

Supplementary Material

APPENDIX

Appendix A: Summary of the main abbreviations and acronyms used in this paper

Expression	Description
2D	Two-dimensional
3D	Three-dimensional
4D	Four-dimensional
ANN	Artificial neural network
BT	Biot theory
CFD	Computational fluid dynamics
СТ	Computed tomography
DTA	Diagnostic test accuracy
DT-MRI	Diffusion tensor magnetic resonance imaging
FDM	Finite difference method
FEM	Finite element method
FVM	Finite volume method
ML	Machine learning
MRI	Magnetic resonance imaging
MRE	Magnetic resonance elastography
MRPE	Magnetic resonance poroelastography
MT	Mixture theory
NAFLD	NAFLD
NMRI	Nuclear magnetic resonance imaging
PBCs	Pressure boundary conditions
PVE	Poroviscoelastic
SNR	Signal to noise ratio
TPM	Theory of porous media
US	Ultrasound
WSS	Wall shear stress

Table S1: List of abbreviations and acronyms

Appendix B: Search strategy for Medline Ovid SP

- 1. image\$ tech\$.mp.
- 2. magnetic resonance imaging.mp.
- 3. MRI.mp.
- 4. MRE.mp.
- 5. magnetic resonance elastography.mp.
- 6. 2D-MRI.mp.
- 7. 3D-MRI.mp.
- 8. 4D-MRI.mp.
- 9. diffusion tensor magnetic resonance imaging.mp.

10. DT-MRI.mp.

- 11. diffusion magnetic resonance imaging.mp.
- 12. diffusion tensor imaging.mp.
- 13. NMRI.mp.
- 14. nuclear magnetic resonance imaging.mp.
- 15. or/1-14
- 16. liver.mp.
- 17. blood perfusion.mp.
- 18. liver lobule.mp.
- 19. or/16-18
- 20. biomechanic\$.mp.
- 21. material propert\$.mp.
- 22. biophysic\$.mp.
- 23. mechanical behavior.mp.
- 24. boundary condition.mp.
- 25. geometr\$.mp.
- 26. or/20-25
- 27. 15 and 26
- 28. 19 and 27
- 29. FEM.mp.
- 30. finite element.mp.
- 31. FEA.mp.
- 32. or/29-31
- 33. 28 and 32
- 34. finite difference.mp.
- 35. FDM.mp.
- 36. 34 or 35
- 37. 36 and 28
- 38. meshfree.mp.
- 39. 28 and 38
- 40. meshless.mp.
- 41. 28 and 40
- 42. simulation.mp.
- 43. 28 and 42
- 44. modeling.mp.

45. 28 and 44
46. CFD.mp.
47. computational fluid dynamics.mp.
48. 46 or 47
49. 28 and 48
50. 28 and 48
51. ANN.mp.
52. artificial neural network.mp.
53. 51 or 52
54. 28 and 53
55. 33 or 37 or 39 or 41 or 43 or 45 or 49 or 54

Appendix C: The designed proforma for data extraction

Table S2: Designed proforma for data extraction

Title Aim of	Exclusion Subject	MRI	MRI	Numerical	Constitutive	Clinical
the study	reason	type	application	method	model	application

Appendix D: Quality analysis form

#	Question and scoring procedure
1	Has the study aim been stated?
	For Yes the score would be 1 and for No the score would
	be 0.
2	Did the study have a clear hypothesis?
	For Yes the score would be 1 and for No the score would
	be 0
3	Has the object selection of the study introduced bias?
	For score 1, the rational for object selection has been stated.
	For score 0, the rational for object selection has not been
	stated.
4	Did the study explain the characteristics of the objects?
	Two characteristics are considered for scoring: gender and
	age
	For score 2, 2 parameters should have been mentioned.
	For score 1, 1 parameter have been mentioned.
	For score 0, no parameter has been mentioned.
	NA for animals and phantoms.
5	Could the number of objects be representative of the
	intended population?
	For score 2, at least 5 objects were studied.
	For score 1, 3 and 4 objects were studied.
	For score 0, less than 3 objects were studied.
6	Has the study stated ethical approval for
	animal handling and/or data collection for human objects?
	For Yes the score would be 1 and for No the score would
	be 0.
	NA for the experimental models and phantoms.
7	Did the study describe the MRI function in detail?
	For Yes the score would be 1 and for No the score would
	be 0.
8	Has the study described its clinical applications?
	For Yes the score would be 1 and for No the score would
	be 0.
9	Did the study describe the used models for MRE or
	simulation?
	For Yes the score would be 1 and for No the score would
	be 0.
	NA If the paper is not a MRE study.
10	Have the limitations of the study been mentioned?

Table S3: Quality analysis form

	For Yes the score would be 1 and for No the score would
	be 0.
11	Was the study funding mentioned?
	For Yes the score would be 1 and for No the score would
	be 0.
12	Has the study stated conflicts of interest?
	For Yes the score would be 1 and for No the score would

Appendix E: Short descriptions of included studies

Author	Short description
(Amili et al., 2019)	The study leveraged a combination of optical and medical imaging techniques, ultimately validating a novel approach to track virtually released particles in
(Asbach et al., 2008)	volumetric velocity fields. In the study, the multifrequency MRE method was used to measure parameters for a viscoelastic model of a liver based on two shear moduli and one viscosity parameter. The investigated viscoelastic parameters show a significant difference between the normal and cirrhotic livers.
(Asbach et al., 2010)	The study analyzed the dynamics of the shear modulus evaluate the optimum driving frequency and to determine the diagnostic accuracy of generalized frequency-independent elasticity cutoff values for staging hepatic fibrosis.
(Brock et al., 2005)	In this study, a platform was developed to perform multi-organ deformable image registration using finite element modeling. Its feasibility and accuracy were demonstrated by deformable image registration of MR images at different respiratory states for both thorax and the abdomen.
(Chen et al., 2011)	The study investigated the diagnostic accuracy of MRE for the early detection of nonalcoholic steatohepatitis among patients with nonalcoholic fatty liver disease.
(Clarke et al., 2011)	The study presented storage and loss moduli data and predictive models for in vitro bovine liver blocks using MRE, under various levels of compressive preload. Moreover, the study describes a device and methods capable of measuring the viscoelastic properties of tissues at large strains in vitro.

Table S4: Short descriptions of included studies

Author	Short description
(Courtecuisse et al., 2014)	The study combined dynamic
	image sequence with a physics-
	based simulation to obtain a 3D
	representation of the liver during
	respiration. A pre-operative CT scan of
	a liver was acquired and it was aimed
	to register the segmented model to 2D
	dynamic slices acquired with MRI.
(Dzyubak et al., 2021)	The study hypothesized that widely
	available rapid MRI techniques could
	be used to predict nonalcoholic
	steatohepatitis noninvasively by
	measuring liver stiffness with magnetic
	resonance elastography (MRE) and
	liver fat with chemical shift-encoded
	MRI. Besides, the study validates an
	automated image analysis technique to
	maximize the utility of these methods.
(Eaton et al., 2020)	The study examined the associations
	between changes to measure hepatic
	stiffness and primary sclerosing
	cholangitis. The study showed
	that hepatic decompensation was
	independently and robustly linked
	to the baseline and to changes in
	liver stiffness over time. While
	the progression in hepatic stiffness
	accelerates if hepatic stiffness is high,
	the overall rate of changes in hepatic
	stiffness is slow. Therefore, it may be
	useful to exclude individuals with low
	baseline liver rigidity if liver rigidity is
	used as the primary substitute endpoint
	in early-stage clinical trials.

Author Short description	
(Garteiser et al., 2012) The study assessed the v	alue
of viscoelastic parameters	in
characterizing liver tumors	with
MRE. The authors found that the	loss
modulus was the best discrimin	nator
between benign and malignant tur	nors
and the only biomechanical paran	neter
that differed between individual tu	imor
types.	
(Gidener et al., 2020) The study aimed to investigate	the
role of MRE in the prediction	n of
hard outcomes in NAFLD. The s	tudy
showed that in NAFLD, liver stiff	ness
measurement by MRE is a signifi	cant
predictor of the future development	nt of
cirrhosis. Their data expand the	role
of MRE in clinical practice beyond	the
estimation of liver fibrosis and pro	vide
important evidence that impr	oves
individualized disease monitoring	and
patient counseling.	
(Godfrey et al., 2012) The study assessed the diagnet	ostic
accuracy of MRE stiffness va	lues
and the ratio of phosphomonoe	sters
/phosphodiesters measured using	${}^{31}P$
spectroscopy against histolog	gical
fibrosis staging.	
(Hariharan et al., 2007) The study analyzed radio freque	ency
heating in the case of a tu	mor
located near the bifurcation p	oint
of a hepatic artery using geom	netry
reconstructed from MRI image	s of
a porcine liver. Moreover, to s	tudy
the range of influence of blood	flow
through the bifurcated artery on ti	ssue
heating, different tumor locations considered.	were
(Hudert et al., 2019) In this study, multifrequency MRE	was
used to quantify liver steatosis	and
fibrosis in adolescents with NAFL	D.

Author	Short description
(Idkaidek and Jasiuk, 2015)	In this study, a fast and accurate three-dimensional simulation of the deformation of a pig liver under pressure was presented from a surgical tool using ABAQUS. The liver geometry was obtained using MRI, and a nonlinear constitutive law was employed to capture large deformations of the tissue.
(Kamphues et al., 2012)	The aim of this study was to prospectively assess the diagnostic accuracy of viscoelasticity-based MRE for the assessment of liver fibrosis in hepatitis C patients after liver transplantation.
(Klatt et al., 2007)	The study presented an experiment combining multifrequency shear wave actuation with broad-band motion sensitization to extend the dynamic range of a single MRE examination. The technique was applied to the brain and liver of five healthy volunteers, and five standard rheological models (Maxwell, Voigt, Zener, Jeffreys, and fractional Zener model) were assessed for their ability to reproduce the observed dispersion curves. The study found significant differences between the rheological parameters of brain and liver indicating that human brain is softer and has a higher viscosity than liver.

Author	Short description
(Kruse et al., 2000)	In this study, fresh animal liver and
	kidney tissue specimens were evaluated
	with MRE at multiple shear wave
	frequencies to investigate the effect of
	specimen temperature and orientation
	on stiffness measurements was studied
	in skeletal muscle. The purpose of
	the study was to conduct preliminary
	studies to define methods for using
	MRE as a tool to address the lack of
	quantitative tissue mechanical property
	data in the literature.
(Lara et al., 2011)	The study characterized the flow
	dynamics of multi-inlet patient-specific
	pediatric hepatic venous junctions
	and incorporated transparent rapid-
	prototype replicas of two pediatric
	nepatic venous confluence anatomies
	and two-component particle image
	flow structures influencing the inferior
	Now structures influencing the interior
(Laclarc at al 2013)	In this study, the relevance of viscosity
(Leelere et al., 2013)	measurements as a liver diagnostic
	marker The variation of the liver
	viscosity parameter as a function
	of post-processing revealed that
	this parameter should be further
	investigated to demonstrate its
	relevance in clinical practice.
(Leclerc et al., 2015)	In this study, a 3D FEM phantom
	model, with realistic MRE liver
	boundary conditions was developed to
	simulate the shear wave propagation
	with the software ABAQUS and to
	identify the method for the mechanical
	characterization of phantom mimicking
	soft tissue.
(Lee et al., 2010)	In this study, a dynamic 3D liver
	surface instantiation and localization
	scheme was developed to enable
	subject-specific optimal scan planning.

Table S4:	Short	descriptions	of included	studies in	the paper
		1			1 1

Author	Short description
(Lee et al., 2014)	The study determined the reproducibility of MRE and the reproducibility and repeatability of the stiffness measurement of MRE in the staging of liver fibrosis.
(Lu and Untaroiu, 2014)	The study established a standard procedure to quantify the shape variations of a human liver in a sitting posture and construct three- dimensional statistical shape boundary models.
(Ma et al., 2019)	The study modeled the hepatic perfusion in a physiologically based subject-specific hepatic structure of a healthy individual. The structured tree boundary condition was implemented for the first time in a computational model of hepatic perfusion, which led to physiologically reasonable results in the blood flow simulation in the hepatic artery and portal vein.
(Monti et al., 2014)	The study designed a computer simulation to reproduce a quantification model of cardiac-induced strain in the liver using tagged MRI. Additionally, it evaluated the performance of the harmonic phase image analysis method and its dependence on fine-tuning of the tag spacing and grid angle parameters currently selected in a heuristic way.
(Motosugi et al., 2019)	The study assessed the feasibility of 4D flow MRI as a noninvasive imaging marker to stratify the risk of variceal bleeding in patients with liver cirrhosis.
(Ning et al., 2018)	The aim of this study was to present a simple method to correct vascular input function due to inflow effects and to test whether the proposed method can provide more accurate vascular input functions for improved pharmacokinetics modeling.

Author	Short description
(Reiter et al., 2014)	This comprehensive report described
	the correlation between static Young's
	modulus, viscoelastic power-law
	constants and structural and functional
	variables of liver tissue to assess the
	merits of hepatic elastography as a
	structure sensitive modality.
(Reiter et al., 2018)	The study evaluated and compared the
	applicability of different elastography
	methods to assess alpha1-antitrypsin-
	deficiency related liver fibrosis.
(Reiter et al., 2020)	The study determined the diagnostic
	performance, cut-off values, and
	optimal drive frequency range
	for staging hepatic fibrosis using
	tomoelastography of multifrequency
	MRE of the liver and spleen.
(Riek et al., 2011)	The study presented data of G^* of
	agarose gel, liver, brain, and muscle
	samples measured with high-resolution
	MRE in a 7 T animal scanner at
	200–800 Hz vibration frequency. The
	study aimed to investigate the complex
	modulus dispersion of tissue samples.
(Roldán-Alzate et al., 2013)	The study implemented and validated
	in vivo radial 4D flow MRI to quantify
	blood flow in the hepatic arterial, portal
	venous, and splanchnic vessels of
	nearthy volunteers and patients with
(Ponst at al 2014)	This study investigated which
(Ronot et al., 2014)	viscoelectic perspector has the best
	diagnostic parameter has the best
	liver fibrosis by 3D multifraquency
	MPE in a high resolution model from
	rat thin liver sections
(Rutkowski et al. 2018)	In this study MRL CFD modeling and
(IXUIKOWSKI CI al., 2010)	in vitro experiments was used to predict
	nation-specific alterations in hepatic
	hemodynamics in response to partial
	hepatectomy in living liver donors
	nepateotoniy in nying nyer donois.

Author	Short description
(Rutkowski et al., 2019)	The study examined the effects of varying spleno-mesenteric confluence anatomy on blood flow distribution and helical flow patterns in the portal vein using 4D flow MRI data from liver donors with computational tools to simulate hemodynamic outcomes from a variety of portal confluence orientations.
(Salameh et al., 2007)	The study determined the correlations between the viscoelastic parameters of the liver measured with in vivo MRE and quantitative analysis of liver fibrosis.
(Salameh et al., 2009)	The study assessed the potential value of MRE imaging to help detect non- alcoholic steatohepatitis in the fatty rat liver.
(Shahryari et al., 2019)	The study used tomoelastography to investigate whether solid–fluid properties can differentiate hepatic tumors from nontumorous liver tissue and malignant from benign lesions.
(Stoter et al., 2017)	The study presented a diffuse interface method for coupling free and porous- medium-type flows modeled by the Navier–Stokes and Darcy equations. Moreover, it demonstrated the method's potential to establish seamless imaging through analysis workflows by computing a perfusion profile for a full-scale 3D human liver based on MRI scans.
(Tang and Wan, 2014)	The study presented a novel strain- based constraint finite-element method for simulating nonlinear homogeneous soft tissues efficiently. The algorithm is capable of modeling rich nonlinear deformations in a straightforward finite- element framework.

Author	Short description		
(Tomita et al., 2018)	In the study, a finite element model for		
	MRE, which includes the Zener model		
	for the displacement field of a wave in		
	tissue and an inversion algorithm, the		
	so-called modified integral method, was		
	developed using ANSYS.		
(Tzschätzsch et al., 2014)	In this study, time-harmonic		
	elastography of the liver was		
	introduced and applied to a group		
	of healthy volunteers in comparison		
	with multifrequency MRE at identical		
	harmonic vibration frequencies.		
(Wang et al., 2011)	The study compared the utility of		
	MRE and diffusion-weighted imaging		
	in characterizing fibrosis and chronic		
	hepatitis in patients with chronic liver		
	diseases.		
(Zhang et al., 2013)	The study proposed a method for		
	reconstructing 3D dense deformable		
	motion from sparse surrogate motion		
	tracked via on-board imaging systems		
	with the help of a patient-specific		
	principal component analysis motion		
	model.		
(Zhang et al., 2014)	The study simulated the use of Beams-		
	Eye-View surrogate imaging along		
	with the motion models, to study the		
	potential effectiveness of scanned beam		
	tumor tracking.		

Appendix F: Details of used MRI and their application

Table S5	Details	of used	MRI	and	their	application
	Details	or used	11111	anu	unen	application

Author	MRI magnetic field	Description	Application
(Amili et al., 2019)	3 T	Siemens Prisma whole-body	Velocity field measurement in a
		scanner	designed hepatic arterial system
(Asbach et al., 2008)	1.5 T	Magnetom Sonata, Siemens	Elastography
		Medical Solutions, Erlangen,	
		Germany	
(Asbach et al., 2010)	1.5 T	Magnetom Sonata, Siemens	Elastography
		Healthcare Sector, Erlangen,	
		Germany	
(Brock et al., 2005)	1.5 T	Excite, 4 channel, GE Medical	Multi-organ deformable registration
		Systems, Milwaukee, WI	
(Chen et al., 2011)	1.5 T	GE Healthcare, Milwaukee, WI	Elastography
(Clarke et al., 2011)	NM	NM	Elastography
(Courtecuisse et al., 2014)	1.5 T	MAGNETOM [®] Aera SIEMENS	Capture the respiratory motion
(Dzyubak et al., 2021)	1.5 T	GE Healthcare, Milwaukee, WI	Elastography
(Eaton et al., 2020)	NM	NM	Elastography
(Garteiser et al., 2012)	1.5 T	Intera, Philips Medical Systems,	Elastography
		Best, The Netherlands	
(Gidener et al., 2020)	NM	NM	Elastography
(Godfrey et al., 2012)	1.5 T	General Electric whole body	Elastography
		system (HDx, GEHT, Waukesha,	
		WI)	
(Hariharan et al., 2007)	NM	NM	Geometry
(Hudert et al., 2019)	1.5 T	Siemens, Magnetom Sonata	Tomoelastography
(Idkaidek and Jasiuk, 2015)	NM	NM	Geometry
(Kamphues et al., 2012)	1.5 T	Magnetom Sonata, Siemens	Elastography
		Healthcare Sector, Erlangen,	
		Germany	

Author	MRI magnetic field	Description	Application
(Klatt et al., 2007)	1.5 T	Magnetom Sonata, Siemens	Elastography
		Medical Solutions, Erlangen,	
		Germany	
(Kruse et al., 2000)	1.5 T	NM	Elastography
(Lara et al., 2011)	NM	NM	Geometry
(Leclerc et al., 2013)	1.5 T	GE, Milwaukee, WI	Elastography
(Leclerc et al., 2015)	1.5 T	GE, Milwaukee, WI	Elastography
(Lee et al., 2010)	1.5 T, 3 T	GE, Discovery MR750, Philips	Liver surface instantiation and
		Intera	localization
(Lee et al., 2014)	1.5 T	whole-body MR scanner	Elastography
		(SignaHDx; GE Healthcare,	
		Milwaukee, WI)	
(Lu and Untaroiu, 2014)	NM	NM	Geometry
(Ma et al., 2019)	NM	MAGNETOM Avanto, Siemens,	Visualization of hepatic blood flow
		Germany	and bile flow
(Monti et al., 2014)	3 T	NM	Measurement of the liver stiffness
(Motosugi et al., 2019)	1.5 T, 3 T	Optima MR450w or Signa HDxt,	Flow and velocity measurement
		GE Healthcare, Waukesha, Wis	
		Discovery750, GE Healthcare	
(Ning et al., 2018)	3 T	Discovery MR750, GE	Flow and velocity measurement
		Healthcare, Waukesha,	
		Wisconsin, USA	
(Reiter et al., 2014)	$7 \mathrm{T}$	Bruker Pharmascan, Ettlingen,	Elastography
	1.5.0	Germany	
(Reiter et al., 2018)	1.5 1	Magnetom Aera, Siemens	Elastography
	4.5.5	Healthcare, Erlangen, Germany	
(Reiter et al., 2020)	1.5 T	Magnetom Aera, Siemens	Tomoelastography
(D : 1		Healthineers	
(R1ek et al., 2011)	T	Bruker PharmaScan 70/16,	Elastography
		Ettlingen, Germany	

Table S5: Details of used MRI an	nd their application
----------------------------------	----------------------

Author	MRI magnetic field	Description	Application
(Roldán-Alzate et al., 2013)	3 T	Discovery MR 750, GE	Quantify flow in the hepatic and
		Healthcare, Waukesha, WI	splanchnic vasculature
(Ronot et al., 2014)	7 T	Pharmascan, Bruker, Erlangen,	Elastography
		Germany	
(Rutkowski et al., 2018)	3 T	Discovery MR 750, GE	Velocity mapping
		Healthcare, Waukesha, WI	
(Rutkowski et al., 2019)	3 T	Discovery MR 750, GE	Determination of blood flow
		Healthcare, Waukesha, WI	dynamic in liver
(Salameh et al., 2007)	1.5 T	Gyroscan Intera whole body	Elastography
		imager, Philips Medical Systems,	
		Best, The Netherlands	
(Salameh et al., 2009)	7 T	Pharmascan, Bruker, Ettlingen,	Elastography
		Germany	
(Shahryari et al., 2019)	1.5 T	Magnetom Aera, Siemens	Tomoelastography
(Stoter et al., 2017)	NM	NM	Measurement of the liver perfusion
(Tang and Wan, 2014)	NM	NM	Geometry
(Tomita et al., 2018)	0.3 T, 3 T	Signa HDx, GE Healthcare,	Elastography
		the Compact MRI series, MR	
		Technology, Inc., Tsukuba, Japan	
(Tzschätzsch et al., 2014)	1.5 T	Magnetom Sonata, Siemens	Elastography
		Erlangen, Germany	
(Wang et al., 2011)	1.5 T	Magnetom Espree, Siemens	Elastography
		Healthcare	
(Zhang et al., 2013)	NM	NM	Motion extraction
(Zhang et al., 2014)	NM	NM	Motion extraction

Table S5: Details of used MRI and their application

NM: Not mentioned

Appendix G: MRE

Table S6: MRE models	description
----------------------	-------------

Author	Techniques	Model	Measured parameter
(Asbach et al., 2008)	Multifrequency MRE with	Standard linear solid (SLS) or	Normal liver:
	frequencies of 25.0,37.5, 50.0,	Zener:	$\eta = 7.3 \pm 2.3$ (Pa.s), $\mu_1 = 1.16 \pm 0.28$ (kPa),
	and 62.5 Hz	$\mathbf{G}^{\star} = rac{\mu_1 \mu_2 + \imath \omega \eta (\mu_1 + \mu_2)}{\imath}$	$\mu_2 = 1.97 \pm 0.30 \; (\text{kPa})$
		$\mu_2+\mathrm{i}\omega\eta$	Fibrotic Liver:
			$\eta = 14.4 \pm 6.6$ (Pa.s), $\mu_1 = 2.91 \pm$
			$0.84 \text{ (kPa)}, \mu_2 = 4.83 \pm 1.77 \text{ (kPa)}$
(Asbach et al., 2010)	Multifrequency MRE with	Two-parameter spring pot model	Normal liver: (16 volunteers)
	frequencies of 25.0,37.5, 50.0,		$\mu = 2.25 \pm 0.43 \; (\text{kPa})$
	and 62.5 Hz		Stage F1: (20 patients)
			$\mu = 2.61 \pm 0.43 \; (\text{kPa})$
			Stage F2: (17 patients)
			$\mu = 3.00 \pm 0.63 \; (\text{kPa})$
			Stage F3: (16 patients)
			$\mu = 3.86 \pm 0.61 \; (\text{kPa})$
			Stage F4: (19 patients)
			$\mu = 5.86 \pm 0.1.22 \; (\text{kPa})$
(Clarke et al., 2011)	MRE at a vibration frequency	Exponential model for large	$G' = 1.54 e^{-2.04 \epsilon_G} (kPa)$
	of 120 Hz under various	strain:	$G'' = 0.62 e^{-2.71 \epsilon_G} (kPa)$
	levels of static compressive	$\mathbf{G}^{\star} = \mathrm{Ae}^{\mathrm{B}\epsilon_{\mathrm{G}}}$	
	pre-strain up to 30%	A and B are the model	
		coefficients	

Frontiers

Author	Techniques	Model	Measured parameter
(Chen et al., 2011)	The MR elastography	elastic	stiffness:
	sequence parameters were		patients with simple steatosis: $2.51 (kPa)$
	as follows: phase offsets,		patients with inflammation but no fibrosis
	four; motion sensitivity, 10.2		3.24 (kPa))
	mm/radian; axial imaging		patients with hepatic fibrosis $4.16 (kPa)$
	plane; superior-inferior		
	motion-sensitizing direction;		
	field of view, 34-44 cm;		
	acquisition matrix, 256 3		
	96; fractional phase field		
	of view, 0.75-1; flip angle,		
	30°; one signal acquired;		
	bandwidth, 31.25 kHz;		
	echo time msec/repetition		
	time msec, 24.5/50; section		
	thickness, 10 mm; number of		
	sections, two to four; imaging		
	time, two to four breath holds		
	(about 17 seconds each)		
(Dzyubak et al., 2021)	MRE at continuous acoustic	NM	NM
	pressure waves generated at		
	60 Hz by an active driver		
	outside the scanner room		
(Eaton et al., 2020)	NM	NM	NM

Table S6: MRE models	description
----------------------	-------------

Author	Techniques	Model	Measured parameter
(Garteiser et al., 2012)	MRE at 50 Hz using electro-	NM	Haemangioma:
	mechanical transducer		$ \mathbf{G}^{\star} = 2.31 \pm 0.66 \text{ (kPa)}, \mathbf{G}' = 2.12 \pm$
			$0.63 \; (kPa)$
			$G'' = 0.88 \pm 0.31 \; (kPa)$
			Focal nodular hyperplasia:
			$ \mathbf{G}^{\star} = 2.51 \pm 1.03 \text{ (kPa)}, \mathbf{G}' = 2.13 \pm$
			$0.69 \; (kPa)$
			$G'' = 1.19 \pm 0.95 \text{ (kPa)}$
			Adenoma:
			$ \mathbf{G}^{\star} = 2.13 \pm 0.70 \text{ (kPa)}, \mathbf{G}' = 2.01 \pm$
			$0.63 \; (kPa)$
			$G'' = 0.71 \pm 0.33 \; (kPa)$
			Metastasis:
			$ \mathbf{G}^{\star} = 2.99 \pm 0.76 \text{ (kPa)}, \mathbf{G}' = 2.36 \pm$
			0.5 (kPa)
			$G'' = 1.89 \pm 0.70 \; (kPa)$
			Hepatocellular carcinoma:
			$ \mathbf{G}^{\star} = 3.57 \pm 1.71 \text{ (kPa)}, \mathbf{G}' = 2.51 \pm$
			$1.01 \; (kPa)$
			$G'' = 2.36 \pm 1.69 \text{ (kPa)}$
			Cholangiocarcinoma:
			$ \mathbf{G}^{\star} = 3.3 \pm 1.77 \text{ (kPa)}, \mathbf{G}' = 1.47 \pm$
			0.23 (kPa)
			$G'' = 2.80 \pm 2.11 \text{ (kPa)}$
(Gidener et al., 2020)	NM	NM	NM

Table S6: MRE models description Techniques Model **Measured parameter** Author (Godfrey et al., 2012) The passive driver was stiffness: elastic connected to an active disease (from any aetiology) chronic liver drive unit that produces 3.45 (kPa) low frequency longitudinal pressure waves at 60 Hz. Four separate breath-hold acquisitions were acquired using a phasecontrast gradientecho sequence synchronised to the active driver unit at four different phase steps MRE at four sinusoidal (Kamphues et al., 2012) Spring pot model: Healthy liver: with $\mathbf{G}^{\star} = \kappa(i\omega)^{\alpha}, \kappa = \mu^{(1-\alpha)}\eta^{\alpha}.$ waves $\mu_{\text{median}} = 1.99 \text{ (kPa)}, (1.65 - 2.37 \text{ kPa})$ transverse frequencies of 25.0, 37.5, κ and α are two independent Liver with the general prediction of stage of 50.0, and 62.5 Hz within one constants. κ is the fractional fibrosis: mechanical excitation. The element is $\mu_{\text{median}} = 3.66 \text{ (kPa)}, (1.9 - 6.29 \text{ kPa})$ the and α powerlaw $\alpha_{\text{median}} = 0.25 (-), (0.21 - 0.28)$ shear modulus μ was derived dimensionless by assuming a viscosity η of exponent liver tissue of 7.3 (Pa.s)

Table S6: MRE models description				
Author	Techniques	Model	Measured parameter	
(Klatt et al., 2007)	MRE at four driving frequencies between 25 and 62.5 Hz	Voigt: $\mathbf{G}^{\star}(\omega) = \mu + i\omega\eta$ Maxwell: $\mathbf{G}^{\star}(\omega) = \frac{i\omega\eta\mu}{\mu + i\omega\eta}$ Zener: $\mathbf{G}^{\star}(\omega) = \frac{\mu_{1}\mu_{2} + i\omega\eta(\mu_{1} + \mu_{2})}{\mu_{2} + i\omega\eta}$ Jeffreys: $\mathbf{G}^{\star}(\omega) = \frac{\omega\eta_{2} - i\mu}{\mu + i\omega(\eta_{1} + \eta_{2})}$ Fractional Zener: $\mathbf{G}^{\star}(\omega) = \mu_{1} + \frac{\mu_{2}(\frac{i\omega\eta}{\mu_{2}})^{\alpha}}{1 + (\frac{i\omega\eta}{\mu_{2}})^{\alpha}}$	Voigt: $\eta_{\text{mean}} = 2.8 \text{ (Pa s)}, \ \mu_{\text{mean}} = 2.09 \text{ (kPa)}$ $\chi_{\text{mean}} = 0.31 \text{ (kPa)}$ Maxvell: $\eta_{\text{mean}} = 21.3 \text{ (Pa s)}, \ \mu_{\text{mean}} = 2.52 \text{ (kPa)}$ $\chi_{mean} = 0.28 \text{ (kPa)}$ Zener: $\eta_{\text{mean}} = 5.5 \text{ (Pa s)}, \ \mu_{1\text{mean}} = 1.36 \text{ (kPa)}$ $\mu_{2\text{mean}} = 1.86 \text{ (kPa)} \ \chi_{\text{mean}} = 0.08 \text{ (kPa)}$ Jeffreys: $\eta_{1\text{mean}} = 41.6 \text{ (Pa s)}, \ \eta_{2\text{mean}} = 1.4 \text{ (Pa s)}$ $\mu_{\text{mean}} = 2.41 \text{ (kPa)} \ \chi_{\text{mean}} = 0.25 \text{ (kPa)}$ Fractional Zener: $\eta_{\text{mean}} = 6.2 \text{ (Pa s)}, \ \mu_{1\text{mean}} = 1.2 \text{ (Pa s)}$ $\mu_{2\text{mean}} = 3.33 \text{ (kPa)} \ \alpha_{\text{mean}} = 0.91(-)$ $\chi_{\text{mean}} = 0.38 \text{ (kPa)}$	
(Kruse et al., 2000)	MRE with shear wave frequencies of 75, 100, 150, 200, 250 and 300 Hz by transverse motion of a contact plate connected to an electromechanical actuator. Elastographic imaging of a cube of tissue-simulating material (18% bovine gelatin) was also performed at shear wave frequencies ranging from 100 to 500 Hz	Isotropic Hookean: $\mu = v^2 \rho$ μ : shear stiffness v : shear wave propagation speed ρ : density	$\mu = 2.73 \text{ (kPa)}$ $\eta = 10.3 \text{ (Pa s)}$	

Т
_
0
3
±.
Ð
2
S

Table S6: MRE models description				
Author	Techniques	Model	Measured parameter	
(Leclerc et al., 2013)	Fibroscan was performed at 50 Hz and multifrequency MRE experiments were performed at 60, 70, and 80 Hz.	Voigt: $\mathbf{G}^{\star} = \mu + i\omega\eta$ Spring pot: $\mathbf{G}^{\star} = \mu^{1-\alpha}\eta^{\alpha}(i\omega)^{\alpha}$	Voigt: $\eta = 0.8 \pm 0.1 (Pa s)$ Spring pot: $\eta = 3.9 \pm 0.7 (Pa s)$	
(Leclerc et al., 2015)	MRE at 60 Hz and displacement of the cylindrical pneumatic driver membrane	Isotropic homogeneous elastic: $\mu = \rho \lambda^2 f^2$ $\rho = 1000 \text{ (kg/m}^3\text{)}$ μ : shear stiffness λ : wavelength f : wave frequency	$\mu = 4.16 \pm 0.14 \; (kPa)$	
(Lee et al., 2014)	The 60 Hz acoustic wave was used as an excitatory stimulus. A 19-cm-diameter and 1.5-cmthick, cylindrical, passive, longitudinal, shear wave driver was placed against the right chest wall over the liver with the center of the driver at the level of the xiphisternum.	elastic	stiffness: normal liver parenchyma 3.45±0.25 (kPa) (1.38–8.48(kPa)) chronic liver diseases 4.28±0.33 (kPa) (1.68–8.48(kPa))	

Author	Techniques	Model	Measured parameter
(Reiter et al., 2014)	MRE was applied in a large	Spring pot model:	$E_{mean} = 5.75 \text{ (kPa)}$
	dynamic range from 200	E : Static indentation Young's	$\mu_{mean} = 7.5 \; (\text{kPa})$
	to 1200 Hz. For induced	modulus	$\alpha_{mean} = 0.150 \; (\text{rad})$
	wave imaging, a gradient	μ : Dynamic shear modulus	$\mathbf{G'} = 8.7 \; (\mathrm{kPa})$
	echo sequence enhanced by	α : Powerlaw exponent according	$\mathbf{G}'' = 1.9 \; (\mathrm{kPa})$
	sinusoidal motion encoding	to the spring pot model	
	gradients (MEG) was used.		
	The MEG frequency was		
	adapted to the mechanical		
	vibration frequency f from		
	200 to 1200 Hz in increments		
	of 100 Hz		
(Riek et al., 2011)	A FLASH sequence was	Spring pot:	Fibrotic human liver:
	customized for MRE by	$\mathbf{G}^{\star} = \mu^{1-\alpha} \eta^{\alpha} (\mathbf{i}\omega)^{\alpha}$	$\mu = 57.5 (\mathrm{kPa}), \alpha = 0.34$
	sinusoidal motion sensitizing		Bovine liver:
	gradients (MSG) in the		$\mu = 3.7 \pm 0.6 (\text{kPa}), \alpha = 0.28 \pm 0.01$
	through-plane direction. The		
	MSG strength was 285 mT/m,		
	with frequencies 100-800 Hz		
	matched to the mechanical		
	vibration		
(Ronot et al., 2014)	The MRE acquisitions were	NM	NM
	obtained sequentially with		
	three different mechanical		
	excitation frequencies of 500,		
	600, and 700 Hz		

0
÷.
<u></u>
<u> </u>
ŵ
v ,

Table S6: MRE models description				
Author	Techniques	Model	Measured parameter	
(Salameh et al., 2007)	Longitudinal mechanical	Voigt	Control rats:	
	waves of 200 Hz were		$\mu_{\rm mean} = 1.76 \pm 0.37 \; (\rm kPa)$	
	transmitted into the liver with		$\eta_{\rm mean} = 0.51 \pm 0.04 \; (\rm kPa)$	
	a transducer consisting of a		Rats with fibrosis:	
	coil driven by a programmable		$\mu_{\rm mean} = 2.29 \pm 0.32 \; (\rm kPa)$	
	pulse generator		$\eta_{\rm mean} = 0.69 \pm 0.12 \; (\rm kPa)$	
(Salameh et al., 2009)	Longitudinal mechanical	NM	Control rats:	
	waves of 300 Hz were		$\mu_{\rm mean} = 1.82 \pm 0.22 \; (\rm kPa)$	
	transmitted to the liver		$\eta_{\rm mean} = 0.59 \pm 0.12 \; ({\rm kPa})$	
	with a custom-built		Choline-deficient rats:	
	transducer consisting of		at two weeks	
	two piezoelectric plates		$\mu_{\rm mean} = 2.24 \pm 0.19 \; ({\rm kPa})$	
	driven by a programmable		$\eta_{\rm mean} = 0.86 \pm 0.10 \; (\rm kPa)$	
	pulse generator		at five weeks	
			$\mu_{\rm mean} = 2.72 \pm 0.45 \; (\rm kPa)$	
			$\eta_{\rm mean} = 1.08 \pm 0.20 \; (\rm kPa)$	
			at eight weeks	
			$\mu_{\rm mean} = 2.90 \pm 0.49 \; (\rm kPa)$	
			$\eta_{\rm mean} = 1.14 \pm 0.19 \; (\rm kPa)$	
			Orotic acid diet group:	
			$\mu_{\rm mean} = 2.10 \pm 0.15 \; (\rm kPa)$	
			$\eta_{\rm mean} = 0.77 \pm 0.11 \; (\rm kPa)$	
			Group injected with carbon tetrachloride:	
			$\mu_{\rm mean} = 2.96 \pm 0.63 (\rm kPa)$	
			$\eta_{\rm mean} = 0.85 \pm 0.22 \; (\rm kPa)$	

Table S6: MRE models	description
----------------------	-------------

Author	Techniques	Model	Measured parameter
(Tang and Wan, 2014)	A simple-to-build data	Neo-Hookean:	E = 15 (kPa)
	acquisition system for	$W = \frac{\mu}{2}(I_1 - 3) - \mu \log J +$	$\nu = 0.45 (-)$
	capturing soft-tissue	$\beta_{(log I)^2}$	
	deformations ex vivo,	$\frac{1}{2}$ (log J)	
	which was used to record the	μ and β : Lame constants	
	indentation and stretch tests on ex vivo samples	$\mu = \frac{\mu}{2(1+\nu)}, \beta = \frac{\mu}{2(1+\nu)},$	
		$\frac{12\nu}{(1+\nu)(1-2\nu)}$	
(Tomita et al., 2018)	The MRE acquisitions were	Zener:	\mathbf{G}' :
	obtained with three different	$\mathbf{G}' = \mu_0 + \frac{\mu_1(\omega\eta_1)^2}{2}$	62.5 (Hz) : 14.5 (kPa)
	frequencies of 62.5, 125, and	$\mu_1^2 + (\omega \eta_1)^2$	125 (Hz) : 14.9 (kPa)
	250 Hz	$\mathbf{G}'' = \frac{\mu_1(\omega\eta_1)^2}{2}$	250 (Hz) : 15.0 (kPa)
		$\frac{\mu_1^2 + (\omega\eta_1)^2}{1 + (\omega\eta_1)^2}$	
(Tzschätzsch et al., 2014)	Time-harmonic	Elastic: $\sqrt{\mu}$	Elastic:
	multifrequency MRE	$c_{\rm M}(\omega_{\rm n}) = \sqrt{\frac{r}{a}}$	1 HE: $\mu = 1.95$ (kPa), MRE: $\mu = 2.92$ (kPa)
		Kelvin-Voigt:	2.23 (KPA) Kalvin Voiet
		$c_{M}(\omega_{n}) =$	THE: $\mu = 1.05 (k P_0) n = 4.8 (P_0 s)$
		$\sqrt{2[\mu^2 + (\omega n)^2]}$	MRE : $\mu = 1.05$ (kFa) $\eta = 4.0(1 \text{ a S})$ MRE : $\mu = 1.21$ (kPa) $n = 4.7$ (Pa s)
		$\sqrt{\frac{\mu}{\rho[\mu + \sqrt{\mu^2 + (\omega\eta)^2}]}}$	MICL. $\mu = 1.21$ (KI α), $\eta = 4.1(1 \alpha 3)$
(Wang et al., 2011)	Continuous acoustic vibration	elastic	stiffness:
	at 60 Hz transmitted from an		liver without fibrosis
	active driver to the passive		3.16 (kPa) (2.62 - 3.58 (kPa))
	driver through a flexible vinyl		liver with any degree of fibrosis
	tube was used to produce		6.37 (kPa) (4.73-8.12(kPa))
	propagating shear waves in the liver		

Appendix H: Detailed of study population and diseases

Author	Study type	Study population characteristic	studied disease
(Amili et al., 2019)	In vitro	Phantom	-
(Asbach et al., 2008)	In vivo	Eight healthy volunteers and eight	Fibrosis (grade 3–4)
		patients with biopsy-proven liver	
		fibrosis (grade 3–4)	
(Asbach et al., 2010)	In vivo	16 healthy volunteers and 72	Fibrosis (grade 1–4)
		patients,	
		stage F1: $n = 20$, stage F2: $n = 17$,	
		stage F3: n = 16, stage F4: n = 19	
(Brock et al., 2005)	In vivo	Five healthy women volunteers,	-
		with average age of 33 years (range:	
		25 to 49)	
(Chen et al., 2011)	In vivo	A total of 58 subjects (mean (SD)	Nonalcoholic
		age: 51.5 (25–78 years), BMI: 38.3	steatohepatitis
		(21.2–50.6), (83% female)	in patients with
			nonalcoholic fatty liver
			disease
(Clarke et al., 2011)	In vivo	Fresh bovine liver	-
(Courtecuisse et al., 2014)	In vivo	Female pig	-
(Dzyubak et al., 2021)	In vivo	A total of 83 subjects (mean (SD)	Nonalcoholic
		age: 47 (±11), BMI: 47 (±9),	steatohepatitis
		83% female) from their cohort with	
		successful biopsy and MRE and	
		CSE-MRI	

Author	Study type	Study population characteristic	studied disease
(Eaton et al., 2020)	In vivo	a retrospective review of 204	Hepatic
		patients with patients who	decompensation in
		underwent 2 MREs at a single	patients with primary
		center between January 1, 2007	sclerosing cholangitis
		and December 31, 2018, age: 47	
		(34-61), BMI: 25.60 (22.90-28.90),	
		33.44 (69/2014) % female)	
(Garteiser et al., 2012)	In vivo	72 patients including 27 men with	Liver lesions due to
		an average age of 59 years (range 20	tumor
		to 78 years) and 45 women with an	
		average age of 46 years (range 20 to	
		70 years)	
(Gidener et al., 2020)	In vivo	A total of 829 NAFLD subjects	NAFLD
		(54% women, median age 58 years)	
(Godfrey et al., 2012)	In vivo	77 patients (55 male, 22 female)	Fibrosis
		were referred for liver biopsy. The	
		mean age was 49 ± 11.5 years (24–	
		79 years).	
(Hariharan et al., 2007)	In vitro	Excised porcine liver	Tumor ablation
(Hudert et al., 2019)	In vivo	Fifty subjects, F0 (fifteen men, Age:	NAFLD
		15.3 ± 1.4 years, BMI: 34.2 ± 5.5	
		$(kg/m^2))$, F1 (seven men, five	
		women, Age: 14.3 ± 2.3 years, BMI:	
		$36.2\pm4.6 (kg/m^2))$, F2 (eight men,	
		one woman, Age: 13.6 ± 2.4 years,	
		BMI: $33.3 \pm 5.4 \text{ (kg/m}^2)$), F3 (10	
		men, four women, Age: 13.1 ± 2.0	
		years, BMI: $31.9 \pm 6.1 (kg/m^2))$	
(Idkaidek and Jasiuk, 2015)	In vitro	Porcine liver	-

Author	Study type	Study population characteristic	studied disease
(Kamphues et al., 2012)	In vivo and	25 patients with liver-transplant	Hepatitis C
	in vitro		
(Klatt et al., 2007)	In vivo	Five healthy men volunteers aged	-
		25, 34, 35, 37 and 46 years	
(Kruse et al., 2000)	In vivo	Juvenile porcine hepatic and renal	-
		parenchymal	
(Lara et al., 2011)	In vitro	Phantom	-
(Leclerc et al., 2013)	In vitro	40 subjects, 10 healthy volunteers	Alcoholic liver fibrosis
		(seven men, three women, mean	
		age, 41 years, range 23.8 to 48.4	
		years) without liver damage, and 30	
		alcoholic patients (23 men, seven	
		women, mean age, 43 years, range	
		29.6 to 59.8 years)	
(Leclerc et al., 2015)	In vitro	A homogeneous phantom composed	-
		of 45% softener and 55% liquid	
		plastic	
(Lee et al., 2010)	In vivo	A normal female subject, four	-
		patients (three men, one woman,	
		mean age 66 \pm 8) and a silicone	
		model of the internal organs	
(Lee et al., 2014)	In vivo	94 consecutive patients (64 males	Fibrosis
		and 30 females; age range, 27-82	
		years; mean age, 58 years; BMI:,	
		16.31–31.21 kg/m2	

Author	Study type	Study population characteristic	studied disease
(Lu and Untaroiu, 2014)	In vivo	15 subjects including six women	-
		(height range 1.5 to 1.74, weight	
		range 48 to 91.7, age range 24 to	
		41) and nine men (height range 1.6	
		to 1.91, weight range 64 to 102.1,	
		age range 26 to 32)	
(Ma et al., 2019)	Ex vivo	Living liver donor	-
(Monti et al., 2014)	In vivo	NM	-
(Motosugi et al., 2019)	In vivo	There were 23 participants (mean	Gastroesophageal
		age, 52.3 years, age range 25 to 75	varices in patients with
		years), including 14 men (mean age,	liver cirrhosis
		51.7 years, age range 25 to 75 years)	
		and nine women (mean age, 53.2	
		years, age range 31 to 72 years) with	
		no varices $(n = 8)$, low-risk varices	
		(n = 8), and high-risk varices $(n = 7)$	
		determined at endoscopy	
(Ning et al., 2018)	In vivo	13 domestic pigs (all female, mean	Portal vein
		weight 54 kg)	embolization
(Reiter et al., 2014)	Ex vivo	17 samples, 16 from human liver	Fibrosis
		tissue and one from fresh bovine	
		liver	
(Reiter et al., 2018)	In vivo	16 healthy volunteers, 15 patients	alpha1-antitrypsin
		with liver fibrosis in patients	deficiency
		with alpha1-antitrypsin deficiency	
		patients (11 homozygous PiZZ, 4	
		heterozygous PiMZ)	

Author	Study type	Study population characteristic	studied disease				
(Reiter et al., 2020)	In vivo	16 healthy volunteers (eight men and eight women) and 45 patients (27 men and 18 women), Patients and healthy volunteers had a mean age of 49 years (range 16 to 75 years) and 52 years (range 31 to 75 years)	Fibrosis				
(Riek et al., 2011)	Ex vivo	Fresh bovine liver, bovine muscle, and calf brain	-				
(Roldán-Alzate et al., 2013)	In vivo	17 patients (58.6 \pm 6.73 years, 88.4 \pm 6.7 kg, 13 men, four women) with portal hypertension and seven (32.2 \pm 10.1 years, 85.7 \pm 8.7 kg, four men, three women) subjects with no liver disease	Cirrhosis and portal hypertension				
(Ronot et al., 2014)	Ex vivo	50 male Wistar rats aged eight weeks and weighting 252 ± 28 g. Eight rats were used as controls, and liver fibrosis was induced in the 42 other rats	Fibrosis				
(Rutkowski et al., 2018)	In vivo and in vitro	Three healthy subjects with no known liver disease	Liver transplant				
(Rutkowski et al., 2019)	In vivo	12 subjects, six with cirrhosis and six with no known liver disease	Cirrhosis				
(Salameh et al., 2007)	In vivo	15 adult male Wistar rats weighing 386 \pm 9 g, five controls and 10 rats with liver fibrosis induced by intraperitoneal injections of carbon tetrachloride	Fibrosis				

Author	Study type	Study population characteristic	studied disease					
(Salameh et al., 2009)	In vivo	55 male Sprague-Dawley rats (mean	Steatohepatitis in fatty					
		weight: 268 g \pm 53, mean age: nine	liver					
		weeks ± 2), 12 control and 24 rats						
		with fatty liver						
(Shahryari et al., 2019)	In vivo	Seven healthy volunteers and	Liver lesions of					
		70 patients with a total of 105	different etiologies					
		malignant and 36 benign lesions						
(Stoter et al., 2017)	In vivo	NM	-					
(Tang and Wan, 2014)	In vitro	Porcine liver	-					
(Tomita et al., 2018)	In vitro	Agarose gel phantom, a healthy	-					
		volunteer (man, age 22 years)						
(Tzschätzsch et al., 2014)	In vivo	Eight healthy volunteers (mean age,	Liver fibrosis					
		35 years, range, 27 to 52 years)						
		and in a patient with biopsy-proven						
		cirrhosis						

Table S7: Detailed of study population and diseases

Author	Study type	Study population characteristic	studied disease					
(Wang et al., 2011)	In vivo	76 patients (50 men and 26 women;	viral hepatitis in 47					
		median age, 55 years; (20-74 years)	patients (chronic					
			hepatitis C in 44					
			patients, chronic					
			hepatitis B in					
			two patients, and					
			chronic hepatitis					
			C combined with					
			alcohol abuse in one					
			patient). Nonalcoholic					
			steatohepatitis in five					
			patients, nonalcoholic					
			steatosis in three					
			patients, autoimmune					
			diseases in nine					
			(autoimmune hepatitis					
			in four patients and					
			primary sclerosing					
			cholangitis in five),					
			Wilson disease in one,					
			cystic fibrosis in one,					
			heavy alcohol abuse in					
			one, and nonspecific					
			chronic liver disease in					
			nine patients.					
(Zhang et al., 2013)	In vivo	11 healthy volunteers	-					
(Zhang et al., 2014)	In vivo	A patient with liver tumor	Liver tumor					

-: The paper studied healthy liver, experimental model or phantom, NM: Not mentioned

Appendix I: Quality Assessment

Table S8: Quality Assessment

Author	1	2	3	4	5	6	7	8	9	10	11	12	Quality
(Amili et al., 2019)	1	1	1	NA	0	NA	<u>1</u>	0	1	1	1	1	High
(Asbach et al., 2008)	1	1	1	2	2	1	1	1	1	1	0	0	High
(Asbach et al., 2010)	1	0	1	2	2	1	1	1	1	1	1	0	High
(Brock et al., 2005)	1	1	1	2	2	1	1	1	1	0	1	0	High
(Clarke et al., 2011)	1	1	1	NA	NA	A 1	1	0	1	0	1	1	High
(Chen et al., 2011)	1	1	1	2	2	1	1	1	1	1	1	1	High
(Courtecuisse et al., 2014)	1	0	0	NA	0	0	1	0	1	0	0	0	Low
(Dzyubak et al., 2021)	1	1	1	1	1	1	1	1	1	1	0	1	High
(Eaton et al., 2020)	1	1	1	1	1	1	1	1	1	1	0	1	High
(Garteiser et al., 2012)	1	0	1	2	2	1	1	1	1	1	0	0	High
(Gidener et al., 2020)	1	1	1	1	1	1	1	1	1	1	0	1	High
(Godfrey et al., 2012)	1	0	1	2	2	1	1	1	1	1	1	0	High
(Hariharan et al., 2007)	1	0	0	0	0	0	1	0	1	1	1	0	Low
(Hudert et al., 2019)	1	0	1	2	2	1	1	1	NA	. 1	1	1	High
(Idkaidek and Jasiuk, 2015)	1	0	1	NA	0	1	1	0	1	0	0	1	Low
(Kamphues et al., 2012)	1	1	1	2	2	1	1	1	1	1	0	0	High
(Klatt et al., 2007)	1	0	1	2	2	1	1	1	1	1	0	1	High
(Kruse et al., 2000)	1	1	1	NA	0	0	1	0	1	1	1	0	High
(Lara et al., 2011)	1	0	1	0	0	0	1	1	1	1	1	0	Low
(Leclerc et al., 2013)	1	0	1	2	2	1	1	1	1	0	0	0	High
(Leclerc et al., 2015)	1	0	1	2	2	1	1	1	1	0	0	0	High
(Lee et al., 2010)	1	0	1	2	1	0	1	1	1	0	0	0	High
(Lee et al., 2014)	1	0	1	2	2	1	1	1	1	0	1	0	High
(Lu and Untaroiu, 2014)	1	0	1	2	2	1	1	0	NA	. 1	0	1	High
(Ma et al., 2019)	1	0	1	0	0	0	1	1	1	1	1	0	Low
(Monti et al., 2014)	1	0	0	0	0	0	1	0	1	1	1	1	Low
(Motosugi et al., 2019)	1	1	1	2	2	1	1	1	NA	. 1	1	1	High
(Ning et al., 2018)	1	0	1	NA	2	1	1	0	NA	. 1	1	0	High
(Reiter et al., 2014)	1	1	1	0	2	1	1	0	1	0	1	1	High
(Reiter et al., 2018)	1	0	1	2	2	1	1	1	0	1	1	1	Medium
(Reiter et al., 2020)	1	0	1	2	2	1	1	1	0	1	1	1	Medium
(Riek et al., 2011)	1	0	1	NA	0	1	1	0	1	0	1	1	Low
(Roldán-Alzate et al., 2013)	1	0	1	2	2	1	1	1	NA	. 1	1	0	High
(Ronot et al., 2014)	1	0	1	NA	2	1	1	0	1	1	1	1	High
(Rutkowski et al., 2018)	1	0	1	0	1	1	1	1	NA	. 0	1	1	Medium
(Rutkowski et al., 2019)	1	1	1	2	2	1	1	1	1	1	1	1	High
(Salameh et al., 2007)	1	0	1	NA	2	1	1	1	1	1	1	1	High
(Salameh et al., 2009)	1	0	1	NA	. 2	1	1	1	1	1	1	0	High
(Shahryari et al., 2019)	1	1	1	2	2	1	1	1	NA	. 1	1	1	High
(Stoter et al., 2017)	1	0	1	0	0	0	1	1	1	1	1	0	Low

Author	1	2	3	4	5	6	7	8	9	10	11	12	Quality
(Tang and Wan, 2014)	1	0	1	0	0	1	1	0	1	0	0	0	Low
(Tomita et al., 2018)	1	0	1	2	0	1	1	1	1	0	1	0	Low
(Tzschätzsch et al., 2014)	1	0	1	1	2	0	1	1	1	1	0	0	High
(Wang et al., 2011)	1	0	1	1	2	2	1	1	1	1	0	0	High
(Zhang et al., 2013)	1	1	1	0	2	1	1	1	1	1	0	0	High
(Zhang et al., 2014)	1	0	1	0	0	0	1	0	1	1	0	0	Low

Table S8: Quality Assessment

NA: Not applicable or Not mentioned