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A B S T R A C T

Antiphase boundaries (APBs) are crucial to understand the anomalous temperature dependence of the yield
stress of Ni3Al. However, the required, accurate prediction of temperature-dependent APB energies has been
missing. In particular, the impact of magnetism at elevated temperatures has been mostly neglected, based on
the argument that Ni3Al is a weak ferromagnet. Here, we show that this is an inappropriate assumption and
that – in addition to anharmonic and electronic excitations – thermally-induced magnetic spin fluctuations
strongly affect the APB energies, especially for the (100)APB with an increase of nearly up to 40% over the
nonmagnetic data. We utilize an ab initio framework that incorporates explicit lattice vibrations, electronic
excitations, and the impact of magnetic excitations up to the melting temperature. Our results prompt to
take full account of thermally-induced spin fluctuations even for weak itinerant ferromagnetic materials.
Consequences for large-scale modeling in Ni-based superalloys, e.g., of dislocations or the elastic–plastic
behavior, can be expected.
1. Introduction

Ni-based superalloys are exceptional materials withstanding high
pressures and temperatures in harsh environments, e.g., in turbine
disc applications [1]. The strengthening mechanisms in these alloys
rely mainly on ordered intermetallic phases, coherently embedded in
the fcc Ni host matrix [2,3]. The typically utilized L12-ordered Ni3Al
intermetallic phase provides, among other beneficial features, a very
unique strengthening mechanism on account of its specific yield stress
behavior – the so-called yield stress anomaly (YSA). In particular, the
yield stress of Ni3Al increases strongly (more than a factor of five) with
temperature from 77 K up to 1100 K [4,5]. The origin of YSA lies in
an increasing amount of Kear-Wilsdorf locks, i.e., locks formed due to
cross-slip of screw superpartial dislocations from an easy-glide {111}
plane to a less favorable {100} plane [6], with temperature [5,7,8].
Between the dissociated superpartials, two planar defects are formed
depending on the slip plane. These defects are the (100) and (111)
antiphase boundaries (APBs; see Fig. 1), and they are believed to play
a crucial role during the cross-slip and thus in explaining YSA [9–11].

Despite the great importance of the APBs, a comprehensive un-
derstanding of their formation Gibbs energies has been absent until
now. Starting in the 1980s, many experimental works determined APB

∗ Corresponding author.
E-mail address: xi.zhang@imw.uni-stuttgart.de (X. Zhang).

energies for Ni3Al by measuring the extent of dislocation dissociation
with transmission electron microscopy [5,7,8,12–16]. The respective
data show typical uncertainties of ±8 to ±12% [15] and also appre-
ciable scatter between different data sets. The scatter originates partly
from off-stoichiometric Ni3Al samples and varying types of impurity
elements in different experiments [15]. Moreover, unavoidable defect-
defect interactions suppress the dislocation dissociation and thereby
substantially affect the measured dissociation distance [7,14,15,17],
especially for (100)APBs after cross-slip. The determination of perfectly
equilibrated APB energies is, thus, a highly non-trivial task.

Predictions of APB energies from ab initio calculations are a vi-
able complementary approach, but they have been mostly limited to
0 K [18–20] or low temperature approximations [21]. In particular,
the impact of magnetism on the APB energy in Ni3Al at elevated
temperatures has remained elusive. For Fe-based materials with strong
magnetic moments such as Fe3O4 films it is known that APBs signif-
icantly affect the local magnetic state [22]. However, L12-Ni3Al is a
weak itinerant ferromagnetic material with a low Curie temperature
𝑇C ≈ 41.5 K [23] and one may expect that there is little impact of APBs
on magnetism and vice versa. Thus, the paramagnetic behavior of Ni3Al
above ambient temperature and the respective entropy contribution to
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Fig. 1. Schematic models for the (100)APB and (111)APB. Each unit cube represents a unit cell which contains 4 atoms for the (100)APB and 12 atoms for the (111)APB,
respectively. The labeled tilted cells in (a) and (b) represent a 1 × 1 × 4 supercell (with 16 atoms) for the (100)APB and a 1 × 1 × 3 supercell (with 36 atoms) for the (111)APB,
respectively. The APB is highlighted by the magenta plane. In consistency with these models and with literature, we use the notation (100)APB and (111)APB in the text. The
results apply however to all symmetrically equivalent planes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
the APB energies have been rarely investigated, assuming that thermal
magnetic excitations should give practically negligible contribution
to the bonding and thermodynamic properties. Here, we demonstrate
that thermal magnetic excitations do play a major role in predicting
accurate APB energies in Ni3Al at elevated temperatures.

In principle, thermal magnetic excitations, including the important
impact of longitudinal spin fluctuations (LSFs) [24], can be accurately
accounted for by using advanced ab initio approaches such as, for ex-
ample the dynamical mean-field theory [25]. However, the application
of such methods to large supercells to model APBs is not yet feasible.
An alternative strategy is to utilize density functional theory (DFT) and
to map DFT energies of specific constrained magnetic configurations
to a magnetic Hamiltonian, which can be used for finite temperature
modeling. This makes sense above the magnetic phase transition tem-
perature, i.e., in the paramagnetic state [26]. At temperatures much
higher than the corresponding magnetic phase transition, when mag-
netic short-range order effects can be neglected, this approach can be
simplified further by using the single-site mean-field approximation for
the magnetic contribution [27]. A conceptually and computationally
demanding task remains the simultaneous account of thermal magnetic
and other excitations such as vibrations [28].

The contribution from thermal atomic vibrations, including its an-
harmonic part, constitutes by itself a significant challenge, if an accu-
rate description at elevated temperatures is required. Low temperature
approximations such as, for example, the quasiharmonic approxima-
tion, impose inappropriate constraints at elevated temperatures [29]
and therefore do not properly capture defect energies [29,30]. Appli-
cation of renormalized, effective harmonic Hamiltonians cannot rem-
edy the discrepancy because of the harmonic restriction. In contrast,
approaches that are fundamentally based on the concept of thermo-
dynamic integration can account for explicit thermal vibrations. In
this respect, different developments have been put forward recently
to speed up such calculations in combination with advanced sampling
techniques [31,32].
2

In the present work, we propose a combination of state-of-the-art
methods to simultaneously account for thermal magnetic excitations
and explicit thermal atomic vibrations as well as the corresponding
electronic excitations to predict accurate temperature dependent (100)
and (111)APB energies of Ni3Al up to the experimental melting point,
𝑇m = 1668 K [33]. Specifically, we employ the single-site mean-field
approximation for the spin fluctuation contribution utilizing DFT-based
disordered local moment (DLM) calculations to capture both the trans-
verse and longitudinal spin fluctuations [27]. To account for explicit
thermal vibrations and electronic excitations on the ab initio level, we
employ the recently developed direct upsampling methodology based
on machine learning potentials [32].

2. Theory and computational details

2.1. General approach

The pressure 𝑃 and temperature 𝑇 dependent Gibbs energy required
to form an APB (i.e., the APB energy) is obtained via

𝛾(𝑃 , 𝑇 ) =
𝐺APB(𝑃 , 𝑇 ) − 𝐺bulk (𝑃 , 𝑇 )

𝐴APB(𝑃 , 𝑇 )
, (1)

where 𝐺APB(𝑃 , 𝑇 ) and 𝐺bulk (𝑃 , 𝑇 ) are the Gibbs energies of a supercell
containing the APB and of the perfect bulk, respectively. Further,
𝐴APB(𝑃 , 𝑇 ) represents the pressure and temperature-dependent area
of the APB, which for the smallest unit area is related to the lattice
constant 𝑎 as

𝐴APB =

{

𝑎2 for (100)APB,
𝑎2 ⋅ 31∕2 for (111)APB.

(2)

As it is more convenient in the ab initio framework to control the
volume rather than the pressure, we calculate first the Helmholtz
energy 𝐹 (𝑉 , 𝑇 ) for the APB and the perfect bulk and then obtain the
respective Gibbs energy by a Legendre transformation, i.e., 𝐺(𝑃 , 𝑇 ) =
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𝐹 (𝑉 , 𝑇 )+𝑃𝑉 . We focus in this work specifically on zero pressure which
simplifies the Legendre transformation.

To account for the various relevant temperature-dependent thermal
excitations, the Helmholtz energy is adiabatically decomposed as [31]

𝐹 (𝑉 , 𝑇 ) =𝐸0K(𝑉 ) + 𝐹 qh(𝑉 , 𝑇 ) + 𝐹 ah(𝑉 , 𝑇 )

+ 𝐹 el(𝑉 , 𝑇 ) + 𝐹mag(𝑉 , 𝑇 ),
(3)

where 𝐸0K denotes the 0 K total energy, 𝐹 qh(𝑉 , 𝑇 ) and 𝐹 ah(𝑉 , 𝑇 ) the
contribution from non-interacting phonons (quasiharmonicity) and
from explicit phonon–phonon interactions (anharmonicity),
respectively. Further, 𝐹 el refers to the electronic free energy with the
impact of thermal vibrations taken into account. The last term 𝐹mag

represents the magnetic free energy including spin fluctuations and
the coupling to electronic excitations and thermal vibrations. The APB
energy is decomposed in a similar manner as the Helmholtz energy into
a sum of the different excitation contributions

𝛾(𝑇 ) = 𝛾0K + 𝛾qh(𝑇 ) + 𝛾ah(𝑇 ) + 𝛾el(𝑇 ) + 𝛾mag(𝑇 ), (4)

with the pressure dependence omitted for brevity.
All the free energy contributions were calculated at the ab initio

level of accuracy. Specifically, the periodic Kohn–Sham DFT within
the generalized gradient approximation (GGA) in the Perdew–Burke–
Ernzerhof (PBE) parametrization [34] was applied. For Al and Ni,
GGA was shown previously to provide good agreement with experi-
ment for various thermodynamic properties (e.g., Refs. [35,36]). For
bulk Ni3Al, our present calculations show likewise a good agreement
between GGA and experiment for different thermodynamic properties
(Supplementary Figure S1).

In a periodic supercell approach, the creation of an APB into the
supercell is inevitably accompanied by the introduction of periodic
image APBs. To efficiently reduce interactions between the APB and
its images, we utilized a tilted supercell geometry which was shown
to be well-suited for planar defect calculations [37]. In general, the
employed supercells consisted of 8 and 9 atomic layers in the direction
perpendicular to the (100)APB and the (111)APB, respectively, as
displayed in Fig. 1(a) and (b) (except for the magnetic calculations of
the (111)APB where 6 layers were used). These separations allow, in
particular, the local magnetic moments to approach their bulk values
as one moves away from the APB (see Figs. 7(a) and 9(a)).

The most relevant computational details specific to the nonmagnetic
and magnetic free energy contributions are provided in the follow-
ing two subsections. Further numerical details are compiled in the
Supplementary Information.

2.2. Nonmagnetic free energy contributions

The DFT calculations for the nonmagnetic contributions were per-
formed using the Vienna Ab initio Simulation Package (VASP) [38,
39] with potentials based on the projector augmented wave (PAW)
method [40]. For all nonmagnetic calculations, a 2 × 3 × 4 supercell
containing 96 atoms was used for the (100)APB and a 2 × 2 × 3
supercell containing 144 atoms for the (111)APB (see Table S1 in the
Supplementary Information).

The energy-volume dependence 𝐸0K(𝑉 ) was obtained by fitting the
Vinet equation of state [41] to energies for a sufficient number of
volumes around the 0 K equilibrium volume. For each volume, the
energy was obtained by optimizing atomic positions in all directions for
a fixed cell shape, assuming that the APB is surrounded and constrained
by the bulk environment. To evaluate a possible influence of anisotropic
distortions in the APB, cell shape relaxations were also performed and
are discussed in the Supplementary Information.

The electronic free energy 𝐹 el for the static lattice was computed
on a mesh of 4 × 4 volume and temperature points (see Table S1 in the
Supplementary Information) using the finite temperature extension to
DFT [42]. The volume and temperature dependencies of the electronic
3

free energy surface were then parametrized as discussed in Ref. [43]. s
The additional contribution to 𝐹 el due to thermal vibrations [44],
shown to be significant for fcc Ni [37], was included in the vibrational
free energy calculations as described below.

The vibrational contribution to the free energy from non-interacting
but volume-dependent phonons, 𝐹 qh, was calculated using the finite-
displacement approach as implemented in phonopy [45]. The quasi-
harmonic free energy was extracted from a dense set of volumes (8 for
the (100)APB and 6 for the (111)APB; Table S1 in the Supplementary
Information) and parametrized as a function of volume employing a
third-order polynomial.

The anharmonic vibrational free energy 𝐹 ah resulting from phonon–
phonon interactions was computed employing the direct upsampling
technique [32] aided by machine-learning interatomic potentials, i.e.,
moment tensor potentials (MTPs) [46,47], to achieve the required DFT
accuracy. Within direct upsampling, the anharmonic free energy is
expressed as

𝐹 ah = 𝛥𝐹 qh→MTP + 𝛥𝐹 up, (5)

where the first term 𝛥𝐹 qh→MTP is obtained from thermodynamic inte-
gration and the second term 𝛥𝐹 up from free energy perturbation theory.
Specifically,

𝛥𝐹 qh→MTP = ∫

1

0
d𝜆 ⟨𝐸MTP − 𝐸qh

⟩𝜆 (6)

represents a thermodynamic integration with the coupling parameter
𝜆 connecting the quasiharmonic reference with energy 𝐸qh to the full
vibrational energy 𝐸MTP described by an MTP. MTPs were shown to
accurately describe the full vibrational free energy even of complex sys-
tems [48]. With the DFT database for all investigated phases (APB and
bulk), we fitted one optimized MTP with a root-mean-square error of
below 0.5 meV/atom. The thermodynamic integration was performed
for a 4 × 4 set of volume and temperature points. For each (𝑉 , 𝑇 ) point,
a dense set of 21 𝜆 values was used to capture the nonlinear dependence
of the integrand. For each 𝜆, a molecular dynamics simulation was run
until a standard error in the range of 0.1 meV/atom was reached.

The second term in Eq. (5), the so-called upsampling term, accounts
for the free energy difference between MTP and DFT in a perturbative
manner. Specifically, the full free energy perturbation expression reads

𝛥𝐹 up = −𝑘B𝑇 ln
⟨

exp
(

−𝐸DFT − 𝐸MTP

𝑘B𝑇

)⟩

MTP
, (7)

where 𝑘B is the Boltzmann constant and 𝐸DFT and 𝐸MTP are DFT
and MTP energies of molecular dynamics snapshots obtained from
MTP trajectories. We computed 𝛥𝐹 up for the same (𝑉 , 𝑇 ) mesh as the
thermodynamic-integration term in Eq. (6). The impact of thermal
vibrations on the electronic free energy 𝐹 el was taken into account
by setting the electronic temperature in the DFT calculations to the
respective molecular dynamics temperature.

The anharmonic free energies obtained from Eq. (5) for the 4 × 4 set
f (𝑉 , 𝑇 ) points were fitted to a smooth anharmonic free energy surface
n terms of a renormalized frequency �̄�ah(𝑉 , 𝑇 ) = 𝑎0+𝑎1𝑉 +𝑎2𝑇 , where
0, 𝑎1, and 𝑎2 are fitting coefficients, as detailed in Ref. [35].

In principle, the bulk free energies entering the difference in Eq. (1)
o obtain the APB energy are the same for the (100)APB and the
111)APB. Yet, from a numerical perspective, the accuracy of the
ifference can be improved when the same supercell sizes and orien-
ations are used for the bulk as for the respective APB calculations, in
articular for the vibrational free energies. Therefore, the vibrational
ree energies for the perfect bulk (both quasiharmonic and anharmonic)
ere computed twice, once in a supercell consistent with the (100)APB

upercell geometry and additionally in a supercell consistent with the
111)APB geometry. These calculations yielded very similar results
or the vibrational bulk free energies, substantiating that the chosen
upercells are well converged.
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2.3. Magnetic free energy contribution

For a given (𝑉 , 𝑇 ) point, the magnetic free energy in Eq. (3) can be
in general expressed as

𝐹mag(𝑉 , 𝑇 ) = min
{𝑚𝑖}

[

𝐸mag({𝑚𝑖}) − 𝑇𝑆mag({𝑚𝑖})
]

, (8)

where 𝐸mag({𝑚𝑖}) and 𝑆mag({𝑚𝑖}) are, respectively, the magnetic energy
and the magnetic entropy for a corresponding magnetic configuration
{𝑚𝑖}, with 𝑚𝑖 denoting the mean local magnetic moment at site 𝑖. The

inimization to obtain the free energy is performed over different {𝑚𝑖}.
In the present work, the magnetic free energy was specifically

omputed in the single-site mean-field approximation, i.e., magnetic
hort-range order was neglected, which is a good approximation in
i3Al above room temperature. Within this approximation, 𝐸mag({𝑚𝑖})
orresponds to the longitudinal spin fluctuation (LSF) energy computed
or a disordered local moment (DLM) spin configuration, and the
agnetic entropy, 𝑆mag, can be written as [27]

mag({𝑚𝑖}) = 3
∑

𝑖
ln(𝑚𝑖), (9)

hich corresponds to the classical limit of the LSF entropy, far above
he magnetic transition temperature for a quadratic form of 𝐸mag({𝑚𝑖}).

The DLM-LSF energy 𝐸mag({𝑚𝑖}) was computed self-consistently by
the exact muffin-tin orbital (EMTO) method [49–52] using the co-
herent potential approximation (CPA) in the DLM paramagnetic state.
In particular, the Lyngby version [53] of the EMTO code was used,
which includes an efficient treatment of the magnetic disorder and self-
consistent determination of the 𝑚𝑖 due to spin fluctuations at the given
temperature.

The self-consistent electronic structure calculations were done
within the local density approximation using the Perdew and Wang
functional [54], while the total energy was calculated using the full
charge-density technique [49] in the PBE GGA [34]. Numerical details
of the EMTO calculations are given in the Supplementary Information.

The impact of volume and temperature on the set of local magnetic
moments {𝑚𝑖}𝑉 ,𝑇 was considered at two levels of approximation. (1)
In the first approach, we utilized the thermal expansion from the
nonmagnetic calculations and computed the moments for a static lattice
at the respective expanded volume. (2) In the second approach, we took
molecular dynamics snapshots from the nonmagnetic configurations
at two temperatures (600 K and 1000 K) and the respective expanded
volumes such as to additionally include the impact of thermal displace-
ments. In both of the approaches, the impact of electronic temperature
on the magnetic moments was fully included.

3. Results and discussion

3.1. APB energies at 0 K

Fig. 2 shows the non-relaxed and relaxed (atomic relaxation along
all directions while keeping the cell shape and volume fixed) APB
energies at 0 K from ferromagnetic (FM) and nonmagnetic (NM) cal-
culations. The reduction of the (100)APB energy due to relaxation is
around 15 mJ∕m2. For the (111)APB, a stronger decrease of about 117
mJ∕m2 is observed. For both, relaxed and non-relaxed cases, the spin-
polarized ferromagnetic calculations give higher APB energies than the
nonmagnetic calculations, cf. the blue bar versus the gray bar in each
column. For the same type of APB, the increase in APB energy due to
spin-polarization is similar, regardless of relaxation.
4

i

Fig. 2. APB energies under different relaxation and magnetic conditions at 0 K. The
energy changes between different calculation conditions are highlighted by vertical
arrows with values attached in mJ/m2. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

3.2. Temperature-dependent APB energies

The ab initio computed temperature-dependent APB energies, 𝛾100(𝑇 )
nd 𝛾111(𝑇 ), are shown in Fig. 3(a) and (b). The solid black lines
epresent the final prediction with full account of the different thermal
xcitations that are supposed to guarantee accurate results at elevated
emperatures.

Thermal lattice vibrations, including the full impact of explicit
nharmonicity, have a moderate temperature-dependent influence on
he (100) and (111)APB energies (gray dashed lines labeled ‘‘0K + qh

ah’’). It is important to stress that fully anharmonic vibrations are
equired to obtain the observed vibrational dependencies. The quasi-
armonic approximation is not sufficient in this respect. Specifically,
t the melting point, the quasiharmonic approximation overestimates
oth APBs by 30 mJ/m2 (cf. change from the dotted to the dashed
ray lines, indicated by the gray arrows labeled ‘‘ah’’). This amounts
o 30% of the full vibrational value for the (100)APB and 15% for the
111)APB.

Electronic excitations, including the coupling to fully anharmonic
tomic vibrations, show a strong and qualitatively similar impact on
oth APBs. Specifically, the APB energies are increased as temperature
ncreases (change from the gray dashed to the gray dashed–dotted lines
ndicated by the gray arrows labeled ‘‘el’’). The maximum impact of
lectronic excitations is 45 mJ/m2 (43%) for the (100)APB (at 1400 K)
nd 39 mJ/m2 (20%) for the (111)APB (at 1500 K).

Spin fluctuations are – quite unexpectedly for a weak ferromagnetic
aterial – likewise clearly important to obtain accurate APB energies

n the paramagnetic state (solid black lines). Qualitatively, we observe
similar impact of spin fluctuations on both APBs (Fig. 3(c) and (d)),

.e., an increase of the APB energies at low and medium temperatures
nd a decrease at high temperatures. Though qualitatively similar, the
uantitative dependencies are different for the (100) and (111)APB. In
articular, the spin fluctuation contribution to the (100)APB is signifi-
antly stronger. An increase of up to 30 mJ∕m2 can be observed which
mounts to nearly 40% of the nonmagnetic data as demonstrated in
ig. 3(c). For the (111)APB, the calculations predict a maximum impact
f spin fluctuations of about 15 mJ∕m2, i.e., half of the contribution for
he (100)APB. The relative change caused by spin fluctuations amounts
o 10% with respect to the nonmagnetic results for the (111)APB.

The temperature dependence of the paramagnetic APB energies
eflected by the black solid curves in Fig. 3(a) and (b) corresponds
o a parametrization of a dense set of explicit calculations at vari-
us temperatures as indicated by the green up-triangles in Fig. 3(c)
nd (d), respectively. These calculations were done for static lattices

ncluding the impact of lattice expansion and electronic excitations.
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Fig. 3. Formation Gibbs energies for (100) and (111) APBs. (a), (b) Respective temperature-dependent Gibbs energies, 𝛾100 and 𝛾111, up to the melting temperature, 𝑇m. The
gray dotted lines show the quasiharmonic contribution (qh) and the gray dashed lines represent the full vibrational contribution including explicit anharmonicity (ah). The gray
dot-dashed curves contain additionally electronic excitations (el). The solid black curves show the final, paramagnetic results including additionally the impact of spin fluctuations.
The contribution of spin fluctuations is highlighted by the green shaded region and emphasized separately in (c) and (d) (𝛾mag

100 , 𝛾mag
111 ), in relation to the non-magnetic APB

energies (𝛾NM100 , 𝛾NM111 ; gray dashed lines from (a) and (b)). Up-triangles connected with dotted lines in (c) and (d) represent explicit calculations, used to fit the black curves with
third-order polynomials. The filled circles show results of spin fluctuation calculations including the coupling to explicit vibrations. Symbols with error bars in (a) and (b) represent
experimental data, i.e., Veyssiere1985 [12] and Veyssiere1989 [14]; Douin1986 [13]; Dimiduk1993 and Dimiduk1993-q [15]; Yu1994 [5]; Karnthaler1996 [7]; Hemker1993 [16];
Kruml2002 [8]. See Supplementary Information for more details on the experimental values.
Fig. 4. Schematic of the (a) ferromagnetic (FM) and (b) paramagnetic (PM) state at representative temperatures.
To investigate the explicit impact of lattice vibrations on spin fluctu-
ations, which was shown to be relevant for the thermal conductivity
of paramagnetic CrN [28], we selected uncorrelated configurations
from molecular dynamics calculations at different representative tem-
peratures, i.e., 600 K and 1000 K for the (100)APB and 1000 K for
the (111)APB. The results (filled black circles in Fig. 3(c) and (d))
reveal that the vibrational coupling effect is small for the APB energies
of Ni3Al. The observed magnetic entropy contribution is thus mostly
driven by thermally induced spin fluctuations and the lattice expansion,
irrespective of explicit thermal lattice vibrations. A similar observation
5

was made for fcc Ni [55], where – despite strong spin fluctuations – the
averaged magnetic exchange parameters from molecular dynamics con-
figurations were close to their counterparts from ideal fcc calculations
at the expanded lattice constant.

3.3. Magnetic states of bulk Ni3Al

3.3.1. Ferromagnetic approximation
To reveal the physical origin of the strong impact of spin fluctu-

ations on the APBs, it is insightful to analyze the magnetic moments
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Fig. 5. (a) Mean magnetic moment �̄� per Ni atom up to the melting temperature, 𝑇m. Ferromagnetic values for the static lattice (static-FM) and for ab initio molecular dynamics
AIMD-FM) are shown. Magnetic moments in the paramagnetic (PM) state are the results of self-consistent DLM-LSF calculations. (b) Magnetic free energy 𝐹mag according to Eq. (10)
ased on the DLM state shown as the black curve, (c) distribution of local moments, and (d) probability of the mean magnetic moment from paramagnetic calculations at the
iven temperatures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
ehavior in bulk Ni3Al at elevated temperatures, and to compare it with
agnetism in fcc Ni. In particular, it is useful to put the paramagnetic

ehavior in contrast to spin-polarized ferromagnetic results. In the
erromagnetic state, the magnetic moments are aligned in the same
pin direction, as depicted in Fig. 4(a). This spin state was previously
tilized to derive approximations to the APB energies in Ni3Al [21].
or fcc Ni, it was indeed shown that the ferromagnetic state describes
ell the formation energy of stacking faults over the whole temperature

ange [37]. Fcc Ni has a Curie temperature of 633 K and a moment
f about 0.62𝜇B in the ferromagnetic state. Within the reported spin-
olarized ab initio molecular dynamics simulations, the moment in fcc
i was shown to remain stable up to its melting temperature of 1728 K
ith only a small decrease down to about 0.6𝜇B [37].

The situation in bulk Ni3Al is strikingly different as displayed in
ig. 5(a) by the blue curves. The low temperature magnetic moment
s 0.28𝜇B per Ni atom in the ferromagnetic state, about half the value
n fcc Ni, and it decreases fully down to zero at about 1200 K (light-
lue curve). This decrease is almost completely driven by electronic
xcitations. The splitting of the electronic density-of-states into a minor-
ty and a majority spin channel responsible for the magnetic moment
t low temperatures is overcome by the thermal broadening brought
bout by the Fermi–Dirac function at elevated temperatures, as shown
y Fig. 6. The additional broadening by atomic vibrations is small
s revealed by explicit ab initio molecular dynamics simulations (cf.
he dark-blue and light-blue curves in Fig. 5(a)). Thus, APB energies
pproximated by the ferromagnetic state can be in error at elevated
emperatures.

.3.2. Paramagnetic state at elevated temperatures
In contrast to the FM calculations, the here utilized DLM-LSF calcu-

ations capture the relevant spin fluctuations in the paramagnetic state
6

Fig. 6. Electronic DOS’ of bulk Ni3Al at different electronic temperatures for spin-
polarized collinear calculations. Positive (negative) DOS’ represent the majority
(minority) spin channel.

(illustrated in Fig. 4(b)). The resulting mean magnitude of the magnetic
moment strongly increases with temperature (green curve in Fig. 5(a)),
i.e., from 0.36 𝜇B at 300 K to 0.72 𝜇B at 1500 K. In Fig. 5(b–d), we
demonstrate the mechanism responsible for the strong spin fluctuations
in Ni3Al and explain how it is captured in the DLM-LSF calculations.
At zero Kelvin, the DLM (paramagnetic state) energy, 𝐸mag(𝑚) has a
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minimum at 𝑚 = 0, as shown by the black thick line in Fig. 5(b). At
finite temperatures, the magnitude of the Ni local magnetic moment
can fluctuate due to thermal excitations, resulting in a distribution
function as shown in Fig. 5(c), which is obtained just from standard
statistical mechanics [27]. As one can see, the distribution of local
magnetic moments is quite broad already at room temperature (blue
curve and shading in Fig. 5(c)) and further broadens as temperature
increases (700 K and 1200 K are shown as representative temperatures).
The probability of finding the specific magnetic moments obtained
from these distribution functions is plotted in Fig. 5(d). The magnetic
moment corresponding to the maximum probability increases fast with
temperature (similar trend as the green curve in Fig. 5(a)).

Eventually, this leads to an additional contribution to the free
energy expressed as [27]

𝐹mag(𝑚) = 𝐸mag(𝑚) − 𝑇𝑆mag(𝑚), (10)

where 𝐸mag(𝑚) is the magnetic energy obtained from the DLM calcula-
tions for the mean magnetic moment 𝑚 and the magnetic entropy is

𝑆mag(𝑚) = 3 ln(𝑚), (11)

which is the exact result if 𝐸mag(𝑚) has a quadratic form as a function
of 𝑚. The latter is a very good approximation for 𝐸mag(𝑚) in Ni3Al. The
mean magnetic moment 𝑚 can be found by minimizing the magnetic
free energy 𝐹mag(𝑚). Such a minimization is readily performed during
the DFT DLM-LSF calculations.

The resulting magnetic free energies are plotted in Fig. 5(b). Free
energy curves for three relevant temperatures (300, 700, and 1200 K)
are shown. The black curve corresponds to 𝐸mag(𝑚) at 0 K which has
a minimum at zero magnetic moment. Hence, without an entropy
contribution there is no stable local magnetic moment. As temperature
increases, the −𝑇𝑆mag term becomes more dominant and shifts the
minimum in 𝐹mag(𝑚) to higher magnetic moments. The mean magnetic
moment minimizing the 𝐹mag(𝑚) curves, �̄�, (e.g., 0.37 𝜇B at 300 K) is
close to the result from the self-consistent spin fluctuation calculations
(green curve in Fig. 5(a)).

Such entropy-induced magnetic moments on Ni atoms occur also in
the vicinity of the APBs. However, there are relevant differences in the
stabilization of the moments at the APBs as compared to the perfect
bulk, due to the different chemical arrangement of the atoms. These
differences drive the observed impact of spin fluctuations on the APB
energies (i.e., green shading in Fig. 3), as will be discussed next.

3.4. Interplay between APBs and magnetic moments

The modification of the magnetic moments by the APBs is already
apparent for the ferromagnetic state at 0 K, as exemplified in Fig. 7(a)
for the (100)APB. The different chemical arrangement of the elements
at the APB suppresses locally the magnetic moment down to about 40%
(from 0.26 down to 0.1𝜇B). The atomic plane composed of Ni atoms
and situated in the center of the (100)APB (layer labeled 𝑙 = 0 in
Fig. 7(a)) features a D022 environment for each Ni atom, specifically
in the first and second nearest-neighbor shells as clarified in Fig. 7(b).
The D022 Ni3Al crystal structure is nonmagnetic [56], thus explaining
the preference of the Ni atoms at the APB to reduce their magnetic
moments.

The modification of the magnetic moments is localized to a few
layers close to the APB. Already for the 𝑙 = 3 layer, the magnitude
of the Ni local magnetic moment is very close to the perfect Ni3Al bulk
value (Fig. 7(a)) and the partial electronic density of states is similar
to that in the bulk (Fig. 8). The local chemical environment of Ni at
the first and second coordination shells is the same as in the L12-Ni3Al
structure (Fig. 7(b)). In contrast, the local environment of Ni atoms for
𝑙 = 1, 2, has a mixed character with features from the L12 and the D022
structure.

At low temperatures, the paramagnetic state shows – similarly
to the ferromagnetic state – a reduction of local magnetic moments
7

Fig. 7. Impact of the (100)APB on the magnetic moments under the FM condition.
(a) Local magnetic moments 𝑚𝑖 of Ni atoms as a function of the distance 𝑙 to the APB
plane (in units of (100) atomic layers) in the ferromagnetic state at 0 K. (b) First and
second nearest-neighbor environments of three representative Ni atoms as labeled in
(a). The change of the chemical arrangement from L12 to D022 is indicated.

within a few layers (𝑙 < 3) of the APB, albeit of a smaller magnitude
(Fig. 9(a) and (b)). As temperature increases, the situation changes and
the magnetic moments at the APB are enhanced as compared to the
bulk. That means that Ni atoms at the APB are more susceptible to spin
fluctuations and the entropic stabilization is more effective.

The resulting entropy difference between APB and bulk atoms (𝑇𝛥𝑠𝑖
resolved per lattice site 𝑖 shown in Fig. 9(c)) shows a similar site and
temperature dependence as the local magnetic moment. The maximum
contribution from the Ni-site near the APB plane amounts to, for
example, 2 meV at 700 K, which is comparable to the ferromagnetic
contribution to the APB energy at zero K. The integral of 𝑇𝛥𝑠𝑖 over
all sites of an APB configuration gives the entropy contribution of
spin fluctuations to the APB energy as displayed in Fig. 9(d) (right-
triangles). For temperatures below 600 K, the entropy contribution is
positive because 𝛥𝑚 is negative. At temperatures above 600 K, the en-
tropy contribution is negative and decreases linearly with temperature,
because of the positive and increasing 𝛥𝑚. An internal energy contri-
bution (asterisk symbols in Fig. 9(d)) needs to be added to the entropy
contribution to arrive at the total contribution of spin fluctuations to
the APBs as displayed in Fig. 3(c) and (d).

A similar interplay of the APB with the local magnetic moments
as discussed here for the (100)APB is observed for the (111)APB.
The respective results are shown in Figure S2 in the Supplementary
Information.
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Fig. 8. Partial electronic density of states (DOS) for Ni atoms in the (100)APB structure and bulk Ni3Al (𝐸F refers to the Fermi energy). The value of 𝑙 gives the distance to the
APB in terms of atomic layers.
Fig. 9. Impact of the (100)APB on the magnetic moments and the magnetic entropy under the PM condition. (a) Difference in local magnetic moments 𝛥𝑚𝑖 between the (100)APB
and perfect bulk in the paramagnetic state at different temperatures. (b) Total difference in the magnetic moments 𝛥𝑚 for the (100)APB per unit area. (c) Site-resolved magnetic
entropy contribution 𝑇𝛥𝑠𝑖 and (d) total magnetic entropy and energy contributions to the (100) APB energy.
3.5. Validity of the calculated APB energies

The utilized approach to capture spin fluctuations is a good ap-
8

proximation well above the Curie temperature 𝑇C, where transverse
and longitudinal spin degrees-of-freedom are fully excited. Specifically,
our test calculations with the Monte Carlo method indicate that the
here predicted spin contribution to the APB energies is accurate at

temperatures above ≈300 K. At lower temperatures, in particular in
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the vicinity of 𝑇C = 40K, magnetic short-range-order effects and
quantum fluctuations will play an important role and will modify the
dependencies [26,57]. Accurate calculations of such effects and their
impact on the APB energies close to 𝑇C are presently not possible. At
temperatures lower than 𝑇C, one can expect the ferromagnetic 0 K value
(light-blue crosses in Fig. 3(a) and (b); zero-point vibrations included)
to be a reasonable approximation.

Above 300 K, the paramagnetic prediction of the APB energies (solid
black curves in Fig. 3(a) and (b)) can be expected to be reliable.
Since explicitly anharmonic atomic vibrations and their coupling to
electronic excitations are accounted for, the temperature dependence of
the APB energies is in fact accurate up to the melting point. The validity
of the prediction is clearly supported by the good agreement of the
thermodynamic properties for bulk Ni3Al with experimental data (see
Figure S1 in Supplementary Information). As already emphasized, the
inclusion of the different excitation mechanisms, including explicitly
anharmonic vibrations, is important to obtain such an accurate predic-
tion at elevated temperatures. It should be particularly stressed that the
two APBs, the (100)APB and the (111)APB, are differently affected by
the thermal excitations. This is essential, because it is the ratio of the
two APB energies that enters the models which describe the YSA in
Ni3Al [9,11].

3.6. Comparison with experimental data

The computed temperature-dependent APB energies can be utilized
(above 300 K) to scrutinize the available experimental data. In general,
there is good agreement between theory and experiment (Fig. 3).
The comparison is facilitated for the (111)APB for which the scatter
in experimental results is less than for the (100)APB. At lower tem-
peratures, for the (111)APB, the dissociated dislocations can readily
obtain an equilibrium fourfold core structure since the (111) plane
is an easy glide plane. The situation is more complicated at higher
temperatures, at which the Kear-Wilsdorf lock formation is dominant
and (100)APBs prevail in the measurements [5,14,58]. The resulting
final paramagnetic curve for the (111)APB energy is in good agreement
with the experimental data and can provide a sound prediction in
the high temperature range, where experimental measurements are
difficult.

For the (100)APB, the simulated APB energy agrees well with a
subset of the scattered experimental measurements and thus gives
confidence to privilege the respective values. Particularly at low tem-
peratures, experiments may reflect kinetically-trapped, metastable dis-
location core structures. For the (100)APB, kinetic traps can easily
arise because the (100) plane is energetically unfavorable for dislo-
cation glide at low temperatures [14]. The dislocation dissociation
after cross-clip can be therefore significantly suppressed, leading to
smaller dissociation distances and consequently higher APB energies.
At temperatures at which the Kear-Wilsdorf lock formation sets in, the
width of cross-slipped dislocations onto a (100) plane can be as short as
1 nm [59]. Dedicated measurements are necessary to reach equilibrated
spacings and thus APB energies.

For an unbiased comparison to experiment, the impact of antisites
on the APB energies needs to be considered. Ni on the Al-site was
shown to decrease the APB energy whereas Al on the Ni-site acts in
the opposite way [60,61]. These theoretical findings are consistent
with experimental observations [5,15,62]. Further it is known that the
overall density of antisite defects is low at temperatures below 900 K
for stoichiometric Ni3Al [63]. Therefore, in the temperature range most
relevant to YSA, antisite defects are likely to play a minor role in
Ni3Al. The here developed methodology could be used in future studies
to substantiate this assumption by computing temperature dependent
9

antisite defect Gibbs energies.
4. Summary and outlook

The temperature-dependent (100)APB and (111)APB energies of
Ni3Al have been calculated with ab initio accuracy up to the melting
temperature. By utilizing the proposed combination of two state-of-
the-art methods, all relevant thermal excitations, i.e., thermal magnetic
excitations, explicit thermal atomic vibrations, electronic excitations as
well as the corresponding coupling effects have been simultaneously
taken into account. The resulting temperature-dependent APB energies
show a good agreement with the available experimental data.

Electronic excitations significantly increase both APB energies as
temperature increases. Atomic vibrations show instead only a moder-
ate influence, which contrasts the behavior found previously for the
stacking fault energies of fcc Ni and Al [37].

Quite unexpectedly for a weak ferromagnetic material, we have
unveiled – by utilizing DFT-based disordered local moment calculations
within the single-site mean-field approximation – that spin fluctuations
exhibit a strong impact on APB energies in Ni3Al. Specifically, we have
observed a dramatic increase of the APB energies up to 40% at low and
medium temperatures and a decrease at high temperatures.

As revealed in this work, the strong impact of the spin fluctuations
on the APB energies originates from an entropy-induced stabilization of
the mean magnetic moments. At elevated temperatures, the variations
of the magnetic moments due to the change of the local chemical en-
vironment in the vicinity of the APB remain significant. This interplay
between the APB and the magnetic moments results in an additional
contribution to the APB energies.

The presented, ab initio-computed temperature-dependent APB en-
rgies can be used to explain the experimentally-observed dislocation
ehavior as well as the YSA phenomenon in Ni3Al. Specifically, it is
elieved that the ratio of the APB energies determines the cross-slip
endency [9,10] and thus the probability for Kear-Wilsdorf lock forma-
ion. Based on the availability of the APB ratio, quantitative yielding
odels for Ni-based superalloys become accessible, e.g., in discrete
islocation dynamics or finite element modeling [11]. Thus, an impact
n the design and optimization of Ni-based superalloys can be expected.
n a broader scale, the obtained comprehensive understanding of APB

ormation energies could facilitate, for example, defect engineering in
ther superalloys [64] and in functional materials [65].

The here observed entropy-driven enhancement of the local mag-
etic moments and their impact on the APB energies demonstrates
he necessity to carefully consider paramagnetic effects even for weak
tinerant ferromagnetic materials. For an accurate description of high-
emperature defect energetics, the inclusion of explicitly anharmonic
ibrations, electronic excitations, and coupling effects is likewise re-
uired. The proposed combination of state-of-the-art ab initio methods
an be utilized to properly capture all these effects at reasonable
omputational expenses.
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