

## Supplementary Material

## 1 SUPPLEMENTARY TABLES AND FIGURES

1.1 Figures



Figure S1. Fluctuation analysis of illustrative example signals. Four different signals (left panels) with respective detrended fluctuation analysis (right panels) are shown (A-D). The black time series' have a length of 1000 time points and the red series' are identically to the first 180 time points of the black series'. (A) Shown is white noise with a standard deviation of about  $\sigma \simeq 0.15$  that corresponds to a slope parameter  $\alpha \simeq 0.5$ . (B) Shown is a sinus signal with white noise ( $\sigma \simeq 0.15$ ) that corresponds to  $\alpha \simeq 1.0$ . (C) Shown is a sinus signal with weaker white noise ( $\sigma \simeq 0.03$ ) that corresponds to  $\alpha \simeq 1.5$ . (D) Shown is a sinus signal without noise that corresponds to  $\alpha \simeq 2.0$ . Black and red data lead to comparable  $\alpha$ , as illustrated by the slopes in black squares and red pluses in the right panels.



**Figure S2.** Detrended fluctuation analysis of the cells shown in Fig. 3. Show are the DFA histograms along the vertical direction ( $\theta$ ) with the weighted polynomial fit (black solid line) and the confidence intervals (red dashed lines).



Figure S3. Shows an overview of the relationship between the from the DFA calculated parameters  $\alpha_{\min}$ ,  $\alpha_{adh}$  and  $\Delta \alpha$ .



**Figure S4.** (A) Dashed line is the weighted fit calculated from the linear fits  $r_a = A_{adh}/A_{mem}$  (Fig. 4F) vs.  $v_a = v_{\varphi}/v_{\theta}$  (Fig. 4I). Solid line is the non-weighted fit of all cells without considering  $\Delta \alpha$ . Color coding corresponds to  $\alpha_{min}$  (see Fig. 4B). (B) Transformation to membrane contact angle  $\Omega$  (Eq. 8). Yellow points correspond to dynamics of cells shown in Fig. 5 and 6 (C) Mean and standard deviation of data plotted in (B).