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Chronic neuropathic pain (CNP) is caused by a lesion or disease of the somatosensory

nervous system. It affects ∼8% of the general population and negatively impacts a

person’s level of functioning and quality of life. Its resistance to available pain therapies

makes CNP a major unmet medical need. Immune cells have been shown to play a role

for development, maintenance and recovery of CNP and therefore are attractive targets

for novel pain therapies. In particular, in neuropathic mice and humans, microglia are

activated in the dorsal horn and peripheral immune cells infiltrate the nervous system to

promote chronic neuroinflammation and contribute to the initiation and progression of

CNP. Importantly, immunity not only controls pain development and maintenance, but

is also essential for pain resolution. In particular, regulatory T cells, a subpopulation of

T lymphocytes with immune regulatory function, and macrophages were shown to be

important contributors to pain recovery. In this review we summarize the interactions of

the peripheral immune system with the nervous system and outline their contribution to

the development and recovery of pain.
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INTRODUCTION

Chronic pain is defined as a more than 12 weeks lasting pain that is characterized by irregular
somatosensory processing in the peripheral nervous system (PNS) or the central nervous system
(CNS) (1). Chronic neuropathic pain (CNP) is a specific form of chronic pain that is caused by
damage to or disease of the somatosensory nervous system (2, 3) and affects up to 8% of the general
population (4). CNP can result as a consequence of a large number of medical conditions, such
as injuries to the PNS or CNS, metabolic, autoimmune or neurodegenerative diseases as well as
cancer and chemotherapy (4, 5). In this review, we will mainly focus on CNP due to peripheral
nerve injuries and discuss results from chemotherapy-induced pain. Individuals suffering from
CNP exhibit stimulus-independent pain that is often characterized by abnormal sensations or
hypersensitivity in the affected area. Patients often describe the pain as a burning and/or stabbing
sensation (6). Allodynia, pain elicited by a usually non-painful stimulus, and hyperalgesia, an
increased pain response due to painful stimulus, are frequent symptoms described by CNP patients
(7). CNP can have a dramatic impact on a person’s level of functioning and quality of life and is
resistant to conservative pain management (7). Therefore, effective therapies that either prevent or
reverse CNP are critical for both public health and clinical practice (5).
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Research from the last two decades has demonstrated that
a robust neuroimmune response and bidirectional signaling
between the sensory and immune system contribute to
development and maintenance of CNP. Indeed, increased levels
of soluble pro-inflammatory mediators and recruitment of
immune cells to the site of nerve injury, the dorsal root
ganglion (DRG) and the spinal cord after PNS/CNS injury
are well-characterized in rodent models of CNP (8–15). In
addition, immune cells also contribute to recovery of CNP (16–
18), indicating that modulation of immunity has therapeutic
potential to treat CNP. Therefore, a detailed understanding
of the contribution of immune responses to the development,
maintenance and resolution of CNP may result in novel
therapeutic approaches that are superior to current pain-
relieving therapies.

DEVELOPMENT AND MAINTENANCE OF
CNP IS CONTROLLED BY CD4+

EFFECTOR T CELLS

T cells were identified as important contributors to CNP
development and maintenance in animal models and human
patients. Early on, the general importance of T cells for
pain development was demonstrated by several independent
studies showing that immunodeficient mice without functional
lymphocytes in contrast to control mice do not develop pain
hypersensitivity after nerve injury (9, 19, 20). Reconstitution of
immunodeficient nude rats (9), and mice (19) with CD4+ T
helper cells resulted in reestablishment of the pain phenotype,
suggesting that pro-inflammatory T helper cells promote pain
responses. T cells were shown to infiltrate into the lumbar spinal
cord post-injury (19). Similar, the Th1 cytokine interferon-γ
(IFN-γ) is upregulated in the dorsal horn after nerve injury and
functional IFN-γ signaling is required for full development of
neuropathic hypersensitivity (20), indicating that Th1 responses
in the spinal cord contribute to pain hypersensitivity. The
important role of T cell infiltration for development of pain
was further confirmed by a recent study demonstrating that
intrathecal injection of a T cell receptor (TCR) specific antibody
that depletes functional CD4+ T cells resulted in alleviation
of mechanical allodynia, indicating that CNS infiltrating T
cells directly contribute to pain responses. Once treatment was
terminated, mechanical allodynia returned to levels comparable
to control mice, presumably due to repopulation of functional T
cells in the CNS (21).

Next to IFN-γ expressing Th1 cells, IL17-expressing T helper
cells were detected in peripheral nerves, indicating that Th17
cells may also contribute to pain development (22). Indeed,
intrathecal and intraneural injection of recombinant IL-17A
induced pain hypersensitivity (23), indicating a role of IL-17A for
pain development. A recent study further confirmed that IL-17A
regulates neuron-glial communications, synaptic transmission,
and neuropathic pain after chemotherapy (24). Additional
mechanistic data showed that DRG-infiltrating T lymphocytes
release leukocyte elastase after nerve injury. Confirming that
leukocyte elastase promotes T cell-dependent pain responses,

adoptive transfer of leukocyte elastase deficient T cells did not
restore pain development in immunodeficient Rag2−/− mice
(25). This indicated that T cells may also directly contribute to
nerve damage.

Interestingly, MHC class II knockout (k/o) mice that lack
MHC class II-restricted T helper cells displayed an impaired
chronification of mechanical allodynia after peripheral nerve
injury (26), indicating the general importance of CD4+ T helper
cells for pain chronification in rodents. This was confirmed
by a recent study showing that MHC class II-restricted CD4+

T helper cells contribute to the transition from acute to
chronic mechanical allodynia in a rat model of peripheral nerve
injury (21). Clinical studies have shown that a human major
histocompatibility complex (MHC) class II gene polymorphism
(DQB1∗03:02 HLA haplotype) is associated with an increased
risk to develop CNP after inguinal hernia surgery and lumbar
disc herniation (27). The importance of MHC class II genes for
CNP development indicates that, similar to the animal models,
CD4+ Th cells contribute to CNP development in human
patients. The relevance of MHCII-restricted T helper cells as
an important trigger for chronic hypersensitivity after nerve
injuries has been recently discussed by Ding et al. (28), where
they indicate that there is a growing body of clinical evidences
showing that increased blood Th cell numbers and changes in
subset patterns are correlated with neuropathic pain intensities
after nerve injuries. Other clinical data indicate that an emergent
T-helper 2 profile with high interleukin-6 levels correlates with
the appearance of bortezomib-induced neuropathic pain (29).
Interestingly, Luchting et al. (30) found a disrupted Th17/Treg
balance with significantly increased anti-inflammatory Tregs and
decreased pro-inflammatory Th17 cells in patients suffering from
chronic unspecific low back pain compared to healthy controls,
indicating an anti-inflammatory T cell shift in the patients they
analyzed. Altogether, these clinical data indicate that there is a
considerable impact of the T cell compartment in neuropathic
pain. However, the role of pro- and anti-inflammatory T cell
subsets in CNP patients seems to differ depending on the pain
condition of the patients.

T CELL SUBSETS CONTRIBUTE TO PAIN
RECOVERY

In 2004 Moalem et al. (9) showed that adoptive transfer
of Th2 polarized T helper cells in athymic nude rats
further reduced pain hypersensitivity, indicating that anti-
inflammatory responses mediated by Th2 cells may counteract
inflammatory processes that promote pain development and
maintenance. Indeed, higher circulating levels of the anti-
inflammatory interleukins IL-10 and IL-4 were detected in
patients with painless neuropathy compared to patients with
painful neuropathy and controls (31), indicating that anti-
inflammatory responses may be necessary to control pain
development. Indeed, Leger et al. (32) demonstrated that
glatiramer acetate treatment, an approved MS therapy, inhibited
microglia activation and increased IL-10 and IL-4 expressing T
cells in the dorsal horn after peripheral nerve injury resulting
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in alleviation of neuropathic allodynia. This indicates that next
to their pathologic role for development and maintenance
of CNP, T cells may also contribute to the resolution
of pain.

CD8+ T CELLS CONTRIBUTE TO PAIN
RECOVERY

Whereas, CD4+ Th1 cells promote pain development and
maintenance, several reports indicate that CD8+ T cells may
contribute to pain resolution. Krukowski et al. (33) showed
that chemotherapy-induced mechanical hypersensitivity was
prolonged in T-cell-deficient Rag1−/− mice compared to wild
type mice. Adoptive transfer of CD8+, but not CD4+ T
cells to neuropathic Rag1−/− mice restored pain resolution.
Mechanistically, this study indicated that CD8+ T Cells and
endogenous IL-10 were required for resolution of CNP (33).
Other studies have also reported a role of IL-10 for pain
resolution and functional recovery after peripheral nerve injury
(34), indicating the general importance of anti-inflammatory
responses for pain resolution. Laumet et al. (35) recently
confirmed that resolution of chemotherapy-induced mechanical
allodynia is dependent on presence of CD8+ T cells. They
showed that adoptive transfer of CD8+ T cells from naïve
wildtype mice to T-cell-deficient neuropathic Rag2−/− mice
failed to promote pain resolution. In contrast, adoptive transfer
of cisplatin-educated CD8+ T cells prevented the development
of chemotherapy-induced CNP (35). Importantly, this T cell
education appeared to be independent of antigen recognition
by the T cell receptor because cisplatin-educated CD8+ T cells
did also promote pain resolution in a model of paclitaxel-
induced CNP and reconstitution of T cell deficient mice with
ovalbumin-specific CD8+ T cells also restored CNP resolution
(35). This study indicates that CD8+ T cells need to be activated
to acquire the capacity to promote resolution of CNP, but their
therapeutic activity seems to be independent of their antigen-
specific education. However, the role of CD8+ T cells for CNP
seems to be complex. Using a model of paclitaxel-induced CNP,
Liu et al. (36) showed that blocking of functional CD8+ T
cells at the level of the spinal cord and the DRG, reversed
chemotherapy induced mechanical hypersensitivity. Similar,
adoptive transfer of CD8+ T cells exacerbated neuropathic pain
in this model (36), suggesting that cytotoxic T cells contribute to
pain progression.

TREGS CONTROL IMMUNITY TO
PROMOTE PAIN RESOLUTION

Another important T cell subset that plays a role for pain
recovery are regulatory T cells (Tregs), immunomodulatory T
lymphocytes that control the activity of innate and adaptive
immune cells (37). After peripheral nerve injury, Tregs are
recruited to the site of injury, the DRG and the spinal cord
(16, 17, 38). Systemic expansion of Tregs was shown to
alleviate peripheral CNP following nerve injury and experimental

autoimmune neuritis-associated central CNP (16). Similar, anti-
CD25 antibody-dependent depletion of CD25+ cells prolonged
mechanical hypersensitivity after peripheral nerve injury (16,
18), indicating a role of CD25+ Tregs for pain recovery. In
another study DEREG mice, where FoxP3-expressing Tregs
can be depleted by injection of diphtheria toxin, were used to
specifically assess Treg contribution to pain recovery. Indeed,
following toxin application DEREG mice developed increased
mechanical pain hypersensitivity after peripheral nerve injury
(17), confirming that Tregs are important for pain recovery.
The analgesic role of Tregs was further confirmed in a model
of chemotherapy-induced CNP, where adoptive transfer of a
population of CD4+CD25+ T cells, which largely are composed
of Tregs, alleviated CNP (36).

In a recent study it was shown that nerve-infiltrating Tregs
suppress the development of neuropathic pain mainly through
the inhibition of the Th1 response by CD4+ T helper cells
following nerve injury (38). This resulted indirectly in reduced
neuronal damage and neuroinflammation at the level of the
sensory ganglia. The authors further identified IL-10 signaling
as an intrinsic mechanism by which Treg cells counteract
neuropathic pain development (38). Indeed, in a previous
study the neuroprotective effect of IL-10 secretion by CNS
infiltrating Tregs was demonstrated in an ischemia model
(39). Another recent study by Duffy et al. (40) showed that
adoptive transfer of activated Tregs or intrathecal delivery of the
Treg cytokine IL-35 alleviated spontaneous and facial stimulus-
evoked pain behaviors in mice with experimental autoimmune
encephalomyelitis (EAE). The effects of intrathecal IL-35
therapy were dependent on presence of Tregs and associated
with reduced monocyte infiltration in the trigeminal afferent
pathway and upregulated IL-10 expression in CNS-infiltrating
lymphocytes (40). Interestingly, intrathecal injection of plasmids
encoding IL-10 at the onset of clinical EAE suppressed disease
development and alleviated pain behaviors (41, 42), indicating
that the upregulated IL-10 expression observed in the study
of Duffy et al. (40) may be responsible for the observed pain
alleviating effect of Tregs.

All these data point toward a critical role of IL-10 for
pain resolution. Indeed, additional research showed that central
activation of anti-inflammatory cytokines such as IL-10 and
TGFβ suppresses allodynia after peripheral nerve injury (43)
and in a model of chemotherapy-induced neuropathic pain
(44). Mechanistically, in vitro studies showed that in addition
to its master anti-inflammatory role, IL-10 reverses voltage-
gated sodium currents to reduce neuronal excitability (45),
indicating a possible immune cell independent mechanism of
IL-10 mediated pain recovery. Therefore, therapies that promote
Treg activity and IL-10 signaling in the CNSmay prove beneficial
for pain therapies.

Over the last decade, we and others showed that tumor
necrosis factor receptor 2 (TNFR2) is critical for Treg
function and that selective agonism of TNFR2 results in Treg
expansion and is therapeutic in inflammatory conditions such
as experimental arthritis (46, 47) and graft vs. host disease
(48). We recently demonstrated that treatment of neuropathic
mice with a TNFR2 agonist promoted long-term pain recovery
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after peripheral nerve injury (18) and in neuropathic EAE mice
(49). Mechanistically, our study revealed that systemic TNFR2
agonist application promoted expansion of Tregs resulting in
alleviation of peripheral and central inflammation. We further
detected increased Treg and IL-10 levels in the spinal cord
after TNFR2 agonist treatment (18), indicating that Treg-
mediated IL-10 signaling in the CNS may contribute to the pain
alleviating effect of TNFR2 agonists too. Interestingly, next to
their anti-inflammatory functions, Tregs were shown to directly
promote tissue regeneration in the CNS (50). Confirming,
we observed upregulation of various proteins associated with
neuroregeneration after TNFR2 agonist treatment in neuropathic
mice (18), indicating that TNFR2-dependent expansion of
Tregs may promote pain recovery not only by modulation of
immunity, but also via enhanced tissue regeneration. Indeed,
previous studies showed that TNFR2 directly contributes to
neuroprotection (51–53).

MACROPHAGES CONTRIBUTE TO THE
DEVELOPMENT OF CNP

Next to T lymphocytes, peripheral monocytes that differentiate
into macrophages upon tissue infiltration were shown to play
a role for pain development. These cells were shown to
infiltrate around injured sensory neurons and in the DRG.
Inhibition of monocyte infiltration into the DRG prevented the
development of pain hypersensitivity in rodent models of CNP
(54, 55), indicating the importance of peripheral macrophages for
pain development. In a model of chemotherapy-induced CNP,
nerve infiltrating monocytes were activated by the chemokine
fractalkine (CX3CL1) resulting in the production of reactive
oxygen species that in turn activated the receptor TRPA1 in
sensory neurons and evoked the pain response (56). Additional
data indicate an interaction between the fractalkine receptor
CX3CR1 and the chemokine receptor CCR2 in monocytes
that may constitute an underlying mechanism for persistent
chemotherapy-induced pain (57).

Monocytes/macrophages were shown to act synergistically
with microglia to initiate hypersensitivity and promote the
transition from acute to chronic pain after peripheral nerve
injury (58). A recent study demonstrated that DRGmacrophages,
but not macrophages that had infiltrated at the site of
injury contribute to initiation and maintenance of mechanical
hypersensitivity (59). Indeed, depletion of DRG macrophages,
but not at the site of injury, prevented the development of pain
and reversed ongoing nerve injury-induced hypersensitivity (59).
Macrophages that invade the DRG, release excitatory agents that
generate ectopic activity in sensory neurons thereby contributing
to neuropathology responsible for pain development (60, 61).

MACROPHAGES ALLEVIATE PAIN VIA THE
OPIOID SYSTEM AND
ANTI-INFLAMMATORY RESPONSES

Macrophage infiltration into the nerve is an essential step to allow
nerve regeneration. In particular, anti-inflammatory/reparative

M2 macrophages have been indicated to play a role for
repair processes after nerve injury (62). Indeed, perineural
transplantation of M2 macrophages resulted in attenuated
neuropathy-induced mechanical hypersensitivity (63, 64).
Similar, injection of IL-4, a cytokine responsible for M2
macrophage differentiation, at the site of nerve injury promoted
repolarization of macrophages into an anti-inflammatory M2
state, and ameliorated mechanic and thermal hypersensitivity
(65). Recently, it was shown that local sympathectomy relieves
chemotherapy-induced allodynia in mice via anti-inflammatory
responses. Depletion of monocytes/macrophages and blockade
of transforming growth factor-β (TGF-β) signaling reversed
the relief of mechanical allodynia by sympathectomy (66).
Importantly, TGF-β induces M2-like macrophage polarization
(67), indicating that TGF-β-induced M2 macrophage
polarization might be responsible for the therapeutic effect
of local sympathectomy in the aforementioned study.

Interestingly, cultured M2 macrophages contained and
released higher amounts of opioid peptides (63). Similar, a recent
study demonstrated that IL-4 application at injured nerves
shifted macrophage polarization from a proinflammatory M1 to
an anti-inflammatory M2 phenotype. These M2 macrophages
continuously synthesized opioid peptides. IL-4 administration
further resulted in a long-lasting attenuation of neuropathy-
induced mechanical hypersensitivity after discontinuing
treatment. Confirming the importance of M2 macrophage-
secreted opioids, IL-4-induced analgesia was decreased after
neutralizing opioid peptides or blocking opioid receptors at the
injured nerves (68). These studies indicate that M2 polarized
macrophages may regulate pain perception by modulation of
the opioid system. A key observation of our study showing that
TNFR2 agonist treatment promotes long-lasting pain recovery
was a repolarization of CNS-infiltrating macrophages into
an anti-inflammatory M2-like phenotype (18). However, the
contribution of M2 polarized macrophages in the spinal cord to
pain alleviation and a potential role of the opioid system is not
clear yet.

IMMUNE-MEDIATED SEX DIFFERENCES
IMPACT CNP DEVELOPMENT

Next to social and psychological factors, functional differences
in the immune system contribute to a higher female prevalence
for CNP development (69, 70). Using rodent models of injury-
induced CNP, it was shown that male and female mice use
different immune cells to initiation and maintain CNP. In
particular, microglia were shown to be the driver of male
neuroinflammation and CNP, whereas T cells primarily drive
neuroinflammation and CNP in females (71). These differences
seem to be dependent on cell populations, differences in
suppression by hormones, and disparate cellular responses
in males and females (72). Interestingly, in the absence
of adaptive immune cells, e.g., in Rag1−/− mice, female
mice use the male, glial-dependent pathway (71). Since sex
differences may impact the effectivity of analgesic therapeutics,
the different impact of immune cells to pain responses
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FIGURE 1 | Contribution of different immune cells to pain development and recovery. CD4+ T helper cells were shown to infiltrate the spinal cord, DRG and injured

nerve, where they contribute to pain responses through different mechanisms. Further, DRG invading macrophages were shown to be important mediators of pain.

Like T effector cells, Tregs infiltrate the nerve, DRG, and spinal cord in neuropathic mice and contribute to immunomodulation and tissue regeneration through different

mechanisms, including secretion of anti-inflammatory IL-10. M2 macrophages were shown to initiate analgesic responses in the nerve through upregulation of the

endogenous opioid system and anti-inflammatory responses.

TABLE 1 | Overview of peripheral immune cell contribution to pain development and recovery.

Immune cell Role Mediators (Therapeutic target)

CD4+ Th1 cells Promote pain development and maintenance IL17A, leukocyte elastase

CD4+ Th2 cells Promote pain recovery IL-10, IL-4

CD8+ T cells (educated) Promote pain recovery IL-10

Tregs Promote pain recovery IL-10, IL-35, TGF-β, TNFR2

Inflammatory macrophages Promote pain development and maintenance CX3CL1, ROS

Anti-inflammatory macrophages Alleviate pain Endogenous opioids, TGF-β, IL-10

needs to be considered in therapeutics development. Indeed,
we observed different responsiveness of male and female
mice in a preclinical trial for a novel TNF modulating
compound (73). Therefore, it is important to study the
therapeutic responses in males and females during preclinical
evaluation, in particular if they address T cell or microglial
responses. Therapies based on Treg modulation work across
sexes (18) indicating that they may interfere with microglial
and adaptive immune cell contribution to CNP development
and maintenance.

CONCLUSION AND OUTLOOK

The contribution of immunity to development and maintenance
of CNP are well-established and a complex interaction of
different immune cells contributes to CNP development
(Figure 1). Over the last years a growing body of literature on
the protective and regenerative role of the immune system for
pain has been published, including contributions of CD8+ T cells,
Tregs and M2 macrophages (Figure 1). Modulation of immune

responses, e.g., by targeting inflammatory or anti-inflammatory
mediators of peripheral immune cells, therefore is a promising
therapeutic approach to alleviate neuropathic pain (Table 1).
Concluding, a detailed understanding of immune-mediated
tissue regeneration in pain may promote the development of
novel immunotherapies for pain alleviation and ultimately may
translate into novel non-opioid therapies.
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