, such that practitioners do not have
to worry whether employing the method diminishes the accuracy of their trained
NN.

(P5) The method should not require training multiple NNs for a single batch selection
since this would deteriorate its runtime efficiency.3

(P6) The method should not require tuning hyperparameters on the downstream applica-
tion since this would require labeling samples selected with suboptimal hyperparam-
eters.

Property (P1) is central to motivate the use of BMDAL over random sampling of the
data and is evaluated for our framework in detail in Section 6.6 and Appendix 6.E. We
only evaluate methods with property (P2) since our benchmark involves large data sets.
All methods considered here satisfy (P3) to a large extent. Indeed, although efficient
computations are only studied for fully-connected layers here, the considered methods
can be simply applied to the fully-connected part of a larger NN. All considered methods
satisfy (P4), which also facilitates fair comparison in a benchmark. All our methods satisfy
(P5), although our methods can incorporate ensembles of NNs. Although some of the
considered methods have hyperparameters, we fix them to reasonable values independent
of the data set in our experiments, such that (P6) is satisfied.

Algorithm 1 shows how BMDAL algorithms satisfying (P4) and (P5) can be used in a
loop with training and labeling.

Wu (2018) formulates three criteria by which BMAL algorithms may select batch
samples in order to improve the sample efficiency of a learning method:

(INF) The algorithm should favor inputs that are informative to the model. These could,
for example, be those inputs where the model is most uncertain about the label.

3Technically, requiring multiple trained NNs would not be detrimental if it facilitated reaching the
same accuracy with correspondingly larger Nbatch.

102



6.3. Related Work

Algorithm 2 Kernel-based batch construction framework
function KernelNextBatch(fθ,Dtrain,Xpool, Nbatch)

k ← BaseKernel(fθ)
k ← TransformKernel(k,Dtrain)
return Select(k,Xtrain,Xpool, Nbatch)

end function

(DIV) The algorithm should ensure that the batch contains diverse samples, i.e., samples
in the batch should be sufficiently different from each other.

(REP) The algorithm should ensure representativity of the resulting training set, i.e., it
should focus more strongly on regions where the pool data distribution has high
density.

Note that (REP) might not be desirable if one expects a significant distribution shift
between pool and test data. A challenge in trying to adapt non-batch AL methods to the
batch setting is that some non-batch AL methods expect to immediately receive a label
for every selected sample. It is usually possible to circumvent this by selecting the Nbatch

samples with the largest acquisition function scores at once, but this does not enforce
(DIV) or (REP).

We propose a framework for assembling BMDAL algorithms that is shown in Algo-
rithm 2 and consists of three components: First, a base kernel k needs to be chosen that
should serve as a proxy for the trained network fθ. Second, the kernel can be transformed
using various transformations. These transformations can, for example, make the kernel
represent posteriors or improve its evaluation efficiency. Third, a selection method is
invoked that uses the transformed kernel as a measure of similarity between inputs. When
using Gaussian Process regression with a given kernel k as a supervised learning method
instead of an NN, the base kernel could simply be chosen as k. Note that Select does
not observe the training labels directly, however, in the NN setting, these can be implicitly
incorporated through kernels that depend on the trained NN.

Example 6.2.1. In Algorithm 2, the base kernel k could be of the form k(x, x̃) =
⟨ϕ(x), ϕ(x̃)⟩, where ϕ represents the trained NN without the last layer. When interpreting
k as the kernel of a Gaussian process, TransformKernel could then compute a trans-
formed kernel k̃ that represents the posterior predictive uncertainty after observing the
training data. Finally, Select could then choose the Nbatch points x ∈ Xpool with the
largest uncertainty k̃(x,x). ◀

From a Bayesian perspective, our choice of kernel and kernel transformations can
correspond to inference in a Bayesian approximation, as we discuss in Section 6.C.1,
while the selection method can correspond to the optimization of an acquisition function.
However, in our framework, the same “Bayesian” kernels can be used together with
non-Bayesian selection methods and vice versa.

6.3 Related Work
The field of active learning, also known as query learning or sequential (optimal) experi-
mental design (Fedorov, 1972; Chaloner and Verdinelli, 1995), has a long history dating

103



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

back at least to the beginning of the 20th century (Smith, 1918). For an overview of the
AL and BMDAL literature, we refer to Settles (2009); Kumar and Gupta (2020); Ren
et al. (2021); Weng (2022).

We first review work relevant to the kernels in our framework, before discussing work
more relevant to selection methods, and finally, data sets. More literature related to
specific methods is also discussed in Section 6.4 and Section 6.5.

6.3.1 Uncertainty Measures and Kernel Approximations

A popular class of BMDAL methods is given by Bayesian methods since the Bayesian
framework naturally provides uncertainties that can be used to assess informativeness.
These methods require to use Bayesian NNs, or in other words, the calculation of an
approximate posterior distribution over NN parameters. A simple option is to perform
Bayesian inference only over the last layer of the NN (Lázaro-Gredilla and Figueiras-Vidal,
2010; Snoek et al., 2015; Ober and Rasmussen, 2019; Kristiadi et al., 2020). The Laplace
approximation (Laplace, 1774; MacKay, 1992a) can provide a local posterior distribution
around a local optimum of the loss landscape via a second-order Taylor approximation. An
alternative local approach based on SGD iterates is called SWAG (Maddox et al., 2019).
Ensembles of NNs (Hansen and Salamon, 1990; Lakshminarayanan et al., 2017) can be
interpreted as a simple multi-modal posterior approximation and can be combined with
local approximations to yield mixtures of Laplace approximations (Eschenhagen et al.,
2021) or MultiSWAG (Wilson and Izmailov, 2020). Monte Carlo (MC) Dropout (Gal
and Ghahramani, 2016) is an option to obtain ensemble predictions from a single NN,
although it requires training with Dropout (Srivastava et al., 2014). Regarding uncertainty
approximations, our considered algorithms are mainly related to exact last-layer methods
and the Laplace approximation, as these do not require to modify the training process.
Daxberger et al. (2021) give an overview of various methods to compute (approximate)
Laplace approximations.

Some recent approaches also build on the neural tangent kernel (NTK) introduced
by Jacot et al. (2018). Khan et al. (2019) show that certain Laplace approximations
are related to the finite-width NTK. Wang et al. (2022) and Mohamadi et al. (2022)
propose the use of finite-width NTKs for DAL for classification. Wang et al. (2021) use
the finite-width NTK at initialization for the streaming setting of DAL for classification
and theoretically analyze the resulting method. Aljundi et al. (2022) use a kernel related
to the finite-width NTK for DAL. Shoham and Avron (2023), Borsos et al. (2020) and
Borsos et al. (2021) use infinite-width NTKs for BMDAL and related tasks. Han et al.
(2021) propose sketching for infinite-width NTKs and also evaluate it for DAL. In contrast
to these papers, we propose sketching for finite-width NTKs and allow combining the
resulting kernel with different selection methods.

6.3.2 Selection Methods

Besides a Bayesian NN model, a Bayesian BMDAL method needs to specify an acquisition
function that decides how to prioritize the pool samples. Many simple acquisition functions
for quantifying uncertainty have been proposed (Kumar and Gupta, 2020). Selecting the
next sample where an ensemble disagrees most is known as Query-by-Committee (QbC)

104



6.3. Related Work

(Seung et al., 1992). Krogh and Vedelsby (1994) employed QbC for DAL for regression.
A more recent investigation of QbC to DAL for classification is performed by Beluch
et al. (2018). Pop and Fulop (2018) combine ensembles with MC Dropout. Tsymbalov
et al. (2018) use the predictive variance obtained by MC Dropout for DAL for regression.
Zaverkin and Kästner (2021) use last-layer-based uncertainty in DAL for regression on
atomistic data. Unlike the other approaches mentioned before, the approach by Zaverkin
and Kästner (2021) can be applied to a single NN trained without Dropout.

Many uncertainty-based acquisition functions do not distinguish between epistemic
uncertainty, i.e., lack of knowledge about the true functional relationship, and aleatoric
uncertainty, i.e., inherent uncertainty due to label noise. Houlsby et al. (2011) propose
the BALD acquisition function, which aims to quantify epistemic uncertainty only. Gal
et al. (2017) apply BALD and other acquisition functions to BMDAL for classification
with MC Dropout. To enforce diversity of the selected batch, Kirsch et al. (2019) propose
BatchBALD and evaluate it on classification problems with MC Dropout. Ash et al. (2021)
propose Bait, which also incorporates representativity through Fisher information based
on last-layer features, and is evaluated on classification and regression data sets.

Another approach towards BMDAL is to find core-sets that represent Xpool in a
geometric sense. Sener and Savarese (2018) and Geifman and El-Yaniv (2017) propose
algorithms to cover the pool set with Xbatch ∪ Xtrain in a last-layer feature space. Ash
et al. (2019) propose BADGE, which applies clustering in a similar feature space, but
includes uncertainty via gradients through the softmax layer for classification. ACS-FW
(Pinsler et al., 2019) can be seen as a hybrid between core-set and Bayesian approaches,
trying to approximate the expected log-posterior on the pool set with a core-set, also
using last-layer-based Bayesian approximations. Besides Bait, ACS-FW is one of the
few approaches that is designed and evaluated for both classification and regression. Our
newly proposed selection method LCMD is clustering-based like the k-means++ method
used in BADGE, but deterministic.

Many more approaches towards BMDAL exist, and they can be combined with ad-
ditional steps such as pre-reduction of Xpool (Ghorbani et al., 2022) or re-weighting of
selected instances (Farquhar et al., 2021). Most of these BMDAL methods are geared
towards classification, and for a broader overview, we refer to Ren et al. (2021). For
(image) regression, Ranganathan et al. (2020) introduce an auxiliary loss term on the pool
set, which they use to perform DAL. It is unclear, though, to which extent their success is
explained by implicitly performing semi-supervised learning.

Since we frequently consider Gaussian Processes (GPs) as approximations to Bayesian
NNs in this paper, our work is also related to BMAL for GPs, although in our case the
GPs are only used for selecting Xbatch and not for the regression itself. Popular BMAL
methods for GPs have been suggested for example by Seo et al. (2000) and Krause et al.
(2008).

6.3.3 Data Sets

In terms of benchmark data sets for BM(D)AL for regression, Tsymbalov et al. (2018)
use seven large tabular data sets, some of which we have included in our benchmark, cf.
Section 6.E.1. Pinsler et al. (2019) use only one large tabular regression data set. Ash
et al. (2021) use a small tabular regression data set and three image regression data sets,

105



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Base kernel Symbol Feature map Feature space dimension dfeat
Linear klin ϕlin(x) = x d
NNGP knngp not explicitly defined ∞

full gradient kgrad ϕgrad(x) = ∇θfθT
(x)

∑L
l=1 dl(dl−1 + 1)

last-layer kll ϕll(x) = ∇W̃
(L)fθT

(x) dL(dL−1 + 1)

Table 1: Overview of the introduced base kernels.

two of which are converted classification data sets. Wu (2018) benchmarks exclusively
on small tabular data sets. Zaverkin and Kästner (2021) work with atomistic data sets,
which require specialized NN architectures and longer training times, and are therefore
less well-suited for a large-scale benchmark. Ranganathan et al. (2020) use CNNs on five
image regression data sets. Recently, a benchmark for BMDAL for drug discovery has
been proposed, which uses four counterfactual regression data sets (Mehrjou et al., 2021).
In this paper, we provide an open-source benchmark on 15 large tabular data sets, which
includes more baselines and evaluation criteria than evaluations in previous papers.

6.4 Kernels

In this section, we discuss a variety of base kernels yielding various approximations to a
trained NN fθT

, as well as different kernel transformations that yield new kernels with
different meanings or simply improved efficiency. In the following, we consider positive
semi-definite kernels k : Rd × Rd → R. For an introduction to kernels, we refer to
the literature (e.g. Steinwart and Christmann, 2008). The kernels considered here can
usually be represented by a feature map ϕ with finite-dimensional feature space, that
is, ϕ : Rd → Rdfeat with k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩. For a sequence X = (x1, . . . ,xn) of
inputs, which we sometimes treat like a set X ⊆ Rd by a slight abuse of notation, we
define the corresponding feature matrix

ϕ(X ) =

ϕ(x1)
⊤

...
ϕ(xn)

⊤

 ∈ Rn×dfeat (6.2)

and kernel matrices k(x,X ) = (k(x,xi))i ∈ R1×n, k(X ,X ) = (k(xi,xj))ij ∈ Rn×n,
k(X ,x) = (k(xi,x))i ∈ Rn×1.

6.4.1 Base Kernels

We first discuss various options for creating base kernels that induce some notion of
similarity on the training and pool inputs. An overview of these base kernels can be found
in Table 1.

106



6.4. Kernels

Linear Kernel

A very simple baseline for other base kernels is the linear kernel klin(x, x̃) = ⟨x, x̃⟩,
corresponding to the identity feature map

ϕlin(x) := x .

It is usually very fast to evaluate but does not represent the behavior of an NN well.
Moreover, its feature space dimension depends on the input dimension, and hence may not
be suited for selection methods that depend on having high-dimensional representations of
the data. A more accurate representation of the behavior of an NN is given by the next
kernel:

Full gradient Kernel

If θT is the parameter vector of the trained NN, we define

ϕgrad(x) := ∇θfθT
(x) .

This is motivated as follows: A linearization of the NN with respect to its parameters
around θT is given by the first-order Taylor expansion

fθ(x) ≈ f̃θ(x) := fθT
(x) + ⟨ϕgrad(x),θ − θT ⟩ . (6.3)

If we were to resume training from the parameters θT after labeling the next batch Xbatch,
the result of training on the extended data could hence be approximated by the function
fθT

+ f∆, where f∆ is the result of linear regression with feature map ϕgrad on the data
residuals (xi, yi − fθT

(xi)) for (xi, yi) ∈ Dtrain ∪ Dbatch.
The kernel kgrad is also known as the (empirical / finite-width) neural tangent kernel

(NTK). It depends on the linearization point θT , but can for certain training settings
converge to a fixed kernel as the hidden layer widths go to infinity (Jacot et al., 2018; Lee
et al., 2019; Arora et al., 2019). In practical settings, however, it has been observed that
kgrad often “improves” during training (Fort et al., 2020; Long, 2021; Shan and Bordelon,
2021; Atanasov et al., 2021), especially in the beginning of training. This agrees with
our observations in Section 6.6 and suggests that shorter training might already yield a
gradient kernel that allows selecting a good Xbatch. Indeed, Coleman et al. (2019) found
that shorter training and even smaller models can already be sufficient to select good
batches for BMDAL for classification.

For fully-connected layers, we will now show that the feature map ϕgrad has an additional
product structure that can be exploited to reduce the runtime and memory consumption
of a kernel evaluation. For notational simplicity, we rewrite Eq. (6.1) as

z
(l+1)
i = W̃

(l+1)
x̃
(l)
i ,

W̃
(l+1)

:=
(
W (l+1) b(l+1)

)
∈ Rdl+1×(dl+1), x̃

(l)
i :=

(
σw√
dl
x
(l)
i

σb

)
∈ Rdl+1 , (6.4)

with parameters θ = (W̃
(1)
, . . . , W̃

(L)
). Using the notation from Eq. (6.4), we can write

ϕgrad(x
(0)
i ) =

(
dz

(L)
i

dW̃
(1)
, . . . ,

dz
(L)
i

dW̃
(L)

)
=

(
dz

(L)
i

dz
(1)
i

(x̃
(0)
i )⊤, . . . ,

dz
(L)
i

dz
(L)
i

(x̃
(L−1)
i )⊤

)
. (6.5)

107



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

For a kernel evaluation, the factorization of the weight matrix derivatives can be exploited
via

kgrad(x
(0)
i ,x

(0)
j ) =

L∑
l=1

〈
dz

(L)
i

dz
(l)
i

(x̃
(l−1)
i )⊤,

dz
(L)
j

dz
(l)
j

(x̃
(l−1)
j )⊤

〉
F

=
L∑
l=1

〈
x̃
(l−1)
i , x̃

(l−1)
j

〉
︸ ︷︷ ︸
=:k

(l)
in (x

(0)
i ,x

(0)
j )

·
〈

dz
(L)
i

dz
(l)
i

,
dz

(L)
j

dz
(l)
j

〉
︸ ︷︷ ︸

=:k
(l)
out(x

(0)
i ,x

(0)
j )

, (6.6)

since ⟨ab⊤, cd⊤⟩F = tr(ba⊤cd⊤) = tr(a⊤cd⊤b) = a⊤cd⊤b = ⟨a, c⟩ · ⟨b,d⟩. This means
that kgrad can be decomposed into sums of products of kernels with smaller feature space
dimension:4

kgrad(x, x̃) =
L∑
l=1

k
(l)
in (x, x̃) · k(l)out(x, x̃) (6.7)

When using Eq. (6.6), the full gradients dz
(L)
i

dW̃
(l) never have to be computed or stored explicitly.

If dz
(L)
i

dz
(l)
i

and x̃
(l−1)
i are already computed and the hidden layers contain m = d1 = . . . = dL−1

neurons each, Eq. (6.6) reduces the runtime complexity of a kernel evaluation from
Θ(m2L) to Θ(mL), and similarly for the memory complexity of pre-computed features. In
Section 6.4.2, we will see how to further accelerate this kernel computation using sketching.
Efficient computations of kgrad for more general types of layers and multiple output neurons
are discussed by Novak et al. (2022).

Since kgrad consists of gradient contributions from multiple layers, it is potentially
important that the magnitudes of the gradients in different layers are balanced. We achieve
this, at least at initialization, through the use of the neural tangent parameterization
(Jacot et al., 2018). For other NN architectures, however, it might be desirable to re-weight
gradient magnitudes from different layers to improve the results obtained with kgrad.

Last-layer Kernel

A simple and rough approximation to the full-gradient kernel is given by only considering
the gradient with respect to the parameters in the last layer:

ϕll(x) := ∇W̃
(L)fθT

(x) .

From Eq. (6.5), it is evident that in the single-output regression case that we are considering,
ϕll(x

(0)
i ) is simply the input x̃(L−1)

i to the last layer of the NN. The latter formulation can
also be used in the multi-output setting, and versions of it (with x

(L−1)
i instead of x̃(L−1)

i )
have been frequently used for BMDAL (Sener and Savarese, 2018; Geifman and El-Yaniv,
2017; Pinsler et al., 2019; Ash et al., 2019; Zaverkin and Kästner, 2021; Ash et al., 2021).

4For the sketching method defined later, we may exploit that k(L)
out(x, x̃) = 1, hence k(L)

out can be omitted.

108



6.4. Kernels

Infinite-width NNGP

It has been shown that as the widths d1, . . . , dL−1 of the hidden NN layers converge to
infinity, the distribution of the initial function fθ0 converges to a Gaussian Process with
mean zero and a covariance kernel knngp called the neural network Gaussian process (NNGP)
kernel (Neal, 1994; Lee et al., 2018; Matthews et al., 2018). This kernel depends on the
network depth, the used activation function, and details such as the initialization variance
and scaling factors like σw. In our experiments, we use the NNGP kernel corresponding to
the employed NN setup, for which the formulas are given in Section 6.B.1.

As mentioned above, there exists an infinite-width limit of kgrad, the so-called neural
tangent kernel (Jacot et al., 2018). We decided to omit it from our experiments in
Appendix 6.E after preliminary experiments showed similarly bad performance as for the
NNGP.

6.4.2 Kernel Transformations

The base kernels introduced in Section 6.4.1 are constructed such that kernel regression with
these kernels serves as a proxy for regression with the corresponding NN. By using kernels,
we can model interactions k(x, x̃) between two inputs, which is crucial to incorporate
diversity (DIV) into the selection methods. However, this is not always sufficient to apply
a selection method. For example, sometimes we want the kernel to represent uncertainties
of the NN after observing the data, or we want to reduce the feature space dimension to
render selection more efficient. Therefore, we introduce various ways to transform kernels
in this section. When applying transformations T1, . . . , Tn in this order to a base kernel
kbase, we denote the transformed kernel by kbase→T1→T2→...→Tn . Of course, we can only
cover selected transformations relevant to our applications, and other transformations such
as sums or products of kernels are possible as well.

Scaling

For a given kernel k with feature map ϕ and scaling factor λ ∈ R, we can construct the
kernel λ2k with feature map λϕ. This scaling can make a difference if we subsequently
consider a Gaussian Process (GP) with covariance function λ2k. In this case, λ2k(x, x̃)
describes the covariance between f(x) and f(x̃) under the prior distribution over functions
f . Since we train with normalized labels, N−1

train

∑
y∈Ytrain

y2i ≈ 1, we would like to choose
the scaling factor λ such that N−1

train

∑
x∈Xtrain

λ2k(x,x) = 1. Therefore, we propose the
automatic scale normalization

k→scale(Xtrain)(x, x̃) := λ2k(x, x̃), λ :=

(
1

Ntrain

∑
x∈Xtrain

k(x,x)

)−1/2

.

Gaussian Process Posterior Transformation

For a given kernel k with corresponding feature map ϕ, we can consider a Gaussian Process
(GP) with kernel k, which is equivalent to a Bayesian linear regression model with feature
map ϕ: In feature space, we model our observations as yi = w⊤ϕ(xi)+εi with weight prior

109



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Notation Description dpre dpost Configurable σ2?
k→scale(X ) Rescale kernel to normalize

mean k(x,x) on X
any dpre no

k→post(X ,σ2) GP posterior covariance after
observing X

any dpre yes

k→X Short for k→scale(X )→post(X ,σ2) any dpre yes
k→sketch(p) Sketching with p features <∞ p no
k→ens(Nens) Sum of kernels for Nens

ensembled networks
any Nensdpre no

k→acs-grad Gradient-based kernel from
Pinsler et al. (2019)

any d2pre yes

k→acs-rf(p) Kernel from Pinsler et al.
(2019) with p random features

<∞ p yes

k→acs-rf-hyper(p) Kernel from Pinsler et al.
(2019) with p random features

and hyperprior on σ2

<∞ p no

Table 2: Overview of our considered kernel transformations that can be applied to a kernel
k. Here, dpre refers to the feature space dimension of k and dpost refers to the feature space
dimension after the transformation. Moreover, σ2 refers to the assumed noise variance in the GP
model.

w ∼ N (0, I) and i.i.d. observation noise εi ∼ N (0, σ2). The random function f(xi) :=
w⊤ϕ(xi) now has the covariance function Cov(f(xi), f(xj)) = ϕ(xi)

⊤ϕ(xj) = k(xi,xj).
It is well-known, see e.g. Section 2.1 and 2.2 in Bishop (2006), that the posterior

distribution of a Gaussian process after observing the training data Dtrain with inputs
Xtrain is also a Gaussian process with kernel

k→post(Xtrain,σ2)(x, x̃)

:= Cov(f(x), f(x̃) | Xtrain,Ytrain)

= k(x, x̃)− k(x,Xtrain)(k(Xtrain,Xtrain) + σ2I)−1k(Xtrain, x̃) (6.8)
see below

= ϕ(x)⊤(σ−2ϕ(Xtrain)
⊤ϕ(Xtrain) + I)−1ϕ(x̃) (6.9)

= σ2ϕ(x)⊤(ϕ(Xtrain)
⊤ϕ(Xtrain) + σ2I)−1ϕ(x̃) . (6.10)

Here, the equivalence between Eq. (6.8) and Eq. (6.9) for σ2 > 0 can be obtained using
the Woodbury matrix identity. In our implementation, we use the feature map version,
Eq. (6.9), whenever dfeat ≤ max{1024, 3|Xtrain|}. An explicit feature map can be obtained
from Eq. (6.10) as

ϕ→post(Xtrain,σ2)(x) = σ(ϕ(Xtrain)
⊤ϕ(Xtrain) + σ2I)−1/2ϕ(x) .

If the posterior with respect to two disjoint sets of inputs X1,X2 ⊆ Rd is sought, it is
equivalent to condition first on X1 and then on X2:

k→post(X1∪X2,σ2)(x, x̃) = k→post(X1,σ2)→post(X2,σ2)(x, x̃) . (6.11)

In our experiments, we rescale kernels before applying the posterior transformation, which
we abbreviate by

k→Xtrain
(x, x̃) := k→scale(Xtrain)→post(Xtrain,σ2)(x, x̃) .

110



6.4. Kernels

The application of the posterior transformation to network-dependent kernels can be
seen as an instance of approximate inference with Bayesian NNs. Specifically, we show in
Section 6.C.1 that kll→post(Xtrain,σ2) and kgrad→post(Xtrain,σ2) correspond to last-layer and gen-
eralized Gauss-Newton (GGN) approximations to the Hessian in a Laplace approximation
(Laplace, 1774; MacKay, 1992a) for Bayesian NNs, see also Khan et al. (2019). Moreover,
in the case of the last-layer kernel, this procedure is equivalent to interpreting the last
layer of the NN as a Bayesian linear regression model.

Sketching

Sketching methods, which allow approximating matrices like ϕ(X ) with smaller matrices in
some sense, can be used to approximate a kernel k with high-dimensional feature space by a
kernel with a lower-dimensional feature space (see e.g. Woodruff, 2014). For example, kgrad
and kernels resulting from the ACS gradient transformation introduced in Section 6.4.2
involve product kernels with very high-dimensional feature spaces (dfeat > 250, 000). In
our experiments, we apply sketching mainly to these kernels. This is especially useful for
methods such as the posterior transformation discussed previously and the FrankWolfe
and Bait selection methods explained in Section 6.5.2, which are not very efficient in the
kernel formulation.

We sketch finite-dimensional feature maps as follows:

(1) Generic finite-dimensional feature maps: Consider a generic kernel k with
finite-dimensional feature map ϕ : Rd0 → Rdpre . For a random vector u ∼ N (0, Idpre),
a single random feature is given by the feature map ϕu(x) := u⊤ϕ(x), which yields
an unbiased estimate of the kernel since Eu⟨ϕu(x), ϕu(x̃)⟩ = k(x, x̃). By combining
multiple such random features, the accuracy of the kernel approximation can be
improved. For p random features, we obtain the random feature map

ϕ→sketch(p)(x) :=
1√
p
Uϕ(x) ∈ Rp , (6.12)

where U ∈ Rp×dpre is a random matrix with i.i.d. standard normal entries. This is
also known as a Gaussian sketch.
In terms of the kernel distance

dk(x, x̃) := ∥ϕ(x)− ϕ(x̃)∥2 =
√
k(x,x) + k(x̃, x̃)− 2k(x, x̃) , (6.13)

the approximation quality of the sketched kernel can be analyzed using variants of
the celebrated Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss, 1984).
For example, the following variant is proved in Section 6.C.2 based on a result by
Arriaga and Vempala (1999).

Theorem 6.4.1 (Variant of the Johnson-Lindenstrauss Lemma). Let ε, δ ∈ (0, 1)
and let X ⊆ Rd be finite. If

p ≥ 8 log(|X |2/δ)/ε2 , (6.14)

then the following bound on all pairwise distances holds with probability ≥ 1− δ for
the Gaussian sketch in Eq. (6.12):

∀x, x̃ ∈ X : (1− ε)dk(x, x̃) ≤ dk→sketch(p)
(x, x̃) ≤ (1 + ε)dk(x, x̃) . (6.15)

111



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Note that, counterintuitively, the lower bound in Eq. (6.14) does not depend on the
feature space dimension dpre of k.

(2) Sums of kernels: Consider the sum kernel k = k1 + k2 of kernels k1, k2 with finite-

dimensional feature maps ϕ1, ϕ2. A feature map for k is given by ϕ(x) :=
(
ϕ1(x)
ϕ2(x)

)
.

We can apply sketching as

ϕ→sketch(p)(x) := ϕ1→sketch(p)(x) + ϕ2→sketch(p)(x) . (6.16)

This again yields an unbiased estimate of the kernel k. If ϕ1→sketch(p) and ϕ2→sketch(p)

are sketched as in Eq. (6.12), then Eq. (6.16) is equivalent to sketching ϕ with
Eq. (6.12) directly.

(3) Products of kernels: Consider the product kernel k = k1 · k2 of kernels k1, k2
with finite-dimensional feature maps ϕ1, ϕ2. A feature map for k is given by ϕ(x) :=
ϕ1(x)⊗ ϕ2(x), where ⊗ is the tensor product. Hence, if the feature spaces of ϕ1 and
ϕ2 have dimensions p1 and p2, respectively, the feature space of ϕ has dimension p1p2.
While this dimension is still finite, using Eq. (6.12) for sketching would potentially
require a large amount of memory for storing U as well as a large runtime for the
matrix-vector product. Therefore, we sketch product kernels more efficiently as

ϕ→sketch(p)(x) :=
√
pϕ1→sketch(p)(x)⊙ ϕ2→sketch(p)(x) , (6.17)

where ⊙ denotes the element-wise product (or Hadamard product). This again
yields an unbiased estimator of k without the need to perform computations in the
p1p2-dimensional feature space. While this simple tensor sketching method works
sufficiently well for our purposes, its approximation properties are suboptimal and
can be improved with a more complicated sketching method (Ahle et al., 2020).

In the kernel kgrad→sketch(p)→post(Xtrain,σ2), the inclusion of sketching can be considered a
further approximation to the posterior predictive distribution for Bayesian NNs. In this
context, a different sketching method has been proposed by Sharma et al. (2021). It is
also possible to apply sketching to kernels with infinite-dimensional feature space (see e.g.
Kar and Karnick, 2012; Zandieh et al., 2021; Han et al., 2021), but such kernels are less
relevant in our case.

Ensembling

Ensembles of NNs have been demonstrated to yield good uncertainty estimates for DAL
(Beluch et al., 2018) and can improve the uncertainty estimates of MC Dropout (Pop and
Fulop, 2018). This motivates the study of ensembled kernels. When multiple NNs are
trained on the same data and a kernel k(i) is computed for each model i ∈ {1, . . . , Nens}
via a base kernel and a list of transformations, these kernels can be ensembled simply by
adding them together:

k→ens(Nens) = k(1) + . . .+ k(Nens) .

In the context of Bayesian NNs, ensembling of posterior kernels is related to a mixture
of Laplace approximations (Eschenhagen et al., 2021), cf. Appendix 6.C.

112



6.4. Kernels

ACS Random Features Transformation

In the following two paragraphs, we will briefly introduce multiple kernel transformations
corresponding to various alternative ways of applying the ACS-FW method by Pinsler
et al. (2019) to GP regression. For a more complete description, we refer to the original
publication. ACS-FW seeks to approximate the expected complete data log posterior,
fpool(θ) = EYpool∼P (Ypool|Xpool,Dtrain) log p(θ | Dtrain,Xpool,Ypool), with the expected log pos-
terior of the train data and the next batch, fbatch(θ) = EYbatch∼P (Ybatch|Xbatch,Dtrain) log p(θ |
Dtrain,Xbatch,Ybatch). Here, the labels Ypool and Ybatch are drawn from the posterior dis-
tribution after observing Dtrain. For a given Bayesian model, they then define different
kernels resulting from this objective. As a Bayesian model, we use the same Gaussian
process model as for the posterior transformation above, with kernel k→scale(Xtrain). In this
case, as shown in Section 6.C.3, we have fpool(θ) − fbatch(θ) =

∑
x∈Xpool\Xbatch

facs(x,θ)
with

facs(x,θ) :=
1

2
log

(
1 +

k→Xtrain
(x,x)

σ2

)
− (θ⊤ϕ→scale(Xtrain)(x))

2 + k→Xtrain
(x,x)

2σ2
.(6.18)

The weighted inner product by (Pinsler et al., 2019) can then be written as

k→acs(x, x̃) := Eθ∼P (θ|Dtrain)[facs(x,θ)facs(x̃,θ)] . (6.19)

The expectation in Eq. (6.19) can be approximated using Monte Carlo quadrature as

k→acs(x, x̃) ≈ k→acs-rf(dpost) :=
1

dpost

dpost∑
i=1

[facs(x,θ
(i))facs(x̃,θ

(i))] ,

where θ(i) ∼ P (θ | Dtrain) are i.i.d. parameter samples from the posterior. This corresponds
to the random features approximation proposed by Pinsler et al. (2019), given by

ϕ→acs-rf(dpost)(x) := d
−1/2
post (facs(x,θ

(1)), . . . , facs(x,θ
(dpost)))⊤ .

In their regression experiments, Pinsler et al. (2019) use a slightly different feature map
which we denote by ϕ→acs-rf-hyper(dpost) in our experiments. They state that this has been
derived from a GP model with a hyperprior on σ2, although no hints on its derivation are
provided in their paper, so we directly use their source code for our implementation.

ACS Gradient Transformation

As an alternative to the random features approximation in the previous paragraph, Pinsler
et al. (2019) proposed the weighted Fisher inner product given by

k→acs-grad(x, x̃) := Eθ∼P (θ|Dtrain)[⟨∇θfacs(x,θ),∇θfacs(x̃,θ)⟩] . (6.20)

Under the Gaussian process model, they showed that an explicit formula for k→acs-grad is
given by

k→acs-grad(x, x̃) =
1

σ4
k→scale(Xtrain)(x, x̃)k→Xtrain

(x, x̃) .

Since this product kernel can have a high-dimensional feature space, they used k→acs-grad

only on small data sets. In our experiments, we apply sketching to this kernel to scale it
to large data sets. Again, they specified that they included a hyperprior on σ2 in their
experiments, but their corresponding implementation appears to be equivalent to k→acs-grad

for our purposes.

113



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

6.4.3 Discussion

Out of the base kernels and kernel transformations considered above, the training labels
Ytrain only influence the base kernels kll and kgrad through the trained parameters θT , and
to some extent the transformation k→acs-rf-hyper(p). Using klin and knngp with the selection
methods below thus leads to passive learning or experimental design, where the entire
set of training inputs Xtrain is selected before any of the labels Ytrain are computed. This
can be much cheaper because no NN retraining is required, but is also potentially less
accurate.

Another consideration to be made when selecting a kernel is the feature space dimension
dfeat. While a low dfeat is usually beneficial for runtime purposes, larger dfeat might allow
for a more accurate representation of over-parameterized NNs. For klin, dfeat depends on
the data set but is often rather small. For kll, dfeat can be reduced using sketching, but
an effective increase of dfeat requires increasing the width of the last hidden layer, which
might not always be desirable. For kgrad, dfeat is typically very large, and can be flexibly
adjusted by using sketching. For knngp, we have dfeat = ∞, but sketching may also be
applicable, see Han et al. (2021) for a similar application to infinite-width NTKs.

6.5 Selection Methods
In the following, we will discuss a variety of kernel-based selection methods. We first
introduce the general iterative scheme that all evaluated methods (except Bait-FB) use,
with its two variants called P (for pool) and TP (for train+pool). Subsequently, we explain
specific selection methods.

6.5.1 Iterative Selection Methods

A natural approach towards selecting Xbatch is to formulate an acquisition function a which
scores an entire batch, such that a(Xbatch) should be maximized over all Xbatch ⊆ Xpool

of size Nbatch. However, the corresponding optimization problem is often intractable
(Gonzalez, 1985; Civril and Magdon-Ismail, 2013). Many BMAL methods thus select
points in a greedy/iterative fashion. To favor samples with high informativeness in
an iterative selection scheme that tries to enforce diversity of the selected batch, two
approaches can be used:

(P) Informativeness can be incorporated through the kernel. For example, k→Xtrain
(x,x)

represents the posterior variance at x of a GP with scaled kernel k→scale(Xtrain).
(TP) Informativeness can be incorporated implicitly by enforcing diversity of Xtrain∪Xbatch

instead of only enforcing diversity of Xbatch. In other words, a batch that is sufficiently
different from the training set typically necessarily contains new information.

An iterative selection template with the two variants P and TP is shown in Algorithm 3,
where different choices of NextBatch lead to different selection methods as discussed
in Section 6.5.2. For simplicity of notation, Algorithm 3 does not reuse information
in subsequent calls to NextBatch, which however is necessary to make the selection
methods more efficient. We provide efficiency-focused pseudocode, which is also used for
our implementation, and an analysis of runtime and memory complexities in Appendix 6.D.

114



6.5. Selection Methods

Algorithm 3 Iterative selection algorithm template with customizable function NextSam-
ple, for which different options will be discussed in Section 6.5.2.

function Select(k, Xtrain, Xpool, Nbatch, mode ∈ {P, TP})
Xbatch ← ∅
Xmode ← Xtrain if mode = TP else ∅ ▷ Points considered as “selected”
for i from 1 to Nbatch do
Xsel ← Xmode ∪ Xbatch ▷ Currently “selected” points
Xrem ← Xpool \ Xbatch ▷ Currently unselected points
Xbatch ← Xbatch ∪ {NextSample(k,Xsel,Xrem)}

end for
return Xbatch

end function

Additionally, our implementation usually accelerates kernel computations through suitable
precomputations, often by precomputing the features ϕ(x) for x ∈ Xtrain ∪ Xpool. In our
notation, we treat Xtrain and Xpool as sets, assuming that all values are distinct. In practice,
if multiple identical xi are contained in Xtrain and/or Xpool, they should still be treated as
distinct.

6.5.2 Specific Methods

In the following, we will discuss a variety of choices for NextSample in Algorithm 3,
leading to different selection methods. An overview of the resulting selection methods is
given in Table 3. Table 4 shows how BMAL methods from the literature relate to the
presented selection methods and kernels.

Random Selection

A simple baseline for comparison to other selection methods, denoted as Random, is to
select Xbatch randomly. We can formally express this as

NextSample(k,Xsel,Xrem) ∼ U(Xrem) ,

where U(Xrem) is the uniform distribution over Xrem. Since NextSample does not use
Xsel, the P and TP versions of Random are equivalent.

Naive Active Learning

If k(x,x) is interpreted as a measure for the uncertainty of the model at x, naive active
learning can simply be formalized as

NextSample(k,Xsel,Xrem) = argmax
x∈Xrem

k(x,x) . (6.21)

Since NextSample only considers the diagonal of the kernel matrix k(Xrem,Xrem), we
call the corresponding selection method MaxDiag. Similar to Random, the P and TP
versions of MaxDiag are equivalent. If k = k̃→Xtrain

, k(x,x) + σ2 represents the posterior
predictive variance of a GP with kernel k̃→scale(Xtrain) at x. Unlike in the classification

115



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Selection method Description Runtime complexity

Random Random selection O(Npool logNpool)

MaxDiag Naive active learning, picking
largest diagonal entries

O(Npool(Tk + logNpool))

MaxDet Greedy determinant maximization O(NcandNsel(Tk +Nsel)) or
O(NcandNseldfeat)

Bait-F Forward-Greedy total uncertainty
minimization

O(NcandNseldfeat + (Ntrain +
Npool)d

2
feat)

Bait-FB Forward-Backward-Greedy total
uncertainty minimization

O(NcandNseldfeat + (Ntrain +
Npool)d

2
feat)

FrankWolfe Approximate kernel mean
embedding using Frank-Wolfe

O((Ncand +NpoolNbatch)dfeat)
or O(N2

cand(Tk + 1))

MaxDist Greedy distance maximization O(NpoolNsel(Tk + 1))

KMeansPP Next point probability proportional
to squared distance

O(NpoolNsel(Tk + 1))

LCMD (ours) Greedy distance maximization in
largest cluster

O(NpoolNsel(Tk + 1))

Table 3: Selection methods presented in this paper and their runtime complexities. For the
runtime notation, we let Tk denote the runtime of a kernel evaluation and dfeat the dimensionality
of its (pre-computed) features. Moreover, we write Ncand := Npool + |Xmode| and Nsel :=
Nbatch + |Xmode|, with Xmode as in Algorithm 3. The runtime complexities are derived in
Appendix 6.D. Further refinements of the runtime complexities for Random and MaxDiag are
possible but not practically relevant to us, as these methods are already very efficient.

setting, the noise distribution ε ∼ N (0, σ2) in the GP model is independent of x, which
renders different acquisition functions like maximum entropy (Shannon, 1948; MacKay,
1992b) or BALD (Houlsby et al., 2011) equivalent to Eq. (6.21). The active learning
approach proposed by Zaverkin and Kästner (2021) corresponds to applying MaxDiag
to kll→Xtrain

in the limit σ2 → 0. Out of the three objectives presented in Section 6.2.2,
MaxDiag satisfies (INF), but not (DIV) and (REP). Indeed, if the pool set contains
(almost-) duplicates, MaxDiag may select a batch consisting of (almost) identical inputs.

Greedy Determinant Maximization

To take account of the inputs Xsel that have already been selected, it is possible to also
condition the GP on the selected values Xsel, since the posterior variance of a GP does not
depend on the unknown labels for Xsel. Picking the input with maximal uncertainty after
conditioning is equivalent to maximizing a determinant, as we show in Section 6.D.4:

NextSample(k,Xsel,Xrem) = argmax
x∈Xrem

k→post(Xsel,σ2)(x,x)

= argmax
x∈Xrem

det(k(Xsel ∪ {x},Xsel ∪ {x}) + σ2I) , (6.22)

116



6.5. Selection Methods

Known as Selection method Kernel Remark

BALD (Houlsby et al.,
2011)

MaxDiag k→post(Xtrain,σ2) for GP with kernel k

BatchBALD (Kirsch
et al., 2019)

MaxDet-P k→post(Xtrain,σ2) for GP with kernel k,
proposed for classification

Bait (Ash et al., 2021) Bait-FB-P kll→post(Xtrain,σ2)

ACS-FW (Pinsler et al.,
2019)

FrankWolfe-P kll→acs-rf(p) or
kll→acs-grad or
kll→acs-rf-hyper(p)

Core-Set (Sener and
Savarese, 2018)

MaxDist-TP∗ similar to kll proposed for classification

FF-Active (Geifman and
El-Yaniv, 2017)

MaxDist-TP similar to kll proposed for classification

BADGE (Ash et al.,
2019)

KMeansPP-P similar to kll proposed for classification

∗ This refers to their simpler k-center-greedy selection method.

Table 4: Some (regression adaptations of) BM(D)AL methods from the literature and their
corresponding selection methods and kernels.

We call the corresponding selection method MaxDet. It is equivalent to performing
non-batch mode active learning on the GP with kernel k, and has been applied to GPs by
Seo et al. (2000). Moreover, as we show in Section 6.D.4, it is also equivalent to applying
BatchBALD (Kirsch et al., 2019) to the GP with kernel k. If σ2 = 0, it is equivalent
to the P -greedy method for kernel interpolation (De Marchi et al., 2005), and it is also
related to the greedy algorithm for D-optimal design (Wynn, 1970). In comparison to a
naive implementation that computes each determinant separately, the runtime complexity
of the determinant computation in MaxDet can be reduced by a factor of O(N2

sel) to
O(NcandNsel(Tk +Nsel)) when implementing MaxDet via a partial pivoted matrix-free
Cholesky decomposition as suggested in Pazouki and Schaback (2011). For the case
Nsel ≫ dfeat, we show in Section 6.D.4 how the runtime complexity can be reduced further.
For given σ2 > 0 in Eq. (6.22), it follows from Eq. (6.11) that applying MaxDet-TP to a
kernel k is equivalent to applying MaxDet-P to k→post(Xtrain,σ2) (with the same σ2).

Greedy total uncertainty minimization

While MaxDet satisfies (INF) and (DIV), it does not satisfy (REP) since it does not
incorporate the pool set distribution. To fix this, Ash et al. (2021) propose Bait. The
regression version of Bait tries to minimize the sum of the GP posterior variances on the
training and pool set.5 In other words, Bait aims to minimize the acquisition function

a(Xsel) :=
∑

x̃∈Xtrain∪Xpool

k→post(Xsel,σ2)(x̃, x̃) . (6.23)

5There is an “unregularized” version of Bait that extends to classification, but we use the “regularized”
version with σ2 > 0 here since it is more natural for GPs and avoids numerical issues.

117



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

In Section 6.D.5, we show that Eq. (6.23) is equivalent to the original Bait formulation.
This is also known as (Bayesian) V-optimal design (Montgomery, 2017) and a similar
method has been studied for NNs by Cohn (1996). Ash et al. (2021) propose two alternative
methods for efficient approximate optimization of this acquisition function. The first one,
which we call Bait-F, is to simply use greedy selection as for the other methods in this
section. The second alternative, which we call Bait-FB, greedily selects 2Nbatch points
(forward step) and then greedily removes Nbatch points (backward step). In our framework,
we can define Bait-F by

NextSample(k,Xsel,Xrem) := argmin
x∈Xrem

∑
x̃∈Xtrain∪Xpool

k→post(Xsel∪{x},σ2)(x̃, x̃) .

Details on Bait-F and Bait-FB are given in Section 6.D.5. Like for MaxDet, applying
Bait-F-TP or Bait-FB-TP to a kernel k is equivalent to applying Bait-F-P or Bait-FB-P
to k→post(Xtrain,σ2) (with the same σ2).

Frank-Wolfe optimization

In order to make Xbatch representative of the pool set, Pinsler et al. (2019) suggest to choose
Xbatch such that

∑
x∈Xpool

ϕ(x) is well-approximated by
∑

x∈Xbatch
wxϕ(x), where wx are

non-negative weights. Specifically, they propose to apply the Frank-Wolfe optimization
algorithm to a corresponding optimization problem, which automatically selects elements
of Xbatch iteratively. This can be seen as an attempt to represent the distribution of Xpool

with Xbatch by approximating the empirical kernel mean embedding N−1
pool

∑
x∈Xpool

k(x, ·)
using Xbatch. The corresponding selection method can be implemented in kernel space or
feature space. Since the kernel space version scales quadratically with Npool, Pinsler et al.
(2019) use the feature space version for large pool sets. We also use the feature space
version for our experiments and show the pseudocode in Section 6.D.6. While the version
by Pinsler et al. (2019) allows to select the same x ∈ Xpool multiple times, we prohibit this
as it would allow to select smaller batches and thus prevent a fair comparison to other
methods.

Greedy distance maximization

A simple strategy to enforce the diversity of a set of points is to greedily select points with
maximum distance to all previously selected points. The resulting algorithm has been
frequently proposed in the literature under different names, see Section 6.D.7. In our case,
the kernel k gives rise to a distance measure dk(x, x̃) as in Eq. (6.13). With this distance
measure, the MaxDist selection method is specified by

NextSample(k,Xsel,Xrem) = argmax
x∈Xrem

min
x′∈Xsel

dk(x,x
′) .

If the argmax is not unique, an arbitrary maximizer is chosen. If Xsel is empty, we choose
argmaxx∈Xrem

k(x,x).
The use of MaxDist-TP with klin for BMAL has been suggested by Yu and Kim (2010),

and with a kernel similar to kll for BMDAL by Sener and Savarese (2018) and Geifman
and El-Yaniv (2017). Sener and Savarese (2018) also alternatively propose a more involved

118



6.5. Selection Methods

discrete optimization algorithm. In their experiments, MaxDist yielded only slightly worse
results than the more involved optimization algorithm while being significantly faster and
easier to implement. They note that the batch selected by MaxDist is suboptimal with
respect to a covering objective by at most a factor of two. In Section 6.D.7, we show that
a similar guarantee can be given when applying MaxDist to a sketched approximation
of the desired kernel. The use of dimensionality reduction for MaxDist has also been
analyzed by Eppstein et al. (2020). Inspired by the reasoning of Sener and Savarese (2018),
we interpret the distances as uncertainty estimates: If both the optimal regression function
f∗ and the learned regression function fθT

are L-Lipschitz with respect to dk, and we have
yi = f∗(xi) = fθT

(xi) on the training set, then we have the worst-case bound

|fθT
(x)− f∗(x)| ≤ 2L min

x̃∈Xtrain

dk(x, x̃) . (6.24)

Of course, the Lipschitz constant L might itself depend on Xtrain, so this should only be
interpreted as a crude heuristic. Wenzel et al. (2021) show that for kernel interpolation
with Sobolev kernels, MaxDist and MaxDet with σ2 = 0 yield asymptotically equivalent
convergence rates.

k-means++ seeding

Similar to MaxDet, MaxDist enforces (INF) and (DIV) but not (REP). To incorporate
(REP), i.e., sample more points from regions with higher pool set density, we can view
batch selection as a clustering problem: For example, if the distance-based uncertainty
estimate in Eq. (6.24) holds, we could try to minimize the corresponding upper bound on
the pool set MSE 1

Npool

∑
x∈Xpool

|fθT
(x)− f∗(x)|2 after adding Xbatch:

Xbatch = argmin
Xbatch⊆Xpool,|Xbatch|=Nbatch

1

Npool

∑
x∈Xpool

min
x̃∈Xmode∪Xbatch

dk(x, x̃)
2 . (6.25)

This optimization problem is essentially the k-medoids problem (Kaufman and Rousseeuw,
1990), which combines the objective for the k-means clustering algorithm (Lloyd, 1982)
with the constraint that the cluster centers must be chosen from within the data to be
clustered. For large pool sets, common k-medoids algorithms can be computationally
infeasible. An efficient approximate k-medoids solution can be computed using the seeding
method of the k-means++ algorithm (Arthur and Vassilvitskii, 2007; Ostrovsky et al.,
2006), which simply chooses the next batch element randomly via the distribution

∀x ∈ Xrem : P (NextSample(k,Xsel,Xrem) = x) =
minx̃∈Xsel

dk(x, x̃)
2∑

x′∈Xrem
minx̃∈Xsel

dk(x′, x̃)2
,

and if Xsel is empty, it selects NextSample(k,Xsel,Xrem) uniformly at random from Xrem.
We refer to the corresponding selection method as KMeansPP. For the case Xmode = ∅,
Arthur and Vassilvitskii (2007) showed that with respect to the objective in Eq. (6.25),
the batch selected by KMeansPP is suboptimal by a factor of at most 16 + 8 log(Nbatch)
in expectation. The use of KMeansPP-P for BMDAL has been proposed in the so-called
BADGE method by Ash et al. (2019). In contrast to our setting, BADGE is designed
for classification and introduces an uncertainty estimate into kll not through a posterior
transformation but through the influence of the softmax output layer on the magnitude of
the gradients.

119



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

x1

x
2

(a) One LCMD step.

x1

x
2

(b) Subsequent LCMD step.

Figure 2: Two steps of LCMD selection for points x ∈ R2 with linear feature map ϕ(x) = x.
The black points represent the already selected points Xsel and the gray points represent the
remaining points Xrem. The lines associate each remaining point to the closest selected point,
forming clusters. The orange lines represent the cluster with the largest sum of squared distances.
The red point, which is the remaining point with the largest distance to the cluster center within
the orange cluster, is selected next. In the left plot, it can be seen that the smaller-radius cluster
on the left is preferred over the larger-radius clusters on the right due to the higher point density
on the left. After adding a point from the cluster, its size shrinks and a cluster on the right
becomes dominant, which is shown in the right plot.

Largest cluster maximum distance

As an alternative to the randomized KMeansPP method, we propose a novel deterministic
method that is inspired by the same objective (Eq. (6.25)). This method, which we call
LCMD (largest cluster maximum distance), is visualized in Figure 2. Intuitively, we
enforce (REP) by limiting the selection to the largest cluster, while we also enforce (DIV)
by picking the maximum distance point within this cluster. LCMD can be formally defined
as follows: We interpret points x̃ ∈ Xsel as cluster centers. For each point x ∈ Xrem, we
define its associated center c(x) ∈ Xsel as

c(x) := argmin
x̃∈Xsel

dk(x, x̃) .

If there are multiple minimizers, we pick an arbitrary one of them. Then, for each center
x̃ ∈ Xsel, we define the cluster size

s(x̃) :=
∑

x∈Xrem:c(x)=x̃

dk(x, x̃)
2 .

We then pick the maximum-distance point from the cluster with maximum size:

NextSample(k,Xsel,Xrem) = argmax
x∈Xrem:s(c(x))=maxx̃∈Xsel

s(x̃)

dk(x, c(x)) .

As for MaxDist, if Xsel is empty, we choose argmaxx∈Xrem
k(x,x) instead. If the selection

of pool points should be adapted to the distribution of another set X instead of Xpool, one

120



6.5. Selection Methods

may simply compute the cluster sizes based on X instead. Importantly, like KMeansPP
but unlike some other k-medoids methods, LCMD can be implemented with a runtime
complexity that is linear in Npool, as discussed in Section 6.D.9.

Other options

As mentioned above, MaxDist can be interpreted as a greedy optimization algorithm for
a covering objective that is NP-hard to (approximately) optimize (Gonzalez, 1985; Feder
and Greene, 1988), but for which other approximate optimization algorithms have been
proposed (Sener and Savarese, 2018). Similarly, MaxDet-P attempts to greedily maximize
det(k(Xbatch,Xbatch) + σ2I), which is NP-hard to (approximately) optimize (Civril and
Magdon-Ismail, 2013), but for which other approximate optimization algorithms have
been proposed (Bıyık et al., 2019). We do not investigate these advanced optimization
algorithms here as they come with greatly increased runtime cost, and MaxDet and
MaxDist already enjoy some approximation guarantees, as discussed in Appendix 6.D.

Yu and Kim (2010), Wu (2018), and Zhdanov (2019) suggest less scalable clustering-
based approaches for BM(D)AL. Alternatively, it might be interesting to try the greedy
k-means++ algorithm (Celebi et al., 2013), which provides a slightly less efficient alternative
to the k-means++ algorithm.

Caselton and Zidek (1984) propose to optimize mutual information between the batch
samples and the remaining pool samples, which is analyzed for GPs by Krause et al. (2008),
but does not scale well with the pool set size for GPs, at least in a general kernel-space
formulation. Another option is to remove the non-negativity constraint on the weights
wx used in FrankWolfe. This setting is also treated in a generalized fashion in Santin
et al. (2021). An investigation of this method is left to future work.

6.5.3 Discussion

When considering the design criteria from Section 6.2.2, we can say that MaxDiag
only satisfies (INF), while MaxDet and MaxDist also satisfy (DIV). Arguably, Bait,
KMeansPP, and LCMD satisfy all three properties (INF), (DIV) and (REP). The
FrankWolfe method is only designed to satisfy (REP), based on which one could argue
that (INF) and (DIV) are also satisfied to some extent.

In terms of runtime complexity, as can be seen in Table 3, all considered selection
methods are well-behaved for moderate feature space dimension dfeat. When considering
kernels such as kgrad, whose evaluation is tractable despite having very high feature
space dimension, distance-based selection methods are still efficient while Bait and
FrankWolfe can become intractable for large pool set sizes, and MaxDet exhibits
worse scaling with respect to Nbatch. Moreover, if ϕ(Xtrain) has full rank and dfeat ≤ Ntrain,
it follows from Eq. (6.10) that in the limit σ2 → 0, the GP posterior uncertainty becomes
zero everywhere. Hence, Bayesian posterior-based methods like MaxDet, Bait and
FrankWolfe might require dfeat ≳ Ntrain for good performance, which in turn deteriorates
their runtime.

In the non-batch active learning setting, that is, for Nbatch = 1, some selection
methods become equivalent: LCMD-P, MaxDist-P, and MaxDet-P become equivalent
to MaxDiag-P; moreover, KMeansPP-P becomes equivalent to Random. This suggests

121



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

that for Nbatch = 1, TP-mode is necessary for KMeansPP and LCMD to ensure (REP).

6.6 Experiments

To evaluate a variety of combinations of kernels, kernel transformations, and selection
methods, we introduce a new open-source benchmark for BMDAL for regression. Our
benchmark uses 15 large tabular regression data sets, with input dimensions ranging
between two and 379, that are selected mostly from the UCI and OpenML repositories, cf.
the detailed description in Section 6.E.1. The initial pool set size Npool for these data sets
lies between 31335 and 198720. As an NN model, we use a three-layer fully connected
NN with 512 neurons in both hidden layers, parameterized as in Section 6.2.1. We train
the NN using Adam (Kingma and Ba, 2015) for 256 epochs with batch size 256, using
early stopping based on a validation set. Results shown here are for the ReLU activation
function, but we also re-ran most of our experiments for the SiLU (a.k.a. swish) activation
(Elfwing et al., 2018), and unless indicated otherwise, our insights discussed below apply
to results for both activation functions. We manually optimized the parameters σw, σb
and the learning rate separately for both activation functions to optimize the average
logarithmic RMSE of Random selection. Details on the NN architecture and training are
described in Section 6.E.3. For the hyperparameter σ2, which occurs in MaxDet, Bait,
and various posterior-based transformations, we found that smaller values typically yield
better average results but may cause numerical instabilities. As a compromise, we chose
σ2 = 10−6 in our experiments and use 64-bit floats for computations involving σ2.

In our evaluation, we start with Ntrain = 256 and then acquire 16 batches with
Nbatch = 256 samples each using the respective BMAL method. We repeat this 20 times
with different seeds for NN initialization and different splits of the data into training,
validation, pool, and test sets. We measure the mean absolute error (MAE), root mean
squared error (RMSE), 95% and 99% quantiles, and the maximum error (MAXE) on
the test set after each BMAL step. For each of those five error metrics, we average the
logarithms of the metric over the 20 repetitions, and, depending on the experiment, over
the 16 steps and/or the 15 data sets. Note that a difference of δ between two logarithmic
values corresponds to a ratio eδ ≈ 1 + δ between the values; for example, a reduction by
δ = 0.1 corresponds to a reduction of the geometric mean error by about 10%. Our most
important metric is the RMSE, but we will also put some focus on MAXE since it can be
interpreted as a measure of robustness to distribution shifts. Generally, RMSE is more
affected by rare but large errors than MAE, while the quantiles and MAXE exclusively
focus on rare but large errors.

In the following, we will discuss some of the benchmark results. More detailed results
can be found in Section 6.E.4.

6.6.1 Comparison to Existing Methods

Based on our detailed evaluation in Table 6.E.5 and Table 6.E.6, we propose a new
BMDAL algorithm as the combination of the LCMD-TP selection method and the
kernel kgrad→sketch(512). Figure 1 and Table 5 show that our proposed combination clearly
outperforms other methods from the literature in terms of averaged logarithmic RMSE

122



6.6. Experiments

over our benchmark data sets and random splits. We incorporate the methods from
the literature into our framework as shown in Table 5, which involves the following
modifications:

• The BALD (Houlsby et al., 2011) and BatchBALD (Kirsch et al., 2019) acquisition
functions are applied to a last-layer Gaussian Process model.

• For BAIT, we rescale kll based on the training set before applying the posterior
transformation, see Section 6.4.2, and we apply regularization by using a small
σ2 > 0.

• For ACS-FW (Pinsler et al., 2019), we use the FrankWolfe selection method
with kll→acs-rf-hyper(512). Compared to the experiments by Pinsler et al. (2019), there
are several differences: First, we do not permit FrankWolfe to select smaller
batches by selecting the same point multiple times. Second, we use 512 random
features instead of 10. Third, our acs-rf-hyper transformation first rescales kll based
on the training set, which we found to improve performance. Fourth, our kll kernel
incorporates the last-layer bias and not only the weights.

• By Core-Set, we refer to the k-center-greedy method of Sener and Savarese (2018)
applied to kll, which is also equivalent to FF-Active (Geifman and El-Yaniv, 2017).

• For BADGE (Ash et al., 2019), which originally incorporates uncertainties into ϕll

through softmax gradients, we use ϕll→Xtrain
instead of ϕll.

As argued in Section 6.2.2, we do not compare to methods that require training with
ensembles (Krogh and Vedelsby, 1994), since ensembles are more expensive to train and
these methods are typically designed for non-batch active learning. Moreover, we do not
compare to methods that require training with Dropout (Tsymbalov et al., 2018) or custom
loss functions (Ranganathan et al., 2020), since these methods can change the error for
the underlying NN, which makes them difficult to compare fairly and more inconvenient
to use.

6.6.2 Evaluated Combinations

Our framework allows us to obtain a vast number of BMDAL algorithms via combinations
of base kernels, kernel transformations, and the P and TP modes of different selection
methods. Table 6.E.5 and Table 6.E.6 in Section 6.E.4 show a large number of such
combinations for ReLU and SiLU activations, respectively. These combinations have been
selected according to the following principles:

• Kernels for P-mode selection use posterior-based transformations, while kernels for
TP-mode selection do not (see Section 6.5.1).

• Sketching and random features always use 512 target features. Similar to the hidden
layer size of 512, this number has been selected to be a bit larger than the usually
employed Nbatch = 256. Note that due to the bias in the last layer, kll has a
513-dimensional feature space.

• FrankWolfe is only run in P mode (as proposed in Pinsler et al. (2019)), since
in TP mode, kernel mean embeddings in 512-dimensional feature space would be
approximated using more than 512 samples. Note that Pinsler et al. (2019) only
use 10 instead of 512 random features in their experiments, leading to a worse
approximation.

123



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

BMDAL method Selection method Kernel mean log RMSE (↓)
ReLU SiLU

Supervised learning Random — -1.401 -1.406

BALD (Houlsby et al., 2011)
with last-layer GP

MaxDiag kll→Xtrain
-1.285 -1.300

BatchBALD (Kirsch et al.,
2019) with last-layer GP

MaxDet-P kll→Xtrain
-1.463 -1.467

Bait (Ash et al., 2021) Bait-FB-P kll→Xtrain
-1.541 -1.522

ACS-FW (Pinsler et al., 2019) FrankWolfe-P kll→acs-rf-hyper(512) -1.439 -1.437

Core-Set∗ (Sener and Savarese,
2018), FF-Active (Geifman

and El-Yaniv, 2017)

MaxDist-TP kll -1.491 -1.515

BADGE (Ash et al., 2019)
with last-layer GP uncertainty

KMeansPP-P kll→Xtrain
-1.530 -1.484

Ours LCMD-TP kgrad→sketch(512) -1.590 -1.597
∗ This refers to their simpler k-center-greedy selection method.

Table 5: Comparison of our BMDAL method against other methods from the literature (cf.
Table 4). The mean log RMSE is averaged over all data sets, repetitions, and BMAL steps for
the respective experiments with ReLU or SiLU activation function. We make small adjustments
to the literature methods as described in Section 6.6.

• Due to the equivalence between P mode with posterior transformation and TP mode
without posterior transformation mentioned in Section 6.5.2, Bait is always run in
P mode, and MaxDet is mostly run in P mode except for kgrad and knngp due to
their high-dimensional feature space.

In general, we observe the following trends in our results across selection methods:

• The network-dependent base kernels kll and kgrad clearly outperform the network-
independent base kernels klin and knngp across different selection methods, modes
and kernel transformations.

• Out of the network-dependent base kernels, kgrad typically outperforms kll, at least
for NN hyperparameters optimized for Random (cf. Section 6.E.3). It should be
noted that in our ReLU experiments, these optimized hyperparameters typically lead
to many dead neurons in the last hidden layer, which may affect kll by reducing the
effective feature space dimension.6 We define the effective feature space dimension
of the pool set for a kernel k as

deff :=
tr(k(Xpool,Xpool))

∥k(Xpool,Xpool)∥2
=
λ1 + . . .+ λdfeat

λ1
,

6In the extreme case where all neurons in the last hidden layer are dead, the network-dependent base
kernels become degenerate, which can cause numerical problems in selection methods. Once a selection
method suggests an invalid (e.g. already selected) sample for the batch, we fill up the rest of the batch
with random samples. Out of the 597900 BMDAL steps in our ReLU experiments, such invalid samples
were suggested in just 4 steps in total.

124



6.6. Experiments

where λ1 ≥ . . . ≥ λdfeat are the eigenvalues of the feature covariance matrix

ϕ(Xpool)
⊤ϕ(Xpool) ∈ Rdfeat×dfeat .

With this definition, deff is indeed typically much larger for kgrad→sketch(512) than for
kll in our experiments.7 Another difference is that, for the ReLU activation function,
kgrad is discontinuous while kll is not.

• For kgrad, applying sketching does not strongly affect the resulting accuracy while
leading to considerably faster runtimes.

• When evaluating the use of ensembled NN kernels, we want to differentiate between
the effect of ensembling on the accuracy of supervised learning and the effect of
ensembling on the quality of the selected batches Xbatch. To eliminate the former
effect, we only consider the averaged errors of the individual ensemble members and
not the error of their averaged predictions. With this method of evaluation, we find
that ensembling of network-dependent kernels only leads to small improvements in
the error, at least for the ensembling configurations we tested. This is in contrast
to other papers where the uncertainty of the ensemble predictions turned out to
be more beneficial (Beluch et al., 2018; Pop and Fulop, 2018). Perhaps ensembling
is less useful in our case because our non-ensembled kernels already provide good
uncertainty measures.

• Out of the acs-grad, acs-rf and acs-rf-hyper transformations, acs-rf often performs
best, except for FrankWolfe-P with base kernel kgrad, where acs-rf-hyper performs
best.

• In contrast to Ash et al. (2021), we find that Bait-FB does not perform better than
Bait-F.

• The relative gains for BMDAL methods compared to Random selection are typically
largest on metrics such as MAXE or 99% quantile, and worst on MAE.

• All investigated BMDAL methods only take a few seconds to select a batch in
our experiments on our NVIDIA RTX 3090 GPUs (cf. Appendix 6.E), which is
typically faster than the time for training the corresponding NN. Hence, we expect all
investigated BMDAL methods to be much faster than the time for labeling in most
scenarios where BMDAL is desirable. Note that the runtime of TP-mode selection
methods is comparable to those of P-mode selection methods only because we typically
run P-mode selection with 64-bit floats to avoid numerical issues for posteriors. TP-
mode selection methods need to consider Ntrain +Nbatch instead of Nbatch selected
points, which can be significantly slower than P-mode if Ntrain ≫ Nbatch. Especially
for TP-mode selection methods, it may therefore be desirable to let Nbatch grow
proportionally to Ntrain.

7Specifically, averaged over all corresponding ReLU experiments with Nbatch = 256 and over all BMAL
steps, kgrad→sketch(512) leads to an average deff of about 5.5, while kll leads to an average deff of about
1.7. On corresponding BMAL steps, the effective dimension is larger for kgrad→sketch(512) about 95% of
the time. For SiLU, the results are slightly less extreme, with effective dimensions of 4 and 2.3, and the
effective dimension of kgrad→sketch(512) being larger about 90% of the time.

125



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Selection method Sel. mode Selected kernel mean log RMSE Avg. time [s]
Random — — -1.401 0.001
MaxDiag — kgrad→sketch(512)→acs-rf(512) -1.370 0.650
MaxDet P kgrad→sketch(512)→Xtrain

-1.512 0.770
Bait F-P kgrad→sketch(512)→Xtrain

-1.585 1.508
FrankWolfe P kgrad→sketch(512)→acs-rf-hyper(512) -1.542 0.823

MaxDist P kgrad→sketch(512)→Xtrain
-1.514 0.713

KMeansPP P kgrad→sketch(512)→acs-rf(512) -1.569 0.836
LCMD TP kgrad→sketch(512) -1.590 0.981

Table 6: Selected kernels and modes per selection method that are shown in our plots. The
mean log RMSE is averaged over all data sets, repetitions, and BMAL steps. The average time
for the batch selection is averaged over all data sets and BMAL steps, measured at one repetition
with only one process running on each NVIDIA RTX 3090 GPU. An overview of all results can
be found in Table 6.E.5.

6.6.3 Best Kernels and Modes for each Selection Method

Our base kernels, kernel transformations, and selection modes yield numerous ways to
apply each selection method. To compare selection methods, we choose for each selection
method the best-performing combination according to the averaged logarithmic RMSE,
excluding kernels with ensembling and kgrad without sketching since they considerably
increase computational cost while providing comparable accuracy to their more efficient
counterparts. The selected combinations are shown in Table 6. Compared to the literature
methods in Table 5, we see that optimizing the kernel and mode can yield a considerable
difference in performance. Note that the relative performance between the configurations
for SiLU is slightly different, as can be seen in Table 6.E.6. If we selected combinations
according to the SiLU results, the combinations for MaxDist and KMeansPP in Table 6
would use TP-mode and kgrad→sketch(512) instead. When considering only kernels based
on kll, the results from Table 6.E.5 and Table 6.E.6 show that a comparison of selection
methods would look qualitatively similar.

6.6.4 Comparison of Selection Methods

We compare the selected configurations from Table 6 in several aspects. Figure 3 shows
the evolution of the mean logarithmic MAE, RMSE, MAXE, 95% quantile, and 99%
quantile over the BMAL steps, for a batch size of Nbatch = 256. This demonstrates that
the best considered BMDAL methods can match the average performance of Random
selection with about half of the samples for RMSE, and even fewer samples for MAXE. On
individual data sets, this may differ, as shown in Figure 4. From this figure, it is apparent
that when considering RMSE, LCMD-TP outperforms other methods not only in terms
of average performance but across the majority of the data sets. Specifically, Table 6.E.3
shows that LCMD-TP matches or exceeds the performance of the other selected BMDAL
methods on 8 out of the 15 data sets in terms of RMSE. Figure 4 also shows that the
selected MaxDet-P and MaxDist-P configurations yield very similar performance on all
data sets.

Figure 5 shows the influence of the chosen batch size Nbatch on the final performance at
Ntrain = 4352 training samples. As expected, the naive active learning scheme MaxDiag

126



6.6. Experiments

256 512 1024 2048 4096
Training set size Ntrain

−2.2

−2.0

−1.8

−1.6

−1.4

m
ea

n
lo

g
M

A
E

256 512 1024 2048 4096
Training set size Ntrain

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

m
ea

n
lo

g
R

M
SE

256 512 1024 2048 4096
Training set size Ntrain

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

m
ea

n
lo

g
95

%
qu

an
til

e

256 512 1024 2048 4096
Training set size Ntrain

−0.6

−0.4

−0.2

0.0

0.2

0.4

m
ea

n
lo

g
99

%
qu

an
til

e

256 512 1024 2048 4096
Training set size Ntrain

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

m
ea

n
lo

g
M

A
X

E

RANDOM

MAXDIAG

MAXDET-P
BAIT-F-P
FRANKWOLFE-P
MAXDIST-P
KMEANSPP-P
LCMD-TP (ours)

Figure 3: This figure shows how fast the errors decrease during BMAL for different selection
methods and their corresponding kernels from Table 6. Specifically, for each of the five error
metrics, the corresponding plot shows the logarithmic error metric between each BMAL step
for Nbatch = 256, averaged over all repetitions and data sets. The performance of Random can
be interpreted as the performance of supervised learning without active learning. The black
horizontal dashed line corresponds to the final performance of Random at Ntrain = 4352. The
shaded area, which is nearly invisible for all metrics except MAXE, corresponds to one estimated
standard deviation of the mean estimator, cf. Section 6.E.4.

127



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

−3.0

−2.5

−2.0

−1.5

−1.0

m
ea

n
lo

g
R

M
SE

ct slices

−1.9

−1.8

−1.7

−1.6

−1.5

diamonds

−1.5

−1.4

−1.3

−1.2

−1.1

fried

−1.5

−1.0

−0.5

m
ea

n
lo

g
R

M
SE

kegg undir

−0.4

−0.3

−0.2

methane

−2.0

−1.5

−1.0

−0.5

mlr knn rng

−2.0

−1.5

−1.0

m
ea

n
lo

g
R

M
SE

online video

−0.6

−0.4

−0.2

0.0

poker

−0.30

−0.25

−0.20

protein

−3.25

−3.00

−2.75

−2.50

−2.25

−2.00

m
ea

n
lo

g
R

M
SE

query

−0.6

−0.5

−0.4

−0.3

road

−2.0

−1.8

−1.6

−1.4

sarcos

256 512 1024 2048 4096
Training set size Ntrain

−2.0

−1.5

−1.0

m
ea

n
lo

g
R

M
SE

sgemm

256 512 1024 2048 4096
Training set size Ntrain

−0.65

−0.60

−0.55

−0.50

stock

256 512 1024 2048 4096
Training set size Ntrain

−4.0

−3.5

−3.0

−2.5

wec sydney

RANDOM

MAXDIAG

MAXDET-P
BAIT-F-P

FRANKWOLFE-P
MAXDIST-P

KMEANSPP-P
LCMD-TP (ours)

Figure 4: This figure shows how fast the RMSE decreases during BMAL on the individual
benchmark data sets for different selection methods and their corresponding kernels from Table 6.
Specifically, the plots above show the logarithmic RMSE between each BMAL step forNbatch = 256,
averaged over all repetitions. The black horizontal dashed line corresponds to the final performance
of Random at Ntrain = 4352. The shaded area corresponds to one estimated standard deviation
of the mean estimator, cf. Section 6.E.4.

128



6.6. Experiments

64 128 256 512 1024 2048 4096
Acquisition batch size Nbatch

−2.3

−2.2

−2.1

−2.0

−1.9

−1.8

m
ea

n
lo

g
M

A
E

64 128 256 512 1024 2048 4096
Acquisition batch size Nbatch

−1.8

−1.7

−1.6

−1.5

−1.4

m
ea

n
lo

g
R

M
SE

64 128 256 512 1024 2048 4096
Acquisition batch size Nbatch

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

m
ea

n
lo

g
95

%
qu

an
til

e

64 128 256 512 1024 2048 4096
Acquisition batch size Nbatch

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

m
ea

n
lo

g
99

%
qu

an
til

e

64 128 256 512 1024 2048 4096
Acquisition batch size Nbatch

0.7

0.8

0.9

1.0

1.1

m
ea

n
lo

g
M

A
X

E

RANDOM

MAXDIAG

MAXDET-P
BAIT-F-P
FRANKWOLFE-P
MAXDIST-P
KMEANSPP-P
LCMD-TP (ours)

Figure 5: This figure shows how much the final accuracy of different BMDAL methods deteriorates
when fewer BMAL steps with larger batch sizes are used. Specifically, we use different selection
methods with the corresponding kernels from Table 6, starting with Ntrain = 256 and then
performing 2m BMAL steps with batch size Nbatch = 212−m for m ∈ {0, . . . , 6}, such that the
final training set size is 4352 in each case. For each of the five error metrics, the corresponding
plot shows the final logarithmic error metric, averaged over all data sets and repetitions. Note
that the performance of Random selection does not depend on Nbatch but only on the final
training set size, hence it is shown as a constant line here. The shaded area, which is nearly
invisible for all metrics except MAXE, corresponds to one estimated standard deviation of the
mean estimator, cf. Section 6.E.4.

129



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

0.0 0.2 0.4 0.6 0.8

mean log RMSE - mean log MAE

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
im

pr
ov

em
en

to
f

L
C

M
D

-T
P

(o
ur

s)

ct slices
diamonds
fried
kegg undir
methane
mlr knn rng
online video
poker
protein
query
road
sarcos
sgemm
stock
wec sydney
RANDOM

Linear Regression fit

Figure 6: This figure shows, for each data set, the improvement in sample efficiency of
LCMD-TP over Random (on the y-axis) versus the variation of the error distribution (on
the x-axis). The variation is measured as mean log RMSE − mean log MAE on the ini-
tial training set (Ntrain = 256). The improvement in sample efficiency is measured by

mean log RMSE(LCMD-TP)−mean log RMSE(Random)
mean log RMSE(Random)−(mean log RMSE at Ntrain=256) . Here, the means are taken over all 20 rep-
etitions and, unless indicated otherwise, over the trained networks after each of the 16 BMDAL
steps. The Pearson correlation coefficient for the plotted data is R ≈ 0.88.

is particularly sensitive to the batch size. The other selection methods are less sensitive to
changes in Nbatch and exhibit almost no degradation in performance up to Nbatch = 1024.
Note that this “threshold” might depend on the initial and final training set sizes as well
as the feature-space dimension dfeat.

Overall, the discussed figures and the detailed results in Table 6.E.5 show that LCMD-
TP performs best in terms of MAE, RMSE, and 95% quantile, followed by Bait-F-P
and KMeansPP. For MAXE, MaxDist, MaxDet and Bait-F-P exhibit the best
performances. Since MaxDet and MaxDist are motivated by worst-case considerations,
it is not surprising that they perform well on MAXE, while the strong performance of
Bait-F-P on MAXE is unexpected. Moreover, it is perhaps surprising that in Figure 3,
the relative performances for the 99% quantile are arguably more similar to the RMSE
performances than to the MAXE performances. For the 95% quantile, the relative
performances for MaxDet, MaxDist and MaxDiag are even worse than for the RMSE.
Thus, the use of MaxDist instead of LCMD may only be advisable if one expects strong
distribution shifts between pool and test sets.

130



6.7. Conclusion

6.6.5 When should BMDAL be Applied?

While LCMD-TP achieves excellent average performance, its benefits over Random
selection vary strongly between data sets, as is evident from Figure 4. Overall, LCMD-TP
with kgrad→sketch(512) outperforms random selection in terms of RMSE on 13 out of the 15
data sets and barely performs worse on the other two. Nonetheless, an a priori estimate of
the benefits of LCMD-TP over Random selection on individual data sets could be useful
to inform practitioners on whether they should be interested in applying BMDAL. Figure 6
shows that on our 15 benchmark data sets, the variation of test errors after training on the
initial training set (Ntrain = 256), measured by the quotient RMSE

MAE
, is strongly correlated

with the improvement in sample efficiency through LCMD-TP over Random. In other
words, the larger RMSE

MAE
on the initial training set, the more benefit we can expect from

LCMD-TP with kgrad→sketch(512) over random selection.

6.7 Conclusion

In this paper, we introduced a framework to compose BMDAL algorithms out of base
kernels, kernel transformations, and selection methods. We then evaluated different
combinations of these components on a new benchmark consisting of 15 large tabular
regression data sets. In our benchmark results, for all considered selection methods,
replacing the wide-spread last-layer kernel kll by a sketched finite-width neural tangent
kernel kgrad→sketch(p) leads to accuracy improvements at similar runtime and memory cost.
Moreover, our novel LCMD selection method sets new state-of-the-art results in our
benchmark in terms of RMSE and MAE.

6.7.1 Limitations

The BMDAL methods in our framework are very attractive for practitioners using NNs
for regression since they are scalable to large data sets and can be applied to a wide
variety of NN architectures and training methods without requiring modifications to the
NN. However, while our benchmark contains many large data sets, it cannot cover all
possible application scenarios that the considered BMDAL methods could be applied to.
For example, it is unclear whether our insights can be transferred to applications like drug
discovery (Mehrjou et al., 2021) or atomistic ML (Zaverkin and Kästner, 2021), where
other types of data and other NNs are employed. Even in the tabular data setting, the
relevance of our results for smaller data sets or recently proposed NN architectures (e.g.
Gorishniy et al., 2021; Somepalli et al., 2022; Kadra et al., 2021) is unclear. Moreover, the
current benchmark does not involve distribution shifts between pool and test data, which
would be interesting for some practical applications.

6.7.2 Remaining Questions

Our results give rise to some interesting questions for future research, of which we list some
in the following: Can kgrad be adapted to incorporate effects of optimizers such as Adam?
How can it be efficiently evaluated and sketched for other types of layers? How can we
decide which method to use on a data set, beyond just using the one with the best average

131



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

performance across the benchmark? Are there some characteristics of data sets or training
setups that can be used to predict which method will perform best? Are clustering-based
methods like LCMD-TP also superior to other methods for non-batch AL? How much
better performance could be attained if the methods had access to the pool labels, and
what kinds of batches would such a method select? Would it have similar properties as
Zhou et al. (2021) found for classification? How can our framework be generalized to
classification or multi-output regression?

Our framework is formulated for the pool-based AL setting, where samples should be
selected from a pool of unlabeled samples. By using a different kind of selection methods
with the same kernels and kernel transformations, our framework could be adapted to
the streaming AL setting, where unlabeled samples arrive sequentially and one has to
decide immediately whether to label them or not. For the membership-query AL setting,
where unlabeled samples can be chosen arbitrarily, the situation is more difficult: Since
the feature map ϕ is typically not surjective, samples cannot be chosen in the feature space
directly, and a direct choice in the input space might require differentiating the kernel for
efficient optimization. Nonetheless, extending our methods to other AL settings could be
an interesting avenue for further research.

Acknowledgments We want to thank Philipp Hennig, Tizian Wenzel, Daniel Winkle,
Benjamin Unger, and Paul Bürkner for helpful comments. Funded by Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy -
EXC 2075 – 390740016. The authors thank the International Max Planck Research School
for Intelligent Systems (IMPRS-IS) for supporting David Holzmüller. Viktor Zaverkin
acknowledges the financial support received in the form of a Ph.D. scholarship from the
Studienstiftung des Deutschen Volkes (German National Academic Foundation).

132



Appendix

6.A Overview

The appendix structure mirrors the structure of the main paper, providing more details on
the corresponding sections of the main paper: We discuss further details on base kernels
in Appendix 6.B, on kernel transformations in Appendix 6.C, and on selection methods
in Appendix 6.D. The latter section includes efficiency-focused pseudocode as well as
discussions on relations to the literature. Finally, we provide details on the setup and
results of our experiments in Appendix 6.E.

6.B Details on Base Kernels

In the following, we will provide details for the infinite-width NNGP kernel.

6.B.1 NNGP Kernel

For the fully-connected NN model considered in Section 6.2.1 with a ReLU activation
function, the NNGP kernel is given by

knngp(x, x̃) := k(L)nngp(x, x̃) ,

where we roughly follow Lee et al. (2019) and recursively define

k(1)nngp(x, x̃) :=
σ2
w

d
⟨x, x̃⟩

k(l+1)
nngp (x, x̃) := σ2

wf(k
(l)
nngp(x,x), k

(l)
nngp(x, x̃), k

(l)
nngp(x̃, x̃))

f(a, b, c) :=

√
ac

2π

(√
1− u2 + u(π − arccos(u))

)
with u :=

b√
ac

.

Note that we do not include the σb terms here since we initialize the biases to zero unlike
Lee et al. (2019).

6.C Details on Kernel Transformations

In the following, we will discuss additional aspects of various kernel transformations.

133



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

6.C.1 Gaussian Process Posterior Transformation

Khan et al. (2019) showed that certain posterior approximation methods for NNs turn
them into Gaussian processes with the finite-width NTK kgrad. In the following, we will
present a self-contained derivation of this relationship in our framework, including the
last-layer kernel kll. In our exposition, we roughly follow Daxberger et al. (2021). For a
Bayesian NN, we impose a prior p(θ) = N (θ | 0, λ2I) on the NN parameters θ. Using an
observation model yi = fθ(xi) + εi, εi ∼ N (0, σ2) i.i.d., the negative log-likelihood of the
data is given by

− log p(Ytrain | Xtrain,θ) = C +
1

2σ2

Ntrain∑
i=1

(yi − fθ(xi))2 = C1 +
1

2σ2
NtrainL(θ)

for some constant C1 ∈ R. The negative log-posterior is hence given by

L̃(θ) := − log p(θ | Ytrain,Xtrain)

= log(Z)− log p(Ytrain | Xtrain,θ)− log p(θ)

= C2 +
1

2σ2
NtrainL(θ) +

1

2λ2
∥θ∥22 ,

If θ∗ minimizes L̃, that is, if θ∗ is a maximum a posteriori (MAP) estimate, we obtain
the second-order Taylor approximation

L̃(θ) ≈ L̃(θ∗) +
1

2
(θ − θ∗)⊤H(θ − θ∗), H := ∇2

θL̃(θ∗) ,

which yields a Gaussian approximation to the posterior, the so-called Laplace approximation
(Laplace, 1774; MacKay, 1992a):

p(θ | Ytrain,Xtrain) ≈ N (θ | θ∗,H−1) .

The Hessian is given by

H =
1

λ2
I +

1

2σ2

∑
(x,y)∈Dtrain

∇2
θ(y − fθ∗(x))2

= λ−2I + σ−2
∑

(x,y)∈Dtrain

(
(∇θfθ∗(x))(∇θfθ∗(x))⊤ + (fθ∗(x)− y)∇2

θfθ∗(x)
)
.

By ignoring the terms (fθ∗(x)− y)∇2
θfθ∗(x), which are expected to be small since the first

factor is small, we arrive at the generalized Gauss-Newton (GGN) approximation to the
Hessian (Schraudolph, 2002):

HGGN = λ−2I + σ−2
∑

(x,y)∈Dtrain

(∇θfθ∗(x))(∇θfθ∗(x))⊤ .

By pretending that θ∗ = θT , i.e. that the parameters at the end of training are the
minimizer of L̃, we can relate this to ϕgrad:

HGGN = λ−2I + σ−2
∑

(x,y)∈Dtrain

ϕgrad(x)ϕgrad(x)
⊤

134



6.C. Details on Kernel Transformations

= λ−2I + σ−2ϕgrad(Xtrain)
⊤ϕgrad(Xtrain) .

If we want to compute the predictive distribution of fθ(x) for θ ∼ p(θ | Xtrain), we can
further use the linearization

fθ(x) ≈ fθ∗(x) + ⟨θ − θ∗,∇θfθ∗(x)⟩ = fθ∗(x) + ⟨θ − θ∗, ϕgrad(x)⟩ ,

which, according to Immer et al. (2021), improves the results for the predictive distribution.
The predictive distribution can then be approximated as

p(Y | X ,Dtrain) ≈ N (Y | fθ∗(X ), ϕgrad(X )H−1
GGNϕgrad(X )⊤) ,

with the covariance matrix

ϕgrad(X )H−1
GGNϕgrad(X )⊤

= ϕgrad(X )(λ−2I + σ−2ϕgrad(Xtrain)
⊤ϕgrad(Xtrain))

−1ϕgrad(X )⊤
= σ2λϕgrad(X )(λϕgrad(Xtrain)

⊤λϕgrad(Xtrain) + σ2I)−1λϕgrad(X )⊤
= (λ2kgrad)→post(Xtrain,σ2)(X ,X ) .

This demonstrates that (λ2kgrad)→post(Xtrain,σ2)(X ,X ) yields the posterior predictive covari-
ance on X of a Bayesian NN under the following approximations:

(1) The parameter posterior is approximated using the Laplace approximation,
(2) The Hessian matrix in the Laplace approximation is approximated using the GGN

approximation,
(3) The predictive posterior is further approximated using a linearization of the NN, and
(4) The MAP estimate is approximated by the trained parameters of the NN.

If we perform Bayesian inference only over the last-layer parameters (i.e., θ = W̃
(L)

),
the derivation above shows instead that the posterior predictive covariance is approximated
by (λ2kll)→post(Xtrain,σ2)(X ,X ). Moreover, for the last-layer parameters, the approximations
(1) – (3) are exact, since the NN is affine linear in the last-layer parameters, and the
approximation (4) does not change the resulting kernel. Such last-layer Bayesian models
have been employed, for example, by Lázaro-Gredilla and Figueiras-Vidal (2010); Snoek
et al. (2015); Ober and Rasmussen (2019); Kristiadi et al. (2020), and are also known as
neural linear models (Ober and Rasmussen, 2019).

Eschenhagen et al. (2021) experimentally demonstrated that taking a mixture of
multiple Laplace approximations around different local minima of the loss function can
improve uncertainty predictions for Bayesian NNs. If we consider Nens local minima θ(i)

with corresponding base kernels k(i) and combine the Laplace approximations with uniform
weights, we obtain the posterior distributions

p(Y | X ,Dtrain) ≈
1

Nens

Nens∑
i=1

N (Y | fθ(i)(X ), (λk(i))→post(Xtrain,σ2)(X ,X )) .

By the law of total covariance, we have

Cov(y1, y2 | x1,x2,Dtrain) ≈ Ei∼U{1,...,Nens}[(λ
2k(i))→post(Xtrain,σ2)(x1,x2)]

135



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

+ Covi∼U{1,...,Nens}(fθ(i)(xi), fθ(i)(xj))

= (λ2k)→post(Xtrain,σ2)→ens(Nens)(x1,x2)

+ Covi∼U{1,...,Nens}(fθ(i)(xi), fθ(i)(xj)) .

Hence, the predictive covariance for a mixture of Laplace approximations is approximately
given by an ensembled posterior kernel plus the covariance of the ensemble predictions.
Note that due to the summation, it is important that the (posterior) kernel is scaled
correctly. We leave an experimental evaluation of this approach to future work.

6.C.2 Sketching

In the following, we prove the variant of the Johnson-Lindenstrauss theorem mentioned in
Section 6.4.2.

Theorem 6.4.1 (Variant of the Johnson-Lindenstrauss Lemma). Let ε, δ ∈ (0, 1) and let
X ⊆ Rd be finite. If

p ≥ 8 log(|X |2/δ)/ε2 , (6.14)

then the following bound on all pairwise distances holds with probability ≥ 1− δ for the
Gaussian sketch in Eq. (6.12):

∀x, x̃ ∈ X : (1− ε)dk(x, x̃) ≤ dk→sketch(p)
(x, x̃) ≤ (1 + ε)dk(x, x̃) . (6.15)

Proof. By Theorem 1 from Arriaga and Vempala (1999), the following bound holds for
fixed x, x̃ ∈ X with probability8 ≥ 1− 2e−ε

2p/8:

(1− ε)dk(x, x̃)2 ≤ dk→sketch(p)
(x, x̃)2 ≤ (1 + ε)dk(x, x̃)

2 . (6.26)

Now, Eq. (6.26) implies Eq. (6.15) for a single pair x, x̃ because of

(1− ε)2 ≤ (1− ε) ≤ (1 + ε) ≤ (1 + ε)2 .

To obtain the bound for all pairs (x, x̃), we note that the bound is trivial for pairs (x,x)
and it is equivalent for the pairs (x, x̃) and (x̃,x). Hence, we only have to consider less
than |X |2

2
pairs. By the union bound, the probability that Eq. (6.15) holds for all pairs

(x, x̃) is at least

1− 2
|X |2
2
e−ε

2p/8
Eq. (6.14)
≥ 1− δ .

6.C.3 ACS Random Features Transformation

We will now derive the form of k→acs presented in Section 6.4.2. Partially following the
notation of Pinsler et al. (2019), we want to compute

k→acs(xn,xm) := ⟨Ln,Lm⟩ = Eθ∼p(θ|Dtrain)[Ln(θ)Lm(θ)] ,

where

Lm(θ) = Eym∼p(·|xm,Dtrain)[log p(ym | xm,θ)] +H[ym | xm,Dtrain]

8We inserted the factor 2 in front of e−ε2p/8 that has been forgotten in their Theorem 1.

136



6.D. Details on Selection Methods

with H[ym | xm,Dtrain] denoting the conditional entropy of ym given xm and Dtrain.
In a GP model without hyper-prior on σ2, we have

p(ym | xm,θ) = N (ym | fθT
(xm) + θ⊤ϕ→scale(Xtrain)(xm), σ

2)

p(ym | xm,Dtrain) = N (ym | fθT
(xm), k→Xtrain

(xm,xm) + σ2)

H(N (µ,Σ)) =
n

2
ln(2πe) +

1

2
ln(det(Σ)) for µ ∈ Rn,Σ ∈ Rn×n ,

which allows us to derive

H[ym | xm,Dtrain] =
1

2
+

1

2
log(2π(k→Xtrain

(xm,xm) + σ2)) .

By shifting the prior and the log-likelihood by fθT
(xm), we obtain

Eym∼p(·|xm,D0)[log p(ym | xm,θ)]
= Eym∼N (0,k→Xtrain

(xm,xm)+σ2)[logN (ym | θ⊤ϕ→scale(Xtrain)(xm), σ
2)]

= −1

2
log(2πσ2)− Eym∼N (0,k→Xtrain

(xm,xm)+σ2)

(ym − θ⊤ϕ→scale(Xtrain)(xm))
2

2σ2

= −1

2
log(2πσ2)− 1

2σ2

(
(θ⊤ϕ→scale(Xtrain)(xm))

2 + k→Xtrain
(xm,xm) + σ2

)
.

Therefore, we have k→acs(x, x̃) := Eθ∼P (θ|Dtrain)[facs(x,θ)facs(x̃,θ)] with

facs(xm,θ) := Lm(θ) =
1

2
log

(
1 +

k→Xtrain
(xm,xm)

σ2

)
− (θ⊤ϕ→scale(Xtrain)(xm))

2 + k→Xtrain
(xm,xm)

2σ2
.

Moreover, it follows from Eq. (4) in Pinsler et al. (2019) that

fpool(θ)− fbatch(θ) =
∑

xm∈Xpool\Xbatch

Lm(θ) =
∑

x∈Xpool\Xbatch

facs(x,θ) .

6.D Details on Selection Methods
In this section, we will provide efficiency-focused pseudocode for all selection methods
and analyze its runtime and memory complexity. Hereby, we will neglect that the
required integer bit size for indexing elements of Xpool and Xtrain grows logarithmically
with Npool +Ntrain. For some selection methods, we will additionally discuss relations to
the literature and theoretical properties. Section 6.D.1 will first provide a pseudocode
structure for iterative selection, where the missing components are then specified for the
respective selection methods in the subsequent sections. The following notation will be
used throughout this section:

We allow having vectors and matrices indexed by points x instead of indices i ∈ N,
which we write with square brackets as v[x] or M [x, x̃]. In a practical implementation,
where the points x ∈ Xpool are for example numbered as x1, . . . ,xNpool

, one may simply use
v[i] instead of v[xi]. Again, we assume in pseudocode that all x are distinct, such that we
can use set notation, but identical copies of x should be treated as distinct. This problem
also disappears when using indices. We denote by u⊙ v the element-wise (Hadamard)
product of the vectors u and v. Whenever an argmax is not unique, we leave the choice
of the maximizer to the implementation.

137



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Algorithm 4 Iterative selection algorithm template involving three customizable functions
Init, Add and Next that are allowed to have side effects (i.e., read/write variables in
Select).

function Select(k, Xtrain, Xpool, Nbatch, mode ∈ {P, TP})
Xmode ← Xtrain if mode = TP else ∅
Xcand := Xmode ∪ Xpool

Xbatch ← ∅
Init
for x in Xmode do

Add(x)
end for
for i from 1 to Nbatch do

x←Next
if x ∈ Xbatch ∪ Xtrain (failed selection) then

fill up Xbatch with Nbatch − |Xbatch| random samples from Xpool \ Xbatch and
return Xbatch

end if
Xbatch ← Xbatch ∪ {x}
Add(x)

end for
return Xbatch

end function

6.D.1 Iterative Selection Scheme

While our iterative selection template shown in Algorithm 3 is sufficient for a high-level
understanding, it is not well-suited for an efficient implementation. To this end, we
present a more detailed iterative selection template in Algorithm 3, which closely matches
our open-source implementation. The template in Algorithm 3 involves three methods
called Init, Add, and Next, which are allowed to have side effects, i.e. access and
modify common variables. For each selection method except Random and MaxDiag,
our implementation directly mirrors this structure, containing a class providing the three
methods together with Select from Algorithm 3.

6.D.2 Random

We implement Random by taking the first Nbatch indices out of a random permutation
of {1, . . . , Npool}. Since there are Npool! possible random permutations, this requires at
least log2(Npool!) = O(Npool logNpool) random bits, so the runtime for this suboptimal
implementation is, in theory, “only” O(Npool logNpool), which is still extremely fast in
practice. The memory complexity for our suboptimal implementation is O(Npool).

6.D.3 MaxDiag

A simple implementation of MaxDiag is shown in Algorithm 5. The runtime of this
implementation is O(Npool logNpool) due to sorting. While other algorithms might be faster

138



6.D. Details on Selection Methods

Algorithm 5 MaxDiag pseudocode implementation using Algorithm 4.
function Init

Sort elements in Xpool as x̃1, . . . , x̃Npool
such that k(x̃1, x̃1) ≥ . . . ≥ k(x̃Npool

, x̃Npool
)

end function

function Add(x)
end function

function Next
return x̃i

end function

for Nbatch ≪ Npool, the runtime is already very fast in practice. The memory complexity
is O(Npool).

6.D.4 MaxDet

Equivalence of MaxDet to Non-batch Mode Active Learning With Fixed
Kernel

Using the Schur determinant formula

det

(
A B
C D

)
= det(A) det(D −CA−1B) ,

we can compute

det(k(X ∪ {x},X ∪ {x}) + σ2I)

= det

(
k(X ,X ) + σ2I k(X ,x)

k(x,X ) k(x,x) + σ2

)
= det(k(X ,X ) + σ2I) det(k(x,x) + σ2 − k(x,X )(k(X ,X ) + σ2I)−1k(X ,x))
= det(k(X ,X ) + σ2I) · (σ2 + k→post(X ,σ2)(x,x)) . (6.27)

This shows that

argmax
x∈Xrem

k→post(Xsel,σ2)(x,x) = argmax
x∈Xrem

det(k(Xsel ∪ {x},Xsel ∪ {x}) + σ2I) .

Equivalence of MaxDet to BatchBALD on a GP

As in Section 6.4.2, we consider a GP model in feature space, given by yi = w⊤ϕ(xi) + εi
with weight prior w ∼ N (0, I) and i.i.d. observation noise εi ∼ N (0, σ2). The objective
of BatchBALD (Kirsch et al., 2019) is to maximize the mutual information

a(Xbatch) := H(Ybatch | Xbatch,Dtrain)− Ew∼p(w|Dtrain)H(Ybatch | Xbatch,Dtrain,w) ,

where H refers to the (conditional) entropy. Writing Y∗
batch := E[Ybatch | Xbatch,Dtrain], we

have

p(Ybatch | Xbatch,Dtrain) = N (Ybatch | Y∗
batch, k(Xbatch,Xbatch) + σ2I)

139



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

p(Ybatch | Xbatch,Dtrain,w) = N (Ybatch | ϕ(Xtrain)
⊤w, σ2I)

H(N (µ,Σ)) =
n

2
ln(2πe) +

1

2
ln(det(Σ)) for µ ∈ Rn,Σ ∈ Rn×n .

Hence, we can compute

a(Xbatch) =
1

2
ln(det(k(Xbatch,Xbatch) + σ2I))−Nbatch ln(σ) . (6.28)

This shows that greedy maximization of the BatchBALD acquisition function, as proposed
by Kirsch et al. (2019), is equivalent to MaxDet. Kirsch et al. (2019) showed that for any
Bayesian model, greedy optimization of a is suboptimal by a factor of at most (1− 1/e).
By applying this result to the GP model, we obtain that the same suboptimality bound
applies to MaxDet for the form of a given in Eq. (6.28).

Equivalence of MaxDet to the P-greedy Algorithm

In our notation, the P-greedy algorithm (De Marchi et al., 2005) can be written as

NextSample(k,Xsel,Xrem) = argmax
x∈Xrem

Pk,Xsel
(x) ,

where by Lemma 4.1 in De Marchi et al. (2005), the non-negative power function Pk,Xsel

can be written as

Pk,Xsel
(x)2 = k(x,x)− k(x,Xsel)k(Xsel,Xsel)

−1k(Xsel,x) .

A calculation analogous to Eq. (6.27) therefore shows that P-greedy is equivalent to
MaxDet with σ2 = 0.

Relation to the Greedy Algorithm for D-optimal Design

In our notation, the D-optimal design problem (Wald, 1943) is to maximize the determinant
det(ϕ(Xsel)

⊤ϕ(Xsel)), which can only be nonzero in the case Nsel ≥ dfeat. It can be seen as
the σ → 0 limit for Nsel ≥ dfeat of the determinant-maximization objective that motivates
MaxDet since an eigenvalue-based argument shows that

det(ϕ(Xsel)
⊤ϕ(Xsel) + σ2I) = σdfeat−Nsel det(k(Xsel,Xsel) + σ2I) .

In this sense, the corresponding greedy algorithm (Wynn, 1970) is the underparameterized
(dfeat ≤ Nsel) analog to the P-greedy algorithm, since the latter can only be well-defined in
the overparameterized regime (dfeat ≥ Nsel). Some guarantees for this greedy algorithm
are given by Wynn (1970) and Madan et al. (2019). While the classical D-optimal design
uses σ = 0, Bayesian D-optimal design uses σ > 0 and is thus even more directly related
to MaxDet (Chaloner and Verdinelli, 1995).

Kernel-space Implementation of MaxDet

In the following, we want to derive an efficient kernel-space implementation of MaxDet.
Let Xcand := Xmode ∪ Xpool. We perform a partial pivoted Cholesky decomposition of the

140



6.D. Details on Selection Methods

matrix M = k(Xcand,Xcand) + σ2I, which has been suggested for P -greedy by Pazouki
and Schaback (2011) and in the context of determinantal point processes by Chen et al.
(2018). We denote submatrices of M for example by M [X ,x] := (Mx̃,x)x̃∈X .

Suppose that at the current step, the points X := Xmode ∪ Xbatch have already been
added. Consider the Cholesky decomposition M [X ,X ] = L(X )L(X )⊤. Then, the
Cholesky decomposition for X ∪ {x} is of the form(

M [X ,X ] M [X ,x]
M [x,X ] M [x,x]

)
= L(X ∪ {x})L(X ∪ {x})⊤

=

(
L(X ) 0

b(X ,x)⊤
√
c(X ,x)

)(
L(X ) 0

b(X ,x)⊤
√
c(X ,x)

)⊤
,(6.29)

which implies b(X ,x) = L(X )−1M [X ,x] and c(X ,x) = M [x,x] − ∥b(X ,x)∥22. Using
the general inversion formula for block-triangular matrices given by(

A 0
B C

)−1

=

(
A−1 0

−C−1BA−1 C−1

)
,

we obtain

b(X ∪ {x}, x̃) = L(X ∪ {x})−1M [X ∪ {x}, x̃]

=

(
L(X )−1 0

−c(X ,x)−1/2b(X ,x)⊤L(X )−1 c(X ,x)−1/2

)(
M [X , x̃]
M [x, x̃]

)
=

(
b(X , x̃)

c(X ,x)−1/2(M [x, x̃]− b(X ,x)⊤b(X , x̃))

)
(6.30)

and therefore

c(X ∪ {x}, x̃) = c(X , x̃)− c(X ,x)−1(M [x, x̃]− b(X ,x)⊤b(X , x̃))2 . (6.31)

With the above considerations, we can implement MaxDet as follows, which is given
as pseudocode in Algorithm 6:

• For Init, we initialize b(∅,x) to an empty vector and c(∅,x) = M [x,x]. We do
not precompute M since not all entries of M will be used, otherwise, the runtime
complexity would be quadratic in Ncand.

• For Next, note that by Eq. (6.29),

detM [X ∪ {x},X ∪ {x}] = c(X ,x) · det(L(X ))2 ,

hence

argmax
x∈Xpool\Xbatch

detM [X ∪ {x},X ∪ {x}] = argmax
x∈Xpool\Xbatch

c(X ,x) .

• For Add, we update the b and c values as in Eq. (6.30) and Eq. (6.31).

Regarding the runtime complexity, the Add step is clearly the most expensive one,
requiring O(NcandNsel) operations for computing B⊤B[·,x] and O(NcandTk) operations
for computing k(Xcand,x). Since Add is called Nsel times, the total runtime complexity is
therefore O(NcandNsel(Tk +Nsel)). The total memory complexity is O(NcandNsel), required
for storing B.

141



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Algorithm 6 MaxDet pseudocode implementation in kernel space for given σ2 ≥ 0
using Algorithm 4.

function Init
B ← empty 0×Xcand matrix
c← (k(x,x) + σ2)x∈Xcand

end function

function Add(x)
v ← √c⊙ ((k(Xcand,x) + σ2I[Xcand,x]−B⊤B[·,x]) ▷

√
c should be understood

element-wise
B ←

(
B
v⊤

)
c← c− v ⊙ v

end function

function Next
return argmaxx∈Xpool\Xbatch

c[x]
end function

Feature-space Implementation of MaxDet

In cases where the feature space dimension dfeat of ϕ is smaller than the number Nsel of
added samples, it can be beneficial to implement MaxDet in feature space instead. For
Xsel := Xmode ∪ Xbatch, we want to compute

argmax
x∈Xpool\Xbatch

k→post(Xsel,σ2)(x,x) .

Now, from Eq. (6.9), we know that

k→post(Xsel,σ2)(x,x) = ϕ(x)⊤Σ̂
−1

Xsel
ϕ(x), Σ̂Xsel

:= σ−2ϕ(Xsel)
⊤ϕ(Xsel) + I .

Adding a point to Xsel leads to a rank-1 update of Σ̂Xsel
, and the corresponding update

of Σ̂
−1

Xsel
can be computed using the Sherman-Morrison formula. This gives rise to three

approaches towards implementing MaxDet in feature space:

(1) Keep track of ϕ(x) and Σ̂
−1

Xsel
. Compute k→post(Xsel,σ2)(x,x) = ϕ(x)⊤Σ̂

−1

Xsel
ϕ(x) in

each step.
(2) Keep track of ϕ(x) and ψ(x) := Σ̂

−1

Xsel
ϕ(x). Compute

k→post(Xsel,σ2)(x,x) = ϕ(x)⊤ψ(x)

in each step.
(3) Keep track of ϕ→post(Xsel,σ2)(x), one possible realization of which is ϕ→post(Xsel,σ2)(x) =

Σ̂
−1/2

Xsel
ϕ(x). Compute k→post(Xsel,σ2)(x,x) = ϕ→post(Xsel,σ2)(x)

⊤ϕ→post(Xsel,σ2)(x) in
each step.

142



6.D. Details on Selection Methods

Option (1) is less computationally efficient than (2), (3) since one needs to compute
matrix-vector products instead of only inner products. Version (2) and (3) are similar, but
here we favor (3) since it only requires storing one vector instead of two for each x. Since

ϕ→post(Xsel∪{x},σ2) = ϕ→post(Xsel,σ2)→post({x},σ2) ,

we will now consider how to efficiently compute a single posterior update ϕ→post({x},σ2). To
this end, we first consider how to compute matrix square roots of specific rank-1 updates:

Lemma 6.D.1. Let v ∈ Rp and let c ≥ − 1
v⊤v

. Then,

I + cvv⊤ =

(
I +

c

1 +
√
1 + cv⊤v

vv⊤
)2

.

Proof. Due to the condition on c, the square root is well-defined. We have(
I +

c

1 +
√
1 + cv⊤v

vv⊤
)2

= I + Cvv⊤ ,

where

C =
2c

1 +
√
1 + cv⊤v

+
c2v⊤v

(1 +
√
1 + cv⊤v)2

=
2c(1 +

√
1 + cv⊤v) + c2v⊤v

2 + 2
√
1 + cv⊤v + cv⊤v

= c .

The following proposition shows how to update the posterior feature map after observing
a point x:

Proposition 6.D.2 (Forward update). Let σ2 > 0, let k be a kernel and let k̃ :=
k→post({x},σ2). Then,

k̃(x′,x′′) = k(x′,x′′)− k(x′,x)(k(x,x) + σ2I)−1k(x,x′′)

Consequently, if ϕ is a feature map for k, then

ϕ̃(x′) :=

(
I − ϕ(x)ϕ(x)⊤

σ2 + ϕ(x)⊤ϕ(x)

)1/2

ϕ(x′) =
(
I − βϕ(x)ϕ(x)⊤

)
ϕ(x′)

is a feature map for k̃, where

β :=
1√

σ2 + ϕ(x)⊤ϕ(x)
(√

σ2 + ϕ(x)⊤ϕ(x) + σ
) .

Proof. The kernel update equation follows directly from Eq. (6.8).
Step 1: Feature map. The specified feature map ϕ̃ satisfies

ϕ̃(x′)⊤ϕ̃(x′′) = ϕ(x′)⊤
(
I − ϕ(x)ϕ(x)⊤

σ2 + ϕ(x)⊤ϕ(x)

)
ϕ(x′′)

= k(x′,x′′)− k̃(x′,x)(σ2 + k(x,x))−1k(x,x′′)

= k̃(x′,x′′) ,

143



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

hence it is a feature map for k̃.
Step 2: Square root. According to Lemma 6.D.1, we have(

I − ϕ(x)ϕ(x)⊤

σ2 + ϕ(x)⊤ϕ(x)

)1/2

= I − 1

(σ2 + ϕ(x)⊤ϕ(x))
(
1 +

√
1− ϕ(x)⊤ϕ(x)/(σ2 + ϕ(x)⊤ϕ(x))

)ϕ(x)ϕ(x)⊤
= I − 1

(σ2 + ϕ(x)⊤ϕ(x))(1 + σ(σ2 + ϕ(x)⊤ϕ(x))−1/2)
ϕ(x)ϕ(x)⊤

= I − 1√
σ2 + ϕ(x)⊤ϕ(x)(

√
σ2 + ϕ(x)⊤ϕ(x) + σ)

ϕ(x)ϕ(x)⊤ .

In our implementation, we keep track of the following quantities:

ΦX [x] := ϕ→post(X ,σ2)(x)

cX [x] := ΦX [x]
⊤ΦX [x] .

Note that ϕ→post(X ,σ2) is not uniquely defined, since any rotation of ϕ→post(X ,σ2) leads to
the same kernel. When computing Φ as defined above, we do not care which version of
ϕ→post(X ,σ2) it corresponds to, as long as the same version of ϕ→post(X ,σ2) is used for all x.

Following Proposition 6.D.2, Φ and c can be updated with a new observation x /∈ X
as follows:

ΦX∪{x}[x
′] = ΦX [x

′]− βX (x)ΦX [x]⟨ΦX [x],ΦX [x
′]⟩

cX∪{x}[x
′] = ΦX [x

′]⊤
(
I − ΦX [x]ΦX [x]⊤

σ2 +ΦX [x]⊤ΦX [x]

)
ΦX [x

′]

= cX [x
′]− γX (x)−2⟨ΦX [x],ΦX [x

′]⟩2 ,

where

γX (x) :=
√
σ2 + cX [x]

βX (x) :=
1

γX (x)(γX (x) + σ)
.

Together, these considerations lead to a feature-space implementation of MaxDet, pre-
sented in Algorithm 7.

For the complexity analysis of Algorithm 7, we exclude the computation of the feature
matrix ϕ(Xcand). As for the kernel-space version of MaxDet, the runtime is then
dominated by the runtime of Add, which has a runtime complexity of O(Ncanddfeat). Since
it is called Nsel times, the total runtime complexity of Algorithm 7 is O(NcandNseldfeat). If
the kernel k is evaluated by an inner product of the pre-computed features, the runtime of
a kernel evaluation scales as Tk = Θ(dfeat). In this case, the runtime of the kernel-space
version in Algorithm 6 has a runtime complexity of O(NcandNsel(dfeat + Nsel)), which is
not asymptotically better than the one for Algorithm 7. However, in our implementation,
we observe that the kernel-space version typically runs faster for Nsel ≲ 3dfeat, which can
be attributed to the smaller constant in the runtime of Add. It is easily verified that the
memory complexity of Algorithm 7 scales as O(Ncanddfeat).

144



6.D. Details on Selection Methods

Algorithm 7 MaxDet pseudocode implementation in feature space for given σ2 ≥ 0
using Algorithm 4.

function Init
Φ← ϕ(Xcand) ∈ RNcand×dfeat ▷ feature matrix
c← (⟨Φ[x, ·]⊤,Φ[x, ·]⊤⟩)x∈Xcand

▷ vector containing the kernel diagonal
end function

function Add(x)
γ ←

√
σ2 + c[x]

β ← (γ(γ + σ))−1

u← ΦΦ[x, ·]⊤
c← c− γ−2(u⊙ u)
Φ← Φ− βuΦ[x, ·]

end function

function Next
return argmaxx∈Xpool\Xbatch

c[x]
end function

6.D.5 Bait

In this section, we write Xtp := Xtrain ∪ Xpool.

Connection Between Kernel and Feature Map Formulations

We can rewrite Bait’s acquisition function from Eq. (6.23) as

a(X ) :=
∑
x̃∈Xtp

k→post(X ,σ2)(x̃, x̃)
Eq. (6.10)

= σ2
∑
x̃∈Xtp

ϕ(x̃)⊤(ϕ(X )⊤ϕ(X ) + σ2I)−1ϕ(x̃)

= σ2
∑
x̃∈Xtp

tr
(
ϕ(x̃)⊤(ϕ(X )⊤ϕ(X ) + σ2I)−1ϕ(x̃)

)
= σ2

∑
x̃∈Xtp

tr
(
(ϕ(X )⊤ϕ(X ) + σ2I)−1ϕ(x̃)ϕ(x̃)⊤

)
= σ2 tr

(
(ϕ(X )⊤ϕ(X ) + σ2I)−1ϕ(Xtp)

⊤ϕ(Xtp)
)

= σ2 tr
(
(AX + σ2I)−1AXtp

)
,

where

AX := ϕ(X )⊤ϕ(X ) .

The latter trace-based formulation corresponds to the formulation by Ash et al. (2021).

Forward Version

We will first derive an efficient implementation of Bait-F in feature space, which builds on
our derivation of MaxDet in feature space and serves as a basis for Bait-FB in feature

145



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

space. As for the feature space version of MaxDet, we choose to update the features
using square roots of rank-1 updates. We will not derive a kernel space version of Bait
here since it appears that a kernel space version would not scale to large data sets. In the
following, we will assume σ2 > 0.

In a single iteration of the Bait-F selection method, we want to find x ∈ Xpool \ Xbatch

maximizing

a(X )− a(X ∪ {x})
Proposition 6.D.2

=
∑
x̃∈Xtp

k→post(X ,σ2)(x̃,x)
2

k→post(X ,σ2)(x,x) + σ2

=
ϕ→post(X ,σ2)(x)

⊤ϕ→post(X ,σ2)(Xtp)
⊤ϕ→post(X ,σ2)(Xtp)ϕ→post(X ,σ2)(x)

ϕ→post(X ,σ2)(x)⊤ϕ→post(X ,σ2)(x) + σ2
.

While the inner product in the denominator of the last expression corresponds to the
quantity cX [x] from the MaxDet feature space implementation, we still need a way to
efficiently compute the numerator. Therefore, in addition to the quantities ΦX and cX
tracked in the feature-space implementation of MaxDet, we track the following quantities
for Bait:

ΣX := ϕ→post(X ,σ2)(Xtp)
⊤ϕ→post(X ,σ2)(Xtp)

vX [x] := ΦX [x]
⊤ΣXΦX [x] .

Using these quantities, we can write

a(X )− a(X ∪ {x}) = vX [x]

cX [x] + σ2
.

Following Proposition 6.D.2, we obtain the following update equations:

ΣX∪{x} = (I − βX (x)ΦX [x]ΦX [x]
⊤)ΣX (I − βX (x)ΦX [x]ΦX [x]

⊤)

= ΣX − βX (x)ΦX [x]ΦX [x]
⊤ΣX − βX (x)ΣXΦX [x]ΦX [x]

⊤

+ βX (x)
2ΦX [x]ΦX [x]

⊤ΣXΦX [x]ΦX [x]
⊤

vX∪{x}[x
′] = ΦX [x

′]⊤(I − γ−2
X (x)ΦX [x]ΦX [x]

⊤)ΣX (I − γX (x)−2ΦX [x]ΦX [x]
⊤)ΦX [x

′]

= vX [x
′]− 2γX (x)

−2ΦX [x
′]⊤ΦX [x]ΦX [x]

⊤ΣXΦX [x
′]

+ γX (x)
−4ΦX [x

′]⊤ΦX [x]ΦX [x]
⊤ΣXΦX [x]ΦX [x]

⊤ΦX [x
′] .

This leads to the pseudocode in Algorithm 8. For the runtime analysis, we neglect the
time for evaluating ϕ as usual. Then, the runtime of Init is O((Ntrain +Npool)d

2
feat), the

runtime of Add is O((Ncand + dfeat)dfeat) and the runtime of Next is O(Npool). Hence,
the overall runtime of Bait-F is O(NcandNseldfeat + (Ntrain + Npool)d

2
feat). The memory

complexity is O((Ncand + dfeat)dfeat).

Forward-Backward Version

To fit Bait-FB into our framework, we first extend our iterative selection template to
include a backward selection step. The extended template is shown in Algorithm 9. Here,

146



6.D. Details on Selection Methods

Algorithm 8 Bait-F pseudocode implementation in feature space for given σ2 > 0 using
Algorithm 4.

function Init
Φ← ϕ(Xcand) ∈ RNcand×dfeat ▷ feature matrix
c← (⟨Φ[x, ·]⊤,Φ[x, ·]⊤⟩)x∈Xcand

▷ vector containing the kernel diagonal
Σ← ϕ(Xtp)

⊤ϕ(Xtp) ▷ Train and pool second moment matrix
v ← (⟨Φ[x, ·]⊤,ΣΦ[x, ·]⊤⟩)x∈Xcand

▷ Numerator of the acquisition function
end function

function Add(x)
γ ←

√
σ2 + c[x]

β ← (γ(γ + σ))−1

u← ΦΦ[x, ·]⊤
ũ← u⊙ u
w ← ΣΦ[x, ·]⊤
ṽ ← v[x]
v ← v − 2γ−2(Φw)⊙ u+ γ−4ṽũ
A← wΦ[x, ·]
Σ← Σ− β(A+A⊤) + β2ṽΦ[x, ·]⊤Φ[x, ·]
c← c− γ−2ũ
Φ← Φ− βuΦ[x, ·]

end function

function Next
return argmaxx∈Xpool\Xbatch

v[x]
σ2+c[x]

end function

we have an additional parameter Nextra specifying how many additional batch elements
will be selected in the forward step and then removed in the backward step. Following
Ash et al. (2021), we set Nextra := min{Nbatch, Npool −Nbatch} in our experiments.

To implement Bait-FB within Algorithm 9, we can reuse the methods Init, Add
and Next from Bait-F. In addition, we need to implement the methods Remove and
NextBackward for the backward step. To this end, the following proposition shows how
the kernel and feature map update when removing a point x from the set X of observed
points:

Proposition 6.D.3 (Backward update). For a kernel k and σ2 > 0, let k̃ := k→post({x},σ2).
Then,

k(x′,x′′) = k̃(x′,x′′) + k̃(x′,x)(σ2 − k̃(x,x))−1k̃(x,x′′) .

Consequently, if ϕ̃ is a feature map for k̃, then

ϕ(x′) :=

(
I +

ϕ̃(x)ϕ̃(x)⊤

σ2 − ϕ̃(x)⊤ϕ̃(x)

)1/2

ϕ̃(x′) =
(
I + β̃ϕ̃(x)ϕ̃(x)⊤

)
ϕ̃(x′)

147



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Algorithm 9 Forward-backward selection algorithm template involving five customizable
functions Init, Add, Next, Remove, NextBackward that are allowed to have side
effects (i.e., read/write variables in Select).

function Select(k, Xtrain, Xpool, Nbatch, Nextra, mode ∈ {P, TP})
Xmode ← Xtrain if mode = TP else ∅
Xcand := Xmode ∪ Xpool

Xbatch ← ∅
Init
for x in Xmode do

Add(x)
end for
for i from 1 to Nbatch +Nextra do

x←Next
if x ∈ Xbatch ∪ Xtrain (failed selection) then

ensure |Xbatch| = Nbatch by removing the latest samples or filling up with
random samples

return Xbatch

end if
Xbatch ← Xbatch ∪ {x}
Add(x)

end for
for i from 1 to Nextra do

x←NextBackward
if x /∈ Xbatch ∪ Xtrain (failed selection) then

ensure |Xbatch| = Nbatch by removing the latest samples
return Xbatch

end if
Xbatch ← Xbatch \ {x}
Remove(x)

end for
return Xbatch

end function

148



6.D. Details on Selection Methods

is a feature map for k, where

β̃ :=
1√

σ2 − ϕ̃(x)⊤ϕ̃(x)
(√

σ2 − ϕ̃(x)⊤ϕ̃(x) + σ

) .

Proof. Step 1: Finding k(x,x). We have

k̃(x,x) = k(x,x)− k(x,x)2

k(x,x) + σ2
=

k(x,x)σ2

k(x,x) + σ2
< σ2 .

Hence,

σ2 − k̃(x,x) = σ2(k(x,x) + σ2)

k(x,x) + σ2
− k(x,x)σ2

k(x,x) + σ2
=

σ4

k(x,x) + σ2
,

which yields

σ2

σ2 − k̃(x,x)
=
k(x,x) + σ2

σ2
.

Step 2: Finding k(x′,x). Now, we compute

k̃(x′,x) = k(x′,x)− k(x′,x)
k(x,x)

k(x,x) + σ2
= k(x′,x)

σ2

k(x,x) + σ2
,

which yields

k(x′,x) = k̃(x′,x)
k(x,x) + σ2

σ2
= k̃(x′,x)

σ2

σ2 − k̃(x,x)
.

Step 3: Finding k(x′,x′′). Finally, we have

k̃(x′,x′′) = k(x′,x′′)− k(x′,x)k(x,x′′)

k(x,x) + σ2
,

which yields

k(x′,x′′) = k̃(x′,x′′) + k(x′,x) · 1

k(x,x) + σ2
· k(x,x′′)

= k̃(x′,x′′) + k̃(x′,x)
k(x,x) + σ2

σ2
· 1

k(x,x) + σ2
· k̃(x,x′′)

σ2

σ2 − k̃(x,x)

= k̃(x′,x′′) +
k̃(x′,x)k̃(x,x′′)

σ2 − k̃(x,x)
.

Step 4: Feature map. The specified feature map ϕ satisfies

ϕ(x′)⊤ϕ(x′′) = ϕ̃(x′)⊤
(
I +

ϕ̃(x)ϕ̃(x)⊤

σ2 − ϕ̃(x)⊤ϕ̃(x)

)
ϕ̃(x′′)

= k̃(x′,x′′) + k̃(x′,x)(σ2 − k̃(x,x))−1k̃(x,x′′)

= k(x′,x′′) ,

149



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

hence it is a feature map for k.
Step 5: Square root. According to Lemma 6.D.1, we have(

I +
ϕ̃(x)ϕ̃(x)⊤

σ2 − ϕ̃(x)⊤ϕ̃(x)

)1/2

= I +
1

(σ2 − ϕ̃(x)⊤ϕ̃(x))
(
1 +

√
1 + ϕ̃(x)⊤ϕ̃(x)/(σ2 − ϕ̃(x)⊤ϕ̃(x))

) ϕ̃(x)ϕ̃(x)⊤
= I +

1

(σ2 − ϕ̃(x)⊤ϕ̃(x))(1 + σ(σ2 − ϕ̃(x)⊤ϕ̃(x))−1/2)
ϕ̃(x)ϕ̃(x)⊤

= I +
1√

σ2 − ϕ̃(x)⊤ϕ̃(x)(
√
σ2 − ϕ̃(x)⊤ϕ̃(x) + σ)

ϕ̃(x)ϕ̃(x)⊤ .

To formulate the backward update for our tracked quantities Φ, c,Σ and v, we define
for x ∈ X the scalars

γ̃X (x) :=
√
σ2 − c[x]

β̃X (x) :=
1

γ(γ + σ)
.

Then, using Proposition 6.D.3, we can compute the backwards update as

ΦX\{x}[x
′] = ΦX [x

′] + β̃X (x)ΦX [x]⟨ΦX [x],ΦX [x
′]⟩

cX\{x}[x
′] = ΦX [x

′]⊤
(
I +

ΦX [x]ΦX [x]⊤

σ2 −ΦX [x]⊤ΦX [x]

)
ΦX [x

′]

= cX [x
′] + γ̃X (x)

−2⟨ΦX [x],ΦX [x
′]⟩2

ΣX\{x} = (I − βX (x)ΦX [x]ΦX [x]
⊤)ΣX (I − βX (x)ΦX [x]ΦX [x]

⊤)

= ΣX + β̃X (x)ΦX [x]ΦX [x]
⊤ΣX + β̃X (x)ΣXΦX [x]ΦX [x]

⊤

+ βX (x)
2ΦX [x]ΦX [x]

⊤ΣXΦX [x]ΦX [x]
⊤

vX\{x}[x
′] = ΦX [x

′]⊤(I + γ̃−2
X (x)ΦX [x]ΦX [x]

⊤)ΣX (I + γ̃X (x)
−2ΦX [x]ΦX [x]

⊤)ΦX [x
′]

= vX [x
′] + 2γ̃X (x)

−2ΦX [x
′]⊤ΦX [x]ΦX [x]

⊤ΣXΦX [x
′]

+ γ̃X (x)
−4ΦX [x

′]⊤ΦX [x]ΦX [x]
⊤ΣXΦX [x]ΦX [x]

⊤ΦX [x
′] .

For the backward step, we want to find x ∈ X minimizing

a(X \ {x})− a(X )
Proposition 6.D.3

=
∑
x̃∈Xtp

k→post(X ,σ2)(x̃,x)
2

σ2 − k→post(X ,σ2)(x,x)

=
ϕ→post(X ,σ2)(x)

⊤ϕ→post(X ,σ2)(Xtp)
⊤ϕ→post(X ,σ2)(Xtp)ϕ→post(X ,σ2)(x)

σ2 − ϕ→post(X ,σ2)(x)⊤ϕ→post(X ,σ2)(x)

=
vX [x]

σ2 − cX [x]
.

The corresponding implementation of Remove and NextBackward is given in
Algorithm 10, completing the implementation of Bait-FB. The runtimes of Remove

150



6.D. Details on Selection Methods

Algorithm 10 Functions Remove and NextBackward that, together with Algorithm 8
and Algorithm 9, yield a pseudocode implementation of Bait-FB in feature space for
given σ2 > 0.

function Remove(x)
γ̃ ←

√
σ2 − c[x]

β̃ ← (γ(γ + σ))−1

u← ΦΦ[x, ·]⊤
ũ← u⊙ u
w ← ΣΦ[x, ·]⊤
ṽ ← v[x]
v ← v + 2γ̃−2(Φw)⊙ u+ γ̃−4ṽũ
A← wΦ[x, ·]
Σ← Σ+ β̃(A+A⊤) + β̃2ṽΦ[x, ·]⊤Φ[x, ·]
c← c+ γ̃−2ũ
Φ← Φ+ β̃uΦ[x, ·]

end function

function NextBackward
return argminx∈Xbatch

v[x]
σ2−c[x]

end function

and NextBackward are equivalent to those of Add and Next, respectively, since the
implementation is almost identical. Hence, the runtime complexity of Bait-FB is given
by O(Ncand(Nsel + 2Nextra)dfeat + (Ntrain +Npool)d

2
feat). The memory complexity is again

O((Ncand + dfeat)dfeat).

6.D.6 FrankWolfe

Pinsler et al. (2019) proposed to apply the Frank-Wolfe constrained optimization algorithm
(Frank and Wolfe, 1956) to the problem of sparsely approximating the empirical kernel mean
embedding of Xpool with non-negative weights. Like MaxDet, the resulting FrankWolfe
method allows for a kernel-space and a feature-space implementation. Pinsler et al.
(2019) used both versions in their experiments and presented the kernel-space version as
pseudocode. Algorithm 11 is an optimized adaptation of their kernel-space version to our
framework. A difference between our version and theirs is that in our version, Next does
not allow choosing a previously selected point. Hence, our version prevents the possibility
of generating smaller batches by selecting the same point multiple times. Moreover, our
version reduces the runtime complexity from O(N2

cand(Tk +Nsel)) to O(N2
cand(Tk + 1)) by

reusing previously computed quantities in Add. The memory complexity of Algorithm 11
is O(N2

cand), which can be reduced to O(Ncand) by not storing the kernel matrix K, at the
cost of having to recompute some kernel values in Add.

The quadratic complexity in Ncand for the kernel-space version of FrankWolfe
shown in Algorithm 11 makes it infeasible for large Npool, such as in our experiments.
However, FrankWolfe can be realized much more efficiently in moderate-dimensional
feature spaces, as shown in Algorithm 12 and implemented in our code and (less efficiently)

151



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Algorithm 11 FrankWolfe pseudocode implementation in kernel space using Algo-
rithm 4, following Pinsler et al. (2019).

function Init
K ← (k(x, x̃))x,x̃∈Xcand

▷ Corresponds to ⟨Ln,Ln⟩
c← (

√
K[x,x])x∈Xcand

▷ Corresponds to σn
r ←∑

x∈Xcand
c[x] ▷ Corresponds to σ

u← (
∑

x̃∈Xcand
K[x, x̃])x∈Xcand

▷ Corresponds to ⟨L,Ln⟩
v ← (0)x∈Xcand

▷ Corresponds to ⟨L(w),Ln⟩
s← 0 ▷ Corresponds to ⟨L(w),L(w)⟩
t← 0 ▷ Corresponds to ⟨L(w),L⟩

end function

function Add(x)
γ ← rc[x]−1(u[x]−v[x])+s−t

r2−2rc[x]−1v[x]+s

s← (1− γ)2s+ 2(1− γ)γrc[x]−1v[x] + γ2r2

t← (1− γ)t+ γrc[x]−1u[x]
v ← (1− γ)v + γrc[x]−1K[x, ·]

end function

function Next
return argmaxx∈Xpool\Xbatch

c[x]−1(u[x]− v[x])
end function

in the code of Pinsler et al. (2019). In Algorithm 12, when ignoring the computation
of Φ, the runtime complexity of Init is O(Ncanddfeat), the runtime complexity of Add
is O(dfeat), and the runtime of Next is O(Npooldfeat). In total, we obtain a runtime
complexity of O((Ncand + NpoolNbatch + Nsel)dfeat) = O((Ncand + NpoolNbatch)dfeat). The
memory complexity of Algorithm 12 is O(Ncanddfeat).

6.D.7 MaxDist

The MaxDist selection method has been proposed various times in the literature under
many different names. Up to the selection of the first two points, it is equivalent to the
Kennard-Stone algorithm (Kennard and Stone, 1969) proposed for experimental design.
Rosenkrantz et al. (1977) proposed it under the name farthest insertion to generate an
insertion order for constructing an approximate TSP solution. Later, Gonzalez (1985)
proposed it as an approximation algorithm for a clustering problem. In this context, it
is also known as farthest-point clustering (Bern and Eppstein, 1996) or k-center greedy
(Sener and Savarese, 2018). Moreover, it has been proposed as an initialization method
for k-means clustering (Katsavounidis et al., 1994). MaxDist is also equivalent to the
geometric greedy algorithm for kernel interpolation (De Marchi et al., 2005). When used
with Nbatch = Npool to construct an ordering of the points, it is known as farthest-first
traversal or greedy permutation of a finite metric space (Eppstein et al., 2020).

Algorithm 13 shows a pseudocode implementation of MaxDist. Since Add has a
runtime of O(Npool(Tk + 1)), the runtime of Algorithm 13 is O(NpoolNsel(Tk + 1)). The

152



6.D. Details on Selection Methods

Algorithm 12 FrankWolfe pseudocode implementation in feature space using Algo-
rithm 4.

function Init
Φ← ϕ(Xcand) ∈ RNcand×dfeat ▷ Corresponds to Ln
c← (∥Φ[x, ·]∥2)x∈Xcand

▷ Corresponds to σn
r ←∑

x∈Xcand
c[x] ▷ Corresponds to σ

Φ̃← (c[x]−1Φ[x, i])x∈Xcand,i∈{1,...,dfeat} ∈ RNcand×dfeat ▷ Corresponds to 1
σn
Ln

u←∑
x∈Xcand

Φ[x, ·] ▷ Corresponds to L
v ← 0 ∈ Rdfeat ▷ Corresponds to L(w)

end function

function Add(x)
γ ← ⟨rΦ̃[x,·]−v,u−v⟩

⟨rΦ̃[x,·]−v,rΦ̃[x,·]−v⟩
v ← (1− γ)v + γrΦ̃[x, ·]

end function

function Next
return argmaxx∈Xpool\Xbatch

⟨Φ̃[x, ·],u− v⟩
end function

memory complexity is O(Npool).
We will now investigate approximation guarantees for MaxDist with respect to a

covering objective, called minmax radius clustering or euclidean k-center problem (Bern
and Eppstein, 1996). Approximation guarantees can also be given for a related objective
called minmax diameter clustering (Gonzalez, 1985; Bern and Eppstein, 1996), which
will not be discussed here. The following notation will help to define the minmax radius
clustering problem:

Definition 6.D.4. For a given pseudometric d (i.e., a metric except that d(x,x′) = 0 is
allowed for x ̸= x′), batch size Nbatch ∈ N and batch Xbatch ⊆ Xpool, we define

∆d(Xbatch) := max
x∈Xpool

min
x′∈Xmode∪Xbatch

d(x,x′) ,

∆Nbatch
d := min

Xbatch⊆Xpool,|Xbatch|=Nbatch

∆d(Xbatch) . ◀

The minmax radius clustering problem is defined as finding a batch Xbatch ⊆ Xpool

such that ∆d(Xbatch) is close to ∆Nbatch
d . The following lemma asserts that MaxDist

yields a 2-approximation to this problem, which is in general (close to) the best possible
approximation ratio for any polynomial-time algorithm unless P = NP (Feder and Greene,
1988).

Lemma 6.D.5. Let Xbatch be the batch selected by MaxDist applied to k. Then,

∆dk(Xbatch) ≤ 2∆Nbatch
dk

.

Proof. For Xmode = ∅, this has been proven for example in Bern and Eppstein (1996).
Sener and Savarese (2018) mentioned the result for general Xmode but it is unclear where
this is proven. Therefore, we give a proof sketch here.

153



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Algorithm 13 MaxDist pseudocode implementation using Algorithm 4.
function Init

c← (k(x,x))x∈Xcand

d← (∞)x∈Xpool
▷ Minimum squared distances

end function

function Add(x)
d̃← (c[x] + c[x̃]− 2k(x, x̃))x̃∈Xpool

▷ Compute squared kernel distances dk(x, x̃)2

d← min(d, d̃) ▷ element-wise minimum
end function

function Next
if no point has been added yet then

return argmaxx∈Xpool\Xbatch
c[x]

end if
return argmaxx∈Xpool\Xbatch

d[x]
end function

Let d := dk. Let D be the distance of the last selected point in Xbatch to the remaining
points in Xbatch ∪ Xmode. Then, ∆d(Xbatch) ≤ D, because otherwise another point with a
larger distance would have been chosen instead. At the same time, all points in Xbatch are
at least a distance of D apart from any other point in Xbatch ∪ Xmode, since otherwise the
last point would have been chosen already in an earlier step.

Now, consider a set X̃batch ⊆ Xpool with |X̃batch| = Nbatch such that ∆d(X̃batch) = ∆Nbatch
d .

To derive a contradiction, assume ∆Nbatch
d < ∆d(Xbatch)/2. Then, for every x ∈ Xbatch,

there must be x̃ ∈ Xmode ∪ X̃batch such that d(x, x̃) < ∆d(Xbatch)/2. By our previous
considerations, x̃ cannot be in Xmode, so it must be in X̃batch. Moreover, because points in
Xbatch are at least D apart, no two of them can be closer than ∆d(Xbatch)/2 to the same
point in X̃batch, hence by the pigeonhole principle every point in X̃batch must have a point
in Xbatch that is closer to it than ∆d(Xbatch)/2. Now, let x′ be an arbitrary point in Xpool.
Then, there is x̃ ∈ Xmode ∪ X̃batch that is closer than ∆d(Xbatch)/2 to x′. Moreover, there
is x in Xmode ∪ Xbatch that is closer than ∆d(Xbatch)/2 to x̃. Hence, the triangle inequality
yields d(x′,x) < ∆d(Xbatch), and since x′ was arbitrary, this is a contradiction.

The following simple result will be helpful to prove an approximation guarantee when
using sketching:

Lemma 6.D.6. Let Xpool be a finite set and let α > 0. Moreover, let d1, d2 be pseudometrics
on a set X such that d1(x, x̃) ≤ αd2(x, x̃) for all x, x̃ ∈ Xpool. Then,

∀Xbatch ⊆ Xpool : ∆d1(Xbatch) ≤ α∆d2(Xbatch) ,

∀Nbatch ∈ {1, . . . , |Xpool|} : ∆Nbatch
d1

≤ α∆Nbatch
d2

.

Proof. Let Xbatch ⊆ Xpool and let x ∈ Xpool. For the element x′′ ∈ Xmode∪Xbatch minimizing
d2(x,x

′′), we have

min
x′∈Xmode∪Xbatch

d1(x,x
′) ≤ d1(x,x

′′) ≤ αd2(x,x
′′) = α min

x′∈Xtrain∪Xbatch

d2(x,x
′) . (6.32)

154



6.D. Details on Selection Methods

Algorithm 14 KMeansPP pseudocode implementation using Algorithm 4.
function Init

c← (k(x,x))x∈Xcand

d← (∞)x∈Xpool
▷ Minimum squared distances

end function

function Add(x)
d̃← (c[x] + c[x̃]− 2k(x, x̃))x̃∈Xpool

▷ Compute squared kernel distances dk(x, x̃)2

d← min(d, d̃) ▷ element-wise minimum
end function

function Next
if no point has been added yet then

return uniform random sample from Xpool \ Xbatch

end if
return sample x ∈ Xpool \ Xbatch with probability proportional to d[x]

end function

Applying an analogous argument to x shows that ∆d1(Xbatch) ≤ α∆d2(Xbatch). Another
application to Xbatch then shows that ∆Nbatch

d1
≤ α∆Nbatch

d2
.

Finally, we obtain the following approximation guarantee with sketching:

Theorem 6.D.7. Suppose that Eq. (6.15) holds. Then, the batch Xbatch with size Nbatch

computed by MaxDist applied to k→sketch(p) satisfies

∆dk(Xbatch) ≤ 2
1 + ε

1− ε∆
Nbatch
dk

.

Proof. Let d1 := dk and d2 := dk→sketch(p)
. Then,

∆d1(Xbatch)
Lemma 6.D.6
≤ 1

1− ε∆d2(Xbatch)
Lemma 6.D.5
≤ 2

1

1− ε∆
Nbatch
d2

Lemma 6.D.6
≤ 2

1 + ε

1− ε∆
Nbatch
d1

.

6.D.8 KMeansPP

Algorithm 14 shows pseudocode for KMeansPP. Like for MaxDist, we obtain a runtime
complexity of O(NpoolNsel(Tk + 1)) and a memory complexity of O(Npool).

6.D.9 LCMD

A pseudocode implementation of our newly proposed LCMD method is shown in Al-
gorithm 15. Here, the Add method has a runtime complexity of O(Npool(Tk + 1)) and
the Next method has a runtime complexity of O(Npool + Nsel). The overall runtime
complexity is therefore O(NpoolNsel(Tk + 1) +Nbatch(Npool +Nsel)) = O(NpoolNsel(Tk + 1)).
The memory complexity of Algorithm 15 is O(Ncand).

155



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Algorithm 15 LCMD pseudocode implementation using Algorithm 4.
function Init

c← (k(x,x))x∈Xcand

d← (∞)x∈Xpool
▷ Minimum squared distances

v ← (0)x∈Xpool
▷ Associated cluster centers; dummy initialization

end function

function Add(x)
d̃← (c[x] + c[x̃]− 2k(x, x̃))x̃∈Xpool

▷ Compute squared kernel distances dk(x, x̃)2

v ← (v[x̃] if d[x̃] ≤ d̃[x̃] else x)x̃∈Xpool
▷ Update associated cluster centers

d← min(d, d̃) ▷ element-wise minimum
end function

function Next
if no point has been added yet then

return argmaxx∈Xpool\Xbatch
c[x]

end if
s← (

∑
x̃∈Xpool\Xbatch:v[x̃]=x d[x̃])x∈Xmode∪Xbatch

▷ Compute cluster sizes
smax = maxx∈Xmode∪Xbatch

s[x] ▷ Maximum cluster size
return argmaxx∈Xpool\Xbatch:s[x]=smax

d[x]
end function

6.E Details on Experiments

In the following, we provide a more detailed description of our experimental setup and
our results. All NN computations were performed with 32-bit floating-point precision, but
we switched to 64-bit floating-point precision whenever posterior transformations (com-
putations involving σ2) were involved. All MaxDet computations used the kernel-space
implementation and all FrankWolfe computations used the feature-space implementa-
tion. All experiments were run on a workstation with four NVIDIA RTX 3090 GPUs and
an AMD Ryzen Threadripper PRO 3975WX CPU with 256 GB RAM.

6.E.1 Data Sets

We selected 15 tabular regression data sets from different sources, roughly using the
following criteria:

(a) The data set should be sufficiently large after removing rows with missing values (at
least 40000 samples).

(b) The data set should be in a format suitable to perform regression, e.g., not consist
of a few long time series.

(c) The data set should not have too many categorical or text columns with many
categories.

(d) The test RMSE for randomly sampled training sets should drop substantially when
going from Ntrain = 256 to Ntrain = 17 · 256. In our case, the selected 15 data sets

156



6.E. Details on Experiments

differ from the other tested data sets in that the RMSE dropped at least by 14%.
With this criterion, we want to exclude data sets that would not significantly affect
the benchmark results, e.g., because they are too easy to learn or because they are
too noisy.

An overview of the selected data sets can be found in Table 6.E.1 and Table 6.E.2. Our
main data sources are the UCI and OpenML repositories (Dua and Graff, 2017; Vanschoren
et al., 2013). The sgemm and ct_slices data sets have also been used by Tsymbalov et al.
(2018). In contrast to Tsymbalov et al. (2018), we use the undirected and not the directed
version of the kegg data set since it contains more samples and the RMSE drops more
strongly between Ntrain = 256 and Ntrain = 17 · 256. Concerning the other four data sets
used in Tsymbalov et al. (2018), we omitted the BlogFeedback, YearPredictionMSD, and
Online News Popularity data sets due to criterion (d), and could not find the Rosenbrock
2000D data set online. Although the poker data set is originally a multi-class classification
data set, we include it since it is noise-free and sufficiently difficult to learn.

Our accompanying code allows automatically downloading and processing all data sets.

6.E.2 Preprocessing

We preprocess the data sets in the following way: On some data sets, we remove unwanted
columns such as identifier columns, see the details in our code. We then remove rows with
NaN (missing) values. Next, if necessary, we randomly subsample the data set such that
it contains at most 500000 samples. We use 80% of the data set, but at most 200000
samples, for training, validation, and pool data. Of those, we initially use Ntrain = 256
and Nvalid = 1024 and reserve the rest for the pool set. Subsequently, we remove columns
with only a single value. We one-hot encode small categorical columns, allowing at most
300 new continuous columns, and discard larger categorical columns. On some data sets,
we transform the labels y, for example by applying a logarithm or by taking the median of
multiple target values, we refer to our code for further details. We standardize the labels
y such that they have mean 0 and variance 1.9 We preprocess the inputs x ∈ Rd as

xprocessedj := 5 tanh

(
1

5
· xj − µ̂j

σ̂j

)
,

where we compute

µ̂j :=
1

Ntrain +Npool

∑
x∈Xtrain∪Xpool

xj

σ̂2
j :=

1

Ntrain +Npool

∑
x∈Xtrain∪Xpool

(xj − µ̂j)2 .

The motivation for the tanh function is to reduce the impact of outliers by soft-clipping
the coordinates to the interval (−5, 5).

For the sarcos data set, we only used the training data since the test data on the
GPML web page (see Table 6.E.2) is already contained in the training data. For the poker

9This only leaks a negligible amount of information from the test set and in turn allows us to better
compare the errors across data sets.

157



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Short name Initial pool set size Test set size Number of features
sgemm 192000 48320 14

wec_sydney 56320 14400 48
ct_slices 41520 10700 379

kegg_undir 50407 12921 27
online_video 53748 13756 26

query 158720 40000 4
poker 198720 300000 95
road 198720 234874 2

mlr_knn_rng 88123 22350 132
fried 31335 8153 10

diamonds 41872 10788 29
methane 198720 300000 33

stock 45960 11809 9
protein 35304 9146 9
sarcos 34308 8896 21

Table 6.E.1: Data set characteristics.

data set, we only used the test data since it contains roughly a million samples, while the
training set contains around 25000 samples.

The resulting characteristics of the processed data sets can be found in Table 6.E.1.
The full names, links, and citations are contained in Table 6.E.2.

6.E.3 Neural Network Configuration

We use a fully-connected NN with two hidden layers with 512 neurons each (L = 3,
d1 = d2 = 512). We employ the neural tangent parametrization as discussed in Section 6.2.1
with the ReLU activation function. We initialize biases to zero and weights i.i.d. from
N (0, 1). For optimization, we use the Adam (Kingma and Ba, 2015) optimizer with its
default parameters β1 = 0.9, β2 = 0.999, and let the learning rate (see below) decay linearly
to zero over training. We use a mini-batch size of 256 and train for 256 epochs. After each
epoch, we measure the validation RMSE on a validation set with 1024 samples. After
training, we set the trained model parameters θT to the parameters from the end of the
epoch where the lowest validation RMSE was attained. While the use of a large validation
set might not be realistic for many data-scarce BMAL scenarios, we see this as a simple
proxy for more complicated cross-validation or refitting strategies.

While the reasoning of forward variance preservation as in the well-known Kaiming
initialization (He et al., 2015) suggests to set σw =

√
2, we find that smaller values of σw

can substantially improve the RMSE of the trained models. Possible explanations for this
phenomenon might be that large σw increases the scale of the disturbance by the random
initial function of the network (Nonnenmacher et al., 2021) or brings the NN more towards
a “lazy training” regime (Chizat et al., 2019). Therefore, we manually tuned σw, σb and
the initial learning rate to optimize the mean log RMSE across all data sets for Random
selection. We arrived at σw = σb = 0.2 and an initial learning rate of 0.375.

To assess whether our insights apply to other NN configurations, we also run experiments

158



6.E. Details on Experiments

for a fully-connected NN with the SiLU (a.k.a. Swish) activation function (Elfwing et al.,
2018). Again, we use optimized hyperparameters for SiLU, specifically an initial learning
rate of 0.15 as well as σw = 0.5, σb = 1.0.

6.E.4 Results

Table 6.E.5 shows averaged logarithmic error metrics and runtimes for a wide variety of
configurations. Some conclusions from these results are discussed in Section 6.6. Table 6.E.6
shows analogous results for our NN configuration with the SiLU instead of the ReLU
activation function. Note that the results for knngp still use the NNGP for ReLU, though,
since we do not know of an analytic expression of the NNGP for SiLU. Results on individual
data sets for selected methods are shown in Table 6.E.3 and Table 6.E.4.

In this section, we also provide more plots complementing the figures from the main
part of the paper. Figure 6.E.1 shows batch size plots on individual data sets for RMSE
and Figure 6.E.2 shows learning curve plots on individual data sets for the 99% quantile.
Moreover, Figure 6.E.3 and Figure 6.E.4 allow comparing two methods across data sets on
RMSE and MAXE, respectively.

The estimated standard deviations of the mean estimators in Figure 1, Figure 3,
Figure 4, Figure 5, Figure 6.E.1 and Figure 6.E.2 are computed as follows: Consider
random variables Xij representing the log metric values on repetition i and data set
j. Then, it is well-known that for the mean estimator µ̂j := 1

20

∑20
i=1Xij, an unbiased

estimator of its variance is given by

σ̂2
j :=

1

20− 1

20∑
i=1

(Xij − µ̂j)2

Since all mean estimators µ̂j are independent, the variance of the total mean estimator
µ̂ := 1

15

∑15
j=1 µ̂j can be estimated as

σ̂2 :=
1

152

15∑
j=1

σ̂2
j .

Our plots hence show σ̂ as the estimated standard deviation of the mean estimator µ̂.

159



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

−3.25

−3.00

−2.75

−2.50

−2.25

−2.00

m
ea

n
lo

g
R

M
SE

ct slices

−1.88

−1.86

−1.84

−1.82

−1.80

diamonds

−1.53

−1.52

−1.51

−1.50

−1.49

−1.48

fried

−1.8

−1.6

−1.4

−1.2

m
ea

n
lo

g
R

M
SE

kegg undir

−0.40

−0.35

−0.30

−0.25

methane

−2.0

−1.5

−1.0

mlr knn rng

−2.2

−2.0

−1.8

−1.6

m
ea

n
lo

g
R

M
SE

online video

−0.65

−0.60

−0.55

−0.50

−0.45

−0.40

poker

−0.34

−0.32

−0.30

−0.28

−0.26

−0.24

protein

−3.2

−3.0

−2.8

−2.6

−2.4

m
ea

n
lo

g
R

M
SE

query

−0.6

−0.5

−0.4

−0.3
road

−2.0

−1.9

−1.8

−1.7

sarcos

64 128 256 512 1024 2048 4096
Acquisition batch size Nbatch

−2.4

−2.2

−2.0

−1.8

−1.6

m
ea

n
lo

g
R

M
SE

sgemm

64 128 256 512 1024 2048 4096
Acquisition batch size Nbatch

−0.68

−0.66

−0.64

stock

64 128 256 512 1024 2048 4096
Acquisition batch size Nbatch

−3.8

−3.6

−3.4

−3.2

wec sydney

RANDOM

MAXDIAG

MAXDET-P
BAIT-F-P

FRANKWOLFE-P
MAXDIST-P

KMEANSPP-P
LCMD-TP (ours)

Figure 6.E.1: This figure shows how much the final accuracy of different BMDAL methods
deteriorates on individual data sets when fewer BMAL steps with larger batch sizes are used.
Specifically, we use different selection methods with the corresponding kernels from Table 6,
starting with Ntrain = 256 and then performing 2m BMAL steps with batch size Nbatch = 212−m

for m ∈ {0, . . . , 6}, such that the final training set size is 4352 in each case. The plots show
the final logarithmic error metric, averaged over all repetitions. Note that the performance of
Random selection does not depend on Nbatch but only on the final training set size, hence it is
shown as a constant line here. The shaded area corresponds to one estimated standard deviation
of the mean estimator, cf. Section 6.E.4.

160



6.E. Details on Experiments

−2.0

−1.5

−1.0

−0.5

0.0

0.5
m

ea
n

lo
g

99
%

qu
an

til
e

ct slices

−0.4

−0.3

−0.2

−0.1

diamonds

−0.6

−0.4

−0.2

0.0

fried

0.0

0.5

1.0

m
ea

n
lo

g
99

%
qu

an
til

e

kegg undir

0.6

0.7

0.8

0.9

methane

−1.0

−0.5

0.0

0.5

1.0

mlr knn rng

−1.0

−0.5

0.0

0.5

m
ea

n
lo

g
99

%
qu

an
til

e

online video

0.2

0.4

0.6

0.8

1.0

1.2

poker

0.700

0.725

0.750

0.775

0.800

protein

−2.0

−1.5

−1.0

m
ea

n
lo

g
99

%
qu

an
til

e

query

0.6

0.7

0.8

road

−0.8

−0.6

−0.4

−0.2

0.0

sarcos

256 512 1024 2048 4096
Training set size Ntrain

−1.0

−0.5

0.0

m
ea

n
lo

g
99

%
qu

an
til

e

sgemm

256 512 1024 2048 4096
Training set size Ntrain

0.45

0.50

0.55

0.60

stock

256 512 1024 2048 4096
Training set size Ntrain

−2.5

−2.0

−1.5

−1.0

wec sydney

RANDOM

MAXDIAG

MAXDET-P
BAIT-F-P

FRANKWOLFE-P
MAXDIST-P

KMEANSPP-P
LCMD-TP (ours)

Figure 6.E.2: This figure shows how fast the 99% quantile decreases during BMAL on the
individual benchmark data sets for different selection methods and their corresponding kernels
from Table 6. Specifically, the plots above show the logarithmic 99% quantile between each
BMAL step for Nbatch = 256, averaged over all repetitions. The black horizontal dashed line
corresponds to the final performance of Random at Ntrain = 4352. The shaded area corresponds
to one estimated standard deviation of the mean estimator, cf. Section 6.E.4.

161



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

−0.5

0.0

M
A

X
D

E
T

-P

ct slices
diamonds
fried
kegg undir
methane
mlr knn rng
online video
poker
protein
query
road
sarcos
sgemm
stock
wec sydney

−0.5

0.0

B
A

IT
-F

-P

−0.5

0.0

F
R

A
N

K
W

O
L

F
E

-P

−0.5

0.0

M
A

X
D

IS
T

-P

−0.5

0.0

K
M

E
A

N
S
P

P-
P

−0.5 0.0

MAXDIAG

−0.5

0.0

L
C

M
D

-T
P

(o
ur

s)

−0.5 0.0

MAXDET-P
−0.5 0.0

BAIT-F-P
−0.5 0.0

FRANKWOLFE-P
−0.5 0.0

MAXDIST-P
−0.5 0.0

KMEANSPP-P

Figure 6.E.3: Each subplot shows the errors of two selection methods and their corresponding
selected kernels from Table 6. Specifically, the coordinates correspond to the mean log RMSE
of the method on the data set minus the mean log RMSE of Random selection on the same
data set. Hence, the method on the x axis has a lower mean log RMSE than Random on a
data set if the corresponding point is left of the vertical dashed line, and it has a lower mean
log RMSE than the method on the y axis if the corresponding point is left of the diagonal line.
Similarly, the method on the y axis has a lower mean log RMSE than Random on a data set if
the corresponding point is below the horizontal dashed line, and it has a lower mean log RMSE
than the method on the x axis if the corresponding point is below the diagonal line.

162



6.E. Details on Experiments

−1.0

−0.5

0.0

M
A

X
D

E
T

-P

ct slices
diamonds
fried
kegg undir
methane
mlr knn rng
online video
poker
protein
query
road
sarcos
sgemm
stock
wec sydney

−1.0

−0.5

0.0

B
A

IT
-F

-P

−1.0

−0.5

0.0

F
R

A
N

K
W

O
L

F
E

-P

−1.0

−0.5

0.0

M
A

X
D

IS
T

-P

−1.0

−0.5

0.0

K
M

E
A

N
S
P

P-
P

−1 0

MAXDIAG

−1.0

−0.5

0.0

L
C

M
D

-T
P

(o
ur

s)

−1 0

MAXDET-P
−1 0

BAIT-F-P
−1 0

FRANKWOLFE-P
−1 0

MAXDIST-P
−1 0

KMEANSPP-P

Figure 6.E.4: Each subplot shows the errors of two selection methods and their corresponding
selected kernels from Table 6. Specifically, the coordinates correspond to the mean log MAXE of
the method on the data set minus the mean log MAXE of Random selection on the same data
set. Hence, the method on the x axis has a lower mean log MAXE than Random on a data set
if the corresponding point is left of the vertical dashed line, and it has a lower mean log MAXE
than the method on the y axis if the corresponding point is left of the diagonal line.

163



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Short name Source OpenML ID Full name Citation

sgemm UCI SGEMM GPU kernel
performance

Ballester-Ripoll et al.
(2019)

wec_sydney UCI Wave Energy
Converters

Neshat et al. (2018)

ct_slices UCI Relative location of CT
slices on axial axis

Graf et al. (2011)

kegg_undir UCI KEGG Metabolic
Reaction Network

(Undirected)

Shannon et al. (2003)

online_video UCI Online Video
Characteristics and
Transcoding Time

Deneke et al. (2014)

query UCI Query Analytics
Workloads

Anagnostopoulos et al.
(2018), Savva et al.

(2018)

poker UCI Poker Hand —

road UCI 3D Road Network
(North Jutland,

Denmark)

Kaul et al. (2013)

mlr_knn_rng OpenML 42454 mlr_knn_rng —

fried OpenML 564 fried Friedman (1991)

diamonds OpenML 42225 diamonds —

methane OpenML 42701 Methane Ślęzak et al. (2018)

stock OpenML 1200 BNG(stock) —

protein OpenML 42903 physicochemical-protein —

sarcos GPML SARCOS data Vijayakumar and
Schaal (2000)

Table 6.E.2: Overview of used data sets. The second column entries are hyperlinks to the
respective web pages.

Data set Random MaxDiag MaxDet-P Bait-F-P FrankWolfe-P MaxDist-P KMeansPP-P LCMD-TP (ours)
ct_slices 0.141 0.123 0.085 0.076 0.088 0.085 0.081 0.072
diamonds 0.173 0.169 0.166 0.161 0.162 0.166 0.162 0.161

fried 0.230 0.231 0.228 0.227 0.228 0.229 0.229 0.228
kegg_undir 0.380 0.346 0.245 0.222 0.248 0.243 0.227 0.220
methane 0.733 0.770 0.736 0.714 0.714 0.740 0.713 0.708

mlr_knn_rng 0.294 0.326 0.211 0.183 0.199 0.209 0.190 0.176
online_video 0.263 0.190 0.159 0.149 0.159 0.158 0.153 0.152

poker 0.806 0.803 0.742 0.751 0.797 0.754 0.794 0.797
protein 0.763 0.793 0.782 0.757 0.761 0.782 0.757 0.759
query 0.058 0.082 0.066 0.057 0.060 0.066 0.057 0.053
road 0.586 0.702 0.625 0.592 0.606 0.624 0.598 0.591

sarcos 0.181 0.190 0.176 0.164 0.168 0.176 0.167 0.163
sgemm 0.152 0.185 0.155 0.142 0.144 0.153 0.144 0.140
stock 0.531 0.541 0.540 0.529 0.527 0.540 0.526 0.528

wec_sydney 0.027 0.034 0.030 0.025 0.027 0.030 0.026 0.028

Table 6.E.3: This table shows the averaged (non-logarithmic) RMSEs per data set, averaged
over all repetitions, and BMAL steps, for each of the selection methods with kernels as in Table 6.

164

https://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+performance
https://archive.ics.uci.edu/ml/datasets/Wave+Energy+Converters
https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
https://archive.ics.uci.edu/ml/datasets/KEGG+Metabolic+Reaction+Network+%28Undirected%29
https://archive.ics.uci.edu/ml/datasets/Online+Video+Characteristics+and+Transcoding+Time+Dataset
https://archive.ics.uci.edu/ml/datasets/Query+Analytics+Workloads+Dataset
https://archive.ics.uci.edu/ml/datasets/Poker+Hand
https://archive.ics.uci.edu/ml/datasets/3D+Road+Network+%28North+Jutland%2C+Denmark%29
https://www.openml.org/d/42454
https://www.openml.org/d/564
https://www.openml.org/d/42225
https://www.openml.org/d/42701
https://www.openml.org/d/1200
https://www.openml.org/d/42903
http://www.gaussianprocess.org/gpml/data/


6.E. Details on Experiments

Data set Random MaxDiag MaxDet-P Bait-F-P FrankWolfe-P MaxDist-P KMeansPP-P LCMD-TP (ours)
ct_slices 0.093 0.069 0.053 0.044 0.050 0.052 0.046 0.038
diamonds 0.166 0.155 0.153 0.152 0.152 0.153 0.153 0.152

fried 0.221 0.219 0.218 0.219 0.219 0.219 0.220 0.219
kegg_undir 0.291 0.225 0.180 0.165 0.173 0.179 0.166 0.154
methane 0.692 0.731 0.704 0.675 0.670 0.709 0.669 0.661

mlr_knn_rng 0.208 0.168 0.126 0.112 0.119 0.131 0.108 0.105
online_video 0.206 0.137 0.116 0.106 0.111 0.115 0.109 0.105

poker 0.600 0.598 0.533 0.537 0.578 0.547 0.558 0.589
protein 0.727 0.758 0.751 0.721 0.729 0.750 0.717 0.721
query 0.040 0.061 0.054 0.042 0.046 0.052 0.040 0.037
road 0.538 0.671 0.582 0.544 0.571 0.570 0.549 0.551

sarcos 0.155 0.162 0.155 0.140 0.143 0.154 0.142 0.138
sgemm 0.100 0.126 0.107 0.098 0.097 0.106 0.096 0.092
stock 0.511 0.517 0.518 0.508 0.506 0.519 0.506 0.506

wec_sydney 0.021 0.023 0.021 0.020 0.021 0.021 0.020 0.020

Table 6.E.4: This table shows the (non-logarithmic) RMSEs after the last BMAL step per data
set, averaged over all repetitions, for each of the selection methods with kernels as in Table 6.

165



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

Selection method Kernel MAE RMSE 95% 99% MAXE avg. time [s]
Random — -1.934 -1.401 -0.766 -0.163 1.107 0.001
MaxDiag kgrad→sketch(512)→acs-rf(512) -1.777 -1.370 -0.690 -0.189 0.978 0.650
MaxDiag kgrad→sketch(512)→Xtrain

-1.777 -1.369 -0.690 -0.186 0.986 0.551
MaxDiag kgrad→ens(3)→sketch(512)→Xtrain

-1.768 -1.366 -0.685 -0.188 0.970 1.392
MaxDiag kgrad→Xtrain

-1.766 -1.355 -0.675 -0.168 0.996 4.108
MaxDiag kgrad→sketch(512)→acs-grad -1.751 -1.345 -0.664 -0.163 1.007 0.553
MaxDiag kgrad→sketch(512)→acs-rf-hyper(512) -1.743 -1.334 -0.656 -0.148 1.021 0.650
MaxDiag kll→acs-rf(512) -1.713 -1.286 -0.606 -0.084 1.052 0.030
MaxDiag kll→Xtrain

-1.722 -1.285 -0.614 -0.077 1.080 0.142
MaxDiag knngp→Xtrain

-1.754 -1.272 -0.606 -0.044 1.088 2.592
MaxDiag klin→Xtrain

-1.585 -1.103 -0.426 0.143 1.222 0.007
MaxDet-TP kgrad→scale(Xtrain) -1.930 -1.522 -0.855 -0.356 0.856 8.883
MaxDet-P kgrad→sketch(512)→Xtrain

-1.915 -1.512 -0.844 -0.350 0.867 0.770
MaxDet-P kll→ens(3)→sketch(512)→Xtrain

-1.931 -1.504 -0.849 -0.337 0.873 0.673
MaxDet-P kgrad→ens(3)→sketch(512)→Xtrain

-1.895 -1.500 -0.830 -0.344 0.868 1.608
MaxDet-P kgrad→sketch(512)→acs-rf(512) -1.893 -1.492 -0.820 -0.323 0.886 0.869
MaxDet-P kgrad→sketch(512)→acs-grad -1.872 -1.475 -0.802 -0.311 0.878 0.893
MaxDet-P kgrad→sketch(512)→acs-rf-hyper(512) -1.872 -1.475 -0.803 -0.310 0.888 0.872
MaxDet-P kll→Xtrain

-1.895 -1.463 -0.808 -0.288 0.916 0.370
MaxDet-P kll→acs-rf(512) -1.876 -1.443 -0.792 -0.264 0.961 0.518
MaxDet-TP knngp→scale(Xtrain) -1.848 -1.358 -0.702 -0.133 1.028 5.449
MaxDet-P klin→Xtrain

-1.682 -1.187 -0.524 0.055 1.191 0.170
Bait-F-P kgrad→ens(3)→sketch(512)→Xtrain

-2.011 -1.587 -0.927 -0.419 0.859 2.346
Bait-F-P kgrad→sketch(512)→Xtrain

-2.013 -1.585 -0.926 -0.412 0.862 1.508
Bait-FB-P kgrad→sketch(512)→Xtrain

-2.007 -1.584 -0.921 -0.411 0.852 3.050
Bait-F-P kll→ens(3)→sketch(512)→Xtrain

-2.041 -1.583 -0.940 -0.400 0.880 1.408
Bait-F-P kll→Xtrain

-2.003 -1.545 -0.900 -0.362 0.891 1.149
Bait-FB-P kll→Xtrain

-1.998 -1.541 -0.895 -0.357 0.888 2.731
Bait-F-P klin→Xtrain

-1.721 -1.220 -0.562 0.022 1.162 0.232
FrankWolfe-P kgrad→sketch(512)→acs-rf-hyper(512) -1.977 -1.542 -0.892 -0.362 0.918 0.823
FrankWolfe-P kgrad→sketch(512)→acs-grad→sketch(512) -1.999 -1.520 -0.879 -0.317 1.015 0.914
FrankWolfe-P kll→acs-rf(512) -1.992 -1.519 -0.883 -0.321 1.022 0.421
FrankWolfe-P kgrad→sketch(512)→acs-rf(512) -1.995 -1.499 -0.864 -0.287 1.055 0.825
FrankWolfe-P kll→acs-grad→sketch(512) -1.943 -1.446 -0.807 -0.226 1.085 0.517
FrankWolfe-P kll→acs-rf-hyper(512) -1.937 -1.439 -0.793 -0.225 1.016 0.421
FrankWolfe-P kgrad→sketch(512)→Xtrain

-1.924 -1.410 -0.765 -0.178 1.134 0.723
FrankWolfe-P kll→Xtrain

-1.896 -1.391 -0.752 -0.158 1.139 0.326
MaxDist-TP kll→ens(3)→sketch(512) -1.948 -1.518 -0.860 -0.348 0.905 0.655
MaxDist-P kgrad→sketch(512)→Xtrain

-1.916 -1.514 -0.845 -0.351 0.866 0.713
MaxDist-TP kgrad→sketch(512) -1.899 -1.506 -0.838 -0.347 0.868 0.653
MaxDist-TP kgrad -1.894 -1.503 -0.834 -0.342 0.866 2.347
MaxDist-TP kgrad→ens(3)→sketch(512) -1.889 -1.498 -0.831 -0.342 0.871 0.743
MaxDist-TP kll -1.924 -1.491 -0.832 -0.307 0.927 0.621
MaxDist-P kgrad→sketch(512)→acs-rf(512) -1.893 -1.491 -0.819 -0.322 0.891 0.810
MaxDist-P kgrad→sketch(512)→acs-grad -1.873 -1.477 -0.802 -0.312 0.888 0.832
MaxDist-P kgrad→sketch(512)→acs-rf-hyper(512) -1.867 -1.472 -0.798 -0.306 0.895 0.811
MaxDist-P kll→Xtrain

-1.889 -1.459 -0.807 -0.283 0.947 0.309
MaxDist-P kll→acs-rf(512) -1.863 -1.430 -0.777 -0.247 0.980 0.410
MaxDist-TP klin -1.888 -1.398 -0.749 -0.172 1.034 0.242
MaxDist-TP knngp -1.876 -1.386 -0.735 -0.159 1.038 1.315

KMeansPP-TP kgrad -2.025 -1.569 -0.927 -0.378 0.966 2.357
KMeansPP-P kgrad→sketch(512)→acs-rf(512) -2.006 -1.569 -0.912 -0.385 0.929 0.836
KMeansPP-TP kgrad→ens(3)→sketch(512) -2.025 -1.569 -0.926 -0.377 0.967 0.754
KMeansPP-TP kgrad→sketch(512) -2.023 -1.567 -0.925 -0.376 0.967 0.663
KMeansPP-P kgrad→sketch(512)→acs-grad -2.008 -1.558 -0.905 -0.366 0.979 0.859
KMeansPP-P kgrad→sketch(512)→acs-rf-hyper(512) -1.994 -1.554 -0.899 -0.370 0.957 0.836
KMeansPP-P kgrad→sketch(512)→Xtrain

-2.020 -1.549 -0.905 -0.348 0.997 0.738
KMeansPP-P kll→Xtrain

-2.007 -1.530 -0.895 -0.329 1.008 0.335
KMeansPP-P kll→acs-rf(512) -1.986 -1.529 -0.889 -0.339 0.977 0.435
KMeansPP-TP kll→ens(3)→sketch(512) -2.020 -1.522 -0.890 -0.317 1.014 0.666
KMeansPP-TP kll -2.015 -1.521 -0.887 -0.316 1.014 0.632
KMeansPP-TP knngp -1.969 -1.446 -0.817 -0.215 1.072 1.319
KMeansPP-TP klin -1.968 -1.441 -0.816 -0.212 1.077 0.252

LCMD-TP (ours) kgrad→ens(3)→sketch(512) -2.040 -1.594 -0.947 -0.408 0.920 1.073
LCMD-TP (ours) kgrad -2.038 -1.594 -0.946 -0.408 0.908 2.714
LCMD-TP (ours) kgrad→sketch(512) -2.033 -1.590 -0.941 -0.404 0.917 0.981
LCMD-TP (ours) kll→ens(3)→sketch(512) -2.026 -1.555 -0.912 -0.358 0.952 0.984
LCMD-P (ours) kgrad→sketch(512)→acs-rf(512) -1.992 -1.547 -0.905 -0.369 0.974 0.875
LCMD-TP (ours) kll -2.017 -1.544 -0.902 -0.346 0.961 0.948
LCMD-P (ours) kgrad→sketch(512)→Xtrain

-1.940 -1.534 -0.869 -0.371 0.864 0.774
LCMD-P (ours) kll→acs-rf(512) -1.969 -1.513 -0.885 -0.331 1.010 0.473
LCMD-P (ours) kgrad→sketch(512)→acs-rf-hyper(512) -1.898 -1.501 -0.827 -0.336 0.878 0.876
LCMD-P (ours) kgrad→sketch(512)→acs-grad -1.896 -1.496 -0.827 -0.334 0.880 0.899
LCMD-P (ours) kll→Xtrain

-1.920 -1.485 -0.840 -0.311 0.935 0.372
LCMD-TP (ours) knngp -1.960 -1.447 -0.811 -0.216 1.043 1.587
LCMD-TP (ours) klin -1.958 -1.445 -0.810 -0.215 1.036 0.525

Table 6.E.5: This table shows the performance and runtime of different combinations of selection
methods and kernels. The columns labeled “MAE” to “MAXE” contain averaged logarithmic values of the
corresponding metrics, averaged over all data sets, repetitions, and BMAL steps. For ensembled kernels,
the metrics of the individual ensemble members were averaged to isolate the effect of ensembling on the
batch selection. Runtimes were measured at one of the 20 repetitions where only one process was started
per GPU, and are averaged over all BMAL steps and data sets. The employed hardware is described in
Appendix 6.E.

166



6.E. Details on Experiments

Selection method Kernel MAE RMSE 95% 99% MAXE avg. time [s]
Random — -1.923 -1.406 -0.774 -0.178 1.119 0.001
MaxDiag kgrad→ens(3)→sketch(512)→Xtrain

-1.753 -1.358 -0.690 -0.205 0.956 1.393
MaxDiag kgrad→sketch(512)→Xtrain

-1.751 -1.351 -0.682 -0.192 0.961 0.551
MaxDiag kgrad→sketch(512)→acs-rf(512) -1.749 -1.350 -0.680 -0.189 0.962 0.651
MaxDiag kgrad→Xtrain

-1.749 -1.346 -0.677 -0.182 0.967 4.107
MaxDiag kgrad→sketch(512)→acs-grad -1.735 -1.342 -0.671 -0.184 0.961 0.553
MaxDiag knngp→Xtrain

-1.768 -1.301 -0.634 -0.095 1.054 2.584
MaxDiag kll→Xtrain

-1.744 -1.300 -0.631 -0.100 1.037 0.142
MaxDiag kll→acs-rf(512) -1.713 -1.286 -0.606 -0.084 1.052 0.031
MaxDiag kgrad→sketch(512)→acs-rf-hyper(512) -1.675 -1.279 -0.604 -0.111 1.007 0.649
MaxDiag klin→Xtrain

-1.622 -1.158 -0.483 0.068 1.156 0.007
MaxDet-TP kgrad→scale(Xtrain) -1.955 -1.546 -0.895 -0.400 0.834 8.914
MaxDet-P kgrad→ens(3)→sketch(512)→Xtrain

-1.913 -1.523 -0.867 -0.390 0.843 1.607
MaxDet-P kgrad→sketch(512)→Xtrain

-1.915 -1.520 -0.864 -0.381 0.846 0.770
MaxDet-P kgrad→sketch(512)→acs-rf(512) -1.910 -1.514 -0.857 -0.372 0.855 0.868
MaxDet-P kgrad→sketch(512)→acs-grad -1.886 -1.503 -0.840 -0.370 0.846 0.890
MaxDet-P kll→ens(3)→sketch(512)→Xtrain

-1.921 -1.485 -0.823 -0.304 0.894 0.675
MaxDet-P kgrad→sketch(512)→acs-rf-hyper(512) -1.847 -1.468 -0.804 -0.335 0.863 0.871
MaxDet-P kll→Xtrain

-1.910 -1.467 -0.807 -0.281 0.913 0.371
MaxDet-P kll→acs-rf(512) -1.905 -1.459 -0.801 -0.272 0.924 0.470
MaxDet-TP knngp→scale(Xtrain) -1.869 -1.401 -0.737 -0.198 0.980 5.456
MaxDet-P klin→Xtrain

-1.714 -1.239 -0.574 -0.020 1.118 0.170
Bait-F-P kgrad→ens(3)→sketch(512)→Xtrain

-2.025 -1.594 -0.948 -0.436 0.855 2.342
Bait-F-P kgrad→sketch(512)→Xtrain

-2.023 -1.588 -0.943 -0.429 0.859 1.505
Bait-FB-P kgrad→sketch(512)→Xtrain

-2.019 -1.585 -0.938 -0.426 0.853 3.051
Bait-F-P kll→ens(3)→sketch(512)→Xtrain

-2.002 -1.541 -0.885 -0.345 0.894 1.407
Bait-F-P kll→Xtrain

-1.989 -1.524 -0.869 -0.324 0.913 1.147
Bait-FB-P kll→Xtrain

-1.989 -1.522 -0.868 -0.323 0.917 2.733
Bait-F-P klin→Xtrain

-1.742 -1.264 -0.601 -0.045 1.110 0.233
FrankWolfe-P kgrad→sketch(512)→acs-rf-hyper(512) -1.961 -1.529 -0.882 -0.363 0.922 0.822
FrankWolfe-P kgrad→sketch(512)→acs-rf(512) -1.977 -1.502 -0.864 -0.299 1.015 0.824
FrankWolfe-P kgrad→sketch(512)→acs-grad→sketch(512) -1.960 -1.481 -0.840 -0.279 1.049 0.915
FrankWolfe-P kll→acs-rf(512) -1.959 -1.467 -0.830 -0.255 1.031 0.422
FrankWolfe-P kll→acs-rf-hyper(512) -1.923 -1.437 -0.797 -0.227 1.016 0.420
FrankWolfe-P kll→acs-grad→sketch(512) -1.911 -1.413 -0.771 -0.191 1.092 0.519
FrankWolfe-P kgrad→sketch(512)→Xtrain

-1.881 -1.384 -0.736 -0.157 1.129 0.725
FrankWolfe-P kll→Xtrain

-1.859 -1.358 -0.711 -0.128 1.143 0.324
MaxDist-TP kgrad→ens(3)→sketch(512) -1.919 -1.540 -0.889 -0.416 0.818 0.744
MaxDist-TP kgrad -1.919 -1.539 -0.888 -0.413 0.823 2.351
MaxDist-TP kgrad→sketch(512) -1.918 -1.536 -0.886 -0.409 0.820 0.652
MaxDist-TP kll→ens(3)→sketch(512) -1.958 -1.526 -0.879 -0.360 0.876 0.655
MaxDist-P kgrad→sketch(512)→Xtrain

-1.913 -1.518 -0.861 -0.378 0.849 0.712
MaxDist-TP kll -1.951 -1.515 -0.870 -0.346 0.888 0.621
MaxDist-P kgrad→sketch(512)→acs-rf(512) -1.906 -1.508 -0.851 -0.364 0.865 0.811
MaxDist-P kgrad→sketch(512)→acs-grad -1.890 -1.507 -0.844 -0.373 0.843 0.833
MaxDist-P kll→Xtrain

-1.913 -1.468 -0.810 -0.282 0.917 0.311
MaxDist-P kgrad→sketch(512)→acs-rf-hyper(512) -1.846 -1.462 -0.802 -0.327 0.868 0.810
MaxDist-P kll→acs-rf(512) -1.899 -1.452 -0.794 -0.264 0.937 0.409
MaxDist-TP klin -1.905 -1.435 -0.777 -0.233 0.982 0.238
MaxDist-TP knngp -1.897 -1.426 -0.768 -0.224 0.989 1.286

KMeansPP-TP kgrad→ens(3)→sketch(512) -2.022 -1.566 -0.931 -0.382 0.971 0.755
KMeansPP-TP kgrad -2.023 -1.566 -0.932 -0.381 0.969 2.360
KMeansPP-TP kgrad→sketch(512) -2.022 -1.566 -0.932 -0.381 0.969 0.662
KMeansPP-P kgrad→sketch(512)→acs-rf(512) -2.001 -1.558 -0.914 -0.381 0.920 0.837
KMeansPP-P kgrad→sketch(512)→acs-grad -2.006 -1.542 -0.902 -0.351 0.972 0.858
KMeansPP-P kgrad→sketch(512)→acs-rf-hyper(512) -1.987 -1.541 -0.898 -0.363 0.972 0.836
KMeansPP-P kgrad→sketch(512)→Xtrain

-2.006 -1.531 -0.895 -0.334 0.996 0.736
KMeansPP-TP kll→ens(3)→sketch(512) -2.011 -1.525 -0.894 -0.325 1.000 0.665
KMeansPP-TP kll -2.007 -1.523 -0.889 -0.320 1.010 0.632
KMeansPP-P kll→acs-rf(512) -1.982 -1.501 -0.861 -0.299 0.985 0.434
KMeansPP-P kll→Xtrain

-1.980 -1.484 -0.849 -0.275 1.020 0.335
KMeansPP-TP knngp -1.968 -1.465 -0.829 -0.246 1.051 1.298
KMeansPP-TP klin -1.966 -1.464 -0.827 -0.248 1.057 0.249

LCMD-TP (ours) kgrad→ens(3)→sketch(512) -2.041 -1.600 -0.961 -0.425 0.901 1.071
LCMD-TP (ours) kgrad -2.038 -1.598 -0.958 -0.423 0.899 2.712
LCMD-TP (ours) kgrad→sketch(512) -2.038 -1.597 -0.957 -0.422 0.898 0.977
LCMD-TP (ours) kll→ens(3)→sketch(512) -2.027 -1.554 -0.916 -0.359 0.941 0.979
LCMD-TP (ours) kll -2.022 -1.550 -0.911 -0.357 0.944 0.946
LCMD-P (ours) kgrad→sketch(512)→acs-rf(512) -1.982 -1.532 -0.889 -0.348 0.945 0.874
LCMD-P (ours) kgrad→sketch(512)→Xtrain

-1.930 -1.531 -0.880 -0.392 0.847 0.774
LCMD-P (ours) kgrad→sketch(512)→acs-grad -1.907 -1.520 -0.862 -0.389 0.849 0.898
LCMD-P (ours) kgrad→sketch(512)→acs-rf-hyper(512) -1.905 -1.508 -0.856 -0.371 0.870 0.877
LCMD-TP (ours) klin -1.971 -1.484 -0.836 -0.274 0.991 0.517
LCMD-TP (ours) knngp -1.970 -1.482 -0.834 -0.271 0.996 1.560
LCMD-P (ours) kll→Xtrain

-1.928 -1.481 -0.825 -0.296 0.919 0.370
LCMD-P (ours) kll→acs-rf(512) -1.963 -1.476 -0.840 -0.272 0.986 0.475

Table 6.E.6: This table shows the performance and runtime of different combinations of selection methods
and kernels for the SiLU activation function. The columns labeled “MAE” to “MAXE” contain averaged
logarithmic values of the corresponding metrics, averaged over all data sets, repetitions and BMAL steps.
For ensembled kernels, the metrics of the individual ensemble members were averaged to isolate the effect
of ensembling on the batch selection. Runtimes were measured at one of the 20 repetitions where only
one process was started per GPU, and are averaged over all BMAL steps and data sets. The employed
hardware is described in Appendix 6.E.

167



Chapter 6. A Framework and Benchmark for Deep Batch Active Learning for Regression

168



Chapter 7

Convergence Rates for
Non-Log-Concave Sampling and
Log-Partition Estimation

David Holzmüller1 and Francis Bach2

Preprint available on arXiv
Reference: Holzmüller and Bach (2023), link: https://arxiv.org/abs/2303.03237

Abstract

Sampling from Gibbs distributions p(x) ∝ exp(−V (x)/ε) and computing their log-partition
function are fundamental tasks in statistics, machine learning, and statistical physics. However,
while efficient algorithms are known for convex potentials V , the situation is much more difficult
in the non-convex case, where algorithms necessarily suffer from the curse of dimensionality in the
worst case. For optimization, which can be seen as a low-temperature limit of sampling, it is known
that smooth functions V allow faster convergence rates. Specifically, for m-times differentiable
functions in d dimensions, the optimal rate for algorithms with n function evaluations is known to
be O(n−m/d), where the constant can potentially depend on m, d and the function to be optimized.
Hence, the curse of dimensionality can be alleviated for smooth functions at least in terms of
the convergence rate. Recently, it has been shown that similarly fast rates can also be achieved
with polynomial runtime O(n3.5), where the exponent 3.5 is independent of m or d. Hence, it
is natural to ask whether similar rates for sampling and log-partition computation are possible,
and whether they can be realized in polynomial time with an exponent independent of m and d.
We show that the optimal rates for sampling and log-partition computation are sometimes equal
and sometimes faster than for optimization. We then analyze various polynomial-time sampling
algorithms, including an extension of a recent promising optimization approach, and find that
they sometimes exhibit interesting behavior but no near-optimal rates. Our results also give
further insights on the relation between sampling, log-partition, and optimization problems.

1ISA, University of Stuttgart, Stuttgart, Germany
2SIERRA, INRIA, Paris, France

169

https://arxiv.org/abs/2303.03237


Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

7.1 Introduction

The tasks of sampling from a Gibbs distribution with density p(x) ∝ exp(−V (x)/ε) and
computing the corresponding normalization constant are important problems in many
computational fields such as machine learning, (Bayesian) statistics and statistical physics.
Specifically, we are interested in the following setting:

Definition 7.1.1 (Sampling and log-partition problems). Let d ≥ 1, let X = [0, 1]d and
let f : X → R be bounded and measurable.3 The sampling problem is to draw samples
from the distribution Pf on X with density

pf (x) :=
exp(f(x))

Zf
,

where Zf :=
∫
X exp(f(x)) dx is the normalization constant or partition function. The

log-partition problem is to compute the log-partition function

Lf := logZf = log

(∫
X
exp(f(x)) dx

)
. ◀

Distributions of the form Pf are known as Gibbs distributions, Gibbs measures, or
Boltzmann distributions. They arise for example in statistical physics with f(x) = −V (x)/ε,
where V (x) denotes the (potential) energy of state x, and ε is (proportional to) the
temperature of the system.4 Instead of the temperature, sometimes the inverse temperature
(or coldness / thermodynamic beta) β = 1/ε is used. The log-partition problem is also
related to the computation of the free energy −εL−V/ε. In energy-based models in ML,
f could be learned. In a Bayesian statistical or ML model with parameters θ and data
D, we could set f(θ) := log p(D|θ) + log p(θ) to sample from the posterior distribution
pf(θ) = p(θ|D) or compute the log-evidence Lf = log p(D) = log

(∫
X p(D|θ)p(θ) dθ

)
. In

some contexts, Lf is also called the log-marginal likelihood, which is useful for model
selection (Robert, 2007).

While exact sampling and log-partition computation are possible for some simple
functions f like linear functions, we can usually only expect algorithms to obtain ap-
proximations within a limited runtime. Therefore, we are interested in how fast this
approximation converges to the true Pf or Lf in terms of the number n of times that the
algorithm is allowed to evaluate f . To study this, we need to make some assumptions
on f . While efficient sampling algorithms for suitable classes of concave f are known, at
least with access to gradients of f (Dwivedi et al., 2018; Mangoubi and Vishnoi, 2018;
Chewi et al., 2021; Altschuler and Talwar, 2022), we are interested in larger classes of
non-concave functions, which are defined in the following:

Definition 7.1.2 (Further notation). For measurable functions f : X → R, we use the
notation ∥f∥∞ := ess supx∈X |f(x)|. We define function spaces of m-times continuously

3We choose X as the unit cube for convenience: It is compact, has unit volume, does not have too
sharp corners, there are well-studied approximation results, and it allows to investigate algorithms for
periodic functions. However, many of our results could be generalized to other domains.

4Technically, ε = kBT , where kB is Boltzmann’s constant and T is the temperature.

170



7.1. Introduction

differentiable functions5 whose derivatives are bounded by some constant B ≥ 0:

Fd,m,B := {f ∈ Cm(X ), ∥f∥Cm ≤ B} , ∥f∥Cm := sup
α∈Nd

0:|α|1≤m
∥∂αf∥∞ .

Here, we use the notation |α|1 := α1 + · · · + αd and ∂αf = ∂|α|1f

∂x
α1
1 ···∂xαd

d

. Moreover, if f is
Lipschitz, we denote its minimal Lipschitz constant by |f |1. If f is bounded, we denote
its maximum by Mf . We define f̄ := f − Lf , such that Lf̄ = 0 and Pf̄ = Pf . Finally, we
denote the uniform distribution on X by U(X ). ◀

We study the worst-case error of algorithms over the function class Fd,m,B, which is
formally defined in Section 7.2. This error depends on the variables (B, n, d,m). We study
the asymptotic behavior in terms of n and B while ignoring constants depending only
on m and d for simplicity. Depending on the definition of the norm, such constants are
often necessarily exponential in d and represent the part of the curse of dimensionality
that cannot be overcome in this setting (Novak and Woźniakowski, 2009). For example,
typical convergence rates for function approximation are of the form Om,d(Bn

−m/d), which
we sometimes also write as Om,d(∥f∥Cmn−m/d) (Novak, 1988; Wendland, 2004). As we will
see later, the dependence on B is not always linear, and tracking the dependence on B is
important since the function f appears inside an exponential. When using asymptotic
notation like Om,d, we mean that the corresponding inequality should hold for all values
of n ∈ N≥1 and B > 0, not only large enough values.6

We express bounds on the error E achieved for n function evaluations, such as E =
Om,d(Bn

−m/d). Some authors prefer to express rates in terms of the number of function
evaluations needed to reach an error E or lower, which would then for example be
n = Om,d((B/E)

d/m).
Sometimes, we explicitly include a temperature ε > 0 and formulate our theorems in

terms of f/ε instead of f . It is well-known that in the limit of low temperatures (ε↘ 0),
sampling becomes essentially equivalent to optimization. Here, we give a quantitative
version of this statement:

Lemma 7.1.3 (Optimization limit). Let f : X → R be Lipschitz-continuous with Lipschitz
constant |f |1 < ∞. Then, for any temperature ε > 0, the maximum Mf = maxx∈X f(x)
satisfies

|Mf − εLf/ε| ≤ εd log(1 + 3d−1/2|f |1/ε) −→ 0 for ε↘ 0 . (7.1)

Moreover, for any bounded and measurable f : X → R and any δ ∈ (0, 1], we have

Pf/ε({x ∈ X | f(x) < εLf/ε − ε log(1/δ)}) ≤ δ .

5It would also be possible to replace Cm(X ) with the slightly larger Sobolev space Wm,∞(X ).
6Specifically, we use the notation g(B,n, d,m) ≤ Om,d(h(B,n, d,m)) to mean

∀d,m ∈ N≥1∃Cm,d > 0∀B > 0, n ∈ N≥1 : g(B,n, d,m) ≤ Cm,dh(B,n, d,m) ,

and we similarly write g ≥ Ωm,d(h) for h ≤ Om,d(g), as well as g = Θm,d(h) for g ≤ Om,d(h) and
h ≤ Om,d(g).

171



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

Lemma 7.1.3 is proven in Appendix 7.B and can be related to our function classes by
using |f |1 ≤ d1/2∥f∥C1 , cf. Lemma 7.B.1. Note that such a convergence result does not
hold for general bounded functions, as can be seen for the characteristic function f = 1{0},
which satisfies Mf = 1 but εLf/ε = 0 for all ε > 0. Eq. (7.1) is related to Corollary 1 of
Ma et al. (2019), which shows that in order to achieve an optimization error of E through
sampling, it is necessary that 1/ε = Ω̃(d/E).

Hwang (1980) uses Laplace’s method to show that under certain assumptions on the
Hessians at the maximizers, Pf/ε converges weakly to a distribution on the maximizers.
In contrast to optimization, where it typically does not matter which global maximum
is found, the low-temperature limit of sampling often yields a unique distribution on the
maximizers. Talwar (2019) uses this to show that optimization can be easier than sampling
for very particular classes of functions. It is known that the optimal worst-case convergence
rate for optimization on Fd,m,B is the same as for approximation, i.e., Om,d(Bn

−m/d) (see
Novak, 1988, and references therein). Recently, Rudi et al. (2020) and Woodworth et al.
(2022) have shown polynomial-time optimization algorithms (in n and d) achieving rates
close to the optimal rate under relatively mild additional assumptions.

In the high-temperature limit ε→∞, Pf/ε converges to a uniform distribution, and Ma
et al. (2019) showed that the Metropolis-adjusted Langevin algorithm (MALA) can achieve
exponentially fast convergence rates in n, although with exponential dependence on the
Lipschitz constant of ∇f . While MALA theoretically does not fit in our framework since
it uses gradient information of f , this could be emulated using numerical differentiation,
and we show in Section 7.4.2 that in our setting, if B is known, a fixed-budget version of
rejection sampling can also achieve similar rates (see also Talwar, 2019).

Since we know that polynomial-time algorithms with fast convergence rates are possible
for the high-temperature case and for optimization, which is essentially the low-temperature
limit, this poses the question of whether we can find such algorithms for the general sampling
and log-partition problems. Ideally, such an algorithm should have the following properties:

• A convergence rate close to the optimal convergence rate Om,d(∥f∥Cmn−m/d) for
approximation, at least up to m ≥ Ω(d), such that the exponent in the rate does
not approach zero for large d,

• Polynomial runtime O(nk) for some k independent of d and m. Especially, the
runtime should be polynomial in d and m. Moreover, the runtime should not depend
on ∥f∥.

• Adaptivity: The algorithm should achieve these rates without knowing m and ∥f∥.
This is not investigated here, and for sampling and log-partition estimation, m can
often be known.

Regarding the implications of achieving near-optimal rates in polynomial time, consider
the following example:

Example 7.1.4. Consider a Bayesian model where the data set D = (D1, . . . , DN ) consists
of N observed samples that are assumed to be drawn in an i.i.d. fashion. Then, we can
again model

f(θ) := log p(θ,D) = log p(D1 | θ) + · · ·+ log p(DN | θ) + log p(θ) ,

which is a sum of N + 1 functions. Hence, we would expect that ∥f∥Cm scales like Θ(N).

172



7.1. Introduction

(a) Suppose that we have a log-partition method with rate Θm,d(∥f∥Cmn−m/d) and
polynomial runtime Om,d(n

k). To achieve an error of O(1) for the log-evidence Lf ,
this method would need n = Θm,d(N

d/m) function evaluations and hence a runtime
of Om,d(N

kd/m). If m = d, the exponent kd/m is independent of the dimension d.
(b) Now, suppose instead that the runtime is of the form Om,d(n

m) or the rates are of
the form Om,d(∥f∥Cmn−1/d) or Om,d(∥f∥mCmn−m/d). In each case, to achieve an error
of O(1) for the log-evidence Lf , the resulting runtime would be polynomial in N ,
but the exponent would be proportional to d. ◀

7.1.1 Contribution

Our contributions are as follows:

(1) We analyze the information-based complexity of the sampling and log-partition
problems, i.e., the worst-case optimal rates without computational constraints, in
Section 7.2. For algorithms that evaluate f at a deterministic set of points, we show
that the optimal rate for the log-partition problem is Θm,d(Bn

−m/d), i.e., the same as
for approximation. For the bounded total variation and 1-Wasserstein metrics, the
optimal rate for sampling is Θm,d(min{1, Bn−m/d}). For algorithms that are allowed
to evaluate f at a stochastic set of points, we show that the optimal rates are the
same in an optimization regime but can be faster in the high-temperature regime.

(2) We show reductions between different problems. For example, we analyze how
log-partition algorithms can be employed for sampling and vice versa, and analyze
the resulting guarantees for the rates. We also discuss how approximate sampling
algorithms can be employed for optimization. Moreover, we show how function
approximation yields reductions between different runtime complexities, convergence
rates, and from stochastic to deterministic evaluation points.

(3) We analyze bounds on the convergence rates for different algorithms. For example,
we show that it is possible to achieve the rate Om,d(Bn

−m/d), but with runtime
O(nm), which is polynomial but still involves the curse of dimensionality since we
need m = Θ(d) to beat the curse of dimensionality in the convergence rate. We
show that other simple and efficient algorithms also fail to achieve the optimal
rates in different ways, sometimes with multi-regime behavior. Finally, we study
an approach toward the log-partition problem by Bach (2022), whose optimization
limit has been used by Woodworth et al. (2022) to obtain near-optimal optimization
rates in polynomial-time. We show that all versions of this approach necessarily fail
to exceed the rate Om,d(Bn

−2/d) in an intermediate temperature regime ε ∼ n−2/d

(corresponding to B ∼ n2/d).

7.1.2 Related Work

The analysis of sampling algorithms has received considerable attention in recent years. In
the case where pf is (strongly) log-concave, that is, if f is (strongly) concave, convergence
rates of Markov chain Monte Carlo (MCMC) sampling algorithms have been studied
extensively. For example, good convergence rates in terms of the dimension d have been
established for versions of the Langevin algorithm (Chewi et al., 2021; Altschuler and
Talwar, 2022) and Hamiltonian Monte Carlo (Mangoubi and Vishnoi, 2018). Chewi et al.

173



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

(2022) establish an algorithm with optimal convergence rate for the case d = 1, while not
much is known about algorithm-independent lower bounds in other cases.

For sampling from more general non-log-concave distributions, convergence rates have
been established for versions of the Langevin algorithm. Bou-Rabee and Hairer (2013)
showed an essentially geometric convergence result in TV distance for a class of non-
log-concave Gibbs distributions, but without clear dependence of the constants on f .
Mangoubi and Vishnoi (2019) and Zou et al. (2021) prove convergence rates that are
polynomial in d but additionally depend on properties of f through the Cheeger constant.
The analysis of Ma et al. (2019) and Cheng et al. (2018) is closer to our setting, and
their convergence rate is polynomial in d as well, but their rate exhibits an exponential
dependence on the Lipschitz constant of ∇f and the radius of the domain where f is
non-log-convex. Bou-Rabee et al. (2020) obtain similar results for Hamiltonian Monte
Carlo. Balasubramanian et al. (2022) show that even for non-log-concave distributions,
averaged Langevin Monte Carlo converges quickly to a distribution with low relative Fisher
information to the target distribution, although this does not imply that the distribution
is close to the target distribution with respect to other measures such as the total variation
distance. Chewi et al. (2023) prove corresponding lower bounds. Woodard et al. (2009)
show that the mixing time of parallel and simulated tempering for certain distributions
can scale exponentially with d, but in a setting different from ours. Achddou et al. (2019)
propose and analyze an adaptive rejection sampling algorithm using a piecewise constant
approximation of the density. Their setting is significantly different from ours as well,
and they only consider functions of low (Hölder) smoothness and regimes with large n.
Marteau-Ferey et al. (2022) propose an approximation-based sampling algorithm with a
rate similar to Om,d,B(n

−m/d) but without analyzing the dependence on B.
Another related line of work studies the relation of sampling to optimization. Through

their analysis of Langevin algorithms in the non-log-concave setting, Ma et al. (2019) show
that there are settings where sampling is easier than optimization. Talwar (2019) provides
a simpler argument and shows that the converse can also occur for special function classes.
The relation between sampling and optimization is also exploited in simulated annealing
(Kirkpatrick et al., 1983). A different connection between sampling and optimization stems
from Jordan et al. (1998), who showed that Langevin-type sampling can be interpreted as a
gradient flow over distributions for the Wasserstein metric. For an overview of connections
between sampling and optimization, we also refer to Cheng (2020).

The log-partition problem is often addressed through sampling algorithms, for example
via thermodynamic integration (Kirkwood, 1935). For an overview of thermodynamic
integration and other methods for the log-partition problem, we refer to Gelman and
Meng (1998) and Friel and Wyse (2012). Ge et al. (2020) analyze an annealing algorithm
combined with multilevel Monte Carlo sampling for the log-partition problem in the
log-concave setting, and also give an information-based lower bound on the achievable
convergence rate. Another popular approach is the Laplace approximation (Laplace, 1774),
whose log-partition function however does not converge to the true log-partition function
as n→∞. Well-tempered metadynamics (Barducci et al., 2008) is a popular approach
towards the log-partition problem in molecular dynamics simulations, although it relies on
a well-chosen low-dimensional collective variable representation. Recently, Marteau-Ferey
et al. (2022) have suggested an approach that performs sampling via estimating the
log-partition function. Bach (2023) and Bach (2022) suggest further approaches toward

174



7.2. Information-based Complexity

solving the log-partition problem.
To analyze possible convergence rates for the sampling and log-partition problem

without computational constraints, we use the framework of information-based complexity.
Here, we refer to Novak (1988) and Traub (2003) for an overview of this topic. In particular,
our work is motivated by the works of Rudi et al. (2020) and Woodworth et al. (2022),
who demonstrated that for optimization, convergence rates close to the optimal rates from
information-based complexity can be achieved in polynomial time.

The rest of our paper is organized as follows: In Section 7.2, we study upper and
lower bounds for the information-based complexity of different variants of the sampling
and log-partition problems. In Section 7.3, we study relations and reductions between
different variants of the sampling, log-partition, and optimization problems. We then
study convergence rates of different algorithms in Section 7.4. We compare some of these
algorithms experimentally in Section 7.5 before concluding in Section 7.6. All proofs are
provided in the appendix, which is structured analogously to the main part of this paper,
and whose structure is overviewed in Appendix 7.A.

7.2 Information-based Complexity

In this section, we look at the log-partition and sampling problems from the viewpoint of
(worst-case) information-based complexity, where one is interested in what is possible if one
is not constrained computationally but only by the number n of function evaluations of
the unknown function f . We adopt the general setting of Novak (1988), where one is given
a function space F (such as Fd,m,B) of functions f : X → R and wishes to approximate
a map S : F → M, with the approximation error on M measured by a metric D. For
example, the following problems are considered by Novak (1988):

• Approximation: Sapp(f) := f and D∞(f, g) := ∥f − g∥∞.
• Optimization: Sopt∗(f) := supx∈X f(x) and Dabs(a, b) := |a− b|.
• Integration: Sint(f) :=

∫
X f(x) dx and Dabs(a, b) = |a− b|.

We can define our sampling and log-partition problems in this context as follows:

• Log-partition: SL(f) = Lf and Dabs(a, b) = |a− b|.
• Sampling : While a sampling algorithm produces samples, we do not want to compare

errors of individual samples but the error of the distribution of the samples. Therefore,
we set Ssamp(f) := Pf . For D(P,Q), we can use different metrics or divergences on
probability distributions, which will be discussed in Section 7.2.1.

7.2.1 Deterministic Evaluation Points

To consider minimax optimal convergence rates, we still need to define a space A of
admissible maps S̃ : F →M. Here, we will first consider maps that evaluate functions
in a deterministic set of points, before considering stochastic points in Section 7.2.2. For
example, we define

An :=
{
S̃ = ϕ ◦N | N(f) = (f(x1), . . . , f(xn)) for some x1, . . . , xn ∈ X

}
,

175



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

the set of maps that only evaluate f in n deterministic and non-adaptive points. We can
also allow adaptive points by defining

Aad
n :=

{
S̃ = ϕ ◦N | N(f) = (f(x1), f(x2(f(x1))), . . . , f(xn(f(x1), . . . , f(xn−1))))

}
,

where evaluation points may be chosen depending on previous function values. We are
interested in the (non-adaptive/adaptive) minimax optimal error

en(F , S,D) := inf
S̃∈An

sup
f∈F

D(S(f), S̃(f)), eadn (F , S,D) := inf
S̃∈Aad

n

sup
f∈F

D(S(f), S̃(f)) .

The sets An and Aad
n can be interpreted as classes of “black-box algorithms” that are only

constrained in the number evaluations of f but not in terms of computational efficiency or
computability. The minimax-optimal errors en and eadn thus give lower bounds to what
can be achieved by computationally efficient algorithms.

For the case of sampling, maps S̃ ∈ An (or Aad
n ) produce distributions based on n

function evaluations of a function f . They correspond to idealized sampling algorithms
in the following sense: We consider an idealized sampling algorithm to take some source
of randomness ω sampled from a distribution PΩ independent of f , and then output a
random sample Xf (ω) = ϕ̃(N(f), ω). For example, ω could be a sequence of i.i.d. random
variables from the uniform distribution U([0, 1]) on the interval [0, 1]. The maps S̃ ∈ An
(or Aad

n ) then correspond to the distributions produced by such sampling algorithms, i.e.,

S̃(f) = distribution of Xf (ω) for ω ∼ PΩ.

The following theorem, which is proven in Section 7.C.1, adapts known results on
minimax optimal rates to our considered function spaces.

Theorem 7.2.1 (adapted from Novak (1988)). We have

en(Fd,m,B, Sapp, D∞) = Θm,d(Bn
−m/d), eadn (Fd,m,B, Sapp, D∞) = Θm,d(Bn

−m/d),

en(Fd,m,B, Sopt∗ , Dabs) = Θm,d(Bn
−m/d), eadn (Fd,m,B, Sopt∗ , Dabs) = Θm,d(Bn

−m/d),

en(Fd,m,B, Sint, Dabs) = Θm,d(Bn
−m/d), eadn (Fd,m,B, Sint, Dabs) = Θm,d(Bn

−m/d) .

Novak (1988) gives these results in a form similar to en(Fd,m,1, Sapp, D∞) = Θm,d(n
−m/d).

This implies the rates for general B ≥ 0 in the theorem above since Sapp and D∞ are
positively homogeneous, which leads to D∞(Sapp(Bf), Bg) = BD∞(Sapp(f), g). The same
holds for optimization and integration, but not for log-partition estimation and sampling.
Hence, for our considered problems, it is important to explicitly study the dependence on
B, since it is not necessarily linear. The optimal rates for approximation can be achieved,
for example, using piecewise polynomial interpolation, local polynomial reproductions, or
moving least squares (Wendland, 2004), see also Theorem 7.3.1. The optimal rates for
optimization and integration can be achieved by optimizing or integrating a corresponding
approximation.

We use the following distance measures for probability distributions P,Q on X :

• The sup-log distance Dsup-log(P,Q) :=
∥∥∥log ( dP

dQ

)∥∥∥
∞

, where ∥ · ∥∞ is taken over
X , and Dsup-log(P,Q) =∞ whenever P and Q are not both absolutely continuous

176



7.2. Information-based Complexity

with respect to each other. The sup-log distance is a symmetrized version of the
max-divergence D∞(P ||Q), which is used in differential privacy (Dwork et al., 2010)
and is a special case of Rényi divergences for α =∞ (cf. Van Erven and Harremos,
2014). The sup-log distance is particularly well-suited to our setting, thanks to its
relation to uniform approximation.

• The total variation distance DTV(P,Q) := supA⊆X measurable |P (A)−Q(A)|.
• The 1-Wasserstein distance W1(P,Q) := infX∼P,Y∼Q E∥X − Y ∥2, also known as

Kantorovich–Rubinstein or earth mover distance.

The sup-log, total variation, and 1-Wasserstein distances are metrics.7 We first show that
these quantities can be bounded in terms of the approximation error:

Proposition 7.2.2 (Upper bounds via approximation). For bounded and measurable
f, g : X → R, we have

(a) |Lf − Lg| ≤ ∥f − g∥∞.
(b) d−1/2W1(Pf , Pg) ≤ DTV(Pf , Pg) ≤ Dsup-log(Pf , Pg) ≤ 2∥f − g∥∞.

Proposition 7.2.2 is proven in Section 7.C.1. For the KL divergence, which we
will not study further, we can leverage the results of Proposition 7.2.2 by using the
trivial bound DKL(P ∥ Q) ≤ Dsup-log(P,Q) as well as the inequality DKL(P ∥ Q) ≤
Dsup-log(P,Q)(e

Dsup-log(P,Q) − 1) from Lemma III.2 of Dwork et al. (2010).
Theorem 7.2.1 and Proposition 7.2.2 lead to upper bounds on the minimax optimal

rates. Combined with the trivial upper bound DTV(P,Q) ≤ 1, these are optimal for the
deterministic point setting:

Theorem 7.2.3 (Information-based complexity of sampling and log-partition with deter-
ministic evaluation points). We have

en(Fd,m,B, SL, Dabs) = Θm,d(Bn
−m/d),

en(Fd,m,B, Ssamp, Dsup-log) = Θm,d(Bn
−m/d),

en(Fd,m,B, Ssamp, DTV) = Θm,d(min{1, Bn−m/d}),
en(Fd,m,B, Ssamp,W1) = Θm,d(min{1, Bn−m/d}),

and the same rates hold for adaptive points.

Theorem 7.2.3 is proven in Section 7.C.1. The minimax optimal rates for optimization
can be related to those for approximation on a very general class of function spaces (Novak,
1988). For sampling, such a general relationship does not hold: For example, the set
F := {f : X → R | ∥f∥∞ ≤ 1, {x | f(x) ̸= 0} is finite} satisfies en(F , Sapp, D∞) = 1 for
all n ∈ N, but all functions f ∈ F have the same distribution and the same log-partition
function. However, our proofs for the lower bounds in Theorem 7.2.3 follow the general
idea that underlies many lower bounds for Sobolev-type functions: place bumps with small
support in regions that the algorithm does not query.

7For the sup-log distance, the triangle inequality follows from log
(

dP
dR

)
= log

(
dP
dQ

)
+ log

(
dQ
dR

)
.

177



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

7.2.2 Stochastic Evaluation Points

We also want to consider methods that are allowed to choose the points xi stochastically,
such as Monte-Carlo type methods (Metropolis and Ulam, 1949; Brooks et al., 2011). For
the log-partition problem, we again follow Novak (1988) and define the set ∗C(Aad

n ) of
random variables S̃ : Ω→ Aad

n with given base distribution PΩ with associated minimax
optimal error8

∗σad
n (F , S,D) := inf

(S̃,PΩ)∈∗C(Aad
n )

sup
f∈F

Eω∼PΩ
D(S(f), S̃(ω)(f)) .

When applying this definition to sampling, a map S̃ would output a random distribution.
However, the random samples produced by a sampling algorithm typically still follow a
fixed distribution, regardless of whether the function f is evaluated in deterministically or
randomly chosen points. Hence, the model in Eq. (7.2) is inadequate for sampling. Instead,
we consider again idealized sampling algorithms using some randomness ω ∼ Ω, but this
time, we allow the function to be evaluated in randomly and adaptively chosen points,
by considering random samples of the form Xf(ω) = ϕ̃(N(f, ω), ω). We then denote the
corresponding map from f to PXf

by S̃ and define the set Aad-stoch
n of all S̃ that can be

realized in this fashion using n function evaluations. We then define

ead-stochn (F , Ssamp, D) := inf
S̃∈Aad-stoch

n

sup
f∈F

D(Ssamp(f), S̃(f)) .

Unlike the deterministic points setting, the stochastic points setting potentially requires
to evaluate f at n different points for every generated sample. This has the unintuitive
consequence that for a map S̃ ∈ Aad-stoch

n , the distribution S̃(f) typically depends on
the values of f at infinitely many points, but a sample from S̃(f) can be drawn by only
evaluating f at n (stochastic) points.

Again, results for approximation, optimization, and integration are known and can be
adapted to our function classes:

Theorem 7.2.4 (adapted from Novak (1988)). We have
∗σad

n (Fd,m,B, Sapp, D∞) = Θm,d(Bn
−m/d),

∗σad
n (Fd,m,B, Sopt∗ , Dabs) = Θm,d(Bn

−m/d),
∗σad

n (Fd,m,B, Sint, Dabs) = Θm,d(Bn
−1/2−m/d) .

For a proof sketch, we refer to Section 7.C.2. The faster rate for integration can be
achieved by spending half of the n points for approximating f with g and spending the
other half of the points on Monte Carlo quadrature to estimate the error (Novak, 1988)∫

f(x) dx−
∫
g(x) dx = Ex∼U(X )[f(x)− g(x)] .

For a more practical algorithm, we refer to Chopin and Gerber (2022). For log-partition
estimation, we can similarly use an importance sampling formulation

Lf − Lg = log
(
Ex∼Pg [exp(f(x)− g(x))]

)
.

8Novak (1988) defines further variants, for example with L2(PΩ) instead of L1(PΩ) convergence or
more limited stochastic resources, which we will not discuss here for simplicity.

178



7.2. Information-based Complexity

Theorem 7.2.5 (Upper bound for stochastic log-partition). There exists a constant
Cm,d > 0 depending only on m and d such that

∗σad
n (Fd,m,B, SL, Dabs) ≤ Om,d

(
min

{
Bn−m/d, exp(Cm,dBn

−m/d)Bn−1/2−m/d)
})

.

The upper bound above, which is proven in Section 7.C.2, exhibits a fast transition
between the rates n−m/d and n−1/2−m/d. This is necessary, as we can exploit the relation
of the log-partition problem to optimization to show that the rate n−m/d is optimal in an
optimization regime:

Proposition 7.2.6 (Lower bound for stochastic log-partition). For m ≥ 1, we have

∗σad
n (Fd,m,B, SL, Dabs) ≥ Ωm,d(Bn

−m/d)− d log(1 + 3B) .

Proposition 7.2.6 is proven in Section 7.C.2. We leave a lower bound outside of the
optimization regime as an open problem, however, we conjecture that the rate Bn−1/2−m/d

from the upper bound in Theorem 7.2.5 cannot be improved. For a certain class of strongly
concave f with Lipschitz gradient, Theorem 5.1 by Ge et al. (2020) contains a lower bound
which, in our setting, could be roughly expressed as Ωd,B(n

−1/(2−c/d)) for some constant
c. A simple Taylor expansion shows −1/(2− c/d) ≤ −1/2− (c/4)/d, hence this rate is
compatible with our upper bound for m = 2 if c ≥ 8.

Algorithm 16 Rejection sampling with proposal distribution Pg limited to n function
evaluations.

function RejectionSampling(f , g, number of steps n)
for i from 1 to n do

Sample x ∼ Pg and u ∼ U([0, 1])
Return x if ueg(x) ≤ ef(x)

end for
return Sample from Pg

end function

To achieve better rates for sampling in the stochastic points setting, we combine ap-
proximation with a budget-limited version of rejection sampling defined in Algorithm 16. If
g is shifted appropriately such that it upper-bounds f , we obtain the following convergence
rate bound:

Lemma 7.2.7 (General rejection sampling bound). Suppose that f, g : X → R are
bounded and measurable with f(x) ≤ g(x) for all x ∈ X . Then, the distribution P̃f of
RejectionSampling(f, g, n) satisfies

P̃f = (1− pR)Pf + pRPg (7.2)
Dsup-log(Pf , P̃f ) ≤ min {Dsup-log(Pf , Pg), pR(exp(Dsup-log(Pf , Pg))− 1)}
DTV(Pf , P̃f ) = pRDTV(Pf , Pg)

W1(Pf , P̃f ) = pRW1(Pf , Pg) ,

where pR = (1− Zf/Zg)n ≤ exp(−nZf/Zg) is the probability of overall rejection.

179



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

The proof can be found in Section 7.C.2. Due to the early stopping after n rejections,
rejection sampling may significantly oversample regions where pf is very small. Since
Dsup-log is very sensitive to this behavior, the corresponding bound is worse than for DTV

and W1.
By using half of the n points to create an approximation g and then using a shifted

version of g for rejection sampling with the other half of the n points, we obtain the
following upper bound on the minimax optimal error:

Theorem 7.2.8 (Upper bound for sampling with stochastic evaluation points). There
exists a constant Cm,d > 0 such that

ead-stochn (Fd,m,B, Ssamp, Dsup-log) ≤
{
Om,d(Bn

−m/d) , Cm,dBn
−m/d > 1

Om,d((Cm,dBn
−m/d)n/2+1) , Cm,dBn

−m/d ≤ 1 .

Theorem 7.2.8 is proven in Section 7.C.2. Combinations of approximation and rejection
sampling have also been used, for example, by Achddou et al. (2019) and Chewi et al.
(2022). For Cm,dBn−m/d ≤ 1, the upper bound above decays faster than exponential in n.
The bound is not tight, as the exponent n/2 + 1 can at least be improved close to n at the
cost of increasing the constant Cm,d. However, for the optimization regime, the bound is
tight:

Theorem 7.2.9 (Lower bound for sampling with stochastic evaluation points). There
exists a constant cm,d > 0 such that for B > 0 and n ∈ N with Bn−m/d ≥ cm,d(1 + log(n)),
we have

ead-stochn (Fd,m,B, Ssamp, Dsup-log) ≥ Ωm,d(Bn
−m/d)

ead-stochn (Fd,m,B, Ssamp, DTV) ≥ Ωm,d(1)

ead-stochn (Fd,m,B, Ssamp,W1) ≥ Ωm,d(1) .

The proof of Theorem 7.2.9 in Section 7.C.2 uses the classical approach of hiding a
bump, although explicitly exploiting the relation to optimization via Proposition 7.3.6
might also work. Proving lower bounds for sampling with stochastic points outside of
the optimization regime seems difficult. Indeed, when restricting the function class a bit
further, we can even achieve zero error:

Proposition 7.2.10. Let F := {f ∈ C(X ) | ∥f∥∞ ≤ log(3/2), Lf = 0}. Then,

ead-stochn (F , Ssamp, Dsup-log) = 0

for all n ≥ 1.

The proof idea, executed in Section 7.C.2, is to use RejectionSampling(f̃ , g, 1),
where f̃(x) := log(2 exp(f(x)) − 1) and g(x) = log(2) are constructed such that the
resulting distribution is exactly Pf . The assumption that Lf is known is necessary to
exactly control the acceptance probability in the rejection sampling step.

180



7.3. Relations Between Different Problems

7.3 Relations Between Different Problems
In this section, we study how different problems such as sampling, log-partition estimation,
and optimization are related, especially also in terms of reductions between algorithms,
their runtime complexities, and their convergence rates. Again, certain bounds can be
established via the connection to function approximation. For this, we need an efficient
approximation method achieving optimal convergence rates while producing a smooth
approximation. This is possible using the moving least squares method (Lancaster and
Salkauskas, 1981), which produces an approximant g(x) = gx(x), where gx is a local
polynomial regression function fitted using a smooth local weight function w(xi, x). The
following theorem shows that the moving least squares method achieves the desired
properties:

Theorem 7.3.1 (adapted from Li (2016) and Mirzaei (2015)). Let m, d ∈ N≥1. Using the
moving least squares method, it is possible to construct an approximation fn of f ∈ Cm(X )
using n deterministic non-adaptive function evaluations such that

(a) ∥f − fn∥Ck ≤ Om,d(∥f∥Cmn−(m−k)/d) for k ∈ {0, 1, . . . ,m},
(b) the runtime of constructing fn is zero (construction takes place on-the-fly during

evaluation), and
(c) the runtime of evaluating fn at a point x ∈ X is Om,d(1).

We prove Theorem 7.3.1 in Appendix 7.D.

7.3.1 Runtime-Accuracy Trade-off

When investigating sampling and log-partition algorithms, we study their convergence
rate and their runtime complexity both in terms of the number n of required function
evaluations. Here, we show that these two quantities can be traded off against each other
to some extent. Improving the computational complexity at the cost of worse convergence
rates is easy by increasing n without using the additional function values:

Example 7.3.2 (Trading convergence rates for better runtime complexity). Suppose we
have an algorithm A for the sampling or log-partition problems with convergence rate
Θm,d(∥f∥Cmn−αm,d) and runtime Θm,d(n

βm,d). We can then evaluate f in n points but only
use N ≤ n of these points for A. If N = Θm,d(n

γ), γ ∈ (0, 1], we obtain a convergence
rate of Θm,d(∥f∥CmN−αm,d) = Θm,d(∥f∥Cmn−γαm,d) and a runtime of Θm,d(n+Nβm,d) =
Θm,d(n

max{1,γβm,d}). A similar construction could be used to move constants Cm,d ≥ 1 or
potential factors ∥f∥kCm ≥ 1 from the runtime to the convergence rate. ◀

Of course, the construction in Example 7.3.2 does not improve the runtime needed to
reach a desired error level, but it shows that some combinations of runtime complexity
and convergence rates are not better than others. To trade runtime complexity for better
convergence rates, an analogous construction is not possible, since it would need to use
N > n function evaluations, which would contradict the definition of n. However, we can
instead use N evaluations of an approximant created using n function evaluations:

Example 7.3.3 (Trading runtime complexity for better convergence rates). Suppose again
that we have an algorithm A for the sampling or log-partition problems with convergence

181



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

rate Θm,d(∥f∥Cmn−αm,d) and runtime Θm,d(n
βm,d). We consider an algorithm resulting

from the following construction:

(1) Use an approximation algorithm as in Theorem 7.3.1 to create an approximation fn
of f using n (deterministic) function evaluations.

(2) Run algorithm A on N = Θm,d(n
γ) function evaluations of fn, γ ∈ (0,∞).

By Theorem 7.3.1, we have ∥fn − f∥∞ ≤ Om,d(∥f∥Cmn−m/d), and by Proposition 7.2.2,
this rate also applies to the considered distances of Lfn to Lf or Pfn to Pf . By the triangle
inequality, the resulting algorithm has a convergence rate of

Om,d(∥f∥Cmn−m/d + ∥fn∥CmN−αm,d) = Om,d(∥f∥Cmn−min{m/d,γαm,d}) ,

where we used ∥fn∥Cm ≤ Om,d(∥f∥Cm) due to Theorem 7.3.1 (a) with k = m, and runtime
complexity

Om,d(n
γβm,d) . ◀

While the construction in Example 7.3.3 also does not improve the runtime complexity
needed to reach a desired error level, it can still be useful if evaluations of the approximant
(or surrogate model) fn are much cheaper than evaluations of f . This principle is used for
example in computational chemistry, where expensive direct simulations f are approximated
with machine-learned interatomic potentials fn (Deringer et al., 2019).

7.3.2 Relation between stochastic and deterministic evaluation
points

When the construction in Example 7.3.3 is applied to a sampling algorithm with stochastic
evaluation points, it yields a sampling algorithm with deterministic evaluation points. This
can be advantageous since the latter only needs n function evaluations to draw an arbitrary
number of samples, while the former may require n new function evaluations for every
drawn sample. On the other hand, this construction limits the convergence rate of the
sampling algorithm to Ωm,d(Bn

−m/d), a rate which can be improved by sampling algorithms
with stochastic evaluation points outside of the optimization regime (cf. Theorem 7.2.8).

Applying the construction in Example 7.3.3 to a log-partition algorithm with stochastic
evaluation points yields a stochastic log-partition algorithm with deterministic evaluation
points. We did not consider such algorithms separately in Section 7.2.2. However, such an
algorithm is never better than its median or expected output, which is a deterministic log-
partition method with deterministic evaluation points. Hence, it follows from Theorem 7.2.3
that the convergence rate of the construction in Example 7.3.3 is limited to Ωm,d(Bn

−m/d),
and this rate can be improved by log-partition algorithms with stochastic evaluation points
outside of the optimization regime (cf. Theorem 7.2.5).

7.3.3 Relation Between Sampling and Log-partition Estimation

A natural question is whether efficient sampling algorithms can be used to obtain efficient
log-partition estimators and vice versa. We study both of these directions in the following.
In fact, sampling algorithms are frequently employed for log-partition estimation in

182



7.3. Relations Between Different Problems

computational statistical physics and other fields (Frenkel and Smit, 2001; Friel and Wyse,
2012). One method to achieve this is thermodynamic integration (Kirkwood, 1935), of
which we present a particularly simple version here. By integrating the derivative of
L(β) := Lβf , it is possible to derive the following formula (Gelman and Meng, 1998; Friel
and Wyse, 2012):

Lf =

∫ 1

0

Ex∼Pβf
[f(x)] dβ = Eβ∼U([0,1])Ex∼Pβf

f(x) .

Thermodynamic integration can be used more generally to estimate a difference Lf − Lg
by integrating along a path between f and g. In practice, the inner expectation is typically
evaluated by Monte Carlo methods using sampling algorithms to sample from Pβf , while
the outer integral is typically approximated with a suitable (deterministic) quadrature
rule. For convenience of analysis, we will consider the case where both expectations are
approximated using Monte Carlo quadrature:

Theorem 7.3.4 (Convergence of thermodynamic integration). Given N ∈ N≥1 and a
sampling algorithm producing samples from approximate distributions P̃βf , consider the
following algorithm:

• Sample β1, . . . , βN ∼ U([0, 1]) independently.
• Draw Xi ∼ P̃βif independently.
• Output L̃f := 1

N

∑N
i=1 f(Xi).

Then, for δ > 0, we have

|Lf − L̃f | ≤ |Lf − EL̃f |+ 2∥f∥∞
√

log(2/δ)

2N

with probability ≥ 1− δ, where

|Lf − EL̃f | ≤ 2∥f∥∞ sup
β∈[0,1]

DTV(Pβf , P̃βf ),

|Lf − EL̃f | ≤ |f |1 sup
β∈[0,1]

W1(Pβf , P̃βf ).

Theorem 7.3.4 is proven in Section 7.D.1. In the upper bounds above, we obtain
additional factors ∥f∥∞ or |f |1, which deteriorate the convergence rate. While it appears
that these factors are in general necessary for the TV and 1-Wasserstein distances, we
explain in Remark 7.D.2 that better bounds in terms of Dsup-log seem plausible but appear
to be more difficult to prove. When considering the runtime complexity and convergence
rate of the construction in Theorem 7.3.4, it is important to set them in relation to the
total number n of function evaluations used. For example, if sampling from Pβif uses ñ
function evaluations, then in general n = (ñ+ 1)N . If the employed sampling algorithm
is non-adaptive with deterministic evaluation points, we only need n = ñ+N function
evaluations. Still, due to the Monte Carlo nature of thermodynamic integration, the
convergence rate is at least limited to Ωm,d,f(n

−1/2), which is not optimal as we showed
in Theorem 7.2.5. Of course, thermodynamic integration can be performed on top of an
approximation of f instead, similar to Example 7.3.3.

183



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

Algorithm 17 Bisection sampling algorithm using a log-partition algorithm L̃.

function BisectionSampling(Function f : X → Rd, Log-partition algorithm L̃,
Number M ∈ N0 of bisection steps per dimension)

For a hyperrectangle Z =×d

i=1
[zi, zi + hi], define fZ : X → R by fZ(x) := f(z1 +

h1x1, . . . , zd + hdxd)
Z ← X
for i from 1 to M do

for j from 1 to d do
Split Z along dimension j into two equal-sized hyperrectangles Z1 and Z2

Compute p1 := σ(L̃fZ1
− L̃fZ2

), where σ(u) = (1 + exp(−u))−1 is the sigmoid
function

Sample k = 1 with probability p1 and k = 2 otherwise
Z ← Zk

end for
end for
return sample from the uniform distribution U(Z)

end function

Now, we ask the converse question: Can an efficient log-partition algorithm be used for
efficient sampling? To achieve such a reduction, we note that we can apply a log-partition
algorithm not only to the target function f but also for example to multiple shifted and
rescaled versions of f , which amounts to computing the log-partition function on subsets
of the cube X . This is exploited in Algorithm 17, which we refer to as bisection sampling.
Bisection sampling has been studied for example by Marteau-Ferey et al. (2022). We give
an upper bound on its error in the sup-log distance:

Theorem 7.3.5 (Convergence of bisection sampling). Let m ≥ 1, B ≥ 0 and M ∈
N0. Let f ∈ Fd,m,B and let L̃ be a log-partition estimator with worst-case error E ≥
0 on Fd,m,B. Let f ∈ Cm(X ) and let P̃f be the distribution of samples produced by
BisectionSampling(f, L̃,M) in Algorithm 17. Then,

Dsup-log(Pf , P̃f ) ≤ 2MdE + 2−Md∥f∥C1 .

Of course, Theorem 7.3.5, which is proven in Section 7.D.1, also implies bounds on
the TV and 1-Wasserstein distances using Proposition 7.2.2. The first term in the upper
bound grows with M , which stems from the possibility to make an error of order 2E
per loop iteration. However, when the resulting error decays quickly enough in the loop,
it is possible to make the first term independent of M . For example, this could arise
because the log-partition algorithm achieves smaller errors for smoother functions. It is
also possible if we consider the 1-Wasserstein distance, which provides better error bounds
on smaller hyperrectangles.

In order to analyze the resulting convergence rates, suppose that the log-partition
algorithm L̃ uses N evaluation points. Ignoring rounding issues, we can setM = log2(N

m/d)
and obtain the rate

Dsup-log(Pf , P̃f ) ≤ Om,d(E log(N) + ∥f∥C1N−m/d) ,

184



7.3. Relations Between Different Problems

where BisectionSampling uses up to n := 2MdN = Om,d(N log(N)) function evalua-
tions. Hence, we typically only lose polylogarithmic terms in the convergence rate, unlike
for thermodynamic integration. Even for log-partition algorithms with deterministic evalu-
ation points, the resulting sampling algorithm uses stochastic evaluation points. Again,
bisection sampling can be performed on top of an approximation of f instead, similar to
Example 7.3.3.

7.3.4 Relation to Optimization

Due to the relationship between sampling and optimization, a natural question is in which
sense approximate sampling algorithms can perform approximate optimization. Actually,
we can consider two kinds of optimization problems, similar to Novak (1988):

(OPT) The problem of outputting x ∈ X such that |Mf − f(x)| is small can be seen as
the low-temperature limit of the sampling problem.
(OPT∗) The problem of outputting an estimate M̃f such that |Mf − M̃f | is small can be
seen as the low-temperature limit of the log-partition problem.

As special cases of the reductions between sampling and log-partition estimation in
Section 7.3.3, we can obtain reductions between (OPT) and (OPT∗): For (OPT∗), we
can simply evaluate f at the estimate x obtained from (OPT), which can be seen as a
simple special case of thermodynamic integration. On the other hand, for (OPT), we can
recursively use (OPT∗) to see whether the optimum is contained in a subdomain of X ,
which corresponds to the low-temperature limit of bisection sampling.

To obtain a bound for approximate (OPT∗) via approximate log-partition estimation
L̃, we note that Lemma 7.1.3 directly yields

|Mf − εL̃f/ε| ≤ |Mf − εLf/ε|+ ε|Lf/ε − L̃f/ε| ≤ εd log(1 + 3d−1/2ε|f |1) + ε|Lf/ε − L̃f/ε|

for temperatures ε > 0.
When performing approximate (OPT) via sampling from an approximate distribution

Q = P̃f , the result depends on the employed distance metric. Since the result of sampling is
of course stochastic, we will upper-bound probabilities of the form Q({x ∈ X | f(x) ≤ α})
of obtaining a function value f(x) ≤ α when drawing x from Q.

Proposition 7.3.6 (Optimization by approximate sampling). Let Q be a probability
distribution on X . Then, for any δ ∈ (0, 1] and ε > 0,

(a) Q({x ∈ X | f(x) ≤ εLf/ε − ε log(1/δ)− εDsup-log(Pf/ε, Q)}) ≤ δ,
(b) Q({x ∈ X | f(x) ≤ εLf/ε − ε log(1/δ)}) ≤ δ +DTV(Pf/ε, Q),
(c) Q({x ∈ X | f(x) < εLf/ε − ε log(2/δ)− 2δ−1|f |1W1(Pf/ε, Q)}) ≤ δ.

Proposition 7.3.6 is proven in Section 7.D.2. If Q = Pg/ε for some bounded g : X → R,
the bound in (a) recovers the known optimization bound f(argmax g) ≥Mf − 2∥f − g∥∞
in the limit ε ↘ 0 using Lemma 7.1.3 and Proposition 7.2.2. We can deduce from (a)
that a sampling algorithm achieving the optimal rate Om,d(∥f∥Cmn−m/d) in terms of
Dsup-log can be used (with sufficiently small ε) to achieve the optimal rate for (OPT) as
well. On the other hand, the bounds (b) and (c) are much weaker. For example, (a)

185



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

still gives a good bound for Dsup-log(Pf/ε, Q) = 1/2, but (b) only gives a low-probability
bound for DTV(Pf/ε, Q) = 1/2 and (c) is trivial for W1(Pf/ε, Q) = 1/2. Note that an
argument analogous to (b) has been used in Corollary 1 by Ma et al. (2019) to analyze
the convergence of Langevin algorithms for approximate optimization.

7.4 Algorithms
In this section, we investigate the convergence rates of different algorithmic approaches
toward the sampling and log-partition problems.

7.4.1 Approximation-based Algorithms

First, we study approximation-based algorithms. In Section 7.2.1, we have seen that in
principle, approximation-based methods can achieve the optimal rates for the sampling
and log-partition problems with deterministic points. However, for most approximations
g, it is unclear how to sample from Pg or compute Lg. In the following, we will consider a
few cases where this is possible:

Piecewise Constant Approximation

A very simple approximation method is piecewise constant approximation. Here, we study
the convenient setting where n = Nd for some N ∈ N:

• Divide X into Nd equally-sized cubes X1, . . . ,Xn by dividing [0, 1] into N intervals.
• Output the function gf,n that is piecewise constant on each cube and interpolates f

at the center x(i) of the cube Xi. Boundary points can be assigned to an arbitrary
adjacent cube.

Given a piecewise constant function gf,n, we can easily compute Lgf,n = log
(

1
n

∑n
i=1 e

f(x(i))
)

in time Om,d(n). Similarly, we can sample from gf,n in time Om,d(n) by first sampling a
subcube Xi with probability pi = ef(x

(i))−Lgf,n and then drawing a uniform random sample
from Xi.9 However, the convergence rate is bad, as we prove in Section 7.E.1:

Theorem 7.4.1 (Convergence rate of piecewise constant approximation). Let m ≥ 1 and
n = Nd as above. If gf,n is a piecewise constant interpolant as above, we have

sup
f∈Fd,m,B

|Lf − Lgf,n| =
{
Θm,d(Bn

−1/d) , if m = 1 or Bn−1/d > 1

Θm,d(max{B,B2}n−2/d) , otherwise.

sup
f∈Fd,m,B

Dsup-log(Pf , Pgf,n) = Θm,d(Bn
−1/d) .

The rates of piecewise constant approximation are thus optimal for m = 1, but not
for m > 1. For m > 1, using a combination with higher-order function approximation as

9This could be improved to Om,d(log n) by precomputing partial sums of the pi once in O(n). Then,
for drawing a sample, we can sample u ∼ U([0, 1]) and use binary search to find the correct “bucket” k
with

∑k−1
i=1 pi ≤ u <

∑k
i=1 pi.

186



7.4. Algorithms

in Example 7.3.3, it is possible to achieve the rate Om,d(Bn
−m/d) with runtime Om,d(n

m).
The result above also shows that the piecewise constant log-partition method can achieve
the faster rate O(n−2/d) of midpoint quadrature only outside of the optimization regime.
We leave it as an open problem whether such faster rates are also achieved for sampling
with DTV or W1. Achddou et al. (2019) analyze a combination of piecewise constant
approximation with rejection sampling, but in a setting incomparable to ours. They also
note that piecewise constant approximation achieves optimal rates for Hölder classes of
functions.

Beyond piecewise constant approximations, piecewise linear approximations also allow
for efficient sampling and log-partition estimation, and they should allow to achieve
convergence rates of Om,d(Bn

−2/d). We leave a precise analysis of this approach as an
open problem.

Density-based Approximation

Another option to obtain tractable sampling and log-partition algorithms is to directly
approximate the unnormalized density p(x) = ef(x). Since probability distributions are
normalized, approximating λp with λq yields the same sampling and log-partition errors
as approximating p with q, but the approximation error ∥λp− λq∥∞ depends on λ > 0.
To obtain a scale-invariant bound for the sampling and log-partition errors, we need to
divide the approximation bound by a normalization constant:

Proposition 7.4.2 (Density approximation bounds). Let p, q : R → [0,∞) be bounded
and measurable such that Ip, Iq > 0, where Ip :=

∫
X p(x) dx. Define probability distributions

P,Q with densities p/Ip and q/Iq, respectively. Then,

| log Ip − log Iq| ≤ log

(
1

1− ∥p− q∥∞/Ip

)
if ∥p− q∥∞ < Ip,

DTV(P,Q) ≤
∥p− q∥∞
max{Ip, Iq}

≤ ∥p− q∥∞
Ip

.

We prove Proposition 7.4.2 in Section 7.E.1. While ∥p∥∞ = ∥ef∥∞ can be exponential
in ∥f∥∞, Proposition 7.4.2 demonstrates that we need to incorporate the normalization
constant to obtain reasonable estimates for sampling and log-partition computation.
After incorporating the normalization constant, we arrive at terms of the form ∥p∥/Ip =
∥ef∥/Zf = ∥ef/Zf∥ = ∥pf∥. Hence, the norm of the (normalized) density plays an
important role for convergence rates of density-based approximation approaches. As it
turns out, ∥pf∥ does not scale exponentially in ∥f∥∞, but still badly:

Theorem 7.4.3 (Density norm). For m ≥ 1, we have

sup
f∈Fd,m,B

∥pf∥Cm = Θm,d

(
max{1, B}m+d

)
and this asymptotic rate is attained by fd,m,B(x) = Bd−1(x1 + · · ·+ xd).

Theorem 7.4.3 is proven in Section 7.E.1. Suppose that f ∈ Cm(X ) and we can approx-
imate p(x) = ef(x) with a non-negative function q with optimal10 rate Om,d(∥p∥Cmn−m/d).

10This rate is worst-case optimal if we only know ∥p∥Cm . However, it might not be optimal over the
smaller class of functions of the form ef with small ∥f∥Cm .

187



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

By combining Proposition 7.4.2 and Theorem 7.4.3, the distribution Q associated with
the unnormalized density q then satisfies

DTV(Pf , Q) ≤ Om,d(max{1, ∥f∥Cm}m+dn−m/d) . (7.3)

Although this rate is optimal in terms of n for deterministic evaluation points, it is bad in
terms of ∥f∥Cm , cf. also Example 7.1.4.

Marteau-Ferey et al. (2022) propose a sampling algorithm based on approximating the
density with a (non-negative) sum-of-squares model. Specifically, for a Gibbs distribution,
they suggest approximating √p with q and then using q2 as an unnormalized density.
They achieve a rate of Om,d,f(n

−m/d) in polynomial time without explicitly stating the
dependence on ∥f∥, but we conjecture that the dependence on ∥f∥ is similar to Eq. (7.3).

7.4.2 Simple Stochastic Algorithms

We now analyze the convergence rates for some simple stochastic algorithms.

Rejection Sampling With Uniform Proposal Distribution

A simple stochastic algorithm is rejection sampling with a uniform proposal distribution.
The following proposition shows that this can achieve better rates in terms of the TV
distance than the density-based approximation rates in Eq. (7.3) if the maximum Mf of f
is known:

Proposition 7.4.4 (Convergence of rejection sampling). Let m ≥ 1 and let f ∈ C1(X ).
Then, the distribution P̃f produced by RejectionSampling(f , Mf , n) (see Algorithm 16)
satisfies

Dsup-log(Pf , P̃f ) ≤ min {2∥f∥∞, exp (2∥f∥∞ − n/∥pf∥∞)}
DTV(Pf , P̃f ) ≤ min{1, 2∥f∥∞} exp(−n/∥pf∥∞)

≤ Om,d(min{1, ∥f∥∞}max{1, ∥f∥C1}mn−m/d) .

A proof can be found in Section 7.E.2. Lower bounds for the convergence of rejection
sampling could be obtained using Lemma 7.2.7, but the resulting formula would not be easy
to interpret. In any case, an argument similar to the one in Section 7.4.2 and Section 7.E.2
can be made to show that RejectionSampling(f , Mf , n) cannot achieve the rate
Om,d(Bn

−m/d). We leave it as an open question whether similar rates to Proposition 7.4.4
can be achieved when Mf is approximately known or when a guess for Mf is used that
slowly increases with n. Note that Talwar (2019) studies a similar setting where rejection
sampling is not stopped after n rejections.

Monte Carlo Log-partition

Since the log-partition problem involves an integral, it is natural to approximate the
integral by Monte Carlo (MC) quadrature. The following theorem gives an upper bound
on the convergence rate:

188



7.4. Algorithms

Theorem 7.4.5 (Upper bounds for MC log-partition). Let f : X → R be Lipschitz, let
X1, . . . , Xn ∼ U(X ) be independent and let

L̃n := logSn, Sn :=
1

n

n∑
i=1

exp(f(Xi)).

Then, for any δ ∈ (0, 1], the following convergence rates hold:

(a) Optimization regime: If n ≤ 4 log(2/δ)(1 + 3d−1/2|f |1)d, we have

|L̃n − Lf | ≤ d1/2(log(1/δ))1/d|f |1n−1/d + log(4 log(2/δ)) + d log(1 + 3d−1/2|f |1)

with probability ≥ 1− δ.
(b) Quadrature regime: If n ≥ 4 log(2/δ)(1 + 3d−1/2|f |1)d, we have

|L̃n − Lf | ≤ 4 log(2/δ)1/2(1 + 3d−1/2|f |1)d/2n−1/2

with probability ≥ 1− δ.

We prove Theorem 7.4.5 in Section 7.E.2. Roughly speaking, the rates in the theorem
above behave like |f |1n−1/d until an error of O(1) is reached, and then they change to
|f |d/21 n−1/2. Figure 1 and our experiments later in Figure 2 show that this reflects the
qualitative behavior of the error on linear f in practice.

Monte Carlo Sampling

We can also consider a sampling version of the Monte Carlo log-partition method considered
in Section 7.4.2. The following theorem shows that it cannot achieve good rates in the
optimization regime either:

Theorem 7.4.6 (Lower bound for MC sampling). Let f : X → R be bounded and
measurable. Let X1, . . . , Xn ∼ U(X ) and let the random index I ∈ {1, . . . , n} be distributed
as

P (I = i) =
exp(f(Xi))∑n
j=1 exp(f(Xj))

.

Consider the distribution P̃f of the random sample XI . Then, for all B > 0 and n ≥ 1
with Bn−1/d ≥ 4d log(4d),

sup
f∈Fd,m,B

DTV(Pf , P̃f ) ≥
1

2
.

The lower bounds in Theorem 7.4.6, proven in Section 7.E.2, show that n ≥ Ωm,d(B
d)

points are required to achieve an error below O(1), which is significantly worse than the
around Θm,d(B

d/m) points required by a method with the optimal rate for deterministic
evaluation points. The proof only uses that the density p̃f is upper-bounded by n, and
would apply analogously (using n + 1 instead of n) to rejection sampling with uniform
proposal distribution as considered in Section 7.4.2.

189



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

101 103 105

n

10−3

10−1

101

103

105

M
ed

ia
n

er
ro

r|
L
f
−
L̃
f
|

|f |1 = 4194304

|f |1 = 1048576

|f |1 = 262144

|f |1 = 65536

|f |1 = 16384

|f |1 = 4096

|f |1 = 1024

|f |1 = 256

|f |1 = 64

|f |1 = 16

|f |1 = 4

|f |1 = 1

Figure 1: Median error of MC log-partition for the function f : [0, 1]→ R, x 7→ βx (with d = 1),
for varying numbers of points n and values of β = |f |1 > 0. Medians were computed out of 10001
repetitions. The dashed lines show the corresponding upper bounds from Theorem 7.4.5 for the
median (δ = 1/2).

7.4.3 Markov Chain Monte Carlo Algorithms

Markov Chain Monte Carlo (MCMC) methods are a very popular class of sampling
algorithms. In particular, gradient-based MCMC algorithms such as versions of Langevin
MCMC and Hamiltonian Monte Carlo (Duane et al., 1987) have been studied intensively
in recent years. While most theoretical guarantees only consider the case of concave f ,
there have been a few extensions where f is allowed to be non-concave in a compact region
of the domain. For example, Ma et al. (2019) study a certain class of functions whose
gradient is L-Lipschitz and that are non-concave in a region with radius R but α-strongly
convex outside of it. For the Metropolis-adjusted Langevin algorithm (MALA) to reach a
TV distance error E > 0, they obtain the mixing time bound

n ≤ O

(
e40LR

2

α
(L/α)3/2d1/2(d ln(L/α) + ln(1/E))3/2

)
. (7.4)

We have used n here for the mixing time since it corresponds to the number of gradient
evaluations, which are potentially more informative than the function evaluations normally
allowed in our setting but can be approximated using d + 1 function evaluations. The
dependence of the upper bound in Section 7.4.3 on L, which is related to ∥f∥C2 in our
setting, is exponential. We are not aware of a lower bound, but conjecture that a tight lower
bound will also have an exponential dependence on ∥f∥ in some fashion. This indicates
that Langevin MCMC could perform worse than rejection sampling in our setting.

190



7.4. Algorithms

Beyond Langevin MCMC, there are many other popular MCMC methods, for example,
variants of Hamiltonian Monte Carlo, parallel tempering (or replica exchange MCMC),
and simulated tempering. Obtaining convergence rates for these methods on function
classes like Fd,m,B is an interesting problem but left open in this paper. While Woodard
et al. (2009) prove torpid (slow) mixing for parallel and simulated tempering in some
settings, they show an exponential dependency on d for certain mixtures of Gaussians,
which does not appear to imply suboptimal rates in our setting.

7.4.4 Variational Formulation for Log-Partition Estimation

In the following, we will introduce the variational approach to the log-partition problem
by Bach (2022). We will first start with the simpler optimization setting. Let P(X ) be
the space of probability measures on X . We start with the formulation

Mf = max
x∈X

f(x) = sup
P∈P(X )

∫
f(x) dP (x) , (7.5)

which converts a finite-dimensional non-concave optimization problem into an infinite-
dimensional convex optimization problem. To apply the approach by Bach (2022), we
need to approximate the function f by a model of the form

g(x) = φ(x)∗Hφ(x),

where H is a Hermitian matrix and φ : X → CN is a suitable feature map. For example,
for d = 1, if f is periodic and we use Fourier features φ(x) = (1, eix, . . . , e(N−1)ix)⊤, then
H can be determined by trigonometric interpolation, see also Woodworth et al. (2022).

For a probability distribution P ∈ P(X ), we define the moment matrix

ΣP :=

∫
X
φ(x)φ(x)∗ dP (x) .

Because of∫
X
g(x) dP (x) =

∫
X
tr[φ(x)∗Hφ(x)] dP (x) =

∫
X
tr[Hφ(x)φ(x)∗] dP (x) = tr[HΣP ] ,

we then obtain

Mg = sup
P∈P(X )

tr[HΣP ] = sup
Σ∈K

tr[HΣ] ,

whereK is the (convex) set of all possible values of ΣP . This reduces the infinite-dimensional
convex optimization problem in Eq. (7.5) to a finite-dimensional convex optimization
problem, and at least for certain feature maps, the set K has a sufficiently nice structure
for optimization.

To extend this approach to the log-partition problem, Bach (2022) uses the following
variational formulation by Donsker and Varadhan (1983) for general base distributions Q,
where DKL(P ∥ Q) =

∫
log
(

dP
dQ

)
dP is the KL divergence:

Lf (Q) := log

∫
X
ef(x) dQ(x) = sup

P∈P(X )

∫
X
f(x) dP (x)−DKL(P ∥ Q) .

191



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

Again, after approximating f by g, we can replace the integral by tr[HΣP ]. However,
to obtain a finite-dimensional optimization problem, we also need to replace the KL
divergence with something that only depends on ΣP instead of P . Since this is not possible
exactly, Bach (2022) proposes multiple lower bounds, of which the tightest one (and most
difficult to compute) is

DOPT
KL (ΣP ∥ ΣQ) := inf

P̃ ,Q̃∈P(X ):ΣP=ΣP̃ ,ΣQ=ΣQ̃

DKL(P̃ ∥ Q̃) .

This yields the following upper bound on the log-partition function:

LOPT
g (Q) := sup

P∈P(X )

∫
X
g(x) dP (x)−DOPT

KL (ΣP ∥ ΣQ)

= sup
P∈P(X )

tr[HΣP ]−DOPT
KL (ΣP ∥ ΣQ) = sup

Σ∈K
tr[HΣ]−DOPT

KL (Σ ∥ ΣQ)

≥ Lg(Q) . (7.6)

Our investigation begins here: After inserting the definition of DOPT
KL , a simple calculation

shows that due to the minus sign, the infimum over P̃ merges with the supremum over P ,
and the infimum over Q̃ turns into a supremum:

Lemma 7.4.7. For a model of the form g(x) = φ(x)∗Hφ(x) as above, we have

LOPT
g (Q) = sup

Q̃∈P(X ):ΣQ̃=ΣQ

Lg(Q̃) .

This formulation allows us to show a lower bound on the achievable convergence rate.
The basic idea is as follows: Since Q is only known through finitely many moments ΣQ,
we can find a discrete distribution Q̃ with the same moments. We then choose f such that
it attains its maximum at one of the discrete points, and if g approximates f sufficiently
well, we show that the discrete distribution places too much weight on the maximum.

Theorem 7.4.8 (Lower bound for OPT relaxation). Let φ : X → CN be continuous. Let

n := dimC Vlin, Vlin := SpanC {φ(x)φ(x)∗ | x ∈ X} ⊆ CN×N .

In other words, n is the number of effective degrees-of-freedom of the model g(x) =
φ(x)∗Hφ(x), and hence corresponds to the maximum number of points where such a model
can interpolate arbitrary function values. Then, there exists a point z ∈ X depending only
on φ, such that the periodic and analytic function

f : X → R, x 7→
d∑
i=1

cos(2π(xi − zi))

satisfies

|LOPT
g (U([0, 1]))− Lβf (U([0, 1]))| ≥ log

(
βd/2

2n+ 1

)
− ∥g − βf∥∞ (7.7)

for any model g(x) = φ(x)∗Hφ(x) and any β > 0.

192



7.5. Experiments

What are the implications of Theorem 7.4.8, which is proven in Section 7.E.3, on
convergence rates? To answer this question, we need to consider the limit n→∞, which
means that N,φ, f, g in general depend on n, and we will denote them by Nn, φn, fn, gn,
respectively. We also consider an inverse temperature βn := (e(2n + 1))2/d. Since fn
is analytic, an approximation method with optimal rate should achieve the rate ∥gn −
βnfn∥∞ ≤ Om,d(∥βnfn∥Cmn−m/d) = Om,d(n

−(m−2)/d) for every m ∈ N. Suppose that this
is at least achieved for m = 3, such that limn→∞ ∥gn − βnfn∥∞ = 0. Then,

|LOPT
gn (U([0, 1]))− Lβnfn(U([0, 1]))| ≥ log

(
β
d/2
n

2n+ 1

)
− ∥gn − βnfn∥∞

≥ 1−Om,d(n
−(m−2)/d)

= Ωm,d(βnn
−2/d) for sufficiently large n.

In other words, the approximation error and the log-partition error of the OPT relaxation
in Eq. (7.6) cannot both achieve a rate strictly better than Om,d(∥f∥n−2/d) even for
infinitely smooth functions, no matter which (continuous) feature map φ is chosen.

7.5 Experiments
To further investigate the convergence behavior of some simple algorithms, we study them
numerically on functions of the form f : [0, 1]3 → R, x 7→ β(x1 + x2 + x3). While these
functions are simple (and concave), they pose a challenge to some general algorithms as
they have a large range in relation to their Lipschitz constant. The dimension d = 3
has been chosen for visualization purposes, to be able to distinguish the convergence
rates n−1/d and n−2/d from the typical MC convergence rate of n−1/2. Our plots can be
reproduced using the code at

github.com/dholzmueller/sampling_experiments

7.5.1 Log-partition Estimation

For the log-partition problem, we consider the following algorithms:

• PC: Compute the log-partition function of a piecewise constant approximation as in
Section 7.4.1.

• MC: Monte carlo log-partition estimation as in Section 7.4.2.
• PC+MC: We use importance sampling, specifically MC quadrature on top of a

piecewise constant approximation as described in Section 7.2.2: We use n/2 function
evaluations to compute a piecewise constant approximation g of f and then use the
other n/2 function evaluations for an MC approximation of the right-hand side in

Lf = Lg + log
(
Ex∼Pg [exp(f(x)− g(x))]

)
.

Note that PC and MC run in linear time Om,d(n) while PC+MC can require a runtime of
Om,d(n

2) or Om,d(n log n) depending on the implementation.
Figure 2 shows the convergence of these methods for β ∈ {0.1, 40, 10000}. For

β = 10000, the methods are in an optimization regime, where PC and MC follow the

193

github.com/dholzmueller/sampling_experiments


Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

101 103 105

Number of function evaluations n

100

101

102

103

104

M
ed

ia
n

er
ro

r|
L
f
−
L̃
f
|

β = 104

101 103 105

Number of function evaluations n

10−2

10−1

100

101

M
ed

ia
n

er
ro

r|
L
f
−
L̃
f
|

β = 40

101 103 105

Number of function evaluations n

10−6

10−5

10−4

10−3

10−2

10−1

M
ed

ia
n

er
ro

r|
L
f
−
L̃
f
|

β = 0.1

βn−1/3

βn−1/2

βn−2/3

βn−5/6

PC
MC
PC+MC

Figure 2: Convergence of the (median) error |Lf − L̃f | for different values of β ∈ {0.1, 40, 10000}.
For the stochastic methods MC and PC+MC, the median is taken over 10001 independent runs.

194



7.5. Experiments

rate O(n−1/3) of the corresponding upper bounds in Theorem 7.4.1 and Theorem 7.4.5.
Meanwhile, PC+MC follows the rate O(n−2/3). This can be understood intuitively by
noting that due to the linear nature of f , the PC proposal distribution will mostly propose
points close to the optimum, such that the MC component can get much closer to the
optimum than with a uniform proposal distribution.

For β = 30, we observe a transition between an optimization regime and a quadrature
regime. In the quadrature regime, the convergence rate of MC is the classical MC
quadrature rate O(n−1/2), matching the upper bound in Theorem 7.4.5. Meanwhile,
the convergence rate of PC transitions to O(n−2/3), matching the worst-case bound in
Theorem 7.4.1, whose proof uses a linear f for the lower bound. The combination PC+MC
approaches a convergence rate around O(n−5/6). This can be understood as the MC rate
O(n−1/2) combined with the approximation rate (not log-partition rate) of PC, which is
O(n−1/3). The rate O(n−5/6) can be proven formally using arguments analogous to the
proof of Theorem 7.2.5 in Section 7.C.2.

For β = 0.1, we see the same quadrature regime rates as for β = 30, except that now
the constant in the rate for PC is smaller than those of MC and PC+MC. This can be
explained by an observation in the proof of Theorem 7.4.1 in Section 7.E.1: Since PC
performs midpoint quadrature, its error depends on the curvature of exp(f). Since f is
linear, the curvature of exp(f) is significantly smaller than the worst-case curvature when
β ≪ 1. On the other hand, the convergence rate of PC+MC depends on the approximation
rate of PC, which does not exhibit this phenomenon.

7.5.2 Sampling

To study convergence rates for sampling, we need a way to estimate distances between
probability distributions through samples. While this can be achieved for the Wasserstein
distance, and more efficiently for the related Sinkhorn distances, an even more efficient
and easy-to-compute measure is the energy distance (see e.g. Székely and Rizzo, 2013)
given by

Denergy(P,Q)
2 = 2Ex∼P,x′∼Q∥x− x′∥2 − Ex∼P,x′∼P∥x− x′∥2 − Ex∼Q,x′∼Q∥x− x′∥2 .

We estimate the energy distance Denergy(Pf , P̃f) by sampling a finite number of sam-
ples x1, . . . , xN ∼ Pf and x̃1, . . . , x̃N ∼ P̃f) and then computing the energy distance
Denergy(Q, Q̃) of the empirical distributions

Q :=
1

N

N∑
i=1

δxi , Q̃ :=
1

N

N∑
i=1

δx̃i ,

where δx is the Dirac distribution at x. We compare the following sampling algorithms:

• PC: Sampling from a piecewise constant approximation as in Section 7.4.1.
• MC: Monte carlo sampling as defined in Section 7.4.2.
• RS: We return RejectionSampling(f,Mf , n) as defined in Algorithm 16 and

investigated in Section 7.4.2. Here, we know Mf explicitly due to the simple nature
of f .

195



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

100 101 102 103 104 105

n

10−3

10−2

10−1

100

E
m

pi
ri

ca
le

ne
rg

y
di

st
an

ce

n−1/3

n−1/2

n−2/3

Numerical accuracy
PC
MC
RS
PC+MC
PC+RS

Figure 3: Convergence of different sampling methods in terms of the empirical energy distance,
computed using N = 106 samples for each distribution, to the true distribution Pf for β = 15.
Here, n denotes the number of function evaluations used for drawing a sample, where PC uses
the same function evaluations for each sample while MC and RS need new function evaluations
for every drawn sample. The gray dashed line corresponds to the maximum empirical energy
distance of two sets of N = 106 samples both drawn from Pf , where the maximum is taken over
three random draws.

• PC+MC: Performing MC sampling on top of a piecewise constant proposal distri-
bution: We compute a piecewise constant approximant g of f with n/2 points, then
draw samples X1, . . . , Xn/2 ∼ Pg and output XI , where

P (I = i) =
exp(f(Xi)− g(Xi))∑n/2
j=1 exp(f(Xj)− g(Xj))

.

• PC+RS: We use n/2 points to compute a piecewise constant approximation g of f
and then return RejectionSampling(f, g+Mf−g, n/2) as defined in Algorithm 16.
Here, we know Mf−g explicitly due to the simple nature of f .

Note that PC, MC, and RS run in linear time Om,d(n) while PC+MC and PC+RS can
require Om,d(n

2) or Om,d(n log n) depending on the implementation.
For the sampling algorithms in Figure 3, the behavior in terms of convergence rates is

less clear than for the log-partition algorithms. Nonetheless, it is evident that combining
approximation-based and stochastic methods performs better than either of the two in
isolation. Moreover, it is noticeable that RS, our budget-limited variant of rejection
sampling, initially performs poorly while reaching fast convergence for larger values of n,
when the probability of overall rejection becomes small.

196



7.6. Conclusion

7.6 Conclusion
In this paper, we studied the convergence rates of sampling and log-partition estimation
methods on classes of m-smooth functions on the d-dimensional unit cube X = [0, 1]d. In
Section 7.2, we showed that without computational constraints, the optimal achievable
convergence rates are of the form Om,d(Bn

−m/d) or even better depending on the setting.
We then investigated several computational reductions between problems in Section 7.3,
showing that several problems are similarly hard. In Section 7.4, we studied convergence
rates of specific algorithms, which are however far from being optimal unless one is willing
to spend a computational effort on the order of O(nm), i.e., exponential in the smoothness
m for which the optimal rate should be achieved. Our experimental study nonetheless
confirms practical differences between the convergence rates of some of the investigated
efficient algorithms.

Our work poses the central question of whether near-optimal convergence rates for
smooth functions can be achieved with runtimes that are of fixed polynomial order Om,d(n

k),
i.e., where k does not depend on m or d. Moreover, for many sampling algorithms, it is
unclear which convergence rates they can achieve in our setting. For example, variants of
parallel tempering are often employed for non-log-concave problems, and diffusion models
might prove to be relevant if the score function can be approximated efficiently (Chen et al.,
2022). An analysis of (mixtures of) Laplace approximations might also be interesting in
this context. Beyond specific algorithms, proving lower bounds outside of the optimization
regime is still an open question except for some special cases (Chewi et al., 2022), and
other probability distance measures such as the KL divergence could be considered as well.

Acknowledgments We thank Alessandro Rudi, Viktor Zaverkin, Hans Kersting, Ingo
Steinwart, Davoud Mirzaei, Marc Lambert, and Eric Moulines for helpful discussions.
Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy - EXC 2075 – 390740016. The authors thank the Inter-
national Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting
David Holzmüller.

197



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

198



Appendix

7.A Overview
The structure of the appendix matches that of the main part of this paper. We give
proofs for Section 7.1 in Appendix 7.B, for Section 7.2 in Appendix 7.C, for Section 7.3 in
Appendix 7.D, and for Section 7.4 in Appendix 7.E.

7.B Proofs for Introduction
Lemma 7.1.3 (Optimization limit). Let f : X → R be Lipschitz-continuous with Lipschitz
constant |f |1 < ∞. Then, for any temperature ε > 0, the maximum Mf = maxx∈X f(x)
satisfies

|Mf − εLf/ε| ≤ εd log(1 + 3d−1/2|f |1/ε) −→ 0 for ε↘ 0 . (7.1)

Moreover, for any bounded and measurable f : X → R and any δ ∈ (0, 1], we have

Pf/ε({x ∈ X | f(x) < εLf/ε − ε log(1/δ)}) ≤ δ .

Proof. For the first part of the lemma, let x∗ ∈ X be a maximizer of f . Without loss of
generality, assume that f is shifted such that f(x∗) = 0.

Step 1: Upper bound. We have

Lf = log

∫
X
ef(x) dx ≤ log

∫
X
1 dx = log 1 = 0 =Mf .

Step 2: Lower bound. To show a lower bound on Lf , define the side length
R := (max{1, d−1/2|f |1})−1. Since R ≤ 1, X contains an axis-aligned subcube X̃ of side
length R containing x∗. Each point x ∈ X̃ has distance at most

√
dR from x∗, and hence

by Lipschitzness, we have

f(x) ≥ f(0)− |f |1
√
dR = −|f |1

√
dR .

We consider two cases:

(a) Case 1: d−1/2|f |1 ≤ 1. In this case, we have R = 1 and hence

Lf = log

∫
X
ef(x) dx ≥ log

∫
X
e−|f |1

√
d dx = −|f |1

√
d = −d(d−1/2|f |1) .

The function h(x) := log(1 + 3x) − x is concave and h(0), h(1) ≥ 0, which shows
h(x) ≥ 0 for x ∈ [0, 1]. Hence,

Lf ≥ −d log(1 + 3d−1/2|f |1) .

199



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

(b) Case 2: d−1/2|f |1 > 1. In this case, we have R = (d−1/2|f |1)−1 and hence f(x) ≥ −d
for x ∈ X̃ . This yields

Lf = log

∫
X
ef(x) dx ≥ log

∫
X̃
ef(x) dx

≥ log

∫
X̃
e−d dx = −d+ d log(R) = −d− d log(d−1/2|f |1)

= −d log(ed−1/2|f |1) ≥ −d log(1 + 3d−1/2|f |1) .

Step 3: Including the temperature. By replacing f with f/ε, we obtain

|Mf − εLf/ε| = |εMf/ε − εLf/ε| = ε|Mf/ε − Lf/ε| ≤ εd log(1 + 3d−1/2|f |1/ε) .

Step 4: Probabilistic bound. We have

Pf/ε(x : f(x) ≤ εLf/ε − ε log(1/δ)) ≤
∫
{x∈X :f(x)≤εLf/ε−ε log(1/δ)}

exp(f(x)/ε− Lf/ε) dx

≤
∫
X
exp(− log(1/δ)) dx = δ .

The following lemma will be useful to deal with Lipschitz constants:

Lemma 7.B.1. Let f ∈ Cm(X ),m ≥ 1. Then, |f |1 ≤ d1/2∥f∥Cm.

Proof. We have

|f |1 = sup
x∈X
∥∇f(x)∥2 ≤ sup

x∈X
d1/2∥∇f(x)∥∞ ≤ d1/2∥f∥C1 ≤ d1/2∥f∥Cm .

7.C Proofs for Information-based Complexity
Most of our lower bounds rely on the common strategy of hiding smooth functions with
small support somewhere in the domain (see e.g. Novak, 1988). We will consider the
following bump functions:

Definition 7.C.1 (Bump functions). We define the template one-dimensional bump
function

b̃ : R→ R, x 7→
{
exp(4− (1− x)−1 − (x+ 1)−1) , if x ∈ (−1, 1)
0 , otherwise

and, for given dimension d, the template multi-dimensional bump function

b : Rd → R, x 7→ b̃(x1) · · · b̃(xd) .

for z ∈ Rd and δ > 0, the shifted and scaled bump functions

bz,δ : Rd → R, x 7→ b

(
x− z
δ

)
.

Moreover, we define the open cube

B∞(x, δ) := {z ∈ Rd | ∥z − x∥∞ < δ} . ◀

200



7.C. Proofs for Information-based Complexity

The following lemma illustrates some important properties of these bump functions:

Lemma 7.C.2 (Bump functions). The bump functions bz,δ from Definition 7.C.1 satisfy

(a) bz,δ is zero outside of B∞(z, δ).
(b) bz,δ is infinitely often continuously differentiable and all of its derivatives are bounded,
(c) there exists a constant Cm,d > 0 independent of z and δ such that for all z ∈ Rd and

δ > 0,

∥bz,δ∥Cm(Rd) ≤ Cm,dmax{1, δ−m} .
(d) For x ∈ B∞(z, δ/2), we have bz,δ(x) ≥ 1.

Proof.

(a) This is easy to verify from the definition.
(b) It is well-known, see e.g. Remark 3.4 (d) in Chapter V.3 of Amann and Escher (2005),

that the function

b̂ : R→ R, x 7→
{
0 , x ≤ 0

exp(−1/x) , x > 0

is C∞. Since b̃(x) = e4b̂(1 − x) · b̂(x + 1), b̃ is also C∞, and so must be b and bz,δ.
Moreover, since bz,δ has compact support, all the derivatives are bounded.

(c) Let Cm,d := ∥b∥Cm(Rd). We have

sup
x∈Rd

∣∣∣∣∂αbz,δ(x)∂xα

∣∣∣∣ = δ−|α|1 sup
x∈Rd

∣∣∣∣∂αb(x)∂xα

∣∣∣∣ .
Therefore, by definition of the Cm-norm, we have

∥bz,δ∥Cm(Rd) ≤ Cm,dmax{1, δ−m} .

(d) It is easy to verify that b̃(x) ≥ 1 for |x| ≤ 1/2. For x ∈ B∞(z, δ/2), we have

∥(x− z)/δ∥∞ ≤ 1/2 ,

hence

bz,δ(x) = b

(
x− z
δ

)
≥ 1 · · · 1 = 1 .

The following lemma is useful to bound the number of bump functions that we can
hide in a domain:

Lemma 7.C.3. For k ∈ N≥1, a third-slice X̃ := [0, 1/3]× [0, 1]d−1 of the cube X contains
at least k disjoint open cubes B∞(z1, rk), . . . , B∞(zk, rk) with radius

rk =
k−1/d

12
.

Proof. Choose N := ⌈k1/d⌉. We can divide X̃ into N · (3N)d−1 ≥ Nd ≥ k cubes of side
length (3N)−1 and radius

r =
1

6N
≥ 1

6(k1/d + 1)
≥ 1

12k1/d
=
k−1/d

12
= rk .

201



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

7.C.1 Deterministic Evaluation Points

We first adapt some results from Novak (1988) to our setting.

Theorem 7.2.1 (adapted from Novak (1988)). We have

en(Fd,m,B, Sapp, D∞) = Θm,d(Bn
−m/d), eadn (Fd,m,B, Sapp, D∞) = Θm,d(Bn

−m/d),

en(Fd,m,B, Sopt∗ , Dabs) = Θm,d(Bn
−m/d), eadn (Fd,m,B, Sopt∗ , Dabs) = Θm,d(Bn

−m/d),

en(Fd,m,B, Sint, Dabs) = Θm,d(Bn
−m/d), eadn (Fd,m,B, Sint, Dabs) = Θm,d(Bn

−m/d) .

Proof. Step 1: Upper bounds. For S ∈ {Sapp, Sopt∗ , Sint}, Novak (1988) states upper
bounds of the form Om,d(n

−m/d) for bounded classes of functions in the Sobolev space
Wm,d

∞ , which contain Fd,m,Bm,d
for some Bm,d > 0 (see Section 1.3.11 and 1.3.12 in Novak

(1988)). Hence, for the corresponding metric D, we have

en(Fd,m,Bm,d
, S,D) ≤ Om,d(n

−m/d) .

For another value of B, we can then take a near-optimal S̃ ∈ An for Fd,m,Bm,d
and define

ˆ̃S(f) :=
B

Bm,d

S̃

(
Bm,d

B
f

)
,

and by positive homogeneity of S and D, this then achieves the rate Om,d(Bn
−m/d).

Step 2: Lower bounds. For lower bounds, it is again sufficient to consider Fd,m,Bm,d

for a single Bm,d > 0. Novak (1988) uses bump functions created by rescaling and shifting
the template bump function

Φ(x) =

{
a
∏d

i=1(1− x2i )m , x ∈ [−1, 1]d
0 , otherwise

for some appropriate constant a > 0. This function is in Wm,d
∞ but not all of its weak

m-th derivatives are continuous. Hence, the constructed counterexamples do not directly
apply to Fd,m,Bm,d

. However, it is possible to replace Φ by the C∞ bump function b from
Definition 7.C.1 since the norms of the derivatives behave in the same fashion for scaled
and shifted versions of b, as shown in Lemma 7.C.2. Hence, the same lower bounds still
apply to Fd,m,Bm,d

.

We can now turn to our upper bounds through approximation:

Proposition 7.2.2 (Upper bounds via approximation). For bounded and measurable
f, g : X → R, we have

(a) |Lf − Lg| ≤ ∥f − g∥∞.
(b) d−1/2W1(Pf , Pg) ≤ DTV(Pf , Pg) ≤ Dsup-log(Pf , Pg) ≤ 2∥f − g∥∞.

Proof. Since Lf and Pf are not influenced by changing f on null sets, we will ignore
exceptional null sets in the essential supremum in the definition of ∥ · ∥∞ in the following.

202



7.C. Proofs for Information-based Complexity

(a) We have

Lg = log

∫
X
eg(x) dx

≤ log

∫
X
ef(x)+∥f−g∥∞ dx = log

(
e∥f−g∥∞ ·

∫
X
ef(x) dx

)
=

(
log

∫
X
ef(x) dx

)
+ ∥f − g∥∞ = Lf + ∥f − g∥∞ ,

and the other inequality follows analogously.
(b) We have pf (x) = exp(f(x)− Lf ) and pg(x) = exp(g(x)− Lg), hence

Dsup-log(Pf , Pg) =

∥∥∥∥log(pfpg
)∥∥∥∥

∞
= ∥(f − Lf )− (g − Lg)∥∞

≤ ∥f − g∥∞ + |Lf − Lg|
(a)
≤ 2∥f − g∥∞ .

Let f̄ := f − Lf . By a well-known property of the TV distance (see e.g. Lemma 2.1
in Tsybakov, 2009),

DTV(Pf , Pg) = DTV(Pf̄ , Pḡ) =
1

2

∫
X
|ef̄(x) − eḡ(x)| dx .

Now, consider a fixed x ∈ X . Without loss of generality, assume f̄(x) ≤ ḡ(x). Then,

eḡ(x)−∥f̄−ḡ∥∞ ≤ ef̄(x) ≤ eḡ(x) ,

which yields

|ef̄(x) − eḡ(x)| ≤ (1− e−∥f̄−ḡ∥∞)eḡ(x) ≤ (1− e−∥f̄−ḡ∥∞)(ef̄(x) + eḡ(x))

≤ ∥f̄ − ḡ∥∞(ef̄(x) + eḡ(x)) .

Therefore,

DTV(Pf , Pg) ≤
1

2

∫
X
∥f̄ − ḡ∥∞(ef̄(x) + eḡ(x)) dµ(x) = ∥f̄ − ḡ∥∞ = Dsup-log(Pf , Pg) .

The bound W1(Pf , Pg) ≤ diam(X )DTV(Pf , Pg) = d1/2DTV(Pf , Pg) for the 1-Wasser-
stein distance, where diam(X ) is the diameter of X , is well-known (see e.g. Gibbs
and Su, 2002).

The following technical lemmas will be used for the lower bound afterward.

Lemma 7.C.4. Let a, b > 0. Then,

a

a+ b
≥ 1

2
min

{
1,
a

b

}
.

203



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

Proof. If a ≤ b, we have

a

a+ b
≥ a

2b
≥ 1

2
min

{
1,
a

b

}
.

Similarly, if a ≥ b, we have

a

a+ b
≥ a

2a
=

1

2
≥ 1

2
min

{
1,
a

b

}
.

Lemma 7.C.5. Let c ∈ (0, 1]. Then, the function

h : [0,∞)→ R, x 7→ log(1 + c(ex − 1))

satisfies h(x) ≥ cx for all x ≥ 0.

Proof. For all x ≥ 0, we have

h′(x) =
cex

1 + c(ex − 1)
=

c

c+ (1− c)e−x ≥
c

c+ (1− c) = c .

Therefore,

h(x) = h(0) +

∫ x

0

h(u) du ≥
∫ x

0

c du = cx .

Now, we are ready to prove the exact minimax optimal rates. The main technical
difficulty is that for the lower bound in the 1-Wasserstein distance, we need to hide many
bumps that are far apart, and we need to bound the resulting Wasserstein distance.

Theorem 7.2.3 (Information-based complexity of sampling and log-partition with deter-
ministic evaluation points). We have

en(Fd,m,B, SL, Dabs) = Θm,d(Bn
−m/d),

en(Fd,m,B, Ssamp, Dsup-log) = Θm,d(Bn
−m/d),

en(Fd,m,B, Ssamp, DTV) = Θm,d(min{1, Bn−m/d}),
en(Fd,m,B, Ssamp,W1) = Θm,d(min{1, Bn−m/d}),

and the same rates hold for adaptive points.

Proof. Step 0: Upper bounds. We know from Theorem 7.2.1 that the rate Om,d(Bn
−m/d)

can be achieved for approximation with non-adaptive deterministic evaluation points,
and we know from Proposition 7.2.2 that this rate can therefore also be achieved for
the log-partition problem and the sampling problem with Dsup-log, DTV, and W1. More-
over, since DTV(P,Q) ≤ 1 for all distributions P,Q, we obtain an upper bound of
Om,d(max{1, Bn−m/d}) forDTV. Similarly, since X has diameter d1/2, W1 is upper bounded
by d1/2 = Om,d(1), and hence we also obtain an upper bound of Om,d(max{1, Bn−m/d})
for W1. The upper bounds also hold for the adaptive setting since it is more permissive.

In the following, we will derive matching asymptotic lower bounds for the adaptive
setting, which then also hold for the non-adaptive setting. To this end, let S̃ ∈ Aad

n for
the log-partition or sampling problem on the function class Fd,m,B.

204



7.C. Proofs for Information-based Complexity

Step 1: Defining grids in the cube. We can cut the cube X along one axis into
three equally shaped slices C0, C1, C2:

Ck := [k/3, (k + 1)/3]× [0, 1]d−1, k ∈ {0, 1, 2} .

Then, by Lemma 7.C.3, we can find a finite set of points Gk ⊆ Ck with |Gk| = 2n such that
the open cubes B∞(x, δn) for x ∈ Gk and radius

δn =
(2n)−1/d

12
≥ n−1/d

24

are contained in Ck and disjoint.
Step 2: Removing points close to queried points. Let Xn denote the ≤ n points

where S̃ queries the zero function. For fixed k ∈ {0, 2}, the 2n cubes (B∞(x, δn))x∈Gk
are

disjoint. Hence there must be a subset G̃k ⊆ Gk containing n points whose corresponding
cubes do not contain any point from Xn.

Step 3: Two different functions. Now, for k ∈ {0, 2} and Cm,d as in Lemma 7.C.2,
define the functions

fk(x) := BC−1
m,dδ

m
n

∑
z∈G̃k

bz,δn(x) .

We have δn ≤ 1 and hence ∥bz,δn∥Cm ≤ Cm,dδ
−m
n by Lemma 7.C.2. Because the support of

the bump functions does not overlap, we have ∥fk∥Cm ≤ B by Lemma 7.C.2 and hence
fk ∈ Fd,m,B. By the construction of G̃k, f0 and f2 are zero on Xn. Hence, even an adaptive
S̃ must also query fk at the points in Xn, and since both are equal at those points, we
must have

S̃(f0) = S̃(f2) .

Step 4: Wasserstein distance of both functions. Because f0 and f2 use the same
number of equally wide bump functions whose support is fully contained in X , we have

Lf0 = Lf2 . (7.8)

To lower-bound the 1-Wasserstein distance, we use its dual formulation and choose the
1-Lipschitz function φ(x) := x1 − 1/3. This yields

W1(Pf0 , Pf2) ≥ Ex∼Pf2
φ(x)− Ex∼Pf0

φ(x) =

∫
X
φ(x)(ef2(x) − ef0(x)) dx

Eq. (7.8)
= e−Lf0

∫
X
φ(x)(ef2(x) − ef0(x)) dx . (7.9)

Step 5: Lower-bounding the normalization constant. We first define the “bump
integral”

In :=

∫
B∞(z,δn)

(eBC
−1
m,dδ

m
n bz,δn (x) − 1) dx ,

which is independent of z. Then, we have

In
Lemma 7.C.2
≥

∫
B∞(z,δn/2)

(eBC
−1
m,dδ

m
n − 1) dx

205



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

= δdn(e
BC−1

m,dδ
m
n − 1) . (7.10)

We then obtain

eLf0 =

∫
X
e0 dx+

∑
z∈G̃0

∫
B∞(z,δn)

(eBC
−1
m,dδ

m
n bz,δn (x) − e0) dx

= 1 + nIn . (7.11)

Step 6: Lower-bounding the integral. By construction of the functions φ, f0, and
f2, we know that∫

X
φ(x)(ef2(x) − ef0(x)) dx ≥

∫
C2
φ(x)(ef2(x) − ef0(x)) dx . (7.12)

Using φ(x) ≥ 1/3 and f2(x) ≥ f0(x) for x ∈ C2, we can lower-bound the latter integral as∫
C2
φ(x)(ef2(x) − ef0(x)) dx ≥

∑
z∈G̃2

∫
B∞(z,δn)

1

3
(eBC

−1
m,dδ

m
n bz,δn (x) − 1) dx

=
1

3
nIn .

Step 7: Wasserstein distance lower bound. By combining the previous lower
bounds with Eq. (7.12), Eq. (7.11) and Eq. (7.9), we arrive at

W1(Pf0 , Pf2) ≥
(1/3)nIn
1 + nIn

=
1

3

In
In + n−1

.

We can then apply Lemma 7.C.4 and Eq. (7.10) to obtain, for a suitable constant cm,d > 0,

W1(Pf0 , Pf2) ≥
1

6
min

{
1,

In
n−1

}
≥ 1

6
min

{
1,
δdn(e

BC−1
m,dδ

m
n − 1)

n−1

}
≥ 1

6
min

{
1, nδdnBC

−1
m,dδ

m
n

}
≥ 1

6
min

{
1, cm,dBn

−m/d} .

Step 8: Wasserstein minimax rate lower bound. Suppose that we are considering
the sampling problem. As argued before, we have S̃(f0) = S̃(f2). Hence, by an application
of the triangle inequality, we must have k ∈ {0, 2} such that

W1(Pfk , S̃(fk)) ≥
1

12
min

{
1, cm,dBn

−m/d} .

The Wasserstein minimax lower bound then follows by setting f := fk.
Step 9: TV distance minimax lower bound. Since

DTV(Pf , S̃(f)) ≥ d−1/2W1(Pf , S̃(f))

206



7.C. Proofs for Information-based Complexity

(see e.g. Gibbs and Su, 2002), we obtain the same asymptotic lower bound for the TV
distance.

Step 10: Sup-log minimax lower bound. We have

Dsup-log(Pf0 , Pf2) = ∥(f0 − Lf0)− (f2 − Lf2)∥∞ = ∥f0 − f2∥∞
≥ Ωm,d(BC

−1
m,dδ

m
n ) = Ωm,d(Bn

−m/d) .

Since S̃(f0) = S̃(f2), by the triangle inequality, there must hence exist k ∈ {0, 2} such that

Dsup-log(Pfk , S̃(fk)) ≥ Ωm,d(Bn
−m/d) .

Step 11: Log-partition minimax lower bound. Suppose that we instead consider
the log-partition problem. Setting cd = 24−d, we obtain

Lf2 = log(1 + nIn) ≥ log(1 + nδdn(e
BC−1

m,dδ
m
n − 1))

≥ log
(
1 + cd(e

BC−1
m,dδ

m
n − 1)

)
Lemma 7.C.5
≥ cdBC

−1
m,dδ

m
n

≥ Ωm,d(Bn
−m/d) .

Since S̃ cannot distinguish the zero function f ≡ 0 and f2, we must have

max{|Lf − S̃(f)|, |Lf2 − S̃(f2)|} ≥ Ωm,d(Bn
−m/d) .

7.C.2 Stochastic Evaluation Points

Again, we first adapt some related results from Novak (1988) to our setting.

Theorem 7.2.4 (adapted from Novak (1988)). We have

∗σad
n (Fd,m,B, Sapp, D∞) = Θm,d(Bn

−m/d),
∗σad

n (Fd,m,B, Sopt∗ , Dabs) = Θm,d(Bn
−m/d),

∗σad
n (Fd,m,B, Sint, Dabs) = Θm,d(Bn

−1/2−m/d) .

Proof. Analogous to the proof of Theorem 7.2.1 in Section 7.C.1, this can be shown using
the positive homogeneity of S ∈ {Sapp, Sopt∗ , Sint} and D ∈ {D∞, Dabs}, and by replacing
the bump functions in the lower bound by the C∞ bump functions from Definition 7.C.1.

We now prove our upper bound for log-partition estimation with stochastic evaluation
points through approximation and importance sampling:

Theorem 7.2.5 (Upper bound for stochastic log-partition). There exists a constant
Cm,d > 0 depending only on m and d such that

∗σad
n (Fd,m,B, SL, Dabs) ≤ Om,d

(
min

{
Bn−m/d, exp(Cm,dBn

−m/d)Bn−1/2−m/d)
})

.

207



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

Proof. The bound Om,d(Bn
−m/d) can be achieved even through methods with deterministic

evaluation points, as proven in Theorem 7.2.3, hence we only need to show the other
bound. Since the first bound is always better for n = 1, we can in the following assume
n ≥ 2.

Let S̃n ∈ An be a sequence of methods for which the worst-case errors

en := sup
f∈Fd,m,B

D∞(Sapp(f), S̃n(f))

achieve the optimal rate Om,d(Bn
−m/d) for the approximation problem on Fd,m,B.

Set N := ⌊n/2⌋, such that N = Ω(n) (since we assumed n ≥ 2) and 2N ≤ n. Set
g := S̃N(f). For N i.i.d. random variables X1, . . . , XN ∼ Pg, set

µN :=
1

N

N∑
i=1

exp(f(Xi)− g(Xi))

S̃L(f) := Lg + log µN .

Then, S̃L only uses 2N ≤ n function evalutaions of f , hence S̃L ∈ ∗C(Aad
n ).

Since ∥f − g∥∞ ≤ eN and since exp is exp(eN)-Lipschitz on (−∞, eN), we have

1− eN ≤ exp(−eN) ≤ exp(f(Xi)− g(Xi)) ≤ exp(eN) ≤ 1 + eN exp(eN) .

Hence, | exp(f(Xi)− g(Xi))− EµN | ≤ (exp(eN) + 1)eN , which implies

VarµN ≤ N−1((exp(eN) + 1)eN)
2 .

Additionally,

logEµN = log

∫
X
ef(x)−g(x)eg(x)−Lg dx = Lf − Lg .

Moreover, we have ef(Xi)−g(Xi) ∈ [exp(−eN ), exp(eN )] and hence µN ∈ [exp(−eN ), exp(eN )].
Since log is exp(eN)-Lipschitz on [exp(−eN), exp(eN)], we obtain

E|Lf − S̃L(f)| = E| log(EµN)− log(µN)| ≤ E exp(eN)|µN − EµN |
≤ exp(eN)

√
E[(µN − EµN)2] = exp(eN)

√
VarµN

≤ N−1/2eN exp(eN)(exp(eN) + 1) ≤ 2 exp(2eN)N
−1/2eN

≤ Om,d(exp(Cm,dBn
−m/d)Bn−1/2−m/d)

for a suitable constant Cm,d > 0.

In the optimization regime, we can directly exploit the relation to optimization to get
a lower bound:

Proposition 7.2.6 (Lower bound for stochastic log-partition). For m ≥ 1, we have

∗σad
n (Fd,m,B, SL, Dabs) ≥ Ωm,d(Bn

−m/d)− d log(1 + 3B) .

208



7.C. Proofs for Information-based Complexity

Proof. Take any stochastic log-partition method S̃ ∈ ∗C(Aad
n ). We can also interpret

this as a stochastic optimization method. Hence, we know from an adaptation of the
corresponding lower bound by Novak (1988) that there exists a constant cm,d > 0 and
a function f ∈ Fd,m,B such that EDabs(S̃(f), Sopt∗(f)) ≥ cm,dBn

−m/d. But then, using
|f |1 ≤ d1/2∥f∥C1 ≤ d1/2B from Lemma 7.B.1, we obtain

E|S̃(f)− Lf | ≥ E|S̃(f)−Mf | − |Mf − Lf |
= EDabs(S̃(f), Sopt∗(f))− |Mf − Lf |

Lemma 7.1.3
≥ cm,dBn

−m/d − d log(1 + 3B) .

The following lemma will be useful to obtain a bound for rejection sampling in the
sup-log distance:

Lemma 7.C.6. Let p ∈ [0, 1] and c ≥ 0. Then, for any a ∈ [−c, c], we have

| log(1 + p(ea − 1))| ≤ min{c, p(ec − 1)} .

Proof. For an upper bound, we use log(1 + x) ≤ x to obtain

log(1 + p(ea − 1)) ≤ log(1 + p(ec − 1)) ≤ p(ec − 1) ,

log(1 + p(ea − 1)) ≤ log(1 + (ec − 1)) = c .

For lower bounds, we note that

1 + p(ea − 1) ≥ 1 + p(e−c − 1) ≥ 1 + (e−c − 1) = e−c .

This immediately yields log(1 + p(ea − 1)) ≥ −c. Moreover, because log is ec-Lipschitz on
[e−c,∞), we have

log(1 + p(ea − 1)) ≥ log(1 + p(e−c − 1)) = log(1 + p(e−c − 1))− log(1)

≥ −ec|p(e−c − 1)| = −p(ec − 1) .

Now, we can prove upper bounds for rejection sampling:

Lemma 7.2.7 (General rejection sampling bound). Suppose that f, g : X → R are
bounded and measurable with f(x) ≤ g(x) for all x ∈ X . Then, the distribution P̃f of
RejectionSampling(f, g, n) satisfies

P̃f = (1− pR)Pf + pRPg (7.2)
Dsup-log(Pf , P̃f ) ≤ min {Dsup-log(Pf , Pg), pR(exp(Dsup-log(Pf , Pg))− 1)}
DTV(Pf , P̃f ) = pRDTV(Pf , Pg)

W1(Pf , P̃f ) = pRW1(Pf , Pg) ,

where pR = (1− Zf/Zg)n ≤ exp(−nZf/Zg) is the probability of overall rejection.

Proof. Step 1: Exact distribution. We prove Eq. (7.2) via induction on n. For n = 0,
this is clear. Now, suppose the statement is true for n ∈ N0. Denote by A the event that
RejectionSampling(f, g, n+ 1) accepts in the first iteration. Then, we have

P (A) = Ex∼PgEu∼U([0,1])1[ue
g(x) ≤ ef(x)]

f≤g
= Ex∼Pg

ef(x)

eg(x)
=

∫
X
ef(x)−g(x)

eg(x)

Zg
dx =

Zf
Zg

.

209



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

The density of x ∈ X conditional on acceptance is

p(x|A) ∝ p(A|x)p(x) = ef(x)−g(x)
eg(x)

Zg
∝ pf (x) ,

hence P (x|A) = Pf . On the other hand, the distribution P (x|Ac), i.e. the distribution
of x conditioned on not-acceptance is the distribution for RejectionSampling(f, g, n),
which we know from Eq. (7.2) by the induction hypothesis. Hence, the distribution P̃f for
RejectionSampling(f, g, n+ 1) is

P̃f = P (A)P (·|A) + P (Ac)P (·|Ac) = Zf
Zg
Pf +

(
1− Zf

Zg

)(
Pf +

(
1− Zf

Zg

)n
(Pg − Pf )

)
= Pf +

(
1− Zf

Zg

)n+1

(Pg − Pf ) = (1− pR)Pf + pRPg .

The argument above also shows that the overall rejection probability is (1− P (A))(1−
Zf/Zg)

n = (1− Zf/Zg)n+1. Moreover, the bound (1− Zf/Zg)n ≤ exp(−nZf/Zg) follows
from 1− x ≤ exp(−x) for x ≥ 0.

Step 2: Sup-log distance. From step 1, we see that

Dsup-log(Pf , P̃f ) =
∥∥∥log ((1− pR)ef̄ + pRe

ḡ
)
− f̄

∥∥∥
∞

=
∥∥∥log ((1− pR) + pRe

ḡ−f̄
)∥∥∥

∞

=
∥∥∥log (1 + pR(e

ḡ−f̄ − 1)
)∥∥∥

∞
Lemma 7.C.6
≤ min

{
∥ḡ − f̄∥∞, pR

(
e∥ḡ−f̄∥∞ − 1

)}
= min {Dsup-log(Pg, Pf ), pR(exp(Dsup-log(Pg, Pf ))− 1)} .

Step 3: TV distance. Using Eq. (7.2), we obtain for the TV distance:

DTV(Pf , P̃f ) = sup
A⊆X measurable

|Pf (A)− P̃f (A)| = sup
A⊆X measurable

|pRPf (A)− pRPg(A)|

= pRDTV(Pf , Pg) .

Step 4: 1-Wasserstein distance. Using Eq. (7.2), we obtain for the 1-Wasserstein
distance:

W1(Pf , P̃f ) = sup
φ 1-Lipschitz

(∫
φ(x) dPf (x)−

∫
φ(x) dP̃f (x)

)
= pR sup

φ 1-Lipschitz

(∫
φ(x) dPf (x)−

∫
φ(x) dPg(x)

)
= pRW1(Pf , Pg) .

With the upper bounds for rejection sampling proven above, we can analyze a combi-
nation of approximation and rejection sampling to prove the following upper bound:

Theorem 7.2.8 (Upper bound for sampling with stochastic evaluation points). There
exists a constant Cm,d > 0 such that

ead-stochn (Fd,m,B, Ssamp, Dsup-log) ≤
{
Om,d(Bn

−m/d) , Cm,dBn
−m/d > 1

Om,d((Cm,dBn
−m/d)n/2+1) , Cm,dBn

−m/d ≤ 1 .

210



7.C. Proofs for Information-based Complexity

Proof. Step 1: Sampling method definition. We consider the following sampling
method:

(1) Use ⌊n/2⌋ function evaluations to create an approximation g of f , using a near-
optimal approximation method such that the worst-case sup-log error is En ≤
Om,d(Bn

−m/d).
(2) Return a sample using RejectionSampling(f, g + en, ⌈n/2⌉).

For step (1) we note that we have ⌊n/2⌋ ≥ Ω(n) except if n = 1. However, in the case
n = 1, we can use the approximation g = 0 with worst-case error En = B ≤ Om,d(Bn

−m/d).
Thus, it is indeed possible to achieve the bound in step (1).

Step 2: Upper bound. Denote by Cm,d > 0 a constant such that En ≤ Cm,dBn
−m/d/2.

Moreover, denote by P̃f the distribution produced by the sampling method defined in step
1. By Lemma 7.2.7, we have for g̃ := g + En:

Dsup-log(Pf , P̃f )

≤ min

{
Dsup-log(Pf , Pg),

(
1− Zf

Zg̃

)⌈n/2⌉
(exp(Dsup-log(Pf , Pg))− 1)

}
. (7.13)

The first bound Dsup-log(Pf , Pg) already yields the desired bound for Cm,dBn−m/d > 1.
Now, consider the case Cm,dBn−m/d ≤ 1. We have

Zf =

∫
X
ef(x) dx ≥

∫
X
eg̃(x)−2En dx ≥ exp(−Cm,dBn−m/d)Zg̃ .

Now, the second bound in Eq. (7.13) yields

Dsup-log(Pf , P̃f ) ≤
(
1− exp(−Cm,dBn−m/d)

)n/2
(exp(Cm,dBn

−m/d)− 1)

≤ exp(Cm,dBn
−m/d)

(
1− exp(−Cm,dBn−m/d)

)n/2+1

≤ e · (Cm,dBn−m/d)n/2+1 ≤ Ωm,d((Cm,dBn
−m/d)n/2+1) .

Next, we prove corresponding lower bounds in the optimization regime, again using
bump functions:

Theorem 7.2.9 (Lower bound for sampling with stochastic evaluation points). There
exists a constant cm,d > 0 such that for B > 0 and n ∈ N with Bn−m/d ≥ cm,d(1 + log(n)),
we have

ead-stochn (Fd,m,B, Ssamp, Dsup-log) ≥ Ωm,d(Bn
−m/d)

ead-stochn (Fd,m,B, Ssamp, DTV) ≥ Ωm,d(1)

ead-stochn (Fd,m,B, Ssamp,W1) ≥ Ωm,d(1) .

Proof. We re-use some results from the proof of Theorem 7.2.3 in Section 7.C.1. We
consider again the decomposition of the cube X into three slices

Ck := [k/3, (k + 1)/3]× [0, 1]d−1, k ∈ {0, 1, 2} .

Consider a sampling algorithm S̃ ∈ Aad-stoch
n with stochastic evaluation points and consider

a corresponding random sample Xf = ϕ(N(f, ω), ω) as defined in Section 7.2.2.

211



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

Step 1.1: Candidate functions for the sup-log distance. By Lemma 7.C.3, C0
contains 4(n+ 1) disjoint open balls B∞(zi, δn) with radius

δn := r4(n+1) =
(4(n+ 1))−1/d

12
≥ n−1/d

96
.

Let f0 ≡ 0 be the zero function. Consider the set Q(ω) containing the n random points
where N(f0, ω) queries f0 and the one random point ϕ(N(f0, ω), ω) that the sampling
method outputs. We can pick an i ∈ {1, . . . , 4(n + 1)} such that the cube B∞(zi, δn)
contains a point from Q(ω) only with probability ≤ 1/4. With Cm,d as in Lemma 7.C.2,
we define

f1(x) := C−1
m,dBδ

−1
n bzi,δn(x) ,

which satisfies f1 ∈ Fd,m,B. Using analogous arguments to the proof of Theorem 7.2.3 in
Section 7.C.1, we obtain

Lf1 = log(1 + In) ≥ log(1 + δdn(e
C−1

m,dBδ
m
n − 1)) ≥ C−1

m,dBδ
m
n + log(δdn)

≥ c̃m,dBn
−m/d − log(n)− d log(96)

for a suitable constant c̃m,d > 0.
Step 1.2: Bounding the distribution on f1. Now, the probability of the event

ϕ(N(f0, ω), ω) ∈ B∞(zi, δn) is at most 1/4 by construction. Moreover, the probability
of N(f0, ω) querying B∞(zi, δn) is also at most 1/4, hence the probability of N(f1, ω)
querying B∞(zi, δn) is also at most 1/4. By the union bound, the probability that
ϕ(N(f1, ω), ω) ∈ B∞(zi, δn) is at most 1/2. Now, to have Dsup-log(S̃(f1), Pf1) <∞, S̃(f1)
must be of the form Pg for some function g : X → R. Without loss of generality, we can
assume Lg = 0. Then, since the set X̂ := X \B∞(zi, δn) satisfies Pg(X̂ ) ≥ 1/2, there exists
x ∈ X̂ with pg(x) ≥ 1/2, implying g(x) ≥ log(1/2). But then,

Dsup-log(S̃(f1), Pf1) ≥ |(g(x)− Lg)− (f1(x)− Lf1)| = |g(x) + Lf1|
≥ c̃m,dBn

−m/d − log(n)− d log(96)− log(2)

≥ c̃m,dBn
−m/d − log(n)− 6d .

Especially, for Bn−m/d ≥ 12dc̃−1
m,d(1 + log(n)), we have

Dsup-log(S̃(f1), Pf1) ≥ c̃m,dBn
−m/d − 1

2
c̃m,dBn

−m/d = Ωm,d(Bn
−m/d) .

Step 2.1: Candidate functions for the Wasserstein distance. By Lemma 7.C.3,
for M ∈ N to be determined later, we can place Mn subcubes each in C0 and C2 with
radius

δn := rMn :=
(Mn)−1/d

12
.

By an analogous argument to Step 1.1, we can find subcubes B∞(z0, δn) and B∞(z2, δn) of
C0 and C2 such that the probability of one of them being queried for f0 is at most 2/M .
Following Lemma 7.C.2, we construct the functions

fk(x) := C−1
m,dBδ

m
n bzk,δn(x), k ∈ {0, 2} ,

212



7.C. Proofs for Information-based Complexity

which are contained in Fd,m,B.
Step 2.2: Bounding the Wasserstein distance. We set M := 20d. Since the two

subcubes are only queried with probability at most 2/M , we know that

W1(S̃(f0), S̃(f2)) ≤ d1/2DTV(S̃(f0), S̃(f2)) ≤ d1/2
2

M
≤ 1

10
.

With an argument analogous to the proof of Theorem 7.2.3 in Section 7.C.1, we obtain

W1(Pf0 , Pf2) ≥
1

3

In
1 + In

Lemma 7.C.4
≥ 1

6
min{1, In} ,

and

In ≥ δdn(e
BC−1

m,dδ
m
n − 1) ≥ c̃m,dn

−1(ec̃m,dBn
−m/d − 1)

for a suitable constant c̃m,d ∈ (0, 1). Now, suppose that

Bn−m/d ≥ c̃−1
m,d(1 + log(c̃−1

m,d))(1 + log(n)) .

We obtain

c̃m,dBn
−m/d ≥ 1 + log(c̃−1

m,d) + log(n) ≥ log(c̃−1
m,dn+ 1)

and therefore

W1(Pf0 , Pf2) ≥
1

6
min{1, In} ≥

1

6
min{1, 1} = 1

6
.

Since W1 satisfies the triangle inequality, there must exist k ∈ {0, 2} with

W1(S̃(fk), Pfk) ≥
1

2

(
1

6
− 1

10

)
=

1

30
= Ωm,d(1) .

Step 3: TV lower bound. The corresponding lower bound for the TV distance
follows from the inequality W1(P,Q) ≤ d1/2DTV(P,Q).

Finally, we prove our auxiliary result on the complexity of sampling when the log-
partition function is known:

Proposition 7.2.10. Let F := {f ∈ C(X ) | ∥f∥∞ ≤ log(3/2), Lf = 0}. Then,

ead-stochn (F , Ssamp, Dsup-log) = 0

for all n ≥ 1.

Proof. For f ∈ F , define f̃(x) := log(2 exp(f(x))− 1) and g(x) := log(2). We have

Zf̃ =

∫
X
(2 exp(f(x))− 1) dx = 2Zf − 1 = 1 ,

Zg =

∫
X
elog(2) dx = 2 .

Let P̃f be the distribution of RejectionSampling(f̃ , g, 1), which only uses one evaluation
of f̃ and therefore only one evaluation of f . By Lemma 7.2.7, we have

P̃f =
Zf̃
Zg
Pf̃ +

(
1−

Zf̃
Zg

)
Pg =

1

2
Pf̃ +

1

2
Pg = Pf .

213



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

7.D Proofs for Relations Between Different Problems
The proof of the following theorem adapts results from the literature, showing that they
apply to our setting:

Theorem 7.3.1 (adapted from Li (2016) and Mirzaei (2015)). Let m, d ∈ N≥1. Using the
moving least squares method, it is possible to construct an approximation fn of f ∈ Cm(X )
using n deterministic non-adaptive function evaluations such that

(a) ∥f − fn∥Ck ≤ Om,d(∥f∥Cmn−(m−k)/d) for k ∈ {0, 1, . . . ,m},
(b) the runtime of constructing fn is zero (construction takes place on-the-fly during

evaluation), and
(c) the runtime of evaluating fn at a point x ∈ X is Om,d(1).

Proof. Step 1: The method. The idea of the moving least squares method (Lancaster
and Salkauskas, 1981) is to obtain an approximation g(x) = gx(x) of f(x) at an evaluation
point x by determining gx as the solution to a polynomial least-squares regression problem
with data (xi, f(xi)), weighted with weights Φ(x, xi) that (smoothly) vanish for large
∥x − xi∥. We will not state the exact method here but refer to the publications by Li
(2016) and Mirzaei (2015), whose analysis we are using here. While Theorem 4.1 of Li
(2016) essentially directly provides the result (a), it is unclear to us if the corresponding
constants are independent of the evaluation points in the way that we need. Thus, in the
following, we will try to verify the slightly stronger conditions of Theorem 3.12 of Mirzaei
(2015) and explain how it can be adapted to our setting with minor modifications.

Step 2: Verifying the assumptions. Now, we list the major assumptions of
Theorem 3.12 of Mirzaei (2015) and show that they are satisfied for a suitable choice of
evaluation points and weighting function. The assumptions on smoothness are deferred
until Step 3, where we will show how to adapt them to our setting. We define the number
N := ⌊n1/d⌋ of grid points along each axis. By dividing each axis into N equal intervals,
we obtain a partition of X into Nd cubes. Let X be the set of midpoints of these cubes.
Hence, |X| = Nd = ⌊n1/d⌋d ≥ (n1/d/2)d = Ωm,d(n).

• The considered domain Ω is a bounded set with Lipschitz boundary. We want to
consider Ω := X , which is bounded and has a Lipschitz boundary.

• The maximum degree m of the polynomial basis satisfies m ≥ 1. While m denotes
the (known) smoothness of the target function f in our context, we will assume
that the maximum degree of the polynomial basis is also m. While a maximum
degree of m− 1 should be sufficient for our purposes (as it is in Li (2016)), using a
maximum degree of m avoids notational confusion and simplifies the adaptation of
the arguments of Mirzaei (2015).

• The fill distance hX,Ω = supx∈Ω minx′∈X ∥x−x′∥2 satisfies hX,Ω ≤ min{h0, 1} for some
given constant h0 > 0. In our case, the fill distance is hX,Ω =

√
d/(2N) = Θm,d(n

−1/d),
which satisfies the assumption for large enough values of n. The errors for smaller n
do not affect the asymptotic rate.

• The weight function is defined through a radial function ϕ : [0,∞) → R, which
is supported in [0, 1] and its even extension belongs to Cm(R). For this, we can
just use the even and C∞-smooth bump function b from Definition 7.C.1 and set
ϕ(x) := b(x).

214



7.D. Proofs for Relations Between Different Problems

• The point set X is quasi-uniform with constant independent of f and n. This means
that the separation distance

qX,Ω :=
1

2
min

x,x′∈X:x̸=x′
∥x− x′∥2

satisfies qX,Ω ≤ hX,Ω ≤ cquqX,Ω for a constant cqu independent of f and n. In our
case, we have qX,Ω = 1/(2N), and hence we can set cqu :=

√
d.

Step 3: Adapting the argument of Mirzaei (2015). Let fn be the moving least
squares approximation of f with evaluation points X. By Corollary 4.5 in Wendland
(2004), fn is in Cm since the weight function is also in Cm. Hence, the norms ∥f − fn∥Cm

and ∥f − fn∥Wm
∞ are equivalent, where Wm

p (Ω) is the Sobolev space of smoothness m with
the p-norm applied to the (weak) derivatives. Theorem 3.12 in Mirzaei (2015) shows that

∥f − fn∥W |α|
q (Ω)

≤ Ch
m+s−|α|−dmax{0,1/p−1/q}
X,Ω ∥f∥Wm+s

p (Ω)

for p ∈ [1,∞), q ∈ [1,∞], s ∈ [0, 1) and a multi-index α satisfying m > |α| + d/p. We
would obtain (a) by setting s = 0, p = q = ∞, and |α| = k. However, setting p = ∞ is
not allowed by the assumptions of the theorem, and setting |α| = m for m = k is also not
allowed. Hence, we need to show that the theorem can be extended to p =∞ and |α| = m
in the special case s = 0 and q = ∞. The assumption p < ∞ is used for the Sobolev
extension operator, but it is noted in the proof that p =∞ is allowed for s = 0. The only
other point where p < ∞ and |α| < m are required is in the invocation of Eq. (3.4) in
Lemma 3.3 of Mirzaei (2015). However, for the special case s = 0, p = q =∞ and |α| ≤ m,
the statement of Lemma 3.3 also holds, as is shown by the Bramble-Hilbert lemma (cf.
Lemma (4.3.8) in Brenner et al., 2008), which has also been employed by (Li, 2016) for
the same purpose.

Step 4: Runtime bound. For (b) and (c), we note that due to the local support of
the weight function, evaluating the moving least squares approximation at a point x ∈ X
mainly requires the solution of a regression problem with Om,d(1) variables and evaluation
points. This is shown, for example, above Lemma 3.6 in Mirzaei (2015). The moving least
squares method does not require any pre-computations.

7.D.1 Proofs for Relation between Sampling and Log-Partition
Estimation

For analyzing thermodynamic integration, we are going to use Hoeffding’s inequality in
the form stated and proved in Theorem 6.10 in Steinwart and Christmann (2008).

Theorem 7.D.1 (Hoeffding’s inequality). Let (Ω,A, P ) be a probability space, a < b be
two real numbers, n ≥ 1 be an integer, and ξ1, . . . , ξn : Ω→ [a, b] be independent random
variables. Then, for all τ > 0, we have

P

(
1

n

n∑
i=1

(ξi − EP ξi) ≥ (b− a)
√

τ

2n

)
≤ e−τ .

215



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

Theorem 7.3.4 (Convergence of thermodynamic integration). Given N ∈ N≥1 and a
sampling algorithm producing samples from approximate distributions P̃βf , consider the
following algorithm:

• Sample β1, . . . , βN ∼ U([0, 1]) independently.
• Draw Xi ∼ P̃βif independently.
• Output L̃f := 1

N

∑N
i=1 f(Xi).

Then, for δ > 0, we have

|Lf − L̃f | ≤ |Lf − EL̃f |+ 2∥f∥∞
√

log(2/δ)

2N

with probability ≥ 1− δ, where

|Lf − EL̃f | ≤ 2∥f∥∞ sup
β∈[0,1]

DTV(Pβf , P̃βf ),

|Lf − EL̃f | ≤ |f |1 sup
β∈[0,1]

W1(Pβf , P̃βf ).

Proof. Obviously, we have

|L̃f − Lf | ≤ |Lf − EL̃f |+ |L̃f − EL̃f | .
Step 1: Bounding the second term. For bounding the second term, we use

Hoeffding’s inequality (Theorem 7.D.1) with ξi := f(Xi), n = N and τ := log(2/δ).
Ignoring null sets, we can choose b = ∥f∥∞ and a = −∥f∥∞. We then obtain

L̃f − EL̃f ≥ 2∥f∥∞
√

log(2/δ)

2N

with probability ≤ exp(− log(2/δ)) = δ/2. By applying the same argument to ξi = −f(Xi)
and applying the union bound, we obtain

|L̃f − EL̃f | ≤ 2∥f∥∞
√

log(2/δ)

2N

with probability ≥ 1− δ.
Step 2: Bounding the first term. We use

|Lf − EL̃f | =
∣∣∣Eβ∼U([0,1])Ex∼Pβf

[f(x)]− Eβ∼U([0,1])Ex∼P̃βf
[f(x)]

∣∣∣
≤ sup

β∈U([0,1])

∣∣∣Ex∼Pβf
[f(x)]− Ex∼P̃βf

[f(x)]
∣∣∣ . (7.14)

We can assume that |f |1 ̸= 0 since the bound is clear otherwise. Using the dual formulation
of the 1-Wasserstein distance and that f/|f |1 is 1-Lipschitz, we directly obtain∣∣∣Ex∼Pβf

[f(x)]− Ex∼P̃βf
[f(x)]

∣∣∣ = |f |1 ∣∣∣Ex∼Pβf
[f(x)/|f |1]− Ex∼P̃βf

[f(x)/|f |1]
∣∣∣

≤ |f |1W1(P̃βf , Pβf ) .

Similarly, the bound on the TV distance follows from an alternative formulation of the
TV distance (see e.g. Gibbs and Su, 2002) given by

DTV(P,Q) =
1

2
sup

g:∥g∥∞≤1

∣∣∣∣∫ g dP −
∫
g dQ

∣∣∣∣ .
216



7.D. Proofs for Relations Between Different Problems

Remark 7.D.2. In Theorem 7.3.4, we can hope for a better bound in terms of the sup-log
distance. For example, suppose that P̃βf = Pβg, where g is an approximation of f that is
independent of β. Since g is only determined up to a constant shift, we can assume that
Lg = Lf . Then,

|Lf − EL̃f | =
∣∣Eβ∼U([0,1])Ex∼Pβf

[f(x)]− Eβ∼U([0,1])Ex∼Pβg
[f(x)]

∣∣
≤
∣∣Eβ∼U([0,1])Ex∼Pβf

[f(x)]− Eβ∼U([0,1])Ex∼Pβg
[g(x)]

∣∣
+
∣∣Eβ∼U([0,1])Ex∼Pβg

[g(x)]− Eβ∼U([0,1])Ex∼Pβg
[f(x)]

∣∣
≤ |Lf − Lg|+ ∥g − f∥∞ = 0 +Dsup-log(Pf , Pg) = Dsup-log(Pf , Pg) .

However, in the general case, the approach in Eq. (7.14) of taking the supremum over
β cannot yield such a good bound. This can be seen by considering indicator functions
f = a1A and g = (a + δ)1A. Instead, it appears that it would be necessary to obtain
bounds depending on β and f and show that their integral over β ∈ [0, 1] is sufficiently
small for all f . ◀

Theorem 7.3.5 (Convergence of bisection sampling). Let m ≥ 1, B ≥ 0 and M ∈
N0. Let f ∈ Fd,m,B and let L̃ be a log-partition estimator with worst-case error E ≥
0 on Fd,m,B. Let f ∈ Cm(X ) and let P̃f be the distribution of samples produced by
BisectionSampling(f, L̃,M) in Algorithm 17. Then,

Dsup-log(Pf , P̃f ) ≤ 2MdE + 2−Md∥f∥C1 .

Proof. Step 1: Log-density analysis. We want to show that P̃f has a density p̃f and
bound ∥ log p̃f − log pf∥∞. Partition X into 2Md cubes of side length 2−M . Since a density
is only defined up to a null set, it suffices to consider an arbitrary x in the interior of
one of these cubes, which we fix in the following. We denote the corresponding cube by
Z(Md). We can then find exactly one sequence Z(0) = X ,Z(1), . . . ,Z(Md) of hyperrectangles
which could have been visited during the execution of Algorithm 17 to obtain x. Since
Algorithm 17 samples uniformly from Z(Md) and the volume of Z(Md) is 2−Md, we have
the density

p̃f (x) = 2MdP̃f (Z(Md)) .

On the other hand, a simple integration argument shows that the target density satisfies

inf
x′∈Z(Md)

pf (x
′) ≤ 2MdPf (Z(Md)) ≤ sup

x′∈Z(Md)

pf (x
′) .

This yields

| log p̃f (x)− log pf (x)| ≤
∣∣∣log(2MdP̃f (Z(Md)))− log(2MdPf (Z(Md)))

∣∣∣
+

∣∣∣∣ sup
x′∈Z(Md)

log pf (x
′)− inf

x′′∈Z(Md)
log pf (x

′′)

∣∣∣∣ .
Step 2: Bounding the second term. Since Z(Md) is an axis-aligned cube with side

length 2−M , we have for x′, x′′ ∈ Z(Md):

|f(x′)− f(x′′)| ≤
d∑
i=1

∥∂if∥∞2−M ≤ 2−Md∥f∥C1 .

217



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

Step 3: Bounding the first term. We can simplify∣∣∣log(2MdP̃f (Z(Md)))− log(2MdPf (Z(Md)))
∣∣∣ = ∣∣∣log(P̃f (Z(Md)))− log(Pf (Z(Md)))

∣∣∣ .
We want to show by induction over k ∈ {0, . . . ,Md} that∣∣∣log(P̃f (Z(k)))− log(Pf (Z(k)))

∣∣∣ ≤ 2kE ,

which will then yield the desired error bound for k = Md. This is obviously true for
k = 0. Now, suppose that it is true for some k ∈ {0, . . . ,Md− 1}. Consider a partition
of Z(k) into two equal-sized sub-hyperrectangles Z1 and Z2 as in Algorithm 17 such that
Z(k+1) = Zi for some i ∈ {1, 2}. Then,

P̃f (Z(k+1)) = σ(L̃fZi
− L̃fZ3−i

)P̃f (Z(k)) ,

which also holds for i = 2 since the sigmoid function σ satisfies σ(−u) = 1− σ(u) for all
u ∈ R. Moreover, we have

Pf (Z(k+1)) =
Pf (Zi)

Pf (Zi) + Pf (Z3−i)
Pf (Z(k)) =

e
LfZi

e
LfZi + e

LfZ3−i

Pf (Z(k))

= σ(LfZi
− LfZ3−i

)Pf (Z(k)) .

By definition of the functions fZi′
, i′ ∈ {1, 2} in Algorithm 17, since the side-lengths hj of

Zi′ satisfy hj ≤ 1, we have ∥fZi′
∥Cm ≤ ∥f∥Cm ≤ B, which means fZi′

∈ Fd,m,B. Hence, by
assumption, the log-partition error is

|L̃fZi′
− LfZi′

| ≤ ε .

Now, the log-sigmoid function h(u) := log σ(u) satisfies h′(u) = σ(u)(1−σ(u))
σ(u)

= 1− σ(u) ∈
(0, 1) and is therefore 1-Lipschitz. Hence,∣∣∣log (P̃f (Z(k+1))

)
− log

(
Pf (Z(k+1))

)∣∣∣ ≤ ∣∣∣log (P̃f (Z(k))
)
− log

(
Pf (Z(k))

)∣∣∣
+
∣∣∣h(L̃fZi

− L̃fZ3−i
)− h(LfZi

− LfZ3−i
)
∣∣∣

≤ 2kE + 2E = 2(k + 1)E ,

which completes the induction.

7.D.2 Proofs for Relation to Optimization

Proposition 7.3.6 (Optimization by approximate sampling). Let Q be a probability
distribution on X . Then, for any δ ∈ (0, 1] and ε > 0,

(a) Q({x ∈ X | f(x) ≤ εLf/ε − ε log(1/δ)− εDsup-log(Pf/ε, Q)}) ≤ δ,
(b) Q({x ∈ X | f(x) ≤ εLf/ε − ε log(1/δ)}) ≤ δ +DTV(Pf/ε, Q),
(c) Q({x ∈ X | f(x) < εLf/ε − ε log(2/δ)− 2δ−1|f |1W1(Pf/ε, Q)}) ≤ δ.

Proof.

218



7.E. Proofs for Algorithms

(a) Suppose Dsup-log(Pf , Q) < ∞. Then, Q = Pg for some g. For almost every x ∈ X ,
we have the implications

f(x) ≤ Lf − log(1/δ)−Dsup-log(Pf , Q)⇔ f̄(x) ≤ Lf̄ − log(1/δ)− ∥f̄ − ḡ∥∞
⇒ ḡ(x) ≤ Lf̄ − log(1/δ)

⇔ ḡ(x) ≤ Lḡ − log(1/δ) .

Hence,

Q({x ∈ X | f(x) ≤ Lf − log(1/δ)−Dsup-log(Pf , Q)})
≤ Q({x ∈ X | ḡ(x) ≤ Lḡ − log(1/δ)})
= Pḡ({x ∈ X | ḡ(x) ≤ Lḡ − log(1/δ)})

Lemma 7.1.3
≤ δ .

By using f/ε instead of f and multiplying both sides of the inequality by ε, we
obtain

Q({x ∈ X | f(x) ≤ εLf/ε − ε log(1/δ)− εDsup-log(Pf/ε, Q)}) ≤ δ .

(b) The TV norm bound follows from Lemma 7.1.3 because for the considered event A,

Q(A) ≤ Pf/ε(A) + sup
A′
|Q(A)− Pf/ε(A′)| = Pf/ε(A) +DTV(Pf/ε, Q) .

(c) Let ε̃ > 0. By definition of the Wasserstein distance, there exist random variables
X ∼ Pf/ε and Y ∼ Q on a common probability space (Ω,F , PΩ) such that E∥X −
Y ∥2 ≤ W1(Pf/ε, Q) + ε̃. By the Markov inequality, we then have

∥X − Y ∥2 ≤ 2(W1(Pf/ε, Q) + ε̃)/δ

with probability ≥ 1− δ/2. Moreover, by Lemma 7.1.3, we have

f(X) > εLf/ε − ε log(2/δ)

with probability ≥ 1− δ/2. By the union bound, we hence have

f(Y ) > f(X)− |f |1∥X − Y ∥2 > εLf/ε − ε log(2/δ)− 2δ−1|f |1(W1(Pf/ε, Q) + ε̃)

with probability ≥ 1− δ. Since ε̃ > 0 was arbitrary, the claim follows.

7.E Proofs for Algorithms

7.E.1 Proofs for Approximation-based Algorithms

Proofs for Piecewise Constant Approximation

To study the error of piecewise constant approximation, we study the log-partition function
of linear functions f . A first step is achieved using the following lemma:

219



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

Lemma 7.E.1. Let

r : R→ R, t 7→ log

(∫ 1/2

−1/2

exp(tu) du

)
=

{
0 , t = 0

log (t−1(exp(t/2)− exp(−t/2))) , t ̸= 0 .

Then, r is even and (1/2)-Lipschitz with r(t) ≥ 0 for all t and we have more generally for
a > 0 and t1, . . . , td ∈ R:

log

(∫
[−a/2,a/2]d

exp

(
d∑

k=1

tkuk

)
du

)
= d log(a) +

d∑
k=1

r(atk) .

Proof. It follows from a simple symmetry argument that r is even. We have∫ 1/2

−1/2

exp(tu) du ≥
∫ 1/2

−1/2

(1 + tu) du = 1 ,

which shows r(t) ≥ 0. Moreover, exp(hu) ∈ [exp(−h/2), exp(h/2)] for h > 0 and u ∈
[−1/2, 1/2]. Using the mean value theorem of integration, we obtain

r(t+ h)− r(t) = log

(∫ 1/2

−1/2

exp(tu) exp(hu) du

)
− log

(∫ 1/2

−1/2

exp(tu) du

)
∈ [−h/2, h/2] ,

which shows that r is 1/2-Lipschitz.
For the more general integral, we use that the integrand is a product of one-dimensional

functions to decompose

log

(∫
[−a/2,a/2]d

exp

(
d∑

k=1

tkuk

)
du

)
= log

(
d∏

k=1

∫ a/2

−a/2
exp (tkuk) duk

)
Subst. uk = avk= log

(
d∏

k=1

∫ 1/2

−1/2

exp (tkavk) a dvk

)

= d log(a) +
d∑

k=1

r(atk) .

Another ingredient for the analysis of piecewise constant approximation is to analyze
the global error through the errors on individual subcubes:

Lemma 7.E.2. Let f, g : X → R be bounded and measurable. Let Xi be a partition of X .
Let Lf (Xi) := log

(∫
Xi
exp(f(x)) dx

)
. Then,

inf
i
[Lf (Xi)− Lg(Xi)] ≤ Lf − Lg ≤ sup

i
[Lf (Xi)− Lg(Xi)] .

Proof. We prove the second inequality here, the first one follows analogously. Let s :=
supi[Lf (Xi)− Lg(Xi)]. Then,

Lf = log

(∑
i

exp(Lf (Xi))
)
≤ log

(∑
i

exp(s) exp(Lg(Xi))
)

= Lg + s .

220



7.E. Proofs for Algorithms

We now prove convergence rates for piecewise constant approximation, using a combi-
nation of different approaches:

Theorem 7.4.1 (Convergence rate of piecewise constant approximation). Let m ≥ 1 and
n = Nd as above. If gf,n is a piecewise constant interpolant as above, we have

sup
f∈Fd,m,B

|Lf − Lgf,n| =
{
Θm,d(Bn

−1/d) , if m = 1 or Bn−1/d > 1

Θm,d(max{B,B2}n−2/d) , otherwise.

sup
f∈Fd,m,B

Dsup-log(Pf , Pgf,n) = Θm,d(Bn
−1/d) .

Proof. Recall from Section 7.4.1 that gf,n is piecewise constant on the cubes Xi, interpo-
lating f in the cube centers x(i).

Step 1: Lipschitz-type upper bounds. Let f ∈ Fd,m,B. Since f is Bd1/2-Lipschitz
by Lemma 7.B.1, it is easy to see that ∥f − gf,n∥∞ ≤ Om,d(B/N) = Om,d(Bn

−1/d). Then,
it follows directly from Proposition 7.2.2 that |Lf − Lgf,n| ≤ ∥f − gf,n∥∞ ≤ Om,d(Bn

−1/d)

and Dsup-log(Pf , Pgf,n) ≤ 2∥f − gf,n∥∞ ≤ Om,d(Bn
−1/d).

Step 2: Lipschitz-type lower bound for log-partition with m = 1. If m = 1, it
follows that

sup
f∈Fd,m,B

|Lf − Lgf,n| ≥ en(Fd,m,B, SL, Dabs)
Theorem 7.2.3
≥ Ωm,d(Bn

−1/d) .

Step 3: Lipschitz-type lower bound for sampling. Take f(x) = β(x1 + · · ·+ xd),
where β = B/d, such that f ∈ Fd,m,B. Pick the cube X1 = (0, 1/N)d. Then, we have

Dsup-log(Pf , Pgf,n) = ∥f̄ − ḡf,n∥∞ ≥
1

2

(
sup
x∈X1

f(x)− inf
x∈X1

f(x)

)
=

1

2
B/N =

1

2
Bn−1/d .

Step 4: Lower bound for log-partition with m ≥ 2. As in Step 3, take f(x) =
β(x1 + · · · + xd), where β = B/d, such that f ∈ Fd,m,B. To prove a lower bound on
Lf − Lgf,n, we follow Lemma 7.E.2 and lower-bound the errors Lf(Xi) − Lgf,n(Xi) on
individual subcubes Xi.

Step 4.1: First lower bound. Fix a subcube Xi and set a = 1/N and t := ∂f
∂xk

(x(i)) =

(β, . . . , β). Denote the volume of Xi by Vn = 1/n = ad. Since gf,n is constant on Xi, we
have

Lf (Xi)− Lgf,n(Xi)

= log

(
exp(f(x(i)))

∫
Xi

exp(⟨t, x− x(i)⟩) dx
)
− log

(
Vn exp(f(x

(i)))
)

Lemma 7.E.1
= d log(a) +

(
d∑

k=1

r(atk)

)
− log(Vn) =

d∑
k=1

r(atk) = dr(β/N)

Lemma 7.E.4
≥ cdmin{|β/N |, |β/N |2} ≥ Ωm,d(min{Bn−1/d, B2n−2/d}) ,

This lower bound is independent of i, hence by Lemma 7.E.2, we obtain

Lf − Lgf,n ≥ Ωm,d(min{Bn−1/d, B2n−2/d}) .

221



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

Step 4.2: Second lower bound. The lower bound above implicitly uses the strong
convexity of exp(f). However, all of the curvature in exp(f) comes from exp and none
from f . This is not sufficient in the case B ≪ 1, where the quadratic dependency on
B in B2n−2/d can be improved. For the case B < 1, we put the curvature into f by
setting f(x) := β

∑d
k=1 x

2
k. We then have ∂kf(x) = 2βxk and ∂2kf(x) = 2β. Hence, we set

β := B/(2d) to ensure that f ∈ Fd,m,B. We now again consider a subcube Xi, for which
we compute∫

Xi

exp(gf,n(x)) dx = Vn exp(f(x
(i))) ,∫

Xi

exp(f(x)) dx = exp(f(x(i)))

∫
Xi

exp(f(x)− f(x(i))) dx

≥ exp(f(x(i)))

∫
Xi

(
1 + (f(x)− f(x(i)))

)
dx

= exp(f(x(i)))

(
Vn +

∫
Xi

(
d∑

k=1

β(xk − x(i)k )2

)
dx

)

= exp(f(x(i)))

(
Vn + dad−1β

[
1

3
u3
]a/2
−a/2

)
= exp(f(x(i)))Vn

(
1 + d

2

3 · 23βa
2

)
.

Hence, we have

Lf (Xi)− Lg(Xi) ≥ log

(
1 +

d

12
βn−2/d

)
= log

(
1 +

1

24
Bn−2/d

)
≥ 1

48
Bn−2/d ,

where we used log′(x) = 1/x ≥ 1/2 for x ∈ [1, 2] in the last step.
Step 5: Better upper bound for log-partition for m ≥ 2. Let m ≥ 2, f ∈ Fd,m,B

and Bn−1/d ≤ 1. We define the piece-wise first-order approximant hn, where for x in the
interior of Xi, we set

hn(x) = f(x(i)) + ⟨∇f(x(i)), x− x(i)⟩ .

Our goal is to use

|Lf − Lgf,n| ≤ |Lf − Lhn|+ |Lhn − Lg| .

Step 5.1: Bounding the first term. To bound the first term, we will bound
∥f − hn∥∞. Let δ(t) = f(x(i) + t(x− x(i)))− hn(x(i) + t(x− x(i))). Then, we use Taylor’s
theorem to bound

f(x)− hn(x) = δ(1) = δ(0) + 1 · δ′(0) + 12

2
· δ′′(ξ) ,

where ξ ∈ (0, 1). Since hn is constructed such that δ(0) = δ′(0) = 0, we have

|f(x)− hn(x)| =
1

2
|δ′′(ξ)| = 1

2
(x− x(i))⊤[∇2f(x(i) + ξ(x− x(i)))](x− x(i))

222



7.E. Proofs for Algorithms

≤ d2∥x− x(i)∥2∞∥f∥C2 ≤ d2B

(2N)2
= Om,d(BN

−2) = Om,d(Bn
−2/d) .

This shows ∥f − hn∥∞ ≤ Om,d(Bn
−2/d) and therefore |Lf − Lhn | ≤ Om,d(Bn

−2/d).
Step 5.2: Bounding the second term. To bound |Lhn − Lgf,n|, we follow

Lemma 7.E.2 and bound the errors |Lhn(Xi) − Lgf,n(Xi)| on individual subcubes Xi.
Fix a subcube Xi and set a = 1/N and t := ∂f

∂xk
(x(i)). Denote the volume of Xi by

Vn = 1/n = ad. Since gf,n is constant on Xi, we have

|Lhn(Xi)− Lgf,n(Xi)|

=

∣∣∣∣log(exp(f(x(i)))∫
Xi

exp(⟨t, x− x(i)⟩) dx
)
− log

(
Vn exp(f(x

(i)))
)∣∣∣∣

Lemma 7.E.1
=

∣∣∣∣∣d log(a) +
(

d∑
k=1

r(atk)

)
− log(Vn)

∣∣∣∣∣ =
∣∣∣∣∣
d∑

k=1

r(atk)

∣∣∣∣∣
Lemma 7.E.4
≤

d∑
k=1

Cmin{|atk|, |atk|2} ≤ Cdmin{Bn−1/d, B2n−2/d} ,

where we used |tk| ≤ ∥f∥Cm and a = 1/N = n−1/d in the last step. Using Lemma 7.E.2,
we now obtain

|Lhn − Lgf,n| ≤ Cdmin{Bn−1/d, B2n−2/d} ,

which concludes the upper bound.

The following two lemmas provide some additional bounds that have been used in the
previous proof:

Lemma 7.E.3. Let

H : R→ R, t 7→
∞∑
k=0

tk

(k + 1)!
=

{
exp(t)−1

t
, t ̸= 0

1 , t = 0 .

h : R→ R, t 7→
∞∑
k=0

tk

(k + 2)!
=

{
H(t)−1

t
, t ̸= 0

1/2 , t = 0 .

Then, H and h are C∞. Moreover,

• H and H ′ are increasing on [0,∞) with H(0) = 1, H ′(0) = 1/2, and H(t) > 0 for
all t ∈ (0,∞).

• h and h′ are increasing on [0,∞) with h(0) = 1/2, h′(0) = 1/6.

Proof. Using the series representation, it follows that H and h are C∞. We also directly
obtain H(0) = 1 and H ′(0) = 1/2 as well as h(0) = 1/2 and h′(0) = 1/6. Moreover, it
follows that H ′, H ′′ ≥ 0 on [0,∞], which implies that H ′ and H are increasing on [0,∞).
The inequality H(t) > 0 follows from the non-series representation together with H(0) = 1.
The results for h can be derived analogously.

223



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

Lemma 7.E.4. Consider the function r from Lemma 7.E.1. Then, there exist constants
c, C > 0 such that

cmin{|t|, |t|2} ≤ r(t) ≤ Cmin{|t|, |t|2}

for all t ∈ R.

Proof. Since r is an even function, it suffices to prove the inequalities for t ≥ 0.
Step 1: Simplifying the derivative. First, we compute the derivative of r for t ̸= 0:

r′(t) =
t

exp(t/2)− exp(−t/2) ·
(
exp(t/2) + exp(−t/2)

2t
− exp(t/2)− exp(−t/2)

t2

)
=

1

2

exp(t) + 1

exp(t)− 1
− 1

t
=

1

2
+

1

exp(t)− 1
− 1

t

=
1

2
+

1

t

 1(
exp(t)−1

t

) − 1

 =
1

2
+

1

t

(
1

H(t)
− 1

)
=

1

2
+

1

t
· 1−H(t)

H(t)

=
1

2
− h(t)

H(t)
, (7.15)

where we used the functions h and H from Lemma 7.E.3. Since h and H are also continuous
in t = 0, the equation

r′(t) =
1

2
− h(t)

H(t)

holds for all t ∈ R.
Step 2: Upper bound. Since r is 1/2-Lipschitz, we obtain r(t) = r(t)− r(0) ≤ t/2

for t ≥ 0. For t ∈ [0, 1], we can use r′(0) = 0 to obtain

r(t) = r(0) + tr′(0) +
t2

2
r′′(ξ) ≤ t2

2
sup
u∈[0,1]

r′′(u) ≤ Ct2

for some ξ ∈ [0, t] and the constant C = 1
2
supu∈[0,1] r

′′(u) > 0. This shows r(t) ≤
O(min{t, t2}).

Step 3: Lower bound. We can now use Lemma 7.E.3 to further simplify for t ≥ 0

r′(t) =
1

2
− h(t)

H(t)
≥ 1

2
− 1/2

H(t)
=

1

2

(
1− 1

H(t)

)
=: r̃(t) .

We find that

r̃′(t) =
H ′(t)

2H(t)2

satisfies r̃′(0) = 1/4 and r̃′(t) > 0 for all t ∈ [0,∞).
Set c̃ := inft∈[0,1] r̃′(t) > 0. Since H(0) = 1, we have r̃(0) = 0. For t ∈ [0, 1], this yields

r̃(t) = r(0) +

∫ t

0

r̃(u) du ≥ c̃t .

224



7.E. Proofs for Algorithms

For t > 1, since r̃ is increasing, we obtain r̃(t) ≥ c̃. In total, this yields

r̃(t) ≥ c̃min{1, t} for t ∈ [0,∞) .

Now, we obtain for t ∈ [0, 1]

r(t) = r(0) +

∫ t

0

r′(u) du ≥
∫ t

0

r̃(u) du ≥
∫ t

0

c̃min{1, u} du =
c̃

2
t2

and for t > 1

r(t) = r(1) +

∫ t

1

r′(u) du ≥ r(1) +

∫ t

1

r̃(u) du ≥ r(1) +

∫ t

1

c̃min{1, u} du

≥ c̃

2
+ c̃(t− 1) ≥ c̃

2
t .

Proofs for Density-based Approximation

In the following, we analyze how log-partition and sampling errors can be bounded in
terms of the underlying unnormalized densities:

Proposition 7.4.2 (Density approximation bounds). Let p, q : R → [0,∞) be bounded
and measurable such that Ip, Iq > 0, where Ip :=

∫
X p(x) dx. Define probability distributions

P,Q with densities p/Ip and q/Iq, respectively. Then,

| log Ip − log Iq| ≤ log

(
1

1− ∥p− q∥∞/Ip

)
if ∥p− q∥∞ < Ip,

DTV(P,Q) ≤
∥p− q∥∞
max{Ip, Iq}

≤ ∥p− q∥∞
Ip

.

Proof. Step 1: Log-partition function. We have

log Ip − log Iq ≤ log Ip − log

(∫
X
(p(x)− ∥p− q∥∞) dx

)
= log

(
Ip

Ip − ∥p− q∥∞

)
= log

(
1

1− ∥p− q∥∞/Ip

)
log Iq − log Ip ≤ log

(∫
X
(p(x) + ∥p− q∥∞) dx

)
− log Ip = log

(
Ip + ∥p− q∥∞

Ip

)
= log(1 + ∥p− q∥∞/Ip)

≤ log

(
1

1− ∥p− q∥∞/Ip

)
.

Step 2: Total variation distance. Without loss of generality, assume that Iq ≤ Ip =
1, such that max{Ip, Iq} = 1. Define the normalized density function q̃ := q/Iq. Then,

DTV(P,Q) =
1

2

∫
X
|p(x)− q̃(x)| dx ≤ 1

2

∫
X
(|p(x)− q(x)|+ q(x)|(1− 1/Iq)|) dx

≤ 1

2
∥p− q∥∞ +

1

2
Iq|1− 1/Iq| ≤ ∥p− q∥∞ ,

where we have used Iq|1− 1/Iq| = |Iq − 1| = |Iq − Ip| ≤ ∥p− q∥∞ in the last step.

225



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

Next, we turn to bounding ∥pf∥ in terms of ∥f∥. Our first result will provide a bound
for the sup-norm:

Lemma 7.E.5. For f ∈ C1(X ), we have

∥pf∥∞ ≤ Om,d(max{1, ∥f∥C1}d) .

Proof. By Lemma 7.B.1, we have |f |1 ≤ d1/2∥f∥C1 , and hence

∥pf∥∞ =
exp(Mf )

Zf
= exp(Mf − Lf )

Lemma 7.1.3
≤ exp(d log(1 + 3d−1/2|f |1)) = (1 + 3d−1/2|f |1)d
≤ Om,d(max{1, ∥f∥C1}d) .

The following lemma helps to bound the norms of products, which occur in the
derivatives of exp(f):

Lemma 7.E.6. Let f, g ∈ Cm(X ) for m ≥ 0. Then, ∥fg∥Cm ≤ 2m∥f∥Cm∥g∥Cm.

Proof. We use induction on m. This claim is obviously true for m = 0. Now suppose it is
true for m and that f, g ∈ Cm+1(X ). Take any α ∈ Nd

0 with |α|1 = m+ 1. Then, we can
write ∂α = ∂β∂j for some j ∈ {1, . . . , d} and β ∈ Nd

0 with |β| = m. We then have

∥∂α(fg)∥∞ = ∥∂β∂j(fg)∥∞ = ∥∂β((∂jf)g + f(∂jg))∥∞
≤ ∥(∂jf)g + f(∂jg)∥Cm ≤ 2m (∥∂jf∥Cm∥g∥Cm + ∥f∥Cm∥∂jg∥Cm)

≤ 2m+1∥f∥Cm+1∥g∥Cm+1 .

Moreover, for any α ∈ Nd
0 with |α|1 ≤ m, we have

∥∂α(fg)∥∞ ≤ ∥fg∥Cm ≤ 2m∥f∥Cm∥g∥Cm ≤ 2m+1∥f∥Cm+1∥g∥Cm+1 .

This completes the proof of the induction step.

Now, we can indeed bound higher-order norms of exp(f):

Lemma 7.E.7. Let f ∈ Cm(X ) for m ≥ 0. Then,

∥ef∥Cm ≤ 2m(m−1)/2max{1, ∥f∥Cm}m∥ef∥∞ .

Proof. We prove this by induction on m. The claim is obviously true for m = 0. Now,
suppose the claim is true for some m ≥ 0 and let f ∈ Cm+1(X ). Take any α ∈ Nd

0 with
|α|1 = m + 1. Then, we can write ∂α = ∂β∂j for some j ∈ {1, . . . , d} and β ∈ Nd

0 with
|β| = m. Thus,

∥∂αef∥∞ = ∥∂β∂jef∥∞ = ∥∂β(∂jf)ef∥∞
≤ ∥(∂jf)ef∥Cm

Lemma 7.E.6
≤ 2m∥∂jf∥Cm∥ef∥Cm

≤ 2m∥f∥Cm+12m(m−1)/2max{1, ∥f∥Cm}m∥ef∥∞
≤ 2(m+1)m/2max{1, ∥f∥Cm+1}m+1∥ef∥∞ .

226



7.E. Proofs for Algorithms

Moreover, for any α ∈ Nd
0 with |α|1 ≤ m, we have by the induction hypothesis

∥∂αef∥∞ ≤ ∥ef∥Cm ≤ 2m(m−1)/2max{1, ∥f∥Cm}m∥ef∥∞
≤ 2(m+1)m/2max{1, ∥f∥Cm+1}m+1∥ef∥∞ .

This completes the proof of the induction step.

It might be possible to improve the dependence on m in the previous lemma; we ignored
this since we do not study the dependence on m. Combining the previous lemmas, we
arrive at a higher-order norm bound for the density:

Theorem 7.4.3 (Density norm). For m ≥ 1, we have

sup
f∈Fd,m,B

∥pf∥Cm = Θm,d

(
max{1, B}m+d

)
and this asymptotic rate is attained by fd,m,B(x) = Bd−1(x1 + · · ·+ xd).

Proof. Step 1: Upper bound. For f ∈ Fd,m,B, we have

∥pf∥Cm = ∥ef/Zf∥Cm =
1

Zf
∥ef∥Cm

Lemma 7.E.7
≤ 2m(m−1)/2max{1, ∥f∥Cm}m∥ef/Zf∥∞

Lemma 7.E.5
≤ 2m(m−1)/2max{1, ∥f∥Cm}mOd(max{1, ∥f∥C1}d)
≤ Om,d(max{1, ∥f∥Cm}d+m) .

Step 2: Lower bound. Consider f : X → R, x 7→ Bd−1(x1 + · · · + xd). A simple
calculation yields ∥f∥Cm = B, hence f ∈ Fd,m,B. Moreover, we have Mf = f(1, . . . , 1) = B.
We can also calculate

Zf =

∫
X

(
d∏
i=1

exp(Bd−1xi)

)
dx =

(∫ 1

0

exp(Bd−1x1) dx1

)d
= (B−1d[exp(Bd−1)− 1])d ≤ (B−1d exp(Bd−1))d = (B−1d)d exp(B) .

Finally, we compute

∂mx1pf (x)|x=(1,...,1) = ∂mx1
exp(f(x))

Zf

∣∣∣∣∣
x=(1,...,1)

= (Bd−1)m
f(1, . . . , 1)

Zf
≥ (Bd−1)d+m .

We know that supx∈X pf (x) ≥ 1 because pf is a density on a unit-volume domain. Hence,
we conclude ∥pf∥Cm ≥ Ωm,d(max{1, B}d+m).

7.E.2 Proofs for Simple Stochastic Algorithms

Proofs for Rejection Sampling

The following bound for rejection sampling with uniform proposal distribution is a conse-
quence of the general rejection sampling bounds in Lemma 7.2.7.

227



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

Proposition 7.4.4 (Convergence of rejection sampling). Let m ≥ 1 and let f ∈ C1(X ).
Then, the distribution P̃f produced by RejectionSampling(f , Mf , n) (see Algorithm 16)
satisfies

Dsup-log(Pf , P̃f ) ≤ min {2∥f∥∞, exp (2∥f∥∞ − n/∥pf∥∞)}
DTV(Pf , P̃f ) ≤ min{1, 2∥f∥∞} exp(−n/∥pf∥∞)

≤ Om,d(min{1, ∥f∥∞}max{1, ∥f∥C1}mn−m/d) .

Proof. Step 1: Rejection probability. Set g(x) :=Mf . Since

∥pf∥∞ =
exp(Mf )

Zf
=
Zg
Zf

,

the overall rejection probability pR from Lemma 7.2.7 satisfies

pR
Lemma 7.2.7
≤ exp(−nZf/Zg) = exp(−n/∥pf∥∞) .

Step 2: Sup-log distance. We have Dsup-log(Pf , Pg) = ∥f̄ − ḡ∥∞ = ∥f̄∥∞ ≤ 2∥f∥∞.
We then obtain from Lemma 7.2.7 that

Dsup-log(Pf , P̃f ) ≤ min{Dsup-log(Pf , Pg), pR(exp(Dsup-log(Pf , Pg))− 1)}
≤ min {2∥f∥∞, exp (2∥f∥∞ − n/∥pf∥∞)} .

Step 3: TV distance. For the TV distance, we compute

DTV(Pf , Pg) ≤ Dsup-log(Pf , Pg) ≤ 2∥f∥∞

and also employ the trivial bound DTV(Pf , Pg) ≤ 1. From Lemma 7.2.7, we obtain

DTV(Pf , P̃f ) = pRDTV(Pf , Pg) ≤ exp(−n/∥pf∥∞)min{1, 2∥f∥∞} .

Using that exp(−x) ≤ Om,d(x
−m/d) for x > 0, we obtain

exp(−n/∥pf∥∞) ≤ ∥pf∥m/d∞ n−m/d Theorem 7.4.3
≤ Om,d

(
max{1, ∥f∥C1}mn−m/d) .

Proofs for Monte Carlo Log-partition

For analyzing the Monte Carlo log-partition estimator, we are going to use Bernstein’s
inequality in the form stated and proved in Theorem 6.10 in Steinwart and Christmann
(2008):

Theorem 7.E.8 (Bernstein’s inequality). Let (Ω,A, P ) be a probability space, B > 0, σ >
0, n ≥ 1. Moreover, let ξ1, . . . , ξn : Ω→ R be independent random variables with

• EP ξi = 0
• ∥ξi∥∞ ≤ B
• EP ξ2i ≤ σ2

228



7.E. Proofs for Algorithms

for all i ∈ {1, . . . , n}. Then,

P

(
1

n

n∑
i=1

ξi ≥
√

2σ2τ

n
+

2Bτ

3n

)
≤ e−τ

for all τ > 0.

We will use Bernstein’s inequality since it yields better bounds than Hoeffding’s
inequality (Theorem 7.D.1) when n is large and σ is significantly smaller than B, which
will be the case in the following proof.

Theorem 7.4.5 (Upper bounds for MC log-partition). Let f : X → R be Lipschitz, let
X1, . . . , Xn ∼ U(X ) be independent and let

L̃n := logSn, Sn :=
1

n

n∑
i=1

exp(f(Xi)).

Then, for any δ ∈ (0, 1], the following convergence rates hold:

(a) Optimization regime: If n ≤ 4 log(2/δ)(1 + 3d−1/2|f |1)d, we have

|L̃n − Lf | ≤ d1/2(log(1/δ))1/d|f |1n−1/d + log(4 log(2/δ)) + d log(1 + 3d−1/2|f |1)

with probability ≥ 1− δ.
(b) Quadrature regime: If n ≥ 4 log(2/δ)(1 + 3d−1/2|f |1)d, we have

|L̃n − Lf | ≤ 4 log(2/δ)1/2(1 + 3d−1/2|f |1)d/2n−1/2

with probability ≥ 1− δ.
Proof. Without loss of generality, we assume that f is shifted such that Mf = 0.

(a) Step A.1: Simple one-sided bound. We have

L̃n − Lf ≤ 0− Lf
Lemma 7.1.3
≤ d log(1 + 3d−1/2|f |1) .

Step A.2: Bounding the other side. Define the empirical maximum

Mn := max
i∈{1,...,n}

f(Xi) .

Since L̃n = log(
∑n

i=1 exp(f(Xi)))− log(n) ≥Mn − log(n), we obtain

Lf − L̃n ≤ 0− L̃n ≤ log(n)−Mn ≤ log(4 log(2/δ)) + d log(1 + 3d−1/2|f |1)−Mn .

It remains to provide a lower bound on Mn. Define R := (log(1/δ))1/dn−1/d.

• Case 1: R ≥ 1. In this case, for all x ∈ X , we have

f(x) = f(x)−Mf ≥ −d1/2|f |1 ≥ −d1/2|f |1R = −d1/2(log(1/δ))1/d|f |1n−1/d ,

which implies that

−Mn ≤ d1/2(log(1/δ))1/d|f |1n−1/d

with probability 1.

229



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

• Case 2: R ≤ 1. Let x∗ be a maximizer of f . In this case, there exists an
axis-aligned subcube X̃ of X with side length R containing x∗. For each x ∈ X̃ ,
we have f(x) = f(x)− f(x∗) ≥ −|f |1d1/2R. Moreover,

P (Mn ≤ −|f |1d1/2R) = P (f(X1) ≤ −|f |1d1/2R)n
≤ P (X1 /∈ X̃ )n = (1− P (X1 ∈ X̃ ))n = (1−Rd)n

≤ e−R
dn = δ .

(b) Define τ := log(2/δ). To apply Bernstein’s inequality to ξi := ef(Xi)− eLf , we need a
sup-bound and a variance bound.
Step B.1: Sup-bound. Since ef(X ) ⊆ [0, 1] by assumption on f , we have ∥ξi∥∞ ≤ 1.
Step B.2: Variance bound. Since ef(X ) ⊆ [0, 1], we have:

Var(ξi) = Var ef(Xi) ≤ E[(ef(Xi))2] ≤ Eef(Xi) = eLf .

Step B.3: Non-logarithmic concentration. By Bernstein’s inequality, we obtain
for τ ∈ (0, 1):

P

(
|Sn − eLf | ≥

√
2eLf τ

n
+

2τ

3n

)
≤ 2e−τ = δ .

Step B.4: Lower bound on expectation. From Lemma 7.1.3, we obtain

eLf = eLf−Mf ≥ e−d log(1+3d−1/2|f |1) = (1 + 3d−1/2|f |1)−d .
Step B.5: Logarithmic concentration. By combining the previous steps, we
obtain with probability ≥ 1− 2e−τ :∣∣∣∣Sn − eLf

eLf

∣∣∣∣ ≤
√

2τ

n(1 + 3d−1/2|f |1)−d
+

2τ

3n(1 + 3d−1/2|f |1)−d
.

Since we assumed n ≥ 4 log(2/δ)(1 + 3d−1/2|f |1)d = 4τ(1 + 3d−1/2|f |1)d, the right-
hand-side is less than 1/2. Since the logarithm is 2-Lipschitz on [1/2, 3/2], we
obtain

|L̃n − Lf | =
∣∣∣∣log( SneLf

)∣∣∣∣
=

∣∣∣∣log(1 + Sn − eLf

eLf

)
− log(1)

∣∣∣∣
≤ 2

∣∣∣∣Sn − eLf

eLf

∣∣∣∣
≤ 2

(√
2τ

n(1 + 3d−1/2|f |1)−d
+

2τ

3n(1 + 3d−1/2|f |1)−d

)

By using the assumption n ≥ 4 log(2/δ)(1 + 3d−1/2|f |1)d = 4τ(1 + 3d−1/2|f |1)d from
(b), we can further bound

|L̃n − Lf | ≤ 2

(√
2τ

n(1 + 3d−1/2|f |1)−d

230



7.E. Proofs for Algorithms

+
2τ

3n1/2(4τ(1 + 3d−1/2|f |1)d)1/2(1 + 3d−1/2|f |1)−d

)
= (
√
8 + 2/3)

√
τ

n(1 + 3d−1/2|f |1)−d
≤ 4(1 + 3d−1/2|f |1)d/2τ 1/2n−1/2 .

Proofs for Monte Carlo Sampling

We now prove a simple lower bound for a simple Monte Carlo sampling algorithm. We use
the TV distance, but the general approach could also be used to prove lower bounds for
the sup-log and 1-Wasserstein distances.

Theorem 7.4.6 (Lower bound for MC sampling). Let f : X → R be bounded and
measurable. Let X1, . . . , Xn ∼ U(X ) and let the random index I ∈ {1, . . . , n} be distributed
as

P (I = i) =
exp(f(Xi))∑n
j=1 exp(f(Xj))

.

Consider the distribution P̃f of the random sample XI . Then, for all B > 0 and n ≥ 1
with Bn−1/d ≥ 4d log(4d),

sup
f∈Fd,m,B

DTV(Pf , P̃f ) ≥
1

2
.

Proof. Set f(x) := −β(x1 + · · · + xd), where β := Bd−1, such that f ∈ Fd,m,B. For
δ ∈ (0, 1], set Xδ := [0, δ]d. Then, similar as in Lemma 7.E.1, we can compute

Z(δ) :=

∫
Xδ

exp(f(x)) dx =

(
1− exp(−βδ)

β

)d
.

We then obtain

Pf (Xδ) =
Z(δ)

Z(1)
=

(
1− exp(−βδ)
1− exp(−β)

)d
≥ (1− exp(−βδ))d ≥ 1− d exp(−βδ) ,

where we used Bernoulli’s inequality in the last step. Setting δ := log(4d)/β, we obtain

Pf (Xδ) ≥ 1− d exp(−βδ) ≥ 3

4
.

On the other hand, we have

P̃f (Xδ) = P (XI ∈ Xδ) ≤
n∑
j=1

P (Xj ∈ Xδ) = nδd = n
(log(4d))d

βd
= n

(d log(4d))d

Bd
.

Hence, if Bn−1/d ≥ 4d log(4d), then P̃f (Xδ) ≤ 4−d, which implies

DTV(Pf , P̃f ) ≥ Pf (Xδ)− P̃f (Xδ) ≥
3

4
− 4−d ≥ 1

2
.

231



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

7.E.3 Proofs for Variational Formulation

The following simple lemma is central to our lower bound for the variational formulation:

Lemma 7.4.7. For a model of the form g(x) = φ(x)∗Hφ(x) as above, we have

LOPT
g (Q) = sup

Q̃∈P(X ):ΣQ̃=ΣQ

Lg(Q̃) .

Proof. We have

LOPT
g (Q) = sup

P∈P(X )

tr[HΣP ]− inf
P̃ ,Q̃∈P(X ):ΣP̃=ΣP ,ΣQ̃=ΣQ

DKL(P̃ ∥ Q̃)

= sup
Σ∈K

tr[HΣ]− inf
P̃ ,Q̃∈P(X ):ΣP̃=Σ,ΣQ̃=ΣQ

DKL(P̃ ∥ Q̃)

= sup
Σ∈K

sup
P̃ ,Q̃∈P(X ):ΣP̃=Σ,ΣQ̃=ΣQ

tr[HΣ]−DKL(P̃ ∥ Q̃)

= sup
Q̃∈P(X ):ΣQ̃=ΣQ

sup
P̃∈P(X )

tr[HΣP ]−DKL(P̃ ∥ Q̃)

= sup
Q̃∈P(X ):ΣQ̃=ΣQ

Lg(Q̃).

Before proving the lower bound, we prove a Taylor-based bound on the cosine func-
tion, which is then used in the subsequent lemma to bound an integral of the form∫
X exp(β cos(x− z)) dx.

Lemma 7.E.9. For all x ∈ [−1/4, 1/4], we have

cos(2πx) ≤ 1− 8

5
π2x2 .

Proof. For f(x) := cos(2πx), we have

f ′(x) = −2π sin(2πx)
f ′′(x) = −4π2 cos(2πx)

f ′′′(x) = 8π3 sin(2πx)

f (4)(x) = 16π4 cos(2πx)

Applying Taylor’s theorem with the Lagrange form of the remainder for x ∈ [−1/4, 1/4]
around x0 = 0, we obtain for some ξ ∈ [−1/4, 1/4]:

f(x) = 1− 2π2x2 +
2

3
π4 cos(2πξ)x4 .

Therefore, we obtain for x ∈ [−1/4, 1/4]:

f(x) ≤ 1− 2π2x2 +

(
2

3
π4(1/4)2

)
· x2 ≤ 1− 2π2(1− 1/5)x2 = 1− 8

5
π2x2 .

We can now bound the normalizing constant of a rescaled cosine function, which will
be used in the lower bound for the variational formulation:

232



7.E. Proofs for Algorithms

Lemma 7.E.10. For any z ∈ Rd, define

gz : X → R, x 7→
d∑
i=1

cos(2π(xi − zi)) .

Then, for β > 0,

Zβgz ≤ β−d/2eβd .

Proof. Since gz is 1-periodic, exp(βgz) is 1-periodic. Moreover, we have X = [0, 1]d and
hence

Zβgz =

∫
X
exp(βgz(x)) dx =

∫
X
exp(βg0(x)) dx

=

∫
X
exp(β cos(2πx1)) · · · exp(β cos(2πxd)) dx

=

(∫ 1

0

exp(β cos(2πx1)) dx1

)d
. (7.16)

From expanding the inequality (1−√β)2 ≥ 0, we obtain

eβ ≥ 1 + β ≥ 2
√
β . (7.17)

This allows us to upper-bound the one-dimensional integral in Eq. (7.16) as∫ 1

0

eβ cos(2πx1) dx1 =

∫ 3/4

−1/4

eβ cos(2πx) dx

≤
∫
[−1/4,1/4]

eβ cos(2πx) dx+

∫
[1/4,3/4]

eβ cos(2πx) dx

Lemma 7.E.9
≤

∫
[−1/4,1/4]

eβ(1−
8
5
π2x2) dx+

∫
[1/4,3/4]

1 dx

≤ 1

2
+ eβ

∫ ∞

−∞
exp

(
− x2

2 · 5
16
π−2β−1

)
=

1

2
+ eβ

√
2π

5

16
π−2β−1

=
1

2
+ eβ

√
5β−1

8π
Eq. (7.17)
≤ eβ

(√
β−1

4
+

√
5β−1

8π

)
≤ β−1/2eβ .

Finally, we can use some elementary convex geometry to find a lower bound for the
error of the variational formulation.

Theorem 7.4.8 (Lower bound for OPT relaxation). Let φ : X → CN be continuous. Let

n := dimC Vlin, Vlin := SpanC {φ(x)φ(x)∗ | x ∈ X} ⊆ CN×N .

233



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

In other words, n is the number of effective degrees-of-freedom of the model g(x) =
φ(x)∗Hφ(x), and hence corresponds to the maximum number of points where such a model
can interpolate arbitrary function values. Then, there exists a point z ∈ X depending only
on φ, such that the periodic and analytic function

f : X → R, x 7→
d∑
i=1

cos(2π(xi − zi))

satisfies

|LOPT
g (U([0, 1]))− Lβf (U([0, 1]))| ≥ log

(
βd/2

2n+ 1

)
− ∥g − βf∥∞ (7.7)

for any model g(x) = φ(x)∗Hφ(x) and any β > 0.

Proof. Step 1: Representability by discrete distributions. Let Q := U(X ). We
want to find a discrete distribution Q̃ =

∑M
k=1 λ

(k)δx(k) with ΣQ̃ = ΣQ. Using the feature
map Φ : X → Ck×k, x 7→ φ(x)φ(x)∗, we can write

ΣQ̃ =

∫
X
φ(x)φ(x)∗ dQ̃(x) =

M∑
k=1

λ(k)Φ(x(k)) ,

which shows that the matrices ΣQ̃ are exactly those in the convex hull conv(Φ(X )) of
Φ(X ). Since ΣQ ∈ K by definition of K, we first want to show that K = conv(Φ(X )). As
we have just demonstrated, the inclusion K ⊇ conv(Φ(X )) is simple. Moreover, because
the integral ΣQ =

∫
X Φ(x) dQ(x) is a limit of finite sums, we obtain K ⊆ conv(Φ(X )).

Since Φ is continuous and X is compact, Φ(X ) is also compact. Hence, since we are in
finite dimension, conv(Φ(X )) is compact (see e.g. Proposition 2.3 in Gallier, 2008), which
means that conv(Φ(X )) ⊆ K ⊆ conv(Φ(X )) = conv(Φ(X )).

Step 2: Bounding the number of discrete points. By definition, Vlin is the
C-linear span of Φ(X ). Using Step 1, we conclude K ⊆ Vlin. Hence, K is contained in
the space Vlin with dimR Vlin ≤ 2n. By Carathéodory’s theorem (see e.g. Theorem 2.2 in
Gallier, 2008), the matrix ΣQ ∈ K is hence representable as a convex combination of 2n+1
points:

ΣQ =
2n+1∑
k=1

λ(k)Φ(x(k)),

with λ(k) ≥ 0,
∑

k λ
(k) = 1. By setting Q̃ :=

∑2n+1
k=1 λ(k)δx(k) , we obtain ΣQ̃ = ΣQ.

Step 3: Determining z. Choose an arbitrary index k∗ ∈ {1, . . . , 2n+ 1} such that
λ(k

∗) ≥ (2n+ 1)−1, which always exists. For such an index, we set z := x(k
∗).

Step 4: Lower-bounding the approximate log-partition function. Using
Lemma 7.4.7, we conclude

LOPT
g (U([0, 1])) ≥ Lg(Q̃) = log

(
2n+1∑
k=1

λ(k) exp(g(x(k)))

)
≥ log

(
λ(k

∗) exp(g(x(k
∗)))
)

≥ log
(
(2n+ 1)−1 exp(βf(x(k

∗))− ∥g − βf∥∞)
)

234



7.E. Proofs for Algorithms

= βd− log(2n+ 1)− ∥g − βf∥∞ .

Step 5: Upper-bounding the true log-partition function. We have

Lβf (U([0, 1])) = logZβf
Lemma 7.E.10
≤ βd− log(βd/2) .

Step 6: Putting it together. The previous two steps immediately yield the desired
bound

|LOPT
g (U([0, 1]))− Lβf (U([0, 1]))| ≥ LOPT

g (U([0, 1]))− Lβf (U([0, 1]))

≥ log

(
βd/2

2n+ 1

)
− ∥g − βf∥∞ .

235



Chapter 7. Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation

236



Bibliography

Juliette Achddou, Joseph Lam-Weil, Alexandra Carpentier, and Gilles Blanchard. A minimax
near-optimal algorithm for adaptive rejection sampling. In Algorithmic Learning Theory, 2019.

Ben Adlam and Jeffrey Pennington. The neural tangent kernel in high dimensions: Triple descent
and a multi-scale theory of generalization. In International Conference on Machine Learning,
pages 74–84. PMLR, 2020a.

Ben Adlam and Jeffrey Pennington. Understanding double descent requires a fine-grained
bias-variance decomposition. In Advances in neural information processing systems, 2020b.

Madhu S. Advani, Andrew M. Saxe, and Haim Sompolinsky. High-dimensional dynamics of
generalization error in neural networks. Neural Networks, 132:428–446, 2020. Publisher:
Elsevier.

Thomas D. Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Velingker,
David P. Woodruff, and Amir Zandieh. Oblivious sketching of high-degree polynomial kernels.
In ACM-SIAM Symposium on Discrete Algorithms, 2020.

Rahaf Aljundi, Nikolay Chumerin, and Daniel Olmeda Reino. Identifying wrongly predicted
samples: A method for active learning. In Winter Conference on Applications of Computer
Vision, 2022.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, 2019.

Jason M. Altschuler and Kunal Talwar. Resolving the mixing time of the Langevin algorithm to
its stationary distribution for log-concave sampling. arXiv:2210.08448, 2022.

Herbert Amann and Joachim Escher. Analysis. Springer, 2005.

Christos Anagnostopoulos, Fotis Savva, and Peter Triantafillou. Scalable aggregation predictive
analytics. Applied Intelligence, 48(9):2546–2567, 2018.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Russ R. Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Neural Information Processing
Systems, 2019.

Rosa I. Arriaga and Santosh Vempala. Algorithmic theories of learning. In Foundations of
Computer Science, 1999.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In
ACM-SIAM Symposium on Discrete Algorithms, 2007.

237



Bibliography

Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Sham Kakade. Gone fishing: Neural active
learning with Fisher embeddings. In Neural Information Processing Systems, 2021.

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal.
Deep batch active learning by diverse, uncertain gradient lower bounds. In International
Conference on Learning Representations, 2019.

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners:
The silent alignment effect. In International Conference on Learning Representations, 2021.

Francis Bach. Sum-of-squares relaxations for information theory and variational inference.
arXiv:2206.13285, 2022.

Francis Bach. Information theory with kernel methods. IEEE Transactions on Information
Theory, 69(2):752–775, 2023.

Krishna Balasubramanian, Sinho Chewi, Murat A. Erdogdu, Adil Salim, and Shunshi Zhang.
Towards a theory of non-log-concave sampling: first-order stationarity guarantees for Langevin
Monte Carlo. In Conference on Learning Theory, 2022.

Rafael Ballester-Ripoll, Enrique G. Paredes, and Renato Pajarola. Sobol tensor trains for global
sensitivity analysis. Reliability Engineering & System Safety, 183:311–322, 2019.

Alessandro Barducci, Giovanni Bussi, and Michele Parrinello. Well-tempered metadynamics: a
smoothly converging and tunable free-energy method. Physical review letters, 100(2):020603,
2008.

Jörg Behler. Perspective: Machine learning potentials for atomistic simulations. Journal of
Chemical Physics, 145(17):170901, 2016.

Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-dimensional
potential-energy surfaces. Physical Review Letters, 98(14):146401, 2007.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to
understand kernel learning. In International Conference on Machine Learning, pages 541–549.
PMLR, 2018.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. SIAM
Journal on Mathematics of Data Science, 2(4):1167–1180, 2020. Publisher: SIAM.

William H. Beluch, Tim Genewein, Andreas Nürnberger, and Jan M. Köhler. The power of
ensembles for active learning in image classification. In Conference on Computer Vision and
Pattern Recognition, 2018.

Marshall Bern and David Eppstein. Approximation algorithms for geometric problems. In
Approximation Algorithms for NP-hard Problems, pages 296–345. PWS Publishing Company,
1996.

Rajendra Bhatia. Matrix Analysis, volume 169. Springer Science & Business Media, 2013.

238



Bibliography

Alberto Bietti and Francis Bach. Deep equals shallow for ReLU networks in kernel regimes. In
International Conference on Learning Representations, 2021.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Vladimir I. Bogachev. Measure Theory, Volume 2, volume 1. Springer Science & Business Media,
2007.

Charles Bordenave and Djalil Chafaï. Around the circular law. Probability surveys, 9:1–89, 2012.

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
learning and streaming. In Neural Information Processing Systems, 2020.

Zalán Borsos, Marco Tagliasacchi, and Andreas Krause. Semi-supervised batch active learning
via bilevel optimization. In Conference on Acoustics, Speech and Signal Processing, 2021.

Nawaf Bou-Rabee and Martin Hairer. Nonasymptotic mixing of the MALA algorithm. IMA
Journal of Numerical Analysis, 33(1):80–110, 2013.

Nawaf Bou-Rabee, Andreas Eberle, and Raphael Zimmer. Coupling and convergence for Hamilto-
nian monte carlo. The Annals of Applied Probability, 30(3):1209–1250, 2020.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Leo Breiman and David Freedman. How many variables should be entered in a regression
equation? Journal of the American Statistical Association, 78(381):131–136, 1983.

Susanne C. Brenner, L. Ridgway Scott, and L. Ridgway Scott. The Mathematical Theory of
Finite Element Methods, volume 3. Springer, 2008.

Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of Markov Chain
Monte Carlo. CRC press, 2011.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, and Amanda Askell. Language models are
few-shot learners. In Neural Information Processing Systems, 2020.

Siegfried Bös and Manfred Opper. Dynamics of training. In Advances in Neural Information
Processing Systems, pages 141–147, 1997.

Erdem Bıyık, Kenneth Wang, Nima Anari, and Dorsa Sadigh. Batch active learning using
determinantal point processes. arXiv:1906.07975, 2019.

Weipeng Cao, Xizhao Wang, Zhong Ming, and Jinzhu Gao. A review on neural networks with
random weights. Neurocomputing, 275:278–287, 2018.

William F. Caselton and James V. Zidek. Optimal monitoring network designs. Statistics &
Probability Letters, 2(4):223–227, 1984.

M. Emre Celebi, Hassan A. Kingravi, and Patricio A. Vela. A comparative study of efficient
initialization methods for the k-means clustering algorithm. Expert Systems with Applications,
40(1):200–210, 2013.

239



Bibliography

Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review. Statistical
Science, pages 273–304, 1995.

Laming Chen, Guoxin Zhang, and Eric Zhou. Fast greedy map inference for determinantal point
process to improve recommendation diversity. In Neural Information Processing Systems, 2018.

Lin Chen, Yifei Min, Mikhail Belkin, and Amin Karbasi. Multiple descent: Design your own
generalization curve. In Neural Information Processing Systems, 2021.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R. Zhang. Sampling is
as easy as learning the score: theory for diffusion models with minimal data assumptions. In
NeurIPS 2022 Workshop on Score-Based Methods, 2022.

Xiang Cheng. The Interplay between Sampling and Optimization. PhD thesis, University of
California, Berkeley, 2020.

Xiang Cheng, Niladri S. Chatterji, Yasin Abbasi-Yadkori, Peter L. Bartlett, and Michael I. Jordan.
Sharp convergence rates for Langevin dynamics in the nonconvex setting. arXiv:1805.01648,
2018.

Sinho Chewi, Chen Lu, Kwangjun Ahn, Xiang Cheng, Thibaut Le Gouic, and Philippe Rigollet.
Optimal dimension dependence of the metropolis-adjusted langevin algorithm. In Conference
on Learning Theory, 2021.

Sinho Chewi, Patrik Gerber, Chen Lu, Thibaut Le Gouic, and Philippe Rigollet. The query
complexity of sampling from strongly log-concave distributions in one dimension. In Conference
on Learning Theory, 2022.

Sinho Chewi, Patrik Gerber, Holden Lee, and Chen Lu. Fisher information lower bounds for
sampling. In International Conference on Algorithmic Learning Theory, 2023.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Neural Information Processing Systems,
2018.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
In Neural Information Processing Systems, 2019.

Nicolas Chopin and Mathieu Gerber. Higher-order stochastic integration through cubic stratifica-
tion. arXiv:2210.01554, 2022.

Dan Cireşan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural networks for image
classification. In Computer Vision and Pattern Recognition. IEEE, 2012.

Ali Civril and Malik Magdon-Ismail. Exponential inapproximability of selecting a maximum
volume sub-matrix. Algorithmica, 65(1):159–176, 2013.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv:1511.07289, 2015.

David A. Cohn. Neural network exploration using optimal experiment design. Neural Networks,
9(6):1071–1083, 1996.

240



Bibliography

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis,
Percy Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection
for deep learning. In International Conference on Learning Representations, 2019.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020. Publisher:
National Acad Sciences.

Stéphane d’Ascoli, Levent Sagun, and Giulio Biroli. Triple descent and the two kinds of overfitting:
Where & why do they appear? In Neural Information Processing Systems, 2020.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace Redux-Effortless Bayesian Deep Learning. In Neural Information
Processing Systems, 2021.

Stefano De Marchi, Robert Schaback, and Holger Wendland. Near-optimal data-independent
point locations for radial basis function interpolation. Advances in Computational Mathematics,
23(3):317–330, 2005.

Tewodors Deneke, Habtegebreil Haile, Sébastien Lafond, and Johan Lilius. Video transcoding
time prediction for proactive load balancing. In International Conference on Multimedia and
Expo, 2014.

Volker L. Deringer, Miguel A. Caro, and Gábor Csányi. Machine learning interatomic potentials
as emerging tools for materials science. Advanced Materials, 31(46):1902765, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Conference of the North American
Chapter of the Association for Computational Linguistics, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics.

Luc Devroye. Any discrimination rule can have an arbitrarily bad probability of error for finite
sample size. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(2):
154–157, 1982. doi: 10.1109/TPAMI.1982.4767222.

Luc Devroye, László Györfi, and Gabor Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer Science & Business Media, 1996.

Monroe D. Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain Markov process
expectations for large time. IV. Communications on Pure and Applied Mathematics, 36(2):
183–212, 1983.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2019.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017. URL http://archive.
ics.uci.edu/ml.

Simon Duane, Anthony D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid monte
carlo. Physics letters B, 195(2):216–222, 1987.

241

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Bibliography

Rick Durrett. Probability: theory and examples, 5th edition, volume 49. Cambridge university
press, 2019.

Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, and Bin Yu. Log-concave sampling: Metropolis-
Hastings algorithms are fast! In Conference on Learning Theory, 2018.

Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. Boosting and differential privacy. In
Symposium on Foundations of Computer Science, 2010.

Stéphane d’Ascoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala. Double trouble in double
descent: Bias and variance (s) in the lazy regime. In International Conference on Machine
Learning, 2020.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

David Eppstein, Sariel Har-Peled, and Anastasios Sidiropoulos. Approximate greedy clustering
and distance selection for graph metrics. Journal of Computational Geometry, 11(1):629–652,
2020.

Runa Eschenhagen, Erik Daxberger, Philipp Hennig, and Agustinus Kristiadi. Mixtures of Laplace
approximations for improved post-hoc uncertainty in deep learning. In NeurIPS 2021 Workshop
on Bayesian Deep Learning, 2021.

Sebastian Farquhar, Yarin Gal, and Tom Rainforth. On statistical bias in active learning: How
and when to fix it. In International Conference on Learning Representations, 2021.

Michael F. Faulkner and Samuel Livingstone. Sampling algorithms in statistical physics: a guide
for statistics and machine learning. arXiv:2208.04751, 2022.

Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering. In ACM
Symposium on Theory of Computing, 1988.

Herbert Federer. Geometric Measure Theory. Springer, 1969.

Valerii V. Fedorov. Theory of Optimal Experiments. Academic Press, New York, 1972.

Simon Fischer and Ingo Steinwart. Sobolev norm learning rates for regularized least-squares
algorithms. The Journal of Machine Learning Research, 21(1):8464–8501, 2020. Publisher:
JMLRORG.

Catherine Forbes, Merran Evans, Nicholas Hastings, and Brian Peacock. Statistical Distributions.
John Wiley & Sons, 2011.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M. Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. In Neural Information Processing
Systems, 2020.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, 1956.

Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to
Applications. Elsevier, 2001.

242



Bibliography

Jerome H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, pages
1–67, 1991.

Nial Friel and Jason Wyse. Estimating the evidence–a review. Statistica Neerlandica, 66(3):
288–308, 2012.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning, 2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image
data. In International Conference on Machine Learning, 2017.

Jean Gallier. Notes on convex sets, polytopes, polyhedra, combinatorial topology, Voronoi
diagrams and Delaunay triangulations. arXiv:0805.0292, 2008.

Rong Ge, Holden Lee, and Jianfeng Lu. Estimating normalizing constants for log-concave
distributions: Algorithms and lower bounds. In Symposium on Theory of Computing, 2020.

Yonatan Geifman and Ran El-Yaniv. Deep active learning over the long tail. arXiv:1711.00941,
2017.

Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: From importance sampling
to bridge sampling to path sampling. Statistical Science, pages 163–185, 1998.

Amirata Ghorbani, James Zou, and Andre Esteva. Data shapley valuation for efficient batch
active learning. In Asilomar Conference on Signals, Systems, and Computers. IEEE, 2022.

Nikhil Ghosh and Mikhail Belkin. A Universal Trade-off Between the Model Size, Test Loss, and
Training Loss of Linear Predictors. arXiv:2207.11621, 2022.

Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics. Interna-
tional Statistical Review, 70(3):419–435, 2002.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In International Conference on Artificial Intelligence and Statistics, 2010.

Ethan Goan and Clinton Fookes. Bayesian neural networks: An introduction and survey. Case
Studies in Applied Bayesian Data Science: CIRM Jean-Morlet Chair, Fall 2018, pages 45–87,
2020.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore, USA, 1989.

Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Neural Information Processing Systems,
2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

243



Bibliography

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. In Neural Information Processing Systems, 2021.

Franz Graf, Hans-Peter Kriegel, Matthias Schubert, Sebastian Pölsterl, and Alexander Cavallaro.
2D image registration in ct images using radial image descriptors. In International Conference
on Medical Image Computing and Computer-Assisted Intervention. Springer, 2011.

Ping Guo. A vest of the pseudoinverse learning algorithm. arXiv:1805.07828, 2018.

László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A Distribution-Free Theory of
Nonparametric Regression. Springer Science & Business Media, 2002.

Thomas Hamm and Ingo Steinwart. Adaptive learning rates for support vector machines working
on data with low intrinsic dimension. The Annals of Statistics, 49(6):3153–3180, 2021. Publisher:
Institute of Mathematical Statistics.

Insu Han, Haim Avron, Neta Shoham, Chaewon Kim, and Jinwoo Shin. Random features for the
neural tangent kernel. arXiv:2104.01351, 2021.

Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(10):993–1001, 1990.

Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The elements of statistical learning:
data mining, inference, and prediction, volume 2. Springer, 2009.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. Annals of statistics, 50(2):949, 2022. Publisher:
NIH Public Access.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. In IEEE Conference on Computer Vision,
2015.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv:1606.08415, 2016.

Pablo A. Henriquez and Gonzalo A. Ruz. An empirical study of the hidden matrix rank for neural
networks with random weights. In 2017 16th IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 883–888. IEEE, 2017.

Jan Hermann, Zeno Schätzle, and Frank Noé. Deep-neural-network solution of the electronic
Schrödinger equation. Nature Chemistry, 12(10):891–897, 2020.

David Holzmüller. On the universality of the double descent peak in ridgeless regression. In
International Conference on Learning Representations, 2021.

David Holzmüller and Francis Bach. Convergence rates for non-log-concave sampling and log-
partition estimation. arXiv:2303.03237, 2023.

David Holzmüller and Ingo Steinwart. Training two-layer ReLU networks with gradient descent
is inconsistent. Journal of Machine Learning Research, 23(181):1–82, 2022. URL http:
//jmlr.org/papers/v23/20-830.html.

244

http://jmlr.org/papers/v23/20-830.html
http://jmlr.org/papers/v23/20-830.html


Bibliography

David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A framework and
benchmark for deep batch active learning for regression. Journal of Machine Learning Research,
24(164):1–81, 2023.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning
for classification and preference learning. arXiv:1112.5745, 2011.

Gao Huang, Guang-Bin Huang, Shiji Song, and Keyou You. Trends in extreme learning machines:
A review. Neural Networks, 61:32–48, 2015.

Guang-Bin Huang. Learning capability and storage capacity of two-hidden-layer feedforward
networks. IEEE Transactions on Neural Networks, 14(2):274–281, 2003.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: theory and
applications. Neurocomputing, 70(1-3):489–501, 2006.

Chii-Ruey Hwang. Laplace’s method revisited: weak convergence of probability measures. The
Annals of Probability, pages 1177–1182, 1980. Publisher: JSTOR.

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of Bayesian neural
nets via local linearization. In International Conference on Artificial Intelligence and Statistics,
2021.

Pavel Izmailov, Sharad Vikram, Matthew D. Hoffman, and Andrew Gordon Gordon Wilson.
What are Bayesian neural network posteriors really like? In International Conference on
Machine Learning, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence and
generalization in neural networks. In Neural Information Processing Systems, 2018.

Ziwei Ji, Justin Li, and Matus Telgarsky. Early-stopped neural networks are consistent. Advances
in Neural Information Processing Systems, 34:1805–1817, 2021.

William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. Contemporary Mathematics, 26, 1984.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the
Fokker–Planck equation. SIAM Journal on Mathematical Analysis, 29(1):1–17, 1998.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, and Anna Potapenko. Highly accurate
protein structure prediction with AlphaFold. Nature, 596(7873):583–589, 2021.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel
on tabular datasets. In Neural Information Processing Systems, 2021.

Purushottam Kar and Harish Karnick. Random feature maps for dot product kernels. In Artificial
Intelligence and Statistics, 2012.

Ioannis Katsavounidis, C.-C. Jay Kuo, and Zhen Zhang. A new initialization technique for
generalized Lloyd iteration. IEEE Signal Processing Letters, 1(10):144–146, 1994.

245



Bibliography

Leonard Kaufman and Peter J. Rousseeuw. Finding groups in data: an introduction to cluster
analysis. Wiley Series in Probability and Mathematical Statistics. Applied Probability and
Statistics, 1990.

Manohar Kaul, Bin Yang, and Christian S. Jensen. Building accurate 3d spatial networks to
enable next generation intelligent transportation systems. In International Conference on
Mobile Data Management, 2013.

Ronald W. Kennard and Larry A. Stone. Computer aided design of experiments. Technometrics,
11(1):137–148, 1969.

Mohammad Emtiyaz E. Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Approximate
inference turns deep networks into gaussian processes. In Neural Information Processing Systems,
2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

James Kirkpatrick, Brendan McMorrow, David HP Turban, Alexander L. Gaunt, James S.
Spencer, Alexander GDG Matthews, Annette Obika, Louis Thiry, Meire Fortunato, and David
Pfau. Pushing the frontiers of density functionals by solving the fractional electron problem.
Science, 374(6573):1385–1389, 2021.

Scott Kirkpatrick, C. Daniel Gelatt Jr, and Mario P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

John G. Kirkwood. Statistical mechanics of fluid mixtures. The Journal of Chemical Physics, 3
(5):300–313, 1935.

Andreas Kirsch. Black-Box Batch Active Learning for Regression. Transactions on Machine
Learning Research, 2023.

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. BatchBALD: Efficient and diverse batch
acquisition for deep Bayesian active learning. In Neural Information Processing Systems, 2019.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in neural information processing systems, pages 971–980, 2017.

Achim Klenke. Probability Theory: A Comprehensive Course. Springer, 2014.

J. D. Knowles. On the existence of non-atomic measures. Mathematika, 14(1):62–67, 1967.
Publisher: London Mathematical Society.

Steven G. Krantz and Harold R. Parks. A Primer of Real Analytic Functions. Springer Science
& Business Media, 2002.

Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in Gaussian
processes: Theory, efficient algorithms and empirical studies. Journal of Machine Learning
Research, 9(2), 2008.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being Bayesian, even just a bit, fixes
overconfidence in relu networks. In International Conference on Machine Learning, 2020.

246



Bibliography

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep
convolutional neural networks. In Neural Information Processing Systems, 2012.

Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active
learning. In Neural Information Processing Systems, 1994.

Peter Kuchment. An overview of periodic elliptic operators. arXiv:1510.00971, 2015.

Punit Kumar and Atul Gupta. Active learning query strategies for classification, regression, and
clustering: a survey. Journal of Computer Science and Technology, 35(4):913–945, 2020.

J. Nathan Kutz. Deep learning in fluid dynamics. Journal of Fluid Mechanics, 814:1–4, 2017.

Jianfa Lai, Manyun Xu, Rui Chen, and Qian Lin. Generalization ability of wide neural networks
on $\mathbb{R}$. arXiv:2302.05933, 2023.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Neural Information Processing Systems,
volume 30, 2017.

Peter Lancaster and Kes Salkauskas. Surfaces generated by moving least squares methods.
Mathematics of Computation, 37(155):141–158, 1981.

Pierre Simon Laplace. Mémoire sur la probabilité de causes par les évènements. Mémoires de
Mathématique et de Physique, Presentés à l’Académie Royale des Sciences, par divers Savants
& lus dans ses Assemblées. Tome Sixième, pages 621–656, 1774.

Alexander Lavin, Hector Zenil, Brooks Paige, David Krakauer, Justin Gottschlich, Tim Matt-
son, Anima Anandkumar, Sanjay Choudry, Kamil Rocki, Atılım Güneş Baydin, and others.
Simulation intelligence: Towards a new generation of scientific methods. arXiv:2112.03235,
2021.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and
Jascha Sohl-Dickstein. Deep neural networks as Gaussian processes. In International Conference
on Learning Representations, 2018.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in neural information processing systems, pages 8570–8581,
2019.

Xiaolin Li. Error estimates for the moving least-square approximation and the element-free
Galerkin method in n-dimensional spaces. Applied Numerical Mathematics, 99:77–97, 2016.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. In International Conference on Learning Representations, 2021.

Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “ridgeless” regression can
generalize. Annals of Statistics, 48(3):1329–1347, 2020.

247



Bibliography

Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the multiple descent of minimum-norm
interpolants and restricted lower isometry of kernels. In Conference on Learning Theory, 2020.

Stuart Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, 1982.

Philip M. Long. Properties of the after kernel. arXiv:2105.10585, 2021.

Miguel Lázaro-Gredilla and Aníbal R. Figueiras-Vidal. Marginalized neural network mixtures for
large-scale regression. IEEE Transactions on Neural Networks, 21(8):1345–1351, 2010.

Yi-An Ma, Yuansi Chen, Chi Jin, Nicolas Flammarion, and Michael I. Jordan. Sampling can be
faster than optimization. Proceedings of the National Academy of Sciences, 116(42):20881–20885,
2019.

David JC MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992a.

David JC MacKay. Information-based objective functions for active data selection. Neural
Computation, 4(4):590–604, 1992b.

Vivek Madan, Mohit Singh, Uthaipon Tantipongpipat, and Weijun Xie. Combinatorial algorithms
for optimal design. In Conference on Learning Theory, 2019.

Wesley J. Maddox, Pavel Izmailov, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon
Wilson. A simple baseline for bayesian uncertainty in deep learning. In Neural Information
Processing Systems, 2019.

Neil Mallinar, James Simon, Amirhesam Abedsoltan, Parthe Pandit, Misha Belkin, and Preetum
Nakkiran. Benign, tempered, or catastrophic: toward a refined taxonomy of overfitting. In
Neural Information Processing Systems, 2022.

Oren Mangoubi and Nisheeth Vishnoi. Dimensionally tight bounds for second-order Hamiltonian
Monte Carlo. In Neural Information Processing Systems, volume 31, 2018.

Oren Mangoubi and Nisheeth K. Vishnoi. Nonconvex sampling with the Metropolis-adjusted
Langevin algorithm. In Conference on Learning Theory, 2019.

K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate analysis. Probability and mathematical
statistics. Academic Press Inc., 1979.

Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Sampling from arbitrary functions
via psd models. In Artificial Intelligence and Statistics, 2022.

Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin
Ghahramani. Gaussian process behaviour in wide deep neural networks. In International
Conference on Learning Representations, 2018.

Arash Mehrjou, Ashkan Soleymani, Andrew Jesson, Pascal Notin, Yarin Gal, Stefan Bauer, and
Patrick Schwab. GeneDisco: A benchmark for experimental design in drug discovery. In
International Conference on Learning Representations, 2021.

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and the double descent curve. Communications on Pure and Applied Mathematics,
75(4):667–766, 2022. Publisher: Wiley Online Library.

248



Bibliography

Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal of the American
Statistical Association, 44(247):335–341, 1949.

Davoud Mirzaei. Analysis of moving least squares approximation revisited. Journal of Computa-
tional and Applied Mathematics, 282:237–250, 2015.

Diganta Misra. Mish: A self regularized non-monotonic neural activation function.
arXiv:1908.08681, 2019.

Boris Mityagin. The zero set of a real analytic function. arXiv:1512.07276, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, and Georg Ostrovski.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Mohamad Amin Mohamadi, Wonho Bae, and Danica J. Sutherland. Making look-ahead active
learning strategies feasible with Neural Tangent Kernels. In Advances in Neural Information
Processing Systems, 2022.

Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, 2017.

Jaouad Mourtada. Exact minimax risk for linear least squares, and the lower tail of sample
covariance matrices. The Annals of Statistics, 50(4):2157–2178, 2022. Publisher: Institute of
Mathematical Statistics.

Kevin P. Murphy. Probabilistic machine learning: an introduction. MIT press, 2022.

Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, and Anant Sahai. Harmless
interpolation of noisy data in regression. IEEE Journal on Selected Areas in Information
Theory, 2020.

Nicole Mücke and Ingo Steinwart. Global minima of DNNs: The plenty pantry. arXiv:1905.10686,
2019.

Preetum Nakkiran. More data can hurt for linear regression: Sample-wise double descent.
arXiv:1912.07242, 2019.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.
Deep double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, 2021a. Publisher: IOP Publishing.

Preetum Nakkiran, Prayaag Venkat, Sham M. Kakade, and Tengyu Ma. Optimal regularization
can mitigate double descent. In International Conference on Learning Representations, 2021b.

Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon Lacoste-
Julien, and Ioannis Mitliagkas. A modern take on the bias-variance tradeoff in neural networks.
In ICML 2019 Workshop on Identifying and Understanding Deep Learning Phenomena, 2019.

Radford M. Neal. Priors for Infinite Networks. Technical Report CRG-TR-94-1, Dept. of Computer
Science, University of Toronto, 1994.

Mehdi Neshat, Bradley Alexander, Markus Wagner, and Yuanzhong Xia. A detailed comparison
of meta-heuristic methods for optimising wave energy converter placements. In Proceedings of
the Genetic and Evolutionary Computation Conference, 2018.

249



Bibliography

Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks. In
International Conference on Machine Learning, pages 2603–2612, 2017.

Viet Dang Nguyen. Complex powers of analytic functions and meromorphic renormalization in
QFT. arXiv:1503.00995, 2015.

Manuel Nonnenmacher, David Reeb, and Ingo Steinwart. Which minimizer does my neural
network converge to? In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, 2021.

Erich Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis, volume 1349.
Springer, 1988.

Erich Novak and Henryk Woźniakowski. Approximation of infinitely differentiable multivariate
functions is intractable. Journal of Complexity, 25(4):398–404, 2009.

Roman Novak, Jascha Sohl-Dickstein, and Samuel S. Schoenholz. Fast finite width neural tangent
kernel. In International Conference on Machine Learning, 2022.

Sebastian W. Ober and Carl Edward Rasmussen. Benchmarking the neural linear model for
regression. In Symposium on Advances in Approximate Bayesian Inference, 2019.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv:1609.03499, 2016.

Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The effectiveness
of Lloyd-type methods for the k-means problem. In IEEE Symposium on Foundations of
Computer Science, 2006.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, and Luca Antiga. Pytorch: An imperative
style, high-performance deep learning library. In Neural Information Processing Systems, 2019.

Maryam Pazouki and Robert Schaback. Bases for kernel-based spaces. Journal of Computational
and Applied Mathematics, 236(4):575–588, 2011.

David Pfau, James S. Spencer, Alexander GDG Matthews, and W. Matthew C. Foulkes. Ab
initio solution of the many-electron Schrödinger equation with deep neural networks. Physical
Review Research, 2(3):033429, 2020.

Robert Pinsler, Jonathan Gordon, Eric Nalisnick, and José Miguel Hernández-Lobato. Bayesian
batch active learning as sparse subset approximation. In Neural Information Processing Systems,
2019.

Remus Pop and Patric Fulop. Deep ensemble bayesian active learning: Addressing the mode
collapse issue in monte carlo dropout via ensembles. arXiv:1811.03897, 2018.

S. James Press. Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of
Inference. Courier Corporation, 2005.

Robert James Purser, Manuel de Pondeca, and Sei-Young Park. Construction of a Hilbert curve
on the sphere with an isometric parameterization of area. Office Note, 2009.

250



Bibliography

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit
Supekar, Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations
for scientific machine learning. arXiv:2001.04385, 2020.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances
in neural information processing systems, pages 1177–1184, 2008.

Maziar Raissi, Paris Perdikaris, and George E. Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Alexander Rakhlin and Xiyu Zhai. Consistency of interpolation with laplace kernels is a high-
dimensional phenomenon. In Conference on Learning Theory, 2019.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions.
arXiv:1710.05941, 2017.

Hiranmayi Ranganathan, Hemanth Venkateswara, Shayok Chakraborty, and Sethuraman Pan-
chanathan. Deep active learning for image regression. In Deep Learning Applications, pages
113–135. Springer, Singapore, 2020.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2005. ISBN 978-0-262-25683-4. URL https://doi.org/10.7551/
mitpress/3206.001.0001.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the Convergence of Adam and Beyond.
In International Conference on Learning Representations, 2018.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang
Chen, and Xin Wang. A survey of deep active learning. ACM Computing Surveys, 54(9):1–40,
2021.

Christian P. Robert. The Bayesian Choice: From Decision-theoretic Foundations to Computational
Implementation. Springer, 2007.

Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis. An analysis of several heuristics
for the traveling salesman problem. SIAM Journal on Computing, 6(3):563–581, 1977.

Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding global minima via kernel
approximations. arXiv:2012.11978, 2020.

Hans Sagan. Space-filling curves. Springer Science & Business Media, 2012.

Gabriele Santin, Toni Karvonen, and Bernard Haasdonk. Sampling based approximation of linear
functionals in reproducing kernel Hilbert spaces. BIT Numerical Mathematics, pages 1–32,
2021. Publisher: Springer.

Michael A. Sartori and Panos J. Antsaklis. A simple method to derive bounds on the size and to
train multilayer neural networks. IEEE transactions on neural networks, 2(4):467–471, 1991.

Fotis Savva, Christos Anagnostopoulos, and Peter Triantafillou. Explaining aggregates for
exploratory analytics. In International Conference on Big Data, 2018.

251

https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.7551/mitpress/3206.001.0001


Bibliography

Simone Scardapane and Dianhui Wang. Randomness in neural networks: An overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(2), 2017.

Wouter F. Schmidt, Martin A. Kraaijveld, and Robert PW Duin. Feed forward neural networks
with random weights. In International Conference on Pattern Recognition, pages 1–1. IEEE
COMPUTER SOCIETY PRESS, 1992.

Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural Computation, 14(7):1723–1738, 2002.

Bernhard Schölkopf and Alexander J. Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A generalized representer theorem. In
Conference on Computational Learning Theory, pages 416–426. Springer, 2001.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018.

Sambu Seo, Marko Wallat, Thore Graepel, and Klaus Obermayer. Gaussian process regression:
Active data selection and test point rejection. In Mustererkennung 2000, pages 27–34. Springer,
2000.

Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648,
University of Wisconsin–Madison, 2009.

H. Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee. In Workshop
on Computational Learning Theory, 1992.

Haozhe Shan and Blake Bordelon. A theory of neural tangent kernel alignment and its influence
on training. arXiv:2105.14301, 2021.

Claude Elwood Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, 1948.

Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T. Wang, Daniel Ramage,
Nada Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome research, 13(11):2498–2504,
2003.

Apoorva Sharma, Navid Azizan, and Marco Pavone. Sketching curvature for efficient out-of-
distribution detection for deep neural networks. In Uncertainty in Artificial Intelligence,
2021.

John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cambridge
university press, 2004.

Neta Shoham and Haim Avron. Experimental design for overparameterized learning with
application to single shot deep active learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2023. Publisher: IEEE.

252



Bibliography

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, and Marc Lanctot.
Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):
484–489, 2016. Publisher: Nature Publishing Group.

Kirstine Smith. On the standard deviations of adjusted and interpolated values of an observed
polynomial function and its constants and the guidance they give towards a proper choice of
the distribution of observations. Biometrika, 12(1/2):1–85, 1918.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep
neural networks. In International Conference on Machine Learning, 2015.

Gowthami Somepalli, Avi Schwarzschild, Micah Goldblum, C. Bayan Bruss, and Tom Goldstein.
SAINT: Improved neural networks for tabular data via row attention and contrastive pre-
training. In NeurIPS 2022 Table Representation Workshop, 2022.

Stefano Spigler, Mario Geiger, Stéphane d’Ascoli, Levent Sagun, Giulio Biroli, and Matthieu
Wyart. A jamming transition from under-to over-parametrization affects generalization in deep
learning. Journal of Physics A: Mathematical and Theoretical, 52(47):474001, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science & Business
Media, 2008.

Charles J. Stone. Consistent nonparametric regression. The Annals of Statistics, pages 595–620,
1977.

Robert Swendsen. An Introduction to Statistical Mechanics and Thermodynamics. Oxford
University Press, 2020.

Gábor J. Székely and Maria L. Rizzo. Energy statistics: A class of statistics based on distances.
Journal of Statistical Planning and Inference, 143(8):1249–1272, 2013.

Kunal Talwar. Computational separations between sampling and optimization. In Neural
Information Processing Systems, volume 32, 2019.

Shin’ichi Tamura and Masahiko Tateishi. Capabilities of a four-layered feedforward neural network:
four layers versus three. IEEE Transactions on Neural Networks, 8(2):251–255, 1997.

Joseph F. Traub. Information-based complexity. In Encyclopedia of Computer Science, pages
850–854. John Wiley and Sons Ltd., GBR, 2003. ISBN 0-470-86412-5.

Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer Series in Statistics.
Springer, 2009. doi: 10.1007/b13794.

Evgenii Tsymbalov, Maxim Panov, and Alexander Shapeev. Dropout-based active learning for
regression. In International Conference on Analysis of Images, Social Networks and Texts,
2018.

253



Bibliography

Tim Van Erven and Peter Harremos. Rényi divergence and Kullback-Leibler divergence. IEEE
Transactions on Information Theory, 60(7):3797–3820, 2014.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked science
in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices.
arXiv:1011.3027, 2010.

Sethu Vijayakumar and Stefan Schaal. Locally weighted projection regression: An O(n) algorithm
for incremental real time learning in high dimensional space. In International Conference on
Machine Learning, 2000.

Dietrich von Rosen. Moments for the inverted Wishart distribution. Scandinavian Journal of
Statistics, pages 97–109, 1988.

Abraham Wald. On the efficient design of statistical investigations. The Annals of Mathematical
Statistics, 14(2):134–140, 1943.

Guorong Wang, Yimin Wei, Sanzheng Qiao, Peng Lin, and Yuzhuo Chen. Generalized Inverses:
Theory and Computations, volume 53. Springer, 2018.

Haonan Wang, Wei Huang, Ziwei Wu, Hanghang Tong, Andrew J. Margenot, and Jingrui He.
Deep active learning by leveraging training dynamics. In Advances in Neural Information
Processing Systems, 2022.

Zhilei Wang, Pranjal Awasthi, Christoph Dann, Ayush Sekhari, and Claudio Gentile. Neural
active learning with performance guarantees. In Neural Information Processing Systems, 2021.

Holger Wendland. Scattered Data Approximation. Cambridge University Press, 2004.

Lilian Weng. Learning with not enough data part 2: Active learning. lilianweng.github.io/lil-log,
2022. URL https://lilianweng.github.io/lil-log/2022/02/20/active-learning.html.

Tizian Wenzel, Gabriele Santin, and Bernard Haasdonk. A novel class of stabilized greedy kernel
approximation algorithms: Convergence, stability and uniform point distribution. Journal of
Approximation Theory, 262:105508, 2021.

Bernard Widrow, Aaron Greenblatt, Youngsik Kim, and Dookun Park. The No-Prop algorithm:
A new learning algorithm for multilayer neural networks. Neural Networks, 37:182–188, 2013.

Andrew G. Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. In Neural Information Processing Systems, 2020.

Dawn Woodard, Scott Schmidler, and Mark Huber. Sufficient conditions for torpid mixing of
parallel and simulated tempering. Electronic Journal of Probability, 14:780–804, 2009.

David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in
Theoretical Computer Science, 10(1–2):1–157, 2014.

254

https://lilianweng.github.io/lil-log/2022/02/20/active-learning.html


Bibliography

Blake Woodworth, Francis Bach, and Alessandro Rudi. Non-convex optimization with certificates
and fast rates through kernel sums of squares. In Conference on Learning Theory, 2022.

Dongrui Wu. Pool-based sequential active learning for regression. IEEE Transactions on Neural
Networks and Learning Systems, 30(5):1348–1359, 2018.

Henry P. Wynn. The sequential generation of D-optimum experimental designs. The Annals of
Mathematical Statistics, 41(5):1655–1664, 1970.

Greg Yang and Edward J. Hu. Tensor programs IV: Feature learning in infinite-width neural
networks. In International Conference on Machine Learning, pages 11727–11737. PMLR, 2021.

Hwanjo Yu and Sungchul Kim. Passive sampling for regression. In International Conference on
Data Mining, 2010.

Amir Zandieh, Insu Han, Haim Avron, Neta Shoham, Chaewon Kim, and Jinwoo Shin. Scaling
neural tangent kernels via sketching and random features. In Neural Information Processing
Systems, 2021.

Viktor Zaverkin and Johannes Kästner. Exploration of transferable and uniformly accurate neural
network interatomic potentials using optimal experimental design. Machine Learning: Science
and Technology, 2(3):035009, 2021.

Viktor Zaverkin, David Holzmüller, Ingo Steinwart, and Johannes Kästner. Fast and Sample-
Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian
Moments. Journal of Chemical Theory and Computation, 17(10):6658–6670, 2021.

Viktor Zaverkin, David Holzmüller, Ingo Steinwart, and Johannes Kästner. Exploring chemical
and conformational spaces by batch mode deep active learning. Digital Discovery, 1(5):605–620,
2022.

Viktor Zaverkin, David Holzmüller, Luca Bonfirraro, and Johannes Kästner. Transfer learning
for chemically accurate interatomic neural network potentials. Physical Chemistry Chemical
Physics, 25(7):5383–5396, 2023.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning
Representations, 2017.

Fedor Zhdanov. Diverse mini-batch active learning. arXiv:1901.05954, 2019.

Yilun Zhou, Adithya Renduchintala, Xian Li, Sida Wang, Yashar Mehdad, and Asish Ghoshal. To-
wards understanding the behaviors of optimal deep active learning algorithms. In International
Conference on Artificial Intelligence and Statistics, 2021.

Difan Zou, Pan Xu, and Quanquan Gu. Faster convergence of stochastic gradient langevin
dynamics for non-log-concave sampling. In Uncertainty in Artificial Intelligence, 2021.

Dominik Ślęzak, Marek Grzegorowski, Andrzej Janusz, Michał Kozielski, Sinh Hoa Nguyen, Marek
Sikora, Sebastian Stawicki, and Łukasz Wróbel. A framework for learning and embedding
multi-sensor forecasting models into a decision support system: A case study of methane
concentration in coal mines. Information Sciences, 451:112–133, 2018.

255


	Acknowledgments
	Abstract
	Kurzfassung
	I Introduction
	Introduction and Contribution of this Thesis
	Introduction and Motivation
	Contribution of this Thesis
	Overall Structure of the Work

	Theoretical and Methodological Background
	Statistical Learning Theory
	Specific Regression Methods
	Linear Regression
	Feature Maps and Kernels
	Bayesian Linear Regression
	Neural Networks

	Gibbs Distributions and Statistical Distances

	Main Results and Outlook
	Main Results
	Double Descent
	Active Learning
	Sampling and Log-Partition Function Estimation

	Summary and Outlook


	II Cumulative part
	Declaration to the Cumulative Part
	On the Universality of the Double Descent Peak in Ridgeless Regression
	Introduction
	Basic Setting and Notation
	Linear Regression With (Random) Features
	A Lower Bound
	When are the Assumptions Satisfied?
	Quality of the Lower Bound

	Appendix
	Overview
	Matrix Algebra
	Experiments
	A Counterexample
	Full-rank Results for Random Weight Neural Networks
	Proofs for sec:doubledescent
	Discussion of the Main Theorem
	Proofs for sec:assumptions
	Miscellaneous
	Random Networks with Biases
	Random Networks without Biases
	Random Networks: Conclusion

	Random Fourier Features
	Proofs for sec:lowerboundquality
	Relation to Ridgeless Kernel Regression
	Novelty of the Overparameterized Bound

	A Framework and Benchmark for Deep Batch Active Learning for Regression
	Introduction
	Contributions

	Problem Setting
	Regression with Fully-Connected Neural Networks
	Batch Mode Active Learning

	Related Work
	Uncertainty Measures and Kernel Approximations
	Selection Methods
	Data Sets

	Kernels
	Base Kernels
	Kernel Transformations
	Discussion

	Selection Methods
	Iterative Selection Methods
	Specific Methods
	Discussion

	Experiments
	Comparison to Existing Methods
	Evaluated Combinations
	Best Kernels and Modes for each Selection Method
	Comparison of Selection Methods
	When should BMDAL be Applied?

	Conclusion
	Limitations
	Remaining Questions


	Appendix
	Overview
	Details on Base Kernels
	NNGP Kernel

	Details on Kernel Transformations
	Gaussian Process Posterior Transformation
	Sketching
	ACS Random Features Transformation

	Details on Selection Methods
	Iterative Selection Scheme
	Random
	MaxDiag
	MaxDet
	Bait
	FrankWolfe
	MaxDist
	KMeansPP
	LCMD

	Details on Experiments
	Data Sets
	Preprocessing
	Neural Network Configuration
	Results


	Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation
	Introduction
	Contribution
	Related Work

	Information-based Complexity
	Deterministic Evaluation Points
	Stochastic Evaluation Points

	Relations Between Different Problems
	Runtime-Accuracy Trade-off
	Relation between stochastic and deterministic evaluation points
	Relation Between Sampling and Log-partition Estimation
	Relation to Optimization

	Algorithms
	Approximation-based Algorithms
	Simple Stochastic Algorithms
	Markov Chain Monte Carlo Algorithms
	Variational Formulation for Log-Partition Estimation

	Experiments
	Log-partition Estimation
	Sampling

	Conclusion

	Appendix
	Overview
	Proofs for Introduction
	Proofs for Information-based Complexity
	Deterministic Evaluation Points
	Stochastic Evaluation Points

	Proofs for Relations Between Different Problems
	Proofs for Relation between Sampling and Log-Partition Estimation
	Proofs for Relation to Optimization

	Proofs for Algorithms
	Proofs for Approximation-based Algorithms
	Proofs for Simple Stochastic Algorithms
	Proofs for Variational Formulation


	Bibliography


