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Abstract 5

Abstract

While in recent years tremendous advancements have been achieved in the development of supervised
Machine Learning (ML) systems such as Convolutional Neural Networks (CNNs), still the most decisive
factor for their performance is the quality of labeled training data from which the system is supposed to
learn. This is why we advocate focusing more on methods to obtain such data, which we expect to be more
sustainable than establishing ever new classifiers in the rapidly evolving ML field. In the geospatial domain,
however, the generation process of training data for ML systems is still rather neglected in research, with
typically experts ending up being occupied with such tedious labeling tasks. In our design of a system for
the semantic interpretation of Airborne Laser Scanning (ALS) point clouds, we break with this convention
and completely lift labeling obligations from experts. At the same time, human annotation is restricted
to only those samples that actually justify manual inspection. This is accomplished by means of a hybrid
intelligence system in which the machine, represented by an ML model, is actively and iteratively working
together with the human component through Active Learning (AL), which acts as pointer to exactly such
most decisive samples. Instead of having an expert label these samples, we propose to outsource this task
to a large group of non-specialists, the crowd. But since it is rather unlikely that enough volunteers would
participate in such crowdsourcing campaigns due to the tedious nature of labeling, we argue attracting
workers by monetary incentives, i.e., we employ paid crowdsourcing. Relying on respective platforms,
typically we have access to a vast pool of prospective workers, guaranteeing completion of jobs promptly.
Thus, crowdworkers become human processing units that behave similarly to the electronic processing units
of this hybrid intelligence system performing the tasks of the machine part.

With respect to the latter, we do not only evaluate whether an AL-based pipeline works for the
semantic segmentation of ALS point clouds, but also shed light on the question of why it works. As crucial
components of our pipeline, we test and enhance different AL sampling strategies in conjunction with both
a conventional feature-driven classifier as well as a data-driven CNN classification module. In this regard,
we aim to select AL points in such a manner that samples are not only informative for the machine, but also
feasible to be interpreted by non-experts. These theoretical formulations are verified by various experiments
in which we replace the frequently assumed but highly unrealistic error-free oracle with simulated imperfect
oracles we are always confronted with when working with humans. Furthermore, we find that the need for
labeled data, which is already reduced through AL to a small fraction (typically ≪ 1% of Passive Learning
training points), can be even further minimized when we reuse information from a given source domain for
the semantic enrichment of a specific target domain, i.e., we utilize AL as means for Domain Adaptation.

As for the human component of our hybrid intelligence system, the special challenge we face is monetarily
motivated workers with a wide variety of educational and cultural backgrounds as well as most different
mindsets regarding the quality they are willing to deliver. Consequently, we are confronted with a great
quality inhomogeneity in results received. Thus, when designing respective campaigns, special attention to
quality control is required to be able to automatically reject submissions of low quality and to refine accepted
contributions in the sense of the Wisdom of the Crowds principle. We further explore ways to support the
crowd in labeling by experimenting with different data modalities (discretized point cloud vs. continuous
textured 3D mesh surface), and also aim to shift the motivation from a purely extrinsic nature (i.e., payment)
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to a more intrinsic one, which we intend to trigger through gamification. Eventually, by casting these different
concepts into the so-called CATEGORISE framework, we constitute the aspired hybrid intelligence system
and employ it for the semantic enrichment of ALS point clouds of different characteristics, enabled through
learning from the (paid) crowd.
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Kurzfassung

Während in den letzten Jahren enorme Fortschritte bei der Entwicklung überwachter Machine Learn-
ing (ML) Systeme wie Convolutional Neural Networks (CNNs) erzielt wurden, ist der entscheidendste
Faktor für deren Leistung nach wie vor die Qualität der gelabelten Trainingsdaten, aus denen das System
lernen soll. Deshalb plädieren wir dafür, sich mehr auf Methoden zur Gewinnung solcher Daten zu
konzentrieren, was wir als nachhaltiger einschätzen als die Entwicklung immer neuer Klassifikatoren in dem
sich schnell entwickelnden ML-Bereich. Für Geodaten wird der Prozess der Generierung von Trainingsdaten
für ML-Systeme in der Forschung jedoch immer noch eher vernachlässigt, wobei typischerweise Experten
mit solch langwierigen Annotationsaufgaben betraut werden. Bei der Entwicklung eines Systems für
die semantische Interpretation von Airborne Laser Scanning (ALS) Punktwolken brechen wir mit dieser
Konvention und entlasten Experten vollständig von jeglichen Labelingaufgaben. Gleichzeitig wird die
menschliche Interaktion auf die Instanzen beschränkt, die eine manuelle Inspektion tatsächlich rechtfertigen.
Dies wird durch ein hybrides Intelligenzsystem erreicht, bei dem die Maschine, die durch ein ML-Modell
repräsentiert wird, aktiv und iterativ mit der menschlichen Komponente durch Active Learning (AL)
zusammenarbeitet, wobei AL als Indikator für genau solche besonders entscheidenden Instanzen fungiert.
Anstatt diese von einem Experten labeln zu lassen, schlagen wir vor, diese Aufgabe an eine große Gruppe
von Laien, die Crowd, auszulagern. Da es jedoch eher unwahrscheinlich ist, dass sich genügend Freiwillige an
solchen Crowdsourcing-Kampagnen beteiligen würden, weil das Labeln von Natur aus mühsam ist, plädieren
wir dafür, Arbeitskräfte durch monetäre Anreize zu gewinnen, d.h., wir setzen bezahltes Crowdsourcing
ein. Werden hierzu entsprechende Plattformen genutzt, haben wir in der Regel Zugang zu einem riesigen
Pool potenzieller Arbeitskräfte, sodass eine rasche Erledigung der Aufgaben gewährleistet ist. So werden
Crowdworker zu menschlichen Prozessoren, die sich ähnlich verhalten wie die elektronischen Prozessoren
dieses hybriden Intelligenzsystems, welche die Aufgaben des maschinellen Anteils des Systems übernehmen.

In Bezug auf Letzteres evaluieren wir nicht nur, ob eine AL-basierte Pipeline für die semantische
Segmentierung von ALS-Punktwolken geeignet ist, sondern beleuchten auch die Frage, warum sie so
erfolgreich ist. Als entscheidende Komponenten unserer Pipeline testen und erweitern wir verschiedene
AL-Selektionsstrategien in Verbindung mit einem konventionellen merkmalgestützten Klassifikator sowie
einem datenbasierten CNN-Klassifikator. In diesem Zusammenhang zielen wir darauf ab, AL-Punkte so
auszuwählen, dass diese nicht nur für die Maschine informativ sind, sondern auch von Laien interpretiert
werden können. Diese theoretischen Formulierungen werden durch verschiedene Experimente verifiziert,
in denen wir das häufig angenommene, aber höchst unrealistische fehlerfreie Orakel durch simulierte
unvollkommene Orakel ersetzen, mit denen wir bei der Arbeit mit Menschen immer konfrontiert sind.
Darüber hinaus stellen wir fest, dass der Bedarf an gelabelten Daten, der durch AL bereits auf einen
kleinen Bruchteil (typischerweise ≪ 1% der Trainingspunkte für Passive Learning) reduziert ist, noch weiter
minimiert werden kann, wenn wir Informationen aus einer gegebenen Ursprungsdomäne für die semantische
Anreicherung einer spezifischen Zieldomäne wiederverwenden, d.h., wir nutzen AL als Mittel für Domain
Adaptation.

Was die menschliche Komponente unseres hybriden Intelligenzsystems betrifft, so stehen wir vor der
besonderen Herausforderung, dass wir es mit monetär motivierten Arbeitskräften zu tun haben, deren
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Bildungsstand und kultureller Hintergrund ebenso unterschiedlich sind wie ihre Einstellung zur Qualität, die
sie zu liefern bereit sind. Folglich sind wir mit einer großen Qualitätsinhomogenität der erhaltenen Ergeb-
nisse konfrontiert. Bei der Gestaltung entsprechender Kampagnen ist daher ein besonderes Augenmerk auf
die Qualitätskontrolle zu legen, sodass qualitativ minderwertige Erfassungen automatisch abgelehnt werden
können und akzeptierte Beiträge im Sinne des Wisdom of the Crowds Prinzips optimiert werden können.
Darüber hinaus erforschen wir Möglichkeiten, die Crowd bei der Annotierung zu unterstützen, indem
wir mit verschiedenen Datenmodalitäten experimentieren (diskretisierte Punktwolke vs. kontinuierliche
texturierte 3D Mesh-Oberfläche) und zielen auch darauf ab, die Motivation von einer rein extrinsischen
Natur (d.h. Bezahlung) zu einer eher intrinsischen zu verlagern, die wir durch Gamification auslösen wollen.
Indem wir diese verschiedenen Konzepte in das so genannte CATEGORISE-Framework einbringen, bilden
wir schließlich das angestrebte hybride Intelligenzsystem und setzen es für die semantische Anreicherung
von ALS-Punktwolken mit unterschiedlichen Eigenschaften ein, was durch das Lernen von der (bezahlten)
Crowd ermöglicht wird.
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Chapter 1

Introduction

1.1 Motivation

In the last three decades, Machine Learning (ML) systems, both from the feature-driven and data-driven
domain, with Convolutional Neural Networks (CNNs) as their currently most prominent representative,
have experienced considerable attention in research. As a result, the performance of machines with minimum
error rates even exceeds that of human beings (Russakovsky et al., 2015a). Thus, such systems have already
become, or will become, essential in everyday life, such as for autonomous driving, speech recognition, or
simply for generating watching proposals on streaming platforms or buying suggestions. However, the success
of respective ML models solely stems from learning from versatile corpora of annotated training data. Hence,
purely tuning the architecture of ML models as mere tools to infer interrelationships from data, will have
only limited effect when the underlying training set is of suboptimal quality, e.g., being too specific for proper
generalization (for instance, in case of simulated closed world scenarios) or simply being poorly labeled. For
this reason, Ng (2021) only recently advised paying more attention to the careful creation of training data in
such a manner that the development of ML systems is more of data-centric nature instead of being mainly
model-centric. Following this mindset, companies focusing on data collection, such as Google, have a clear
advantage in generating the most successful ML systems. Actually, in our everyday online life, we are not
only entangled with ML on an operative level, but are also actively involved in Google’s collection of training
data by means of reCAPTCHAs (von Ahn et al., 2008), which are typically encountered as turing test to
block spammers or malicious access attempts. But since such companies tend to not allow a wider public to
access their data pools, efforts have been made to build large-scale and freely available training data sets
such as ImageNet (Deng et al., 2009; Russakovsky et al., 2015a).

Typically, the generation of training data and the teaching of an ML model based on that data are
considered two separate and self-contained steps, with the latter being far more prominent in research
than the supposedly simple but tediously perceived annotation process. But in fact, great potential lies in
considering these two processes as entangled in the form of a symbiotic circle, with each aspect, i.e., both
the ML model and the labeling engine, drawing advantage from working together. This aspired interaction
roots from the capability of the machine to scan through massive amounts of data to identify those samples
that can play an important role in forming a strong separation hypothesis between different classes. If the
machine is allowed to communicate with the labeling engine, annotation effort can be focused on only those
most informative samples the machine actually profits from, offering the potential to drastically minimize
the amount of labels that are actually required. This link between the two actors, i.e., the ML model and the
so-called oracle capable of providing answers to queries from the machine, is established by means of Active
Learning (AL) (Settles, 2009). Such an iterative learning scheme assumes exactly this active interaction
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between the two parties standing opposed to the conventional Passive Learning (PL) concept, where a static
training set potentially lacking most critical examples while possibly containing redundant information is
expected to be sufficient for the task at hand.

While the AL scheme is a viable alternative to boost the efficiency of ML models, it still requires the
involvement of a human operator in the process, assuming the role of the oracle that is responsible for
returning labels to the machine. Typically, this is accomplished by respective experts of the data in question
(Waldhauser et al., 2014). Although their labeling burden can already be minimized through AL, significant
effort is still needed. In a scalable approach, we would therefore split the task into many subtasks that
can be quickly completed in parallel by a multitude of different annotators. Thus, each of these individual
annotators acts as a human processing unit, behaving similarly to electronic processing units (Gingold et al.,
2012) as employed for the ML part. When linking those electronic and human processing units by means
of AL, we receive a hybrid intelligence system (Vaughan, 2018), where both parties are concerned with the
task they are at their best, i.e., the unsurpassed interpretation capabilities of humans and the machine’s
ability for quick completion of well-defined, repetitive tasks for exploring vast data sets, with especially
uncovering most informative examples and building automated ML models upon them (Waldhauser et al.,
2014; Russakovsky et al., 2015b).

Although the necessary amount of labeling effort would be significantly reduced for each individual
expert, from a practical point of view, running such an expert-driven system is infeasible as it is unlikely
that enough experts of a designated field would actually participate. But even if so, the time complexity,
mainly depending on the labeling speed of the experts who are predominantly occupied with other tasks,
can be significant. Thus, and since the greater goal is to completely lift the burden of data annotation from
experts, we need to turn to another, potentially larger audience, i.e., the crowd (of internet users), which is
already involved in non-expert data annotation in context of the aforementioned reCAPTCHAs. Apart from
this often unconscious participation of the crowd, tasks can be explicitly offered to workers on a voluntary
basis. However, in case of such volunteered crowdsourcing, a lack of participants is also likely whenever the
task is not as appealing as in citizen science projects such as the SETI@home project (Korpela et al., 2001),
but rather concerns labeling tasks that are tedious by design. In this context, paid crowdsourcing offers a
viable alternative. The idea is that tasks are outsourced to prospective contributors by means of an open
call, offering them a certain amount of payment in return. This is intended to act as an extrinsic incentive
instead of an intrinsic one in the volunteered crowdsourcing scenario. Building the AL oracle on such a paid
crowdsourcing system thus offers the possibility to form a practical hybrid intelligence system that runs in a
fully automated manner (from the view of the system operator). Although human beings, i.e., crowdworkers,
are part of this system, these human processing units behave just like the electronic ones and deliver timely
results due to the vast pool of available workers on the internet, where it is guaranteed to find enough
participants to complete campaigns.

However, the special challenge of hybrid intelligence systems is the integration of non-deterministic com-
ponents, i.e., human processing units, requiring special attention to this human aspect with respect to au-
tomated quality control (Waldhauser et al., 2014; Ye et al., 2017). This issue becomes even more difficult
when we confront non-experts (i.e., the crowd) with rather special data, such as geospatial data, which
typically incorporates an unfamiliar perspective on actually known environments. Even more severe, in case
of (colorized) 3D Airborne Laser Scanning (ALS) point clouds, crowdworkers are additionally required to
have a certain interpretation capability of 3D data, which cannot necessarily be expected as given. How-
ever, geospatial 3D data is exactly the field of application in which such a hybrid intelligence system could
empower the true potential of modern ML systems by generating suitable training data on the fly, since
despite recent efforts to provide open, large-scale and fine-grained labeled data sets (Niemeyer et al., 2014;
Actueel Hoogtebestand Nederland, 2021; Zolanvari et al., 2019; Varney et al., 2020; Ye et al., 2020; Kölle
et al., 2021a), such representatives are still scarce.
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1.2 Objectives

This thesis is dedicated to establishing such a hybrid intelligence system for the special case of remote
sensing data, and more precisely for the automated semantic segmentation of ALS point clouds, as depicted in
Figure 1.1. Thus, a respective framework is to be developed to build up an ML model capable of enriching an
arbitrary point cloud (cf. Figure 1.1, top) with semantic information (cf. Figure 1.1, bottom). This framework
is intended not only to minimize the need for labeled data to a small fraction of training points (cf. Figure 1.1,
middle), but also to completely lift the obligation of expert involvement in any labeling task. By formulating
such a system, we consequently aim to put an end to the long-held understanding in remote sensing that
providing training data is an expert’s burden that is to be dealt with in a first self-contained step as
prerequisite to employ a respective ML model (Waldhauser et al., 2014). To this end, we bring together
two research fields in which we identify our contributions as follows:

Active Learning for 3D Point Cloud Semantic Segmentation

� While AL is a well-studied topic for the semantic enrichment of remote sensing imagery, only little
work has been conducted with respect to applying AL for 3D point cloud semantic segmentation.
Consequently, we aim to explore the capabilities of AL in this domain to significantly reduce the
amount of necessary labeled training data and shed light not only on the question as to whether it
works, but also as to why it works (Kölle et al., 2021a).

� Since the most crucial step of any AL system is the identification of most informative points that are
sufficient to train an ML model with a similar performance as one trained on a vast amount of labeled
training samples in a PL scenario, we compare the suitability of different sampling strategies found in

Figure 1.1: An overview of the subject of this thesis: from any given point cloud (top), we aim to derive a semantic
segmentation (bottom) with a limited number of point-wise training samples (middle), which are generated without
the involvement of an expert in labeling. This is achieved in context of a hybrid intelligence system constituted by
linking the crowd with an ML model by means of AL.
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literature and enhance those with add-ons to boost their performance. In this regard, we exploit the
properties of our geospatial data to derive sampling strategies that are not only optimal for the machine
part by selecting only most informative samples, but we also aim to facilitate the labeling process by
selecting points that are easier to label for a human operator, i.e., the crowd. This means we tailor point
queries to our specific needs of non-expert human processing units in the hybrid intelligence system
we advocate for. Evaluation of these sampling strategies is conducted in tandem with a classifier both
from the conventional feature-driven domain as well as from the data-driven domain. This allows us to
give a recommendation of the more efficient classifier in our special AL scenario (Kölle et al., 2021a).

� Although AL is an efficient means to minimize the number of training labels required, resources are
still wasted when an ML model has to be established from scratch for any new data set, which is
typically the case since training an ML model that generalizes well across multiple different data sets
is still an open research question. To ease this hindrance, we explore the capabilities of an AL-based
transfer technique, Active Transfer Learning (ATL), that utilizes labeled samples from a source domain
whenever they are meaningful for the target domain, but that also eliminates conflicting source domain
samples while also identifying most informative samples from the new and unexplored target domain
(Kölle et al., 2022).

� We lift the assumption of most research in AL, which expects an error-free agent that always returns
true labels for the queries posed by the machine, which is completely unrealistic in a practical scenario
where humans (whether they are experts in the field or not) are tasked with labeling (Marcus and
Parameswaran, 2015). Therefore, on one hand, we simulate different error behaviors of the oracle to
gain a realistic estimation of theoretically reachable accuracies. On the other hand, we turn away from
any sort of simulated offline labeling engine and embrace a real human crowd as viable alternative,
leading us to our second research branch (Kölle et al., 2021a,b).

Paid Crowdsourcing for the Interpretation of 3D Geospatial Data

� When (paid) crowdworkers are intended to act as oracles in an AL scenario, this also requires to design
intuitive labeling tools that are easily comprehensible for non-experts, which is acknowledged to be an
often overlooked challenge (Kittur et al., 2008). In this regard, having to confront crowdworkers with
3D data even amplifies this challenge, since although the dissemination of 3D data through geospatial
services (such as Google’s) might have fostered an understanding of such data, it is still likely that a
considerable fraction of workers are not familiar with this kind of data. In developing tools suitable
for crowdsourced 3D data annotation, we enter thus almost uncharted territory. In this context, and
also motivated by Google’s 3D data presentation, we explore whether it is beneficial to illustrate
individual points to be labeled not only by the obvious choice of the 3D (colored) point cloud, but by
a continuous and well-textured surface representation, i.e., a 3D textured mesh, as it is the case for
Google’s geospatial services (Kölle et al., 2021b).

� Since crowdsourcing tasks come with the inherent issue of quality inhomogeneity of collected data,
this is especially to be accounted for. While it would be straightforward having an operator check
the results of crowdworkers, this would drastically diminish the appeal of crowdsourcing. Thus, such
quality control measures should be capable of working in an automatic manner without the need for
operator involvement. To this end, we make use of measures for quality control both on task designing
(which is related to the previous bullet) as well as in post-processing, specifically by implementing the
idea of the Wisdom of Crowds (Howe, 2006) to receive high-quality labels (Kölle et al., 2021b).

� While both volunteered and paid crowdsourcing campaigns suffer from inhomogeneity of contributed
data, the motivation of crowdworkers is significantly different in the two concepts (intrinsic vs. extrin-
sic), where we suppose that a paid, i.e., an extrinsically motivated worker, operates less carefully than
one being intrinsically motivated. Therefore, we try to stimulate the motivation of our workers by means
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of gamification, with the intention of both receiving results of better quality and luring workers to play
just one more time (von Ahn and Dabbish, 2008). Although creating an enjoyable (labeling) game is a
challenging endeavor, in the geospatial domain, we are fortunate as virtual 3D worlds, typically found
in games, can be created just by visualizing our everyday 3D data (Walter et al., 2022a).

� Since we postulate that a hybrid intelligence system linking the machine part and the paid crowd
through AL is suitable to completely relief an expert from any labeling duties and can run fully
automatically, at least from the view of the operator (where human work can be considered as running
human processing units), we also discuss the practical aspects that are required to actually run such
a system. The resulting framework denoted as Crowd-Based Active Learning for Point Semantics
(CATEGORISE) can also serve as one possible blueprint when such a system is to be established for
a similar or related task of enabling ML in the geospatial domain (Kölle et al., 2021b).

1.3 Outline

As the purpose of this thesis is the formulation of a hybrid intelligence system by combining the individual
fields of paid crowdsourcing with automated 3D point cloud semantic segmentation through AL, these are
also the units structuring this thesis. We start with a comprehensive review of the current state of the
art in these research fields in Chapter 2. This is followed by a detailed discussion of our methodology in
Chapter 3, addressing both the human and the machine component of the hybrid system. As it is built upon
an AL backbone, we begin this chapter with a comprehensive discussion of all AL related aspects to efficiently
focus manual labeling effort on only those instances that actually justify human processing. To minimize such
human involvement even further, we also apply a re-formulation of conventional AL runs to become suitable
for conducting ATL. With regard to our human processing units (i.e., the crowdworkers) in this system,
special emphasis is placed on measures to ease labeling as much as possible, to boost our crowdworkers’
intrinsic motivation and to work towards a high-quality crowd-based data acquisition by means of various
automated quality control methods.

After briefly presenting our data sets of interest in Chapter 4, consequently our experimental part in
Chapter 5 is structured in the same manner as before. To estimate the theoretical performance of AL for
3D point cloud segmentation, we first evaluate results solely with respect to the machine part, without
relying on real crowdworkers, but simulate imperfect oracles instead. Subsequently, we will focus exclusively
on the outcome when real paid crowdworkers are engaged in 3D point cloud interpretation, before eventually
evaluating the performance of a real-world hybrid intelligence system powered by paid crowdworkers. We
dismiss the reader with a conclusion of the presented work in Chapter 6, as well as a discussion of limitations
of our work potentially providing sparks for future research.
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Chapter 2

Related Work

In context of creating the aspired hybrid intelligence system, a multitude of different components need to
be considered and different concepts of literature need to be combined to succeed. For one, this affects
establishing a powerful human processing unit (used interchangeably with the term crowd engine in the
following) that is supposed to teach the machine part. Thus, the human aspect should perform as error-
free as possible, which can be an obstacle when non-experts are intended to interpret unfamiliar geospatial
data (Section 2.1). Hence, special measures are to be taken into account to guarantee high-quality results
(Section 2.2) and to have access to a corpus of crowdworkers that is large enough to complete the task at
hand (Section 2.3). The second part of the hybrid intelligence system (Section 2.4) is then to employ an ML
scheme that is suitable for querying the crowd engine only when necessary (Section 2.5), and that makes use
of pre-existing information whenever possible (Section 2.6 & 2.7) to finally develop a powerful ML algorithm
for 3D point cloud classification (Section 2.8).

2.1 Crowdsourcing Geospatial Information

The broad dissemination of the Web 2.0 paradigm, with the internet no longer being seen only as a source
of information made available by specific providers, but also allowing individual users to actively contribute
information, has led to a whole new era of internet content and usage (Wilson et al., 2011). Nowadays, the
internet is especially utilized as means for information sharing and collaboration. Thus, Web 2.0 promotes
and enables new working concepts such as crowdsourcing, which means outsourcing tasks originally assigned
to individuals or a single institution to a large group of persons, i.e., the crowd. Although the crowdsourcing
term was only coined in 2006 by Jeff Howe (Howe, 2006), its basic concept has been successfully applied in
the past as well. For instance, in 1714, the British Parliament posted the so-called longitude act - an open call
to solve the problem of exactly determining a ship’s longitude at sea, which had been a persisting problem
for decades and was finally solved by an individual member of the crowd, John Harrison, by engineering a
highly precise clock (Spencer, 2012).

Basically, the same idea is still being pursued by modern crowdsourcing campaigns on dedicated platforms
such as Wazoku1 (formerly InnoCentive at the time of examination by Vignieri (2021)) or Upwork2. But
nowadays solutions are often built by a large corpus of crowdworkers acting in a collaborative manner,
e.g., for creating and further developing of publicly available software (Carillo and Okoli, 2008). Often,
comprehensive tasks one single person may not be capable of performing alone are split into many subtasks
(referred to as microtasks) that are completed by individuals, thus forming a distributed computing engine

1https://www.wazoku.com/
2https://www.upwork.com/

https://www.wazoku.com/
https://www.upwork.com/
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(Kittur et al., 2011; Allahbakhsh et al., 2013) or human cloud computing engine (Hoßfeld et al., 2011).
Prominent examples are related to the concept of citizen science, where interested individuals assist research,
for instance, by scanning large data volumes for extraterrestrial radio sources as pursued by the SETI@home
project (Korpela et al., 2001). Similarly, projects such as GeoWiki3 and Ushahidi4 (Okolloh, 2009) aim to
rely on volunteers to conduct environmental monitoring (e.g., volunteers are asked to identify reasons for
deforestation of the Amazon forest by analyzing satellite imagery), to map observations of locals to enable
post-crisis responding or to georeference irregularities of elections.

Also, the crowd equipped with appropriate sensors (crowd sensing) can become a network of monitoring
devices (Resch, 2013), like the GeigerCrowd project created in the aftermath of the Fukushima incident.
Goodchild (2007) branded this kind of user-generated crowdsourced geodata as Volunteered Geographical
Information (VGI), which has established itself in the geospatial domain (See et al., 2016). Its most prominent
example is OpenStreetMap (OSM) (Haklay and Weber, 2008; Budhathoki and Haythornthwaite, 2012), where
users from all over the globe collaborate for generating comprehensive and freely available map data, which
is often of higher detail richness and more up-to-date than conventional map data from National Mapping
Agencys (NMAs) (Antoniou and Skopeliti, 2015). This also explains the interest of NMAs in incorporating
the crowd for authoritative data to cover the increasing need for highly detailed and up-to-date maps, which
were already identified to be costly (Bomford, 1980) but inevitably necessary (Bossler et al., 1990).

However, the main concern of NMAs and also a hot recent research topic is the quality (Goodchild and
Li, 2012; Fan et al., 2014; Senaratne et al., 2016) and thus credibility (Flanagin and Metzger, 2008; Leibovici
et al., 2017) of crowdsourced (geospatial) data. The crowd is composed of a multitude of individuals from
different cultures, of different ages and each having their own educational history (Kittur et al., 2008).
Although this inherent diversity is often an advantage in yielding a representative result (Howe, 2006), it
also leads to heterogeneous data quality (Howe, 2006; Goodchild, 2007; Haklay and Weber, 2008; Shaw et al.,
2011; Dorn et al., 2015; Fonte et al., 2017; Chandler and Paolacci, 2017; Chandler and Kapelner, 2013). This
is because crowdworkers are often not acquainted with specific data concepts (such as geodata) (Hashemi
and Abbaspour, 2015), and acquisition standards are often omitted (Antoniou and Skopeliti, 2015) in favor
to not deter eager individuals (Fonte et al., 2017). More severely, there might be inattentive crowdworkers
(Fleischer et al., 2015) or even malicious crowdworkers deliberately delivering false input (Hirth et al., 2013;
Welinder et al., 2010b; Whitehill et al., 2009). Also affecting the trustworthiness of crowdsourced projects
(such as OSM’s) is that oftentimes considerable content is created by a small number of contributors (Haklay
and Weber, 2008), often referred to as power of the elites (Basiri et al., 2019; Whitehill et al., 2009), possibly
resulting in a biased data base.

If crowdsourced data is to be combined with, or is even to replace, NMA data (Waldner et al., 2019), it
needs to achieve a certain level of trust (at a level similar to NMA data) and it also needs to be accepted that
in favor of detail and up-to-dateness, some errors might be present (Cho and Crompvoets, 2019). For gaining
more trust, data quality of crowdsourced mapping projects such as OSM is extensively studied and general
concepts of impact factors, quality assessment and assurance are developed (Daniel et al., 2018). Although
quality measures for conventional geodata such as completeness, logical consistency, positional accuracy,
temporal accuracy, and thematic accuracy (Antoniou and Skopeliti, 2015; Fonte et al., 2017) are to be
considered for crowdsourced geodata as well, evaluating these measures against a gold standard is demanding
since respective reference data, for example, the one provided by NMAs, is often not suitable for direct
comparison due to lower detail richness and temporal inaccuracies. Hence, research shifts to identification
of intrinsic quality measures (e.g., in case of OSM: frequency of modifications of specific objects, population
density in the respective area of the object or experience of the contributor (Antoniou and Skopeliti, 2015)).
Often, this is challenging, since even if crowdworkers agree on a result, it might differ from actual Ground
Truth (GT) (Salk et al., 2015).

3https://www.geo-wiki.org/
4https://www.ushahidi.com/

https://www.geo-wiki.org/
https://www.ushahidi.com/
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2.2 Ensuring Quality of Data when Generated by Lay Workers

To guarantee quality of crowdsourced data, Zhang et al. (2016) distinguish between quality control on task
designing and quality improvement after data collection. An overview of such methods can also be found in
the work of Chandler et al. (2013).

Quality control on task designing can naturally be realized by posting the task in a manner that is easy to
understand for non-experts, which concerns both the data they have to work on and the specific action that is
required (Sorokin and Forsyth, 2008). Sorokin and Forsyth (2008) and Allahbakhsh et al. (2013) recommend
a cheat-proof task design and suggest filtering of participating groups by employers. Typical measures for
guaranteeing quality are qualification tests (Patterson et al., 2014; Estes et al., 2016; Endres et al., 2010),
a training stage which needs to be completed in advance of the task and/or inclusion of tasks where true
answers are already known (Sorokin and Forsyth, 2008; Estes et al., 2016; Gebru et al., 2017; See et al., 2013;
Hirth et al., 2013; Zhou et al., 2014; Salk et al., 2015; Marcus and Parameswaran, 2015; Vondrick et al.,
2012). The inclusion of such a gold standard or sentinel operations (Gingold et al., 2012) might also help to
determine skill levels for individual participants. In the same spirit, another intrinsic quality measure can be
easily realized by presenting certain data points multiple times to the same crowdworker to assess whether
the results are consistent (See et al., 2013). Although time spent on conducting specific tasks might indicate
careless task completion, See et al. (2013) argue that this measure is not suited for quality control since it
also expresses skill of contributors, so that malicious and good faith contributions are hard to distinguish
(Kittur et al., 2008).

A straightforward implementation of the second concept, quality improvement after data collection, are
reviews of already submitted tasks by either an expert (e.g., the employer) or other crowdworkers, which
might help in discarding false results (Liu et al., 2018; Russell et al., 2007). More sophisticated methods are
often based on the idea of the Wisdom of the Crowds, first mentioned by Galton (1907) and elaborated for a
multitude of applications by Surowiecki (2004). It basically means that a group of independent individuals
is capable to bring forth results of similar (or even better) quality than any single (expert) member of that
group. This concept is related to Swarm Intelligence as can be observed in nature (Krause et al., 2011;
Simons, 2004), but this term is only partly valid for production of crowdsourced data, because the Swarm
Intelligence arises from the collaboration of independent individuals (Krause et al., 2010; Ikeda et al., 2016),
which is not necessarily the case for crowdsourced projects.

The consequent translation of the Wisdom of the Crowds paradigm to a rule of action for crowdsourced
data acquisition would be to multiply a given task, propose it to a corresponding number of crowdworkers
and aggregate those contributions, which can lead to high-quality results (Sorokin and Forsyth, 2008) - the
more (reasonable) contributors, the better (Sheng et al., 2008). In case of assigning a finite set of classes
to an entity, i.e., labeling or categorization, the simplest approach for aggregation is majority voting and
plurality voting in the non-binary case respectively (Parhami, 1994). When collecting free-form geometries
where an infinitely high number of forms is possible, aggregation can be achieved by conflation (Xavier et al.,
2016). More sophisticated methods aim to estimate and consider individual worker quality scores to form
a weighted consensus (Dawid and Skene, 1979; Zhou et al., 2012; Zhang et al., 2016; Zheng et al., 2017)
and allow the detection of noisy submissions or malicious workers (Whitehill et al., 2009). However, the
procedure is limited by the requirement that each crowdworker labels multiple instances (e.g., 40 in case of
Zhou et al., 2012) in order to reasonably estimate his confusion behavior. Hence, majority voting is often
preferred (Sheng et al., 2008; Deng et al., 2014; Zheng et al., 2017; Hecht et al., 2018; Hirth et al., 2013;
Marcus and Parameswaran, 2015; Endres et al., 2010). Oftentimes, such results achieve the same level of
quality (or, vice versa, the same level of noise in case of ambiguities) as contributions from experts (Snow
et al., 2008; Mao et al., 2013; See et al., 2013; Walter and Soergel, 2018; Raykar et al., 2010). An inherent
drawback of this approach, on the other hand, is increased costs due to assigning the same task to multiple
crowdworkers. Recent research aims to evaluate from how many repetitions the effect of the Wisdom of the
Crowds kicks in (van Dijk et al., 2020; Walter et al., 2022b). Related to this concept is Linus’ Law, which
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suggests that for long-term projects such as OSM, errors will eventually be identified by other users and
eliminated (Haklay et al., 2010; Goodchild and Li, 2012).

2.3 Motivating the Crowd to Contribute

For the aforementioned crowdsourcing projects, the incentive of individuals for participating is of intrinsic
nature. Often, crowdworkers are eager to contribute for getting a feeling of community, referred to as heavy-
weight collaborators in contrast to lightweight members of the crowd (Budhathoki and Haythornthwaite,
2012). Others get involved out of curiosity to take part in appealing endeavors (Korpela et al., 2001), to
contribute to a humanitarian cause and out of their wish to help others (De Albuquerque et al., 2016). Also,
the creation of tools helpful for everyday life such as Wikipedia (competing with conventional encyclopaedias
(Giles, 2005)) or OSM (Haklay and Weber, 2008; Herfort et al., 2016; Duggan, 2019), where many users
strive to fill gaps on maps (Budhathoki and Haythornthwaite, 2012), can be appealing offers.

Consequently, this poses the question of how to properly leverage the human computing capacity of
crowdworkers to conduct tasks that might not be appealing by design such as labeling of data. Stork (1999)
raises the hope that volunteers can be motivated for labeling, just like for citizen science projects when
contributors can watch the system gradually developing its interpretation capabilities in analogy to parents
watching their child evolve. Russell et al. (2007) propose an open, web-based and ML-supported tool for
object annotation, LabelMe, where submissions become instantly available as part of the dynamic LabelMe
data base, which might be appealing at least for the members of the Computer Vision (CV) community.

An elegant way to engage the wider public in an annotation campaign is to embed labeling tasks in
everyday actions, that is security checks in the form of CAPTCHAs (von Ahn et al., 2003). These are often
used on websites to prove that requests are prompted by a human and not a machine, by solving a simple task
(with known result) computers are supposed to be not capable of. Von Ahn et al. (2008) suggest requesting
answers to not one but two CAPTCHA tasks (referred to as reCAPTCHA), where the answer of the second
task is unknown and given by the operator without being informed which task is actually required to pass
the test. Usually, those new tasks are presented to multiple crowdworkers to integrate results. Hillen and
Höfle (2015) demonstrated that the reCAPTCHA concept is also suitable for more complex annotation of
free forms in aerial images, underlining the power of this concept. The challenge for such projects is to
sufficiently disseminate one’s own reCAPTCHA model among frequently visited websites competing with
other providers such as Google.

2.3.1 Increasing the Audience via Gamification

Another idea to attract more participants in campaigns can be gamification (Marczewski, 2013). This means
using gaming elements, such as points, badges, ranks, leader boards, levels, etc. (Feyisetan et al., 2015) in
non-gaming environments (Deterding et al., 2011), which optimally creates a citizen science level incentive
for arbitrary tasks (Chamberlain et al., 2013). The first most prominent representative of this concept is the
ESP game developed by von Ahn and Dabbish (2004). The authors pursue the idea of exploiting the desire
of humans to be entertained (i.e., to play games) by means of a game-with-a-purpose (von Ahn and Dabbish,
2008). The game is meant for labeling/tagging images on the internet in an online multiplayer setting where
two players (randomly matched) collaborate to find a common keyword for an image presented to both
players in order to proceed and score. To increase the number of keywords and thus yield more specific
descriptions, each image is part of multiple game rounds, where previously created keywords are introduced
as taboo words. If only one player is currently online, he is matched with a bot, which is a recording of a
previous game session of a real player. The authors emphasize that this concept is suitable for labeling all
images on the internet (in 2004) in a matter of weeks, underlining the great potential of gamification in
context with crowdsourcing.
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Von Ahn et al. (2006a) demonstrated that even more detailed descriptions can be achieved when changing
the concept from an output agreement to an inversion problem game concept given by the Phetch game.
Here, one player describes an image to another player, who is supposed to identify this image among others
based on this very description. Further refining the idea of the ESP game from what is depicted in an image
to where the depicted object is located in the image leads to the Peekaboom game (von Ahn et al., 2006b).
Again, a two player setting is created, where one player (Boom) gradually reveals parts of an image and
the other player (Peek) is supposed to guess a specific keyword (the one assigned to this image in the ESP
game). Consequently, by playing Peekaboom, the crowd adds object locations (eventually bounding boxes or
hinting arrows) to labeled images of the ESP game, which are obtained by aggregating results of multiple
game sessions. In the same spirit, and inspired by eye-tracking, in the Bubbles game (Deng et al., 2013, 2016)
players are confronted with a blurred image depicting a bird and are asked to assign it to one of two rather
similar bird breeds by de-blurring those spots they believe to be helpful for determining the correct class.
To encourage focusing on most expressive parts of the image, de-blurring causes a penalty.

However, creating an enjoyable game can be a time-consuming and complex endeavor (Prandi et al.,
2015). Also, Thaler et al. (2012) identified the challenge to design a long-term motivating game that involves
performing tedious tasks such as labeling. Game creators need to decide which gaming elements should be
included and to what degree these measures contribute to the will of users to play it just one more time, as
von Ahn and Dabbish (2008) formulated (Sailer et al., 2013, 2017). Among the most favored elements are
earning points, time limits and leader boards (Morschheuser et al., 2017), which have proven to be important
to many members of online communities (Lampel and Bhalla, 2007). The significance of a proper choice
of such elements can be demonstrated by means of leader boards. An all-time leaderboard indeed boosts
motivation of most frequent players, but at the same time, significantly demotivates occasional players never
able to reach top positions, which can be avoided by using short-term leader boards (Chamberlain et al.,
2013; Morschheuser et al., 2017). The authors also argue that rich game elements could soon cause frequent
players to lose interest in the game due to the redundancy and thus boredom of such elements.

Since playing on familiar maps, such as those of one’s hometown, can often lead to an even more immersive
and fun experience, gamification is frequently realized in terms of location-based games (Leorke, 2019) within
VGI projects. Examples can be found for creating accessibility maps by means of the Geo-Zombie game
(Salomoni et al., 2015; Prandi et al., 2015), for collecting indoor data (Martella et al., 2015) or points of
interest such as building entrances with the GeoSnake game (Matyas et al., 2011), or for point-based in-
situ land cover and land use maps (Bayas et al., 2016). But fun alone is often not a sufficient incentive
to lure a large enough number of workers to contribute more than occasionally, which is why physical or
monetary awards are often granted (Salomoni et al., 2015). This especially holds true if a location-based
game is not realizable and for tedious labeling tasks. Therefore, Salk et al. (2015) grant physical awards for
top leaderboard ranks in their Cropland Capture game, similar to the strategy of Bayas et al. (2016).

2.3.2 Paid Crowdsourcing

Although gamification might attract some crowdworkers, it is unlikely to motivate enough participants for
massive labeling campaigns (Kittur et al., 2013), often required for generating training data for ML. The
willingness to contribute might also be influenced by the nature of the task and even the identity of the
proposer of the task (Horton and Chilton, 2010). For instance, when a private commercial employer launches
an inherently tedious labeling campaign, it is likely to be doomed to fail due to lack of contributions.
As a remedy to such situations, the concept of paid crowdsourcing (cf. Figure 2.1) was developed, which
promises easy access and motivation of crowdworkers through payment, and where tasks are typically quickly
completed. The most prominent realization of this idea is Amazon Mechanical Turk (MTurk), which can be
considered to be the mediator between an employer and the crowd (i.e., registered users), and minimizes the
technical overhead of the employer (Chandler et al., 2013).
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Figure 2.1: General concept of paid crowdsourcing. An employer submits tasks to be completed to a respective paid
crowdsourcing platform along with the payment for the complete campaign. By relying on the platform, the employer
can decide to offer the task to a specific group of workers only, who will then return their results to the employer.
After data acquisition, the employer is given the opportunity to rate submitted tasks (content/not content), thus
prompting or denying payment through the crowdsourcing platform (indicated by dashed red arrows).

Using the platform, the employer posts campaigns as an open invitation (i.e., crowdworkers decide whether
they would participate) and defines necessary parameters, such as the amount of payment, and possibly limits
the group of targeted persons (e.g., living in a specific country or having a certain reputation score). Although
campaigns are usually quickly completed as a whole, submission of results often shows a long-tail behavior
(Ipeirotis, 2010b; Wang et al., 2011), where most work is completed by only a few different annotators
(Sorokin and Forsyth, 2008). After submission of processed tasks, the employer prompts payment for the
workers through the platform if satisfied (cf. Figure 2.1), and may award a bonus (depending on quality)
(Geiger et al., 2011). The remuneration of workers typically amounts to a few cents per task, e.g., Mao et al.
(2013) recommend $0.10 , while others suggest estimating the required time for completing a task and paying
U.S. minimum wage (Salehi et al., 2015). According to Haralabopoulos et al. (2019), the median payment
on MTurk is $1.38 /h. Although sometimes criticism arises around the payment rate, clear advantages for
crowdworkers are the flexibility that they can perform interesting tasks at any time and that they can make
use of spare time (Chandler et al., 2013), e.g. while riding the train. Please note that a discussion of ethics
of paid crowdwork is beyond the scope of this work and can be found in Kittur et al. (2013), for instance.

With the payment being the main incentive of crowdworkers, its influence on performance is in focus.
Horton and Chilton (2010) found that a higher payment does not lead to a better level of quality as one
would hope, but on the contrary, lower wages might even be preferable for non-attractive tasks (Mason and
Watts, 2009). This is to encourage that only interested workers participate, for whom payment is not the
main factor, and to not attract inefficient workers focusing solely on maximizing their income (Sorokin and
Forsyth, 2008). However, a higher payment usually corresponds to more work being done and results in
faster completion of a campaign (Mason and Watts, 2009; Walter and Soergel, 2018). Generally, Ye et al.
(2017) observed that crowdworkers perform best when they believe that they are paid fairly. Furthermore,
crowdworkers show different behavior depending on the applied compensation model, like payment based on
the number of annotations or based on time spent, and found a time-based model to yield a better quality of
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results (Mao et al., 2013). Additionally, crowdworkers react both to positive extra incentives such as granting
boni (Harris, 2011), which need to be sufficiently high to be motivating (Ho et al., 2015), and to negative
incentives, e.g., denying boni or payment at all and thus harming reputation score (Shaw et al., 2011). For
the latter, Shaw et al. (2011) and Suri et al. (2011) found that crowdworkers pay special attention whenever
they are informed about quality measures, but without disclosing the assessment. For evaluating whether
boni are granted, the agreement with results with other workers (Radanovic et al., 2016; Raykar et al.,
2010) or with a gold standard might be used. Also, other crowdworkers can be asked to grade submissions
in order to decide on payment (Sorokin and Forsyth, 2008). Since not only the payment but also the social
background of crowdworkers might influence results, Ipeirotis (2010a) and Hitlin et al. (2016) analyzed the
demographics of MTurk. Interestingly, Haralabopoulos et al. (2019) have demonstrated that crowdworkers
with a low income contribute results of low quality at a higher pace than workers having a higher income.

Compared to volunteered crowdsourcing projects, usage of paid crowdworking amplifies the importance
of quality control, since although paid crowdworkers try to reach or maintain a reasonable reputation score
(Mao et al., 2013), they are often less reliable than volunteered crowdworkers (Redi and Povoa, 2014). Even
worse, thanks to the general anonymity of online crowdsourcing marketplaces (Chandler et al., 2013), just
creating a new account might be a viable solution when having a low score (Suri et al., 2011). Respective
crowdworkers are often referred to as satisficers in the paid crowdsourcing scene who only show minimum
effort (Chandler et al., 2013; Marcus and Parameswaran, 2015) while trying to maximize their income
(Gingold et al., 2012). For instance, Kittur et al. (2008) found that up to 30% of submissions might be of
low quality. Hence, the aim of some crowdworkers may be primarily to ”game the system” (von Ahn et al.,
2006b; Kittur et al., 2008). This tendency of crowdworkers to be dishonest whenever this leads to higher
payment is also observed by Suri et al. (2011) and occurs especially when eligibility questions for highly paid
tasks are in place (Chandler and Paolacci, 2017; Sharpe et al., 2017).

Paid Crowdsourcing & Gamification

Although seeming counterintuitive due to extrinsic motivation often overriding and diminishing intrinsic
motivation (Frey and Jegen, 2001), the concept of paid crowdsourcing is sometimes paired with gamification
(e.g., Deng et al., 2013), actually supposed to be motivation enough. Eickhoff et al. (2012) distinguish
between i) purely money-driven and ii) entertainment-driven workers seeking diversion, for whom monetary
remuneration is not the primary incentive, and argue that gamification appeals mainly to the second group
of workers. The rationale of enriching paid crowdsourcing by gamification is to lure workers to conduct extra
free work (thus minimizing costs) and to also (optimally) increase quality of results through a higher level
of commitment. For instance, Eickhoff et al. (2012) posted the same task with and without gamification
elements and observed an increase in quality and a lower number of malicious contributions by adding such
elements, while at the same time reducing costs. Lichtenberg et al. (2020) identified progress bars, badges, and
leader boards as proper means for increasing the output of paid crowdworkers, exemplified for intentionally
boring slider tasks. Although Feyisetan et al. (2015) report improvement in both quality and quantity for
an image labeling task (especially through introducing leader boards), the authors raise the concern that
more demanding and/or time-intensive tasks might not profit from gamification. Chamberlain et al. (2013)
caution that especially in (paid) gaming environments, malicious workers might try to cheat the game to
receive their money without completing (or sloppy completing) assigned tasks.

Paid Crowdsourcing Platforms

Despite the aforementioned challenges for quality control, subsequent founding of various platforms in the
image of MTurk emphasizes the current success of crowdsourced work. For instance, microWorkers (MW)
(Hirth et al., 2011) is structured quite similar to MTurk, mainly differing in the demographics of crowdwork-
ers. Appen5 provides to take over the complete data collection and annotation process according to customers’

5https://appen.com/

https://appen.com/
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needs. Other representatives focusing on data annotation are Clickworker6 and ShortTask7 (please note that
especially the latter platforms often change name and owner; spring 2023 status).

In times of ML and particularly Deep Learning (DL), the success of these platforms is largely boosted by
the great need for high-quality labeled training data (Vaughan, 2018). The higher importance of high-grade
and sufficient training data over the choice of the ML model was already formulated in 1997 by Ho and Baird
(1997). Stork (1999) argues that even a straightforward Nearest Neighbor ML model can achieve satisfactory
results if enough training data is available. Indeed, MTurk is especially used to satisfy the demand for labeling
(Ipeirotis, 2010b; Hitlin et al., 2016), transcription tasks (Snow et al., 2008; Gao et al., 2015) and content
generation (Hitlin et al., 2016) - adopted both by industry and research (Marcus and Parameswaran, 2015),
with industry revenue exceeding that of research (Hitlin et al., 2016).

Briefly after its release, MTurk was embraced by the CV community for cheap and quick annotation
tasks (Sorokin and Forsyth, 2008; Chandler et al., 2013) to foster automatic systems by providing ”big
manually labeled data” (Kovashka et al., 2016). Soon, paid crowdsourcing was employed for creating various
benchmarks and data bases, and respective workflows were developed for different vision tasks. The most
prominent representative is the ImageNet data set (Deng et al., 2009; Russakovsky et al., 2015a), which
provides typical images to populate the hierarchical WordNet structure (i.e., image-level categories/classes).
ImageNet was constructed by first crawling the web for respective images of different categories, which were
then presented to the crowd for verification. Images that obtained category-dependent convincing majorities
of crowd votes were included in the data set. Other data bases generated utilizing crowdsourcing were
discussed by Zhou et al. (2014), Kumar et al. (2009), Bell et al. (2013), Bell et al. (2015), Welinder et al.
(2010a), Chen et al. (2009), Su et al. (2012) and Russakovsky et al. (2015a).

2.4 Crowdsourcing as Part of Hybrid Intelligence Systems

Although data labeling is indispensable for the development of modern ML methods and already sufficiently
justifies the existence of paid crowdsourcing platforms (Vaughan, 2018) (and which is also the main ap-
plication in industry according to Marcus and Parameswaran, 2015), they have a more general claim. As
stated by Jeff Bezos such platforms are tailored for all kinds of tasks that are easy to solve for humans but
highly demanding for machines: ”Normally, a human makes a request of a computer, and the computer does
the computation of the task. But artificial artificial intelligences like Mechanical Turk invert all that. The
computer has a task that is easy for a human but extraordinarily hard for the computer. So instead of calling
a computer service to perform the function, it calls a human.” (Bezos, 2007).

The vision formulated herein is that machines and humans work collaboratively (Allahbakhsh et al.,
2013). This leads to a concept often being pursued but differently referred to as human-in-the-loop system
(Branson et al., 2010), interactive machine learning (von Ahn and Dabbish, 2008) or hybrid intelligence sys-
tem (Vaughan, 2018). They all describe algorithms that operate under the same assumption of subroutines
being not accomplished by machines (i.e., electronic processors) but human processors conducting human
computation (Chandler et al., 2013) or human cloud computing (Hoßfeld et al., 2011) - artificial artifi-
cial intelligence (Gingold et al., 2012; Kittur et al., 2011; Kittur et al., 2013; Marcus and Parameswaran,
2015). Each party accomplishes those parts of the processing chain in which it is at its best (e.g., human
interpretation capabilities vs. automatic performing of repetitive, easy-to-formulate tasks). This allows the
creation of systems outperforming respective system designs relying on only one party (Kittur et al., 2013;
Kamar, 2016; Vaughan, 2018). Exemplary implementations of this concept were realized by Russakovsky
et al. (2015b), Kamar et al. (2012), Branson et al. (2010), Spiro et al. (2010), Vondrick et al. (2012), Wah
et al. (2011), Wah et al. (2014) and Jain and Grauman (2013). For a better interpretation of this approach,

6https://www.clickworker.com/
7http://www.shorttask.com/

https://www.clickworker.com/
http://www.shorttask.com/
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consider a semi-automated driving system where most navigation is accomplished by the autopilot, but in
some complex situations, the human driver is asked to take over (Kamar, 2016).

For realizing such systems, paid crowdsourcing platforms are paramount in order to have enough crowd-
workers (i.e., processors) on demand to achieve scalability. This guarantees timely results by parallel process-
ing leveraging a geographically distributed workforce (Kittur et al., 2013), which requires proper splitting
and assigning of tasks (Kittur et al., 2011). However, if humans (or ”semi-qualified workers”) with possibly
no feeling of what errors are harmful to ML systems (Endres et al., 2010) become part of an algorithm,
the outcome is no longer deterministic. It depends on a multitude of additional factors, such as incentive,
motivation, understanding, ability, general treatment, and complexity of the task (Ye et al., 2017; Endres
et al., 2010). These factors were previously only a subject of crowdsourcing research (cf. Section 2.2 & 2.3),
but now become part of the system design and must be properly addressed by an operator (Kittur et al.,
2013). Additionally, the tasks and respective acquisition tools need to be designed with special emphasis
on usability for crowdworkers (Kittur et al., 2008) to become part of the system as well, which is an often
overlooked topic (Sorokin and Forsyth, 2008; Kovashka et al., 2016).

In such hybrid intelligence systems, machines guide humans (Kittur et al., 2013) or even ”use” them,
instead of the other way around (Gingold et al., 2012). In context of ML, the idea of humans teaching
machines or acting as ”helpers of Artificial Intelligence (AI) systems” (Kamar, 2016) might lead to them
replacing their trainers, and hence the demise of the human component (Kittur et al., 2013). Thus, human
effort would not only be reduced by machines, but the human component could be replaced at all (Branson
et al., 2010). Chandler et al. (2013) raise the question of paid crowdsourcing being a temporal means to
build ML models. Also, von Ahn et al. (2006b) envisioned the same future for the Peekaboom game, where
gamification is especially seen as a tool for creating training sets for AI systems (Morschheuser et al., 2017).

While paid crowdsourcing systems and ML models driven by or working in tandem with crowdsourced
data are commonplace in the CV community, in the geospatial domain such techniques are still in their
infancy. Nevertheless, ongoing research already focuses on establishing a powerful human component from
which a respective machine component could learn. For instance, Li and Zipf (2022) propose to generate
training data for respective ML models implicitly by harnessing the OSM data base. However, dedicated
campaigns to build data for geospatial scene interpretation are only scarcely conducted, while generally,
landcover classification, for instance, is well suited for crowdsourced annotation when thought of as a labeling
problem (Fonte et al., 2017). Most studies in this regard deal with employing a paid (Walter and Soergel,
2018) or unpaid crowd for annotating and interpreting aerial images (Salk et al., 2015; Estes et al., 2016;
Juni and Eckstein, 2017) or street view scenes (Hara et al., 2015; Hecht et al., 2018; Maddalena et al., 2020).
But 3D point clouds as the data of interest for this thesis are very rarely considered. To the best of our
knowledge, the first work addressing crowdsourced 3D point cloud interpretation was conducted by Herfort
et al. (2018) and focused on classification of point cloud subsets into a finite set of categories and tree height
estimation by means of averaging answers from multiple volunteers. Also concerned with vegetation mapping,
Walter et al. (2020) launch paid crowdsourcing campaigns for object detection (trees) in 3D point clouds by
means of bounding cylinders and subsequently integrate multiple annotations. Similarly, Walter et al. (2021)
discuss crowdsourced 3D bounding box annotation of cars in point cloud subsets, resulting from a preceding
campaign where crowdworkers marked points of interest (i.e., cars) in Digital Surface Model (DSM) shadings.

But no matter the data modality, hybrid intelligence systems, where the crowd can be thought of as a
sub-routine, were previously not studied for geospatial data interpretation. Additionally, these studies aim
at full annotations of respective data sets, but for reasons of cost-efficiency, Kovashka et al. (2016) urge to
mind which of all available data points to annotate, pointing to the concept of AL.
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2.5 Active Learning (AL)

Often hybrid intelligence systems as discussed in the previous section are built upon the concept of AL
(Settles, 2009). Apart from linking human and electronic processing units, the key idea of AL in context of
semantic segmentation tasks is to focus labeling effort on only a subset of available instances. In contrast
to the typical ML scheme of PL, in AL a classifier is actively involved in setting up the training data set.
Given an initial (suboptimal) training set, the idea is to utilize the current state of the classifier suitable
for the task at hand to iteratively enhance the training data set. Thus, the performance of the classifier,
learning from the step-wise increasing training set, is gradually improved. In each iteration step, the classifier
derives predictions for all currently unlabeled samples, and those points the classifier is most uncertain in
its prediction are labeled and added to the training data set. In this way, the epistemic uncertainty of an
ML model is minimized by adding additional information (Gal et al., 2017). Concisely, the goal of AL is to
enable a given classifier to achieve top accuracy with as little label effort as possible. In other words, the
result of an AL loop is a model-specific (hopefully) optimal training data set, which would generally lead to
suboptimal results for another classifier (Crawford et al., 2013).

Foundations of AL were developed in the CV community, with Settles (2009) and Kovashka et al. (2016)
giving a comprehensive review of AL literature in this domain. AL can be considered as a system of four main
components: i) the base classifier for the task at hand (Section 2.8), ii) most crucially the query function
for the selection of instances to be labeled (Section 2.5.1), iii) the label engine or the so-called oracle, e.g.,
a human operator (Section 2.5.2) and finally iv) an abortion criterion for the iteration (Section 2.5.3). If
these aspects are properly addressed, AL allows for cost-efficient solutions to many automatic annotation
tasks, also in the field of geospatial data interpretation and, related to that, for the semantic enrichment of
3D point clouds (Section 2.5.4).

2.5.1 Querying Samples in AL

Since it makes a significant contribution to the performance of an AL system, most effort is put into de-
signing an appropriate query function or selection criterion. Most prominent representatives originate from
uncertainty sampling, query-by-committee strategies, or representativeness sampling.

Early implementations of uncertainty sampling are associated with Support Vector Machines (SVMs)
(Cortes and Vapnik, 1995), which derive decisions solely based on support vectors, no matter the size of the
provided labeled data set. This means that labeling of the remainder of instances is superfluous, thus also
giving an idea as to why AL is so effective. Therefore, Ertekin et al. (2007) opt to sample only those points
that are closest to the current decision border of the classifier. Generally speaking, uncertainty sampling is
simply designed to select those samples the current classifier is most unsure about with respect to inter-class
similarity (Settles, 2009). To quantify this uncertainty, query functions operate on the posterior probability.
More precisely, this can be realized by only considering the probability predicted for the most probable class
in least certainty sampling (Lewis and Gale, 1994), evaluating the difference between the two most probable
classes in breaking ties sampling (i.e., ”breaking the ties” between those two classes, often referred to as
margin sampling as well) (Scheffer et al., 2001) or considering all posterior probability values for computing
the corresponding entropy (Shannon, 1948). With respect to the categorization of such sampling functions
based on aleatoric uncertainty or epistemic uncertainty (i.e., uncertainty rooting from inherent randomness
vs. from lack of knowledge, cf. Hüllermeier and Waegeman, 2021; Nguyen et al., 2021), in general, uncertainty-
based sampling strategies favor aleatoric over epistemic uncertainty since they aim to sample regions close
to the decision border where the predictability is lowest (i.e., p(c1|x) = p(c2|x) = 0.5 in the binary case).
However, in AL we are facing a sparse training set, especially in early iteration steps. Thus, the current
decision border may be far away from the true perfect one, which is why epistemic uncertainty will also
play a significant role. But with an infinite number of iteration steps, purely aleatoric uncertainty will be
scored. Please note that specifying the affiliation of a sampling function (e.g., entropy) greatly depends on
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the method of generating the input posterior probability. If p(c|x) is the average of an ensemble classifier
(e.g., deep ensemble) (Gal et al., 2017), a measure such as entropy will also score epistemic uncertainty.

Query-by-committee, on the other hand, is especially designed for reliably estimating epistemic uncer-
tainty, but poses the requirement of having a committee or an ensemble of classifiers. Respective sampling
strategies aim to select instances from (so far unrepresented) regions of feature space where the different
ensemble members, all trained in accordance with the same data set, disagree. This disagreement is typi-
cally evaluated by means of vote entropy (Argamon-Engelson and Dagan, 1999), Kullback-Leibler divergence
(McCallum and Nigam, 1998) or mutual information between model predictions and model parameters in
context of Bayesian Active Learning by Disagreement (BALD) (Houlsby et al., 2011). The latter is realized
by sampling points that have a high overall (averaged) entropy and for which different models (i.e., different
draws of parameters) are confident in their deviating predictions (please note that this strategy can also be
considered a hybrid of uncertainty sampling and query-by-committee).

Representativeness-based sampling strategies focus on querying a subset of points that is as representative
as possible for the whole data set. For instance, Sener and Savarese (2018) see AL as a core-set-selection-
problem. This means that a subset of points is selected from a given feature distribution that is representative
of the complete distribution and thus well suited for training a classifier generalizable for the entire data set.
This approach can be approximated as a k-center problem, where k centers need to be positioned such that
the distance between any point and the nearest center point is minimized. Dasgupta and Hsu (2008) suggest
first computing a hierarchical clustering of all data points, so that sampling of points can be achieved by
gradually following the hierarchical structure, where samples from each node are drawn as long as those nodes
in the hierarchy are not pure with respect to the class affiliation of encompassed points. An implementation
of the DL era for representativeness-based sampling is VAAL (Sinha et al., 2019). The idea is to jointly learn
a latent feature space from both labeled and unlabeled instances via a variational autoencoder as well as an
adversarial discriminator that is trained to distinguish whether a sample is from the labeled or unlabeled
data set. Consequently, sampling of points is driven by selecting those new instances that, according to the
discriminator, are likely to come from the unlabeled set thus being sufficiently different from already existing
labeled samples.

Less common strategies aim to select those points that would change the current model the most or
reduce the error or the variation of the model the most (Settles, 2009). This often requires simulating
all possible labels for a given instance to estimate the respective impact, which might cause significant
computation effort. A prominent representative of this group is the LAL framework (Konyushkova et al.,
2017), where a regression model uses as input both a description of the state of the current classifier (i.e.,
the parametrization) and data-related features which describe the current prediction of that point or its
relatedness to other data points (but which are different to the specific features like color information of
a data point). Based on this combined feature vector, the regressor, which is re-trained in each iteration
step exploiting the already labeled data set, would predict whether this point is informative in terms of
significantly reducing the error of the model.

The review of Settles (2009) summarizing the aforementioned sampling approaches, however, was written
in the pre-DL era, consequently not addressing recommendations for the employment of CNNs as base classi-
fiers. Since CNNs output (pseudo) posterior probabilities, they can theoretically be used as any conventional
feature-driven classifier. However, CNNs are known for overestimating their confidence when extrapolating
in regions of feature space for which no training samples were available (Gal and Ghahramani, 2016), i.e.,
they are unaware of epistemic uncertainty. For receiving more sensitive uncertainty measures, the authors
propose to approximate Bayesian CNNs by Monte Carlo dropout ensembles, since true Bayesian CNNs are
often intractable to be computed, as every parameter is supposed to be sampled from a distribution and
consequently inference is done by integrating over all parameters (see the work of Jospin et al. (2022) for
a comprehensive overview). Thus, Monte Carlo dropout ensembles are a viable approximation and are gen-
erated by using dropout not only as regularization in training but also while predicting. This results in an
ensemble of slightly deviating classifiers, where the overall posterior probabilities are received by averaging.
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Such an output can then be used for any of the aforementioned selection strategies and has proven to yield
more efficient AL learning curves compared to using only one single-pass network without Monte Carlo
dropout (Gal et al., 2017). An alternative approximation of Bayesian CNNs are deep ensembles. The idea
is to train multiple networks with the exact same architecture and same training data, but with different
random initialization values of weights. Beluch et al. (2018) and Feng et al. (2019) demonstrated that this
approach often outperforms Monte Carlo dropout ensembles due to the higher capacity and greater inde-
pendence of ensemble members, which, however, comes with higher computational cost for training multiple
networks. A comprehensive review of both challenges and solutions of Deep AL (AL built around a CNN)
were discussed by Ren et al. (2022).

Apart from scoring samples, different sampling heuristics/scenarios with respect to scope, such as mem-
bership query synthesis (Angluin, 1988), stream-based AL (Atlas et al., 1989) and pool-based AL (Lewis and
Gale, 1994) are suggested, with the latter two being most appropriate whenever unlabeled data is easy and
abundant to generate. Stream-based AL can help to reduce computation effort since each sample in the unla-
beled data set is visited only once and is either added to the training set or irrevocably discarded depending
on the current classifier. But informative samples might get lost due to the decision of a non-optimal state
of the classifier. Pool-based AL relaxes this issue by evaluating the complete unlabeled training set in each
iteration step.

However, no matter the heuristic, all sampling strategies are designed to query points based on the current
state of a classifier. Since any additional training sample might change the current belief in the model, these
methods work best when one instance per iteration step is selected. However, this results in an ML model
being re-trained each time after only one sample has been added. This can be considered both statistically
unreasonable and computationally intractable, especially when CNNs are used as base classifiers (Sener and
Savarese, 2018; Kirsch et al., 2019). Therefore, often a larger batch of points is sampled in each iteration
step. On the other hand, this poses the issue that multiple samples with the highest sampling score are often
too similar to each other and equals sampling quasi-duplicates, which eventually results in wasting labeling
resources for non-most-informative instances. Therefore, measures that yield a diverse batch of informative
samples are often applied. Such diversity can be achieved, for instance, by score-weighted k-means clustering
of feature space, where k equals the number of points to be sampled (Zhdanov, 2019; Ash et al., 2019; Prabhu
et al., 2021). Also, well-studied sampling strategies such as BALD can be adapted for the batch-mode setting,
where multiple points are jointly sampled based on the mutual information between a batch of multiple data
points and model parameters (Kirsch et al., 2019). However, this might lead to high computational effort
even with the originally proposed approximation by a greedy algorithm (Thoreau et al., 2022).

2.5.2 Oracles in AL

Apart from the question of which data points are most suitable for the ML process, special emphasis needs
to be put on the oracle as well when designing such an AL scheme. Often, a GT oracle is assumed, i.e., an
oracle which always returns perfectly correct answers to the label queries. Although this can be purposeful
for assessing the theoretical performance of simulated AL runs, it is unrealistic to obtain such results when
working with humans, and especially when working with crowdworkers, where results might contain both
random and systematic labeling errors (Chandler et al., 2013; Lockhart et al., 2020). This issue is also subject
of study in the crowdsourcing research (cf. Section 2.2), but can be addressed in the AL scenario as well with
possible solutions revolving around efforts for filtering crowdworkers based on estimating individual worker
scores (Donmez et al., 2009; Welinder and Perona, 2010; Long et al., 2013; Long and Hua, 2015) or assigning
them tasks suitable to their skills (Zhang and Chaudhuri, 2015).

Nevertheless, it must be accepted that there may be samples that are more difficult and error-prone to
label than others, and that are also more costly because they need to be assigned to multiple crowdworkers
to reach a consensus (Deng et al., 2009). An alternative approach is to alleviate this issue by modifying the
sampling strategy in such a manner that, at the cost of informativeness for the machine, a sample is selected
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that is still as informative as possible but also feasible to be labeled by the human oracle. For instance,
Mackowiak et al. (2018) fuse a common AL informativeness measure with a learned estimate of labeling
effort (measured by the number of clicks) into the final score function. Similarly, Vijayanarasimhan and
Grauman (2009) train a SVM classifier for predicting labeling cost based on tuples of image features and
annotation times obtained from real MTurk crowdworkers, and use this information to decide for new images
what type of annotation (full, part segmentation, or image classification) should be performed minding both
labeling effort and informativeness.

When machine and human oracle are properly combined, human-in-the-loop systems like the one discussed
by Vijayanarasimhan and Grauman (2011) can be powered, where an expert only needs to give some samples
for a specific class in order to prompt a fully automated pipeline (with human crowd processors). Related
images are then crawled online, and from those, the most informative ones are actively queried, multiply
labeled by crowdworkers on MTurk, and used to refine the classifier within the AL loop. Please note that
although humans are involved in the form of human processing units, from the view of an operator, such
a system can indeed be considered to run in a fully automated manner. Although such impressive learning
schemes have already been realized in the CV community for everyday life scenes (where crawling candidates
is an easy task compared to crawling, e.g., ALS point clouds), to the best of our knowledge no comparable
work implementing a fully automatized human-in-the-loop system with a paid crowd oracle, is present in the
geospatial domain.

2.5.3 Terminating AL Loops

For terminating an AL iteration, a proper stopping criterion needs to be defined to guarantee that the AL
loop runs long enough to gain stable performance, but does not conduct more iteration steps than necessary
to minimize costs (Settles, 2009). Naturally, the easiest way is to measure the performance on a large
representative test set, but this defeats the purpose of AL to require labeling of only a few samples. If only a
labeled subset is used instead, this problem is partly mitigated, but also at the risk that the labeled set is not
representative of the complete data set. Thus, termination of the loop should be computable without usage of
labeled instances. A solution could be to check the similarity of newly queried samples with the ones already
included in the training set (Vlachos, 2008). In the same spirit, a SVM-specific stopping criterion would be to
abort the iteration as soon as no support vectors are available anymore, which can be measured by the fact
that newly sampled points are further away from the decision boundary than any of the available support
vectors (Ertekin et al., 2007). Other approaches rather measure the stability of the predictions of a current
classifier on a large unlabeled data set in terms of confidence of the classifier (Vlachos, 2008) or agreement
between current and previous predictions (Bloodgood and Vijay-Shanker, 2009). If an ensemble classifier is
employed, stopping can also be based on comparing the classification disagreement of the ensemble members
for the remaining unlabeled pool vs. an independent and unlabeled validation set (Olsson and Tomanek,
2009). The loop can be stopped as soon as the classifier is properly adapted to its data, i.e., as soon as the
agreement on the remaining unlabeled pool exceeds the one of the validation set.

2.5.4 AL in Remote Sensing and Semantic 3D Point Cloud Segmentation

The human-in-the-loop approach of AL has also been investigated in the remote sensing community, but
primarily engineered to minimize labeling effort such as visual inspection of the data or even field surveys.
The main emphasis lies on semantic segmentation of aerial imagery by applying the well-known AL concepts
as discussed before (see the comprehensive reviews by Tuia et al. (2011b) and Crawford et al. (2013)). Dealing
with spatially meaningful data, however, poses new challenges, but also opportunities, as summarized by
Crawford et al. (2013). For one, the need to modify conventional sample selection strategies arises if field
surveys are to be conducted for labeling, where the selection of samples (i.e., locations) should be such that
the traveling distance between queried locations is also minimized. On the other hand, spatial information
can be utilized to diversify selection of most informative samples. When assuming that samples that are
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close with respect to their position in object space carry similar redundant information, sampling should
focus on instances that are more distant from each other. A recent comparison of sampling strategies for
a state-of-the-art CNN classifier was conducted by Thoreau et al. (2022). Notably, the classic breaking ties
sampling strategy still leads to state-of-the-art results, both in terms of fast convergence on a level of high
classification accuracy and in terms of the capability to discover new classes in the data set.

Among the AL research in remote sensing, the work of Tuia and Munoz-Mari (2013) is noteworthy, as to
the best of our knowledge this is the only one acknowledging an imperfect oracle and tailoring the query of
points to its needs. Since AL sampling strategies tend to select instances on class borders, inhomogeneous
spots, or shadowed areas, interpretation is often demanding not only for lay workers but also for experts.
Therefore, the authors suggest training a classifier (apart from the one for conducting the actual task of
semantic segmentation) that distinguishes between samples that are feasible for labeling and so-called bad
states the oracle is not capable to label. Thus, such instances should be skipped automatically to avoid
tiresome manual skipping or incorrect labeling by the human oracle if presented anyway. The training
data for this second classifier is generated on the fly whenever a user rejects to label a presented instance.
Eventually, only samples queried by the AL engine to be informative and supposed to be feasible for labeling
are presented to the oracle.

Although applying AL for semantic segmentation of 2D images has been extensively investigated, utilizing
AL for the semantic segmentation of 3D point clouds is only tackled scarcely, especially for ALS point clouds
and is still matter of ongoing research. Thus, as formulated by Settles (2009), now research in AL focuses
on applying it in practice.

To the best of our knowledge, the first work addressing this issue is the pipeline presented by Luo
et al. (2018) for the semantic segmentation of high-resolution Mobile Laser Scanning (MLS) point clouds.
To reduce the amount of required data, the authors suggest initializing their pipeline by transferring the
point cloud representation to a supervoxel representation, and opt to use a pair-wise Conditional Random
Field (CRF) model built upon a Random Forest (RF) classifier for inference. The selection of points follows
the idea of especially emphasizing instances that are misclassified by the current classifier and are thus
assumed to be particularly informative. The pool of samples subject to labeling is thus composed of those
pair-wise supervoxels with different inferred labels (but only if the currently most underrepresented class in
the current training set is involved), where the difference is seen as hint for misclassification. The selection
is then conducted by a modified breaking ties approach where the most uncertain supervoxel is queried for
labeling and afterwards adjacent supervoxels are checked for consistency with the now labeled supervoxel to
also detect and prompt possibly misclassified samples for labeling.

Mainly for the classification of terrestrial point clouds (indoor and MLS point cloud data), also CNN-based
approaches were proposed (Wu et al., 2021; Shi et al., 2021; Shao et al., 2022). They follow a similar pattern
of first computing superpoint regions (clusters of adjacent points with similar features) as AL units instead of
single points, and they naturally differ in the selection strategy. Wu et al. (2021) compute an information score
based on standard entropy uncertainty enriched with scoring color discontinuity and structural complexity
(i.e., roughness) of regions to focus on most informative inhomogeneous regions. The diversity within batches
is guaranteed by measuring similarity of regions in feature space in order to enable penalizing occurrence of
similar regions in the batch. Both addressing uncertainty and diversity is also the goal of Shi et al. (2021).
This is achieved by combining uncertainty measured via entropy with a diversity measure based on the
minimum feature difference between a candidate region and all previously labeled superpoints. Shao et al.
(2022) recognize that although generating superpoints is beneficial for computational efficiency, it poses the
risk of grouping points from different true classes and causes mislabeling of individual points when per-group
labels are assigned. Thus, the authors account for this issue when computing the overall uncertainty of regions
by only considering the points that are predicted to belong to the same class as the predicted majority label
of that region. Top regions are then used to form a graph where nodes represent superpoints and edge weights
are based on both location difference and structure difference (computed via chamfer distance). To receive a
diverse batch of regions, farthest point sampling can then be applied to a so-called diversity space, which is
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obtained by an edge-weighted aggregation of superpoint features with neighboring superpoint features. For
the sake of completeness, another AL approach operating on MLS scans worth to be mentioned, is proposed
by Feng et al. (2019), but is designed for object detection also exploiting Monte Carlo dropout ensembles
and deep ensembles for entropy-based uncertainty estimation.

As already pointed out, for semantic segmentation of ALS point clouds, AL approaches are scarce. Hui
et al. (2019) consider the generation of a Digital Terrain Model (DTM), i.e., the filtering of ground points,
as a classification problem. Based on an initial training set generated from multi-scale morphological filters,
the authors employ a SVM for this filtering step, where AL is used to iteratively refine the filtering and
thus the resulting terrain model. In each iteration step, a sigmoid function scores the distance of points
to the current DTM level. Points predicted as Ground and having the lowest sigmoid distance scores are
added to the Ground samples in the training set, and vice versa, points with the greatest distances and a
Non-Ground prediction are added to Non-Ground samples, thus using a kind of automatic oracle. A similar
understanding of an oracle can be found in the work of Li and Pfeifer (2019), who design a semi-supervised
AL pipeline for 3D point cloud classification where labels of an initially provided (suboptimal) training data
set are propagated each to the point in an optimal neighborhood that incorporates the highest breaking ties
score to gradually improve an RF classifier.

Supervised AL for large-scale point cloud classification is conducted by Lin et al. (2020b,a). The authors
consider a regularly tiled point cloud as input and utilize AL for the minimization of required training data
by means of only selecting most informative tiles. They opt for tiles over individual points as AL query units
mainly for reasons of computational efficiency because when sampling individual points, neighboring points
would have to be presented to a CNN-based classifier anyways to infer meaningful features - although not
carrying any label. This means that if labeled AL points are scattered over the complete point cloud, the CNN
would need to process roughly the same amount of points as for a PL approach. But in case of restricting
sampling to a tile level, points to be processed can be limited to those included in the queried tiles. Also, the
authors expect that selected tiles receive full point-wise labeling, following the same reasoning concerning
computational effort, as complete tiles are induced into their CNN anyways. However, from an economic
point of view labeling is much more costly than computation time and thus such an annotation scheme does
not fully leverage the potential of AL to reduce costs by minimizing required labels. Nevertheless, labeling
effort is still reduced, as many tiles can be discarded. Since tiles are scored by averaging scores of individual
instances, this poses the risk of ignoring tiles where a part of the tile would provide useful information to the
classifier and where remaining points have a low sampling score. Precisely, for sampling, both classic point-
wise entropy and segment-wise entropy are utilized. The latter is computed as predicted pureness of points
that fall within a segment generated from an unsupervised segmentation where inhomogeneity is assumed to
correspond with uncertainty. To also measure epistemic uncertainty, mutual information based on a Monte
Carlo dropout ensemble is evaluated. To further boost the performance of respective AL runs, the authors
recommend training their PointNet++ implementation in an incremental manner, i.e., avoid costly training
from scratch in each iteration step.

2.6 Transfer Learning

Just like AL, Transfer Learning (TL) (Pan and Yang, 2010) is intended to serve the same purpose of
learning under scarcity of labeled data. The transfer is more than mere generalizability of trained models
among different data sets. TL is supposed to explicitly transfer information that is already available (i.e.,
learned) in a specific model so that it can successfully operate in other scenarios as well, where limited or
no labeled data is present (Persello and Bruzzone, 2012). Such scenarios typically comprise performing a
different task than the one the model was originally designed for (e.g., classification of land cover types
instead of dog breeds), or the same task the model was dedicated to is to be performed in another domain.
The first concept can be a viable way to minimize labeling effort, e.g., by trying to reuse the feature descriptor
generated by a model that was originally designed for another task and which was trained by typical CV
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image data bases. However, in remote sensing, where we are dealing with data that is significantly different
from such representing everyday life scenes (e.g., aerial images vs. close-range snapshots of CV data bases),
this approach might be limited (Penatti et al., 2015).

The latter concept, Domain Adaptation (DA), on the other hand, is a hot research topic in the field of
remote sensing data analysis due to massive amounts of data being acquired at an ever-increasing pace, but
is also prominent in the CV community (Patel et al., 2015). Since it is prohibitively expensive to manually set
labels for every new data set, the greater goal is to employ labeled data from one domain, the source domain,
to derive reasonable predictions in another domain, the target domain. In case of remote sensing data, typical
tasks of that nature are to apply a classifier trained for one epoch to another one depicting the exact same
location (Rajan et al., 2008; Demir et al., 2013), or to employ an existing classifier for another area captured
from the same sensor (Jun and Ghosh, 2008; Rajan et al., 2008; Tuia et al., 2011a; Persello and Bruzzone,
2012; Paris and Bruzzone, 2018). However, the success of DA depends on the similarity between the source
and target domain or, vice versa, the inherent domain gap (Quiñonero-Candela et al., 2008) between the
two domains, which can have various reasons.

Formally, we distinguish between two different domain gap problems: i) the covariate shift problem
(Shimodaira, 2000), which can arise in cases the source domain has been inadequately sampled, either due
to a biased selection of training points in a PL setting by a human operator or due to insufficient feature
space exploration in an AL scenario, so that the training set is not representative for the target domain. ii)
its more general case, sample selection bias (Heckman, 1979) assumes that, additionally, the representation
of the same classes in feature space is different in the two domains. The latter is the DA problem we expect
to face in remote sensing data analysis (Persello and Bruzzone, 2012; Tuia et al., 2016). It can root from
various effects, such as differences in the sensor configuration (sensor and/or flight planning), atmospheric
conditions (e.g., humidity, cloudiness) and illumination, as well as from changes in the scene itself due to
phenological phenomena (i.e., seasonal effects). Thus, bridging the domain gap by performing DA has been
studied widely (Tuia et al., 2016; Crawford et al., 2013), with solutions coming from both the semi-supervised
and supervised fields. These methods often focus on generating invariant or joint features or aim to adapt the
classifier itself. While semi-supervised methods are designed for coping with situations where labels are only
available in a source domain, in the supervised field we assume that it is possible to obtain some (few) extra
labels in the target domain. Thus, supervised DA methods often outperform representatives of the semi-
supervised field, at least in cases of significant domain shifts (Rajan et al., 2008), since respective methods
typically expect the same classes in both domains and a sufficient correlation of the underlying statistical
distributions (Demir et al., 2013). Thus, if a (limited) budget is available for retrieving true labels of the
target domain, DA of the classifier can be accomplished by including this additional training data.

For this, the PL approach TrAdaBoost (Transfer AdaBoost) is presented by Dai et al. (2007), which
deals with the scenario of having many labeled source domain samples and (few) labeled target domain
samples. However, it is unclear which source domain samples are actually helpful for the classification of
the target domain and follow the same distribution as the target domain samples. The authors propose to
automatically minimize the impact of conflicting source domain samples by leveraging a boosted learning
scheme to automatically decrease the weights of those source domain samples that get misclassified by the
current classifier. Since labeled target domain samples are used within this method, the question arises of
how to select target domain samples that are to be labeled to yield top results. This task is closely related to
AL, thus often suggested in literature as viable solution, which will be referred to as ATL in the following.

2.7 Active Transfer Learning (ATL)

Rajan et al. (2008) proposed a first framework to actively sample points in the target domain applying
the KL-max selection criterion. The idea is to select those points that would change the current posterior
probabilities the most, which is achieved by testing all labels from a specific class catalog for their respective
impact. Please note that assigning a wrong class label often leads to most prominent changes, which is why,



Related Work 35

based on the current prediction, the probability that this is the correct class is also considered. Rai et al.
(2010) argue that gradually adapting a classifier trained on source samples by means of AL can be further
boosted if target domain samples are queried that are as different as possible to source domain samples. This
is achieved by deriving a distribution separator hypothesis distinguishing between source and target domains
solely based on unlabeled samples from both domains, so that the subsequent AL loop is only allowed to
draw points from the target site of the separator hypothesis, thus avoiding samples from the target domain
that appear too similar to the source domain, as those would lie on the source site.

However, Tuia et al. (2011a) argue that performing basic AL can be risky whenever the assumption of
independent and identically distributed data is severely violated, which can very well be true for remote
sensing data under domain shifts. In this case, most informative target samples are not necessarily situated
near to class borders of a classifier trained for another domain where samples are commonly drawn from.
Following the same reasoning, adaption of a classifier to a scenario with another (enhanced) class catalog
might also be limited. Although representatives of new classes might still be sampled in the course of the
loop, a potentially misguided focus of the loop could (at least) lead to a delay in the convergence of the
loop. Thus, the authors suggest starting with clustering of feature space of the target domain to sample from
these clusters a quantity of points proportional to the size of the clusters. This can be thought of as setting
up an initialization data set in the target domain, from which a common AL loop based on the breaking ties
selection strategy is launched. A solution from the DL domain to the same problem is given by Xie et al.
(2022). The authors train energy-based models with source domain data and aim to restrict sampling to
those instances from the target domain that are as different as possible from source domain samples. Those
samples incorporate highest free energy values, which is measured by logarithmic exponential summation
over energy values for all pairs of feature vectors and labels inserted into the estimated energy function. By
this, a pool of most dissimilar samples is formed, from which those with maximum uncertainty, measured in
terms of an adapted breaking ties strategy, are selected.

To make AL more effective for the DA setting, Su et al. (2019) propose to employ the Domain Adversarial
Neural Network DANN (Ganin et al., 2016), which consists of a feature extractor, a classifier and a domain
discriminator. The latter two make use of the feature extractor and are jointly trained in an adversarial
manner following the objective of maximum classification accuracy with respect to labeled source domain
samples and maximum confusion of the domain discriminator, i.e., a generalized set of features is to be
obtained. Active selection within the AL loop can then be achieved based on combining predictive uncertainty
(using the classification model) and dissimilarity to known samples (using the discriminator). Similarly, Zhou
et al. (2021) train a domain-invariant feature extractor to align the marginal distributions of source and target
domains by adversarial training of a classifier based on labeled instances and a domain discriminator based
on estimating Wasserstein distance. This model is embedded in an AL loop, again using a combination of
uncertainty of the classifier and dissimilarity to the source domain obtained from the domain discriminator
for querying in conjunction with a dedicated class weighting scheme.

Instead of trying to derive invariant features, Kellenberger et al. (2019) use a source domain model
to predict on the target domain, but consider it as pure feature extractor, so that an explicit mapping
between the source domain and target domain distribution can take place by means of Optimal Transport
to minimize the Wasserstein distance. This means that due to the domain gap, the authors mistrust target
domain prediction scores and therefore aim to propagate trustworthy source domain prediction scores to
feature matched target domain samples that are used for sampling in the target domain. Thus, the original
source domain model can be adapted for gaining a more true feature description in the target domain used
for the AL-based refinement.

Also, Fu et al. (2021) argue that purely continuing an AL loop on a target domain is suboptimal,
exemplified for a committee classifier. Different decision boundaries of the committee members might pass
through high-density regions of the target domain since the model is unaware of the presence of respective
data points in those regions. Thus, different valid committee members disagree on possibly significantly
different target samples, which also leads to a high level of randomness in sample selection. As a remedy, the
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authors suggest enforcing predictions to be more consistent with respect to the target domain by including
adversarial samples as perturbations of target domain samples whose predictions are to stay the same, which
is considered in the employed network’s loss computation of the training procedure. Based on the resulting
classifier, basic selection strategies relying on uncertainty or query-by-committee can be defined. To focus
more on samples dissimilar to the source domain, but to avoid selection of outliers, the authors train a domain
discriminator which operates on the set of features derived by the classifier. This allows the definition of
a sampling score combining uncertainty and dissimilarity to the source domain along with incorporating
diversity in a batch-mode setting by randomly sampling from instances with top scores. For further boosting
batch-mode AL, Prabhu et al. (2021) design an ATL scheme built around a (domain adaptive) CNN classifier
and recommend employing CNN features (from the penultimate layer) as basis for uncertainty-weighted k-
means clustering of feature space, so that one instance per cluster can be queried for guaranteeing diversity.
Moreover, the authors claim that a domain discriminator is implicitly encoded in the uncertainty measure
and thus considered when sampling points.

With respect to minimizing labeling effort of an oracle, especially tailored for interpretation of multi-
temporal imagery, Demir et al. (2013) suggest propagating labels from previous epochs for all pixels that
appear to be unchanged (based on their feature vector similarity). They consider pixels to be informative (i.e.,
supposed to belong to a new class or to a known class with new characteristics) if they, or more precisely, if
the cluster they are assigned to during unsupervised clustering is dissimilar to all known classes, causing them
to get sampled before launching a common AL run. A related concept of propagating labels from a source
domain to actively sampled points of the target domain by means of an explicitly designed transfer classifier
is discussed by Shi et al. (2008). It serves the purpose of avoiding turning to a human operator for labeling
target domain samples whenever the transfer classifier (trained by both source and target domain samples)
confidently predicts the label and when it agrees with an in-domain target domain classifier. Similar to this,
Saha et al. (2011) first perform unsupervised domain adaptation to obtain a classifier based on labeled source
domain and unlabeled source and target domain data to be employed in an AL setting. The pipeline relies on
a hybrid oracle, where a human operator is asked only if uncertainty-queried target domain samples appear
different from source domain samples, i.e., if they are positioned on the target side of a determined domain
separator hypothesis, which can be learned from unlabeled data of both domains only. Paris and Bruzzone
(2018) also aim to label target samples automatically by leveraging information already available. In this
approach invariant feature sets (image bands) are identified between domains allowing to automatically
propagate labels from a source to a target domain. Only remaining unlabeled target samples compose the
pool the AL query function is allowed to draw from.

However, if DA is to be achieved by only enhancing the training pool by adding most informative target
samples, there is a risk of keeping source domain samples in the training set that might no longer be
representative of the target domain. Thus, such a procedure is merely capable of solving the covariate shift
problem. But whenever target domain labels can be obtained, the effect of misleading information can be
reduced (Jiang and Zhai, 2007). In this spirit Dai et al. (2007) motivate down-weighting of misleading source
domain samples in the TrAdaBoost framework to be more flexible and to also overcome the sample selection
bias issue. Matasci et al. (2012) transfer this idea to the AL setting by building a respective AL loop around
the AdaBoost learning scheme. Precisely, a SVM is allowed to sample points via breaking ties in an outer
AL loop, and an inner TrAdaBoost loop performs just as described by Dai et al. (2007), so that final weights
can be reused to commence the next AL iteration step. Jun and Ghosh (2008) also minimize the effect
of misleading source domain samples in their KL-max -based AL loop by designing an empirical weighting
where generally a higher impact and thus weight is granted to misclassified samples of the target domain. The
weights of misclassified source domain samples can be gradually reduced as the iteration and thus sampling
of new target points proceeds.

To avoid the empirical formulation of weighting rules, Persello and Bruzzone (2012) suggest measuring
the disagreement between two classifiers, one being solely trained by source domain samples and the other
one being trained by the current training set consisting of both actively breaking ties-sampled labels from the
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target domain and samples of the source domain. Then, a defined number of most disagreeing predictions
with regard to posterior probabilities are eliminated. In the work of Persello (2013), handling of source
domain samples is performed slightly differently by only eliminating those samples that are misclassified
by the current classifier (trained by source and target domain samples). Remaining source domain samples
are individually weighted based on the similarity between source and target domain samples of the same
class measured in feature space (please note that similar strategies are also employed in the unsupervised
DA domain, e.g., by Paul et al. (2016)). Similarly, Jiang and Zhai (2007) eliminate source domain samples
that were incorrectly predicted by a classifier trained by the current combined training set of source and
target domain samples, and like Chan and Ng (2007), also opt to reserve a higher weight for target domain
samples. Chattopadhyay et al. (2013) propose to perform AL and DA simultaneously in such a manner that
the marginal distribution of re-weighted source domain samples, labeled target domain samples, and the
currently queried target domain samples is closest to the distribution of unlabeled target domain samples,
formulated as an optimization problem.

2.8 Automated 3D Point Cloud Interpretation

Although the basic assumption underlying the AL concept is that a theoretically arbitrary (and even very
simple) classifier can be tuned for the task at hand solely by improving (i.e., enhancing) the training pool
(Ho and Baird, 1997; Stork, 1999), it still needs to be suited for the intended classification task, i.e., 3D point
cloud semantic segmentation. Current concepts for data interpretation can be divided into classical feature-
driven and more recent data-driven methods. The latter have seen considerable advances in the last years,
but unlike for 2D data (i.e., imagery), where a rather mature level has been established (Zhu et al., 2017;
Ma et al., 2019), still a lot of research is put into development and enhancement of different 3D point cloud
classification approaches. Hence, we aim to reflect the current state of the art for the two different heuristics.

2.8.1 Feature-Driven Semantic Segmentation

A conventional supervised classification scheme involves two main steps: i) the definition and computation
of reasonable features and ii) the training of a proper classifier, where most effort is put into the first
step. In context of 3D point cloud classification, a combination of both geometric and radiometric features
is often pursued. As for describing the local geometry of each point, usually a point neighborhood (used
interchangeably with the term support volume) has to be defined and extracted, often boosted by hierarchical
search structures such as k-d trees (Bentley, 1975). The vicinity of individual 3D points is typically encoded
by a (vertically oriented, unbounded) cylinder (Filin and Pfeifer, 2005) or a sphere (Lee and Schenk, 2002),
which can also be expressed in terms of a k-nn neighborhood (Linsen and Prautzsch, 2001). All neighborhood
types are parametrized by either the radius of the cylinder/sphere or the number of nearest neighbors k
respectively. A reasonable choice of this parameter may vary depending on the data set or target classes at
hand (Blomley et al., 2014), and could also be chosen dynamically within a given data set, especially in case
of varying point density (as it is the case for terrestrial scan data).

Therefore, although being computationally expensive, Lalonde et al. (2005), Demantké et al. (2012)
and Weinmann et al. (2014, 2015a,c) suggest defining the neighborhood size for each point independently
to enable an optimal most characteristic description of each local surface. The key is to find a compromise
between a reasonably large enough support volume to suppress noise while avoiding ambiguous feature values
at class borders in case of neighborhoods chosen too large. In order to encode a wider bandwidth of spatial
context into the feature vector, often features are evaluated for the same neighborhood type at different radii
(Brodu and Lague, 2012; Blomley et al., 2016; Becker et al., 2017) and also for different neighborhood types
(Niemeyer et al., 2014; Blomley et al., 2016).
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Based on a respective point neighborhood, a typical set of geometric features is computed utilizing the
covariance matrix of neighboring points (Pauly et al., 2003; West et al., 2004; Belton and Lichti, 2006; Gross
and Thoennessen, 2006; Jutzi and Gross, 2009; Waldhauser et al., 2014). This matrix is often denoted as the
structural tensor, which comprises second-order 3D moments (Maas and Vosselman, 1999). By extracting
eigenvalues from this tensor (hence dubbed eigenvalue-based features), a set of distinctive features describing
local geometry can be employed (Chehata et al., 2009; Kim and Sohn, 2010; Mallet et al., 2011; Weinmann
et al., 2013; Blomley et al., 2014; Niemeyer et al., 2014; Weinmann et al., 2014, 2015a; Blomley et al., 2016).
In addition to these scale, rotation and shift invariant features (Maas and Vosselman, 1999; Jutzi and Gross,
2009), the local orientation of surfaces with respect to a superordinate reference system, i.e., the verticality
(Weinmann et al., 2013), or the local point density (Weinmann et al., 2013) can be helpful descriptors.

Furthermore, features for capturing characteristic height-related properties, such as height above ground
or height variation within a cylindrical neighborhood, are commonplace (Shapovalov et al., 2010; Blomley
et al., 2016). Another family of low-level descriptors for classification are so-called histogram-based features
(Osada et al., 2002; Rusu et al., 2008; Tombari et al., 2010; Blomley et al., 2014, 2016; Hackel et al.,
2016). These are designed to repeatedly evaluate rudimentary geometric properties based on the relation of
points in the local neighborhood definition (e.g., distance between points or angle between point normals),
storing them in respective histograms to obtain characteristic signatures. Sometimes 3D points are projected
onto either a horizontally or normal oriented plane, allowing additional descriptors such as 2D eigenvalue-
based features or accumulation maps indicating high concentration of points along the projection direction
(Weinmann et al., 2013, 2015a,c; Guo et al., 2015).

Considering the computational effort for (multi-scale) feature calculation of modern dense point clouds,
Brodu and Lague (2012) recommend to derive features only at regularly sampled core points (i.e., for a
subsampled point cloud) with subsequent propagation of labels in inference. This formulation is closely
related to applying a voxelization of 3D space, where encapsulated points in each voxel cell are used to derive
per-voxel features, thus also performing inference on voxel level. This means that predicted voxel labels are
propagated to all points within a voxel cell (Kim and Sohn, 2010). A similar approach to reduce the number of
instances to classify and to achieve a ”smoother” result is to perform an unsupervised segmentation in the first
place and predict class labels for complete point segments with additional features describing those segments
(Khoshelham et al., 2013; Xu et al., 2014; Vosselman et al., 2017). However, final classification accuracy
greatly depends on the quality of the unsupervised segmentation, which is why a point-based/voxel-based
approach might be preferable. To especially boost the computation of features at multiple scales, Hackel
et al. (2016) argue that the greater the considered support region of feature computation, the more sparsely
sampled the underlying point cloud to recover neighbors from may be. Further, they argue that relying on
multiple neighborhood scales avoids time-consuming computation of optimal neighborhoods and might be
capable of better capturing contextuality even making context-aware classification schemes (see section end)
obsolete.

To allow the classifier to distinguish between structures of the same geometric properties but still of
different class affiliations, the feature vector can be complemented by radiometric features. These are typi-
cally based on waveform processing (usually obtained via gaussian decomposition of received signals or by
stochastic modeling (Mallet et al., 2011)) of echo readings of modern full-waveform laser scanning systems,
yielding measures such as amplitude, echo width and echo shape (Mallet et al., 2008; Schmidt et al., 2014),
or simply the echo ratio for each point (Chehata et al., 2009; Mallet et al., 2011). Although Red, Green,
Blue (RGB) color information based on an orthogonal projection of orthophoto colors to Light Detection
and Ranging (LiDAR) points was also applied in the past for extending the feature vector (Charaniya et al.,
2004; Lodha et al., 2006), this approach is naturally limited by the actuality and also the 3D nature of
objects. But thanks to the wider dissemination of hybrid sensor systems carrying a laser scanner and camera
system(s), RGB color information can be used much more accurately now as basis for radiometric feature
computation (Haala et al., 2020).
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After completion of feature calculation and optional filtering of features identified as carrying negligible
additional information to reduce overfitting chances and thus to improve generalizability and interpretability
(Chehata et al., 2009; Weinmann et al., 2013, 2014, 2015a), it is presented to a supervised classification
scheme. This may be a Nearest Neighbor classifier (Jutzi and Gross, 2009; Weinmann et al., 2013) or more
sophisticated approaches like a SVM (Lodha et al., 2006; Mallet et al., 2011; Weinmann et al., 2013; Blomley
et al., 2014) or Boosting (Lodha et al., 2007; Guo et al., 2015). However, the quasi-standard for feature-driven
point cloud semantic segmentation is the RF classifier, which is mainly due to its parallelization capabilities
(Chehata et al., 2009; Shapovalov et al., 2010; Kim and Sohn, 2010; Niemeyer et al., 2014; Weinmann
et al., 2014, 2015c). Due to the point-wise inference scheme, obtained classification results might be noisy
with respect to the class affiliation of points compared to their neighboring points. To counter this, even
simple regularization approaches can lead to a significant improvement of the overall classification result
(Schindler, 2012), as proven for 3D point clouds by Charaniya et al. (2004). More sophisticated methods
achieve regularization by embedding previously mentioned classification approaches as a base classifier in a
Markov Random Field (MRF) (Anguelov et al., 2005; Lu and Rasmussen, 2012) or a CRF (Anguelov et al.,
2005; Shapovalov et al., 2010; Lu and Rasmussen, 2012; Niemeyer et al., 2012, 2014; Najafi et al., 2014;
Schmidt et al., 2014; Weinmann et al., 2015b; Vosselman et al., 2017; Landrieu et al., 2017).

2.8.2 Data-Driven Semantic Segmentation

From early developments of modern neural networks, formulated as CNNs by Lecun (1989), to their break-
through in 2012 with AlexNet (Krizhevsky et al., 2012), the idea of ML has fundamentally changed. Feature
computation is no longer seen as a pre-processing step for feeding a respective classifier, but is understood
as part of the ML process. This means that only the raw data is presented to the classifier and the required
set of features is to be inferred by the machine. Thus, engineering by an expert is no longer required for
feature calculation and possible limitations of data description to which humans might (unknowingly) be
subjected are lifted (e.g., try to consider a set of features describing the presence of a hand in an image).
In the era of DL (or AI to name it in a more popular scientific manner), it is the expert’s responsibility to
design a network that is capable of inferring meaningful features from the data. Since such CNNs achieved
astonishing results in benchmark challenges such as the ImageNet Large Scale Visual Recognition Challenge
(Russakovsky et al., 2015a) for 2D imagery, where they have reached a rather mature state with marginal
error rates, it is only natural trying to apply them to 3D data (i.e., point clouds in our case) as well. How-
ever, this poses new challenges since 3D data is not organized in a regular grid structure like 2D imagery.
Therefore, the core operation of CNNs, the convolution of input data with a specific kernel comprising a set
of learnable weights (Goodfellow et al., 2016, p. 322), must be defined to be applicable to 3D data. To this
end, various approaches have been proposed recently, as discussed by Griffiths and Boehm (2019), Guo et al.
(2021) and He et al. (2021).

While these methods differ in the manner convolution is being performed, many follow the well-known
U-Net architecture (Ronneberger et al., 2015) when being employed for semantic segmentation. This archi-
tecture is capable of deriving instance-wise (i.e., pixel-wise or point-wise) predictions, where in the encoding
branch a given input is subsequently subsampled. This allows to enlarge the receptive field and to apply an
increased number of kernels for gaining a deep understanding of the input. Subsequently, this representation
is upsampled to the original input shape in a symmetric decoder branch utilizing explicit links from the
encoder. In the following, some of the most prominent DL representatives for 3D semantic segmentation are
reviewed with special emphasis on how they solve 3D convolution as core function in a U-Net architecture.

A straightforward implementation of convolution for 3D point clouds is to resort to a voxelization to
the 3D data to obtain a regular (but sparse) grid representation, where theoretically convolution can be
applied simply by adding another dimension to typical 2D filter kernels. However, this is computationally
prohibitive and would also be inefficient in case of geospatial data since the resulting voxelization of a typical
ALS point cloud will mainly be built from empty cells, as we are basically dealing with a surface (i.e., the
earth’s surface) instead of extensive 3D volumes. A solution to this problem is provided by Graham (2015)
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and Graham et al. (2018), who advocate simplifying the convolutional operation by computing it only for
active input cells, i.e., cells that enclose points. Strictly speaking, we are no longer dealing with a conventional
convolution since active input cells are processed independently. However, the authors argue that aggregation
operations (e.g., pooling or strided convolution) allow propagation of information in the network, so that
independently processed cells communicate implicitly. This simplified convolution operation is embedded in
a typical U-Net-like encoder-decoder architecture, which works analogously to the 2D counterpart. More
details of the resulting Submanifold Sparse Convolutional Neural Network (SCN) for semantic segmentation
can be found in Section 3.7.2.

One of the first solutions for applying convolutions directly on 3D points was provided in PointNet
(Qi et al., 2017a). The core idea is that a set of points (which might also carry features) can be mapped
to a high-level understanding (i.e., vector) by pursuing a series of convolutions in terms of shared Multi-
Layer Perceptrons (MLPs) and preceding transformation operations for normalization. This is followed by
a symmetric function (such as max pooling) to summarize the input and to gain permutation invariance.
Finally, such a global feature vector can be mapped to a finite set of classes in case of the classification
network. If formulated as segmentation network, the global feature vector is concatenated with high-level
per-point feature vectors from earlier layers to be mapped to per-point class scores by again employing
intermediate MLP layers. Since by design this architecture is not capable of assessing fine-grained local
structures, the authors developed a hierarchical network denoted as PointNet++ (Qi et al., 2017b), basically
representing an implementation of the U-Net concept. In the encoding branch, a set of points is thinned
out before each convolutional operation, where the output point set is obtained by farthest point sampling
(sampling layer). For each point kept, the respective point neighborhood (where potential neighbors come
from the point set of the previous layer) is identified relying on a spherical or k-nn neighborhood (grouping
layer) and encoded in a (deep) feature vector carried by this point by means of a mini-PointNet layer.
To avoid unstable feature learning due to varying point density in a point cloud, special attention is paid
to generating multi-scale features by concatenating PointNet responses for multiple neighborhoods. For
obtaining per-point class scores for semantic segmentation, required upsampling in the decoding branch is
achieved by interpolating features from a previous layer to the point set in the current layer, which are then
concatenated with skip-linked point features from the opposing layer in the encoder and aggregated by a
unit-convolution/PointNet.

Motivated by convolution on rastered data with well-defined filter kernels, Thomas et al. (2019) introduced
KPConv. The input is the same as for PointNet/PointNet++, i.e., feature vectors at specific point locations,
but convolution is performed by aggregating neighborhood points with so-called kernel points positioned
in the vicinity of each input point (which can be assumed to be fixed within the neighborhood or to be
deformable controlled by learnable shifts). This means that a spherical neighborhood is centered in each
input point, in which a well-distributed set of kernel points is located, each carrying a weight matrix. For
each neighbor point, its feature vector is first multiplied by the weight matrix of each kernel point before
computing the weighted sum over all kernel points, where weights and thus the impact of a specific kernel
point on the neighbor point (the so-called correlation) is based on the distance between the two points. The
result of the convolution for the specific point of focus is then obtained by summing the filter responses
of all neighbor points. When being utilized for semantic segmentation, the convolutional operation is again
employed in a U-Net like architecture. Although KPConv performs convolutions directly on 3D points,
the input is typically subsampled by usage of a regular grid, where for each grid cell the barycenter of all
included points is computed and kept as point location to carry a convolution’s result. Thus, it greatly
resembles voxelization of the input as used for SCN. In the encoding layer, resolution is gradually reduced by
doubling the size of the raster cells, thus increasing the receptive field. Similar to PointNet++, the decoding
branch is built by nearest upsampling in combination with concatenating of those features with skip-linked
features and aggregated by an unary convolution to finally obtain point-wise class scores.

With especially having large-scale outdoor point clouds in mind, Hu et al. (2020) designed RandLA-
Net. Its key feature for efficient processing of such point clouds is progressive downsampling by simple
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random sampling of points from one layer to another. However, this poses the risk of losing most prominent
information. Thus, a local feature aggregation module has been developed alleviating this issue and defining
the convolutional operation on 3D points. Again, for each 3D input point with possibly available additional
attributes, the distinctive characteristic of the local surrounding is to be encoded in terms of a feature
vector. Hence, the first step is to define a set of neighboring points via k-nn search. For each neighboring
point, both (relative) 3D coordinates and features are separately mapped to a deeper understanding via
MLPs and afterwards concatenated (local spatial encoding) similar to PointNet. Unlike the max pooling
operation in PointNet, the global feature vector in RandLA-Net is derived in a more information-preserving
way by attentive pooling where input features are aggregated by a weighted summation based on learned
feature importances. To be less prone to losing information due to random sampling, the authors opt for a
dilated residual block where two sets, each consisting of a local spatial encoding module and attentive pooling
module, are stacked together and combined with a skip connection to be able to increase the receptive field.
This represents the core functionality of RandLA-Net and is applied in conjunction with random sampling to
build the encoder branch of a typical encoder-decoder network. Like for PointNet++, in the decoding branch
learned features are propagated through nearest neighbor interpolation to points of a higher resolution level,
concatenated with the opposing features of the encoder branch and fed into an MLP layer. Finally, obtained
point-wise features are mapped to class scores by means of shared fully-connected layers.
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Chapter 3

Methodology

To form the aspired hybrid intelligence system, there are two different main components we need to combine,
namely i) human intelligence represented by the crowd and ii) an ML system capable to perform the task of
semantic segmentation of 3D point clouds by learning from crowd-generated labels. To fuse both actors, the
overall framework we rely on is AL, a specific learning scheme for ML models to drastically reduce human
labeling effort to only valuable samples.

Before explaining the individual elements of our proposed methodology, we will start this chapter with
an outline of our overall system design (Section 3.1) and an intuition of why this is a cost-efficient solution
to our problem statement of semantic point cloud enrichment (Section 3.2). Section 3.3 is dedicated to
comprehensively address the key element of the AL system, which is detecting most informative samples. To
minimize costs even further, we i) rely on a reformulation of AL to allow for reusing pre-existing information
in the sense of TL (Section 3.4), and ii) aim to stop our AL respectively ATL loops as soon as convergence is
reached (Section 3.5). With AL essentially being the mediator between human and electronic processing units,
we further elaborate on those two components, represented by our paid crowd (Section 3.6) and a respective
ML algorithm (Section 3.7). Finally, we comment on relevant requirements on the technical infrastructure
and realization of the envisioned system (Section 3.8).

3.1 An Outline of the Proposed Hybrid Intelligence System

Our approach is designed to semantically enrich laser scanning point cloud data, which is nowadays available
abundantly but only rarely carries semantic information. We do not formulate any requirements for the
point clouds, i.e., neither precise georeferencing nor proper co-registration of individual scans is necessarily
required, although the latter is for sure beneficial both in terms of human and machine interpretability.
Thus, theoretically, it is possible to process point cloud data from different sources, such as Terrestrial
Laser Scanning (TLS), MLS or ALS and even multi-view stereo. But we especially focus on ALS point
clouds - captured either from manned or unmanned systems and thus having a different scale and resolution.

To initialize the process as schematically depicted in Figure 3.1 and described in Algorithm 1, the un-
labeled point cloud U (or subsets in case of extended clouds) is presented to an annotation engine. The
annotator or the so-called oracle O can be a simulated GT oracle, but in our case, we do not only aim at
demonstrating that AL is suited for minimization of data labeling, but our greater goal is to employ a realistic
crowd oracle for annotation (cf. Section 3.6). In an ideal world, we would be able to find and motivate a large
corpus of crowdworkers who voluntarily participate in our labeling campaigns. However, advertising such a
campaign and recruiting crowdworkers is a time-consuming and, especially in case of tedious data annotation
tasks, often futile endeavor. To address these recruitment limitations, we rely on paid crowdsourcing. By us-
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Figure 3.1: An overview of our crowd-based overall pipeline for semantic segmentation of 3D point clouds. Red arrows
indicate steps that are conducted multiply as part of the AL iteration loop.

age of respective platforms (such as MW or MTurk), we can post campaigns as open calls to all crowdworkers
registered on the specific platform, significantly easing the advertisement component. The lack of motivation
to actually complete tasks and especially in a timely manner, can be easily solved by extrinsically motivating
crowdworkers through payment. However, we also develop a gamification approach to the labeling problem,
which is intended to increase the intrinsic motivation of crowdworkers. This approach ideally leads to more
labels being set and to a higher level of accuracy (cf. Section 3.6.5).

The first task of our crowd is to set up an initialization data set Lraw with nj samples for each of the nΩ

classes defined by an operator (cf. Algorithm 1). For this purpose, an appropriate tool needs to be provided
to enable the crowd to freely indicate samples for each class (cf. Section 3.6.2). The challenge inherent in
this free point selection, however, is that quality control is hard to implement. In order to minimize errors,
we conduct a subsequent campaign in which crowdworkers check the results of crowdworkers from the first
campaign in order to filter the initially produced training set Lraw to obtain the actual initialization data
set Linit (cf. Algorithm 1). But if only one crowdworker checks a specific point, we end up with one word
against another. Thus, the idea is to check the validity multiple times, leading to the question of how many
multiple and favorably good-faith acquisitions are actually required. Integrating gross error filtered multiple
acquisitions can then be considered as an automated quality control mechanism for receiving high-quality
labels (cf. Section 3.6.3).

Eventually, the crowd provides a first set of labeled point instances L that in our case can be used for
training an ML model M for semantic segmentation of 3D point clouds (cf. Figure 3.1 & Algorithm 1). The
AL loop as backbone of our pipeline can be built around most state-of-the-art classifiers, as long as they are
capable to express besides their predictions also their uncertainty (cf. Section 3.7). The only difference to
training a classifier in AL, compared to PL, where generally completely labeled training sets are expected, is
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Algorithm 1 Crowd-driven AL loop for the semantic segmentation of 3D point clouds

Input
� unlabeled point cloud U = {xu}

np

u=1

� number of samples n+ to be labeled in each iteration step i
� definition of desired class catalog containing nΩ classes
� access to oracle O
� (labeling budget)

1: initialize labeled training set L = {}
2: query O to generate raw initialization data set Lraw = {(xr, cr)}

nj ·nΩ

r=1 containing nj samples per class
3: use O to filter Lraw by means of quality checks and discard all false representatives of Lraw to receive

Linit = {(xj , cj)}len(Lraw)−?
j=1

4: set L = L ∪ Linit and U = U \ Linit

5: initialize queried label set Li = {}
6: while stopping criterion not met or labeling budget not exhausted do
7: train the ML model M using L
8: predict on U to get class probabilities p(c|xu) ∀ xu ∈ U
9: derive a sampling score s ∀ xu ∈ U (cf. Section 3.3)

10: select the n+ samples with highest score and ask O for labels thus generating Li =
{(

x+
i , c

+
i

)}n+

i=1
11: set L = L ∪ Li and U = U \ Li

12: set Li = {}
13: end while

Output
� final training set L
� trained model M
� full annotation of originally provided point cloud U with points being either manually annotated by O
or automatically labeled by M

that the training point cloud in our case is sparsely labeled. This means that only a few points are annotated,
but remaining ”background” points are still indispensable for deriving meaningful features. This property
needs to be considered in setting up respective classifiers since it deviates from conventional training schemes.
Nevertheless, provided presence of a suitable classifier, based on the initial training data set, a first training
cycle and thus prediction on all remaining unlabeled data points (i.e., the complete point cloud except for
the initially labeled points) can be performed (cf. Figure 3.1). This already results in the trained model
M and a full annotation of the originally provided point cloud U , which is now either manually annotated
by O or automatically labeled by M . Thus, theoretically, the pipeline could already be stopped at this
point. However, since it is unlikely that a model solely based on such a sparse initialization data set yields
satisfactory results, a refinement of the model and the derived labeling is now being pursued.

The idea underlying the continuation of the workflow is that the classifier is capable of identifying those
samples in the remaining pool of unlabeled data U with the most predictive uncertainty, and that inclusion of
those points into the training data set would lead to a better performing model (i.e., we assume a pool-based
AL setting). In other words, we focus manual labeling effort on only those points which are worth it. For
discovering the few most informative points (cf. Figure 3.1), a respective query function is to be employed to
compute individual sampling scores s (cf. Algorithm 1). Although sampling most uncertain points is a viable
way for the ML model under development, a realistic crowd oracle diminishes the potential improvement
through those points. This is because crowdworkers will struggle to label them since they are often situated
directly on class borders. Thus, sampling strategies with special emphasis on points that are both informative
and feasible to label need to be developed. Since 3D data is nowadays utilized and presented not only as
3D point clouds but also as 3D textured meshes, we can also alleviate possibly difficult interpretation of
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3D data based only on discrete points by presenting the crowd a continuous and textured mesh instead (cf.
Section 3.6.4).

No matter the query function or the chosen 3D representation, the selected n+ points are then presented
to the oracle O. Again a proper tool is required to ask the crowd for the labels of specifically indicated
points (cf. Section 3.6.2) in the current round i to compose Li (cf. Algorithm 1). Based on the training pool
enhanced with the current batch of training samples L = L ∪ Li (cf. Algorithm 1), the next training cycle
of this iterative procedure can be started and the loop can be repeated until exhaustion of labeling budget
or, preferably, until convergence, where more labeling effort would only lead to marginal improvements in
performance. Detection of convergence and consequent termination of the loop can be achieved by defining a
robust stopping criterion (cf. Section 3.5). Although such an AL-based learning setup is a viable solution to
establish a powerful ML model for reasonable predictions, the question of sufficient generalizability for a new
(but related) point cloud arises. It is to be assumed that a model built for a specific data set of the so-called
source domain will yield suboptimal predictions on another point cloud of the target domain. However, AL,
or more precisely ATL, provides a solution to this issue by making use of the information already available
or learned that is also beneficial for the target domain, but also by adding a limited number of the most
relevant samples from this new domain (cf. Section 3.4).

We argue that the complete AL and ATL loop, respectively, incorporating the crowd can be considered as
a fully automated workflow i) if we are able to employ an automated quality control of crowd-generated labels
(cf. Section 3.6.3) and ii) if we find a way to completely automate the communication between the machine
conducting the AL loop and the crowd. Finally, this leads to the so-called CATEGORISE framework (cf.
Section 3.8). Although humans are part of such a hybrid intelligence system, they can be thought of as human
processing units working in collaboration with electronic processing units. While the latter are naturally
responsible for all operations on the machine side (e.g., automatic classification, sampling of points, etc.),
labeling tasks assigned to human processing units are completed by means of artificial artificial intelligence
(Bezos, 2007) and from the view of an operator, the human processing units behave just like the electronic
ones.

3.2 An Intuition why AL Works

Before going into the details of the AL working principle and how to employ crowdworkers in this concept,
we would like to give an intuition of why learning with only a few samples is a well-justified way to proceed,
exemplified with respect to 3D geospatial data. The idea of building a classifier based on only few samples is
not only an achievement of AL, but is also implemented in the well-known SVM classifier. For training such a
classifier, a completely labeled training set is often employed, but eventually training a SVMmeans identifying
the so-called support vectors. In the end, the separation of feature space by means of hyperplanes is solely
based on those support vectors. This concept is also visualized in Figure 3.2, where we have trained a SVM
classifier based on both geometric and radiometric features (discussed later in Section 3.7.1) for the ISPRS
Vaihingen 3D Semantic Labeling Contest (V3D) benchmark data set (further presented in Section 4.2.1).
We can observe that the training process equals a filtering step, keeping only points that describe object
borders. The point cloud of support vectors (more precisely, their coordinates in object space) in Figure 3.2(b)
resembles a map showing the delineation or contour lines of individual buildings and estates. Therefore, we
assume that such points are the most informative for the classification process.

If one of the top ranking classifiers of the pre-DL era, i.e., a SVM, can operate by means of only such few
samples, other classifiers, including modern CNNs, should be capable of doing so as well. The significance of
this observation is the vast potential to save labeling effort. For instance, our SVM classifier only keeps 21.68%
of provided training points and derives its predictions only from them, which is why labeling the remaining
points is dispensable. This observation is in accordance with the strategy often pursued by dedicated experts
who also try to label only a subset of available points sufficiently representing the diversity of data based on
their data knowledge and experience (Waldhauser et al., 2014).
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(a) (b)

Figure 3.2: Comparison of V3D’s labeled training data set (a) and the support vectors derived from it (b). Support
vectors are mainly situated on class borders, so that contours are clearly visible. Class color coding is depicted in
Figure 3.3.

This means that if we are able to find a way to directly and automatically identify the points that will
impact the final model the most, without knowing their labels, we could really save the costs of annotating
the rest of the points - this is where AL comes in. Based on an initially provided training data set, we evaluate
the uncertainty of the model when predicting on unlabeled data points and query those the model is the most
uncertain about. If this selection is accomplished by an efficient query strategy, often even a lower number
of points needs to be labeled than a SVM would find support vectors (Mackowiak et al., 2018; Kellenberger
et al., 2019). This is due to the fact that the SVM exploits the complete proximity of the decision border.
Thus, lots of informative, but often similar points, quasi-duplicates, are used. AL attempts to avoid that
by especially tailored query functions (cf. Section 3.3). Vice versa, in our later experiments, up to 81.21%
of sampled points are actually support vectors. This implies that there are also non-support vectors in the
training set, which are mainly sampled in early iteration steps, where most demanding regions cannot yet be
identified due to a suboptimal estimation of the separation hypothesis at this stage (Tuia et al., 2011b). In the
course of the iteration, however, with the gradual enhancement of the training set, separating hyperplanes
approximate an optimal position, thus also allowing for more precise queries (of support vectors).

To gain further insights into the working principle and success of AL, we aim to visualize the regions AL
focuses on in both feature and object space. However, since classifiers operate in high-dimensional feature
space, humans tend to prefer analyzing the distribution of selected points in object space. But this selection of
points is only the consequence of effects in feature space, which is why we opt to focus on it as well. For the sake
of interpretability, however, we conduct a remapping of high-dimensional feature space to 2D. Nevertheless,
we are aware that this will inevitably lead to loss of information, thus not all inter-class relationships can be
necessarily observed. For this remapping we opt to use t-SNE (van der Maaten and Hinton, 2008) as it allows
a non-linear mapping (or dimensionality reduction) while keeping the relative distance between samples
based on their similarity. This is done by iteratively minimizing the ”distance” (measured by Kullback-
Leibler divergence) between a distribution reflecting the situation in the high-dimensional space and one in
the newly established low-dimensional space. While the source distribution is modeled by a symmetrized
Gaussian distribution based on the distance between samples and with the variance being implicitly set
by the user as the number of expected neighbors, called perplexity, for the target distribution a Student
t-distribution is used (instead of the straightforward choice of another Gaussian distribution) to reduce
the crowding problem (van der Maaten and Hinton, 2008). The optimization is accomplished by stochastic
gradient descent. The result depends greatly on the value for perplexity, requiring to be set as a trade-off
between focusing on local vs. global structures, which can lead to significantly different results (Wattenberg
et al., 2016). For alleviating this issue, different values for the perplexity were explored and finally set to
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Figure 3.3: Embedding of feature vectors of V3D training data into 2D space by t-SNE along with an exemplary
depiction of regions where AL points originate from (blue circles). For each indicated region, a representative is
traced back to object space and indicated in blue. While points (a) and (f) were selected by crowdworkers in the
initialization step, the remaining examples were actively queried in the course of the AL loop.

50 leading to the result as depicted in Figure 3.3 for the training set of the V3D data, relying on the same
features as for the SVM classification (cf. Section 3.7.1).

The pure t-SNE output in Figure 3.3 gives an idea of the separability of individual classes. Overall, we
can observe that some classes such as Powerline, Façade and partly class Roof clearly stand out even in a
2D representation. On the other hand, classes like Fence/Hedge, Shrub, and to some degree Low Vegetation
are greatly entangled. However, overlapping features of those classes are exactly what one would expect.
But please note that this does not mean that a classifier is doomed to fail on these classes. First of all,
we can observe classes that t-SNE struggles to separate, which is likely due to overlapping features. But
there is a remaining risk of suboptimal t-SNE parametrization, so that in the high-dimensional space a clear
distinction could be possible. Thus, these results should not be overinterpreted.

In Figure 3.3, we also indicate exemplary regions of the training set AL draws its points from in (reduced)
feature space, and also trace those selections into object space (the same figure with a dedicated visualization
of all AL points can be found in the Appendix in Figure A1). We differentiate between regions where samples
are drawn from in the initialization step (examples (a)&(f)) and regions visited in the course of the iteration
(examples (b),(c),(d)&(e)). In the initialization step, crowdworkers are free to pick representatives of all
classes and operate in object space. Naturally, they tend to select points that are as easy to label as possible,
i.e., they would just pick a point in the middle of a respective object well away from class borders (see
Figure 3.3 object space excerpts). This matches well with the depiction in the t-SNE plot, where we can see
rather homogenous regions. However, active sampling within the AL loop takes place in feature space and
mainly favors heterogeneous regions where a mixture of different class representatives is present. If exemplary
points of such regions are traced back to object space, we can observe that such points are not only situated
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close to the decision borders in feature space but also close to the class borders in object space. Thus, only
the question of how to find these most informative instances in the high-dimensional feature space remains,
being the focus of the next section.

3.3 Sampling Schemes in the AL Loop

From the perspective of the machine, the most crucial step is the definition of a proper query function that
is capable to identify most informative points. Thus, most research in AL is concerned with developing such
sampling strategies, and there is a great variety of possible approaches that can be found in literature (Settles,
2009). We will restrict ourselves to the discussion of those strategies we have employed in our endeavor of
identifying most informative ALS points (Section 3.3.1). We also address possible refinements to meet the
challenges of class-imbalanced data (Section 3.3.2), sampling under a pool-based AL scheme in batch-mode
(Section 3.3.3) and working with an imperfect oracle (Section 3.3.4).

3.3.1 Query Functions

The easiest approach of sample selection in AL is random sampling. This means that in each iteration step
we would just pick a fixed number of points n+ in a random manner, without considering the current state
of the classifier and its uncertainty at all. Nevertheless, this method quite frequently works surprisingly
well, because often by chance we obtain some of the most informative points but of course also points that
are not helpful to refine the classification rule, thus unjustly increasing labeling cost. Even worse, some of
the most informative points will never get sampled, and hence the maximum achievable accuracy can be
considered limited. With respect to the representativeness of the different classes in the final training pool,
we assume that the relative distribution is quite similar to that in the complete underlying data set. In case
of geospatial data, however, we are generally dealing with rather class-imbalanced data sets - for instance,
consider the number of points representing chimneys compared to points that depict building roofs. If random
sampling is applied, underrepresented classes in the complete training set will also be underrepresented in
the sampled training pool, thereby only insufficiently reflecting respective intra-class variety. In the worst
case, no points of certain (underrepresented) classes will be actively queried at all. Thus, more sophisticated
sampling strategies are required.

A more targeted sampling strategy would consider the predictive uncertainty of the classifier at its
current state. Uncertainty-based sampling strategies are directly built upon the posterior probability p(c|x)
that point x belongs to class c. Since we are dealing with multi-class settings where we would like to take
into account the predicted score for all nΩ classes, we employ entropy E (Shannon, 1948) to evaluate this
uncertainty. This metric theoretically assesses aleatoric uncertainty, i.e., samples are drawn from the vicinity
of the current decision border when the posterior probability is given by a single classification model (although
in early iteration steps epistemic uncertainty might dominate point scores). But it can also measure epistemic
uncertainty, for example, if the averaged posterior probability of multiple hypotheses, such as from a deep
ensemble, is used. Samples are then drawn according to:

x+
E = argmax

x∈U

(
−

nΩ∑
i=1

p(ci|x) · log2 p(ci|x)

)
(3.1)

When evaluating entropy, we receive the minimum value, i.e. 0 , when we have the score 1 for one class
and consequently the score of 0 for each of the remaining classes. The maximum value, on the other hand,
will be obtained whenever we are confronted with an equal distribution, i.e., every class gets the same score
1/nΩ . Such points, the classifier is completely confused about are considered informative and will therefore
be sampled preferably.



50 Sampling Schemes in the AL Loop

(a) Entropy sampling - emphasizing aleatoric uncertainty,
but also epistemic uncertainty (especially in early iteration
steps)

(b) Vote entropy sampling with ne = 4 - scoring mainly
epistemic uncertainty. V E values are valid for respective re-
gions framed by decision boundaries

(c) Batch-mode AL with batch size 3 in combination with
entropy sampling. Except for the point closest to the deci-
sion border, 2 quasi-duplicates get selected

(d) Batch-mode AL with batch size 3 in combination with
entropy sampling and applied diversity criterion. Dotted
lines represent formed k-means clusters

Figure 3.4: Comparison of different sampling strategies to gain most informative unlabeled points in an exemplary 2D
feature space. Transparent points of both classes represent the current training data and are not subject to sampling.
The current decision boundary is (or boundaries in case of vote entropy sampling are) depicted in gray. A yellow
border line marks the point with highest score (top row) or multiple points with highest scores (bottom row). Please
note that the class colors are only meant for a better visual interpretation since except for the transparent training
points, no class labels are known to the ML model.

Figure 3.4(a) gives a visual interpretation of entropy sampling. When dealing with a two-class problem,
the entropy-based sampling strategy is equivalent to sampling the point being closest to the model’s current
decision border learned from training points that are already available. Thus, in the binary case, it equals the
least confident and breaking ties sampling strategies (Settles, 2009). Figure 3.5(a)&(b) gives an exemplary
evaluation of entropy scores for the V3D data set for different states of the iteration. Although the classifier
gets more confident in the course of the iteration, we can observe that throughout the loop, points situated on
or near the class borders are most uncertain for the classifier to categorize, because they may reveal ambiguous
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Low High

(a) (b)

(c) (d)

Figure 3.5: Entropy evaluated in the course of the iteration exemplarily for the first (a) and the last (b) iteration
step for the V3D data set. Overall, the classifier gets more confident in its predictions, well corresponding to an
improvement of predicted class labels ((c) vs. (d)), but class borders remain most challenging. Class color coding is
depicted in Figure 3.3.

feature vectors, but will also provide most helpful clues for refining the decision border. Eventually, we
prioritize sampling of support vectors (cf. Section 3.2) to gradually improve the current separation hypothesis,
thus being an appropriate measure for our AL loop.

Another popular sampling strategy comes from the query-by-committee domain and is vote entropy sam-
pling. There, we assume to have a committee or an ensemble E of ne different (but similar) classifiers e. This
can either be an RF ensemble (cf. Section 3.7.1) or a deep ensemble (cf. Section 3.7.2). The main difference
to entropy sampling is that vote entropy V E considers the predicted posterior probability of an ensemble
member pe(c|x) only implicitly. Precisely, it is utilized only for getting a vote from each ensemble member
e for a specific class. When normalizing those votes, we receive a new distribution, which we evaluate based
on the entropy formula to draw samples as follows:
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x+
V E = argmax

x∈U

(
−

nΩ∑
i=1

∑
e D(pe, ci)

ne
· log2

∑
e D(pe, ci)

ne

)

where D(pe, c) =

{
1, if argmax(pe) = c

0, otherwise
and pe(c|x) abbreviated as pe

(3.2)

While entropy sampling relies purely on posterior probabilities (either from one model or averaged over
multiple models) to select most informative points, as soon as the separation hypothesis is roughly set,
this strategy might lead to a suboptimal choice of points. This is due to giving highest sampling scores to
points close to the current decision borders, but such points will always remain to be complex for classification
since they incorporate features of multiple classes. Thus, the separation hypothesis will only profit marginally
from the inclusion of such points into the training set. For this reason, the basic idea underlying vote entropy
sampling is that pure uncertainty is of subordinate importance as long as a model still predicts the correct
class for such points. Vote entropy implements this mindset by measuring the disagreement of predictions
among ensemble members e (and intentionally discarding uncertainty encoded in posterior probabilities). If
all members vote for the same class (i.e., low V E), we would consider the respective point to be confidently
predicted (even if the entropy score of averaged posterior probabilities over all committee models, as measure
more related to aleatoric uncertainty, might suggest otherwise). But if those ensemble members vote for
different classes, the sample is considered ambiguous, and labeling this point might have a great impact on
the classification model, i.e., we identified it to populate a region of high epistemic uncertainty.

Figure 3.4(b) visualizes this principle for an ensemble classifier with 4 members, where each formulates
a decision border in accordance with the current training data set, but that is still different from the others.
This is possible since the current training samples are situated far away from the optimal decision border,
thus giving room for a plethora of possible separation hypotheses. This situation is likely to occur in our
crowd-based setting where the initialization data set is comprised of points freely picked by crowdworkers,
which are expected to populate the class centers in feature space (cf. Section 3.1). The disagreement values
by means of V E correspond well with those regions in feature space where selecting training points from
would help to constrain the variance of separation hypotheses.

3.3.2 Fostering an Equally Class-Distributed Training Set

Both measures (E & V E) are well suited for detecting the points the classifier is the most uncertain about.
However, if point sampling is solely based on these metrics, it is likely that classes that are underrepresented
in the data set will be underrepresented in our point queries as well, if we assume that the relative number
of points in the vicinity of class borders (or in regions of disagreement for vote entropy sampling) equals that
of the complete data set. As a consequence, when points of smaller classes are not drawn, a refinement of
the decision border(s) to effectively separate such underrepresented classes is likely to be not prioritized and
might only happen implicitly by improving other class borders. Therefore moving the decision border(s) in
feature space to a cluster representing this underrepresented class is also not prioritized, and when points
of such a class are not next to the class border (or in the region of maximum disagreement for vote entropy
sampling), they might never get sampled.

Thus, special measures for giving more emphasis to underrepresented classes are in order. This can be
achieved by deriving a dynamic weighting factor wc(i) for each class c at each iteration step i by considering
the ratio between the total number of samples currently included in the training data set nL and the number
of samples for a specific class nc:
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wc(i) =
nL(i)

nc(i)
(3.3)

These weight values are then multiplied by the predicted score of each class (E: p(c|x), V E:∑
e D(pe, c)/ne), normalized and inserted into the entropy formula. In this way, we always increase the

class score of the rarest class with respect to the other classes. The working principle of the weighting
scheme can be interpreted to be twofold. While we aim to raise sampling scores of points from rare classes,
at the same time scores of well-represented classes are to be diminished in order to ”free” sampling capacity
for samples from rare classes.

For the latter, the idea is to reduce sampling scores of points that would have been selected normally in
an unweighted sampling scheme because they are likely to belong to well-represented classes. For instance,
for the entropy sampling situation, consider an equal distribution of individual class scores for a given point
and a three-class problem with class A having only one labeled instance in the current training set and classes
B and C each having 5 labeled instances. Then, the weight value for class A is 11 and for the remaining
two classes it is 2.2 each according to Equation 3.3. Applying the weighting scheme to this specific point
(that probably belongs to a well-represented class) would change the equal score distribution to one having
a strong indication of class A, so that the sampling score s (based on E or V E) is decreased. Thus, it is
more unlikely than before that this point will be queried, i.e., we manipulated sampling by decreasing the
score of a point that would have been selected otherwise to allow sampling of a representative of a point
from an underrepresented class. Vice versa, if all classes are equally represented in the current iteration step
(i.e., equal weights), there is no need of tampering with sampling scores.

As for the other aspect, i.e., boosting scores of scarce classes, the idea is to focus labeling resources on all
samples that incorporate at least a weak hint to be a representative of a scarce class. For example, considering
the same class distribution in our training set (and thus weights) as before. When we are confronted with
a specific sample having class scores of p(cA|x) = 0.1 and p(cB |x) = p(cC |x) = 0.45, we would alter the
distribution to resemble more an equal distribution to emphasize inclusion of this point, which might stem
from class A, into our training data set. On the other hand, if the class scores give absolutely no indication
of class A and the two other classes are equally likely (i.e., p(cA|x) = 0; p(cB |x) = p(cC |x) = 0.5), we would
not change the resulting score, thus not interfering with the classifier’s selection. Since our weighting scheme
emphasizes sampling of points that can lay farther away from the current (maybe imperfect) decision border,
it can also help to put focus on finding new, so far unsampled clusters. Respective points are otherwise never
queried (considering the entropy sampling scheme), which is a well-known issue of AL (Matasci et al., 2012).

3.3.3 Guaranteeing Diversity in Sampled Batches

The weakness of the aforementioned sampling strategies is that they are specifically designed for querying
one instance at a time. From the view of an optimal selection of points, the classification rule should be
updated with each new training sample to give the best possible estimate of the next point to be labeled.
But sampling one instance per iteration step is statistically questionable and just not efficient for most
classifiers. Thus, a batch of points is commonly selected at once. The easiest approach to this would be to
choose the n+ points with the maximum sampling score. If this is done relying on entropy, the samples that
are picked might be rather similar to each other (with respect to their representation in feature space), as
can be seen from Figure 3.4(c). This means that, except for the sample lying closest to the decision border,
quasi-duplicates are selected that might not provide significant value to refining the separation hypothesis.
Therefore, statistical significance is solved, but efficiency still remains an issue. To boost the convergence
of the AL loop, a set of points that is as informative and as diverse as possible should be selected. For the
latter to achieve, a clustering algorithm of feature space can be utilized to get n+ clusters, where we would
like to sample only one point per cluster, so that all points of the batch are sufficiently different. This can
be implemented by the k-means algorithm (Lloyd, 1982), which sets k cluster centers (in our case k = n+)
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in a way that the euclidean distance between each data point in U and the distributed cluster centers µ is
minimal. ∑

xi∈U

n+∑
j=1

si
∥∥xi − µj

∥∥→ min (3.4)

Please note that we also introduce an individual weight for each data point, which is given by the sampling
score s (E/V E or their weighted variants) of each point (Zhdanov, 2019). If pure k-means sampling was
applied, the focus would be solely on the diversity criterion, but likely the clusters would mainly populate
high-density class concentrations with low score values. Consequently, when sampling from those clusters,
only an insignificant improvement of the current classification belief is to be expected. Incorporating the
sampling score into the optimization process will help to ensure that most clusters are close to the decision
borders, but most similar points are still summarized into one cluster, thus avoiding sampling duplicates.
Figure 3.4(d) illustrates the improvement in terms of batch diversity when relying on feature space clustering
(for simplicity, a pure k-means clustering is depicted). After clustering, we select the point with the highest
sampling score from each cluster and refer to this method as Diversity in Feature Space (DiFS).

In case of geospatial data, similarity of individual data points can also be considered as spatial similarity
(Crawford et al., 2013). Generally, we would assume that neighboring points in object space also show
similar features and thus are close to each other in feature space as well. To this end, an exemplary depiction
of entropy sampled points is given in Figure 3.6. We can clearly observe that sampled points within one
iteration step form clusters in object space. Thus, an alternative method to the k-means based DiFS method
for guaranteeing diversity of sampled points is to enforce the diversity criterion in object space, referred to
as Diversity in Object Space (DiOS). This can be achieved by allowing one of the aforementioned greedy
query functions to add a point to the current batch only if the distance to all previously sampled points in
that iteration step is greater than some threshold dDiOS . Setting this threshold, on the other hand, requires
adjusting another parameter that can be hard to interpret. At what distance are two points too similar
to be sampled with respect to their informativeness or their representation in feature space? It is worth
emphasizing that this sampling add-on is intentionally restricted to operate within one AL iteration step
each, so that in the final training data set points with a distance dDiOS smaller than the threshold can
be included. This alleviates the impact of the threshold because if the query function was prohibited from
sampling an actually informative point in the current iteration step, in one of the next iteration steps there
is still the option to add it to the training set.

(a) (b)

Figure 3.6: Entropy sampled points (depicted in cyan) of two exemplary iteration steps of a batch-mode AL loop.
The point cloud data is colored according to GT. Class color coding is depicted in Figure 3.3.
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3.3.4 Addressing Imperfect Oracles in AL

While the aforementioned sampling strategies (entropy & vote entropy) and sampling add-ons to ensure
diversity in batches (DiFS & DiOS) were concerned about the best selection of points from the view of
the machine, this section is concluded by also addressing that, in contrast to many AL-related publications
(Marcus and Parameswaran, 2015), we are dealing with a realistic imperfect crowd oracle. Thus, in favor
of getting correct answers from crowdworkers, we might have to sacrifice informativeness. The idea is to
consider the choice, that is the scoring of the machine, as a prior for the final selection of points.

As already discussed in Section 3.2 and observed from Figure 3.5, the classifier tends to select points that
are situated on class borders in object space. There we have the highest informativeness values because the
features incorporate characteristics of multiple classes. But we assume that interpretability for the machine
is also related to human interpretability, so that those spots the current state of the ML algorithm is not
sure in its decision are also demanding for crowdworkers.

For human interpretation, however, subjective understanding and definition also play a major role (Raykar
et al., 2010). Often we are confronted with ambiguous points that are hard to assign to one distinct class.
Therefore, we argue that increasing the distance to the class borders is related to Reducing Interpretation
Uncertainty (RIU) and thus also refer to this method as such. Precisely, we consider a point selected by
the machine as the seed point, but query a certain other point within a specific radius dRIU around that
point instead. In the end, the point with the lowest score in this region and thus hopefully with the highest
interpretability gets selected.

When implementing this idea, the selection of points can be adjusted as visualized in Figure 3.7. As
expected, the classifier selects points on class borders where it might be hard to decide for one specific class.
For instance, the points on the borders between classes Façade and Roof in Figure 3.7(a) can be very well
assigned to each of the two classes, depending on personal understanding of class affiliation. If we move away
from the class borders, such ambiguities vanish, and a human operator can confidently and quickly decide
for a specific class. But on the other hand, if the distance of the point to the class border becomes too large,
the label might not bring any benefit for the training of the ML model in the end (cf. Figure 3.7). Thus, we
are confronted with a trade-off between human interpretability and informativeness for the ML model.

(a) (b)

Figure 3.7: Working principle of our Reducing Interpretation Uncertainty (RIU) technique to alleviate label ambi-
guities for the oracle, depicted for two different scenes. Instead of the point that was actually queried (cyan), an
alternative point within a certain radius (1.5m for yellow and 4m for magenta) that is supposed to be easier for
human interpretation is sent to the oracle for labeling. Class color coding is depicted in Figure 3.3.
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3.4 Active Transfer Learning

The previous section provided a guideline on how to minimize labeling effort with AL enabling a classifier
to ascend to a satisfactory level of accuracy. However, the question of generalizability remains, i.e., whether
a classifier trained for a specific data set will also output predictions of comparable accuracy for another
data set as for the one it was originally built for. Often classifiers do not generalize well when supposed to
operate on a new domain, the target domain DT . The reasons for that can be manifold, but can be traced
back to two distinct issues occurring in transfer learning tasks, that is, the sample selection bias (Heckman,
1979) and the covariate shift (Shimodaira, 2000) problem. In case of covariate shift, we assume that the
marginal distributions inherent in the source domain DS and the target domain DT are different but the
class conditional probabilities are sufficiently similar, i.e., pS(x) ̸= pT (x) while pS(c|x) ≈ pT (c|x). This can
be interpreted as representatives of a specific class being described by a sufficiently similar feature vector in
both domains, but some samples are missing to define the separation hypotheses in DT more truly or more
generally. This issue can be solved by just including respective samples of DT to refine the current class
borders, as exemplarily visualized in Figure 3.8(a)&(b).

However, the more general (and severe) case of domain gap is the sample selection bias. In this case,
we are additionally confronted with samples being characterized by a similar feature vector but carrying
different class labels in DS and DT , i.e., p

S(x) ̸= pT (x) and pS(c|x) ̸= pT (c|x). Figure 3.8(c) depicts
an example of such a scenario. Like for the covariate shift issue, some samples of DT can be included to
improve the decision borders. But even if new samples for class yellow and green are added, the classifier is
left confused since samples of DS are misleading for DT . We can solve this shift problem by removing such
deprecated samples from DS to yield a proper set of decision hypotheses for DT (cf. Figure 3.8(d)).

The approach we deploy to solve both types of domain gap problems was originally purposed for semantic
segmentation of aerial imagery (Persello and Bruzzone, 2012; Persello, 2013). However, we aim to transfer
it for the classification of 3D point clouds employing a realistic crowd oracle. Thus, the method discussed
in the following and visualized in Figure 3.9 can be considered an extension or rather generalization of the
already presented AL pipeline (cf. Figure 3.1 & Algorithm 1). Its initialization is the same as for a basic
AL loop. The unlabeled point cloud is presented to the crowd, which generates a sparse initial data set (cf.
Section 3.1) that is then used for training our ML model. After this initialization, we start sampling most
informative points, receive labels from crowdworkers and employ them for training the ML model. We repeat
this procedure ni times to iteratively tune our classifier for the domain in which we started this process (i.e.,
DS).

The straightforward way to adapt a classifier to a new domain by means of AL, or more precisely ATL,
is to just continue the started iteration but to change the pool of unlabeled instances U the classifier is
allowed to draw points from through the query function from the source to the target domain. This is an
easy yet effective solution for the aforementioned covariate shift problem. For this, any sampling strategy
(e.g., entropy sampling or vote entropy sampling) can be used, but in case of pool-based batch-mode AL,
Persello (2013) stresses the importance of a diversity criterion. This is to encourage that samples are not
only drawn from the direct vicinity of the current decision border, since this separation hypothesis might be
suboptimal with respect to DT , so that the actual most informative samples might be situated farther away.
However, this is a scenario similar to a basic AL run where, depending on the initialization data set, decision
borders can also only be estimated suboptimally. But in the case of ATL, we hope that at least some of the
class-separating borders are positioned quite well. Otherwise, i.e., if the data distributions of DS and DT

were completely different, the transfer process would be pointless. Anyways, newly sampled points are then
used together with all samples from DS to train the ML model in the course of the ATL loop.

To overcome the more general form of domain gap, i.e., the presence of sample selection bias, we do not
only add n+ samples of DT through our sampling function, but we also remove n− samples of DS that are
the most in contradiction with DT . The idea is that as soon as labeled samples from DT become available,
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(a) Covariate shift (b) Resolved covariate shift

(c) Sample selection bias
(d) Resolved sample selection bias. Red crosses in-
dicate discarded source domain samples

Figure 3.8: Comparison of different data shift problems in transfer learning (left) and possible solutions to them
(right) for a 3-class 2D feature space setting. Samples from the source domain are indicated by bullets and samples
from the target domain by triangles. The current decision borders under optimization are marked in gray. Transparent
target domain samples were not considered to build the decision borders based on source domain samples (left).

we can compare them against representatives of the same class from DS . To avoid having to define a specific
similarity measure including an appropriate threshold for this similarity, the predictions of two ML models
are utilized: one being solely trained by source domain samples and the other one being trained by the
combined training set of source and target domain samples. Please note that we could theoretically also
oppose the predictions of a source domain classifier to one using only target domain samples, but such a
comparison would be infeasible as the two classifiers would disagree significantly even without the domain
gap. This is due to the training pool of the target domain classifier only including very few most informative
points of a later stage in an AL loop, that might focus only on one specific class or on some rather fine-
grained details across multiple classes. Thus, we refrain from the second option and discard target-conflicting
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Figure 3.9: Overview of our crowd-driven ATL loop.

samples from DS included in the labeled source training set LS by measuring the disagreement between the
predicted posterior probabilities of the two classifiers, as outlined in Equation 3.5.

x− = argmax
x∈LS

( ∣∣pS(c|x)− pS∪T (c|x)
∣∣ ) (3.5)

Hence, in ATL we need to decide on both the number of samples n+ from DT to be added to the training
set and the newly introduced hyperparameter n− of samples from DS to be discarded. The latter is implicitly
set by n− = q · n+ (or q = n−/n+), with q being defined by the user as the ratio of deletion vs. inclusion.
Depending on the batch size n+ in tandem with q and the number of iteration steps, there are scenarios
where the training set will be quickly cleansed of samples from DS and learning will be solely based on DT .
However, this can be a handy property whenever training samples from a source domain have been included
that are actually not meaningful for the target domain and are thus to be timely eliminated. But generally,
we would assume that there is at least a small portion of information in the training samples from DS which
is worth learning from and that we do not wish to ignore.
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But even for a dedicated expert, it is often hard to tell whether given source domain data will be actually
helpful for the classification of another target domain point cloud (Waldhauser et al., 2014). Thus, the
procedure is designed in such a way that samples of a given source domain can be included either way, and if
they are helpful for DT , the ATL loop will be boosted. But if they are contradicting DT , they can be quickly
eliminated (provided proper parametrization). In this manner, scenarios can be avoided where an ATL run
requires more iteration steps than an AL run launched from scratch on DT .

3.5 Stopping the Loop

As already emphasized earlier, our aim is to establish an automated hybrid intelligence system that minimizes
human interaction and thus costs as much as possible. Considering both automation and minimizing costs, an
effective stopping criterion of the AL loop comes into focus. A compulsory and thus the easiest variant would
be a scenario where we have a limited labeling budget that implicitly defines the number of affordable labels
and thus the number of iteration steps (with known batch size n+). A sophisticated termination criterion,
on the other hand, can help when the budget for labeling is considerable and when the goal is rather to
conduct the loop for as many iteration steps as necessary to reach a stable (and hopefully highly accurate)
performance while avoiding superfluous costs. In other words, we would like to identify the optimal point
where continuing the iteration would alter the results only marginally. Thus, improving the current state
of the classifier would be disproportionately expensive, especially compared to early iteration steps, where
typically only a few labels significantly improve classification accuracy.

The inherent difficulty in defining a stopping criterion is that we cannot assume to have a representative
labeled test data set on which we could evaluate our classifier - otherwise, the AL idea of avoiding such
a necessity would be violated. Nevertheless, deriving predictions for a preferably extensive and thus repre-
sentative point cloud is possible. This might either be the remaining unlabeled training data set U or an
independent unlabeled test data set. Thus, the congruence between the predictions of two iteration steps can
be evaluated. If there is a significant change between the current prediction and that dstop iteration steps
earlier, it will probably be worthwhile to continue the iteration. Precisely, inspired by the approach of Blood-
good and Vijay-Shanker (2009), we measure the overall congruence Co by simple comparison of predicted
labels, but also derive a measure Cac that is more sensitive to underrepresented classes. For the latter, for
each class, we compute an individual congruence value by comparing whether all points currently predicted
as this specific class were assigned to the same class in the considered previous iteration step. Afterwards,
the mean value over all class-specific congruence values is calculated to have a single class-sensitive indicator.
Actually stopping the loop is achieved by comparing the standard deviation of congruence values (either Co

or Cac) computed over the last nstop iteration steps (that can be interpreted as derivative of congruence
values) against a user-defined threshold tstop. This avoids the need to specify an absolute congruence value,
which can be highly task and data specific. The threshold defines the aggressivity of the stopping criterion,
i.e., whether the loop should stop at the earliest iteration step from which no significant change is expected
anymore, or whether the loop should continue until we can confidently assume convergence.

As for the interpretation of the stopping criterion, congruence values computed over all nstop considered
iteration steps have converged to a stable niveau if the standard deviation is close to zero. In such cases, we
assume that only few predicted class labels are still changing, i.e., probably those of ambiguous instances
close to decision borders. But overall, the predictions have reached a stable state. However, if there is a
significant standard deviation, this means that there is a change and congruence values are either increasing
or decreasing - in both cases we would like to continue the iteration. The increasing case is the one we
would generally prefer since it means we are approaching convergence. By enhancing the training data set,
we assume that the classifier can be trained more and more confidently (low epistemic uncertainty) and thus
congruence of class labels should also increase. If congruence decreases, however, this means that a region (or
regions) in feature space is queried that changes the overall separation hypothesis significantly. For instance,
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this might happen if a new cluster of a class was discovered in feature space, which will probably cause
prolonging the loop.

The stopping threshold tstop is to be set in consideration of the other hyperparameters, i.e., nstop and
dstop. The latter determines the ”long-term memory” of the predictions. The larger dstop the more likely a
discrepancy will be observed in comparing the predictions of respective classifiers due to the more different
underlying training data sets, but the more confidently we can assume convergence if the predictions are
similar. While dstop is concerned with absolute predictive difference, the number of considered congruence
values from previous iteration steps nstop, in contrast, addresses the change of congruence/difference values.
The smaller nstop the more uncertain the derived change value expressed through the standard deviation
(due to a lower number of observations), but the more likely it is to reach early a value close to zero (and
thus probably < tstop), since it is more prone to local minima.

Regardless of the parametrization, generally speaking, a stop will always happen with a delay of a few
iteration steps, because a sufficient number of predictions must be present to detect congruence. Thus, the
last few iteration steps that triggered the stopping criterion were actually needless from a performance-
based point of view. Additionally, due to our intention to operate without reference labels, we can only
detect convergence of predictions, which are not necessarily required to be on a level of satisfactory accuracy.

3.6 The Crowd as AL Oracle: Working with Non-Experts for
3D Point Labeling

While the previous sections discussed how both human and machine processors can be fused into one intel-
ligence system, we will now focus on those two parts in more detail, starting with the human component, in
our case the crowd. Before doing so, we briefly review different oracle types in an AL setting for semantic
segmentation and locate the crowd in this taxonomy (Section 3.6.1). Unlike most literature in AL, in our
hybrid intelligence system we are confronted with an imperfect human oracle, inevitably leading to labeling
errors. Minimization of such errors can be achieved either by easy-to-use tools for the task at hand (Sec-
tion 3.6.2), measures for quality control (Section 3.6.3), an increased incentive to contribute (Section 3.6.5),
or by easing the labeling process by means of a different data modality (Section 3.6.4).

3.6.1 Oracle Types in AL

The type of oracle typically encountered in AL-related publications is a simulated oracle. The straightforward
and most common variant is an omniscient or GT oracle OO, which always returns a true label for all points
that are queried within an AL loop (Marcus and Parameswaran, 2015). Obviously, such an accuracy level of
an oracle is not achievable when working with human operators - even if they are experts (Walter et al., 2016).
Therefore, we advocate for oracles that at least try to simulate typical error behaviors of real crowdworkers.
This incorporates both a so-called noisy oracle and an oracle with systematic errors (Lockhart et al., 2020).
A noisy oracle ON (σ) refers to a simulated crowd oracle that outputs σ% of random noise for all queried
points, i.e., for σ% of AL points, a class label differing from the true one is randomly assigned. Such noisy
oracles are to be expected whenever a human operator is tasked with labeling assignments, where noise can
stem from the operator’s tiredness, guessing when points are hard to interpret, or simply due to not paying
attention. However, we would expect that our ML model incorporated into the AL process is able to cope
with a certain amount of random noise in training labels, since most models generalize well.

The more severe kind of labeling error comes from a confused oracle OS(σ) that systematically assigns
false labels to queried AL points. Such an oracle - intentionally or in good faith - also labels σ% of points
incorrectly, but it follows some concrete mapping rules (e.g., always confuses Car with Urban Furniture or
Roof with Façade). Presence of such systematic errors can significantly impact the classification process and
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can also lead to a ”confused” ML algorithm. When real crowdworkers are employed as oracle (OC), we need
to expect both kinds of errors.

3.6.2 Designing Labeling Tools for the Crowd

Before focusing on the more sophisticated methods for improving the accuracy of crowd-generated labels,
we briefly present the tools that are required to accomplish the crowd-related tasks arising in our AL-based
framework, as outlined in Algorithm 1. In general, all these tools should be designed to be as easy to use
as possible, without requiring going through extensive intros or reading a specific documentation, since the
main goal of most crowdworkers in a paid crowdsourcing scenario is to quickly make money. Therefore,
extensive instructions are likely to be ignored either way, as stressed by Endres et al. (2010).

Additionally, we are not confronted with geospatial experts, but lay workers who are not familiar with the
concept of aerial imagery, even less with ALS point clouds. Although an interested crowdworker could have
some experience with this type of data through usage of navigation and map services such as GoogleMaps or
GoogleEarth, we need to assume that actively navigating in a point cloud (i.e., zooming, rotating, panning)
might already overwhelm some workers. Thus, such interactions with the data are also minimized to an
absolutely necessary minimum. For all these reasons, the endeavor of designing suitable tools in a crowd-
sourced data acquisition scenario is a complex task itself, but one that is often overlooked (Kittur et al.,
2008; Vondrick et al., 2012) and only scarcely addressed (Sorokin and Forsyth, 2008; Kovashka et al., 2016).

As can be seen from Algorithm 1, the crowd is supposed to provide both an initialization data set as well
as labels for points that are queried in the course of the AL loop. Thus, we start the workflow by presenting
the RGB-colorized point cloud to crowdworkers (in case of extensive point clouds, it is split into sub-clouds,
each being shown successively). They are asked to mark one point for each class the system operator (i.e., the
expert who outsources labeling) defines when launching the AL loop. A snapshot of the implemented tool,
which we refer to as crowd task Type A, is given in Figure 3.10(a). On the left is the data panel depicting
the colorized point cloud along with an explanation of controls that are required for the first task of finding
one representative of each class. To better communicate to crowdworkers that they are facing 3D data, and
to resolve possible occlusions, the point cloud rotates slowly around the z-axis. On the right, crowdworkers
find a button for each requested class. Our aim is to provide them with the definition of classes without the
need for complex descriptions (that they would probably not consider anyway). To achieve this, the button
incorporates a pictogram along with the class name. The actual task of each crowdworker is to push one of
the buttons and to click a corresponding 3D point in the data panel (ray tracing is applied to deduce the
3D point from the clicked pixel). This will prompt the selected point to be marked by means of the specific
class color as well as by an arrow marker. Selecting the same class again will delete the previously chosen
point and allows for editing the selection.

As soon as one representative for every class is found, the crowdworker can submit the result. Thus,
our Type A tool places relatively high demands on the 3D handling capabilities of our workers (navigation,
selection, etc.), but the actual interpretation task is easy. This is due to allowing crowdworkers to freely
choose points that are easy to interpret, so that they do not need to deal with edge cases. However, this
poses a challenge for quality control because there is no real opportunity to include checks in the task. Also,
an integration method such as majority voting after data acquisition is not feasible as it is unlikely that
multiple crowdworkers will select the same point.

In order to nevertheless provide the classifier an (ideally) faultless initialization data set (cf. Algorithm 1),
we have designed a second tool to detect errors produced in the previous campaign utilizing our Type A tool.
As can be seen from Figure 3.10(b), the overall design for Type B is basically the same as for Type A.
However, the complexity is significantly reduced as crowdworkers in fact are not required (but allowed) to
interact with the data, but only need to decide whether a presented point is assigned to the correct class.
For judging, crowdworkers are provided with the indicated point and a 2.5D neighborhood with a radius
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(a) Type A: Selecting one point for each class (b) Type B : Checking labels of selected points

(c) Type C : Labeling selected AL points

Figure 3.10: Compilation of our tools required for the human crowd component within our AL-based framework.
Each tool also offers a short introduction video, a task description, and a feedback option, not visualized here. A
complete snapshot of the layout of tool Type A can be found in the Appendix in Figure A2.

of 20m, which is again slowly rotating to avoid occlusions in the line of sight (e.g., the tree fragments in
Figure 3.10(b)). This should be an easy task, both in terms of 3D handling and understanding. Since it
can be quickly completed, crowdworkers are asked to label multiple points. Points that are marked as false
can then be eliminated, so that crowdworkers using the Type B tool are acting as ”filters” for the results
produced in Type A campaigns. The last tool, Type C, is designed for labeling points queried within the AL
iteration (cf. Section 3.1) and will thus be employed most frequently. It is built very similar to Type B, the
only difference is that crowdworkers are not asked for a binary decision (Correct/False), but are expected to
solve a multi-class classification problem. The main advantage of the latter two tools is that quality control
measures can be easily implemented, as outlined in Section 3.6.3.
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3.6.3 Automated Quality Control

In our pursuit to minimize crowd labeling errors, we draw tools from both methods identified by Zhang
et al. (2016): i) quality control on task designing and ii) quality improvement after data collection. As already
mentioned, these measures are only valid for our crowd tasks of Type B and Type C (cf. Section 3.6.2), i.e.,
where distinct instances are to be categorized. Most crucially, all methods for quality control need to be
suited to run automatically, i.e., without manual checks or corrections by an operator, since we aim for a
fully automated pipeline.

To meet the need of quality control on task designing, a measure easily employed is to present a specific
point multiple times for labeling in order to verify that the crowdworker is (at least) working consistently,
not necessarily with the correct label. This consistency check can be considered as minimum requirement
for successful task submission. However, this procedure does not detect crowdworkers intentionally selecting
the same class label for all points (without even considering the data). But such workers can be intercepted
by combining consistency tests with check points for which we know the true categorization, i.e., verifiable
questions, as recommended by Kittur et al. (2008).

Such check points can be mixed at random positions into real payload tasks. Crowdworkers are only
informed that there are check points, but not which points are actually such points, i.e., they appear just
like payload points. Afterwards the accuracy of labels given by crowdworkers for those points is assessed,
and we would assume that the remaining point labels are of the same quality. Consequently, only the results
of crowdworkers passing all (or a defined number of) checks will be stored and will cause the respective
crowdworker to be paid. However, this procedure requires that some points are actually labeled. But in
scenarios where we suppose that each crowdworker is allowed to conduct only one labeling task in each
iteration step, it is sufficient to have one set of check points in each iteration step, which can be easily
and quickly provided by an operator (or, theoretically also by crowdworkers). If we select a set of check
points that are rather unremarkable, it might even be possible to use them in multiple steps, because it is
unlikely that crowdworkers will remember these points, at least if they work on only a limited number of
jobs. Thus, only a few labeled check points might be sufficient for a whole iteration. To summarize, we aim
to automatically eliminate gross labeling errors by the two aforementioned measures for quality control on
task designing.

But even crowdworkers passing the check points might label the actual payload point suboptimally. Es-
pecially in our Type C tasks, i.e., labeling selected AL points that are often rather complex for interpretation
(at least in later iteration steps), a single crowdworker might fail in deriving the true label. This issue can
be tackled through quality improvement after data collection by applying the principle of the Wisdom of
the Crowds. In our case, this can be realized by assigning a task to multiple crowdworkers and afterwards
aggregating the results automatically by majority voting, again avoiding engagement of an expert in this
process. However, in the context of paid crowdsourcing, labeling instances multiple times means a corre-
sponding multiplication of costs. Thus, the number of multiple acquisitions should be kept low, which raises
the question of how many is enough, as recently answered by Walter et al. (2022b) for car detection in 2D
shadings. Since this parameter ncw is rather task-specific, its choice is also required for the concrete task at
hand of categorizing points. The specification is to be achieved by conducting a study with real crowdworkers
performing the task of focus.

The most straightforward way would be to launch multiple crowd campaigns for a given task, differing by
the number of crowdworkers ncw, whose acquisitions are then considered for integration, yielding an overall
quality measure for each campaign. More cost-efficiently, we would launch only one crowd campaign, where
each job is completed nmult times to receive a pool of results, with nmult being the maximum number of
crowdworkers to be considered (ncw ≤ nmult). From this pool of nmult acquisitions, for each number of
workers ncw (∈ [1, nmult]) to be evaluated, we could draw the respective number of results randomly to
derive the corresponding quality value, ignoring remaining acquisitions. Please note that this is equivalent to
launching multiple campaigns with a different number of crowdworkers ncw, where the complete pool of all
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available crowdworkers on a respective platform is sampled vs. the subset of nmult crowdworkers that have
contributed to establishing the pool of multiple acquisitions. However, findings based on both approaches
would be distorted by results from crowdworkers who perform exceptionally well or badly. For instance, if
we randomly pick three low-performing crowdworkers out of ten predominantly high-performing workers, we
obtain an integrated result that is far from representative. Thus, we opt to form all possible combinations
from the pool of nmult performed crowd jobs for all specific numbers of workers ncw for which we would like
to know the expected accuracy. The number of possible combinations is restricted to:

ncomb =

(
ncw

nmult

)
=

ncw!

(ncw − nmult)! · nmult!
(3.6)

Afterwards, we integrate the results of those crowdworkers and compute the mean value over all combi-
nations. Running such a pre-study before launching large-scale campaigns is worthwhile in order to ensure
quality of results by leveraging the Wisdom of the Crowds, while minimizing the costs of a given project by
avoiding asking an abundant number of workers.

3.6.4 Which 3D Data Representation is Best Suited?

Although we are interested in the semantic segmentation of 3D point clouds and thus require labeled point
instances, other data representations can be a viable alternative to be presented to crowdworkers. For in-
stance, projections of 3D data onto a 2D plane to resemble image data, as presented by Walter et al. (2022b),
can help non-experts to interpret 3D data, but carry the risk of information being lost due to occlusions. For
example, consider a façade point in an urban canyon is queried in the AL loop. In such a case, an orthogonal
projection would be suboptimal and crowdworkers would most likely label this point as roof instead. While
there might be other projection planes that would depict this point in an easy-to-interpret and occlusion-free
manner, it is hard to automatically derive such mappings. Thus, it is rather inevitable to actually present
3D data as such - optimally with an RGB colorization being the most familiar to non-expert labelers.

(a) (b)

Figure 3.11: A comparison of feeding either colored point cloud data (a) or 3D textured mesh data (b) into our
labeling tool Type C (i.e., categorizing a selected point).
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However, instead of colorized point clouds, presenting textured mesh data might be a suitable alternative.
Both representation forms are opposed in Figure 3.11. Please note that the automatic creation of such
mesh data sets is beyond the scope of this work. The interested reader is referred to Linsen and Prautzsch
(2001), Kazhdan et al. (2006), Labatut et al. (2007) and Hiep et al. (2009). In the geospatial domain,
a meshed representation is typically obtained by first identifying a subset of 3D points (either LiDAR
or photogrammetric points) required to sufficiently describe surfaces. When we are dealing with smooth
surfaces, only a few support points are sufficient, whereas many points are required for describing complex
and rough objects (e.g., urban furniture). This subset of points defines the set of nodes. Such nodes are
connected via edges to form faces with three edges each in case of triangle meshes. Consequently, such a data
representation can also help to minimize the memory requirements, as smooth surfaces can be described by
few large faces approximating a dense point-based surface description. If imagery data is available as well,
the interpretability of 3D meshes can be drastically boosted by enriching the faces with mapped image crops,
i.e., by texturing the mesh.

Thus, compared to a colorized point cloud, where colors are limited to discrete point locations, a much
more natural and realistic depiction can be achieved, as can be seen in Figure 3.11. However, this is not only
due to the discretized nature of the point cloud, but also due to challenges in the post-processing colorization
technique, which is required whenever color information is not inherent in the data, as for ALS data. In this
regard, projection of widely available (temporally disjoint) orthophoto imagery, as proposed by Charaniya
et al. (2004) and Lodha et al. (2006), is a suboptimal choice by design, as occluded points such as façade points
obtain color values of the occluding structure (probably roof). If concurrently captured oblique imagery is
available, there are many possibilities to obtain more true RGB tuples at point positions. For instance, the
ALS point cloud in Figure 3.11 is colorized by interpolating color values from a photogrammetric dense point
cloud. Although the result exceeds by far mapping of an orthophoto, still issues arise whenever there are
objects that are not included in either the photogrammetric or ALS point cloud, since then interpolation
artifacts occur (e.g., the unnaturally colorized tree at the end of the street in Figure 3.11(a)). Alternatively,
3D LiDAR points can be projected into all images in whose viewing frustum this point is included to receive
an RGB tuple of the hit image pixel. Besides the question of the appropriate aggregation rule of all obtained
color values (from all images) for a specific point, possible occlusions are a more severe problem.

Most efficiently, such occlusions can be detected if there is a closed and watertight surface that can be
used for ray tracing, i.e., we require a meshed surface. Since a realistic colorization of 3D point clouds is a
demanding topic and an optimal solution would already lead to 3D mesh geometry, we advocate for textured
3D meshes as this data representation offers a most realistic continuous colorized surface. We argue that this
drastically helps non-experts like crowdworkers in the interpretation of 3D data. The idea is to emulate a
representation similar to Google’s geospatial services such as Google Maps and Google Earth, where 3D data
is represented by means of 3D textured meshes for geospatial non-experts worldwide. In case of our AL
scenario, to visualize 3D data we can utilize the mesh and point cloud data interchangeably. For instance,
in our Type C labeling tool (cf. Section 3.6.2) where we highlight a point sampled within the AL iteration,
we can use either a crop from the point cloud or from a 3D textured mesh (cf. Figure 3.11) to give the
crowdworker a visual impression of the surrounding context to enable interpretation of the presented point,
resulting in crowd oracles relying either on point cloud data OCP or mesh data OCM . From a geometric
point of view, generating the mesh surface equals a (mild) generalization that can help to suppress noise, but
fine-grained details can also be lost. Thus, it may happen that a point selected from the point cloud modality
is not included as a node in the mesh geometry. However, facing the significant gain in interpretability due
to the fine texturing, this issue is negligible.

3.6.5 Stimulate Motivation by Gamification

Another option for fostering data collection through crowdsourcing is to gamify this collection process. This
means we aim to increase the appeal of participating, with the intention to improve the quality of work as
well as to increase the amount of work being completed. Ideally, crowdworkers are intrinsically motivated and
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(a) Introduction page (b) Main game interface

Figure 3.12: Snapshots of our labeling tool with a game-like appeal compared to the basic labeling tool as presented in
Figure 3.10(c). Based on this interface, gamification add-ons are implemented (cf. Figure 3.13). Best viewed digitally
or in Figure A3 in the Appendix.

enjoy taking part in our campaigns without utilizing gaming elements. But especially in paid crowdsourcing,
where the crowdworkers’ motivation is mainly of extrinsic nature (i.e., receiving the payment), campaigns
can benefit from gamification. To position the concept of gamification in relation to the other sections of this
work, we are dealing with a hybrid of creating easy and enjoyable tools (cf. Section 3.6.2) and a measure for
quality control on task designing (cf. Section 3.6.3), since a higher quality can be expected when crowdworkers
are intrinsically motivated. The latter is, of course, limited by the crowdworkers’ abilities. To achieve the
aspired intrinsic motivation, the challenge is to create a game that is actually appealing, enjoyable, and
entices a worker to play just one more time (von Ahn and Dabbish, 2008), while completing the rather
tedious task of labeling.

In case of geospatial data and especially 3D data, we are fortunately dealing directly with virtual worlds,
such as digitized cities by means of discrete point clouds or continuous 3D textured meshes. The latter data
modality is indeed typically used in more sophisticated games. Thus, the difficult task of setting up a proper
gaming environment is solved directly by using 3D geospatial data from daily practice, which might already
stimulate interest of workers (cf. Figure 3.12(a)). Eventually, we aim for gamified versions of our labeling
tools presented in Section 3.6.2. However, as already mentioned, they differ in complexity. While Type A
requires navigation in 3D data, Type B and Type C are much easier to handle.

When playing a game, navigation within the environment is often part of the joy. Yet, this requires a
certain skill level, which might not always be met, and certainly a short period of acclimatization to the
controls. But crowdworkers performing a job only once are typically not in the mood of learning a new game.
Since most of the labeling tools we designed do not require navigation (Type B and Type C, cf. Section 3.6.2),
we decided to first launch a gamified labeling tool without such navigational elements, opting instead for a
dynamic camera motion to a selected point to be labeled, or from one point to the next. Precisely, we aim
to develop a gamified labeling tool of Type C, i.e., label pre-selected entities (e.g., within the course of the
AL loop).

We first focus on implementing a more game-like design than the one seen in Figure 3.10(c), which is
visualized in Figure 3.12(b). To be able to purely evaluate the impact of gamification elements for 3D data
annotation, crowdworkers are tasked with labeling a certain amount of mesh triangles (instead of 3D points)
to avoid confusion based on discrepancies between the discretized point cloud and the meshed representation
(cf. Section 3.6.4). Additionally, crowdworkers are also given the option to complete as many jobs as they
wish. This helps to evaluate the will of workers to conduct more work (for the same payment).
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(a) Progress bar (top left) (b) Score

(c) High score list (d) Audiovisual effect

Figure 3.13: Overview of our implemented gamification elements built upon the labeling tool presented in Figure 3.12.
Best viewed digitally or in Figure A4 & Figure A5 in the Appendix.

We enhance this labeling tool with a variety of different gamification elements, as depicted in Figure 3.13.
A simple add-on already employed in our non-gamified tools is an indication of crowdworker’s progress (cf.
Figure 3.13(a)). This element is intended to keep crowdworkers motivated, as they can work towards a goal,
i.e., completing labeling of all points. In this process, the progress count is supposed to minimize the risk of
crowdworkers getting tired and bored when they have lost count of the number of points that were already
labeled. As a second measure, we score the labeling result of each worker and openly communicate it to
the worker upon completion of the job (cf. Figure 3.13(b)). This comes in tandem with stressing again the
option to retry. In paid crowdsourcing, this appeals mainly to the will of crowdworkers to maximize their
income, since a higher score can lead to a higher payment as well, as we have intentionally vaguely stated
in the introduction of the gamified tool (cf. Figure 3.12(a)). Thus, this element could lead to crowdworkers
doing more work for free, and it might also increase the quality since they try hard to achieve a high score. A
drawback of a score function for sure is the necessity of already labeled data. Generally, we have to assume
that such labeled data are not available at all or only sparsely. The latter applies when an operator provides
some check points in the context of our quality insurance measures (cf. Section 3.6.3). However, to evaluate
whether such elements have a positive impact and whether it pays off to provide labeled data, we assume in
our experiments that labeled data are abundant.

A gaming element directly linked to the previous one are high score lists (cf. Figure 3.13(c)). The principle
is exactly the same, but now we not only communicate the score achieved, but we also relate it to the score
of the other workers. Again, this directly appeals to the wish of maximizing income by expecting that a
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higher rank could cause a bonus payment, etc. Finally, our last add-on roots from a different concept, which
is again to increase joy but also to give immediate feedback (cf. Figure 3.13(d)). This is accomplished by
audiovisual effects, i.e., whenever a face has been labeled correctly, the screen flashes green and a prosperous
sound is prompted, otherwise the screen flashes red and a losing sound is played.

3.7 Classifiers for 3D Semantic Segmentation

After discussing the human component of our hybrid intelligence system, we now turn to the machine part,
the ML model responsible for 3D point cloud segmentation. To demonstrate the general independence of our
crowd-driven AL pipeline from the specific classifier employed, we rely on one representative each from both
the feature-driven (cf. Section 3.7.1) and the data-driven (cf. Section 3.7.2) domain. In either case, as input
we assume to have a point cloud P being constituted by nP individual point instances p = (x y z) ∈ R3,
that may carry additional attributes (such as RGB values). Ultimately, we aim to assign to each 3D point
p, a unique class label c ∈ {c1, ..., cnΩ

}, with nΩ being the number of classes.

3.7.1 Hand-Crafted Features & Random Forest

Defining Geometric and Radiometric Features

For successful classification of ALS point clouds by means of a feature-driven classifier, under careful review
of respective literature (cf. Section 2.8.1), we aim to define a set of both geometric and radiometric features
to be employed. Since a meaningful description of geometric properties of individual 3D points is infeasible,
neighboring points are extracted, which poses the question of how to define the vicinity of each point. For
this, we rely on a spherical neighborhood definition (Lee and Schenk, 2002) parametrized by the radius r.
This means that all points p ∈ P fulfilling d(pc,p) < r, with pc ∈ P being the current point of focus for
which a set of features is to be computed, are part of the set of neighboring points N . In order to avoid
testing this condition for all nP points, and to boost the recovery of neighbors, as a pre-processing step, an
octree structure is utilized, as described by Girardeau-Montaut et al. (2005).

Although Weinmann et al. (2015a) demonstrated that a dynamic neighborhood definition based on the
local geometry can be beneficial for the segmentation result (especially in cases of varying point densities), we
argue that in case of large-scale ALS point clouds, where typically a rather uniform point density is present,
constant neighborhood definitions are a viable alternative minimizing computational effort. For increasing
spatial contextuality, we compute (most) geometric features at different scales (i.e., we evaluate the same
set of features for multiple values of r), where smaller values of r are intended to capture detailed geometric
nuances and larger radii are meant to describe rather the more general, smoothed local context.

For each point (and scale), a first set of geometric features is generated based on the 3D covariance
matrix often referred to as structural tensor, which can be obtained from all nN points located in a specific
neighborhood under consideration according to Equation 3.7.

Cov =
1

nN

nN∑
i=1

(pi − p̄)
T
(pi − p̄) with p̄ being the neighborhood’s center of gravity (3.7)

From this symmetric, positive-definite matrix, the principal components, i.e., the eigenvectors and their
respective lengths, the eigenvalues λ1, λ2, λ3 stating the variation of data along the respective eigenvector,
can be derived. Eigenvalues are required to be sorted so that λ1 ≥ λ2 ≥ λ3 ≥ 0. This whole process can
be thought of as fitting an ellipsoid to the supporting neighborhood N (Mallet et al., 2011), where the
impact of points increases quadratically with their distance to the core point (Kim and Sohn, 2010; Blomley
et al., 2014). Eigenvectors define the orientation and the eigenvalues indicate the extent of the ellipsoid.
Please note that this formulation is in accordance with least squares plane fitting, where the eigenvector
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Feature Category Designation Abbreviation Definition

Geometric features

eigenvalue-based

Linearity L (λ1 − λ2)/λ1

Planarity P (λ2 − λ3)/λ1

Sphericity S λ3/λ1

Surface Variation SV λ3/(λ1 + λ2 + λ3) = e3
Omnivariance O 3

√
e1 · e2 · e3

Anisotropy A (λ1 − λ3)/λ1

Eigenentropy E −
∑3

i=1 ei · ln(ei)
Eigenvalues Sum ES λ1 + λ2 + λ3

plane-based
Verticality V 1− nz

Verticality (from robustly fitted plane) Vrob 1− nrob
z

Roughness R ∥p · n− d∥ , with d = q · n

height-based Height Above Ground ∆z z − zDTM

LiDAR-inherent Echo Ratio ER echo number/number of echos

Radiometric features

LiDAR-inherent
Reflectance/Intensity Re/I
Mean Reflectance/Intensity R̄e/Ī mean({ReN |IN })

imagery-based
Color Values H,S, V
Mean Color Values H̄, S̄, V̄ mean({HN |SN |V N })

Table 3.1: Features used as input for the RF classifier. Relative importance of individual features can be found in
Figure A6 in the Appendix.

with the smallest eigenvalue represents the normal vector of the plane (Shakarji, 1998; Waldhauser et al.,
2014). Derived eigenvalues can be employed for defining a set of features (cf. Table 3.1) which exhibit typical
values for certain structures (Jutzi and Gross, 2009; Dittrich et al., 2017). For some features, a normalization

of eigenvalues is required (e1/2/3 = λ1/2/3/
∑3

j=1 λj). A favorable property of the eigenvalues, and hence the
features based on them, is their invariance to rotation, scale, and shift (Maas and Vosselman, 1999; Jutzi
and Gross, 2009), allowing robust comparability.

Linearity, Planarity and Sphericity (also denoted as dimensionality features) each rely on the ratio of
certain eigenvalues to describe the resemblance ofN to a linear, planar and spherical distribution, respectively
(cf. Figure 3.14(a)). This is also the case for Surface Variation, indicating spherical point distributions and
Anisotropy, allowing cylindrical and plane support regions to be distinguished from spherical ones (cf. Table
3.2). Omnivariance and Eigenentropy are rather noise-robust geometric descriptors (Dittrich et al., 2017),

point distribution ratio of eigenvalues L P S SV O A E

cylindrical λ1 ≫ λ2 ≈ λ3 ≈ 1 ≈ 0 ≈ 0 ≈ 0 ≪ 1/3 ≈ 1 ≪ − ln(1/3)
planar λ1 ≈ λ2 ≫ λ3 ≈ 0 ≈ 1 ≈ 0 ≈ 0 < 1/3 ≈ 1 < − ln(1/3)
spherical λ1 ≈ λ2 ≈ λ3 ≈ 0 ≈ 0 ≈ 1 ≈ 1/3 1/3 ≈ 0 − ln(1/3)

Table 3.2: Characteristic values of eigenvalue-based features derived from eigenvalues λ1−3, as described in Table 3.1.
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Low High

(a) Planarity P (r = 1m) (b) Eigenentropy E(r = 1m)

(c) Verticality Vrob(r = 1m) (d) Height Above Ground ∆z

Figure 3.14: Exemplary evaluation of geometric features from feature groups in Table 3.1 for the H3D data set (cf.
Section 4.2.2).

capable of providing typical values for all point configurations at once, resulting in a clear separability
between plane surfaces (e.g., roofs or streets), irregular point distributions (e.g., vegetation) and linear point
configurations (e.g., lamp posts or antennas), as depicted in Figure 3.14(b). Finally, the Sum of Eigenvalues
allows to distinguish between different neighborhood characteristics of the same configuration, i.e., cylindrical,
planar or spherical (and is hence not listed in Table 3.2), as for instance, a more widespread irregular
configuration (i.e., lower volumetric density) yields a higher value for this feature than a more dense layout.

While the aforementioned invariance of such eigenvalue-based features is generally a desired property of
features, it is not necessarily an advantage for the interpretation of ALS point clouds, as objects of specific
classes in our environment adapt a typical orientation in space (e.g., vertical surfaces). Therefore, we also
measure the Verticality (proven to be a distinctive feature by Mallet et al. (2008), Chehata et al. (2009)
and Weinmann et al. (2013)) depending on the z-component of the local normal vector n, based on one
hand on the plane derived within the computation of covariance features, and on the other hand on a more
robustly fitted plane to minimize the impact of fine-grained details or noise. The latter can be achieved,
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for instance, by RANSAC-supported (Fischler and Bolles, 1981) plane fitting (cf. Table 3.1 and depicted in
Figure 3.14(c)). The set of plane-based features is complemented by deriving the local Roughness, which
expresses the distance of a 3D point p ∈ N to the best-fitting estimated plane from N (cf. Table 3.1, where
n is the normal vector and q is the support vector of the plane) (Chehata et al., 2009). Thus, we expect it
to highlight planar surfaces (e.g., roofs and streets) over unordered structures (e.g., vegetation).

Since height-based features have also proven to be distinctive (Chehata et al., 2009; Weinmann et al.,
2013; Niemeyer et al., 2014), the last purely geometric LiDAR-independent feature derived is the height of
individual 3D points above ground level ∆z, visualized in Figure 3.14(d) (Kim and Sohn, 2010; Niemeyer
et al., 2012). To do so, we require a reference height of a DTM whose estimation in fact also incorporates a
classification step (Ground vs. Non-Ground). However, it can be obtained before the actual targeted semantic
segmentation by purely geometric considerations (Sithole and Vosselman, 2004), such as implemented within
the SCOP++ software (Pfeifer et al., 2001). Alternatively, it may also be available from NMAs (Charaniya
et al., 2004). If respective tools or data are not accessible, the local ground level can also be approximated by
relying on the minimum height value within a cylindrical neighborhood (Chehata et al., 2009; Mallet et al.,
2011; Guo et al., 2015). However, this approach is limited for steep surfaces.

The aforementioned features are based solely on respective 3D coordinates, which in ALS are the result of
polar measurement where the required range values are obtained either from analyzing the received echo via
hardware components or from the analysis of the densely discretized received echo waveform (Mandlburger
et al., 2019). The latter allows deriving even more descriptors (Mallet et al., 2011). However, many laser
scanning systems make use of online waveform processing, with the recorded echos being the result of Full-
Waveform (FWF) processing, but where the original echo waveform is not necessarily accessible. Thus, we
limit ourselves to universally valid features based solely on available returns, so that they are applicable to
both evaluation concepts. Since the emitted laser pulse illuminates an extended area in object space (due to
beam divergence), a single emitted laser pulse can hit multiple objects/targets, resulting in multiple echos.
Hence, laser scanning is notorious for its capability of ”penetrating” vegetation. This property is exploited for
deriving the Echo Ratio (cf. Table 3.1), being a good indicator of vegetation points (cf. Figure 4.4(a-c) in the
next chapter, in which we discuss features that are inherently obtained due to the measurement principle).

In addition to the pure detection of the presence of echos, the strength of the reflected signal is also
recorded. The power of the received echo is highly dependent on the target’s spatial extension, its reflec-
tivity, and its directionality of scattering. However, it is also determined by the target range and beam
divergence (thus defining the effective footprint), the size of the aperture and also by atmospheric condi-
tions. Analytically, this functional dependency is expressed by means of the Radar/LiDAR equation (Wagner
et al., 2006). Pure intensity values, typically found in ALS point clouds, are strictly in accordance to this
equation, although it would be more desirable to have a property solely determined by target characteris-
tics, i.e., solely by the backscatter cross section. Therefore, manufacturers such as RIEGL often apply range
corrections to raw intensity measures calibrated with respect to a flat white surface orthonormal to the laser
beam and of extent of the footprint. This measure, referred to as Reflectance, as well as Intensity values are
exemplarily visualized in Figure 4.4(d-f) in the next chapter. Since pure Intensity/Reflectance values are
often noisy, or more generally, radiometric measures often tend to be noisy, Guo et al. (2015) and Becker
et al. (2017) suggest applying spatial smoothing of respective measures within a defined support region.
Hence, for each point, we compute the mean value of those readings, considering the same neighborhoods N
as for the geometric features (cf. Table 3.1).

Since humans are capable of distinguishing between different objects not only based on the observed
geometry, but also on individual RGB colors, we also aim to include this kind of information in our feature
vector. However, color information is not inherent in LiDAR data, thus requiring mapping of RGB values
from imagery, leading to the challenges discussed in Section 3.6.4 (Chapter 4 discusses how this challenge
is met for our individual data sets). Providing a colorized point cloud, we follow the suggestion of Becker
et al. (2017) and transform RGB values to the HSV (Hue, Saturation, Value) color space (Smith, 1978). Just
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as for the Intensity/Reflectance values, we also apply gaussian smoothing for those radiometric features (cf.
Table 3.1).

Finally, all features described in Table 3.1 and evaluated for each utilized scale are concatenated into the
feature vector x of size nfeats = 15·nS+6 (6 features are independent of a neighborhoodN ), with nS being the
number of scales. All elements xf of the feature vector x are standardized according to x′

f = (xf − µf ) /σf ,
with µf denoting the mean and σf denoting the standard deviation of each feature before being used as
input for a classifier.

Random Forest Classification

For the actual subsequent classification step, we choose an RF classifier for it has proven to provide a good
trade-off between accuracy and efficiency (Weinmann et al., 2015a). The RF classifier is a supervised, non-
probabilistic, discriminative classifier and represents a Bagging (Bootstrap Aggregating) model (Breiman,
1996). The basic idea is to combine a set of ne typically weak classifiers, Decision Trees in case of RF, to
form a strong overall classification hypothesis by simple majority voting according to Equation 3.8.

p(c|x) = 1

ne

∑
e∈E

pe(c|x) (3.8)

The RF as ensemble of Binary Decision Trees (each predicting a pseudo probability pe(c|x)) is constructed
by the combination of Bootstrapping (Efron, 1979) with the Classification and Regression Trees (CART)
algorithm for building Binary Decision Trees in an automatic manner (Breiman et al., 1984). This means
that ne times an independent subset of the available training data is sampled randomly (Random Forest)
with replacement, each subset being used as input for establishing a Decision Tree by means of CART. In
CART, first only 1/3 of available training data is used for generating the structure of a Decision Tree. To

establish a first split of data, a random set of nsplit
feats features (typically defined as nsplit

feats = log2(nfeats)) is
selected, in contrast to the basic model of Decision Trees only relying on one feature at a time and therefore
only allowing for axis-parallel decision borders. Those features are used to define separating hyperplanes
wT · x + w0 = 0, with w being the normal vector of the hyperplane with its components ∈ [−1, 1] and w0

∈ [min(wT · x),max(wT · x)] denoting the offset to the origin. Respective values for both parameters are
selected randomly. To assess whether such a randomly set hyperplane is a reasonable choice, the impurity
of the current split Esplit (Equation 3.9), expressed through weighted entropy of the resulting subspaces, is
evaluated and minimized (please note that this formulation equals maximizing the information gain G, i.e.,
G = Eprev − Esplit, with Eprev denoting the impurity of the parent node).

Esplit = − n1

n1 + n2

nΩ∑
i=1

p1(ci) · log2 [p1(ci)]−
n2

n1 + n2

nΩ∑
i=1

p2(ci) · log2 [p2(ci)] (3.9)

In Equation 3.9, n1 and n2 represent the number of samples of each subspace of the (reduced) feature
space separated by the hyperplane, and p1(c) and p2(c) can be approximated by simply creating normalized
class histograms for the two subspaces. In case of a class-imbalanced training set (which is typically the
case for ALS data), individual class weights can be considered by giving each sample a weight inversely
proportional to the relative occurrence of its assigned class in the complete training set. This weight is taken
into account when creating the normalized class histogram, thus affecting Esplit and finally the selected
hyperplane. After determination of the first hyperplane, the process is repeated in a recursive manner for
each child of the current node until full purity. To abort the process, the maximum tree depth dmax and
the minimum number of samples nmin

samples at a node justifying another separation can be used. Following
building the structure of a tree, the remaining and so far untouched 2/3 of the training set is run through
the tree. For each leaf of the tree, a normalized histogram of classes is constructed for all training points
populating this node, which is the very pseudo-probability utilized in Equation 3.8. Thus, the output of the
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RF classifier can be interpreted in a probabilistic manner (although being a non-probabilistic classifier). Due
to the multitude of random decisions made in the process of construction of each tree, the resulting output
of the RF is well generalizable and robust to noise (Breiman, 2001).

Hence, the RF incorporates a heuristic similar to the Wisdom of the Crowds principle, where diverse
non-expert individuals (i.e., weak individual Decision Trees) independently draw conclusions (based on inde-
pendently sampled training sets) which are aggregated (via majority vote) to form a hypothesis outperforming
those of individuals (Bernardo, 2022).

In order to employ the RF in the AL scenario as presented in Algorithm 1, different requirements must
be met:

i) The classifier is supposed to be able to learn from a sparsely labeled data set. For a feature-based
classification scheme, this requirement is easily satisfied since we only need to provide our classifier
with tuples of feature vectors and corresponding labels. In case of a sparsely labeled training set, this
consequently only leads to a smaller number of such training samples, as unlabeled points are ignored.
Nevertheless, they still contribute passively to feature computation since they may be part of a local
neighborhood N . Thus, feature vectors of labeled points are independent of whether we are confronted
with a fully or sparsely annotated data set.

ii) We are relying on our classifier to reliably assess uncertainty since the sampling of points is based on
it. Especially, we are interested in epistemic uncertainty as this is the one we are able to minimize by
means of AL. We argue that an RF is able to capture epistemic uncertainty (Shaker and Hüllermeier,
2020) since it is an ensemble model based on Bagging and results in different feature space separation
hypotheses. This is firstly due to randomly sampling an independent subset of available training data,
and secondly due to randomly selecting features used for separation in each tree. Thus, multiple valid
but deviating models will be obtained, and the disagreement between these different models can be con-
sidered as measure of epistemic uncertainty. The generated tree-wise posterior probabilities are equally
suited to support vote entropy sampling (cf. Equation 3.2) or entropy sampling (cf. Equation 3.1) based
on the averaged probabilities (cf. Equation 3.8).

iii) For guaranteeing diversity within batches (cf. Section 3.3.3), we require features for each point to
measure the similarity with previously sampled points. Since we are dealing with a feature-based
classifier, providing features is straightforward.

3.7.2 Submanifold Sparse Convolutional Neural Network

As mentioned earlier, we aim to contrast a representative of the data-driven domain to our RF classifier.
Among the vast pool of recently introduced CNNs for semantic segmentation of 3D data (Griffiths and
Boehm, 2019; Guo et al., 2021; He et al., 2021), we choose the SCN (Graham, 2015; Graham et al., 2018)
as it achieves top-notch results for demanding state-of-the-art benchmark data sets (Thomas et al., 2019),
therefore also being embedded in Google’s TensorFlow 3D framework (Huang, 2021). Furthermore, it per-
forms favorably for our task at hand of semantically interpreting 3D geospatial data (Li et al., 2021), which
is further underlined by attempts on geospatial benchmark data sets like V3D (Schmohl and Sörgel, 2019)
and ISPRS Hessigheim 3D Benchmark on Semantic Segmentation of High-Resolution Point Clouds and
Meshes (H3D) (Kölle et al., 2021a) while minimizing computation time. This property is especially benefi-
cial since the classification model will be trained and used for prediction repeatedly in the course of the AL
loop (cf. Algorithm 1).

As CNNs were originally developed for 2D raster data, i.e., regular grid data, as a first step we voxelize
the input point cloud P. This means a regular 3D grid structure with a specific cell size dv is superimposed
over the point cloud data. Thus, a rather sparse 3D voxel structure can be obtained (cf. Figure 3.15), where
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Figure 3.15: The SCN relies on voxelized point clouds (in this case colored according to Reflectance), which are fed
into a U-Net architecture to obtain voxel-wise labels to be subsequently mapped to the original point cloud data.
Respective dimensions of each level state the current shape of the data, where the first three values correspond to
the resolution and the last value to the number of filter responses from sparse convolutions (i.e., features). The more
coarse the resolution of data, the more filter kernels can be employed to gain a deep understanding of data.

point positions are implicitly encoded in the form of active or inactive grid cells. Please note that if no point-
wise (or more precisely voxel-wise) input features are available, a pseudo-feature is generated assigning the
value 1 to each active cell to allow for geometric feature extraction by means of meaningful convolution and
thus classification. In case of presence of such input features (like RGB colors or LiDAR inherent features),
the aggregated voxel feature is obtained by averaging over all 3D points included in the respective cell. For
the labels, this translates to a majority vote (or, more precisely, plurality vote). Although voxelization poses
the risk of losing information due to discretization, we argue that it is a necessary step to achieve reasonable
performance - especially with respect to AL, where the classifier needs to be trained multiple times. In this
regard, voxelization is closely related to spatial subsampling (where a minimum distance between each point
is guaranteed), as often pursued in context of feature-driven classifiers (Brodu and Lague, 2012).
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In case of geospatial ALS data, we are rather dealing with an extensive surface (i.e., the earth’s surface)
with superstructures such as vegetation or buildings. Hence, it significantly differs from other 3D data like
indoor data or data representing individual closed objects (e.g., dogs, cats, chairs, etc.), as most of the
resulting 3D grid cells are empty (inactive), i.e., there are no 3D points in the respective cells. Thus, to
minimize both computational effort and memory consumption, the sparsity of data should be exploited,
which is the first challenge in CNN-based processing of 3D data.

The second challenge is how to apply the core functionality of CNNs, the convolution, to 3D data. In case
of the SCN, both challenges are met by building upon an alternative formulation of convolving a specific
kernel W over given input data X (either being the actual raw input data or the result of an intermediate
layer of the CNN) according to Y = X ∗W as matrix multiplication Y = X ·W , which is typically used
for efficient implementation of convolutions for GPUs (Chellapilla et al., 2006; Chetlur et al., 2014). For the

matrix multiplication, W ∈ Rf3·nch×nf comprises all learnable weight parameters (including biases) and
contains one column for each of the nf filters of size f (or more precisely f3 × nch) applied to the input

with nch channels. X ∈ Rnconv×f3·nch includes the reorganized input data (or output of the previous layer),
where each row corresponds to one of the nconv specific convolutions executed at each input location to
cover the complete data. This reformulation can be applied to any CNN to minimize the number of basic
mathematical operations required (multiplications and additions), and indeed is commonly used to boost
GPU-based processing (Chellapilla et al., 2006).

The reformulation of a basic CNN into a Sparse Convolutional Neural Network is based on filtering out
convolutions operating only on empty cells. This means with given filter size, such obsolete convolutions can
be identified and respective rows in X can be eliminated. To assign the result to the true position in the
resulting activation map, hash tables are created (Graham, 2015). Please note that the previously described
steps only serve to reduce the computational load. Nevertheless, even with sparse input, the number of active
cells increases with the number of layers.

Finally, a Submanifold Sparse Convolutional Neural Network (SCN) also omits convolutions, but this
time only those convolutions are performed where the filter matrix is centered on non-empty input cells (but
convolutions are performed by matrix multiplications nevertheless), and the result is assigned to those active
cells by means of hash tables (Graham, 2015; Graham et al., 2018). This leads to a drastic decrease of nconv

compared to a Sparse Convolutional Neural Network. However, this formulation does not correspond to the
conventional definition of convolution anymore, but is to be considered an approximation for the sake of
boosting performance. But the authors argue that aggregation operations (e.g., pooling or strided convolu-
tion) allow propagation of information in the network, so that independently processed cells communicate
implicitly.

These submanifold sparse convolutions are the core feature of the SCN architecture, visualized in Fig-
ure 3.15, which is a slightly adapted version of the one presented by Graham et al. (2018). As previously
motivated, we aim at semantic segmentation, meaning that our model is to predict posterior probabilities
p(c|x) for each point instance. This can be achieved by an encoder-decoder architecture preserving the orig-
inal shape of the input, such as the state-of-the-art U-Net architecture (Ronneberger et al., 2015). As can
be observed from Figure 3.15, the U-Net consists of two symmetrically arranged branches, an encoding and
a decoding branch, each being constituted by multiple (depth) levels. The basic idea is to abstract input
data to a deep representation/understanding (situated at the bottom of the U ) where spatial information
is mainly lost. At this point a classification model would predict the class label (e.g., dog in image) without
identifying those input values (i.e., pixels) that contributed to this decision. This means we strive to only
extract the essence of the input data, while fine-grained details and noise are suppressed. This deep repre-
sentation is afterwards upsampled back to the original input shape, but instead of input channels, posterior
class probabilities are derived. Recalling the example of identifying dogs in images, now we would be able
to detect those pixels that contributed to the decision that this image represents a dog (i.e., ”dog pixels” in
the sense of semantic segmentation).
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In each level, a series of batch normalizations (Goodfellow et al., 2016, p. 309), submanifold sparse
convolutions, and activation functions are applied (cf. Figure 3.15). Precisely, each level consists of two
sparse convolution blocks, each preceded by a batch normalization and followed by an activation layer. In
this sequence, batch normalization of the output of individual filters (i.e., features) before inserting into the
next convolutional block serves to achieve faster convergence of the training process by encouraging a uniform
loss landscape. The subsequent convolutional layer aims to infer a meaningful descriptor for the provided
data, where kernels in early layers can be interpreted as low-level descriptors (e.g., edge filters in context
of 2D imagery) and later kernels as high-level object descriptors (e.g., focusing on detecting specific objects
such as a dog’s snout in context of 2D imagery). To allow for a non-linear separation of data, non-linearities
by means of the non-linear Rectified Linear Unit (ReLU) activation function h(x) = max(0, x) (Goodfellow
et al., 2016, p. 187) are introduced.

The gradual reduction of the resolution of data in the encoding branch to allow for employment of an
increasing number of filters to gain a deep understanding is accomplished by max-pooling layers in the
original U-Net definition. However, reducing the resolution and thus increasing the receptive field can also
be achieved by setting the stride of a convolutional layer to a value > 1, in our case to 2. This means that
convolution is performed along all axes only for every second cell, effectively halving axis dimensions. Such
a strided convolution layer is used as first layer in each encoding level (also preceded by batch normalization
and followed by a ReLU layer). In the decoding branch, restoring the shape of each opposing level of the
encoding branch is accomplished by deconvolution layers, intended to learn individual up-convolutional filters
(also preceded by batch normalization and followed by a ReLU layer). This allows for avoiding the definition
and possible restrictions of conventional approaches like nearest-neighbor or bi-linear interpolation. Spatial
information/context is restored by explicit connections between the encoding and decoding branch. Precisely,
the output (i.e., the activation maps) of an encoding level is concatenated with the corresponding deconvolved
state of the network and used as input for the layers of a specific level. For better generalization and to avoid
overfitting, we add two final convolutional layers with 50% dropout (Goodfellow et al., 2016, p. 251) in
between before finally mapping the number of channels (16, cf. Figure 3.15) to the number of classes nc.

For actually training the network and determining kernel values, labeled point cloud data is propagated
through the network, and the resulting posterior probabilities are compared against GT labels. However,
memory consumption prohibits the usage of a complete point cloud (of typical spatial extent) at once.
Hence, from the complete data set, we create subsets of sufficient size to characterize representatives of
individual classes in context with their typical environment, e.g., in our case 32m × 32m in horizontal
dimension. In conjunction with the voxel size of dv = 0.5m that we will employ in our experimental section
(cf. Section 5.1.2), this leads to a voxelized sample dimension of 64× 64×h, where h represents the required
number of voxels to cover the whole vertical extent of the subset (cf. Figure 3.15). Please note that this
varying input size does not affect individual filter kernels, but merely the shape of data within our network.

The pool of samples is enhanced by sampling with overlap (e.g., 30% in our case) and offline data aug-
mentation for better generalization by rotating the input point clouds at intervals of 30 ◦ before voxelizing
each permutation. This way, a pool of training samples is formed from which subsets are used to constitute
mini-batches. These mini-batches are sequentially propagated through the network, and the loss L is com-
puted according to Equation 3.10. We employ an element-wise cross-entropy loss (Goodfellow et al., 2016,
p. 73) by comparing the elements yc(x) of the one-hot-encoded reference label (array of size nΩ × 1 with
value 1 at index of true class and 0 otherwise) to the predicted posterior probability p(c|x,Θ) for each class
c, that is based on the network parameters Θ, and summing the cell-wise loss over all active cells x ∈ Vm

in the current sample m, again summed over all M samples of the current mini-batch, and then normalized
by Z (please note that in this section x refers to the input feature vector of voxels rather than points).

L = − 1

Z

M∑
m=1

∑
x∈Vm

nΩ∑
c=1

w(x)yc(x) log(p(c|x,Θ)) with Z =

M∑
m=1

∑
x∈Vm

w(x) (3.10)
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To account for typical class imbalance in ALS data, samples are weighted by the reciprocal relative
occurrence of the class they belong to, i.e., w(x) = 1/f(GT (x)), as suggested for the U-Net architecture
by Ronneberger et al. (2015). Based on the mean loss of the mini-batches, the network parameters are
updated by means of stochastic gradient descent with momentum and weight decay. After every mini-batch
has gone through the optimization step once, i.e., one epoch has passed, the procedure is repeated until
convergence is reached (when the best previously achieved validation accuracy is not exceeded for a specific
number of epochs). The size of the mini-batches is a compromise between having smooth updates based on a
large enough number of representative samples alleviating individual noise and, on the other hand, memory
consumption. After learning the network parameters, prediction can be easily accomplished by voxelization
of a given point cloud (without forming subsets) and propagating it as a whole through the network, so
that the data shapes stated in Figure 3.15 (first three values) no longer hold true, but learned filters can be
applied to any input shape. To obtain point-level predictions, voxel-level posterior probabilities are inherited
to all points included in respective voxel cells.

When this SCN classifier is to be employed in AL, just like for the RF classifier in the previous section,
several requirements must be met:

i) The training is to work with sparse labels, i.e., feature learning needs to operate on input point clouds
where only few points are actually labeled and where a background class label is assigned to all non-
labeled points. This affects the label assignment to voxels, since the determination of voxel-wise GT
values is no longer based on plurality vote of all points in the voxel, but solely on all labeled points
(provided that at least one non-background label is present). The learning process itself does not differ
from PL, but the loss needs to be modified such that background voxels do not contribute to loss
computation, i.e., active cells x ∈ V m in Equation 3.10 now only describe active and labeled cells.
Nevertheless, unlabeled active cells are still a crucial part of the training procedure and contribute to
training due to their passive presence for learning geometric descriptors.

ii) Our network needs to be able to reliably assess its predictive uncertainty. However, CNNs tend to
underestimate their uncertainty in case only one single network is employed because they lack the
ability to estimate epistemic uncertainty (Gal and Ghahramani, 2016). A solution to this end are
Bayesian CNNs, which are however often intractable to be evaluated. Thus, an approximation of such
Bayesian CNNs by Monte Carlo dropout ensembles or deep ensembles is a viable alternative (Jospin
et al., 2022). Since Schmohl and Sörgel (2019) have demonstrated that utilizing a SCN as base engine
for a deep ensemble can significantly boost performance, we opt to exploit it also within our AL scheme.
Hence, in each iteration step, multiple networks are trained, each being parametrized exactly the same
and trained with the complete available training set, as favored over training on subsets by means of
Bagging (Lakshminarayanan et al., 2017). The models, however, differ due to random initialization of
the network parameters. Thus, each network derives a posterior probability p(c|x), which can either
be used for vote entropy sampling (cf. Equation 3.2) or can be inserted into the entropy sampling (cf.
Equation 3.1) formula as the average of ne individual class scores of the members of the ensemble E
(cf. Equation 3.11).

p(c|x) = 1

ne

∑
e∈E

pe(c|x) (3.11)

iii) For allowing diverse sampling of points, as described in Section 3.3.3, feature vectors are required. In
contrast to the RF classifier, such feature vectors are not explicitly specified in case of the SCN, although
its predictions root from (automatically derived) features as well. To constitute explicit feature vectors
for all our points, we propagate them through a trained network and concatenate filter responses
(i.e., features) of different U-Net levels. In reference to the multi-scale feature computation for the
RF classifier (cf. Section 3.7.1), the result can also be thought of as a multi-scale descriptor with
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(a) Encoding branch level 1 (b) Decoding branch level 1

(c) Encoding branch level 2 (d) Decoding branch level 2

(e) Encoding branch level 3 (f) Decoding branch level 3

Figure 3.16: Filter responses from selected filters at different levels of our SCN. Subfigures are arranged in an order
to match the U -shape of the SCN.
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features from different levels of (deep) understanding. Specifically, individual filter responses from the
last convolutional layer of each encoding branch and from the deconvolutional layers in the decoding
branch (representing a compact, upsampled understanding of the previous level each) are concatenated
to form a 16+32+48+48+32+16 = 192× 1 shaped feature vector. For the respective upmost levels
in the encoding and decoding branch, retrieving features is straightforward since the resolution is the
same as that of the input.

For the lower resolution levels, however, we restore the original resolution without relying on any
dedicated upsampling (such as deconvolution layers or other interpolation methods) to avoid distort-
ing the original filter response. This means that deep features are simply assigned to all cells in the
original resolution that have been summarized to the respective cell at a deeper level, leading to a
”voxelated” depiction (cf. Figure 3.16). We can observe that upsampled filter responses from deeper
encoding levels are smoother (i.e., less checkerboard-like) than their counterparts from decoding lev-
els (cf. Figure 3.16(c)&(e) vs. Figure 3.16(d)&(f)), although being propagated from the same lower
resolution level. However, this is an unfair comparison because, in the decoding branch, we retrieve
features at the deconvolutional layer, where we are basically dealing with the spatial resolution of the
previous deeper, lower resolved level. Apart from that, in the decoding branch essentially we can watch
the SCN trying to sharpen the spatial awareness of features from a state of highest abstraction with
minimum spatial awareness at the bottom of the U, which however can only be achieved by consulting
information from the encoding branch through explicit links.

Although the interpretation of such deep features is a daring endeavor, we argue that a general trend is
observable. Features of the encoding branch are similar to standard features often used for conventional
classifiers such as RF. For instance, an exemplary filter response of level 1 of the encoding branch
resembles the angle of inclination of a fitted plane (cf. Figure 3.16(a)), and level 2 is similar to a
measure of flatness (cf. Figure 3.16(c)). However, since convolutions are always performed over all
input channels, trails of other features such as RGB color information or Reflectance can be observed
as well. In level 3 of the encoder branch, a feature similar to Height Above Ground is obtained (cf.
Figure 3.16(e)), which can be considered a higher level feature compared to solely measuring inclination
or flatness, since a spatial context awareness is already required.

Deeper levels of the decoding branch are hard to interpret - at least for a human operator. However,
a trend can be observed from pure description of data in the encoding branch to a higher level under-
standing. For instance, level 3 of the decoding branch (cf. Figure 3.16(f)) highlights buildings, but also
lower parts of high vegetation, i.e., other predominantly vertically oriented noisy surfaces (façades are
also noisy due to balconies, etc.). Going one level up, buildings are still emphasized, but fewer parts
of vegetation (cf. Figure 3.16(d)). Or in other words, the model tries to become a filter for individual
objects respectively classes. Finally, the capability of kernels to operate as class filters is achieved in
level 1 of the decoding branch, allowing separation of different classes, for instance, cars are clearly
highlighted in Figure 3.16(b).

3.8 Automatization via the CATEGORISE (Crowd-Based Active
Learning for Point Semantics) Framework

After presenting the key components of our scheme for 3D point cloud classification, namely the crowd and
the machine, connected by AL, this section gives an idea of how to cast the individual components into one
fully automated hybrid intelligence system as we have claimed to design. Furthermore, some more technical
details on the implementation of this system are covered in the following, which are, however, crucial for
full automation. A key part of this anticipated full automation is completely avoiding the need for an expert
to engage in labeling tasks, which are to be outsourced to the crowd. However, conducting crowdsourcing
campaigns often causes additional overhead, such as actively recruiting crowdworkers, instructing and mon-
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itoring them, and finally paying them. Such tasks can quickly become just as time-consuming as the actual
labeling task, thus requiring special focus when designing the hybrid intelligence system.

To power such a system, we first focus on its architecture and the required technologies, as displayed in
Figure 3.17(a). Generally, it encompasses two different actors or clients (the crowd and an operator) and
two different servers. For one, this is the operator’s server. It hosts all required input data (i.e., point clouds
and optionally meshes) as well as our Python-based implementation of both AL routines and respective
classifiers (referred to as ALpy in Figure 3.17(a)). Whenever the operator decides to launch a new AL
iteration, a respective web tool is tailored to the operator’s needs (Type A to start, followed by Type B and
Type C in the course of the iteration; cf. Section 3.6.2). Such are, for instance, the desired class catalog,
the point size for visualization in the web tool, the data to be labeled as provided by the operator at the
beginning of the iteration (for a Type A campaign) but later automatically determined by ALpy, quality
control settings (cf. Section 3.6.3), etc.

All our web tools are implemented in JavaScript and built upon the Three.js library (Cabello, 2019),
with HTML and CSS being used for creating and styling the tool’s basic layout. Setting up these tools is
achieved by means of the control interface (cf. Figure 3.17(a)), which is also implemented in JavaScript
and hosted on the operator’s server too. After proper preparation of the labeling tool for the specific crowd
campaign at hand, the creation of a campaign on a paid crowdsourcing platform is triggered through the
operator’s interface. As a platform, we rely on MW, which offers a dedicated API to allow for automation
of crowd campaigns. Thus, utilizing the MW API, which can be prompted through JavaScript generated
HTTP requests, we can automatically create a crowd campaign without the need to tediously going through
a respective form on the MW homepage to set up the campaign. Instead, such crowd related parameters (e.g.,
MW worker group, payment, etc.) can be set together with all remaining system parameters, for instance
concerning the AL loop or the classifier, in our dedicated control interface.

MW, which can be understood as a mediator between the employer and the crowd, will post the campaign
hosted on its server as an open call to all registered crowdworkers (provided no filters were set by the operator
such as ”only workers from the U.S.”) after manually checking the validity of the campaign (for long-term
users this check is omitted) and after receipt of payment from the employer (payment for crowdworkers and
MW fee). Crowdworkers see a brief description of the task (such as the one in Figure 3.17(b); bottom left)
with some additional information such as payment and time required. When a worker chooses to accept the
task, one of the open jobs is reserved for him and he is linked to the operator’s server, where he is provided
with the corresponding labeling tool loaded with the 3D data of this specific job. After completing the task,
the result will be stored on the operator’s server (via php) and the crowdworker will be informed about his
performance on the check points (only applicable to Type B and Type C campaigns; cf. Section 3.6.3). If the
minimum requirement is met, and thus implicitly a first step of quality control is enforced (cf. Section 3.6.3),
the crowdworker receives a code as proof of completion of the task (for Type A campaigns the code of approval
is directly awarded). This code can be submitted to MW to request the payment. Therefore, no interaction
between the operator and the crowd is required at all.

The operator, on the other hand, can monitor the progress of the current campaign and the whole AL
loop (cf. Figure 3.17(b)), and may query some statistics such as job duration and quality (all requests are
handled via AJAX ). After completion of each campaign, integration routines are launched as the second
step of automated quality control (only applicable to Type B and Type C campaigns; cf. Section 3.6.3), and
the obtained labeled data is fed into ALpy to continue the iteration. If the stopping criterion, which can be
adjusted at any time based on the current training progress (cf. Section 3.5), is not met and the operator
has not terminated the iteration manually, this process can be repeated for the next iteration step(s).

As can be seen, no real involvement of the operator is actually required, although we give him complete
control over the iteration. Thus, the operator can choose to just launch the iteration (based on a set of system
parameters) and wait for its completion while optionally monitoring the progress. Hence, from the operator’s
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Figure 3.17: System architecture of the CATEGORISE framework (a) and its operator interface (b).

point of view, this system runs just like any other computer program, although it combines electronic and
human computation units in a hybrid manner, thus being a representative of a hybrid intelligence system.



82 Automatization via the CATEGORISE Framework



Data & Evaluation Metrics 83

Chapter 4

Data & Evaluation Metrics

For testing our methodology developed in the previous chapter, we rely on a variety of different data sets
(cf. Section 4.2), that is, ALS point clouds captured from various platforms (thus incorporating specific
characteristics), but also 3D textured meshes as alternative modality. Before presenting our data sets in
detail (Section 4.2), we briefly describe ALS (Shan and Toth, 2008; Vosselman and Maas, 2010), the main
acquisition technique used for all our data sets (cf. Section 4.1). Furthermore, we discuss appropriate and
strict evaluation metrics to measure the performance of our approach (cf. Section 4.3).

4.1 Airborne Laser Scanning

ALS has become a standard method for mapping the earth’s surface and is used worldwide by NMAs to
produce nationwide surface data, but is equally suited for fine-grained mapping of a limited area of interest
(Haala et al., 2022). It is a polar measurement principle where a stimulated light pulse, i.e., Laser (Light
Amplification by Stimulated Emission of Radiation) pulse is emitted, normally at a wavelength of the near-
infrared spectrum of typically 1064 nm or 1550 nm (Vosselman and Maas, 2010, p. 21, 25). This pulse traverses
space until it hits an object. Due to beam divergence of the emitted light, the system illuminates a cone
(with its top centered in the aperture) rather than an infinitesimal line (Shan and Toth, 2008, p. 23). This
very property explains the multi-target capability (Vosselman and Maas, 2010, p. 28) to ”penetrate” semi-
transparent structures such as vegetation. If the illuminated area at the target, i.e., the footprint, is larger
than individual structures (e.g., leaves), multiple objects are hit, each resulting in an echo. Please note that
the detectability is limited by the resolution of range measurement, determined by the pulse length.

Based on the target’s extension and material properties, summarized by the backscatter cross-section, a
certain amount of the signal (which can be non-existent due to the directionality of reflection at specular
surfaces) is reflected towards the position of the aperture of the device (Wagner et al., 2006). The system
resolves the incoming signal and detects significant echos either by hardware components or by signal pro-
cessing techniques based on the recorded waveform (on the fly or in post-processing) (Wagner et al., 2006;
Shan and Toth, 2008, p. 245). Through measuring the time of flight of each pulse (or parts of it) for allowing
precise range measurements (Shan and Toth, 2008, p. 3) and through recording the strength of the incoming
signal as a material-specific property (i.e., Intensity), the illuminated surface patch can be attributed and
positioned in 3D space, resulting in a 3D point as product of signal integration over this patch. However,
this requires that the position and orientation of the scanner are determined by a GNSS/IMU unit (Shan
and Toth, 2008, p. 96).

To map not only individual points, in cross-track direction the laser beam is deflected by moving mirror
elements (Vosselman and Maas, 2010, p. 16; Shan and Toth, 2008, p. 102) to scan a line on the ground, which,
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together with the forward motion of the platform, leads eventually to strip-wise scanning of surfaces. The
resolution or point density in object space, i.e., the distance increment on the ground, is determined by the
angular resolution within one scan line, which is defined by the angular momentum of the mirror together
with the pulse repetition rate and the height above ground. Distance of points in along-track direction
depends on the mirror’s angular momentum (or more precisely, the number of scan lines accomplished per
time interval) in conjunction with the speed of flight (Vosselman and Maas, 2010, p. 26). When conducting
ALS campaigns, areas of interest are typically mapped with overlap between individual strips to guarantee
completeness (Vosselman and Maas, 2010, p. 30). In the subsequent strip adjustment process, this also allows
to identify identical structures in multiple strips to minimize discrepancies between different strips due to
systematic errors present in the raw trajectory, in scanner measurements or in the mounting calibration to
finally yield an adjusted flight block with improved relative accuracy (Shan and Toth, 2008, p. 259). As for
GNSS/(IMU) supported photogrammetric bundle block adjustment of imagery, ground control information
is not mandatory, but can help to improve absolute accuracy.

Contemporary flight campaigns and thus adjustment processes integrate classic photogrammetric bun-
dle block adjustment into the strip adjustment process to further stabilize the measured trajectory (Glira
et al., 2019; Haala et al., 2020, 2022). In such a hybrid strip adjustment, the estimated exterior orientation
parameters of the images can serve as discrete supports for the more continuous GNSS/IMU trajectory
observations. This yields a precise co-registration of imagery and LiDAR data, and thus allows for a more
accurate colorization of individual LiDAR points by the concurrently captured imagery. This property is also
beneficial for the hybrid creation of 3D textured meshes (from both LiDAR data and imagery) as another
representation type of 3D data, which might be especially suited for presentation to non-geospatial experts
(e.g., Google Maps or Google Earth users).

4.2 Data Sets

4.2.1 ISPRS Vaihingen 3D Semantic Labeling Contest (V3D)

Figure 4.1: Overview of the V3D data set. While the training set (left) is depicted according to available TOP CIR
information, the spatially disjoint test point cloud is visualized in a shaded manner (right).

Since the establishment of the ISPRS Vaihingen 3D Semantic Labeling Contest (V3D) data set (Niemeyer
et al., 2014) for benchmarking in 2014, it has become the quasi-standard for demonstrating semantic seg-
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mentation approaches for 3D point clouds in the geospatial domain. The point cloud was recorded in August
2008 by means of a Leica ALS 50 system flown at 500m above ground with a field of view of ±45 °, originally
intended to be a geometric baseline in context of another benchmark endeavor for assessing quality of metric
camera systems (Cramer, 2010; Haala et al., 2010). It depicts a typical suburban scene in southern Germany
(Vaihingen an der Enz), mainly populated by single-family buildings and apartment blocks on flat terrain.
Flight parameters were chosen to achieve a point density of at least 5 pts/m2, resulting in an actual point
density of about 8 pts/m2 due to strip overlap (see also Table 4.1).

The data set was manually semantically segmented by Niemeyer et al. (2014) into a total of 9 distinctive
classes (cf. Table 4.1 and Figure 4.4(g)), aiming to depict the highest level of detail with respect to the inher-
ent resolution. Apart from typical ALS features (Intensity & (poor) echo readings; cf. Figure 4.4(a)&(d)),
radiometric information can be added by relying on False Color Infrared (CIR) True Orthophoto (TOP)
data provided for the International Society for Photogrammetry and Remote Sensing (ISPRS) 2D Semantic
Labeling Contest (Gerke et al., 2014; Rottensteiner et al., 2014). That imagery was acquired by an Inter-
graph/ZI DMC camera configured to achieve a Ground Sampling Distance (GSD) of 9 cm and was mapped
to the point cloud data via orthogonal projection (cf. Figure 4.1).

4.2.2 ISPRS Hessigheim 3D Benchmark on Semantic Segmentation of High-
Resolution Point Clouds and Meshes (H3D)

The ISPRS Hessigheim 3D Benchmark on Semantic Segmentation of High-Resolution Point Clouds and
Meshes (H3D) data set (Kölle et al., 2021a) was introduced only recently to enrich the spectrum of 3D bench-
marks by a multi-temporal and multi-modal data set. In total, 4 different epochs are available, that is, 3
ALS point clouds captured from an Unmaned Aerial Vehicle (UAV) platform (in context of a project aiming
at highly precise deformation measurement; Haala et al., 2022) and one point cloud provided by the State
Office for Spatial Information and Land Development Baden-Wuerttemberg (LGL) with typical properties
of NMA point clouds (see also Section 4.2.3). The spatially congruent point clouds (except for the less wide
epoch March 2018, cf. Figure 4.2) represent an area of the village of Hessigheim situated in southern Ger-
many, comprising suburban scenes with single-family and multi-family buildings and leisure facilities (such
as sports fields), but also agricultural land (e.g., small crop fields and steep vineyards).

As for the UAV campaigns, we limit ourselves to usage of the first two epochs (March 2018 & November
2018) in this work (cf. Figure 4.2(a)&(b)). For both, a Riegl Ricopter platform equipped with a VUX-1LR
laser scanner and two obliquely mounted Sony Alpha 6000 cameras were employed. The system was flown
at a height above ground of 50m with a field of view of the scanner of ±70 °. Thus, vertical surfaces such
as façades are well depicted (cf. Figure 4.2(a)&(b)). Both point clouds map the scene at an extraordinary
point density of more than 800 pts/m2 and provide range-corrected intensity values (i.e., Reflectance) as
well as multi-echo readings with apart from first echos, mainly second and third echos (cf. Table 4.1 and
Figure 4.4(b)&(e)). Colorization of the point clouds is accomplished by nearest neighbor interpolation of RGB
tuples from the 3D textured mesh (as also provided in the H3D benchmark) and approximates occlusion-
aware projection of LiDAR points to images (Kölle et al., 2021a). Thus, compared to the V3D and Stuttgart
3D Point Cloud (S3D) data sets, the colorization is more true due to a real 3D colorization by imagery
captured at the same time with the exact same scene geometry.

These two UAV epochs differ in terms of i) the spatial extent (epoch November 2018 depicts an area more
than two times larger than epoch March 2018), ii) phenological changes and iii) the atmospheric conditions,
which mainly impacts radiometric properties. Apart from different illumination, thick fog was present in
November 2018, severely affecting RGB colorization from the concurrently captured images. This can be
clearly seen in Figure 3.9, where source domain is a subset of epoch March 2018 and target domain of epoch
November 2018. The presence of fog also resulted in recording multiple echos for streets, façades and roofs
due to additional returns caused by aerosols (compare right side of Figure 4.2(a)&(b)).
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The third epoch (March 2016) incorporates features of a typical ALS point cloud of NMAs. The data
set was captured by a Riegl LMS-Q780 scanner at a height above ground of 600m and a field of view of
±20 °. The mean point density is about 16 pts/m2. This configuration leads to scarce depiction of vertical
surfaces due to the nadir-like measuring perspective (see few façades in Figure 4.2(c); right). Multi-echo
readings profit from the larger footprint area due to the higher flying altitude and thus lead to observing
echo numbers > 3 in contrast to the other epochs (cf. Figure 4.2(c); right). Since no concurrently captured
imagery is available for this epoch, we both i) interpolated colors from epoch November 2018 via nearest
neighbor transfer and ii) used the point cloud colorization obtained by orthogonal projection of an orthophoto

(a) H3D - Epoch March 2018

(b) H3D - Epoch November 2018

(c) H3D - Epoch March 2016

Figure 4.2: Compilation of H3D’s data sets/epochs (except for epoch March 2019). Each visualization depicts an
overview of the complete data set, where the training set is colored according to available RGB data while the test
set is presented as shading (left). Respective close-ups are colorized according to the number of returns of an emitted
laser pulse (right, cf. Figure 4.4 for color scheme).
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as available in the H3D benchmark (visualized in Figure 4.2(c); left). The orthophoto was acquired by a
DMC II 140 camera configured to achieve a GSD of 20 cm and was taken on June 11, 2017.

The semantic class catalog (cf. Table 4.1 and Figure 4.4(h)) is developed to mimic V3D’s labels while
introducing classes for objects not depicted there due to the coarser resolution (e.g., classes Urban Furni-
ture and Chimney), but also accounting for H3D’s special characteristics such as agricultural land (class
Soil/Gravel) and a ship lock (class Vertical Surface). Semantic labels of all epochs were manually set by a
team of student assistants employed in a multi-stage process of labeling from scratch and quality checks.
Since one of the goals of this work is to minimize labeling effort by experts, we aim to give an estimate of
the labeling costs, exemplarily for H3D’s epoch November 2018. Annotating the complete point cloud from
scratch and checking each point two times (checks were conducted by different student assistants each) took
about 1490 hours. That is for an area of about 0.207 km2 resulting in an average time effort of 0.431min/m2

and makes with a salary of $14.69 /h an amount of $0.106 /m2, respectively. Please note that, on one hand,
labeling costs highly depend on the complexity of the scene, the defined class catalog and the desired accu-
racy level, defining the number of multiple acquisitions or checks. On the other hand, they vary with the skill
and salary of the workers. Nevertheless, this calculation is supposed to give an impression of effort required
to obtain data for real-world projects. For comparison, Zolanvari et al. (2019) report a similar workload of
0.194min/m2 for labeling the DublinCity data set (13 classes).

In addition to labeled point clouds, H3D also provides labeled and textured 3D meshes. A favorable
property of H3D’s meshes, in contrast to other data sets (Gao et al., 2021), is that the jointly adjusted
imagery and the concurrently captured LiDAR point clouds are utilized to generate a 3D surface model as
completely and realistically as possible by means of the two sensors (such processing is supported by com-
bination of OPALS (Pfeifer et al., 2014) and SURE software (Rothermel et al., 2012)). Precisely, geometric
completeness greatly benefits from including LiDAR measurements in cases where surfaces are occluded by
semi-transparent objects such as vegetation, which cannot be reconstructed when purely relying on imagery.
The same applies to urban canyons, which are likely to be depicted in only one image, making image-based
reconstruction impossible. Texturing this jointly built geometry with image crops from simultaneously cap-
tured and adjusted oblique imagery, finally, leads to the truest representation of scenes.

4.2.3 Stuttgart 3D Point Cloud (S3D)

In addition to the comparably small-scale point clouds presented above (V3D & H3D), we also aim to employ
a point cloud of much greater spatial extent (about 30 times as big as the V3D data; cf. Table 4.1) and
thus more object variety. As for epoch March 2016 of the H3D data set, we have received NMA point cloud
data from the LGL depicting the city center of Stuttgart, Germany. This Stuttgart 3D Point Cloud (S3D)
includes urban commercial and administrative buildings, infrastructural facilities (such as the main station)
and a variety of different types of residential buildings, but also green spaces like parks, gardens and steep
vineyards. Data capturing took place in spring 2016 with a Riegl LMS Q780 system utilizing an effective
field of view of ±20 °, flown at a height of 600m above ground (same flight parameters as H3D’s epoch March
2016).

Again, typical ALS features are incorporated (cf. Table 4.1 & Figure 4.4(c)&(f)). Like for H3D’s NMA
epoch March 2016, multi-target capabilities profit from a larger illuminated footprint and the more favorable
time of year, and exceed those of V3D and UAV-based H3D epochs. The point density is comparable to
the one of V3D (and naturally to H3D’s epoch March 2016). The generation of GT labels was completed
by a private contractor commissioned by the LGL, where the classification error is supposed to be < 1%.
After manually adding of class Tree by Schmohl et al. (2022), with a total of 4 classes (cf. Table 4.1 &
Figure 4.4(i)), S3D’s class catalog is still rather coarse compared to our other data sources, but well suited
for tasks such as DTM generation (please note that class Urban Furniture serves as quasi-class Other).
Again, we colorized the point cloud by orthogonal projection of an RGB TOP with a GSD of 20 cm, based
on DMC II 140 imagery captured in summer 2017.
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Figure 4.3: Overview of the S3D data set. While the training set is colored according to available RGB information,
the test split is visualized in a shaded manner.

Attributes

Data Set Split # Points [M] Area [km2] Density [pts/m2] LiDAR Color Classes

V3D
train
test

0.754
0.412

0.084
0.046

8

Intensity,
Echo Number,
# Echos

CIR
Powerline, Low Vegetation, Impervious Surface,
Car, Fence/Hedge, Roof, Façade, Shrub, Tree

H3D (Mar. 2018)
train
test

73.909
51.745

0.062
0.031

> 800

Reflectance,
Echo Number,
# Echos

RGB

Low Vegetation, Impervious Surface, Vehicle,
Urban Furniture, Roof, Façade, Shrub, Tree,
Soil/Gravel, Vertical Surface, Chimney

H3D (Nov. 2018)
train
test

159.031
83.283

0.140
0.067

> 800 ” ” ”

H3D (Mar. 2016)
train
test

2.809
1.428

0.140
0.067

16

Intensity,
Echo Number,
# Echos

” ”

S3D
train
test

38.511
40.417

1.819
2.179

16

Intensity,
Echo Number,
# Echos

RGB Urban Furniture, Ground, Building, Tree

Table 4.1: Properties of relevant point cloud data sets utilized within this work.
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(a) V3D - Number of Returns (b) H3D - Number of Returns (c) S3D - Number of Returns
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(d) V3D - Intensity (e) H3D - Reflectance (f) S3D - Intensity
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Car

Fence/Hedge

Roof

Façade
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Impervious Surface
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(g) V3D - Semantic Labels (h) H3D - Semantic Labels (i) S3D - Semantic Labels

Figure 4.4: Comparison of point clouds from our 3 test sites (from left to right : V3D, H3D - epoch March 2018 and
S3D).
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4.3 Evaluation Metrics

While the presented data sets represent appropriate and diverse playgrounds to test our approach, for a
strict and quantitative evaluation, respective quality metrics need to be defined. Generally, we aim to assess
the quality of class predictions that stem either from crowdworkers or from an ML algorithm, thus allowing
to use the same metrics. These are based on a comparison of the assigned class label of each of the np points
to expert-level GT labels that we assume to be error-free. But although benchmark data sets such as V3D or
H3D exhibit a high quality of labeling overall, label noise is undoubtedly included. To measure the quality
of our results, we rely on the Overall Accuracy (OA), obtained as the ratio of correctly predicted instances
to the total number of predictions.

For a finer, class-aware analysis of results, confusion matrices are calculated, where each column comprises
the sum of all GT labels of one of the classes that get distributed more or less correctly among the different
classes (represented in respective rows) during the prediction process. To present the results more clearly,
we normalize our confusion matrices by the number of GT labels per class (i.e., sum of columns). From the
number of true positives (TP), false positives (FP) and false negatives (FN) for each class c recorded in
the confusion matrix, class-dependent accuracies such as Recall R (Producer’s Accuracy) and Precision P
(User’s Accuracy) can be derived. While Recall indicates the number of points of a specific class that were
correctly identified as belonging to that class in relation to the total number of GT points of that class,
Precision checks the number of points that were correctly predicted to belong to a specific class relative
to the total number of points assigned to that class. These two measures can be combined into one overall
quality metric for each class, namely the F1-score, and, to receive an overall class-sensitive measure, we
compute the arithmetic mean of F1-scores over all nΩ classes, referred to as mF1. Formally, this leads to
(Goutte and Gaussier, 2005):

OA =

nΩ∑
c=1

TPc

TPc + FPc

Pc =
TPc

TPc + FPc
Rc =

TPc

TPc + FNc
F1c = 2 · Pc · Rc

Pc +Rc
mF1 =

1

nΩ

nΩ∑
c=1

F1c

(4.1)

Additionally to those accuracy-related measures, we identify the number of labeled instances as a key
factor for our system, since our main goal is to minimize the total labeling effort while maintaining an accuracy
similar to that of a full annotation, i.e., as in PL. In other words, we would accept our system falling below
top-notch accuracy if a slightly worse performance could be reached with significantly less labeling effort,
i.e., if our system was more budget-friendly. Consequently, we anticipate that we will be confronted with a
trade-off between model accuracy and labeling effort: Generally speaking, the more (informative) labels for
training, the more accurate the result of the ML model, but on the other hand, the more labeling jobs and
thus costs for payment of crowdworkers arise.
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Chapter 5

Experiments & Results

Following the outline of our methodology (Chapter 3) and the presentation of the data sets of interest
(Chapter 4), we can finally design a variety of experiments. The purpose is to come up with a configuration
capable of semantic segmentation of 3D point clouds, with special emphasis on an efficient solution. We
will approach this task in two stages, in accordance to our overall design blueprint of bringing together
electronic processing units and human processing units, in our case the crowd. At first, we will focus on
finding an optimal configuration and parametrization of the machine part, but we will also consider real-world
conditions, that is, learning from noisy oracles (cf. Section 5.1). Afterwards, we conduct various crowdsourcing
campaigns in order to test the general suitability of employing crowdworkers for 3D data annotation and
how to improve the quality of crowdsourced labels (cf. Section 5.2). Finally, we merge both findings to power
a hybrid intelligence system in the form of a fully automated AL loop for 3D data interpretation for various
data sets (cf. Section 5.3).

5.1 Evaluating and Optimizing the Machine Component

Setting up the machine part requires a variety of choices, including finding the right AL sampling strategy,
choosing a proper classifier, and also appropriate parametrization. Thus, in the following sections, we pursue
to gradually reduce uncertainties in the set-up by identifying an optimal and robust set of methods and
parameters, while freezing the other components that are currently not under investigation. Following this
idea, we start with an in-depth evaluation of the key component of the AL loop, that is the selection of most
informative points (cf. Section 5.1.1), followed by a comparison of the performance of classifiers from both
the feature-driven and data-driven domain (cf. Section 5.1.2). Afterwards, we evaluate the impact of realistic
imperfect oracles on the AL system and attempt measures to facilitate the labeling process (cf. Section 5.1.3).
Lastly, we test our findings on all our proposed data sets to outline the accuracies theoretically possible to
achieve with our proposed system (cf. Section 5.1.4).

5.1.1 Comparing Sampling Strategies

In order to find the best sampling strategy and its proper parametrization, we start by applying the methods
outlined in Section 3.3 to the V3D data set. In each run, the model is allowed to draw samples from the
official V3D training set and performance is evaluated by means of applying the resulting model to the
dedicated test set. Since the choice of the ideal classifier is postponed to the following section, we solely
rely on an RF classifier that is parametrized by an ensemble of ne = 100 Decision Trees with a maximum
depth of dmax = 18 and a minimum number of samples at a node to justify a new split of nmin

samples = 7.
This configuration has proven to be robust and efficient for semantic segmentation tasks (Niemeyer, 2017).
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Figure 5.1: Comparison of the performance of different AL sampling strategies in combination with both an RF
classifier (a) and our SCN classifier (b) when applying the resulting model to the V3D test data set. Dotted black
lines represent the result of PL.

For feature computation, we are guided by the suggestions of Niemeyer et al. (2014), Schmidt et al. (2014),
Blomley et al. (2016) and define the spherical neighborhood radius r ∈ {1, 2, 3, 5} m. Respective features are
derived with the CloudCompare software (Girardeau-Montaut, 2021) in command line mode. Furthermore,
we assume to deal with an omniscient oracle OO and run our iterations for a fixed number of ni = 30 iteration
steps, where n+ = 300 points are added in each step (the effect of n+ will be discussed at the end of this
section). The required initial training set is built in such a manner that it includes 10 typical representatives
for each class. This means that we select points that are far away from class borders and that are likely
similar to the points that real crowdworkers would select using our labeling tool Type A (cf. Section 3.6.2).

The resulting AL learning curves by means of different sampling schemes are depicted in Figure 5.1(a)
(an evaluation of additional sampling strategies can be found in the Appendix in Figure B1). As baseline
solution, we also report the result of PL, where the model roots from the completely labeled training set.
Another baseline, which however focuses on gradually improving the classifier, is random sampling. This
sampling scheme achieves a surprisingly high mF1, especially related to the number of labels required,
fluctuating around 60% after only very few iteration steps. This is a result of selecting a mixture of both
most informative and less informative points by chance. With such a training set, we are able to achieve
a reasonable level of accuracy, which seems to be bounded, however, since most informative points are
underrepresented. This is due to random sampling generating a training set following approximately the
same distribution of points as the underlying data set where the informative points close to class borders are
comparatively scarce.

This motivates applying a smarter sampling strategy. To this end, we compare entropy and vote entropy
sampling (cf. Section 3.3.1). As aspired, such methods improve the long-term accuracy by margin, but in
early iteration steps, they are outperformed even by random sampling. This is due to the fact that random
sampling is capable of selecting most informative points by chance from the beginning. On the other hand,
more directed sampling strategies choose instances close to the decision borders (entropy) or in ambiguous
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Figure 5.2: Comparison between the class distributions in the original training data set (a) vs. those obtained by
respective AL runs ((b)&(c)) each after 30 iteration steps. Furthermore, we report entropy values of those distribu-
tions.

regions (vote entropy) based on the current suboptimal separation hypotheses, which is founded on a highly
sparse training set. This can be interpreted in such a way that the directed sampling strategies require several
iteration steps to approach the actual decision border. Upon reaching it, however, random sampling can no
longer compete. In terms of entropy vs. vote entropy sampling, accuracies differ only marginally, so they can
be assumed equally efficient.

Further improvement of the accuracy curves can be achieved by applying the weighting scheme to both
sampling strategies, i.e., wE and wV E (cf. Section 3.3.2), again yielding close to similar accuracies. This
allows reaching a result even outperforming the PL baseline solution. The explanation for why this weighting
scheme is so effective emerges from considering the class distribution of the obtained training sets. Figure 5.2
gives a visual impression of the class distribution in the original V3D training set as well as in the ones
obtained by means of our AL loops. As we can observe, the inherent class imbalance of ALS point clouds
can be significantly alleviated by basic AL sampling strategies, such as entropy sampling, but is practically
eliminated by the weighted variants, such as weighted entropy sampling. This is also expressed by means
of the entropy values of the class distributions in Figure 5.2, where large entropy values correspond to a
high level of class balance - the maximum value for a true equal distribution would be − log2(1/9) = 3.170
(valid for a 9 class scenario such as in V3D). Since classification models can be significantly impacted by
class imbalance of training data (Elkan, 2001; Criminisi and Shotton, 2013; Weinmann et al., 2015c), such
an almost class-balanced training set, as shown for the final one obtained after 30 iteration steps generated
via wE sampling (cf. Figure 5.2(c)), can be beneficial for training respective models. Thus, theoretically, for
training such models, no strategy is necessarily required to increase the impact of underrepresented classes
to obtain an unbiased classification result.

While strategies to reach a level of accuracy close to or even better than PL could be verified, we still
need a relatively large set of labels since top accuracies are only achieved in late iteration steps. For instance,
the weighted variants result in close to linearly ascending accuracy curves. From an economic point of view, a
much steeper increase in early iteration steps would be beneficial. However, in our batch-mode AL scenario,
in each iteration step we add n+ = 300 samples to our training data set, which are up to now selected purely
according to their score values (E or V E). But to guarantee diversity in the sampled batches and hopefully,
boost the convergence of our AL runs, we presented the DiOS and DiFS sampling add-ons (cf. Section 3.3.3).
Both are applied to weighted entropy sampling as this strategy turned out to produce top results as discussed
previously (although performing quite similarly to vote entropy sampling).

Figure 5.1(a) demonstrates that both sampling add-ons are well suited for boosting the convergence,
but DiFS outperforms DiOS by margin and is thus to be preferred in conjunction with weighted entropy
sampling, converging already after about 10 iteration steps. The success of DiFS over DiOS is due to DiOS
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basically brute-forcing diversity in object space by means of the dDiOS hyperparameter, i.e., the minimal
distance between samples in one batch. It is designed as a global parameter, but in many cases, a more data-
oriented measure might be required, i.e., in some cases where points are close in object space, but indeed
informative each and represent no quasi-duplicates. In such cases, DiOS eventually prohibits sampling all of
those points - although this restriction is deliberately relaxed by enforcing dDiOS only within one iteration
step. Practically, this means if, for instance, 30 most informative points are closer than dDiOS , it would also
take 30 iteration steps to include them all in the training data set. DiFS, on the other hand, is capable
of dynamically adapting to the data. If most informative points are really different with respect to their
representation in feature space, i.e., if they belong to 30 different feature space clusters, DiFS is able to
sample all at once while guaranteeing diversity. However, for a fair comparison of the two methods, we
should also consider different values for the DiOS hyperparameter, i.e., dDiOS , which we have set to 5m in
our experiments here. Although choosing this value seems rather obscure and might be also highly data-
and class-dependent, we found it to be relatively robust (cf. Appendix Figure B2). DiFS, on the other hand,
does not incorporate a dedicated hyperparameter, also underlining the preference of this strategy.

Principally, the claim of such diversity strategies is to allow for greater batch sizes, which we have set to
n+ = 300 to produce the results depicted in Figure 5.1(a). This value has turned out to be rather robust,
i.e., no matter the number of iteration steps, a similar number of labeled samples leads to similar accuracies
(cf. Appendix Figure B3). This means that a greater batch size can help to minimize the number of required
iteration steps and thus training cycles, which can be beneficial whenever classifiers with a time-consuming
training process are employed. However, even with a diversity-based sampling strategy, greater batch sizes
pose the risk of increased labeling effort due to separation hypotheses that may already be outdated as a
result of infrequent classifier updates.

5.1.2 Comparing Classifiers

Building upon the preceding experiments on the choice of the query function, we now shift the focus to
the analysis of another component in the AL loop, that is the classifier for 3D point cloud segmentation.
As outlined before, we aim to compare a feature-driven RF classifier to our data-driven SCN approach (cf.
Section 3.7). For the experiments reported in the following, we hold on to the basic parametrization, an AL
loop running for ni = 30 iteration steps and sampling n+ = 300 points in each step. As for the sampling
strategy, we advocate for weighted entropy and again enhance it by DiFS to guarantee diversity of samples.
With regard to the SCN-related parameters, we employ a voxel size of dv = 0.5m and allow the network to
train in each iteration step until convergence determined by the early stopping criterion (where training is
aborted when validation accuracy does not improve more than 0.3 percentage points (pp) over 15 epochs).
Respective training data is prepared by forming subsets of 32m×32m×h with 30% overlap and 30 ◦ angular
increments in data augmentation subdivided into mini-batches of 32 subsets (cf. Section 3.7.2). Furthermore,
we form a deep ensemble of ne = 5 networks. To reduce computation time, networks of each iteration step
start their training cycle based on the result of the previous iteration step and use the current decayed
learning rate (the initial rate is set to 0.1 and reduced by a factor of 0.7 when validation accuracy does not
improve more than 0.3 pp over 4 epochs). These parameter settings are based on the work of Schmohl and
Sörgel (2019) and were identified as trade-off between accuracy and efficiency. Please note that for both our
SCN and RF classifier, we select reasonable default parameterizations as we are more interested in optimizing
training data instead of respective classifiers, as recommended by Ng (2021).

Generally, the two classifiers yield similar accuracies (cf. Figure 5.1), with the SCN-based loops following
a smoother pattern. This is due to the incremental learning scheme, i.e., the continuation of training each
time based on the result of the previous iteration step with the current learning rate versus completely re-
training the classifier on the current training set as for the RF classifier. Interestingly, final results of random
sampling are almost identical, emphasizing the general idea that the impact of the classifier is of subordinate
importance compared to setting up a meaningful training set. Again, for the SCN, DiFS greatly helps to
both improve final classification accuracy as well as boost accuracy in early iteration steps, resulting in less
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manual labeling and thus cost. As for the RF classifier, the final classification level is reached after about 10
iteration steps. However, both wE and wE+DiFS reach a lower accuracy compared to the RF-based runs
and fail to surpass the PL learning result, which is, however, harder to beat than the one of the RF (cf.
Figure 5.1).

Although reachable results for both classifiers are quite similar, this comes with a significant difference in
computational effort. CNN-based approaches are per design suboptimal for AL (at least from an economic
point of view), since in each iteration step features need to be completely relearned or at least refined based
on the currently available training set. In contrast to such a label-depending feature computation, on the
other hand, for the RF-based classifier, feature computation can be performed completely independent of
available label information and thus only needs to be performed once as such hand-crafted features are
static throughout the whole iteration. Thus, a CNN-based approach is doomed to be more computationally
intensive. A learning cycle using an RF powered loop with ne = 100 Decision Trees trained in parallel on
an upper midrange CPU is completed in less than a minute. An AL loop relying on a SCN classifier with
ne = 5 successively upper medium GPU-trained ensemble members results in a computation time that is
higher by a factor of 50. These timings were measured for the V3D data set, but for data sets of greater
voxel volume (either due to a greater spatial extent or due to a greater object richness), computational effort
multiplies with the number of active voxel cells (cf. Section 3.7.2). In case of feature computation for the
RF, the pure extent of a data set does not affect computation time as this rises with the number of instances
in the respective point cloud. Nevertheless, computing features for all instances only once is still negligible
in extra computation effort compared to the additional load for the SCN of re-computing features in each
iteration step. Thus, this gap in computational effort becomes even greater.

Independent of these classifier-dependent computational costs, compared to the effort of manual label-
ing by humans, pure computation time is likely to be of subordinate importance. It only becomes critical
when those humans stay idle during the training period of the classifier. But when using a crowd platform,
crowdworkers are recruited just in time as human processing units, thus alleviating this issue.

5.1.3 Considering Imperfect Oracles

In company of the sampling strategy (cf. Section 5.1.1) and the classifier (cf. Section 5.1.2), the third
component under consideration is the oracle generating the labels and thus even allowing AL to work. So
far, we have assumed omniscient GT oracles OO, but this is an unjustified mindset when real humans are
acting as oracles, even more when non-experts are working with unfamiliar data. Thus, before employing
real crowdworkers later on, we start by simulating imperfect oracles, both by means of random noise (i.e.,
ON ) and systematic mislabeling of classes (i.e., OS) referred to as confused oracles (see also Section 3.6.1).
For the latter oracle, we need to define a mapping function that is built in such a way that similar classes are
mixed up, but it also roots from our experience with crowdsourced data annotation, reported in Section 5.2.
For V3D, the mapping is outlined in Table 5.1.

Using such oracles within an AL loop sampling points according to wE+DiFS and utilizing an RF
classifier yields the results visualized in Figure 5.3. Naturally, the highest accuracy is obtained with the
omniscient oracle OO. For imperfect oracles, both a noisy oracle ON and a confused oracle OS , each with
an error rate σ = 10% affects the classification accuracy only marginally. This is an important observation
as it grants our crowdworkers we intend to employ an error rate of 10%. When increasing this error rate,
our RF classifier in the AL loop is remarkably robust against random noise. With 30% random noise, the
performance is only slightly impacted and even 50% noise yields a reasonable level of accuracy still. A
confused oracle OS , on the other hand, diminishes performance at a much higher pace than random noise.
For instance, a confused oracle OS with σ = 30% performs even worse than a noisy oracle ON with σ = 50%.
Conducting the same experiments on the H3D data set (cf. Appendix Table B1 & Figure B4) verifies these
findings expressing proper generalizability. Thus, systematic errors, as occurring with confused oracles OS ,
should be limited as much as possible, which is why we also apply the RIU technique (cf. Section 3.3.4).
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Figure 5.3: Evaluating the impact of the oracle component in AL. We compare different imperfect oracles ((a); argu-
ments in brackets represent the error rate σ [%]) as well as measures to counter labeling errors (b). Both simulations
are based on an RF classifier with wE +DiFS sampling for the V3D data set. Respective AL loops are conducted
for ni = 30 iteration steps utilizing a batch size of n+ = 300.

With RIU, we aspire to minimize labeling errors with respect to ambiguous regions by moving away
from the class borders to allow for a more clear annotation task (cf. Section 3.3.4). But since this moving
away also yields less informative points, this might severely harm the performance of the classifier. To assess
the potential effect of this method on both the performance of our classifier and the labeling accuracy of
the crowd, we simulate different AL loops, with different values for dRIU (cf. Figure 5.3), and we will also
employ a real crowd oracle OC for labeling queried points for an exemplary iteration step (cf. Section 5.2.5).
Regarding the performance of the classifier, we can observe that a maximum allowed distance to the supposed
class border of dRIU = 1.5m yields almost the same accuracy values as strictly focusing on most informative
points as queried by the classifier without the RIU add-on. Thus, we can support crowdworkers by easing
the labeling process to minimize errors due to ambiguous regions without loss in classification accuracy of
our ML model.

However, the impact of different dRIU values is also correlated with the resolution of the data set. For
instance, when dealing with a high-resolution data set such as H3D, a small value for dRIU might already be
sufficient to resolve label ambiguities, while for a more coarsely resolved data set, crowdworkers might not
benefit from small dRIU values at all (cf. Figure 5.4). Thus, a higher resolution (as in H3D) allows to reduce
dRIU values, but at the same time requires this reduction since structures become more detailed and even

true label Powerl. L. Veg. I. Surf. Car Fence Roof Façade Shrub Tree

confused with Roof Fence Façade I. Surf. Shrub Façade Roof Tree Shrub

Table 5.1: Assumed behavior of a confused oracle OS regarding the V3D data set.
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(a) (b)

Figure 5.4: Comparing different values for dRIU to ease labeling for crowdworkers. The higher the resolution of the
data set, the smaller dRIU can be chosen to indicate unambiguous points. Thus, instead of the machine selected seed
point (cyan), either a distance of dRIU = 1.5m (magenta) in case of the V3D (a) or of dRIU = 0.75m (yellow) in
case of the H3D (b) data set could be suitable.

a small distance can cause fine structures such as urban furniture to be skipped, resulting in a diminished
classification performance (cf. Appendix Figure B5). From Figure 5.3(b) (and Figure B5 in the Appendix),
we can also observe that if dRIU is chosen too large, e.g., dRIU = 4m, the accuracy of the classifier suffers
significantly. Allowing such a big distance to the queried seed point, a representative too far away from the
region of interest is chosen, often located on completely different objects (with probably different underlying
classes), if we are confronted with objects that have a small spatial extent (cf. Figure 3.7). Naturally, such
points incorporate feature vectors that are too dissimilar to that of the queried seed point to be informative.
Therefore, learning from such points fares even worse than random sampling (cf. Figure 5.1), where at least
by chance some informative points are included in the training set. To summarize, when RIU is properly
parametrized, the resulting slight degradation of the theoretical performance of the classifier can be accepted
in our endeavor to help the crowd generate more correct training labels and thus achieve a better overall
performance of our hybrid intelligence system. Thus, only the verification of crowdworkers really profiting
from RIU to reduce their labeling errors needs to be furnished, which will be the focus of Section 5.2.5.

5.1.4 Simulation of the Hybrid Intelligence System

After analyzing individual components of the methodology regarding the machine part of our hybrid intelli-
gence system, we will now concentrate on a comprehensive study evaluating different classifiers and sampling
strategies on our various data sets (cf. Section 4.2), where we will especially focus on ISPRS’ benchmark
data sets for semantic segmentation of 3D point clouds, i.e., V3D and H3D. Those exemplary AL runs are
based on simulated oracles, which serve the purpose of providing an estimate of accuracies to be expected
when working with real crowdworkers, as we strive to do in Section 5.2. The respective initialization data
sets are constituted as discussed in Section 5.1.1, i.e., a total of 10 typical points far away from class borders
are sampled for each class. All AL related entries in Table 5.2 - Table 5.4 are the accuracies obtained after
ni = 30 iteration steps with a batch size of n+ = 300. As baseline, we always rely on the results achieved for
the unseen test data set based on the respective classifier trained by the provided completely labeled training
data set, i.e., PL. If not mentioned otherwise, both classifiers applied, i.e., RF and SCN, are parametrized
as presented in the previous sections.
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Method Sampl. Method Oracle
F1-score

Powerl. L. Veg. I. Surf. Car Fence Roof Façade Shrub Tree mF1 OA

RF

PL 48.39 83.16 91.93 72.68 14.94 95.17 64.30 40.60 80.73 65.76 84.25

AL

wE OO 49.98 80.50 89.99 70.68 14.49 94.50 52.45 43.55 77.11 63.69 81.00
wE+DiFS OO 61.90 80.53 90.24 73.12 28.58 94.14 57.08 43.55 78.99 67.57 82.43
wE+DiFS+RIU OO 67.35 79.37 89.50 70.32 28.53 92.77 60.45 39.62 79.24 67.46 81.59
wE+DiFS+RIU ON 68.85 79.44 90.16 69.43 27.44 92.64 58.06 36.66 77.00 66.63 81.17

SCN

PL 42.11 81.40 91.11 72.15 41.22 94.10 59.65 48.87 83.88 72.92 83.86

AL

wE OO 65.17 78.29 88.96 68.86 25.32 88.39 49.58 34.49 76.81 63.99 79.07
wE+DiFS OO 60.57 79.31 88.59 72.28 24.92 91.21 55.34 43.44 80.16 66.20 81.13
wE+DiFS+RIU OO 63.02 79.52 89.62 75.03 26.33 91.18 54.41 38.45 78.27 66.20 80.91
wE+DiFS+RIU ON 60.68 78.89 89.48 74.09 22.29 90.64 53.77 39.10 78.54 65.28 80.59

Table 5.2: Comparison of reachable accuracies [%] for different training approaches and simulated oracles using RF
and SCN for the V3D data set after 30 iteration steps.

Method Sampl. Method Oracle
F1-score

L. Veg. I. Surf. Car U. Furn. Roof Façade Shrub Tree Gravel Vert. Surf. Chim. mF1 OA

RF

PL 89.97 88.17 63.76 49.18 95.59 78.08 65.86 95.36 47.34 59.63 80.52 73.95 86.87

AL

wE OO 87.04 79.33 49.48 42.15 93.17 74.72 63.22 95.12 46.65 27.40 85.50 67.62 81.63
wE+DiFS OO 91.04 85.93 59.74 43.64 95.92 76.40 64.41 95.68 51.34 54.80 82.97 72.90 86.58
wE+DiFS+RIU OO 88.38 85.97 55.68 44.07 93.75 75.64 66.46 95.56 49.69 55.53 63.59 70.39 84.84
wE+DiFS+RIU ON 88.06 86.94 56.01 42.88 93.93 75.78 64.43 95.14 46.67 56.17 50.26 68.75 84.82

SCN

PL 90.69 87.82 55.17 52.52 96.74 81.61 63.25 96.60 50.55 70.97 63.24 73.56 87.40

AL

wE OO 84.91 79.04 51.37 38.98 92.45 75.10 51.51 92.01 43.77 60.90 63.65 66.70 80.25
wE+DiFS OO 88.28 82.06 68.27 40.25 95.01 77.68 56.81 95.66 49.91 70.09 74.64 72.61 84.35
wE+DiFS+RIU OO 89.58 85.45 68.36 45.50 95.55 75.78 49.87 95.76 54.18 70.87 48.96 70.90 85.44
wE+DiFS+RIU ON 89.29 83.03 63.64 39.06 94.78 73.93 51.50 95.24 54.59 67.10 54.31 69.68 84.43

Table 5.3: Comparison of reachable accuracies [%] for different training approaches and simulated oracles using RF
and SCN for the H3D data set after 30 iteration steps (RF) and 10 iteration steps (SCN), respectively.

We start our discussion with the V3D data set (cf. Table 5.2), which we have visited frequently in this
chapter so far. For the RF classifier, generally speaking, we achieve state-of-the-art accuracy, with rather
underrepresented classes (cf. Figure 5.2) and classes with a high inter-class similarity such as Fence and
Shrub (see also Figure 3.3) yielding the worst F1-scores. Those classes are also most demanding for the SCN
classifier, overall generating predictions of similar quality as the RF. Compared to pure weighted entropy
sampling (wE) enhancing the selection strategy for both classifiers via DiFS significantly improves the
respective OA value by approximately 2 pp. From the view of the machine, embodied by the RF, DiFS
enhanced wE can be considered as optimal configuration that leads to a result that is less than 2 pp worse in
OA, with only utilizing 1.15% of labeled AL points compared to the PL run. For the SCN, accuracy scores
are slightly worse compared to the RF and the gap between the mF1-score of PL and AL is severe, but still
at the same level as for the RF classifier. This gap is mainly due to the drop in accuracy of class Fence,
which seems to be more difficult to learn from only a few AL samples due to the great intra-class variety
and inter-class similarity to class Shrub, for instance.

When employing a realistic crowd oracle, we would like to minimize the risk of label ambiguities before-
hand by means of RIU, i.e., moving from the decision borders for the sake of better interpretability. Although
from the view of the machine, this technique contradicts the AL idea, accuracy drops only marginally (less
than 1 pp both in OA and mF1-score), but we hope to avoid a confused oracle OS through RIU. Therefore,
we only simulate a noisy oracle ON with a 10% noise rate for the final crowd simulation. Again, overall
accuracy levels drop by less than 1 pp. Assuming that our simulated oracle is a valid approximation of a real
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Method Sampl. Method Oracle
F1-score

U. Furn. Ground Building Tree mF1 OA

PL 75.30 98.63 96.82 93.97 91.18 95.51

AL

wE OO 67.70 98.19 96.12 93.31 88.83 94.63
wE+DiFS OO 66.25 98.29 96.03 93.40 88.49 94.65
wE+DiFS+RIU OO 62.19 97.87 94.81 91.90 86.69 93.47
wE+DiFS+RIU ON 59.86 97.82 93.89 91.51 85.77 92.83

Table 5.4: Comparison of reachable accuracies [%] for different training approaches and simulated oracles using RF
for the S3D data set after 30 iteration steps.

crowd oracle, we expect to be able to reach final predictions that are only about 3 pp worse in OA compared
to the PL baseline, but which are highly efficient since only a small fraction of available training points will
be dynamically labeled by the crowd within the fully automized hybrid intelligence system.

Compared to the V3D data set, H3D is even more challenging due to the more detailed class catalog
employed to account for the much higher resolution of H3D. Thus, we adapt our RF classifier to this resolution
by utilizing features computed for a neighborhood radius r ∈ {0.125, 0.25, 0.5, 0.75, 1, 2, 3, 5} m. Concerning
the AL loops incorporating the SCN classifier, they only run for ni = 10 iteration steps with n+ = 600 to
ease the computational complexity as motivated in Section 5.1.1 and Figure B3 in the Appendix. As for V3D,
the PL variant of both classifiers yields rather similar results and would be among the top submissions in the
benchmark challenge1 (cf. Table 5.3). Due to H3D’s abundant point density and the associated occurrence
of quasi-duplicates in the representation of points in feature space, the need for increasing the diversity in
batches by means of DiFS becomes obvious with an improvement of > 4 pp in OA and > 5 pp in mF1 for
both classifiers. Again, simulating a real crowd oracle by means of RIU (with dRIU = 0.75m as advocated
for in Section 5.1.3) and 10% of random noise reduces the accuracy of the final result in OA by less than
3 pp compared to the PL result, with only 0.12h (RF) and 0.08h (SCN) of points labeled.

Regarding the performance of RF vs. SCN, the final accuracies of the simulation are almost identical,
but for the SCN this comes with a heavy computational load (cf. Section 5.1.2), so that we identify the
RF classifier to be optimal for our hybrid intelligence system. In general, underrepresented classes seem to
profit from AL techniques (e.g., V3D: Powerline, Car as well as Fence and Shrub in case of RF; H3D: Car,
Gravel and Chimney), because the data set generated via AL is more representative and is almost equally
distributed with respect to class affiliations of training points (cf. Figure 5.2), especially when our weighting
scheme is applied (cf. Section 3.3.2). On the other hand, classes with a very high intra-class variety, in
particular visible for classes Urban Furniture and Façade in H3D, suffer due to sampling only a small subset
of points that fails to depict every aspect of this class.

Although having a much more coarse class catalog compared to the two benchmark data sets, S3D is
tailored to assess the applicability of AL to large-scale, medium resolved data sets, where a much higher
intra-class variability is inherent as a result of capturing a large selection of different representatives of each
class. In our case, the whole downtown of Stuttgart is covered, in contrast to only small subsets of built-up
areas as in V3D and H3D. Due to the small class catalog, this effect is even emphasized by unavoidable
generalization (e.g., considering façades and roofs as class Building). Following the above findings, for the
S3D, we restrict ourselves to reporting results of the RF classifier, where feature computation is based on
neighborhoods of r ∈ {1, 2, 3, 5} m just like for the V3D data set. Rooting from the intra-class variability,
top accuracies over all classes are achieved by the PL approach utilizing the completely labeled training set,
thus capturing a large variety of different class representatives. Vice versa, class Urban Furniture, having by
far the highest intra-class variability, suffers the most from a limited training data set as utilized in AL (cf.

1at the time of writing this thesis
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Table 5.4). Still, the optimal configuration from the view of the machine (wE +DiFS) performs less than
1 pp worse in OA compared to the PL approach, but with DiFS showing no impact at this saturated stage of
the iteration after 30 iteration steps and with already well-sampled classes (nevertheless, DiFS leads to faster
convergence, which is evident from the accuracy scores at an earlier iteration stage after 10 iteration steps;
see Table B2 in the Appendix). As expected, manipulating the selections of the classifier by RIU slightly
reduces accuracy as well as employing the noisy oracle ON (10%). Nevertheless, our AL pipeline, driven
by a simulated but realistic crowd oracle, outlines the potential to reduce labeling effort to only 0.23h of
available points, with OA values only about 3 pp worse in OA compared to the PL baseline.

5.2 Optimizing and Evaluating the Crowd Oracle

Apart from the machine component in our hybrid intelligence system, we will now turn to the human
processing unit, i.e., to the crowd that is employed to teach the machine. Although we have postulated
that the crowd is capable of dealing with 3D data annotation tasks, this still needs to be verified, which
will be the subject of this section. First of all, we will evaluate the general ability of the crowd to label
3D data (cf. Section 5.2.2) and possible measures for quality improvement that do not require an expert
to be involved (e.g., for checking crowd labels). Afterwards, we will focus on further techniques to improve
crowd labeling, that is, experimenting with the use of 3D meshes as alternative data representation (cf.
Section 5.2.3) and stimulating motivation by gamification elements (cf. Section 5.2.4). Finally, the benefit
of RIU as a simplification of the crowd tasks is yet to be proven (cf. Section 5.2.5). Before going into the
details of measures to improve labeling accuracy, we start with an analysis of whether crowdsourced labeling
of 3D points is actually economically reasonable (cf. Section 5.2.1).

5.2.1 A Statistical Analysis of Crowdsourced Data Annotation Tasks

Unlike outsourcing complex, high-paying tasks such as programming to the crowd (Vignieri, 2021), the type
of crowd jobs we offer are tedious labeling tasks that should take a short period of time to complete. This
means, our goal is creating microtasks that can be processed in parallel by our human processing units.
To find out whether respective labeling tasks can be completed in a timely manner and to determine the
appropriate payment rate for our crowdworkers, we ran a first experiment where crowdworkers were asked to
label a total of randomly picked 10 points each, and we recorded the time required for completion (campaign
of Type C, cf. Section 3.6.2, for the point cloud modality of H3D’s epoch March 2018, with a feasible class
catalog as will be identified in Section 5.3.1 and a payment rate of $0.10 per job).

From Figure 5.5, we can observe that the majority of the 400 jobs that we posted were completed in less
than 400 s (less than ca. 7min), resulting in an average annotation time per point of about 40 s. A minimum
completion time of about 33 s and a maximum completion time of 1190 s already give a taste of the accuracy
to be expected. There are indeed crowdworkers that just try to skip through the job as fast as possible in
their pursuit to make fast money, but there are also crowdworkers that really try to interpret the data they
are confronted with instead of just picking classes randomly. Completion times that significantly exceed the
average can also be due to a poor internet connection (resulting in slow loading progress of point cloud data)
or crowdworkers being idle or occupied with other responsibilities.

With respect to determining the payment rate for our workers, when assuming that all crowdworkers can
complete our jobs in about 10min, according to Haralabopoulos et al. (2019), a remuneration of $0.23 would
be appropriate. However, this payment rate is defined for MTurk where the majority of workers are U.S.
residents with a rather high general level of income. Thus, we also need to take into account the countries
of origin of our crowdworkers (cf. Figure 5.5(b)), which we have empirically determined from the pool of
crowdworkers participating in our campaigns. The majority of workers are based in Asian countries, with
Bangladesh and India being among the most represented nations. Also, a significant number of workers are
located in Eastern European countries such as Serbia. Generally speaking, most crowdworkers live in states
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Bangladesh 27%

Serbia 17%

India 11% Indonesia 3%
Turkey 3%

Morocco 3%
Sri Lanka 3%

Kenya 3%

Mauritius 3%

Poland 3%

Venezuela 3%
Belarus 2%
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Italy 2%

Other 15%
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Figure 5.5: Statistics of our crowd campaigns. We recorded the average time to complete a crowd job (a) as well
as the countries of origin of crowdworkers participating in our campaigns (b). Please note that no completion times
> 20min were recorded, since this is the maximum allowed processing time after which the job gets aborted and
assigned to another crowdworker.

with rather low incomes, where crowdsourced work can be a viable way to earn some extra money. Since our
crowd is heavily biased towards Asian contributors, we adjust the payment accordingly, but aim to pay at
least the minimum wage of their respective homeland. Thus, we consider a per job base payment of $0.10
(with a bonus of another $0.05; cf. Section 5.2.2) to be fair.

5.2.2 Evaluating the Performance of the Crowd as Labeling Engine

A crucial step to a completely automized system, at least from the view of the operator, is that despite
the involvement of non-expert humans in the loop, no overhead is required to ensure data quality. This
means that self-sufficient quality control techniques are needed, which can be drawn from the pool of quality
control on task designing and quality improvement after data collection. As mentioned in Section 3.6.3, we
implement those techniques by i) introducing check points into our tasks and ii) harnessing the Wisdom of
the Crowds through majority voting. Nevertheless, the question remains of how many multiple acquisitions
from different crowd members are required to be sufficient for our application at hand (i.e., when does the
Wisdom of the Crowds kick in?).

Thus, we design an experiment where we randomly pick 20 points for each class of the H3D data set
(epoch March 2018) that we have recognized to be feasible for crowdsourced annotation (an explanation will
be given in Section 5.3.1) and compose a total of 20 crowd jobs, each job including one of the picked points of
each class (every point only occurs once in those jobs). Additionally to the selected point, we present all points
within a 20m 2.5D neighborhood to allow interpretation in a Type C crowd campaign (cf. Section 3.6.2).
Each of those 20 jobs is assigned to 20 different crowdworkers (i.e., nmult = 20, cf. Section 3.6.3) granting a
payment of $0.10. After data collection, for each number of crowdworkers ncw ≤ nmult, we form all possible
combinations as outlined in Section 3.6.3 and we compute the averaged OA and class-wise F1-score as
depicted in Figure 5.6(a). The higher the number of multiple acquisitions that can be used for majority
voting, the better the (averaged) accuracy of labels becomes until reaching an OA of almost 100% when all
20 acquisitions are used, and also the higher the agreement between the individual workers that took part
in the majority vote, expressed by means of entropy (averaged over all points and combinations for each
ncw). But for economic reasons, our goal is naturally to reduce the number of multiple acquisitions, which,
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Figure 5.6: Compilation of different measures to improve the accuracy of crowd-generated labels either by majority
voting (a), check points (b), and the consequent combination of both techniques (c).

however, comes at the cost of label accuracy. Therefore, it is noteworthy that with ncw = 5 votes the OA
already exceeds 90% and with ncw = 10 votes it is 95%.

As demonstrated in Section 5.1.3, our classifiers perform rather robustly against a certain rate of random
noise. Precisely, 10% of such noise almost does not affect the performance of the classifier at all. Thus, we
consider an OA of 90% as our optimal result, which can be reached when averaging ncw = 5 (and more)
votes. In other words, if no further measures to ensure quality are in place, each point needs to be labeled
by ncw = 5 independent crowdworkers. Considering a typical batch size of n+ = 300 in an AL run with
10 iteration steps, 10 points per crowd job and a crowd payment of $0.15, this already accumulates to $225,
which is the baseline payment we aim to further minimize. Additionally, Figure 5.6(a) gives an idea of the
complexity of different classes for the crowd, with Urban Furniture and Façade being the most difficult
for interpretation. Both classes contain a big variety of different objects, where Urban Furniture practically
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serves as class Other and Façade includes all kinds of façade applications such as balconies, lamps, etc.,
therefore also containing elements of class Urban Furniture. Interestingly, Impervious Surface also seems
to be of similar complexity, which comes as a surprise since this is a well-defined class. But whenever the
colorization of points actually belonging to this class is unclear, e.g., partly mud-covered, overgrown, or
simply shaded, crowdworkers hastily decide for Urban Furniture. Easily understandable and distinguishable
classes such as Car, Low Vegetation or Vegetation, on the other hand, can be labeled by the crowd with
rather high quality.

As means to reduce the number of required multiple acquisitions to reach an OA of 90%, we rely on
quality control on task designing through check points, i.e., points for which we know the true class affiliation,
but which appear just like payload points to crowdworkers. As minimum test to be passed, one of the check
points is presented twice to crowdworkers and required to be labeled the same (but not necessarily correctly).
This helps to identify random assignment of classes, but does not prevent workers from labeling all points
the same. Thus, the next step in extending control is that this point must be labeled correctly and that
additional points are also properly labeled (referred to as passed 1 pt and passed [x] pts respectively in
Figure 5.6(b)). To evaluate the impact of this measure, we posted a new campaign that included 7 more
(check) points compared to the previous campaign, where the submitted results had no effect on passing the
job.

After completion of the campaign, however, we used these check points to assign the results to different
quality levels to generate Figure 5.6(b). As expected, the stricter the check mechanisms are (i.e., the more
checks must be passed), the better the accuracy of labels becomes. In this case, accuracy is computed over all
crowd labels, i.e., without majority decision, from the pool of crowd labels and the corresponding GT label
for each point. This means that a selected 3D point contributes up to 20 times to the final accuracy value
reported in Figure 5.6(b), depending on whether a respective job containing this point passed the checks. On
the other hand, the stricter our checks are, the more jobs we are forced to discard without granting workers
any payment (up to 30% with 7 check points). In order not to deter crowdworkers by a high rejection
rate of our jobs, we also try to minimize the number of check points and identified passing 3 check points
(including the consistency check) as a good compromise between accuracy and rejection rate. By relying on
check points, we reject about 13% of low-quality acquisitions while improving the accuracy level by about
5 pp (cf. Figure 5.6(b)).

After identifying 3 check points as reasonable means to control accuracy on data acquisition, we repeated
the first experiment where each job is posted to nmult = 20 different crowdworkers, but this time the result is
only accepted if crowdworkers meet the minimum requirement of passing those checks. As further incentive,
we grant a bonus of $0.05 on the advertised payment of $0.10 in case of successful check point labeling,
i.e., the effective payment is $0.15. Using only those assumed to be high-quality results, we repeat the
process of computing the average accuracy values of all possible combinations as discussed in Section 3.6.3.
As anticipated, this yields a much faster convergence of our accuracy curves in Figure 5.6(c) compared to
Figure 5.6(a) and also a higher level of agreement depicted by the entropy curve. When using ncw = 9 (and
more) votes, an accuracy close to 100% can be reached. But most crucially, the 90% OA level is already
reached after ncw = 3 votes, not ncw = 5 as before. This means a reduction of the assumed campaign cost
from $15 = 20 jobs · 5workers · $0.15 to almost half ($9 = 20 jobs · 3workers · $0.15) and a reduction from
$225 to $135 for the aforementioned AL iteration. Consequently, for all following campaigns, we will assign
each point identified by the machine as informative to a total of ncw = 3 different crowdworkers, each having
passed 3 check points including the consistency check.

5.2.3 The Impact of Different Data Modalities on the Performance of the Crowd

While GT inference measures such as majority voting (cf. Section 5.2.2) are an efficient means to improve label
accuracy by integrating the results of multiple crowdworkers, these techniques are limited by the accuracy of
the (filtered) results generated by individual crowdworkers. Thus, in order to improve data quality in the first
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place, as motivated in Section 3.6.4, we utilize 3D textured meshes as alternative data modality that might
be easier for non-experts to interpret. To fairly compare which modality is better suited for crowdsourced
data collection, we repeat the third experiment conducted in the previous section, i.e., posting 20 jobs with
one sample of each of the 7 classes (and 3 additional check points including the consistency check) to a
total of 20 different crowdworkers granting a $0.10 + $0.05 payment. But in this case, the vicinity of the
randomly selected points is visualized by a cylindrical 2.5D neighborhood cropped from the 3D textured
mesh (r = 20m) in our Type C labeling tool (cf. Section 3.6.2). To generate a meaningful comparison of
data of the same level of quality, we would like to emphasize again that in both campaigns, results are
filtered based on check points. Otherwise, we might be confronted with one campaign including results from
a tremendous number of malicious or careless crowdworkers, while this number might be negligible for the
other campaign, thus leading to non-comparable results.

To evaluate the respective accuracies of both campaigns, we compute confusion matrices from the pool of
crowd label-GT pairs and consider each crowd label individually (i.e., no majority voting). Thus, our results
are statistically supported by 400 points per class, for a total of 2800 points (20 jobs · 7 points · 20workers).
Figure 5.7 demonstrates that by purely switching the data modality (i.e., replacing a point cloud oracle OCP

with a mesh oracle OCM ), the overall labeling accuracy can be improved by 4 pp in our case of randomly
selected points. While all classes profit, especially the F1-scores of Urban Furniture and Vegetation are
improved. For both classes, fewer points are confused with other classes, and particularly the confusion
between those two classes is significantly reduced. This might be due to the much clearer depiction of the
3D environment by applying realistic textures, helping to distinguish between man-made (urban furniture)
and natural objects (vegetation).

However, higher rates of confusion remain when points near class borders are selected (e.g., Low Vegeta-
tion vs. Impervious Surface and Roof vs. Façade). Although error rates have been reduced through relying
on a crowd oracle utilizing mesh data OCM , higher error rates still appear for samples from classes that are
hard to separate from other classes such as Urban Furniture quasi serving as class Other. While the latter
is an inherent problem, the issue of labeling at class borders could be alleviated by the RIU technique (cf.
Section 3.3.4). Nevertheless, those experiments emphasize that a high-quality 3D mesh generated from con-
currently captured imagery and LiDAR data is to be preferred when non-experts are tasked with interpreting
3D data. This is the reason why we also employ mesh data whenever possible (i.e., in case of the H3D data
set) in context of our AL-based learning schemes in Section 5.3.2.
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Figure 5.7: Confusion matrices computed from crowd labels generated utilizing either the point cloud (a) or the mesh
modality (b) to illustrate the vicinity of selected points.
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5.2.4 Can the Crowd be Tricked by Gamification?

Another way to improve (raw) label accuracy and crowdworkers’ willingness to perform work is to attempt
to intrinsically motivate crowdworkers by means of gamification (cf. Section 3.6.5). To evaluate whether
such elements have an impact in context of paid crowdsourcing, we launched various crowd campaigns,
each containing one of the four gamification elements discussed in Section 3.6.5, and one incorporating all
of them. As baseline solution, we conducted the same campaign without any gamification elements. Each
crowdworker is confronted with the same task, that is, labeling 20 pre-selected faces from the H3D mesh
data (epoch March 2018), and has the option to repeat the task. All campaigns discussed in this section were
processed by the same MW group (International Workers), launched at the same time of day to guarantee
no significant change of nationalities in the participating group, and were paid equally with $0.10. Each
campaign consists of contributions from 90 crowdworkers. Please note that no check points are included in
those tasks, since alongside improving quality, we aim to encourage crowdworkers to do more work with
gamification elements, and adding annoying check points might quickly make our gamified tools lose their
appeal. The downside of this approach is that the results obtained could be dominated by crowdworkers who
perform exceptionally well or poorly, so variations are inevitable to some degree. As a remedy, campaigns
are posted multiple times to check for reproducibility and thus the resilience of the results.

In order to get a feeling for whether such gamification elements show any effect, Table 5.5 depicts the
results of one trial for each campaign. In terms of the OA values, results are relatively stable - at least
considering that no quality control measures are applied. This means no improvement in labeling accuracy is
to be expected through gamification, which is a sobering finding. On the other hand, this can be interpreted
to mean that crowdworkers generally try to perform as well as possible, even without additional game
incentives. Possibly, avoiding reputational degradation due to poor performance is a greater motivation than
such gamification elements. Thus, the accuracy is not so much limited by the will of crowdworkers, but by
their ability to perform rather complex 3D labeling tasks.

On the other hand, as for the amount of completed work, gamification brings an advantage. Recall that
in all campaigns, crowdworkers are only required to label a total of 20 faces (i.e., to complete one full job).
Even in the baseline campaign without gamification elements, crowdworkers output more labels - probably
hoping for a bonus payment. In this context, assigning a score to a crowdworker and comparing it with
others seems to encourage crowdworkers to contribute more (cf. Table 5.5). The same applies to making the
labeling experience more fun by means of audio-visual effects boosting the stamina of workers before growing
tired of labeling. Although progress bars might be good indicators of keeping track of completed work, they
do not seem to stimulate motivation. Strikingly, while each gaming element separately increases the amount
of completed work only slightly, the combination of all elements seems to trigger a cumulation of individual
effects and leads to an average number of faces that is more than double that of the baseline campaign. Even
though explaining such phenomena might be more suited for experts in working psychology, we assume that
this is mainly due to pairing scoring of results (i.e., triggering anticipation of workers for a reward) with

campaign
∅ number of labeled faces

OA [%]
per crowdworker

no gamification 29.6 74.55

ga
m
ifi
ca
ti
on

progress bar 30.9 65.65
score 37.6 72.37
high score list 38.7 74.97
audio-visuals 33.1 68.72

all elements 73.3 72.91

Table 5.5: Effect of different gaming elements on the labeling results delivered by crowdworkers.
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ID worker group method
∅ number of labeled faces

OA [%] time to complete [h]
per crowdworker

M1

all workers

without gamification
26.6 74.1 3.4

M2 26.6 75.1 1.5
M3 25.1 74.1 2.1
MG1

with gamification
54.4 66.8 2.8

MG2 45.5 71.3 1.6
MG3 30.8 73.5 1.9

O1

one-time workers

without gamification
33.5 65.6 6.7

O2 30.0 73.6 24.6
O3 30.2 65.1 64.1
OG1

with gamification
58.8 62.6 13.4

OG2 73.1 68.9 18.1
OG3 63.3 67.2 41.9

Table 5.6: Statistics for different crowd campaigns. We distinguish between user groups where an individual crowd-
worker can participate in multiple campaigns or just in one and test the effect of gamification elements on both
groups.

immediate feedback through audio-visual effects (i.e., giving them a feeling of satisfaction/spurring ambition
in case of correct/false answers). At the same time, the progress bar shows workers how close they already
are to their goal of finishing the task and getting their remuneration.

However, due to the lack of quality assurance measures in those campaigns, there is still a chance that
these results are of purely random nature, caused by some extremely motivated workers. Thus, we repeated
both the campaign without any gamification elements and the campaign with all gaming elements three
times. Table 5.6 summarizes the results of those campaigns, where crowdworkers were allowed to participate
in as many campaigns as they pleased (cf. M1-M3 vs. MG1-MG3). As for the multiple trials of the non-
gamified baseline (denoted as M1-M3 in Table 5.6), the results seem to be robust, with OA values rather
similar to the initial trial reported in Table 5.5 and a slightly lower average number of faces per crowdworker.
This verifies our findings with respect to the baseline campaign.

Regarding the gamified counterparts (denoted as MG1-MG3 in Table 5.6), OA values show some variance,
which is to be expected due to lack of control mechanisms. Differences can be caused, for instance, by
individual crowdworkers being overwhelmed with the 3D data representation, not understanding what is
asked of them, or intentionally performing poorly. What is striking is a clear trend of a decreasing average
number of labeled faces, starting with our initial campaign (cf. Table 5.5) and continuing throughout our
reproducibility tests (cf. MG1-MG3 in Table 5.6). But there seems to be a slight trend of increasing OA for
those gamified trials.

To explain both phenomena, Figure 5.8 plots the relative number of workers participating for the first
time in one of our campaigns, so-called one-time workers, to the average number of labeled faces and OA
values. As expected, the number of one-time users decreases because the more campaigns we launch on MW,
the more likely we are to face a crowdworker who has also participated in one of our previous campaigns.
This decreasing number of one-time workers is i) positively correlated with the average number of labeled
faces per worker and ii) negatively correlated with the achieved OA values. The latter is obvious - the more
frequently a crowdworker performs a specific task (even if it is a complex and unfamiliar one), the better
his performance gets. The drop in the average number of labeled faces per crowdworker, on the other hand,
means that our game elements seem to lose their appeal when encountered frequently. But this is also the
case with most commercial games, that people stop playing as soon as there is no new content. In our case
of labeling, however, this effect comes more quickly since basically every task is the same (although different
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Figure 5.8: Comparison of the relationship between the relative amount of one-time workers in campaigns MG1-
MG3 and campaign results evaluated for 3 trials of the same gamified campaign (see also Table 5.6). As campaign
indicators, we consider i) the achieved OA as well as ii) the average number of labeled faces per worker, showing
a positive and a negative correlation to the number of one-time workers, respectively. Please note that campaigns
MG1-MG3 are preceded by our initial, fully gamified campaign (cf. Table 5.5), so that crowdworkers can be faced
again in MG1, resulting in presence of non-one-time users.

faces are randomly chosen in each trial), so users grow tired of it after their first round. This is also identified
by Thaler et al. (2012) as one of the major challenges in gamifying categorization tasks.

To counter this effect, we relaunch both the non-gamified baseline (cf. O1-O3 in Table 5.6) and the gam-
ified campaign (cf. OG1-OG3 in Table 5.6) in three trials, but now crowdworkers are allowed to participate
in only one campaign in this new series of campaigns, i.e., we are confronted only with one-time workers. We
can observe that the obtained OA values are more similar to the minimal values achieved in the previous
campaigns. This is due to the fact that none of the crowdworkers participating in those campaigns has any
prior knowledge of the task and hence lacks experience. With respect to the number of labeled faces, results
of the non-gamified campaigns are stable and similar to our initial campaign (cf. Table 5.5). As hoped for,
the number of processed faces over all trials for our gamified campaigns is on a level that is twice as high
as for the baseline campaigns. This underlines that our game elements are indeed suitable for stimulating
motivation of workers. A downside, however, comes in the time required to complete such campaigns. Since
we reject workers who have already worked in a campaign, we effectively shrink the pool of available and
active workers. While all previous campaigns could be completed in a maximum of 3.4 h, filtering crowd-
workers prolongs the campaign durations to up to 64.1 h. This can be an issue whenever we are confronted
with time-critical labeling tasks or, considering our hybrid intelligence system, when it is costly having the
machine component stay idle (e.g., in case of large-scale supercomputers, often used for ML applications).

Thus, to summarize, by means of gamification we receive more labeled faces, but on an accuracy level
identical to that without gamification. However, from an ethical point of view, enticing crowdworkers with
already rather low payment rates into free labor is questionable, which is why we do not further pursue the
concept of gamification in the following more extensive experiments.

5.2.5 The Impact of RIU to Ease Labeling

Although the aforementioned techniques (especially the quality control measures in Section 5.2.2 and relying
on alternate data representation tested in Section 5.2.3) can help improve accuracy, they will not succeed
whenever there is an inherent label ambiguity of the selected points. In AL, we must expect that this applies
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to the majority of selected instances since we tend to draw samples from the vicinity of decision borders in
feature space, which often correspond with class borders in object space (cf. Section 3.2). As discussed in
Section 3.3.4, the RIU sampling add-on should be capable of resolving those ambiguities while only marginally
affecting the performance of the classifier, driven by the generated labels (cf. Section 5.1.3). Thus, the only
question remaining to be examined is the anticipated increase in labeling accuracy due to RIU. To this end,
the straightforward idea is to compare overall labeling accuracies over complete AL loops for different dRIU

values (the maximum distance allowed to the classifier-selected seed point). But this procedure does not allow
to compare the results fairly, because not only the RIU-selected points, but also the seed points queried by
the classifier would differ, as AL loops would diverge quickly with relying on different point samples for
training.

Thus, to fix seed points, for this examination, we should focus on one dedicated iteration step in such an
AL loop for which different dRIU values can be applied in the querying step to receive respective point batches
for crowd evaluation. Optimally, those batches (or at least the set of seed points) can be described by an equal
distribution of classes, which, however, rarely occurs within a single iteration step of an AL loop. Nevertheless,
relying on a non-equally distributed, machine-generated batch is still a better option compared to manually
selecting seed points. Those points would be highly biased towards human operator understanding and thus
not representative for the samples selected in our AL runs, and would also undermine the significance of the
results obtained. Thus, our selection of seed points is accomplished by RF-driven wE+DiFS sampling (RF
parametrization as outlined in Section 5.1.1) for the V3D data set.

Consequently, a representative batch of a specific iteration step containing samples for every class but
showing an imbalance between classes was selected. In this batch with n+ = 300 samples, most underrep-
resented classes are Car (6 samples) and Fence (7 samples), while class Roof is the most represented class
(85 samples). As an indicator of class balance, we derived an entropy value of the relative class occurrence
histogram of 2.82 compared to an optimal value of − log2(1/9 classes) = 3.17 for a true equal distribution.
Building upon the classifier-selected seed points, we apply different values for dRIU ∈ [0m, 1.5m, 4m] and
distribute the n+ = 300 points equally into 30 jobs with 10 payload points each but also equipped with
3 check points and the consistency check (cf. Section 3.6.3). The final label for each point is inferred by ma-
jority voting from ncw = 3votes and compared to GT labels to generate the confusion matrices, as depicted
in Figure 5.9. This allows for a fair comparison of the effect of RIU on label accuracies under the same
conditions as in our aspired AL runs.

As anticipated, RIU is indeed able to increase the achievable label accuracy of crowdworkers by resolving
label ambiguities and thus minimizing the risk of a confused oracle OS being encountered. Using a maximum
distance to the machine-selected seed point of dRIU = 1.5m already boosts label accuracy by 18 pp in OA,
or by 26 pp for dRIU = 4m. Although dRIU = 4m seems tempting with regard to crowd labeling accuracy,
Figure 5.3(b) demonstrates that this distance is far too excessive to actually generate labels suitable for
training an effective classifier. This is also confirmed by the lack of class Car in the confusion matrix, since Car
points are completely skipped through RIU with dRIU = 4m. Nevertheless, such a strong simplification is well
suited for uncovering most demanding label queries to the crowd (cf. Figure 5.9(c)). Those difficulties are due
to a class catalog that may be challenging for crowdworkers to comprehend, which becomes obvious for classes
Fence vs. Shrub and Shrub vs. Tree. While it is often demanding even for an expert to distinguish between
these classes, this issue is even emphasized when crowdworkers from Asian countries (cf. Figure 5.5(b)) are
confronted with vegetation types from Middle European countries that are unfamiliar to them.

When comparing the confusion matrix of dRIU = 1.5m to the one without applying the RIU sampling
add-on (i.e., dRIU = 0m), we can observe that RIU is capable of resolving typical class ambiguities between
adjacent classes in object space (e.g., Low Vegetation vs. Impervious Surface and Roof vs. Façade). But
still, vegetation related classes and the distinction between classes Powerline and Roof remain difficult for
crowdworkers. The latter could be caused by the suboptimal colorization of the V3D data set by an orthogonal
projection of an orthophoto, yielding ”roof-colored” Powerline points that are hard to recognize. Please note
that the reason for high and fluctuating rates of confusion, especially for classes Car and Fence, is mainly
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Figure 5.9: Obtained confusion matrices of crowd-generated labels for different distance values dRIU used by the RIU
sampling add-on to select alternative points instead of those suggested by the machine. Results are evaluated for an
exemplary and representative iteration step for the V3D data set.

due to the aforementioned underrepresentation of these classes in the respective batch to be labeled. While
RIU shows a clear potential to boost the accuracy of crowd-generated labels for the presented toy example,
only employing it in our crowd-based AL loops, reported in Section 5.3, will show the true effectiveness in a
large-scale test.

5.3 Formulating the Hybrid Intelligence System

After evaluating the performance of the machine part (cf. Section 5.1) and the human aspect (cf. Section
5.2) separately, the findings of those experiments pave the way for employing the desired hybrid intelligence
system. Thus, we are now able to run AL loops with the oracle being constituted by the crowd, completely
relieving an expert annotator from such duties. This hybrid intelligence system is utilized for conducting in-
domain AL loops on various test sites (cf. Section 5.3.1). But we also aim to transfer knowledge obtained from
crowdworkers between different data sets through ATL (cf. Section 5.3.3), as this technique shows potential to
reduce labeling effort even more than pure AL. Whenever possible, we utilize measures specifically designed
for the crowd-powered AL or ATL runs to ease the labeling process for crowdworkers. This involves both
addressing ambiguous samples through the RIU technique (cf. Section 3.3.4) and employing alternative data
modalities (cf. Section 5.3.2).

5.3.1 Employing the Crowd-Driven AL Loop for Efficient Segmentation of ALS
Point Clouds

Recalling the overall aim of enabling ML by an efficient and fast generation of training data through paid
crowdsourcing, this section is dedicated to evaluating the performance of a hybrid intelligence system formed
by combination of an ML algorithm and the crowd, merged by means of AL. Thus, this section can be
considered as reiteration of parts of the experiments conducted in Section 5.1, differing, however, by the fact
that we no longer rely on simulated oracles, but on real crowd oracles OC . Again, we test the presented
framework for all three test sites with different characteristics (cf. Chapter 4), especially focusing on the
individual and joint performance of the crowd in interplay with the machine learning from the human
processing units. Please note that results reported in this section exclusively address crowd oracles that
were provided with point cloud data, i.e., OCP . Also, all the experiments discussed in the following are run
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utilizing the CATEGORISE framework, allowing a fully automated execution - at least from the operator’s
point of view.

Initializing the Loop

Due to our overall goal of excluding an expert operator from labeling tasks and as outlined in Algorithm 1,
the crowd is responsible for generating the initialization data set necessary to kick off the AL run, i.e., the
interactive communication between crowd and machine in the first place. Thus, by utilizing our web tool of
Type A (cf. Section 3.6.2), for each data set (namely V3D, H3D epoch March 2018 and S3D), the crowd is
asked to identify one point for each class. Precisely, 100 crowdworkers (nj = 100) are tasked at a payment
rate of $0.10. The respective confusion matrices can be found in Figure 5.10(a) for the V3D data set and
in the Appendix Figure B6(a) and B7(a) for the H3D and S3D data sets, respectively. Unsurprisingly, a lot
of crowdworkers deliver insufficient labels, causing a rather low OA of about 53% (V3D), which is due to
no quality control mechanisms being in place. Although these unchecked initial results should be taken with
a grain of salt, a general trend with respect to achievable accuracy for each data set still becomes obvious.
Naturally, for S3D, the crowd performs better as we are dealing with a significantly simpler classification
task than for the other two test sites (less and more general classes). Interestingly, accuracies of H3D exceed
those of V3D by far, although being a labeling task of similar complexity. This is likely because of the more
realistic and thus more familiar depiction of the point cloud data in case of H3D due to the much higher
point density (cf. Table 4.1).

To refine generated labels, the next step is to filter the results obtained in the first place by a second
group of crowdworkers (cf. Algorithm 1). This is accomplished by means of our Type B labeling tool (cf.
Section 3.6.2). Here we ask a total of ncw = 3 crowdworkers to check each point at a payment of $0.10+$0.05
(base payment + bonus) in the sense of majority voting (also, 3 check points are utilized, with one being
shown twice, to receive only high-quality results; cf. Section 5.2.2). Since crowdworkers only need to provide
Correct/False answers, this can be considered a two-class categorization problem, whose accuracy can thus
be evaluated by the same metrics as our multi-class experiments. Table 5.7 gives an overview of the results
from these campaigns after aggregation of answers from ncw = 3 crowdworkers by means of majority voting.
Since we consider these campaigns as filters, recall values are of special interest for detecting both false and
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Figure 5.10: Labeling accuracy of the crowd in context of the initialization of an AL loop on the V3D data set.
The accuracy of the raw and unchecked crowd labels (a) are verified by a second group of crowdworkers in a crowd
campaign of Type B to obtain refined results (b). To further ease the labeling complexity, we restrict the class catalog
and merge classes accordingly (c).
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Data set
Recall

OA
rel. amount of

False Correct remaining samples

V3D 87.94 98.05 91.66 57.60
H3D 60.31 97.31 84.44 78.80
S3D 85.71 98.96 95.25 75.25

Table 5.7: Statistics of our Type B crowd campaigns for improving the initially assigned labels by crowdworkers. The
relative amount of remaining samples refers to all points that are marked by the crowd as labeled correctly and thus
remain for the initialization data set. All measures are given in [%].

correct labels. While almost no correctly labeled points are marked as incorrect by the crowd, crowdworkers
struggle to identify false labels. In other words, crowdworkers seem to hesitate to flag points as incorrect if
they are not completely sure about the correct answer. In this regard, the crowd performs worst on the H3D
data set, which is actually supposed to give the easiest representation of data. Partly this is due to a higher
initial level of accuracy compared to the V3D data set (cf. Figure 5.10 vs. Figure B6 in the Appendix), but
mainly the poorer performance is caused by more obvious errors in the other data sets.

V3D and S3D rely on a suboptimal colorization by orthogonal projection of a temporally disjoint or-
thophoto. Among other issues such as roof-like colorization of façades, this is especially problematic for
dynamic objects such as cars (cf. Figure B8 in the Appendix). Often, points geometrically depicting streets,
but radiometrically representing cars (due to mapping of car color values to streets), are mistaken for cars
in the Type A campaigns. With a closer look at the point cloud and with the simplified 3D point cloud
navigation requirements in our Type B campaigns, such errors can be easily detected. Thus, data sets with
non-optimal colorization perform better in this evaluation of Type B campaign results (cf. Table 5.7) since
the errors are more obvious. After checking results, all points that are marked as False are eliminated, which
is why a high recall value for Correct is particularly desirable (i.e., dropping true labels should be mini-
mized). On average about 30% of initially collected labels are discarded in the process (cf. Table 5.7) and
filtered confusion matrices can be built for all data sets (cf. Figure 5.10(b) and Figure B6(b) and B7(b) in
the Appendix). As can be seen, we can improve OA of our crowdsourced labels by about 24 pp on average,
underlining the impact of such quality control tools, but this improvement in accuracy comes at the expense
of the size of the initial training set.

Nevertheless, some errors remain, especially for the V3D and H3D data sets, containing rich class catalogs.
This means that some classes are hard to comprehend for our crowdworkers, being in accordance to the
findings of Bayas et al. (2016), stressing a limited feasible class catalog for crowdsourced data acquisition.
However, these errors are more due to ambiguous classes rather than hard label errors, e.g., in case of
V3D, Shrub vs. Tree and Fence vs. Shrub, but also due to insufficiently and sparsely depicted objects
such as powerlines. Since distinguishing between such classes is hard to communicate to crowdworkers and
even experts might argue about it, for V3D, we decide to merge classes Fence, Shrub and Tree into class
Vegetation and merge class Powerline with class Roof. Similarly, for H3D, classes Shrub and Tree are merged
into Vegetation, Chimney is added to Roof and Soil/Gravel to Low Vegetation (class Vertical Surface was
merged directly with Façade in the first place, following a similar arguing). Naturally, this step further
improves accuracies, where remaining confusion for H3D mainly happens between quasi-class Other (i.e.,
Urban Furniture) and all other classes (cf. Figure B6(c) in the Appendix) and Roof vs. Façade in case of
V3D (cf. Figure 5.10(c)). The latter is also due to the aforementioned merging of classes Powerline and
Roof, as crowdworkers originally sometimes tended to label sparsely discretized linear point agglomerates
as Powerline instead of Façade (cf. Figure B9 in the Appendix). Nevertheless, training data sets with an
average OA over all our test sites of 95% can be utilized for initializing the AL loop.
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Figure 5.11: Overview of the achieved performance of our hybrid intelligence system for both the V3D (first column)
and S3D data set (second column). In (a) and (b) we report the achieved labeling accuracy of the crowd (first
row) as well as the accuracy of the machine learning from the crowd over all iteration steps (second row). Dotted
black lines represent the result of PL. Additionally, our congruence measures Co and Cac are evaluated for the runs
relying on real crowd oracles OCP to test the feasibility of our stopping criterion, i.e., AL(OCP ) corresponds to
Co(AL) & Cac(AL) and ALRIU (OCP ) to Co(ALRIU ) & Cac(ALRIU ) (third row). Depictions in (c) and (d) represent
the class-wise relative amount of points sampled in each iteration step, evaluated based on the GT labels.
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Figure 5.12: Overview of the achieved performance of our hybrid intelligence system for the H3D data set. In (a)
we report the achieved labeling accuracy of the crowd (first row) as well as the accuracy of the machine learning
from the crowd over all iteration steps (second row). The dotted black line represents the result of PL. Addition-
ally, our congruence measures Co and Cac are evaluated for the runs relying on real crowd oracles OCM to test
the feasibility of our stopping criterion, i.e., AL(OCM ) corresponds to Co(AL) & Cac(AL) and ALRIU (OCM ) to
Co(ALRIU ) & Cac(ALRIU ) (third row). Depictions in (b) represent the class-wise relative amount of points sampled
in each iteration step, evaluated based on the GT labels. Results regarding the crowd oracle provided with the mesh
representation for labeling (OCM ) will be revisited in Section 5.3.2.

Parametrization of the Hybrid Intelligence System

Based on these initial training sets, we launch respective AL loops for all our test sites applying the weighted
entropy sampling strategy with DiFS sampling add-on and a batch size n+ = 300. We employ an RF
classifier parametrized by an ensemble of ne = 100 Decision Trees with a maximum depth of dmax = 18
and a minimum number of samples at a node to justify a new split of nmin

samples = 7, following the findings
in Section 5.1. In each case, we conduct a total of ni = 10 iteration steps and allocate 10 payload points
per crowd job (of Type C ), which are posted to ncw = 3different crowdworkers for the purpose of majority
voting at a payment rate of $0.10+$0.05. Furthermore, the check point configuration identified to be optimal
in Section 5.2.2 (3 check points, with one being shown twice) is in place. To compare the runs relying on
a crowd oracle OCP to the theoretically maximum achievable performance, in each case we also simulate
corresponding AL loops by utilizing GT oracles OO and contrast all runs to the respective PL solutions using
the completely labeled training set. Regarding this, Figure 5.11 and 5.12 give an impression of the learning
process of the hybrid intelligence system over all iteration steps. Table 5.8 summarizes the final accuracies
achieved by the ML model for the semantic segmentation task.
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Method Oracle
F1-score [%] [%]

U. Furn. Car L. Veg. I. Surf. Roof Façade Veg. mF1 OA

V3D

PL - - 65.64 82.25 91.28 94.81 62.30 86.24 80.42 88.11

AL

OO - 66.00 79.35 90.70 93.14 57.86 83.06 78.35 85.89
OO + RIU - 67.80 80.67 91.13 91.12 55.22 81.83 77.96 85.29
OCP - 66.05 80.11 90.71 91.25 49.87 82.91 76.82 85.03
OCP + RIU - 68.26 81.10 91.24 88.76 45.39 82.14 76.15 84.19

H3D

PL - 41.14 51.63 90.68 85.26 92.96 83.77 93.05 76.92 88.16

AL

OO 33.93 56.34 90.31 82.70 88.33 79.73 92.66 74.86 86.65
OO + RIU 36.97 55.42 89.91 83.84 90.05 79.61 91.91 75.39 86.60
OCP 32.32 53.95 89.92 76.26 88.88 75.43 91.70 72.64 83.38
OCP + RIU 31.00 53.04 88.54 79.69 86.82 76.43 90.67 72.31 83.55
OCM 33.37 57.40 88.34 78.14 88.89 79.83 92.07 74.01 85.15
OCM + RIU 34.56 56.20 89.59 81.81 89.18 79.35 92.56 74.75 86.26

S3D

PL - 75.30 98.63 96.82 93.97 91.18 95.51

AL

OO 62.06 98.18 94.66 91.69 86.65 93.56
OO + RIU 66.03 98.32 95.22 92.40 87.99 94.09
OCP 54.68 97.62 92.34 92.15 84.20 92.18
OCP + RIU 61.48 97.67 95.53 92.84 86.88 93.86

Table 5.8: Comparison of accuracies reached for the V3D, H3D and S3D data set for PL and various AL approaches
after 10 iteration steps using different oracle types and sampling functions. Results concerned with the crowd oracle
utilizing the mesh modality OCM will be revisited in Section 5.3.2.

The Performance of the Crowd

With respect to the labeling accuracy of the crowd, we can observe that the OA values yielded in the
respective iteration steps are significantly worse compared to those of the initial training set (i.e., iteration
step 0). Please note that OA is used instead of mF1, as the latter would only poorly represent the true
accuracy, since in individual iteration steps only very few samples for specific classes could be sampled, thus
potentially severely affecting the mF1 measure (cf. Figure 5.11(c)&(d) & Figure 5.12(b)). But in contrast to
the initial labeling step, where crowdworkers themselves select the points to be labeled, in the AL iteration
steps they are determined by the machine. Since the ML model aims to resolve ambiguities between classes,
it will tend to choose points it is currently most uncertain about near the decision borders, which often
correspond to class borders as well (cf. Section 3.2). Thus, the reduced accuracy in AL iteration steps is due
to dealing with points that are more complex for crowdworkers to label. Apart from this observation, all
accuracy curves follow a decreasing trend. But at the same time, the more advanced the iteration, the better
the performance of our model, as border cases of previous iteration steps can now be solved successfully.
However, this also means that cases where the machine is uncertain become gradually more demanding, i.e.,
it focuses on more and more special edge cases which are difficult for interpretation not only for the machine
but also for the crowd.
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Figure 5.13: Obtained confusion matrices over all iteration steps for different set-ups of the crowd oracle for the
H3D data set. We experiment both with the provided data modality (point cloud or mesh in case of OCP and OCM ,
respectively) as well as with the RIU technique (cf. Section 3.3.4).

As hoped for and already exemplified in Section 5.2.5, the RIU technique (with dRIU = 1.5m) effectively
helps to ease labeling for crowdworkers by focusing on points that are related to, but easier to interpret
than the point originally selected by the machine. A more detailed analysis of the crowd performance both
with and without support from RIU is given in Figure 5.13 for the H3D data set and Figure B10 in the
Appendix for the V3D and S3D data set. Generally speaking, our expectations rooting from Section 5.2.5
have been proven correct, as RIU is indeed capable of improving the OA of a training set generated within
the AL iteration by about 4 pp, which is caused by presenting points to the crowd that are easier to label.
This technique allows to resolve label ambiguities between adjacent classes, such as Low Vegetation vs.
Impervious Surface, Roof vs. Façade, Impervious Surface vs. Façade in case of the H3D data set, as can be
seen from Figure 5.13 (a similar pattern is apparent with regard to the V3D data set, cf. Figure B10 in the
Appendix). Although for H3D the rate of confusion of class Urban Furniture with the other classes can be
reduced, the highest frequency of confusion can still be observed with respect to this class due to the high
intra-class variability. This issue cannot be solved by simply increasing the distance to the class border when
the class affiliation of the object under consideration is questionable as a whole. An exception in this regard
is the S3D data set, where the remaining classes are very distinctly defined in this concise class catalog (cf.
Figure B10 in the Appendix).

Apart from the performance of the human component of the system, also the corresponding time effort
should be considered, especially as it ultimately determines the required time of a complete run of the hybrid
intelligence system by means of the CATEGORISE framework. This is due to a negligible processing time
of the machine part, i.e., the classifier, provided that we rely on the RF model (cf. Section 5.1.2). The time
required for the labeling step of a crowd-driven training cycle/iteration step of our system can be specified
as less than 11 hours. Thus, a whole AL run including initialization is completed in about 5 days (10 iteration
steps · approx. 11 h + approx. 16 h for initialization = 126 h).

The Performance of the Machine

Considering the machine part of the intelligence system, i.e., the ML model, its performance is depicted in
Figure 5.11(a)&(b) and Figure 5.12(a) for our different data sets. As for the runs with a simulated omni-
scient oracle OO (as baseline solution), AL runs of all data sets show the typical convergence behavior and
approximate the PL baseline solution. When adding the RIU technique (i.e., ALRIU (OO)), respective runs
tend to perform even better. This is because increasing distance from the class boundary can correspond to
selecting a more generalized batch, rather than only focusing on most informative and thus most demanding
instances. Although we need to resolve exactly such occurrences, in early iteration steps performance can
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often be boosted when relying on more typical samples for different classes. In addition, in the first and
second iteration steps, the selection of points in ALRIU (OO) is slightly more related to an equal class distri-
bution than in AL(OO) (cf. Figure 5.11(c)), possibly being beneficial for the ML model. While mF1-scores
of runs both with and without RIU differ only marginally (especially towards the end of the iteration), the
gap increases when replacing the simulated oracle OO with the real crowd oracle OCP in case of the V3D
and S3D data set, due to the higher error level of labeled data in the variants without RIU, i.e. AL(OCP )
(cf. Figure 5.11(a)&(b)). In this respect, the RIU technique not only increases the labeling accuracy of the
crowd, but also the performance of the RF classifier learning from the crowd, and is thus capable of positively
impacting the course of the iteration.

For the H3D data set, this does not seem to be true, as RIU neither improves nor diminishes the results.
This is striking, since we would expect a smaller error rate in labeling to be associated with an improvement of
the ML model learning from it. Apparently, the number of correctly labeled points of class Urban Furniture is
decisive for the performance of the classification model, which is 241 for AL(OCP ) and 244 for ALRIU (OCP ),
thus a very similar amount. The more successful baseline runs with omniscient oracles OO, however, are
provided with 484 and 473 samples for AL(OO) and ALRIU (OO), respectively. Since the AL framework
is typically able to select the samples that improve its performance, which should come from class Urban
Furniture in our case, but chooses other classes instead, this means that the model is rather sure about this
class - or at least is more uncertain about other classes. This uncertainty in other classes is a consequence
of confused crowdworkers that the machine learns from. Since this crowd oracle frequently confuses Urban
Furniture and Façade (due to façade furniture) with other classes (cf. Figure 5.13), our classifier becomes
uncertain even though these other classes are actually well defined and have a solid base of correctly labeled
points, but this clear definition is blurred by the aforementioned confusions. Thus, the ML model falls back to
sampling from those other classes. This selection behavior of the machine can be taken from Figure 5.12(b).
For AL(OCP ) and ALRIU (OCP ), no significant number of Urban Furniture samples is queried from the
fifth iteration step on, in contrast to the more successful runs with an omniscient oracle (i.e., AL(OO) and
ALRIU (OO)). This means that such noisy confusion by the crowd, which occurs in highly complex and
convoluted village scenes where crowdworkers are overwhelmed with the categorization task (and where
querying an alternative point via RIU has little effect due to the complexity of the complete area), prevents
RIU from reaching its full potential for the classifier, especially when we are dealing with a suboptimal point
cloud data representation compared to a realistically textured mesh modality. Therefore, we will revisit these
results in the next section, dedicated to replacing the point cloud with a textured 3D mesh.

Apart from clarifying this specific effect, from the selection of samples in each iteration step in Fig-
ure 5.11(c)&(d) and Figure 5.12(b), especially from the corresponding loops with omniscient oracles OO, we
learn that RIU can have a real effect on the course of the iteration. Initially, RF models of each run learn
from the same initialization data set, so early selections differ only slightly, but deviate gradually more with
the number of iteration steps due to the altered sample selection. Furthermore, an overall trend of sampling
batches of points more related to an equal class distribution becomes obvious for the V3D and H3D data set.
Please note that this is not necessarily a desired property. For instance, if the model is generally confused
about a specific class with high intra-class variability, it would be desirable to focus sampling on only this
specific class, where selected samples should cover the whole bandwidth of this class in feature space, i.e.,
samples should be drawn from different DiFS clusters (cf. Section 3.3.3). This is also the reason why samples
in batches of the large-scale S3D data set are not approximately equally distributed (at least not in the first
10 iteration steps), as we are confronted with a plethora of different representatives for each of the rather
generalized classes in a data set spanning such a vast area. In the long run, however, it is for sure beneficial
to provide the classifier with a training data set that evenly covers all classes, as our weighted sampling
strategies intend to accomplish (cf. Section 3.3.2).

However, the question remains how these crowd-powered runs fare in comparison to our baseline solutions
of PL, which are depicted in Figure 5.11(a)&(b) & Figure 5.12(a), respectively, and are also contrasted
numerically to our AL runs after ni = 10 iteration steps in Table 5.8. With respect to achievable OAs,
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the method we advocate for, AL with the RIU technique, relying on a real crowd oracle (ALRIU (OCP ))
completely excluding an expert annotator, is only 3.92 pp (V3D), 4.61 pp (H3D) and 1.65 pp (S3D) below
the performance of the respective PL baselines. As discussed in Section 5.1.4, classes with great intra-class
variety such as Urban Furniture and Façade (including façade furniture) suffer the most from focusing only
on a small AL training data set, but at the same time underrepresented classes (such as class Car) profit
from AL sampling. It is worth emphasizing that these results are achieved by only labeling a small fraction
of available training points of 4.7h (V3D), 0.1h (H3D) and 0.1h (S3D) (the absolute amount of labeled
training points for each data set is 300 points ·10 it. steps + initialization points). Thus, these results come at
a labeling cost of $190 (100 jobs ·$0.10+100 jobs ·3 rep. ·$0.15+[n+/10 pts per job] ·3 rep. ·10 it. steps ·$0.15)
plus a 10% MW fee.

Terminating the Loop

While the accuracy values discussed before refer to the final classification performance after a fixed number
of ni = 10 iteration steps, we anticipate that a similar level of accuracy can be achieved with less iteration
steps and thus less label effort. In other words, we aim to achieve a model that performs well with a minimum
number of required iteration steps, i.e., for efficiency reasons, an accuracy curve reaching a stable high level
fast is preferred to one performing slightly better after a larger number of iteration steps (assuming the same
batch size n+). We strive to identify the state of iteration where more label effort would only marginally
improve model performance by means of our congruence values (cf. Section 3.5), evaluated for our crowd-
based runs. We compute both the overall congruence Co and the class-wise congruence Cac between the
current and the previous iteration step, i.e., dstop = 1 (cf. Section 3.5). We succeed in describing the progress
of the iteration if we are capable of computing curves that behave as similar as possible to the accuracy
graphs, but without relying on GT data not available in real-world applications.

In case of V3D (cf. Figure 5.11(a)), this seems to be true. After a congruence value of 0 in the first
iteration step (due to the lack of a model prediction from a previous step), congruence values correspond
well to accuracy curves. Whenever there is an upward trend in accuracy, the congruence values also increase
(e.g., consider congruence measures of AL(OCP ); dark blue and violet curve in Figure 5.11(a)). Vice versa,
flattening of accuracy curves also corresponds to flattening of congruence graphs towards the end of the
iteration. In this regard AL(OCP ) and ALRIU (OCP ) are suitable examples. While AL(OCP ) shows a linearly
increasing behavior, the latter flattens from the third iteration step on. In the congruence curves, we observe
the same effects as well but with an inherent delay of one iteration step due to the required comparison with
the prediction of the previous step. When the standard deviation of Cac congruence values is computed, e.g.,
over the last nstop = 5 iteration steps, we achieve a value of 1.4% for AL(OCP ) vs. 0.5% for ALRIU (OCP ) at
the tenth iteration step. Thus, depending on the stopping threshold, and as desired, ALRIU (OCP ) would be
terminated earlier than AL(OCP ). But of course, the termination of the loop also depends on the number of
iteration steps nstop which support the calculation of the standard deviation. This value was chosen gently,
i.e., in such a way that stopping too early is avoided, to ensure that a stable plateau has been identified.

For the H3D data set, again congruence curves of AL(OCM ) and ALRIU (OCM ) follow the steady linear
increase of mF1 curves and resemble congruence values of AL(OCP ) in V3D (please note that congruence
curves are computed for an OCM oracle, but which is not relevant with respect to congruence values; cf.
Section 5.3.2 for a discussion of the impact of OCM in an AL loop). But in contrast to V3D, a clear drop
in congruence is observable for H3D at the second iteration step. This is not necessarily a bad omen for the
progress of the iteration, as it only indicates a significant change in predicted labels at an unstable stage
of the training. This is due to adding new samples that have significantly altered the current belief about
decision borders. Figure 5.12(b) underlines this hypothesis. In the first iteration step, mainly samples of
class Façade are queried, which supposedly leads to an improvement in the recognition of representatives of
this class and probably also implicitly improves accuracies for adjacent classes, which might now be better
distinguishable. However, in the second iteration step, for the first time, a great variety of classes within
the batch are sampled. Therefore, the RF model is able to improve its overall classification capabilities with
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respect to a greater bandwidth of classes, thus predicting significantly different. Remember that this effect
becomes visible in congruence curves with a delay of one iteration step, explaining the strong discrepancy
between the two successive predictions.

A similar behavior showing the fidelity of the congruence curves with respect to the accuracy curves (and
thus suitability for defining a stopping criterion) can be spotted for the S3D data set (cf. Figure 5.11(b)).
Please note that the characteristic up-and-down bending of the AL(OCP ) mF1 curve between iteration steps
2 and 4 is also translated to the corresponding Cac(AL) curve (again with a delay of one iteration step), where
the first upward trend is triggered by the inclusion of a considerable number of high intra-class variability
Building samples in the third iteration step (cf. Figure 5.11(d)).

5.3.2 Evaluating the Effect of Different Data Modalities in AL Loops

Motivated by the already observed improvement in crowd labeling accuracy when utilizing a different data
modality (cf. Section 5.2.3), we now expand the experiments from the previous section by incorporating the
meshed data representation in an actual AL loop. We hope to observe i) an improvement of the labeling
accuracy for the categorization of machine-selected points within the AL loop (in contrast to randomly
chosen samples as in Section 5.2.3), and ii) that this enhanced labeling accuracy has a positive effect on
the course of the AL loop and the achieved classification performance of our RF model. Due to the lack
of open data sets including both concurrently acquired and labeled point cloud and mesh data, we restrict
our experiments to the H3D data set. Precisely, we repeat respective experiments of the previous section,
i.e., weighted entropy-based runs with DiFS sampling add-on and the same initialization data sets. But now
points identified by the machine are presented to crowdworkers by visualizing the cylindrical neighborhood
by means of a subset from the 3D textured mesh instead of the colorized point cloud (cf. Section 3.6.4).

To verify that the meshed data modality again helps to improve the achievable labeling accuracy of
the crowd, we revisit Figure 5.13, depicting the respective confusion matrices over the complete AL runs.
When comparing the achieved OA values, we can observe that in the mesh-based runs the crowd performs
about 3 pp better compared to their point cloud-based counterparts. In a direct comparison between the
crowd oracle being provided with the point cloud OCP and the one presented with the mesh OCM , mainly
confusion of unsystematic nature can be reduced, e.g., confusion of other classes with Urban Furniture due
to the much sharper mesh depiction of the scene by the continuous surface representation, textured with
more familiar imagery data. Thus, the reduction in confusion for this class can also be understood in such
a manner that now crowdworkers can more confidently assign labels and do not have to resort to misusing
Urban Furniture (i.e., Other) as class ”I don’t know” in resignation, also advocating for the use of textured
meshes whenever available.

However, the more systematic confusion of Low Vegetation vs. Impervious Surface, Roof vs. Façade and
Impervious Surface vs. Façade triggered by the machine selection of points situated near the decision borders,
and thus often near the class borders (cf. Section 3.2), cannot be resolved. But exactly such confusion can
be reduced with the help of the RIU technique by effectively increasing the distance of the selected point to
the class border in object space (cf. Section 3.3.4). Thus, the optimal configuration, i.e., providing the crowd
with a textured 3D mesh and easing labeling by means of RIU, leads to an improvement in OA of about 7 pp
compared to the baseline solution of employing the point cloud without RIU. The clear advantage of this
mesh modality for visualizing 3D content is also evident from Figure 5.12(a). Oracles provided with the mesh
achieve higher accuracy values over all iteration steps compared to their point cloud-based counterparts, with
OCM+RIU showing an almost constant level of accuracy at about 90% over all iteration steps, regardless
whether typical examples as in early iteration steps or more special cases as in the later course of the iteration
are queried for labeling. Thus, together with the findings in Section 5.2.3, we argue for the employment of
3D textured meshes whenever working with crowdworkers or, more generally, with geospatial non-experts.
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In terms of the ML model performance, usage of the mesh modality leads to a significant improvement
of mF1-scores from the fifth iteration step on (cf. Figure 5.12(a)). Recall that this is the point from which
sampling of Urban Furniture instances was basically stopped in runs relying on a point cloud representation
(OCP ), due to the high level of uncertainty of the other classes resulting from the frequent usage of label
Urban Furniture for representatives of all classes (cf. Section 5.3.1). The AL runs based on a mesh-using
crowd (i.e., AL(OCM ) and ALRIU (OCM )) ensure querying a sufficient number of representatives of Urban
Furniture, as the other classes are already properly sampled and the classifier is sufficiently confident when
predicting these classes, due to less frequent mislabeling of respective training samples as Urban Furniture
by the crowd now (cf. Figure 5.13(d)). Interestingly, the oracle refraining from RIU, i.e. OCM , performs
similar to OCP+RIU (cf. Figure 5.13(b)&(c)), while yielding a superior classification accuracy for the RF
learning from those labels (cf. Table 5.8). This is caused by a more desired error behavior, as apart from
the systematic confusion present for OCM (that could be solved by RIU), main confusion occurs between
Urban Furniture and Façade or, more precisely, façade furniture (cf. Figure 5.13(c)). In other words, these
two classes contaminate each other, but not the rest of the classes, so that the AL algorithm can focus
on resolving ambiguities related to only those two classes without exploring new concepts for a multitude
of classes. Thus, especially for complex scenes such as in the H3D data set, not only the crowd profits
from an easier understanding by means of the mesh data modality, but also the machine, learning from
the crowd. This becomes obvious also from the performance of our RF classifier presented in Table 5.8. AL
runs providing the crowd with 3D textured meshes (i.e., OCM ) perform significantly better than their point
cloud-driven counterparts, e.g., by 2.7 pp in OA in case of ALRIU (OCM ) compared to the corresponding
point cloud-based run, even reducing the gap to the PL baseline to a margin of less than 2 pp.

5.3.3 Assessing the Long-Term Flexibility of ATL

In the previous two sections (Section 5.3.1 & 5.3.2), we have demonstrated that an arbitrary point cloud can
be semantically enriched by means of our crowd-based AL loops with minimum labeling effort and hence cost.
Thus, by design, our methodology offers a rather high level of flexibility and can be set up quickly for a new
data set. However, to even further minimize costs, we strive to reuse information that is already available.
In other words, training data from previous runs should be reused whenever it carries useful information
for the current data set at hand in order to reduce the number of labels that need to be set anew. Since
such approaches can only be considered effective if they actually lead to such a reduction of training data,
we first simulate the expected behavior of DA with an artificial crowd oracle that is modeled based on our
observations from the previous sections and that will turn out to be a valid approximation before verifying
results with a real crowd oracle.

The presented ATL methodology (cf. Section 3.4) will be exemplified for multi-temporal point cloud
analysis on the example of different H3D epochs (cf. Section 4.2.2). But we are not only confronted with
possible domain gaps resulting from temporal differences, but also from the coverage of different areas
(precisely, H3D epoch March 2018 covers only half the area of the other epochs). Within this experimental
section, we consider the following DA scenarios:

� Scenario I: DA of high-resolution epoch March 2018 to also high-resolution epoch November 2018,
i.e., DA is to be employed to transfer our classifier to an extended area, thus having similar geometric
properties, but deviating acquisition time-dependent radiometric characteristics due to phenological
and atmospheric changes.

� Scenario II: DA of high-resolution epoch March 2018 to significantly lower-resolution epoch March
2016, the latter colored by RGB values from epoch November 2018 (epoch March 2018 could be used as
well, but would simplify the DA problem to a non-realistic level), i.e., DA between two data sets having
deviating geometric and deviating radiometric properties, where point clouds stem from completely
different sensors (cf. Section 4.2.2).
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� Scenario III: Same as Scenario II, but colorization of epoch March 2016 by relying on the RGB
tuples as provided in the H3D benchmark, which have been derived from an orthogonal projection
of a temporally disjoint orthophoto onto the point cloud. Thus, Scenario III is designed to assess the
impact of different colorization methods on DA.

Building Baseline Solutions

To illustrate the problem of lack of generalizability that we are typically confronted with when a pre-trained
classifier is to be employed for deriving predictions on a new domain, we contrast a conventional PL result
of the target domain DT of each scenario with a so-called Passive Transfer Learning (PTL) result. For the
latter, a model derived from the training data of the source domain DS is utilized directly for inference on
the test data set of the target domain DT . Please note that in the experiments presented here, we make use
of a reduced class catalog as found to be feasible in Section 5.3.1. While for the more related point cloud data
sets of Scenario I and Scenario II accuracy suffers an mF1/OA loss of 8.27/4.46 pp and 12.30/5.17 pp (cf.
Figure 5.14), we even record a decrease in accuracy of 26.59/20.13 pp for Scenario III, for which we expected
the largest domain gap. These results can also be considered as baseline solutions for ATL. As a minimum
requirement, we should be capable of exceeding the result of PTL where no measures were utilized at all to
overcome the domain gap. An optimal result, on the other hand, would be achieving an accuracy similar to
that of PL on the target domain DT . However, we expect this goal to be hard to reach since, in contrast to
our previous experiments, we are now confronted with two challenges at the same time: Resolving a possible
domain gap while minimizing the number of necessary labels to only a fraction of what would have been
required in a conventional PL approach.

As a second type of baseline for ATL, we also evaluate the effectiveness of conventional AL loops launched
directly on DT , which already significantly minimize labeling effort compared to PL. Therefore, for the two
data sets that have not been involved in our previous experiments, namely H3D epoch November 2018 and
epoch March 2016, we perform all necessary steps to derive initialization data sets for the AL loops, i.e., as
before, in a first campaign a group of crowdworkers marks one arbitrary point for each class, and in a second
campaign the crowdworkers check those labels (cf. Section 3.6.2). As expected, the accuracy of annotations
generated for the more realistic scene depiction in epoch November 2018 exceeds that of epoch March 2016,
which apart from being the sparser point cloud, also suffers from the suboptimal colorization technique.
Nevertheless, for both data sets, training pools with an accuracy close to that of the initialization training
sets in our previous experiments (cf. Section 5.3.1) of about 90% in OA can be reached (a more detailed
evaluation of the initialization process can be found in the Appendix in Figure B11 & B12).

Based on these initialization data sets, we can run respective AL runs on DT for all our scenarios (we
use the same initialization set for both Scenario II and Scenario III). Those AL loops are parametrized just
like in the previous section, i.e., we employ RF classifiers having an ensemble of ne = 100 Decision Trees
with a maximum depth of dmax = 18 and a minimum number of samples at a node to justify a new split
of nmin

samples = 7 with features listed in Table 3.1, computed for radii r ∈ {0.125, 0.25, 0.5, 0.75, 1, 2, 3, 5} m
for Scenario I and r ∈ {1, 2, 3, 5} m in Scenario II and Scenario III due to the sparsity of H3D epoch March
2016. These classifiers are then incorporated in AL loops with weighted entropy sampling in batch-mode AL
with a batch size of n+ = 300 and DiFS add-on. For powering such loops, we utilize both an omniscient
oracle OO as well as a simulated noisy crowd oracle ON for which we assume an error rate of σ = 10%. No
systematic errors were modeled for our simulated oracle since we allow sampling points by means of RIU with
dRIU = 0.75m that are within this margin from the seed point situated on or near class borders. Considering
the resolution of the H3D epochs, we assume this to be a sufficient simplification (cf. Section 5.1.3).

For all our target domains in Scenario I - III depicted in Figure 5.14, those AL runs approximate the PL
result well, as expected, and are characterized by a rather steep gain in performance in early iteration steps
(up to about iteration step 5). Please note that AL runs with the simulated crowd oracles (ALRIU (ON ))
tend to perform at least as well in OA as the omniscient oracle counterparts (AL(OO)), again underlining
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Figure 5.14: Compilation of the classification performance of the simulated runs for Scenario I - III (top to bottom),
evaluated in terms of mF1-score (left column) and OA (right column).
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RIU’s enhanced generalization capabilities (cf. Section 5.3.1), which are especially helpful in early iteration
steps (cf. Figure 5.14). In case of the ALRIU (ON ) run for epoch November 2018 as baseline for Scenario I,
the slightly decreased mF1-score (cf. Figure 5.14(a)) can be traced back to an increased confusion between
classes Urban Furniture and Car, where noisy labels are especially harmful due to the similarity of features
(e.g., trash bins or containers vs. cars). This effect occurs only now, as H3D’s epoch November 2018 covers a
larger area than epoch March 2018, and thus suffers from an even larger intra-class variability of class Urban
Furniture.

Simulating ATL

Although these results can be considered as further demonstrating the effectiveness of the proposed hybrid
intelligence system, we are now more interested in leveraging existing knowledge by applying ATL. For
this purpose, for each of our scenarios, not only conventional AL but also ATL runs are computed being
parametrized just like their AL counterparts. However, as initialization data sets, the resulting training set
of a complete AL loop from the source domain (H3D epoch March 2018) with ni = 10 iteration steps is
used, based on one hand on a simulated crowd oracle ON with RIU sampling and on the other hand on an
omniscient oracle OO (also generated by means of weighted entropy+DiFS). We also perform enhanced loops
by removing the samples most inconsistent with the target data set to ease adaption to the new domain,
referred to as ATL runs with filtered source domain ATLFSD in Figure 5.14. In this regard, q is set to 1.1,
meaning that in each iteration step, sampling of 300 points from DT is paired with eliminating of 330most
disagreeing samples from DS (cf. Section 3.4).

With respect to Scenario I, as hoped, all ATL runs initialize on a much higher level of accuracy (about
10 pp both in mF1 and OA; cf. Figure 5.14(a)&(b)). When comparing ATL runs where removal of con-
tradictive samples is allowed (ATLFSD) with those where it is not (ATL), for omniscient oracles OO this
enhanced method seems unnecessary and even slightly diminishes accuracy. However, when asking simu-
lated noisy crowd oracles ON for labels, the effectiveness of this strategy becomes obvious, as ATLFSD

RIU (ON )
significantly outperforms ATLRIU (ON ) which fares even worse than the ALRIU (ON ) baseline. Again, the
reason for this suboptimal behavior is confusion between classes Urban Furniture and Car, where the in-
herent overlap in feature space is even further amplified by mixing samples from two different domains. To
summarize, a scenario where we capture the same (or an extended) scene with the same sensor set-up, but
under significantly different atmospheric conditions (cf. Section 4.2.2) and thus radiometric properties, is
still well suited for transferring previously learned knowledge.

Since our motivation for DA is mainly of economic nature, i.e., minimizing labeling and thus costs, we will
also evaluate results in this regard. First of all, the costs for the generation of an initialization data set, which
amount to 100 jobs · $0.10 + 100 jobs · 3 rep. · $0.15 = $55 for a conventional AL loop on the target domain
DT , can be completely avoided by ATL. With respect to further savings during the iteration, ATLFSD

RIU (ON )
is about three iteration steps ahead of ALRIU (ON ) (e.g., see the OA for ALRIU (ON ) in iteration step 4 vs.
ATLFSD

RIU (ON ) in iteration step 1), providing the possibility to save the expenses incurred for these steps
(3 it.steps · 30 jobs · 3 rep. · $0.15 = $40.5). Thus, the more limited the labeling budget, the more beneficial
ATL becomes.

From the results of Scenario II, where we are confronted with two domains of rather different geometric
properties, we can observe an overall trend rather similar to Scenario I, but due to an increased domain gap,
the margin between AL and ATL gets consequently smaller, i.e., reusing knowledge from the source domain
is less helpful for the target domain DT . Nevertheless, transferring knowledge still helps to reduce costs
of enriching the target domain with semantic information. ATLFSD

RIU (ON ) reaches a close to final accuracy
level already in the fourth iteration step, while ALRIU (ON ) requires nine iteration steps to yield the same
accuracy (cf. Figure 5.14(c)). Thus, from Scenario II we can learn that even significantly different geometries
between (partly overlapping) domains do not hinder our classification model from successfully exploiting
knowledge from a source domain. In other words, this means that our geometric features utilized by the RF,
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especially those based on the structural tensor, generalize well although not explicitly designed to be domain
invariant. Radiometric features (especially Reflectance/Intensity of laser returns and color features), on the
other hand, are expected to be sensitive to domain changes, and are also to be examined.

Hence, for Scenario III, we now increase the domain gap even more by not only attempting a transfer
to a different geometry, but also to a completely different and coarser radiometry obtained from projection
of orthophoto colors onto the point cloud. This means that in the target domain (epoch March 2016) we
are more confronted with a 2D colorization, in contrast to a true 3D colorization as in the source domain
(epoch March 2018). In comparison to Scenario I and Scenario II, pure AL runs perform best in Scenario III,
demonstrating that the domain gap is too severe for source domain samples having a positive impact on the
classification of the target domain, making them more of a burden than a help. However, this is exactly the
use case for which our measure for removing deprecated samples of DS is designed. While this technique
had only a limited positive impact on the performance of respective runs in Scenario I and Scenario II,
ATLFSD becomes indeed crucial in Scenario III to obtain a final accuracy close to that of the AL runs (cf.
Figure 5.14(e)&(f)) in contrast to their pure ATL counterparts. Although ATLFSD loops are not suited for
minimizing the number of required iteration steps (as the AL accuracy is only reached in iteration step 10),
they make the relatively expensive generation of an initialization data set for DT obsolete, so that significant
costs can still be saved.

We would like to emphasize that despite the differing severity of domain gaps in our scenarios, setting
the deletion/inclusion ratio q to 1.1 successfully deals with these different gaps in all cases, underlining
the robustness of this parameter. This means that when applying the ATLFSD technique, an operator can
include source domain samples either way, and it is guaranteed that the course of the iteration is only
positively impacted in terms of required labeling costs. Even in Scenario III, we achieve the same level of
accuracy as a conventional AL run, but without having to provide a dedicated initialization training set.

To shed light on this very interaction between deletion and inclusion as incorporated in ATLFSD runs,
we take Scenario III as an example. Interestingly, the learning progress of ATLFSD(OO) is significantly
more desirable than that of ATLFSD

RIU (ON ), since it follows a converging curve, in contrast to the course
of ATLFSD

RIU (ON ), making an early stopping impossible. Precisely, in ATLFSD
RIU (ON ), instances of class Low

Vegetation are frequently mispredicted as class Impervious Surface (e.g., 40% in iteration step 5). This can
be traced back when evaluating the class affiliations of both sampled points from DT and deleted points
from DS throughout the iteration, as depicted in Figure 5.15. For ATLFSD(OO), 20% of deleted points in
iteration steps 2-4 belong to class Impervious Surface, indicating that this class is subject to a domain shift,
which comes however striking as one would assume that this class would be well generalizable due to its clear,
data invariant appearance. Indeed, the actual cause lies in the class Façade, which is only scarcely represented
in H3D epoch March 2016, in contrast to the other epochs (cf. Figure 4.2(c) vs. (a)). Since in AL we always
sample points that are most challenging for the ML model to interpret and that are typically situated on
class borders (cf. Section 3.2), such as the border between classes Impervious Surface and Façade, exactly
such points are sampled in the source domain epoch March 2018. However, in the target domain epoch March
2016, typically façade points are only scarcely located in the vicinity of points from class Impervious Surface.
Therefore, the geometric feature description can be considered outdated, and ATLFSD(OO) has rightfully
eliminated these samples. In contrast, ATLFSD

RIU (ON ) focuses on removal of class Urban Furniture in early
iteration steps as it is somehow distracted with this class when not only having to deal with this quasi-class
Other but especially when label noise is present ”smearing” the borders of this class even more.

In general, from the class affiliations of sampled and deleted points in Figure 5.15, we can observe that
sampling in an iteration step often focuses on specific classes (especially for ATLFSD(OO), also explaining its
faster convergence; cf. Figure 5.14(e)&(f)), as already discussed for AL runs in Section 5.3.1. When deleting
points, on the other hand, the respective distributions in each iteration step are more like equal distributions,
meaning that there is no specific class that has completely changed its appearance (in feature space). The
fact that samples disagreeing with the target domain are spread among all classes is to be expected when
transferring from a high-resolution data set (epoch March 2018) to a much coarser point cloud (epoch March
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Figure 5.16: Overview of the performance of
the hybrid intelligence system for the ATL
task outlined in Scenario I. We contrast the
labeling accuracy of the crowd (top) with
the performance of the machine (middle) and
evaluate congruence values for ATL runs rely-
ing on both a simulated noisy oracle ON and a
real crowd oracle OCM required for automatic
stopping of the ATL iteration (bottom).

2016). An interesting observation can be found in iteration step 5 for ATLFSD(OO), where the ML model
is mainly concerned with updating its understanding of class Car in this coarser scenery, in the form of
eliminating all disagreeing samples and simultaneously querying most informative instances of this class
from the target domain.

ATL with a Real Crowd Oracle

Since our main goal is establishing a hybrid intelligence system, we aim to verify these findings, which are
based on simulated crowd oracles, by means of a real crowd oracle OCM . In this context, we limit ourselves
to repeating the ATL run that has the highest potential to really profit from including source domain
samples due to the greatest relatedness between source domain (epoch March 2018) and target domain
(epoch November 2018), i.e., Scenario I. Precisely, we reiterate ATLFSD

RIU but replace the simulated oracle
with a real one. We conduct this experiment by relying on the CATEGORISE framework so that an operator
is only tasked with passively monitoring the progress (cf. Section 3.8).
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Figure 5.16 displays the obtained results in terms of both the crowd’s performance as well as the one of
the machine. Again, the labeling accuracy of the crowd, expressed by means of OA, is characterized by a
decreasing trend. This is to be expected again since the classifier selects more and more complex points in the
course of the iteration, which are more demanding for a human labeler as the machine gradually focuses on
the interpretability of fine-grained details. As identified to be beneficial in Section 5.3.2, the crowd is again
equipped with subsets from the 3D textured mesh instead of the point cloud to increase interpretability.
However, with a mean OA over all iteration steps of about 86% (cf. Figure B13 in the Appendix), the
achieved accuracy is about 5 pp behind that of the pure AL run for epoch March 2018 (cf. Figure 5.13),
which seems surprising as we are dealing with data of similar visual quality. However, the reason for this
is that the ATL iteration is more advanced than those started from scratch in Section 5.3.2. Precisely, in
ATL loops, a mixture of both typical but so far unknown samples, but also more complex samples that
refine already well-defined separation hypothesis is selected. The latter are, of course, far more complex for
interpretation than those in a conventional AL iteration with a limited number of iteration steps. Or, in other
words, our ATL run continues the iteration in the target domain, which has already run for 10 iteration steps
on the source domain. Thus, the decreasing trend in crowd performance already observed in Figure 5.11
(a)&(b) and especially Figure 5.12(a) is continuing.

This increased level of complexity is also implicitly visible when analyzing the confusion matrix in terms
of crowd labels over the entire ATL iteration (cf. Figure B13 in the Appendix), where we can observe an
increased level of confusion of representatives from other classes with quasi-class ”I don’t know” Urban
Furniture, but also from the generally increased confusion level for the ATL run. Nevertheless, a comparison
of the achieved mF1-scores between the ATL run powered by a real crowd oracle (ATLFSD

RIU (OCM )) and
the run with a simulated crowd oracle considering labeling errors (ATLFSD

RIU (ON )) demonstrates that the
simulated oracle is a valid approximation of the true one, since accuracy curves differ only insignificantly
(the reported mF1 curve for ATLFSD

RIU (ON ) in Figure 5.16 is the same as in Figure 5.14(a)).

Just like for the pure AL runs, we are also interested in an automatic stopping criterion to terminate our
ATL runs. For this purpose, we again compute the overall congruence measure Co as well as the class-sensitive
congruence measure Cac for ATLFSD

RIU both with a simulated noisy oracle ON and real crowd oracle OCM .
However, since we expect high similarity between successive predictions due to the continuation of the AL
loop already begun in the source domain, we increase the distance of iteration steps to compare against to
dstop = 2 to emphasize differences (cf. Section 3.5), so that a too early termination of the iteration becomes
unlikely (thus, we cannot compute congruence values for iterations steps 0 and 1). From Figure 5.16, we can
observe that the overall congruence measures for both runs (Co(ON ) & Co(OCM )) saturate from the fourth
iteration step, which is well in accordance with the behavior of the OA of ATLFSD

RIU (ON ) in Figure 5.14(b).
However, as we are interested in a well performing classifier for all classes, we focus on the class-sensitive
congruence values Cac. Drawing from the mF1-scores reported in Figure 5.16 (middle), we would like to
terminate the iteration after the fifth iteration step in order to maximize cost-effectiveness. But since, for the
lack of GT data to compare predictions against, we are dealing with an intrinsic measure defining termination
of a loop, we can only detect whether there are changes in successive predictions (cf. Section 3.5). While our
congruence curves approximate respective accuracy curves quite well, we require more iteration steps than
actually necessary from a performance point of view for (reliably) detecting convergence. To do so, in our
case, we compute the standard deviation of congruence values over the last nstop = 3 iteration steps, which
is compared against a user-defined threshold tstop (cf. Section 3.5) that should be chosen close to 0 (but of
course depending on the particular application and desired quality level at hand). Thus, termination is likely
to be met in iteration step 7, since Cac congruence values of steps 5-7 are rather similar (both for ON and
OCM ). This means that the iteration has to run for 2 additional, but actually superfluous iteration steps -
but with the advantage of automatic termination without requiring labeled reference data for comparison.

Unlike the congruence curves for our conventional AL runs (cf. Figure 5.11(a)&(b) and Figure 5.12(a)),
the ones in ATL show a decreasing trend towards the end of the iteration (cf. Figure 5.16). This is caused
by removing too many samples from the source domain DS as the iteration progresses. In Scenario I, most
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samples of DS are also decisive for DT , so excessive removal of samples from DS only forces the classifier to
relearn these ”lost” concepts by sampling respective points of the target domain DT again. This causes the
decision borders to alter again as, in principle, they shift from being supported only by source domain samples
to being based on a mixture of source and target domain samples to a state where decision borders are defined
solely by samples from the target domain. However, considering the congruence values in Figure 5.16, we
argue that a stable state is reached before complete removal of samples from DS at a moment profiting as
much as possible from DS , but where necessary adaptions to DT have already been achieved.
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Chapter 6

Conclusion, Limitations and Outlook

The motivation driving this thesis was to generate a framework that is capable of teaching a supervised ML
system to automatically enrich an arbitrary point cloud with semantic information by only providing it with
the respective cloud as well as access to a (fixed) labeling budget. This was achieved by setting up a hybrid
intelligence system with an AL backbone in which both an ML model and humans work together, with
the latter being considered as human processing units in reference to electronic processing units typically
encountered in automated systems. When paid crowdworkers take this role, there are still humans working
in the AL loop, but from an operator’s perspective, we are dealing with a fully automated system. The work
of crowdworkers can be considered a non-deterministic subroutine of our program for timely returning labels,
but behaving just like other routines that are accomplished by electronic processing units (such as training
our RF or SCN classifier). This concept was the design blueprint for the CATEGORISE framework, which
was applied to a variety of three ALS point clouds representing spatially distinct areas (with two of them
being state-of-the-art benchmark data sets) with different characteristics. For those, we achieved accuracies
at a quality level similar to that of PL by annotating only a small fraction of potentially available training
points (typically ≪ 1%), thus causing minimal monetary expenses.

The machine part of this system comprises both the classifier as well as the link to the crowd component,
that is AL, with the latter being the focus of this thesis especially. We found that common sampling strategies
proposed in literature can be significantly boosted with respective sampling add-ons, such as applying a
dedicated weighting scheme as well as a measure to guarantee diversity of samples queried within a batch
in an AL iteration step. While such strategies can be employed in tandem with classifiers from both the
feature-driven as well as the data-driven domain, for our purpose, we identified a feature-driven RF model to
be more suitable for the AL scenario than a data-driven SCN classifier. This is due to the inherent working
principle of the two classifiers, with CNN-based approaches having to relearn or at least refine all features
in each iteration step, while for the RF classifier they only have to be computed once and can be reused
in any following iteration step, leading to faster processing at a similar level of accuracy compared to the
SCN approach. As a remedy to boost the performance of CNN-based classifiers, future work could focus on
easing the computational load by not only guiding sampling based on informativeness regardless the location,
but encouraging points that are spatially clustered (in object space) so that spatially compact point cloud
subsets can be provided to the DL system. Contrary to our current approach, where queried points may be
scattered over the whole data set, thus requiring presentation of all data to the network, and in reference to
the work of Lin et al. (2020a), we see this as means to enable CNN approaches to become computationally
competitive.

Furthermore, we applied a DA-appropriate variant of AL, namely ATL, showing the potential to further
minimize costs by leveraging information that is already known from another domain. Precisely, in our ATL
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runs, samples from a source domain can be included in any case, and the algorithm detects which of these
samples are actually helpful for classification of a target domain, leading to faster convergence of the ATL
loop, and which should be discarded, respectively. In this way, we aim to guarantee that ATL loops do not
require more iteration steps than conventional AL loops launched directly on the target domain. This is an
important property as it is often hard to decide whether two point clouds captured from different sensors
and/or depicting different scenes are actually related in a manner where reusing labels is appropriate.

With respect to the oracle responsible for generating labels for queried samples, we did not end our
experiments with simulated AL runs assuming unrealistic omniscient oracles, but evaluated the impact
of different error behaviors of the same, namely oracles generating labels with random errors and such
with systematic errors following a dedicated but undesirable mapping function. We observed that while
our classifiers are well capable of compensating random errors, they are extremely sensitive to systematic
errors. Thus, we should assist our oracle in avoiding such errors whenever possible, leading to our other
main component, i.e., the crowd for labeling 3D point clouds. Since such systematic errors often occur
when points are sampled that are situated close to the decision border, with this decision-border-proximity
typically being strongly correlated with distance to the class border in object space, we developed the RIU
technique to increase the distance of sampled points to this very border. Although from the view of the
machine this seems counterintuitive, as the machine is always interested in most informative points, it often
even boosts convergence of AL loops in early iteration steps due to a better generalization and especially
helps crowdworkers in comprehending sampled points.

Since the basic idea of the RIU concept is identifying a point that is easier to interpret for humans while
still being sufficiently related to the queried seed point with respect to its representation in feature space,
for an alternative approach with similar reasoning, we could also argue that such points can be found in
the seed point’s cluster formed by an unsupervised segmentation technique such as the one described by
Vosselman et al. (2017). Provided optimal results of this pre-processing step, in our crowd tools we could
also highlight the complete segment the queried point belongs to, instead of only one single point. This might
help to further ease labeling, as crowdworkers would be tasked to set labels for complete objects or object
parts (e.g., a full roof face instead of a single point close to the class border), while implicitly setting point-
wise class labels. However, the effectiveness and accuracy would be determined by the performance of the
algorithm for unsupervised segmentation, also raising the question of the robustness of its parametrization,
so that it might come with the overhead of a human operator having to validate the result at least visually.

Another branch of future work could follow a promising approach from the weakly supervised domain
that was recently adapted by Lin et al. (2022) for the automatic interpretation of ALS point clouds. In this
concept, an ML model is enabled to derive point-wise predictions, although only learning from so-called
scene-level weak labels for point cloud subsets indicating that there are representatives of a specific class
included, but not which point(s) actually belong to this class. Thus, when our crowdworkers are required
to only provide such scene-level labels, from our point of view, this offers the potential to drastically ease
labeling complexity. Another recent approach that also facilitates labeling by avoiding to query single most
informative points, which are also most complex for interpretation, is presented by Wang and Yao (2022). The
method expects that annotators provide one point each for all classes that are included in a given subcloud
(thus also implicitly generating scene-level labels). Incorporating such a labeling scheme into a respective
hybrid intelligence system with crowd annotators would lead to crowd tasks similar to our Type A labeling
tasks (cf. Section 3.6.2), but would also come with the inherent challenge of reliable quality control, since
majority voting schemes are hard to implement when it is likely that each worker would select a different
point set. In contrast to the work of Lin et al. (2022), where majority voting could be easily implemented
for the scene-level label vector, this approach would for example require an additional Type B -like campaign
for verification of crowd labels (cf. Section 3.6.2), thus being slightly more cumbersome.

In terms of the accuracy of our crowd oracle, relying directly on generated labels without any means
of controlling the quality is a daring choice due to the well-known quality inhomogeneity in crowdsourced
work. Thus, measures were implemented for both quality control on task designing, where check points have
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proven to be most effective, and quality improvement after data collection. For the latter, we rely on the
idea of the Wisdom of the Crowds, realized in a way that each point is labeled by multiple crowdworkers,
with the resulting label being obtained from majority voting. But since such a majority voting scheme
can substantially increase labeling costs, it might be reasonable to conduct a pre-study on the number of
multiple acquisitions required for the specific task at hand, like the one discussed in this thesis or that recently
presented by Walter et al. (2022b). Both aforementioned measures for quality control offer the important
property of being easily automatized, which is a prerequisite for automatizing our hybrid intelligence system
as a whole.

Apart from these techniques, we have observed that alternative data modalities can help to further
boost the performance of the crowd (and consequently the one of the machine learning from the crowd),
as visualizing a selected point to be labeled in a 3D textured mesh environment led to a significant gain
in accuracy. This is not at least because some crowdworkers are probably familiar with this modality from
online geospatial services. However, these results rely solely on one single data set as, to the best of our
knowledge, apart from the newly introduced H3D benchmark, no other data set offers both point cloud and
mesh data to conduct such a study. But with hybrid sensor forms being a current trend in geospatial data
acquisition, and considering having observed a clear interpretation gain from using this modality, we have
high hopes that textured mesh data will become the quasi-standard whenever working with geospatial lay
people. As the raw point cloud is often more suited for processing (e.g., semantic segmentation) and the
mesh has clear advantages for visualization, it is also desirable to be able to transfer information between
the two modalities, especially to enrich mesh data with semantic information, which can be accomplished
simultaneously with the point cloud in an extended point cloud-based AL loop, as discussed by Kölle et al.
(2021b).

While 3D data forms and especially meshes lead to the truest possible representation of geospatial data,
it still comes with the risk that individual crowdworkers will be overwhelmed with 3D data at all, thus
completely failing in interpretation. In this respect, and again encouraged by the nowadays often conducted
joint acquisition of imagery and LiDAR data from the same platform, as alternate approach, we could project
AL-sampled 3D points into the image data and provide this information to crowdworkers when requesting
labels. The challenge of such a technique, on the other hand, is that not every LiDAR point is necessarily
depicted occlusion-free in the imagery, and even if so, the question remains of which image (or which set
of images) containing this point is best suited for crowdworkers. However, turning from displaying 3D data
and embracing 2D representations instead would also foster a transfer of our labeling tools to a state where
jobs can be successfully completed with mobile devices, so that not only dedicated ”full-time” workers but
also occasional workers could contribute.

Apart of trying to tailor the data to the needs of the crowdworkers, we have also focused on increasing
the motivation of our workers by bringing them joy through gamification elements. While we were able to
trick our workers into contributing more labels, this effect did not last for more than one labeling round (or
high score), and the relatively simple game elements lost their appeal, as stressed to be a major challenge
by Thaler et al. (2012). Since it would require a far more complex game to trigger a long-term motivation
similar to the ESP game (von Ahn and Dabbish, 2004) or the Peekaboom game (von Ahn et al., 2006b), a
remedy might be to add a pool of different game elements from which individual ones are randomly drawn
in every playthrough for keeping up the excitement. But despite our game elements, unfortunately, we were
not able to also trick the crowd to perform better. However, considering that our workers have voluntarily
contributed more, they seem to have actually enjoyed gamified labeling, which raises the question of whether
they are even capable of producing better results than those obtained in this thesis.

This goes hand in hand with our observation that the crowd is unable to annotate points according to an
arbitrarily complex and fine-grained class catalog (also identified by Bayas et al., 2016), why we actually had
to simplify V3D’s and H3D’s class catalog. According to our findings, the crowd performs well for classes
that are easy and straightforward to understand from the pure class names, but fails whenever classes are
non-intuitive or are rather concerned with a detailed and maybe even subjective description (e.g., Shrub
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vs. Hedge). Furthermore, unspecific classes such as Urban Furniture are often misused as quasi-class Other
whenever crowdworkers are unsure about the class affiliation of a specific point. Thus, it remains an open
question if and how complex class catalogs could be taught to the crowd. In this regard, we recommend
consulting experts from the field of work ergonomics and work psychology, which might also help to design
labeling tools that are more suited for crowdworkers than those we have implemented according to our liking
and experience with crowdworkers in an iterative engineering process.

Another limitation of all crowd-based results in this thesis is that experiments were conducted with a
certain group of workers who were active users of the MW platform at the time of posting the respective
campaign. While some workers in our studies contributed to many campaigns over the years, the vast majority
of workers participated solely in one campaign. This underlines a certain level of robustness of our approach,
but at the same time this observation also means that we cannot guarantee that the results reported in
this thesis are identically reproducible. They may actually vary within certain bounds when being repeated
(Section 5.2.4 illustrates the variety that is to be expected), although we are ensuring a minimum level of
quality by means of our mechanisms for automated quality control. This variation of results might also be
amplified when switching to another crowdsourcing platform such as MTurk. However, such an outcome
uncertainty is an inherent issue for any human-centered research. It would be interesting to see whether
the geospatial understanding of lay crowdworkers improves over the years due to the wider dissemination of
online geospatial services. Thus, a branch of future research focusing on long-term experiments (in the range
of years) could also provide new insights for crowdsourced geospatial data collection.

Despite these limitations, we have succeeded in formulating a fully automated hybrid intelligence system
based on AL with subprocesses being carried out by inherently non-deterministic human processing units
(i.e., crowdworkers) and that does not involve an expert in any labeling task. By conducting this work, we
hope to have paved the way for a wider acceptance and dissemination of hybrid intelligence systems relying
on (paid) crowdsourcing in the field of geospatial data analysis.
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Appendix

A Methodology Supplements

An Intuition why AL Works

Figure A1: t-SNE embedding of feature vectors of V3D training data into 2D space along with depiction of AL points.
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Designing Labeling Tools for the Crowd

Figure A2: A full snapshot of our labeling tool Type A.
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Stimulate Motivation by Gamification

(a) Introduction page

(b) Main game interface

Figure A3: Snapshots of our labeling tool with a game-like appeal - enlargement of Figure 3.12.
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(a) Progress bar (top left)

(b) Score

Figure A4: Overview of our implemented gamification elements - enlargement of Figure 3.13, Part 1.
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(a) High score list

(b) Audiovisual effect

Figure A5: Overview of our implemented gamification elements - enlargement of Figure 3.13, Part 2.
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Hand-Crafted Features & Random Forest
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Figure A6: Assessment of the relative importance of the features presented in Table 3.1 measured by means of Mean
Decrease in Impurity (MDI) for our RF classifier trained on the H3D data set, epoch March 2018 (Louppe, 2014).
Numbers in brackets characterize the radius r of utilized spherical support volumes N to derive the respective feature.
Importance bars are colored in accordance to the feature groups in Table 3.1.
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B Experiments Supplements

Comparing Sampling Strategies
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Figure B1: Comparison of different sampling strategies found in literature evaluated for the V3D data set in tandem
with our RF classifier for ni = 30 iteration steps with a batch size of n+ = 300. We contrast the chosen entropy and
vote entropy sampling as well as their weighted variants (wE & wV E) to other commonly used strategies such as
least certainty sampling (LC), breaking ties sampling (BT ) as well as epistemic disagreement measures such as the
average standard deviation of ensemble predictions (Std) or the average Kullback-Leibler divergence (KL) (definitions
can be found in the work of Settles, 2009).
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Figure B2: Comparison between different values for dDiOS [m] for the V3D benchmark data set utilizing weighted en-
tropy sampling in tandem with our RF classifier for ni = 30 iteration steps and a batch size of n+ = 300. Accordingly,
we empirically selected dDiOS = 5m as it offers a good trade-off between a steep increase in early iteration steps and
long-term accuracy. However, all dDiOS ≥ 5m behave quite similar.
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Figure B3: Comparison of different batch sizes in an AL loop utilizing weighted entropy sampling strategies in
corporation with an RF classifier applied to the V3D data set. With a similar number of labeled samples, also similar
accuracies can be achieved. For instance, consider the loop with batch size n+ = 150 @ iteration step 20 with an
mF1-score similar to the loop with batch size n+ = 300 @ iteration step 10. Greater batch sizes, e.g., n+ = 600 might
help to reach a faster convergence of the AL loop and thus offers the chance to reduce the number of training cycles
beneficial for computation-intensive training processes, e.g., see OA curves for the AL loop with n+ = 600 @ iteration
step 5 compared to the one with n+ = 300 @ iteration step 10. With respect to the mF1-score, however, with large
batch sizes, e.g. n+ = 600, performance might be slightly harmed in later iteration steps since the classifier already
focuses on fine-grained details that are only possible to be solved with frequent classifier updates.
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Considering Imperfect Oracles

true label L. Veg. I. Surf. Car U. Furn. Roof Façade Shrub Tree Gravel Vert. Surf. Chim.

confused with Shrub Gravel U. Furn. I. Surf. Façade Roof Tree Shrub L. Veg. Façade Roof

Table B1: Assumed behavior of a confused oracle OS regarding the H3D data set.
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Figure B4: Comparison of different imperfect oracles utilizing an RF classifier with wE+DiFS sampling for the H3D
data set. Arguments in brackets represent the error rate σ [%]. Respective AL loops are conducted for ni = 30 iteration
steps utilizing a batch size of n+ = 300. The assumed systematic mismapping of classes is given in Table B1.
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Figure B5: Comparison of different values for the maximum distance to the decision border dRIU [m] utilizing an RF
classifier with wE +DiFS sampling for the H3D data set. Respective AL loops are conducted for ni = 30 iteration
steps utilizing a batch size of n+ = 300.
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Simulation of the Hybrid Intelligence System

Method Sampl. Oracle
F1-score

U. Furn. Ground Building Tree mF1 OA

PL 75.30 98.63 96.82 93.97 91.18 95.51

AL

wE OGT 61.12 96.97 92.45 88.65 84.80 91.53
wE+DiFS OGT 62.17 98.23 94.93 91.62 86.74 93.81
wE+DiFS+RIU OGT 61.24 97.06 94.27 91.57 86.04 92.88
wE+DiFS+RIU ON 64.32 98.20 94.68 92.12 87.33 93.67

Table B2: Comparison of reachable accuracies [%] for different training approaches and simulated oracles using RF
for the S3D data set after ni = 10 iteration steps.
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Employing the Crowd-Driven AL Loop for Efficient Segmentation of ALS Point
Clouds
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Figure B6: Labeling accuracy of the crowd in context of the initialization of an AL loop on the H3D data set. The
accuracy of the raw and unchecked crowd labels (a) are verified by a second group of crowdworkers in a crowd
campaign of Type B to obtain refined results (b). To further ease the labeling complexity, we restrict the class catalog
and merge classes accordingly (c).
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Figure B7: Labeling accuracy of the crowd in context of the initialization of an AL loop on the S3D data set. The
accuracy of the raw and unchecked crowd labels (a) are verified by a second group of crowdworkers in a crowd
campaign of Type B to obtain refined results (b).
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Figure B8: A closer view on the colorization of the V3D data set. Dynamic objects such as cars suffer from the
projection of a temporally disjoint orthophoto. This results in effects where either street points are colored with car
RGB tuples (yellow) or car points getting colored like a street (cyan).

Figure B9: A close-up of the multi-family buildings in the V3D data set. Due to the narrow field of view and the flight
planning (cf. Section 4.2.1), façades are often scarcely depicted, leading to frequent confusion of respective points
with class Powerline.
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(b) dRIU = 1.5m

U.
 F

ur
n.

Gr
ou

nd

Bu
ild

in
g

Tr
ee P

True Label

U. Furn.

Ground

Building

Tree

R|OA

F1|mF1

Pr
ed

ict
ed

 L
ab

el

.77 .04 .12 .05 .83

.02 .94 .01 .01 .95

.07 .02 .85 .02 .87

.14 .01 .02 .92 .81

.77 .94 .85 .92 .86

.80 .95 .86 .86 .87

Confusion matrix

(c) dRIU = 0m
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Figure B10: Obtained confusion matrices of crowd-generated labels computed from all labels set over the complete
iteration for both the V3D (top row) and S3D data set (bottom row), and evaluating the impact of RIU for different
maximum distance dRIU values that are used by the RIU sampling add-on to select alternative points instead of
those suggested by the machine.
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Assessing the Long-Term Flexibility of ATL
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Figure B11: Labeling accuracy of the crowd in context of the initialization of an AL loop on the H3D data set,
epoch November 2018. The accuracy of the raw and unchecked crowd labels (a) are verified by a second group of
crowdworkers in a crowd campaign of Type B (b). In total, 84.00% of points remained after filtering.
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Figure B12: Labeling accuracy of the crowd in context of the initialization of an AL loop on the H3D data set, epoch
March 2016. The accuracy of the raw and unchecked crowd labels (a) are verified by a second group of crowdworkers
in a crowd campaign of Type B (b). In total, 69.71% of points remained after filtering.
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Figure B13: Obtained confusion matrix for crowd-generated labels over the complete ATL iteration for Scenario I.
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