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Abstract

Einstein metrics originally arose in the context of General Relativity when considering
the field equations of gravitation in a vacuum, but have since been noted by Riemannian
geometers to be excellent objects of study. This is because the Einstein condition –
i.e. the constancy of Ricci curvature – is an ideal intermediate condition between the
very restrictive setting of constant sectional curvature on the one hand, only allowing
for spherical, Euclidean and hyperbolic geometry, and the very lax condition of constant
scalar curvature on the other hand, being achievable by conformal transformations from
any given Riemannian metric.
It is possible to characterize Einstein metrics as the critical points of the Einstein–

Hilbert functional S restricted to metrics of a fixed volume. This raises the question of
what the critical point type for a given Einstein metric g is. As it stands, this question
is swiftly answered: it turns out that g is always a saddle point. Only after restricting
to the subset of constant scalar curvature metrics, g may (or may not) turn out to be
stable, i.e. a local maximum of S. The second variation of S at g allows in any case
for a finite coindex and nullity. The behavior of S is, at least to second order, governed
by the spectral properties on an elliptic Laplace-type differential operator on symmetric
2-tensors, called the Lichnerowicz Laplacian.
Closely related to stability is the rigidity problem – that is, whether a given Einstein

metric g is isolated in the moduli space E of Einstein metrics. The null directions of S
correspond to infinitesimal perturbations of the metric, and it is a priori not clear whether
a given such perturbation is in fact integrable, that is, tangent to a proper curve in E .
Both problems are particularly interesting in the presence of symmetry, for example

on a homogeneous space. The Einstein equation, being an elliptic partial differential
equation, reduces for invariant metrics on homogeneous spaces to a polynomial equation.
Likewise, the homogeneous structure allows reducing many analytic problems to problems
in representation theory, owing to the applicability of harmonic analysis. The Lichnero-
wicz Laplacian, an invariant differential operator, may be analyzed in the Fourier image,
opening the door to an algebraic treatment of the stability problem on homogeneous
spaces.
The rigidity problem for homogeneous Einstein metrics is tied to the Finiteness Con-

jecture which states that there are essentially only finitely many solutions of the invariant
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Einstein equations on any compact homogeneous space. Given an infinitesimal perturba-
tion of the metric, there are polynomial obstructions to integrability which may, in the
homogeneous setting, also be tackled using representation-theoretic methods.
The idea of employing harmonic analysis to study the stability and deformability of

homogeneous Einstein manifolds was first brought forward by Koiso in the 1980s, who
settled the stability question for most of the irreducible symmetric spaces of compact
type. He left open a few gaps which were only recently closed, partially by the results of
the current thesis and partially by Semmelmann–Weingart.
The symmetric setting is particularly nice since the Licherowicz Laplacian coincides

with a natural representation-theoretic object called the Casimir operator. This fails to
hold if the space under consideration is not symmetric. However, for the much broader
class of normal homogeneous spaces, Casimir operators are still readily available. As a first
expedition into the non-symmetric world, the current thesis studies homogeneous Gray
manifolds, that is, strict nearly Kähler manifolds in dimension six. Here, the Lichnerowicz
Laplacian is still more or less explicitly related to a Casimir operator. The coindex of S
as well as the rigidity are completely determined for the known list of homogeneous Gray
manifolds.
For other normal homogeneous Einstein manifolds such an explicit relation has not

been available. At the heart of the current work lies a new explicit formula for the
Lichnerowicz Laplacian in terms of various Casimir operators, which is of course consid-
erably more complicated than in the symmetric setting. This is subsequently used to
systematically analyze the stability of normal homogeneous spaces – in particular, using
an estimation-based approach and with computer aid we obtain explicit results for many
normal homogeneous spaces with simple transitive group, these having previously been
classified by Wang, Wolf and Ziller.
An interesting member of the class of normal homogeneous spaces is the generalized

Wallach space E7/PSO(8). As one of the few generalized Wallach spaces that have been
observed by E. Lauret, J. Lauret and Will to be invariantly stable in a more restrictive
sense, the current thesis shows its stability by analyzing a certain curvature operator. This
is notable not only because it provides the first known example of a non-symmetric stable
Einstein metric of positive scalar curvature, but also because the curvature term and the
Lichnerowicz Laplacian are much more elusive than in the symmetric case: calculating
their eigenvalues is in general very difficult, forcing us to resort to estimates that are not
always sharp.
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Zusammenfassung

Der Begriff der Einstein-Metrik stammt ursprünglich aus der Allgemeinen Relativitäts-
theorie und bezeichnet dort eine Lösung der Feldgleichungen der Gravitation im Vakuum.
Seitdem erwiesen sich Einstein-Metriken auch im Kontext der Riemannschen Geome-
trie als exzellente Studienobjekte. Dies rührt daher, dass die Einstein-Bedingung – also
die Eigenschaft konstanter Ricci-Krümmung – einen idealen Mittelweg bildet zwischen
der sehr starren Bedingung konstanter Schnittkrümmung, welche im Wesentlichen zur
sphärischen, euklidischen oder hyperbolischen Geometrie führt, und der eher lockeren Be-
dingung konstanter Skalarkrümmung, von welcher jede beliebige Riemannsche Metrik nur
eine konforme Transformation entfernt ist.
Einstein-Metriken können als kritische Punkte des Einstein–Hilbert-Funktionals S, ein-

geschränkt auf Metriken festen Volumens, charakterisiert werden. Dies wirft die Frage
auf, was für eine gegebene Einstein-Metrik g der Typ des kritischen Punktes ist. Die
so gestellte Frage lässt sich leicht beantworten: wie sich herausstellt, ist g stets ein Sat-
telpunkt. Schränken wir S jedoch auf die Teilmenge der Metriken konstanter Skalarkrüm-
mung ein, dann kann es passieren, dass g ein lokales Maximum ist. In jedem Falle lässt
die zweite Variation von S an der Stelle g nur endlichen Koindex und Nullität zu. Das
Verhalten von S ist zumindest zur zweiten Ordnung durch die spektralen Eigenschaften
eines gewissen elliptischen Differentialoperators vom Laplace-Typ auf symmetrischen 2-
Tensoren bestimmt, dem sogenannten Lichnerowicz–Laplace-Operator.
Eng verwoben mit der Stabilität ist das Problem der Starrheit – das heißt, ob eine

gegebene Einstein-Metrik g im Modulraum E der Einstein-Metriken isoliert ist. Die Null-
richtungen von S entsprechen infinitesimalen Störungen der Metrik und es ist a priori
nicht klar, ob eine solche Störung integrabel ist, also ob man sie als tangential zur einer
echten Kurve in E verstehen kann.
Beide Probleme sind von besonderem Interesse, wenn Symmetrien ins Spiel kommen,

wie zum Beispiel auf homogenen Räumen. Die Einstein-Gleichung, welche ja eine ellip-
tische partielle Differentialgleichung ist, reduziert sich für invariante Metriken auf homo-
genen Räumen auf eine polynomielle Gleichung. Ähnlich erlaubt die homogene Struktur,
viele analytische Probleme auf darstellungstheoretische Probleme herunterzubrechen, was
letztlich der Anwendbarkeit harmonischer Analysis zu verdanken ist. Der Lichnerowicz–
Laplace-Operator kann als invarianter Differentialoperator im Fourier-Bild analysiert wer-
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den, was Tür und Tor zu einer algebraischen Betrachtung des Stabilitätsproblems für
homogene Räume öffnet.
Das Starrheitsproblem für homogene Einstein-Mannigfaltigkeiten hängt überdies mit

der Endlichkeitsvermutung zusammen, welche besagt, dass es auf jedem kompakten homo-
genen Raum im Wesentlichen höchstens endlich viele Lösungen der invarianten Einstein-
Gleichungen gibt. Zu jeder infinitesimalen Deformation der Metrik gibt es polynomielle
Obstruktionen gegen die Integrabilität, welche im homogenen Fall auch mit darstellungs-
theoretischen Methoden untersucht werden können.
Die Idee, harmonische Analysis zur Untersuchung der Stabilität und Starrheit homo-

gener Räume einzusetzen, wurde erstmalig von Koiso in den 1980er-Jahren vorgebracht,
welcher die Stabilitätsfrage für die meisten irreduziblen symmetrischen Räume kompakten
Typs klärte. Er ließ allerdings ein paar Lücken, welche erst vor Kurzem geschlossen wer-
den konnten – teils durch diese Dissertation, teils durch die Ergebnisse von Semmelmann–
Weingart.
Der symmetrische Fall ist besonders angenehm, da der Lichnerowicz–Laplace-Operator

dort mit einem natürlichen darstellungstheoretischen Objekt zusammenfällt – dem Ca-
simir-Operator. Dies gilt nicht mehr, wenn der Raum nicht symmetrisch ist. Für die
größere Klasse von normalen homogenen Räumen bieten sich Casimir-Operatoren je-
doch immer noch an. Als erste Expedition in die nicht-symmetrische Welt untersucht
die vorliegende Dissertation homogene Gray-Mannigfaltigkeiten, das heißt, strikte nearly-
Kähler-Mannigfaltigkeiten in Dimension sechs. Der Lichnerowicz–Laplace-Operator steht
hier immer noch mehr oder weniger explizit in Relation mit einem Casimir-Operator.
Der Koindex von S sowie die Starrheit werden für die bekannte Liste homogener Gray-
Mannigfaltigkeiten vollständig bestimmt.
Eine entsprechend explizite Relation gab es für allgemeine normale homogene Einstein-

Mannigfaltigkeiten bisher nicht. Das Herzstück dieser Arbeit bildet eine neue Formel,
welche den Lichnerowicz–Laplace-Operator durch verschiedene Casimir-Operatoren aus-
drückt. Diese ist natürlich deutlich komplizierter als im symmetrischen Fall. Im Weit-
eren wird diese genutzt, um systematisch die Stabilität normaler homogener Räume zu
analysieren – insbesondere erhalten wir durch einen auf Abschätzungen basierenden An-
satz und mit Computerunterstützung explizite Ergebnisse für viele normal homogene
Räume mit einfacher transitiver Gruppe. Letztere wurden zuvor von Wang, Wolf und
Ziller klassifiziert.
Ein interessanter normaler homogener Raum ist der verallgemeinerte Wallach-Raum

E7/PSO(8). Er ist einer der wenigen verallgemeinerten Wallach-Räume, die von E. Lau-
ret, J. Lauret und Will als stabil in einem restriktiveren, invarianten Sinne identifiziert
wurden. In der vorliegenden Dissertation zeigen wir seine Stabilität, indem ein gewisser
Krümmungsoperator analysiert wird. Dies ist aus zwei Gründen bemerkenswert: erstens,
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weil damit das erste bekannte Beispiel einer nicht-symmetrischen stabilen Einstein-Metrik
positiver Skalarkrümmung gefunden ist, und zweitens, weil der Krümmungsterm und der
Lichnerowicz–Laplace-Operator sich einer einfachen Behandlung wie im symmetrischen
Fall entziehen: die Berechnung ihrer Eigenwerte ist im Allgemeinen schwierig, was uns
dazu zwingt, Abschätzungen einzusetzen, die nicht immer scharf sein müssen.
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Preface

By the nature of a publication-based dissertation, it is bound to contain some amount of
redundancy. Each of the contributed articles [Sch22a; Sch22b; SSW22; Sch23] contains
its own introduction and a section where the necessary preliminaries are discussed in
appropriate technical detail, often overlapping contentwise. Moreover, the contributed
articles were in their original form aimed at an audience of readers proficient in the field.
Of course a doctoral thesis should give a more comprehensive account of the background
than a mere collection of research articles usually does.
In Chapter 1 my aim is to bridge that gap, to go beyond a boiled-down version of

the introductory parts of the contributed articles and instead tell a consistent story,
beginning with the historical motivation for Einstein manifolds and then steadily building
up the background knowledge and context required to appreciate the new results. For the
sake of story-telling I will for the most part refrain from regurgitating known proofs and
getting tangled up in technicalities, supplying comprehensive references instead. This
shall, however, not prevent me from spelling out the necessary terms and notions as
precisely as possible, so as not to lapse into handwaving.
Chapter 2 will give an overview over the methods and strategies used in the contributed

articles, the hurdles that arose and how they were overcome. It will also put the articles in
the contemporary research context, explaining the motivation for their precise objects of
study and give an exposition of the new results – all that not without paying respect to the
earlier work they have built on. Moreover, an outlook on potential further developments,
open questions and interesting cases to study next is provided.
Owing to the requirements on the dissertation, the introductory part is closely tied to

the contributed articles and necessarily limited in scope. It does thus not aspire to present
a complete survey of the by now quite broad topics of stability of Einstein metrics and of
homogeneous Einstein manifolds. It may, however, serve as a loose leitfaden to those that
are unacquainted with the subject, presupposing only that the reader has acquired basic
knowledge and interest in Riemannian geometry and perhaps also representation theory
– although the latter may be black-boxed in large parts. Ideally, Chapters 1 and 2 explain
everything (or at least something!) that the contributed articles do not.
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Having prepared the stage, the remaining chapters constitute the cumulative part of
the dissertation, that is, a reproduction of the contributed articles. We note that the last
of the four contributed articles [Sch23] has, as of today, not undergone peer review – we
thus expect it to be subject to a certain amount of change during its publication process.
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1 Introduction

“Dem Zauber dieser Theorie wird sich kaum jemand entziehen können, der sie wirklich erfaßt hat: sie
bedeutet einen wahren Triumph der durch Gauss, Riemann, Christoffel, Ricci und Levi-Civiter [sic]

begründeten Methode des allgemeinen Differentialkalküls.”
Albert Einstein (Zur allgemeinen Relativitätstheorie [Ein15b]).

1.1 Physical motivation

Our story opens in 1915 with Einstein first proposing the field equations of gravitation

Ricg−
1
2 scalg g = T (1.1)

in a curved spacetime, thus putting the theory of general relativity on a solid foundation
[Ein15a]. Here g stands for the “gravitational potential” – in other words a pseudo-
Riemannian metric with Lorentzian signature – which determines the curvature quantities
Ricg (Ricci curvature) and scalg (scalar curvature), and T denotes the stress-energy tensor
of matter. Putting T = 0 in (1.1) we obtain the vacuum field equations. These are
equivalent to g being Ricci-flat, that is Ricg = 0.
In the same year Hilbert showed [Hil15] that Einstein’s field equations emerge via the

principle of stationary action as the Euler–Lagrange equation of the total scalar curvature
functional

S(g) =
∫

scalg volg,

today appropriately called the Einstein–Hilbert action. More concretely: Equation (1.1)
with T = 0 describes precisely the solutions of the variational problem δS = 0.
In order to meet the assumption that the universe does not expand over time, Einstein

added a “cosmological term” to (1.1) [Ein17], leading to the modified field equations

Ricg−
1
2 scalg g + Eg = T (1.2)

with cosmological constant E ∈ R. Folklore has it that Einstein later referred to the
introduction of E as the “greatest blunder” of his life, for at least since the observations
of Hubble in 1929 the postulate of a static universe was no longer tenable. Only many
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decades later did the cosmological term prove to be of great importance for modern
cosmology.
If we restrict the Einstein–Hilbert functional S to metrics with a fixed volume, the

variational problem δS = 0 leads precisely to the field equations with cosmological term
(1.2) in vacuum (T = 0), which can be further simplified to

Ricg = Eg. (1.3)

A pseudo-Riemannian metric g satisfying condition (1.3) is called an Einstein metric, and
E is also called the Einstein constant of g. Applying the trace trg it follows immediately
that E = scalg

n
, where n denotes the dimension of the underlying manifold. In particular

Einstein metrics have constant scalar curvature. In fact (1.3) is in dimension n ≥ 3
equivalent to the vanishing of the trace-free part of Ricg, that is

Ricg−
scalg
n

g = 0. (1.4)

In the case of Lorentzian signature, (1.4) is a hyperbolic partial differential equation. A
usual approch to this type of problem is to specify Cauchy initial data on a suitable
spacelike hypersurface and view (1.4) as an evolution equation.
In contrast, we will exclusively deal with Riemannian (i.e. positive definite) metrics.

Furthermore we will assume that the underlying space is compact, so that integration does
not cause any difficulties. Equation (1.4) is then an elliptic partial differential equation.
In order to study Einstein metrics we can and will exploit the full power of elliptic theory.
It should be mentioned that the Einstein condition (1.3) presents a reasonable notion

of “constant Ricci curvature”. This can be illustrated as follows: Let SM ⊂ TM denote
the sphere bundle of unit tangent vectors of some Riemannian manifold (M, g). The Ricci
tensor Ricg now defines a quadratic form r : TM → R by r(X) := Ricg(X,X). Then r
is constant on SM if and only if g is an Einstein metric.

1.2 The Einstein–Hilbert action

In this and the next two sections, before we come to the special case of homogeneous
manifolds, we will briefly lay out the groundwork for what is to come. A comprehensive
and detailed account of the following topics is available in [Bes87].
Let us first agree on the setting. Let Mn be a closed and oriented manifold which we

will assume to be of dimension n ≥ 3. (On surfaces there is no traceless part of Ricg and
the Einstein condition is equivalent to the constancy of the Gaussian curvature.)
The set M of Riemannian metrics on M is a convex open cone (in the compact-open
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topology) inside the space S 2(M) = Γ(Sym2 T ∗M) of covariant symmetric 2-tensor fields.
The total scalar curvature functional (or Einstein–Hilbert action) does what its name says:
it maps

S : M → R, g 7→
∫
M

scalg volg .

Denote with
M1 = {g ∈M |

∫
M volg = 1}

the subset of volume one metrics. By a theorem of Hilbert [Bes87, Thm. 4.21], Einstein
metrics in M1 are precisely the critical points of the restricted functional S

∣∣∣
M1

. In terms
of the first variation (or gradient)

S ′g : TgM1 → R

at g, this means that S ′g(h) = 0 for all h ∈ TgM1. Here

TgM1 = {h ∈ S 2(M) |
∫
M(trg h) volg = 0}

is the formal tangent space of M1 at g.
At this point we should talk about what “critical point”, or more precisely, “taking a

derivative” means inside M1. Certainly one can take directional derivatives since M1 is
a subset of the topological (even Fréchet!) vector space S 2(M), which is sufficient for
defining formal tangent spaces and critical points. However, we have even more: M1 is an
ILH-manifold (that is, modeled on an inverse limit of Hilbert spaces, a notion introduced
by Omori [Omo68]), which yields a version of the implicit function theorem.
Suppose now that g ∈ M1 is Einstein. One may ask under which conditions it is

possible for g to be a local maximum or minimum of S – that is, whether g is stable for
the Einstein–Hilbert action. But alas, it turns out that this is too much to ask for at this
stage. We will need to pass to a more refined setting.
First, let us remark that S is invariant under diffeomorphisms – that is

S(g) = S(ϕ∗g)

for any g ∈ M and ϕ ∈ Diff(M). Hence S ′g will annihilate all directions tangent to the
orbit Diff(M)g ⊂M1, i.e. the space LX(M)g ⊂ TgM1 of Lie derivatives of g. We can think
of Diff(M) as a gauge group that should be “quotiented out”. This is in fact justified by
Ebin’s Slice Theorem [Ebi68] which essentially states that the quotient M /Diff(M) can
locally be treated as a manifold.
Instead of M1, consider the ILH-submanifold S of unit volume metrics with constant

3



scalar curvature. Tangent to it is the space

S 2
tt(M) = {h ∈ S 2(M) | trg h = 0, δgh = 0}

of tt-tensors (short for transverse and traceless), the term tracing back to General Rela-
tivity where it describes a certain canonical gauge for small perturbations of a background
metric. This is no coincidence – by the Slice Theorem and the decomposition

S 2(M) = LX(M)g ⊕ ker δg,

the requirement δgh = 0 does precisely the job of fixing a gauge with respect to Diff(M).
Let C∞g (M) denote the set of smooth functions on M with average zero. A theorem

due to Berger and Koiso states that, under the generic assumption that (M, g) is not
isometric to a round sphere, there is a decomposition

TgM1 = C∞g (M)g ⊕ LX(M)g ⊕S 2
tt(M), (1.5)

which is orthogonal with respect to the second variation (or Hessian) S ′′g of the total scalar
curvature functional [Bes87, Thm. 4.60]. This allows us to discuss S ′′g separately on each
component. Moreover the second and third summand in (1.5) constitute together the
formal tangent space TgS.
We will not look under the hood, i.e. at the proof, of this result. However it shall

be said that in order to prove decomposition (1.5) one needs to apply elliptic theory to
various differential operators as well as employ the ILH implicit function theorem for S.
It turns out that S ′′g is positive definite when restricted to C∞g (M)g, implying that

Einstein metrics are local minima of S under (volume-preserving) conformal change. As
per a previous remark the summand LX(M)g is contained in the null space of S ′′g . Finally,
on the infinitesimal space of tt-tensors, S ′′g is almost negative definite in the sense that it
has only finite coindex and nullity. This is a consequence of the formula

S ′′g (h, h) = −1
2 (∆Lh− 2Eh, h)L2 , h ∈ S 2

tt(M), (1.6)

involving the peculiar Lichnerowicz Laplacian ∆L, a self-adjoint elliptic operator with
spectrum accumulating at positive infinity.
This answers our original question about the nature of critical points g of S on M1 –

all of them are saddle points! The problem gets more interesting once we restrict S to the
space S of constant scalar curvature metrics, where we can have both saddle points and
local maxima. The latter is what is usually meant when people talk about stable Einstein
metrics.
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The linearized stability problem is thus decided by the behaviour of S ′′g on tt-tensors.
An Einstein metric g is called linearly (strictly) stable if S ′′g is indeed negative definite on
S 2

tt(M), and unstable if S ′′g (h, h) > 0 for some h ∈ S 2
tt(M) (such a tt-tensor h is called

a destabilizing direction). Some authors only require semidefiniteness for linear stability,
while others call Einstein metrics that satisfy this weaker condition semistable.
What about null directions for S ′′g in S 2

tt(M)? These are called the essential infinites-
imal deformations (EID) of an Einstein metric g and can be thought of as potential
first-order jets to a genuine curve of Einstein metrics. We will address this issue of de-
formability of Einstein metrics in §1.4.
We emphasize that semistability is not sufficient for g to be a local maximum of S

∣∣∣
M1

.
Indeed, two counterexamples are the symmetric spaces SU(n), n ≥ 3, and SU(2n)/ Sp(n),
n ≥ 2 [LW22a], see also [BWZ04, Ex. 6.8] for the latter.
It shall not go unmentioned that the investigation of stability in the Einstein–Hilbert

sense is also motivated by the close relation to stability under the Ricci flow. The Ricci
flow, a much-praised and important tool in Riemannian geometry and geometric topology,
is a dynamical system on M defined by the evolution equation

d

dt
gt = −2 Ricgt (1.7)

for a curve gt ∈M . The critical points of this flow are Ricci-flat metrics, while Einstein
metrics with E 6= 0 correspond to shrinking or expanding solutions (depending on the
sign of E). An even larger class of self-similar solutions to (1.7) are the gradient Ricci
solitons defined by the equation

Ricg +∇2f = 1
2τ g

where f ∈ C∞(M) is some potential function (whose gradient flow consists of diffeomor-
phisms that realize the aforementioned self-similarity up to scaling). In order to study
the shrinking case (τ > 0), Perelman introduced a functional ν : M → R (called the
ν-entropy) that is monotonically increasing under the Ricci flow and whose critical points
are exactly the (shrinking) gradient Ricci solitons [Per02]. Remarkably, this functional
turns out to have quite similar properties to the Einstein–Hilbert action. As shown by
Cao–Hamilton–Ilmanen [CHI04], if (M, g) is an Einstein manifold not isometric to a round
sphere, then decomposition (1.5) is still orthogonal for the second variation ν ′′g – moreover
ν ′′g and S ′′g coincide on LX(M)g ⊕S 2

tt(M), and ν ′′g is negative definite on C∞g (M)g if and
only if the first nonzero eigenvalue of the Laplace–Beltrami operator ∆ on C∞(M) is
greater than 2E. This ν-linear stability of an Einstein metric is thus a slightly stronger
condition than linear stability in the Einstein–Hilbert sense.
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It should be emphasized that the ν-functional is not just some arbitrary entropy quan-
tity, but captures the dynamical behaviour of the Ricci flow quite well. This is illustrated
in a result of Kröncke which states that any Einstein metric g of positive scalar curvature
is dynamically stable under the Ricci flow if and only if g locally maximizes the ν-entropy
[Krö15]. This dynamical stability (in the sense of Sesum [Ses06]) roughly means that any
arbitrary metric close to g will, under (1.7), eventually flow towards some Einstein metric
near g. As a consequence of Kröncke’s result, ν-linear strict stability implies dynamical
stability, and ν-linear instability implies dynamical instability.
We are thus forced to admit that the study of the Ricci flow may benefit from a better

understanding of the S- and thus the ν-functional.

1.3 The Lichnerowicz Laplacian

For now, let us take a closer look at the operator ∆L lying at the heart of the (linearized)
stability problem and being the central object of study in the present work. Fix a Rie-
mannian metric g on M , let ∇ denote its Levi–Civita connection and R its Riemannian
curvature tensor. On differential forms there is the well-known Weitzenböck formula

d∗d+ dd∗ = ∇∗∇+ q(R) (1.8)

where ∇∗∇ is the rough or Bochner Laplacian, and q(R) is a fibrewise term called the
standard curvature endomorphism. As Lichnerowicz realized [Lic61], the right hand side
of (1.8) makes sense when applied to tensor fields of arbitrary type, which led to the
definition

∆L = ∇∗∇+ q(R) (1.9)

of the Lichnerowicz Laplacian. Even more generally, this formula defines the standard
Laplace operator on any geometric vector bundle over a Riemannian manifold with metric
connection, as introduced by Semmelmann–Weingart in [SW18], where they also discussed
its remarkable functorial and commutative properties. We will encounter another such
Laplacian in §1.8.
The uncommon term “geometric vector bundle” refers simply to a vector bundle asso-

ciated to the holonomy-reduced frame bundle via some representation of the holonomy
group. This includes all tensor (and spinor!) bundles, but also all holonomy-invariant
subbbundles. Homomorphisms of geometric vector bundles are then just vector bundle
homomorphisms that are equivariant under the action of the holonomy group, i.e. parallel
bundle maps.
Similar to the Hodge–de Rham Laplacian, the Lichnerowicz Laplacian possesses ex-

cellent commutation properties in that it commutes not only with all homomorphisms
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of geometric vector bundles, but also with many important differential operators. In
particular ∆L commutes with both trg and δg and thus preserves the space of tt-tensors.
By (1.6) the linear stability of a given Einstein metric g lies entirely in the hands

of the spectrum of ∆L – namely, g is stable if and only if ∆L > 2E on S 2
tt(M), and

unstable if and only if ∆L

∣∣∣
S 2

tt(M)
has an eigenvalue smaller than 2E. We note that if

(M = M1 ×M2, g = g1 ⊕ g2) is a Riemannian product, a tt-tensor in the kernel of ∆L

may be constructed from the canonical variation in which the metrics g1 and g2 are scaled
by different constants. If g is of positive scalar curvature (i.e. E > 0), this produces a
destabilizing direction.
As a short digression from the Riemannian world, we remark that the Lichnerowicz

Laplacian also turns up in the investigation of the gravitational stability of various higher-
dimensional spacetimes [GH02]. The condition for this so-called physical stability is almost
the same as for linear stability in the Einstein–Hilbert sense, albeit with the critical
eigenvalue 9−n

4 E instead of 2E.
In general the spectrum of ∆L is difficult to get ahold of. Boucetta managed to compute

the spectrum on S 2(M) for the standard metrics on Sn and RPn [Bou99]. For the more
general case of compact symmetric spaces there is an astonishing representation-theoretic
interpretation of the Lichnerowicz Laplacian which will be discussed in §1.5. However
there are some a priori estimates involving only the curvature of (M, g). Let us thus take
another look at the curvature term q(R).
On the tangent bundle TM , the endomorphism q(R) simply coincides with the Ricci

endomorphism Ricg. Passing to the bundle of covariant symmetric 2-tensors Sym2 T ∗M ,
we have instead

q(R) = −2R̊−DerRicg .

Here R̊ ∈ End Sym2 T ∗M is the curvature operator of second kind introduced by Bour-
guignon–Karcher [BK78] (along with the one of the first kind, R̂ ∈ End Λ2T ∗M), and
DerRicg denotes the extension of the Ricci endomorphism to Sym2 T ∗M as a derivation.
Using the two beautiful Weitzenböck formulae

δδ∗ − δ∗δ = ∆L − 2q(R), (1.10)

δ∇d∇ + d∇δ∇ = ∆L −
1
2q(R), (1.11)

Koiso proved that a sufficient criterion for the linear stability of an Einstein metric g is
R̊ < max{−E,E/2} (or equivalently q(R) > min{E, 4E}) on traceless 2-tensors [Koi78,
Thm. 3.3]. As Fujitani showed [Fuj79], the eigenvalues of R̊ are controlled by the sectional
curvature of g. In particular, a suitably pinched or a negative sectional curvature is
sufficient for stability (see [Bes87, §12.H] for details).
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1.4 Einstein deformations

Let us ask a different question: given some Einstein metric g on a compact orientable
smooth manifold M , are there any other Einstein metrics nearby? Obviously one can
produce continous deformations by pulling back through a curve of diffeomorphisms or
by homothetic scaling. In order to discuss only the interesting directions, we thus quotient
out diffeomorphisms and scaling to obtain the moduli space M1/Diff(M) of (unit volume)
Riemannian structures onM . The subset of M1/Diff(M) consisting of equivalence classes
of Einstein metrics is called the moduli space of Einstein structures on M and shall be
denoted by E .
Instead of E , it is often easier to work with the premoduli space of Einstein structures

around g, obtained by applying Ebin’s Slice Theorem [Ebi68] in order to take a slice
around g ∈M1 to the action of Diff(M) and considering the Einstein metrics contained
therein. However this technicality shall not concern us here, as we may take the freedom
to skip all the difficult arguments and showcase only the results.
What can we say about the geometric structure of the moduli space E ? Most promi-

nently, this question has been investigated by Koiso and Berger–Ebin [Koi80; BE69]. The
space E may in general not be a manifold, but is at least Hausdorff. Moreover, it is lo-
cally arcwise connected (arcs meaning real analytic curves). In particular, since Einstein
metrics are critical points of S, it follows that S descends to a locally constant function
on E .
Another consequence of the arcwise connectedness is that an Einstein metric is rigid,

i.e. isolated in the moduli space E , if and only if there exists no real analytic curve through
g in E . Suppose, on the other hand, that we are given such a curve (gt) of Einstein metrics
with g0 = g. An equivalent reformulation of the Einstein condition (1.4) is E(gt) = 0,
where

E : M1 → S 2(M) : g 7→ Ricg−
S(g)
n

g

denotes the Einstein operator. Then its first order jet

h = d

dt

∣∣∣
t=0

gt

satisfies the linearized Einstein equation

E ′g(h) = d

dt

∣∣∣
t=0

E(gt) = 0. (1.12)

With the additional requirement that h is infinitesimally volume-preserving (i.e. h ∈
TgM1) and transverse to the orbit of Diff(M) (i.e. δgh = 0), (1.12) is precisely equivalent
to the definition of EID in §1.2 – that is, h is a tt-tensor satisfying ∆Lh = 2Eh [BE69].
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We denote the space of EID of g with ε(g). By the previous discussion we see that a
sufficient condition for the rigidity of an Einstein metric g is the vanishing of ε(g). In
particular if g is strictly linearly stable, it must also be rigid.
Pondering the case ε(g) 6= 0, we are led to ask whether any EID h ∈ ε(g) actually

integrates into a corresponding curve gt with h as first order jet. As we shall see shortly,
there are obstructions to integrability. Consider again a curve (gt) with E(gt) = 0 and all
of its jets

hj = dj

dtj

∣∣∣
t=0

gt, j ∈ N.

It then follows that
E(j)
g (h1, . . . , hj) = dj

dtj

∣∣∣
t=0

E(gt) = 0 (1.13)

for all j ∈ N. Note that the E(k)
g are polynomials in h1, . . . , hk, of degree one in hk.

This gives countably many obstructions against integrability: an EID h1 ∈ ε(g) is now
appropriately called formally integrable to order k if there exist h2, . . . , hk such that (1.13)
is fulfilled for all j = 2, . . . , k. Moreover, these obstructions are all independent – there is
no single “obstruction space” that we can require to vanish in order for (1.13) to always
admit a solution hj (see [Bes87, §12.E] for a detailed explanation). This puts a damper
on our ambitions to easily decide the integrability of a given EID – for if it was in fact
integrable, we would have to check countably many polynomial conditions! This is in
stark contrast to, for example, the deformation theory of complex structures, where we
have only one integrability obstruction (manifesting as the second sheaf cohomology of the
sheaf of holomorphic vector fields). At the very least we are granted the mercy that the
difficulties are only of this algebraic nature and there are no convergence issues: an EID
integrates into a genuine curve of Einstein metrics if and only if it is formally integrable
to all orders [Bes87, Cor. 12.50].
In light of this difficulty occurring at the infinitesimal level it is perhaps not surprising

that the general structure of E remains nebulous to this day. For example it is unknown
whether E may actually be singular or whether it is always locally a manifold.
One moral of the deformation theory above is that there is in general no reason to expect

EID to be integrable. Indeed, it often suffices to look at the second order obstruction in
order to produce examples of Einstein metrics which are infinitesimally deformable but
rigid. By a result of Koiso this obstruction can be restated as follows: any h ∈ ε(g)
is formally integrable to order two if and only if E ′′g (h, h) is orthogonal to ε(g) [Koi82,
Lem. 4.7]. It thus seems prudent to investigate the trilinear form

Ψ : ε(g)× ε(g)× ε(g)→ R : (h1, h2, h3) 7→
(
E ′′g (h1, h2), h3

)
L2

(1.14)

which is actually symmetric (shown in [NS23]) and thus can be thought of as a homoge-
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neous cubic polynomial on ε(g). EID that are integrable to second order would correspond
to nonzero critical points of this polynomial.
The earliest example of an Einstein metric which is rigid but infinitesimally deformable

is the symmetric space CP1×CP2n, established by Koiso using the second order obstruction
combined with a representation-theoretic argument [Koi82, Thm. 6.12]. Another more
recent such example is the bi-invariant metric on SU(2n+1) due to Batat et al. [BH+21].
A similar discussion applies to the question of solitonic rigidity, i.e. whether a given Ein-

stein metric might be deformable through a curve of gradient Ricci solitons, if not Einstein
metrics. In this case the infinitesimal deformation space is enlarged by the 2E-eigenspace
of the Laplace–Beltrami operator – the deformation theory, developed by Podestà–Spiro
[PS15], plays out similarly. As Kröncke showed, the second order obstruction for these
infinitesimal solitonic deformations is again given in terms of a cubic polynomial [Krö16,
Thm. 1.2]. This has been used, for example, to prove the solitonic rigidity of the symmet-
ric metric on CP2n [Krö16, Thm. 6.1]. Very recently, Li–Zhang proved solitonic rigidity
of CP2n+1 by taking it one order higher and working out the integrability obstruction to
third order [LZ22] – tedious but worth it!
This obstructed deformation theory of Einstein metrics may be a curiosity in the Rie-

mannian world, but it should be mentioned that there is a similar phenomenon in the
Lorentzian setting, even though the theory behind it is completely different. The keyword
is linearization stability of a Lorentzian Einstein metric g (not to be confused with the
linear stability from §1.2), which is the property that every infinitesimal perturbation of g
can be integrated into a smooth curve of Einstein metrics. At least for the Ricci-flat case,
this has first been investigated by Fischer–Marsden [FM73]. As shown by Moncrief, the
existence of so-called spurious solutions (i.e. nonintegrable infinitesimal deformations) is
closely linked to the presence of Killing vector fields on the underlying spacetime [Mon75;
Mon76].

1.5 Homogeneous Einstein manifolds

A class of great importance, and the source of many examples in Riemannian geometry,
are the homogeneous manifolds. To clarify our intent, we call a smooth manifolds M
homogeneous if there exists a Lie group G acting transitively on M . For any point p ∈M
we call the stabilizer Gp the isotropy group at p. The homogeneous manifold M can thus
be presented as the coset space G/Gp.
We reserve the name homogeneous space for the pair (G,H) of a Lie group G and a

closed subgroup H giving rise to the quotient M = G/H. Here H is the isotropy group of
the base point o = eH. In general a homogeneous manifold M may have many different
presentations G/H as a homogeneous space. Usually they can be narrowed down by the
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requirement thatG is simply connected and acts almost effectively, and the relaxation that
H needs only be determined up to an automorphism of G – both steps preserve the notion
of a G-invariant structure onM . But even then there may be several homogeneous spaces
with the same underlying manifold. The most prominent examples of this are the spheres,
admitting transitive effective actions of various Lie groups, as classified by Montgomery–
Samelson [MS43]. This example is of particular significance for Riemannian geometry: it
is a crucial ingredient for Berger’s classification of holonomy groups of irreducible, simply
connected, non-symmetric Riemannian manifolds [Ber55].
The transitive action on a homogeneous space M = G/H simplifies many matters of

Riemannian geometry, or just renders them possible to tackle in the first place. First,
suppose we restrict our attention to objects which are invariant under the G-action.
Because the action is transitive, invariant objects are determined by their behavior at the
base point. For example G-invariant Riemannian metrics on M correspond in a one-to-
one manner to H-invariant inner products on the isotropy representation ToM . Under
this correspondence, the Einstein equation (1.4) reduces to a polynomial equation in the
structure constants of the Riemannian homogeneous space in question, eliminating the
need for hard analysis and leaving only algebraic problems.
Second, even for the description of non-invariant objects we gain a new useful tool:

harmonic analysis. This relates objects on (more precisely: sections of homogeneous
vector bundles over) M to the representation theory of the transitive group G by the
generalized Fourier transform. This is especially useful in the compact case, where the
set of Fourier modes is countable and any G-module carries an invariant inner product,
guaranteeing a decomposition into finite-dimensional irreducible modules. All this is
condensed into a classic theorem by Peter–Weyl [Wal73, Thm. 2.8.2]: if G is a compact
Lie group, acting on L2(G) from the left and right by translations, then

L2(G) ∼=
⊕
γ∈Ĝ

V ∗γ ⊗ Vγ, (1.15)

the overline indicating L2-closure. Here (Vγ)γ∈Ĝ is the sequence of equivalence classes of
finite-dimensional representations of G. This directly generalizes the concept of a Fourier
series. Any invariant operator will respect this decomposition, so “invariant problems”
can, in principle, be broken down into their irreducible parts. We shall see in §1.8 how
this applies to homogeneous vector bundles and how it helps us close in on the spectrum
of the Lichnerowicz Laplacian.
Let us return to the homogeneous Einstein equation. As easy as the promised reduction

to algebra in the invariant case may sound, the resulting equation can in actuality still
be quite hard to solve explicitly. In low dimensions, some classifications of compact
homogeneous Einstein manifolds are known (see [BK06] for an overview). There are
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also homogeneous spaces which do not admit any invariant Einstein metric [WZ86]. It
is, however, still unknown whether any compact simply connected homogeneous space
carries only finitely many invariant Einstein metrics up to isometry (which is false in the
noncompact setting). This is known today as the Finiteness Conjecture.
There are, however, some general structure results on homogeneous Einstein manifolds,

in terms of the sign of the Einstein constant E, which we shall recall. If E = 0, i.e. if
(M, g) is Ricci-flat, then it is in fact flat and thus the product of a flat torus with Euclidean
space, as shown by Alekseevskii–Kimelfeld [AK75]. If E < 0, then M (and thus G) are
noncompact. Indeed, a theorem of Bochner shows that compact Riemannian manifolds
with negative Ricci curvature does not admit Killing vector fields and thus there cannot
be a transitive group of isometries [Boc46]. Conversely, if E > 0, then it follows from
Myers’ Theorem that M is compact and has finite fundamental group [Mye41]. In this
case it is known that the moduli space of G-invariant Einstein metrics has only finitely
many components which are all compact [BWZ04].
In the compact setting, the groupG can itself be assumed to be compact and semisimple.

This is an excellent starting position for doing harmonic analysis thanks to (1.15) and
the fact that the representation theory of compact semisimple Lie groups is especially
nice: the set Ĝ of Fourier modes admits a powerful description in terms of the dominant
integral weights of G.
Ultimately we shall only consider a special type of homogeneous metrics called normal,

where the Einstein condition takes a particularly simple form and where representation
theory provides us with friendly and helpful entities known as Casimir operators which
will ultimately provide us with a way of gaining computational information about the
spectrum of the Lichnerowicz Laplacian. But let us take one thing at a time.

1.6 Invariant connections

We mentioned in §1.5 the isotropy representation H → gl(ToM) of a homogeneous space
M = G/H. Let us denote with g, h the Lie algebras of G and H, respectively. Recall
that G acts on g through the adjoint representation Ad : G→ GL(g). If we restrict this
to the subgroup H, the subalgebra h is of course left invariant – thus the action of H
descends to the quotient g/h. This quotient space is now naturally and H-equivariantly
identified with the isotropy representation on ToM .
In general, we cannot reconstruct g ∼= h ⊕ g/h as a H-module, for there is not always

an Ad(H)-invariant complement of h in g. If such a complement exists, we call the pair of
Lie algebras (g, h) and thus the homogeneous space G/H reductive. For our purposes this
requirement poses no problem: it is already sufficient that H is compact, which makes it
possible to endow any H-module with an H-invariant inner product which we can use to
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take the orthogonal complement.
Since a compact Riemannian manifold has compact isometry group Iso(M, g), if (M, g)

is a compact Riemanian homogeneous manifold, the transitive group G ⊂ Iso(M, g) may
be chosen to be compact as well. Hence H is automatically compact as a closed subgroup.
However if (M, g) is a non-compact homogeneous Einstein manifold, then a conjecture
of Alekseevskii states that M is diffeomorphic to Euclidean space – equivalently, H is a
maximal compact subgroup of G [Ale75]. Conveniently, this conjecture was very recently
positively resolved by Böhm–Lafuente [BL23].
So suppose that we are given a reductive Riemannian homogeneous space (M, g).

Choose once and for all a reductive (i.e. Ad(H)-invariant) complement m of h ⊂ g.
Henceforth we tacitly identify m ∼= ToM and in the same vein refer to it as isotropy
representation.
If we want to understand what it means for the invariant metric g to be Einstein, we

first need to know how to determine the Riemannian curvature. Thus it becomes impor-
tant to understand the Levi-Civita connection ∇ in the homogeneous setting, which is an
instance of an invariant connection. We shall also see later that there is another invari-
ant connection that is much more convenient for doing harmonic analysis on reductive
homogeneous spaces. So let us embark on a short digression about invariant connections.
There is a one-to-one correspondence between the set of invariant metric connections

on M and the set HomH(m, so(m)) of H-equivariant linear maps Λm : m → so(m), i.e.
those satisfying

∀h ∈ H, X ∈ m : Λm(Ad(h)X) = Ad(h) ◦ Λm(X) ◦ Ad(h)−1,

the so-called Nomizu maps (see [KN69, §X.1/2] for a detailed description of the correspon-
dence). We remark that this formalism can be generalized to handle invariant connections
subordinate to any invariant K-structure on M , in which case the so(m) in the definition
of the Nomizu map is replaced by the structure algebra k ⊂ gl(m).
The simplest choice of such an invariant connection, in this context, is of course the one

corresponding to the trivial Nomizu map Λm = 0. This connection, henceforth denoted by
∇̄, is called the canonical (reductive) connection, also called the Ambrose–Singer connec-
tion, as it is precisely the connection appearing in their famous theorem: any connected,
simply connected, complete Riemannian manifold is Riemannian homogeneous if and only
if it admits a metric connection ∇̄ with parallel torsion and curvature [AS58].
Indeed, the torsion T and curvature R of an invariant metric connection with Nomizu
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map Λm are themselves invariant tensors, given at the base point by

To(X, Y ) = Λm(X)Y − Λm(Y )X − [X, Y ]m,
Ro(X, Y ) = [Λm(X),Λm(Y )]− Λm([X, Y ]m)− ad([X, Y ]h)

(1.16)

for X, Y ∈ m [KN69, Prop. X.2.3], where the subscripts Xh, Xm denote projection onto
the h- or m-part, respectively. Setting Λm = 0 in (1.16) we obtain a simple expression for
the torsion T̄ and curvature R̄ of ∇̄:

T̄o(X, Y ) = −[X, Y ]m,
R̄o(X, Y )Z = −[[X, Y ]h, Z],

X, Y, Z ∈ m. (1.17)

It should be emphasized that ∇̄ depends crucially on the initial choice of the reductive
complement m ⊂ g. Moreover, among the invariant connections on M , the canonical con-
nection ∇̄ has the unique property that it leaves every invariant tensor (and in particular
T̄ and R̄) parallel.
Another way of characterizing the connection ∇̄ is to regard it as coming from a prin-

cipal connection on the H-principal bundle G → G/H. Any principal connection is (in
the sense of an Ehresmann connection) determined by a choice of a horizontal distribu-
tion H ⊂ TG [KN63, §II.1], and the principal connection underlying ∇̄ corresponds to
choosing as horizontal spaces the left-translates of the reductive complement m ⊂ g.
Taking a closer look at the expression for T̄ in (1.17), we see that its vanishing is

precisely equivalent to the third Cartan relation [m,m] ⊂ h. Also, since ∇̄ is a metric
connection, the vanishing of its torsion would mean that it coincides with the Levi-Civita
connection ∇. In the context of the Ambrose–Singer theorem stated above we thus
recover the classical theorem of Cartan which states that a Riemannian manifold is locally
symmetric if and only if its curvature tensor is ∇-parallel. In this sense the torsion tensor
T̄ can be viewed as measuring how (M, g) fails to be symmetric.
But what if the space under consideration is not symmetric? The only missing ingre-

dient is now the Nomizu map of the Levi-Civita connection ∇, which is given by

Λm(X)Y = 1
2[X, Y ]m + U(X, Y ), X, Y ∈ m

[KN69, Thm. X.3.3], where U : m × m → m is the symmetric bilinear mapping defined
via

2go(U(X, Y ), Z) = go([Z,X]m, Y ) + go(X, [Z, Y ]m).

We shall restrict our attention further to an important subclass of reductive homogeneous
spaces for which the Nomizu map takes on a simpler form. A reductive Riemannian
homogeneous space (M, g) is said to be naturally reductive if U = 0. This seemingly
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technical condition has a neat geometric interpretation: it is equivalent to ∇̄ and ∇
having the same geodesics. By virtue of (1.17), it is furthermore equivalent to the torsion
T̄ of the canonical connection being totally skew-symmetric (or skew for short). Metric
connections with skew torsion play a vital role in the study of non-integrable geometries
such as nearly Kähler or nearly parallel G2-manifolds, in that they are often more adapted
to the structure at hand as the Levi-Civita connection (see [Agr06] for a survey of the
topic).
In order to properly do harmonic analysis later on, we need to impose one further

restriction on the metric. Given a naturally reductive Riemannian homogeneous space
(M, g), let g′ = m ⊕ [m,m]. We assume without loss of generality that g = g′, else we
simply restrict the presentationM = G/H as a homogeneous space to the (still transitive)
subgroup G′ ⊂ G with Lie algebra g′. A theorem of Kostant tells us that there now exists
a unique nondegenerate and, most importantly, Ad(G)-invariant bilinear form Q on g

such that Q(h,m) = 0 and the invariant metric g on M is induced by the restriction Q
∣∣∣
m

[Kos56].
If this bilinear form Q is positive definite, then we call (M, g) a normal homogeneous

space. A necessary consequence of this requirement is that g is the Lie algebra of a
compact group, and that (M, g) has nonnegative sectional curvature [Bes87, Prop. 7.87].
An important Ad(G)-invariant bilinear form on g is the Killing form Bg defined by

Bg(X, Y ) = tr(ad(X) ◦ ad(Y )), X, Y ∈ g.

The Killing form is negative-semidefinite if and only if G is compact, and nondegenerate
if and only if G is semisimple. Thus, in the compact semisimple case, a possible choice
of invariant metric on M is the one induced by the inner product Q = −Bg. This metric
is called the standard metric. Later, we will mainly be interested in the case where G is
simple. Then, by Schur’s Lemma, any Ad(G)-invariant inner product Q on g will be a
scalar multiple of the Killing form. Thus it is natural to normalize the metric on a normal
homogeneous space with simple transitive group G to be the standard metric.

1.7 Representation theory and Casimir operators

The Ad(G)-invariance of the inner product Q on g is crucial because it allows us to define
the Casimir operators advertised earlier. Given any representation ρ∗ : g → gl(V ), its
associated Casimir operator is a g-equivariant endomorphism of V , defined with respect
to Q as

Casg,QV = −
∑
i

ρ∗(ei)2,
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where (ei) denotes some Q-orthonormal basis of g.
Casimir operators arise ubiquitously in geometry once a Lie algebra with invariant inner

product is available. Expressing geometric objects in terms of Casimir operators carries
the great advantage that the spectrum of a Casimir operator is very easy to compute. In
order to do that, we need to recapitulate a tad of representation theory.
As a quick side note before we get started: we shall use the terms G-representation and

G-module somewhat interchangeably, although strictly speaking “module” refers to the
underlying space V and “representation” to the Lie group homomorphism G → GL(V ).
The same goes, of course, for representations/modules of some Lie algebra g.
Now, suppose that g is a (real or complex) semisimple Lie algebra with a Cartan

subalgebra (i.e. a maximal toral subalgebra) t ⊂ g. The dimension of t is called the rank
rk g of g. Since t is abelian, every finite-dimensional complex representation ρ∗ : g →
gl(V ) can be simultaneously diagonalized when restricted to the subalgebra t ⊂ g. The
elements of the dual space t∗ that occur on the diagonal are called the weights of the
representation ρ∗. The roots of g are then nothing but the nonzero weights of the adjoint
representation ad : g→ gl(g), and the set of roots is called the root system of g.
A striking discovery made by Killing in 1888 is that the structure of a semisimple Lie

algebra g is completely determined by specifying its root system, facilitating the famous
Killing–Cartan classification of complex simple Lie algebras through the classification of
irreducible root systems [Kil90; Car94], a remarkable feat for the time. But roots and
weights can do even more: thanks to the theorem of the highest weight, they provide us
with complete insight into the representation theory of such a Lie algebra.
Let Q∗ denote the inner product on t∗ dually induced by the restriction Q

∣∣∣
t
. An element

λ ∈ t∗ is called integral if
2Q
∗(λ, α)

Q∗(α, α) ∈ Z

for any root α. The set of integral elements of t∗ is suggestively called the weight lattice
since it contains all possible weights of representations of g.
One more choice is necessary. Consider to each root α its orthogonal hyperplane Pα =

α⊥ ⊂ t∗. The union of all the Pα partitions t∗ into a set of disjoint open cones called
Weyl chambers. We choose one of these chambers and call it the dominant chamber. This
equally amounts to declaring a set of positive roots, which is preferred by some authors,
and gives us also a partial ordering on the weights of any representation: we say that
λ ≥ µ if and only if λ − µ is contained in the dominant chamber. Finally, we define the
set of dominant integral weights as the intersection between the dominant chamber and
the weight lattice.
The theorem of the highest weight now states that every irreducible complex repre-

sentation of g has a unique weight which is dominant and maximal under ≥, called the
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highest weight. Conversely, for each dominant integral weight λ of g there exists an, up to
equivalence, unique irreducible g-module Vλ having λ as its highest weight, the so-called
highest weight module to λ.
A slight complication in passing from the Lie algebra level back to that of a Lie group

is that not every representation of g necessarily corresponds to a representation of G. In
fact, the set Ĝ of equivalence classes is again parametrized by the dominant elements in
the weight lattice of G, which is generally a sublattice of the weight lattice of g. The two
lattices coincide if and only if G is simply connected. As a classical example, the spinor
representation of a spin group does not descend to a representation of the corresponding
orthogonal group.
The usefulness of the theorem of the highest weight is evident because the set of domi-

nant integral weights is very simple to characterize: it is an (additive) semigroup generated
by the so-called fundamental weights, usually denoted ω1, . . . , ωr, where r = rk g. That
is, the dominant integral weights are precisely the linear combinations of the fundamental
weights with nonnegative integer coefficients. A standard convention for enumerating the
fundamental weights of the simple Lie algebras is the one of Bourbaki, specified in [Bou81,
Planches I–IX]. We shall follow it as well.
We can now finally state Freudenthal’s formula for the Casimir operator [Fre54]. By

the Lemma of Schur any equivariant endomorphism of an irreducible complex g-module
is a constant multiple of the identity. In particular the Casimir operator on a highest
weight module Vλ acts as multiplication by the Casimir constant Casg,Qλ . Denote by
δg = ω1 + . . . + ωr the sum of fundamental weights of g – this is the same as the half-
sum of positive roots and is sometimes called the Weyl element of g. Then the Casimir
constant is given by the very simple formula

Casg,Qλ = Q∗(λ+ 2δg, λ). (1.18)

This immediately yields the spectrum of the Casimir operator on any representation of
a semisimple Lie algebra. Sometimes we may also be interested in the case where g is
abelian, but this is even simpler: any finite-dimensional complex representation of an
abelian Lie algebra splits into one-dimensional weight spaces, on each of which formula
(1.18) holds true, with the only difference that there are no roots, so one has to set δg = 0.

1.8 Homogeneous vector bundles

To see the particular relevance of the Casimir operator in the context of our endeavor,
we first need to define the representation on which it acts. Let again M = G/H be a
homogeneous space with G compact and recall viewing G as a H-principal bundle overM .
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To each finite-dimensional representation ρ : H → GL(V ) one associates a homogeneous
vector bundle

VM = G×ρ V = (G× V )/∀h∈H: (x,v)∼(xh−1,ρ(h)v)

over M with fiber V . Taking V to be the isotropy representation m, we recover the
tangent bundle TM . The associated bundle construction hence already covers all tensor
bundles over M by taking V to be a tensor power of m.
In order to do harmonic analysis on VM , we need to pass to a more analytical viewpoint.

Sections of the bundle VM are in a canonical way identified with V -valued functions on G
that are equivariant under the H-action – that is Γ(VM) ∼= C∞(G, V )H . Left-translation
by G gives rise to the left-regular representation of G on C∞(G, V )H , defined by

` : G→ GL(C∞(G, V )H) : (`(x)f)(y) = f(x−1y).

We are finally set to introduce the generalized Fourier transform alluded to earlier. By
combining the classical Peter–Weyl theorem (1.15) with the Frobenius reciprocity theorem

HomG(Vγ, L2(G, V )H) ∼= HomH(Vγ, V )

we obtain the Peter–Weyl theorem for homogeneous vector bundles:

L2(G, V )H ∼=
⊕
γ∈Ĝ

Vγ ⊗ HomH(Vγ, V ). (1.19)

The factor HomH(Vγ, V ) in each term (called the space of matrix coefficients) does the
job of counting the multiplicity of the module Vγ inside L2(G, V )H . We note that (1.19)
works equally well with complex or real representations in place of Vγ and V . By virtue
of the theorem of the highest weight, however, the complex finite-dimensional irreducible
representations of G are easier to enumerate.
Consider now some G-equivariant differential operatorD : Γ(VM)→ Γ(WM) between

homogeneous vector bundles. As a consequence of (1.19) together with Schur’s Lemma,
D can be presented as a sequence of linear maps (D

∣∣∣
γ
)γ∈Ĝ with

D
∣∣∣
γ

: HomH(Vγ, V ) −→ HomH(Vγ,W ).

Recall that we are ultimately interested in the Lichnerowicz Laplacian ∆L on S 2
tt(M). It

thus suffices to work out the maps

∆L

∣∣∣
γ

: HomH(Vγ, Sym2
0 m) −→ HomH(Vγ, Sym2

0 m)
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in order to access the spectrum of ∆L. The issue raised by the first-order condition of
divergence-freeness adds another subtlety that we will get back to in §2.1.2.
The immediate question is, for a given Fourier mode γ ∈ Ĝ, how to deduce the linear

map D
∣∣∣
γ
from the differential operator D. Now comes the time to shine for the canonical

reductive connection. By its properties of being left-invariant and coming from a prin-
cipal connection on the H-principal bundle G → M , it behaves very neatly under the
identification Γ(VM) ∼= C∞(G, V )H : a covariant derivative on Γ(VM) becomes a direc-
tional derivative on C∞(G, V )H . Expressed in terms of the left-regular representation,
the correspondence is

∇̄X  −`∗(X) (1.20)

for any left-invariant vector field X ∈ m. This key fact is ultimately what enables us to
describe invariant differential operators on homogeneous spaces.
The next step is to notice that the Casimir operator Casg,Q` of the left-regular represen-

tation coincides with the second order differential operator defined by

∆̄ = ∇̄∗∇̄+ q(R̄)

with respect to the normal metric on M induced by Q
∣∣∣
m
[MS10]. Note the similarity of

this expression with the Lichnerowicz Laplacian (1.9). Both operators are instances of
the standard Laplace operator mentioned in §1.3. In this sense, ∆̄ and ∆L are the “most
natural” Laplace-type operators to study on a Riemannian homogeneous space.
Because ∆̄ = Casg,Q` , its spectrum is now easy to compute via Freudenthal’s formula

(1.18) – on each term of (1.19), ∆̄ simply acts as multiplication by a Casimir constant!
The astute reader may remember from §1.6 that the connections ∇̄ and ∇ coincide if

(M, g) is Riemannian symmetric. Consequentially, the two standard Laplacians ∆̄ and
∆L coincide as well, and by the preceding discussion the spectrum of ∆L is served to us
on a plate. This relation between ∆L and the Casimir operator on symmetric spaces had
been noticed by Koiso and subsequently utilized in his investigation of the stability of
symmetric spaces of compact type [Koi80], thereby pioneering the study of stability of
homogeneous Einstein manifolds.
The assumption that the metric on M is normal is crucial in order to employ the

Casimir operator Casg,Q` . Of course, symmetric spaces are not the only normal homoge-
neous Einstein manifolds. Consider a homogeneous space M = G/H which is isotropy
irreducible, that is, the isotropy representation m is irreducible as a H-module. By the
Lemma of Schur, the space Sym2 mH of H-invariant symmetric bilinear forms on m is one-
dimensional – thus any G-invariant Riemannian metric onM is automatically normal and
Einstein.
In 1968, all compact, simply connected, non-symmetric isotropy irreducible homoge-
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neous spaces were classified by Wolf [Wol68] (and independently by Manturov in 1961
[Man61a; Man61b; Man66] and Krämer in 1975 [Krä75]). Going further, Wang–Ziller
classified in 1985 all the compact, simply connected, non-symmetric isotropy reducible
homogeneous spaces with simple G and carrying a normal Einstein metric [WZ85]. We
see that there are many more examples of normal homogeneous Einstein manifolds be-
sides the symmetric spaces, and it is these classes of spaces that we will ultimately turn
our attention to. Of course, the two Laplacians ∆̄ and ∆L will now differ by some first
order operator, which makes matters more difficult. This issue will be addressed later (see
§§2.2, 2.4). The spirit stays the same: through the exploitation of symmetry, an analytic
problem is transformed into one of representation theory.

1.9 G-stability

Another important notion of stability arising in the homogeneous case shall not go un-
mentioned. Instead of M1, consider only the finite-dimensional manifold MG

1 of G-
invariant unit volume Riemannian metrics on some compact, connected homogeneous
space M = G/H. The variational characterization of Einstein metrics is retained in this
invariant setting: a metric g ∈ MG

1 is Einstein if and only if it is a critical point of the
restricted Einstein–Hilbert functional S

∣∣∣
MG

1
. This has been used in many cases to find

new invariant Einstein metrics or rule out their existence [Jen71; WZ86; BWZ04; Böh04].
An Einstein metric g ∈ MG

1 is now called G-stable if it is a local maximum of S
∣∣∣
MG

1
.

This is a strictly weaker condition than the “classical” stability with respect to the func-
tional S

∣∣∣
S
, introduced in §1.2 – in particular, G-instability implies classical instability.

On the other hand, there are G-stable homogeneous Einstein manifolds that are unstable
in the wider sense, such as the Berger space SO(5)/ SO(3)irr [SWW22, §5].
For the Einstein–Hilbert action restricted to invariant variations the situation is dis-

tinctly simpler than in §1.2 since the only invariant conformal variation is constant scaling.
In fact, the formal tangent space to MG

1 is given by

TgM
G
1 = S 2

0 (M)G = Tg(Aut(G/H) · g)⊕S 2
tt(M)G,

where Aut(G/H) ⊂ Diff(M) is the group of automorphisms of G mapping H to itself.
As before, this decomposition is orthogonal with respect to the second variation S ′′g . We
note that Tg(Aut(G/H) · g) vanishes if the isotropy representation m is multiplicity-free
or if it contains no trivial part, i.e. mH = 0.
The G-stability of compact homogeneous Einstein manifolds has been investigated by

Gutiérrez, E. Lauret, J. Lauret and Will [Lau22; LW22b; LW22a; LL23; GL23]. In the
context of (1.19) everything plays out on the Fourier mode “0” corresponding to the trivial
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representation. The Lichnerowicz Laplacian thus reduces to a linear endomorphism

∆L

∣∣∣
0

: (Sym2
0 m)H −→ (Sym2

0 m)H

whose spectrum may be computed with the help of the formulas developed in [LW22c,
Cor. 6.7]. This enabled the aforementioned authors to determine the G-stability type of
many homogeneous Einstein manifolds, even non-normal ones.
It is also sensible to study the G-invariant analogue of rigidity, especially in the light of

the Finiteness Conjecture mentioned in §1.5 which is equivalent to all compact homoge-
neous Einstein manifolds being G-rigid. To clarify, an invariant Einstein metric is called
G-rigid if it is isolated in the moduli space E G ⊂ MG

1 /Aut(G/H). In the same way as
before, the nonexistence of G-invariant EID implies G-rigidity. In several cases it is pos-
sible to examine the Einstein–Hilbert functional S

∣∣∣
MG

1
directly and show that its critical

points are isolated [BWZ04, Ex. 6.7–6.11]. Another notable method of Derdzinski–Gal in-
volves the algebraic variety of possible Levi-Civita connections of G-invariant metrics and
yields, among others, the G-rigidity of the standard metric on SU(n) among left-invariant
metrics [DG14]. We note that the latter approach even encompasses pseudo-Riemannian
metrics.

1.10 What else?

There is, of course, a great deal more to say about the by now numerous stability and
instability results for Einstein metrics, in particular in the homogeneous case. Our am-
bition is not to give a complete picture – nevertheless we summarize a few more themes
that are especially relevant for the cumulative part of the current thesis.
The canonical variation, mentioned in §1.3 in the case of Riemannian products, applies

in fact to the broader case of (M, g) being the total space of a Riemannian submersion with
totally geodesic fibers. Denote with (B, gB) and (F, gF ) the base and fiber, respectively.
Then g = gB⊕gF with respect to a suitable decomposition of TM . The canonical variation
is the family of metrics on M given by

gt = gB ⊕ tgF , t ∈ R. (1.21)

The curvature of Riemannian submersion metrics is well understood largely thanks to the
theory developed by O’Neill [ONe66]. See [Bes87, §9] for an in-depth discussion.
The trace-free part of the first order jet to the curve of metrics defined by (1.21) yields

a tt-tensor h ∈ S 2
tt which is also a Killing tensor – that is, it satisfies δ∗h = 0, where

δ∗ : S p(M) → S p+1(M) is the symmetrized covariant derivative, also called Killing
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operator. The estimate
∆L ≥ 2q(R)

derived from (1.10) on ker δ turns into an equality on Killing tensors [HMS16, Prop. 6.2].
This is one reason why Killing tensors are natural candidates to test against the Lich-
nerowicz Laplacian. Simultaneously it raises the question whether the lowest tt-modes of
∆L always consist of Killing tensors. Indeed, Killing tensors have frequently served as a
source for instabilities. See [WW21] for many examples from the canonical variation, but
also [SWW22, §5] for a direct utilization of the Killing property. Moreover all G-invariant
tensors on a naturally reductive homogeneous space are automatically Killing.
Going back to the canonical variation (1.21), it is worth noting that under certain

conditions it can contain another Einstein metric. One of the two is then automatically
unstable by a-priori considerations [Bes87, Prop. 9.72, Lem. 9.74]. The most prominent
examples of such new Einstein metrics have been constructed on S4n+3 � HPn by Jensen
[Jen73] (sometimes called squashed spheres), S15 � OP1 by Bourguignon–Karcher [BK78]
and CP2n+1 � HPn by Ziller [Zil82].
If the homogeneous world becomes too boring, one may dare to abandon a bit of

symmetry and consider spaces of cohomogeneity one, that is Riemannian manifolds (M, g)
with an isometric action of a Lie group G that has orbits of codimension one. This
setting retains some of the advantages of homogeneous spaces. The Einstein equation
(1.4) essentially reduces to an ordinary differential equation on the (one-dimensional)
orbit space M/G, and the greatest difficuly is usually posed by finding examples that are
compact, i.e. solutions that “close up” properly.
It took until 1978 to find the first example of a compact Einstein manifold of coho-

mogeneity one, when Page constructed such a metric on CP2]CP2 [Pag78]. Since then,
this approach has been generalized in various ways and many new such spaces have been
found. A notable (infinite) family of examples are the metrics found by Böhm on spheres
in dimension 5 ≤ n ≤ 9, some products of spheres and other spaces of low dimension
[Böh98]. Their stability has been partially studied by Gibbons–Hartnoll–Pope [GHP03],
who showed instability for certain products of spheres and performed numerical experi-
ments that suggest instability of most of the Böhm metrics.
One last very interesting class of Einstein manifolds where stability has been studied

shall be mentioned here: these are the spin manifolds (M, g) carrying a Killing spinor,
that is a section of the complex spinor bundle ψ ∈ Γ(ΣM) such that

∇Xψ = cX · ψ, X ∈ X(M),

where · denotes Clifford multiplication, for some c ∈ C (called the Killing constant).
Strikingly, the existence of a nonzero Killing spinor forces (M, g) to be Einstein and
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moreover determines the Einstein constant to be E = 4(n− 1)c2. In particular c can only
be real or purely imaginary.
Killing spinors usually bring some special structure with them. Compact simply con-

nected manifolds with Killing spinors (which automatically have c ∈ R, thus are called
real Killing spinors) have been classified by Bär in 1993 [Bär93]: they are either standard
spheres (which are stable) or Einstein–Sasaki manifolds, except in dimensions 6 and 7
which allow for nearly Kähler manifolds and nearly parallel G2-manifolds, respectively. All
of these are instances of the non-integrable geometries briefly mentioned in §1.6 and carry
with them a canonical metric connection with parallel skew torsion. Riemannian mani-
folds admitting such a connection have been studied by Cleyton–Moroianu–Semmelmann
in [CMS21].
All this extra structure has been put to use to produce destabilizing directions from har-

monic forms: sufficient for instability is b2(M) > 0 in the Einstein–Sasaki case, b3(M) > 0
in the nearly parallel G2 case [SWW22], and b2(M) + b3(M) > 0 in the strict nearly Käh-
ler case [SWW20], the latter providing an analogue for the Kähler case with b2(M) > 1
[CHI04, p. 6]. Various other instability results in the presence of real Killing spinors have
been produced by C. Wang and M. Y. Wang [Wan17; WW18].
Making more explicit use of the spinor bundle ΣM , a lower estimate for ∆L on tt-

tensors can be given in terms of a twisted Dirac operator on ΣM ⊗ T ∗M [Wan91], see
also [GHP03, §IV.C]. A similar method has been used by Dai–Wang–Wei to prove the
semistability of all compact manifolds with parallel spinors (i.e. Killing spinors with c = 0)
[DWW05]. These are necessarily Ricci-flat – in fact, all known compact, simply connected
Ricci-flat manifolds belong to this class.
This shall conclude our excursion into the jungle of stability and instability results. Let

us next turn to a discussion of the new original results of this work and the way to achieve
them.
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2 Methods and main results

“Tu as voulu de l’algèbre, et tu en auras jusqu’au menton!”
Jules Verne (Autour de la lune).

2.1 Symmetric spaces

The stability analysis of compact Riemannian locally symmetric spaces was initiated by
Koiso [Koi80]. Recall that these spaces can, up to covering, be decomposed into a product
of irreducible symmetric spaces, which are isotropy irreducible and thus Einstein. They
are in turn classified, according to their curvature, into those of compact type, of non-
compact type, and Euclidean space. The Euclidean case is not particularly interesting:
flat tori are semistable, the kernel of ∆L

∣∣∣
S 2

tt(M)
consisting simply of constant traceless

tensors. For spaces of noncompact type, Koiso noticed [Koi78, Cor. 3.5] that the estimate
R̊ < −E holds provided there is no local two-dimensional factor, and this is sufficient for
stability (see §1.3). Such curvature arguments do not work as easily for symmetric spaces
of compact type – which is where representation theory steps in. Koiso’s results, together
with a result of Gasqui–Goldschmidt on the complex quadric SO(5)/(SO(3)×SO(2)), are
summarized in Theorem 4.2.1. In particular Koiso determined which of the symmetric
spaces of compact type are infinitesimally deformable.
A few cases, however, remained open. The stability of the spaces

SU(n) (n ≥ 3), E6/F4,
Sp(p+ q)

Sp(p)× Sp(q) (p ≥ q ≥ 2), HP2, OP2

was not completely settled. The issue was only recently resolved with our own arti-
cle [Sch22b], addressing the infinitesimally deformable spaces SU(n) and E6/F4, and the
related work by Semmelmann–Weingart [SW22], who considered the quaternionic Grass-
mannians and the Cayley-projective plane. These newer results are summarized in The-
orem 4.2.2 and 4.2.3.

2.1.1 Determining stability

Let us now give an account of the basic procedure underlying all of this work. As ex-
plained in §§1.7, 1.8, the Lichnerowicz Laplacian reduces in this setting to a Casimir
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operator whose spectrum can be computed by means of the Peter–Weyl theorem (1.19)
and Freudenthal’s formula (1.18). The procedure goes as follows: fix a symmetric space
G/H of compact type with simply connected and simple G, and endow it with the Killing
form metric induced by −Bg

∣∣∣
m
. This has the convenient side effect that the critical eigen-

value is normalized to 2E = 1.
The set Ĝ may be identified with the semigroup generated by the fundamental weights.

Using (1.18) and the Cartan matrix of G to find the inner product between the funda-
mental weights, one first lists all γ ∈ Ĝ whose Casimir constant lies below the critical
eigenvalue, i.e. Casgγ ≤ 1.
Next, write S 2

0 (M) as a homogeneous vector bundle with fiber Sym2
0 m. To find the

multiplicity of the G-module Vγ inside S 2
0 (M), one uses the known branching laws to de-

compose each Vγ on the list into irreducible H-modules and thus computes the dimension
of HomH(Vγ, Sym2

0 m). If it vanishes, the Fourier mode γ does not appear inside S 2
0 (M)

and is thus ruled out as a potential instability.

2.1.2 The divergence operator

A substantial hurdle, which was also the main reason for the incompleteness of Koiso’s
analysis, is understanding and incorporating the divergence operator δ in this picture
(after all, we are looking only for tt-tensors). As an invariant differential operator, δ
induces a linear map

δ
∣∣∣
γ

: HomH(Vγ, Sym2
0 m) −→ HomH(Vγ,m)

on each Fourier mode γ ∈ Ĝ. In some cases, the divergence can be shown to vanish by a-
priori considerations, for example if HomH(Vγ,m) is trivial. In the general case, however,
more needs to be done.
A hands-on approach is to try and compute the divergence explicitly on the candidates

for instabilities. Exploiting the properties of the canonical reductive connection, a formula
could be developed, see Lemma 4.4.3. This approach ultimately works just fine (see §4.8,
also carried out in [Sch22b]). However it is bound to be quite cumbersome since it first
requires working out the space HomH(Vγ, Sym2

0 m) explicitly.
As it turns out, there is a more elegant method which is thoroughly explained in §4.5

and picked up again in §7.6. In essence, one can derive an exact dimension formula for
the tt-eigenspaces of ∆L in terms of the dimensions of the corresponding eigenspaces on
S 2

0 (M), Ω1(M) and the space of conformal Killing vector fields (see Lemma 4.5.1). This
dimension formula arises from a short exact sequence

0 −→ {conf. Killing v.f.} ↪−→ Ω1(M) −→ S 2
0 (M) −� S 2

tt(M) −→ 0
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of invariant operators, all commuting with ∆L.
We further note that on compact Einstein manifolds, apart from round spheres, all

conformal Killing vector fields are in fact Killing. The space of Killing vector fields,
however, is just given by iso(M, g) = g in our case. Combining all this, one can finally
calculate the dimensions of the tt-eigenspaces of ∆L to the potential subcritical Casimir
constants and thus arrive at the results.

2.2 A careful step into non-symmetric waters

The success of representation theory in determining the stability of symmetric spaces
motivates us to extend this approach as far as possible to other homogeneous Einstein
manifolds. The two connections ∇ and ∇̄ no longer coincide, and consequently the Lich-
nerowicz Laplacian is no longer simply a Casimir operator. If we assume the metric to
be normal, however, the standard Laplacian ∆̄ retains its interpretation as a Casimir
operator, and also commutes with ∆L. The overarching hope is now to find a way to
“simultaneously diagonalize” these operators – this shall be achieved by finding a relation
between the eigenvalue problems for the two Laplacians, or by expressing the first-order
difference term ∆L − ∆̄ in a suitable manner.
Normal metrics are naturally reductive, and thus by the discussion of §1.6 the two

connections at hand are related by

∇ = ∇̄+ 1
2A, (2.1)

where A = −T̄ is the totally skew-symmetric G-invariant (2, 1)-tensor given at the base
point by

Ao(X, Y ) = [X, Y ]m, X, Y ∈ m.

Equation (2.1) immediately yields an expression for the difference ∆L − ∆̄ – however, in
order to utilize this (as in §2.4), we first need to gather some information about A.
A good testing ground would be a class of homogeneous Einstein manifolds where the

tensor A is explicitly known. One such class are the homogeneous Gray manifolds.

2.2.1 Homogeneous Gray manifolds

An almost Hermitian manifold (M, g, J) is called nearly Kähler if the covariant derivative
∇J is totally skew-symmetric. Strict (i.e. non-Kähler) nearly Kähler manifolds are the
non-integrable analogues of Kähler manifolds in the sense that they carry a distinguished
metric connection ∇h with torsion called the canonical Hermitian connection which has
holonomy U(m). This is closely related to the concept of weak holonomy originally intro-
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duced by Gray [Gra71]. He also initiated the study of nearly Kähler manifolds [Gra70],
meriting the name Gray manifolds for compact, strict nearly Kähler manifolds of dimen-
sion six. This dimension is particularly interesting since it is a notable case in the Nagy
classification of compact, simply connected nearly Kähler manifolds [Nag02]. Addition-
ally, these manifolds are Einstein because they carry a Killing spinor (see §1.10), and their
structure group can be further reduced to SU(3).
Not all Gray manifolds are homogeneous, but the homogeneous ones form a manageable

class, consisting only of the four spaces

S6, S3 × S3 = SU(2)3

∆ SU(2) , CP3 = SO(5)
U(2) , F1,2 = SU(3)

T 2 ,

all endowed with the Killing form metric. Moreover all of them are so-called 3-symmetric
spaces (see §5.3.4), for which, marvellously, the two canonical connections ∇̄ and ∇h

coincide! In turn, the auxiliary tensor A defined in (2.1) can be expressed in terms of the
almost complex structure J as

A(X, Y ) = J(∇XJ)Y, X, Y ∈ X(M).

Alternatively, A can be thought of as the imaginary part of the complex volume form
manifesting the SU(3)-structure on M . In all the above cases, J and A can be written
down explicitly.
In the strict nearly Kähler setting the eigenvalue problem

∆Lh = λh, h ∈ S 2
tt(M), λ ∈ R

had been approached by Moroianu–Semmelmann in order to characterize infinitesimal
Einstein deformations [MS11]. Their method is generalized in the contributed article
[Sch22a], see §5.4. The strategy is as follows: first, comparison formulas developed in
[MS10; MS11] are used to translate the eigenvalue problem for ∆L into a problem involving
∆h. This leads to a system of coupled equations for the Sym+- and Sym−-parts of h (that
is, the parts commuting or anticommuting with J , respectively). Second, we make use of
the ∇h-parallel bundle isomorphisms coming from the nearly Kähler structure, which all
commute with ∆h since it is a standard Laplacian for∇h, and transport the entire problem
for tt-tensors to coclosed primitive forms of J-type (1, 1) and (1, 2) + (2, 1). This has the
advantage that the equations “decouple” in a sense (at least for sufficiently small λ), which
finally makes it possible to describe the solution space in terms of eigenspaces of ∆h (see
Lemma 5.4.2). Remarkably, on the aforementioned spaces of forms, ∆h is actually the
same as the ordinary Hodge–de Rham Laplacian, so the three Laplace operators ∆,∆h, ∆̄
coincide here!
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For the third step we use that ∆̄ is a Casimir operator and proceed as in §2.1.1 for
each of the homogeneous Gray manifolds (except the round S6 which is known to be
stable). In a very similar fashion to the divergence operator, the codifferential poses
an issue in determining whether a certain subcritical Casimir eigenvalue contributes to
instability. However, an elegant dimension formula for the eigenspaces on coclosed forms
is not readily available. This leaves us no choice but to compute the codifferential exactly
in some cases. Once this is done we obtain a complete description of the destabilizing
directions on each of the homogeneous Gray manifolds (see Propositions 5.5.3, 5.5.6, 5.5.8,
summarized in Theorem 5.2.1). In particular, all of them except S6 are unstable.
The instability results themselves are not new, as the stability of homogeneous Gray

manifolds had previously been analyzed. Wang–Wang showed that CP3 and F1,2 are
destabilized by the canonical variation of the twistor fibrations CP3 � HP1 and F1,2 �

CP2 [WW18]. Moreover, Semmelmann–Wang [SWW20] already established the lower
bound b2(M) + b3(M) on the coindex of S ′′g . The first main achievement of [Sch22a] is to
show that this bound is sharp for homogeneous Gray manifolds – that is, all destabilizing
directions indeed come from harmonic 2- or 3-forms.

2.2.2 Other favorable settings

3-symmetric spaces are of course not the only homogeneous spaces where the tensor A is
well understood. Another notable nonintegrable geometry is the class of nearly parallel
G2-manifolds. First, a G2-structure on a 7-manifold is a nondegenerate 3-form σ ∈ Ω3(M)
of a certain algebraic type (namely such that its stabilizer under GL(7,R) is isomorphic
to G2). Such a G2-structure always induces an orientation and a Riemannian metric by
virtue of the inclusion G2 ⊂ SO(7). A G2-structure σ is called nearly parallel if ∗dσ = τ0σ

for some constant τ0 ∈ R. Under this condition, we again have a canonical connection for
which σ is parallel and which realizes the weak holonomy G2.
In the normal homogeneous setting, this connection can again be brought to coincide

with the Ambrose–Singer connection ∇̄ [AS12, Lem. 7.1], and the difference to the Levi-
Civita connection is simply given by

A = τ0

6 σ.

Homogeneous nearly parallel G2-manifolds have been classified by Friedrich et al. [FK+97],
and their stability has been discussed by Semmelmann–Wang–Wang [WW18; SWW22].
An entirely different setting are the generalized Wallach spaces, that is, reductive ho-

mogeneous spaces G/H admitting a Bg-orthogonal decomposition m = m1 ⊕ m2 ⊕ m3 of
the isotropy representation into three H-irreducible summands such that [mi,mi] ⊂ h for
i = 1, 2, 3. They have been classified by Nikonorov [Nik16] and generally admit several in-
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variant Einstein metrics [LNF04]. A particularly interesting case for us is when m1,m2,m3

are of the same dimension. Then the standard metric is Einstein, and there is always a
permutational symmetry of some sort between the isotropy summands. This symmetry
is heavily exploited in the contributed article [SSW22] in order to analyze the example
E7/PSO(8). We will shortly discuss this particular space in §2.4.1.
For now, let us come to the second substantial part of [Sch22a]. The only of the

homogeneous Gray manifolds that admits EID is the flag manifold F1,2, and it shall be
tested whether these EID are integrable in the sense of §1.4. For that, we need to talk
about the integrability obstruction in the homogeneous setting.

2.3 Rigidity results

Recall Koiso’s second order obstruction form Ψ ∈ Sym2 ε(g)∗ ⊗ ε(g)∗ defined in (1.14).
The exact condition for integrability to second order can be stated as this: any h ∈ ε(g)
is formally integrable to second order if and only if

Ψ(h, h, k) = 0 ∀k ∈ ε(g). (2.2)

Nagy–Semmelmann utilize in [NS23] the Frölicher-Nijenhuis bracket to show that Ψ is in
fact totally symmetric, that is Ψ ∈ Sym3 ε(g)∗. It is thus via polarization determined by
the cubic polynomial Ψ(h, h, h), for which an expression was found by Koiso [Koi82] –
see (5.2). The expression involves a contraction of h with its second covariant derivative
∇2h and integrating this over the manifold M . We note that the condition (2.2) above is
equivalent to h being a critical point of the polynomial Ψ(h, h, h).

2.3.1 Rigidity of homogeneous Einstein manifolds

Turning to the setting of a homogeneous space M = G/H with an invariant Einstein
metric g, we note that the space ε(g) of EID is aG-submodule of S 2

tt(M). By construction,
the obstruction form Ψ itself becomes G-invariant as well, so we are now dealing with an
element of (Sym3 ε(g))G, the space of G-invariant cubic homogeneous polynomials over
ε(g). This observation opens the door to various representation-theoretic considerations.
It was first utilized by Koiso himself to show that there are no nontrivial EID integrable
to second order on the symmetric space CP1 × CP2n [Koi82, Thm. 6.12].
The next venture in this direction was made by Batat et al. who examined Ψ on the

symmetric space SU(n) [BH+21]. They refrained from computing Ψ(h, h, h) explicitly for
a general EID h ∈ ε(g), but instead showed that it must be a nonzero multiple of a certain
easier to handle invariant symmetric trilinear form. Moreoever they exploit the fact that
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it is possible to construct the EID of SU(n) from Killing vector fields in an equivariant
way, thus directly reducing the problem to an explicit computation on g. This strategy is
also outlined in [BH+21, §3]. They found that for odd n there are no nontrivial critical
points of the obstruction polynomial, thus showing that the biinvariant metric on SU(n)
is rigid if n is odd.
We note that in all cases seen so far, including our investigation of the flag manifold

F1,2 [Sch22a], the total symmetry of Ψ ∈ (Sym2 ε(g) ⊗ ε(g))G is established a posteriori
by comparing the spaces

(Sym2 ε(g)⊗ ε(g))G ⊂ (Sym3 ε(g))G

and observing that they coincide, thus not relying on the eventual a priori result by
Nagy–Semmelmann [NS23]. These authors apply their reformulation of the integrabil-
ity obstruction to the complex 2-plane Grassmannian SU(n + 2)/S(U(2) × U(n)), again
showing rigidity if n is odd.

2.3.2 Rigidity of the flag manifold F1,2

The strategy pursued in [Sch22a] to show rigidity of the normal metric on F1,2 = SU(3)/T 2

differs from the one of Batat et al. to the extent that the obstruction polynomial is in
fact computed directly. A prerequisite for that is to have an explicit description of the
space ε(g) at hand. In our case, ε(g) is as a G-module equivalent to the adjoint represen-
tation g = su(3). This algebraic identification has already been described by Moroianu–
Semmelmann [MS10, §6] and is picked up again in §5.6.1. In essence one chooses a suitable
basis of su(3) to write down the Fourier coefficient in HomH(su(3), Sym2

0 m), under which
every element ξ ∈ su(3) corresponds to a function in ĥξ ∈ C∞(G, Sym2

0 m)H representing
an EID hξ ∈ ε(g).
The obstruction polynomial on hξ is worked out in §5.6.2. The first step is to rewrite

the obstruction polynomial Ψ in a suitable form. In general, integration by parts yields a
way to write Ψ(h, h, h) in terms of only h and its first covariant derivative ∇h.
Now comes the part where the algebraic groundwork and the knowledge of the auxiliary

tensor A is applied. Using (2.1) we obtain ∇hξ by computing ∇̄hξ and Ahξ separately.
First, recall that computing ∇̄hξ corresponds to taking directional derivatives of ĥξ by
relation (1.20) – thus ∇̄hξ can be worked out entirely in terms of the infinitesimal action
of g = su(3) on ξ. Second, the tensor A is also explicit thanks to [MS10, §6], so it remains
to contract it with hξ to find Ahξ. Combining this, we can plug both hξ and ∇hξ into the
expression (5.2) for Ψ(hξ, hξ, hξ) and obtain an integral over a certain polynomial I on g.
Integrating, i.e. averaging this over G, means in algebraic terms nothing more than

orthogonally projecting I ∈ Sym3 g to its G-invariant part Ψ ∈ (Sym3 g)G. For g = su(3),
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(Sym3 g)G is in turn a one-dimensional space spanned by i det, where det : su(3)→ iR is
the ordinary determinant viewed as a cubic homogeneous polynomial. We conclude that
the polynomial Ψ has no nontrivial critical points, hence all EID of the normal metric on
F1,2 are obstructed to second order.
There is another notion of rigidity that has previously been analyzed, namely that of

nearly Kähler SU(3)-structures on Gray manifolds. Any nearly Kähler structure induces
an Einstein metric, and in fact the space of infinitesimal nearly Kähler deformations
(INKD) of a given nearly Kähler structure has been characterized by Moroianu–Nagy–
Semmelmann in [MNS08] as a certain subspace of the EID of the corresponding Einstein
metric – for the latter, see [MS11]. The space of INKD on homogeneous Gray manifolds is
determined in [MS10]. Foscolo developed a general deformation theory for nearly Kähler
structures and formulated a second order integrability obstruction which again manifests
as a cubic homogeneous polynomial [Fos17]. Moreover, he showed the rigidity of the ho-
mogeneous nearly Kähler structure on F1,2. In this context, the rigidity result in [Sch22a]
can be viewed as a stronger version of Foscolo’s result.

2.4 Normal homogeneous spaces: a systematic
approach

Successfully testing the waters of non-symmetric normal homogeneous spaces in the nearly
Kähler setting motivates a systematic comparison of the two Laplacians ∆L and ∆̄, which
is the aim of the other two contributed articles [SSW22; Sch23]. In terms of the auxiliary
tensor A defined in (2.1), we can a priori write the difference as

∆L − ∆̄ = A∗∇̄+ 1
4A
∗A+ q(R)− q(R̄).

A key observation is that the difference between the two curvature operators is itself just

q(R)− q(R̄) = 1
4A
∗A,

provided we apply this only to symmetric tensors (see Corollary 6.4.2), thus simplifying
the difference formula above considerably (see Lemma 7.4.1).
As a first step in understanding the difference between the Laplacians, we focus on the

zeroth order operator A∗A ∈ EndH(m⊗p) (the discussion applies to tensors of arbitrary
valence p, not just symmetric 2-tensors). Strikingly, we find that it can be expressed
completely in terms of Casimir operators (see Lemma 6.4.3). By far the most headache-
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inducing of the occurring terms is the peculiar projection

prm⊗p Casgg⊗p
∣∣∣
m⊗p

of the g-Casimir operator of g⊗p back to m⊗p ⊂ g⊗p. Computing its spectrum on m⊗p

is unfortunately not straightforward, even if the decomposition of g⊗p into g- and h-
modules is completely known. This is roughly because the same h-isotype V might occur
as a submodule in two distinct g-modules W1,W2 ⊂ g⊗p with differing Casimir constants,
and thanks to the projection prm⊗p the result depends crucially on the embedding of the
submodule V ⊂ m⊗p into W1 ⊕W2 ⊂ g⊗p. However, the spectrum is still bounded above
and below by the respective Casimir constants of g⊗p, which ultimately leads to practical
estimates of the Lichnerowicz Laplacian in [Sch23].
We will get back to this in §2.4.2. For now, let us come to a specific example – the

normal homogeneous space E7/PSO(8) – which is the main object of study in the article
[SSW22] and on which the additional symmetry alluded to in §2.2.2 is sufficient to find
the spectrum of A∗A on symmetric 2-tensors.

2.4.1 A first stable example

The G-stability of invariant Einstein metrics on generalized Wallach spaces, of which
E7/PSO(8) is an example, had recently been studied by Lauret–Will [LW22b], showing
that most of them are unstable. In fact, the only G-stable cases are the normal metrics
on SU(2), E7/PSO(8) and E8/(Spin(8)2/Z2), raising the question whether they are also
stable in the sense of §1.2.
The structure of the generalized Wallach space E7/PSO(8) is described in detail in

§6.5. To begin, there is a splitting

e7 = so(8)⊕m0 ⊕m1 ⊕m2

into so(8)-modules, and the permutational symmetry of the components mi is given by the
triality automorphism Θ ∈ Aut(so(8)) of the root system D4. This outer automorphism
corresponds to the rotational symmetry in the Dynkin diagram of D4, so in the context of
highest weight modules Vγ it does the job of permuting the fundamental weights ω1, ω3, ω4

and fixing ω2 (again adapting the enumerative convention of Bourbaki [Bou81]).
Setting su(8)a := so(8) ⊕ ma for a = 0, 1, 2 defines three non-conjugate subalgebras of

e7, all isomorphic to su(8), that get mapped to one another by a suitable extension of Θ
to e7. The key idea for computing the spectrum of A∗A lies in obtaining a second formula
in terms of Casimir operators (Lemma 6.6.2), this time involving the Lie algebras su(8)a.
It turns out that together with the formula from Lemma 6.4.3, this is enough to piece
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together all the eigenvalues of A∗A on Sym2
0 m (see §6.6).

Let us briefly sketch how this new formula arises. First, we note that A∗A may, by the
skew-symmetry of A, be viewed as a contraction of A2. That is, it can be written as the
composition

VM
A−→ T ∗M ⊗ VM A−→ T ∗M ⊗ T ∗M ⊗ VM − trg−→ VM

for any tensor bundle VM . Replacing the total trace trg by a partial trace over the
subbundle of T ∗M associated to ma ⊂ m, a = 0, 1, 2, we obtain a new operator denoted
by (A∗A)a. On the one hand, summing up these three operators recovers the original
A∗A. On the other hand, (A∗A)a can itself easily be seen to be

(A∗A)a = Cassu(8)a −Casso(8)a ,

where so(8)a ⊂ su(8)a denotes so(8) together with a modified action on m that has to be
taken into account.
Now that we know the spectrum of A∗A on Sym2

0 m, we can derive that of the curvature
endomorphism q(R). It remains to observe that the estimate q(R) > E is satisfied, which
is already a sufficient criterion for stability (see §1.3). This yields the to our knowledge
first non-symmetric example of a stable Einstein metric of positive scalar curvature!
One might now be tempted to try and apply a similar procedure to the other G-stable

generalized Wallach space E8/(Spin(8)2/Z2), but this is not really necessary. In fact, the
stability of both spaces E7/PSO(8) and E8/(Spin(8)2/Z2), among many more, pops out
as a result of the systematic analysis of normal homogeneous spaces carried out in [Sch23].

2.4.2 An algorithm for estimating ∆L

The theoretical centerpiece of the fourth contributed article [Sch23] is the exact repre-
sentation-theoretic description of the Lichnerowicz Laplacian (see Corollary 7.4.5). As
the zeroth order term A∗A has already been taken care of, it remains to discuss the first
order term A∗∇̄, which is done in Lemma 7.4.4. The operator A∗∇̄ may be viewed as an
equivariant endomorphism of the left-regular representation C∞(G,m⊗p)H . In the same
spirit as in the beginning of §2.4, a description in terms of Casimir operators can be
achieved by enlarging the representation space. Consider the inclusion

C∞(G,m⊗p)H ⊂ C∞(G, g⊗p) ∼= C∞(G)⊗ g⊗p.

By now it is no surprise that the Casimir operator Casg
`⊗Ad⊗p of the right-hand side occurs

in the formula for A∗∇̄, again composed with the projection prm⊗p . In total we have to
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cope with exactly two of these troublesome projected Casimir operators, namely

prm⊗p Casgg⊗p and prm⊗p Casg
`⊗Ad⊗p .

As explained above, computing their spectrum (say, on a fixed Fourier mode γ ∈ Ĝ) is
not a trivial task. For this reason we resort to an estimation-based approach. First, a fi-
brewise estimate of A∗A may be obtained by noting down the possible Casgg⊗p-eigenvalues
on the g-orbit of m⊗p. This leads to a first very crude lower bound for ∆L on symmet-
ric tensors (see Theorem 7.4.6) which has the advantage of being very computationally
efficient for varying γ ∈ Ĝ, depending only on the Casimir constant Casgγ itself. Second,
similar considerations are applied to the other Casimir operator Casg

`⊗Ad⊗p , resulting in a
more refined estimate on ∆L in Theorem 7.4.7.
The second estimate is generally better but has the downside that serious tensor product

and branching calculations have to be carried out for each Fourier mode separately. All
this is condensed into the algorithm described in §7.7 which operates roughly according
to the following plan: at first, it is checked whether the fibrewise estimate on A∗A is
sufficient for the curvature estimate q(R) > E which would imply stability, as is the case
for the example discussed in §2.4.1. If this does not work, the crude estimate is applied
to find a constant C > 0 with the property that for every γ ∈ Ĝ, the inequality Casgγ > C

implies the inequality ∆L

∣∣∣
γ
> 2E. This narrows the potentially destabilizing Fourier

modes down to the (finite!) set

ĜC = {γ ∈ Ĝ | Casgγ ≤ C}.

We restrict further to just the Fourier modes in ĜC that actually occur within S 2
tt(M),

utilizing the same arguments as in Sections 2.1.1 and 2.1.2. Finally, we apply the refined
estimate to each of the remaining modes. For the reasons described above, this step is
responsible for the bulk of the computation time. It leaves us either with a computational
proof that the space in question is stable or with a small remaining list of potentially
destabilizing Fourier modes. On that note, our algorithm is only suited to show stability,
not instability.
The algorithm thus described is implemented in the open-source computer algebra

system SageMath, utilizing its interface to the software package LiE which takes care of
the Lie-theoretic computations [Sage; LiE]. Issues that we will not touch upon here are
how to find the right branching laws from g to h and how to calculate the relevant Casimir
constants with the correct normalization (for the latter see §7.5).
Ultimately, we apply this procedure to the known list of normal, non-symmetric ho-

mogeneous Einstein manifolds G/H with simple G mentioned at the end of §1.8. These
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spaces were in their totality classified by Wolf and Wang–Ziller [Wol68; WZ85], consisting
of 10 infinite families and 13 exceptions in the isotropy irreducible case, and additionally
9 infinite families and 22 exceptions in the isotropy reducible case. Of course, due to com-
putational constraints, only a finite number of members of each family could be checked.
The results are manifold and surprising. Remarkably, many of the spaces turn out to

be stable. Thus a plethora of new examples of non-symmetric stable Einstein metrics
of positive scalar curvature is provided. In some cases the stability follows only after
combining with the G-stability results of Lauret–Lauret–Will who investigated the same
class of spaces [LL23]. The inclined reader is encouraged to skip directly to §7.8 where
the results are discussed in due detail.

2.5 Outlook

There is a lot left to do. In the following we shall present a small selection of topics that
might be worthwhile to study further.
An exact general procedure to compute eigenvalues of ∆L, or even just the curvature

term q(R), on normal homogeneous spaces is still lacking. To blame are primarily the
projected Casimir operators mentioned in §2.4.2. This might be remedied by keeping
track of and linearly relating certain vectors inside m⊗p and g⊗p in a way that makes it
possible to evaluate expressions of the form

cij = 〈Casgg⊗p vi, vj〉, i, j = 1, . . . , k

where vi ∈ Vi are suitable representatives (say, highest weight vectors) of some isotypical
h-submodule V = V1⊕ . . .⊕Vk ⊂ m⊗p. The symmetric matrix with entries cij could then
be diagonalized to find the spectrum of prm⊗p Casgg⊗p on V , and a similar procedure might
be employed for the other projected Casimir operator.
Such a method would be called for in light of the several potentially destabilizing Fourier

modes left open in our analysis of normal homogeneous Einstein manifolds [Sch23]. An-
other undertaking worthy of consideration is to apply the developed estimation algorithm
to the infinite families of the Wolf–Wang–Ziller classification in their totality, as opposed
to the case-by-case check on low-rank examples carried out in [Sch23].
There are other settings that might be fruitful to investigate. The groundwork by

Lauret–Will showed G-stability not only for the particular generalized Wallach spaces
described above, but also for the unique Kähler–Einstein metric on the generalized flag
manifolds (also called Kähler C-spaces) with b2(M) = 1. The Kähler–Einstein metric is
not standard but has a rather simple and peculiar form. Concretely, there is always an
irreducible decomposition m = m1⊕ . . .⊕mk such that the metric is, up to a factor, given
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by
go = −Bg

∣∣∣
m1
⊕−2Bg

∣∣∣
m2
⊕ . . .⊕−kBg

∣∣∣
mk
.

Additionally, in the case k = 2, there exist additional commutator relations that might
simplify the necessary calculations considerably. Kähler C-spaces with b2(M) = 1 are of
particular interest since any compact connected homogeneous Kähler–Einstein manifold is
either a flat complex torus or a Kähler C-space [Bes87, Cor. 8.98]. Moreover we note that
Kähler–Einstein metrics with b2(M) > 1 are necessarily unstable [CHI04, p. 6]. In the
same vein, one could carefully try to extend our methods to other homogeneous Einstein
manifolds whose metric is very close to being normal.
In the spirit of §2.2.2 one could try to apply similar techniques as in [Sch22a] to other

spaces where the tensor A is explicitly known – for example homogeneous nearly parallel
G2 manifolds – in order to compute their coindex, find possible EID and, if these exist,
study their integrability.
Following Batat et al. and Nagy–Semmelmann [BH+21; NS23], it still remains to set-

tle the rigidity of the infinesimally deformable symmetric spaces of compact type other
than SU(n) and SU(n + 2)/S(U(2) × U(n)) with n odd. Batat et al. give a promising
description of EID on spaces other the complex Grassmannians, namely via constructing
them (fibrewise!) from Killing vector fields. For the Grassmannians, we expect a possible
characterization of the EID as the image of Killing vector fields under a certain first-
order differential operator. Viewing divergence-freeness as an algebraic condition after
restricting to a suitable Fourier mode, as in §2.1.2, might prove useful here.
It remains, of course, to work out the obstruction integral in any case. In some cases

such as SU(n) and SU(n + 2)/S(U(2) × U(n)) with n even, it also remains to work out
the third order obstruction to integrability. Setting up a systematic framework for these
integrability obstructions in the homogeneous case, possibly with the aid of symbolic
computer calculations, might be a step towards a resolution of the Finiteness Conjecture.
A broader notion is the solitonic rigidity briefly mentioned in §1.4, which is, for instance,

also still open for symmetric spaces. The spaces of infinitesimal solitonic deformations are
known, and the obstruction to second order manifests again as a certain cubic integral.
In any of the above cases where integrability is investigated, we eventually obtain a

system of homogeneous polynomial equations on some arbitrarily high-dimensional vector
spaces. The set of solutions thus forms a projective variety, and it seems in general difficult
to describe it or even to determine whether it is empty. Certainly, the discussion may
benefit from the tools of real algebraic geometry.
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4 Stability of Einstein metrics on
symmetric spaces of compact type

4.1 Abstract

We prove the linear stability with respect to the Einstein-Hilbert action of the symmetric
spaces SU(n), n ≥ 3, and E6/F4. Combined with earlier results, this resolves the stability
problem for irreducible symmetric spaces of compact type.

4.2 Introduction

Let M be a closed manifold of dimension n > 2. It is a well-known fact (see [Bes87]) that
Einstein metrics are critical points of the total scalar curvature functional

g 7→ S(g) =
∫
M

scalg volg,

also called the Einstein–Hilbert action, restricted to the space of Riemannian metrics of
a fixed volume. In general, these critical points are neither maximal nor minimal. If we,
however, restrict S to the set S of all Riemannian metrics onM of the same fixed volume
that have constant scalar curvature, then some Einstein metrics are maximal, while others
form saddle points. To examine this, one considers the second variation S ′′g of S at a fixed
Einstein metric g on M . If we exclude the case where (M, g) is a standard sphere, the
tangent space of S at g consists precisely of tt-tensors, i.e. symmetric 2-tensors that are
transverse (divergence-free) and traceless. In these directions, the coindex and nullity of
S ′′g are always finite. The stability problem is to decide whether they vanish for a given
Einstein manifold (M, g).
The stability of an Einstein metric g is determined by the spectrum of a Laplace-

type operator ∆L, called the Lichnerowicz Laplacian, on tt-tensors. There is a critical
eigenvalue, corresponding to null directions for S ′′g , which is equal to 2E, where E is the
Einstein constant of g. The metric g is called linearly (strictly) stable if ∆L ≥ 2E (resp.
∆L > 2E) on tt-tensors, and infinitesimally deformable if there is a tt-eigentensor of ∆L

for the critical eigenvalue.
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Suppose that (M, g) is a locally symmetric Einstein manifold of compact type. The
Cartan–Ambrose–Hicks theorem implies that its universal cover (M̃, g̃) is a simply con-
nected symmetric space. As such, (M̃, g̃) can be written as a Riemannian product of
irreducible symmetric spaces of compact type. For many of these spaces, the stability
problem has been decided by N. Koiso. The following theorem collects the results of
Koiso in [Koi80] together with a result of J. Gasqui and H. Goldschmidt in [GG96] about
the complex quadric SO(5)/(SO(3)× SO(2)).

4.2.1 Theorem. 1. The only irreducible symmetric spaces of compact type that are
infinitesimally deformable are

SU(n), SU(n)/ SO(n), SU(2n)/ Sp(n) (n ≥ 3),

SU(p+ q)/S(U(p)× U(q)) (p ≥ q ≥ 2),

as well as E6/F4.

2. The irreducible symmetric spaces

Sp(n) (n ≥ 2), Sp(n)/U(n) (n ≥ 3),

as well as the complex quadric SO(5)/(SO(3)× SO(2)) are unstable.

3. Let (M, g) be an irreducible symmetric space of compact type. If (M, g) is none of
the spaces from 1. and 2., nor one of

Sp(p+ q)/(Sp(p)× Sp(q)) (p ≥ q ≥ 2 or p = 2, q = 1)

nor F4/ Spin(9), then g is strictly stable.

Moreover, the smallest eigenvalue of ∆L on trace-free symmetric 2-tensors has been
computed in each case (see [CH15]). Among the spaces that possess infinitesimal defor-
mations, we have ∆L ≥ 2E on S 2

0 (M) on the spaces

SU(n)/ SO(n), SU(2n)/ Sp(n) (n ≥ 3), SU(p+ q)/S(U(p)× U(q)) (p ≥ q ≥ 2),

which shows that they are linearly stable.
However, this did not fully settle the stability problem on irreducible symmetric spaces

of compact type. In particular, it had not been decided whether unstable directions exist
on the spaces

SU(n) (where n ≥ 3), E6/F4, F4/ Spin(9),

Sp(p+ q)/(Sp(p)× Sp(q)) (where p ≥ q ≥ 2 or p = 2, q = 1).
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In these cases, we know that ∆L has eigenvalues smaller than 2E on the space of trace-free
symmetric 2-tensors, but it had not been checked whether the corresponding eigentensors
are also divergence-free. In a recent paper [SW22], U. Semmelmann and G. Weingart
show the following results.

4.2.2 Theorem. 1. The quaternionic Grassmannians Sp(p + q)/(Sp(p) × Sp(q)) are
linearly stable for p = 2 and q = 1, but unstable for p ≥ q ≥ 2.

2. The Cayley plane OP2 = F4/ Spin(9) is linearly stable.

The current article finally resolves the question of stability for the last remaining cases
by proving the following.

4.2.3 Theorem. The symmetric spaces SU(n), where n ≥ 3, as well as E6/F4 are linearly
stable.

Consider a manifold (M, g) that is a Riemannian product of Einstein manifolds. Then
(M, g) is Einstein if and only if the factors have the same Einstein constant E. It turns
out that if E > 0, then (M, g) is always unstable (see [Krö13, Prop. 3.3.7]). For example,
if (M, g) is the Riemannian product of two Einstein manifolds (Mni

i , gi) (i = 1, 2) with
the same Einstein constant, then an unstable direction is given by

h := n2π
∗
1g1 − n1π

∗
2g2,

where πi : M → Mi are the projections onto each factor, respectively. In particular, a
product of symmetric spaces of compact type is always unstable since the factors have
positive curvature.
If we take (M, g) to be locally symmetric of compact type, we cannot in general con-

clude its instability from the instability of its universal cover (M̃, g̃). The same holds
for the existence of infinitesimal Einstein deformations. On the other hand, if (M̃, g̃) is
infinitesimally non-deformable (resp. stable), then the same follows for (M, g). In [Koi82],
N. Koiso has proved the infinitesimal non-deformability of a large class of such manifolds:

4.2.4 Theorem. Let (M, g) be a locally symmetric Einstein manifold of compact type. Let
(M̃, g̃) be its universal cover and (M̃, g̃) = ∏N

i=1(Mi, gi) its decomposition into irreducible
symmetric spaces.

1. For N = 1, see Theorem 4.2.1, 1.

2. If N = 2 and Mi are neither of the spaces listed in Theorem 4.2.1, 1., nor G2 or
any Hermitian space except S2, then (M, g) is infinitesimally non-deformable.
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3. If N ≥ 3 and Mi are neither of the above nor S2, then (M, g) is infinitesimally
non-deformable.

A closely related notion of stability arises in the study of the Ricci flow. The fixed
points (modulo diffeomorphisms and scaling) of the Ricci flow are called Ricci solitons.
The ν-entropy defined by G. Perelman is a quantity that increases monotonically under
the Ricci flow. Its critical points are the shrinking gradient Ricci solitons, which include
Einstein manifolds. An Einstein metric is called ν-linearly stable if the second variation
of the ν-entropy is negative-semidefinite. H.-D. Cao, R. Hamilton and T. Ilmanen first
studied the ν-linear stability of Einstein metrics (see [CHI04]). It turns out that an
Einstein metric is ν-linearly stable if and only if ∆L ≥ 2E on tt-tensors and if the first
nonzero eigenvalue of the ordinary Laplacian on functions is bounded below by 2E as well.
In particular, ν-linear stability implies linear stability with respect to the Einstein–Hilbert
action. In [CH15], the ν-linear stability of irreducible symmetric spaces of compact type
is completely decided.
There is yet another notion of stability worth mentioning. It is motivated, for example,

by the investigation of Anti-de Sitter product spacetimes and generalized Schwarzschild–
Tangherlini spacetimes (see [Die13] or [GHP03]). An Einstein manifold (Mn, g) with
Einstein constant E is called physically stable if

∆L ≥
E

n− 1

(
4− 1

4(n− 5)2
)

= 9− n
4 E

on tt-tensors. This critical eigenvalue is significantly smaller than the one from stability
with respect to the Einstein–Hilbert action, and even negative for n > 9. As it turns out,
all irreducible symmetric spaces of compact type are physically stable (see [Die13]). If
(M, g) is a product of at least two symmetric spaces of compact type, then the smallest
eigenvalue of ∆L on tt-tensors is actually equal to 0; hence (M, g) is physically stable if
and only if n ≥ 9.
In §4.3 we fix the notation and definitions used throughout this work. In particular,

we elaborate on the notion of stability of an Einstein metric. In §4.4 we recall some
tools from the harmonic analysis of homogeneous spaces that are routinely employed.
Furthermore we prove a technical lemma that allows us to make explicit computations
involving the divergence operator. A helpful formula for the dimension of tt-eigenspaces of
the Lichnerowicz Laplacian is worked out in §4.5, generalizing a proposition of Koiso and
utilizing properties of Killing vector fields on Einstein manifolds. §4.6 uses representation
theory to determine the stability of SU(n), making use of the formula from §4.5; in
§4.7, the same is done for E6/F4. A different approach for proving the stability of both
spaces that involves explicit computations of the divergence operator can be found in the
Appendix (§4.8).
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4.3 Preliminaries

Throughout what follows, let (M, g) be a compact, orientable Riemannian manifold. Let
∇ denote the Levi-Civita connection of g. The Riemannian curvature tensor, Ricci tensor
and scalar curvature are in our convention given as

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

Ric(X, Y ) := tr(Z 7→ R(Z,X)Y ),
scal := trg Ric,

respectively.1 The action of the Riemannian curvature extends to an endomorphism on
tensor bundles as

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ],

where ∇ also denotes the induced connection on the respective tensor bundle. Further-
more, let S p(M) = Γ(Symp T ∗M) for p ≥ 0. We denote by

δ : S p+1(M)→ S p(M)

the divergence operator on symmetric tensors, given by

δ = −
∑
i

eiy∇ei .

The space of tt-tensors, i.e. trace- and divergence-free symmetric 2-tensors on M , is
denoted by S 2

tt(M).
Let δ∗ : S p(M)→ S p+1(M) be the formal adjoint2 of the divergence operator. It can

be written as
δ∗ =

∑
i

e[i �∇ei ,

where (ei) is a local orthonormal basis of TM . Here, � denotes the (associative) symmetric
product, defined by

α� β := (k + l)!
k!l! sym(α⊗ β)

for α ∈ Symk T , β ∈ Syml T , where T is any vector space and the symmetrization map
sym : T⊗k → Symk T is given by

sym(X1 ⊗ . . .⊗Xk) := 1
k!

∑
σ∈Sk

Xσ(1) ⊗ . . .⊗Xσ(k)

1We use the index g only when the metric-dependence of an object is to be emphasized.
2That is, with respect to the inner product 〈·, ·〉g on Symp T ∗M with orthonormal basis (e[i1 � . . .� e

[
ip

).
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for X1, . . . , Xk ∈ T . This is analogous to the definition of the wedge product via the
alternation map. For tensors α, β of rank 1, we have

α� β = α⊗ β + β ⊗ α.

It should be noted that δ∗X[ = LXg for any vector field X ∈ X(M). Consequently, the
kernel of δ∗ on Ω1(M) is (via the metric) isomorphic to the space of Killing vector fields
on (M, g). More generally, symmetric tensors α ∈ S k(M) with δ∗α = 0 are called Killing
tensors of rank k, and δ∗ is sometimes called the Killing operator.

4.3.1 Definition. On tensors of any rank, the following operators are defined:

1. The curvature endomorphism q(R) is defined by

q(R) :=
∑
i<j

(ei ∧ ej)∗R(ei, ej),

where (ei) is a local orthonormal basis of TM and the asterisk indicates the natural
action of Λ2T ∼= so(T ).

2. The Lichnerowicz Laplacian ∆L is defined by

∆L := ∇∗∇+ q(R).

Recall that on Ωp(M), p ≥ 0, this coincides with the Hodge Laplacian ∆.

On the space of Riemannian metrics on M , which is an open cone in S 2(M), the total
scalar curvature functional or Einstein-Hilbert action is given by

S(g) =
∫
M

scalg volg

for any Riemannian metric g on M . As mentioned earlier, if we restrict this functional
to the space of metrics of a fixed total volume, then Einstein metrics are precisely the
critical points of the restriction of S.
Let (M, g) be an Einstein manifold with Einstein constant E ∈ R, that is

Ric = Eg,

and suppose that (M, g) is not isometric to a standard round sphere. Denote

C∞g (M) =
{
f ∈ C∞(M)

∣∣∣∣ ∫
M
f volg = 0

}
.

It is well known (see [Bes87]) that there is a decomposition of S 2(M), which is orthogonal
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with respect to the second variation S ′′g of the total scalar curvature functional, into the
four summands

S 2(M) = Rg ⊕ C∞g (M)g ⊕ im δ∗ ⊕S 2
tt(M).

These correspond to infinitesimal changes in the metric by homothety, volume-preserving
conformal scaling, the action of diffeomorphisms, and moving within S, respectively. The
second variation S ′′g is positive on C∞g (M)g, zero on im δ∗ and is given by

S ′′g (h, h) = −1
2 (∆Lh− 2Eh, h)g

on S 2
tt(M), where it has finite coindex and nullity; that is, the maximal subspace of

S 2
tt(M) where S ′′g is nonnegative is finite-dimensional. In fact, the null directions in

S 2
tt(M) are precisely the infinitesimal Einstein deformations of g, i.e. infinitesimal defor-

mations of g that preserve the Einstein property, the total volume and are orthogonal to
the orbit of g under diffeomorphisms.

4.3.2 Definition. An Einstein metric g on M is called

1. (linearly) stable (with respect to the Einstein–Hilbert action) if S ′′g ≤ 0 on S 2
tt(M)

or, equivalently, if ∆L ≥ 2E on S 2
tt(M). Otherwise it is called (linearly) unstable.

2. strictly (linearly) stable (with respect to the Einstein–Hilbert action) if S ′′g < 0 on
S 2

tt(M) or, equivalently, if ∆L > 2E on S 2
tt(M).

3. infinitesimally deformable if ∆Lh = 2Eh for some nonzero h ∈ S 2
tt(M).

4.4 Invariant differential operators

Let G be a compact Lie group with Lie algebra g andK a closed subgroup such that (M =
G/K, g) is a reductive Riemannian homogeneous space with K-invariant decomposition
g = k ⊕ m, where k is the Lie algebra of K and m is the reductive complement which is
canonically identified with the tangent space ToM at the base point o := eK ∈M . Recall
that for some representation ρ : K → AutV , the left-regular representation on the space
of K-equivariant smooth functions C∞(G, V )K is defined as

` : G→ AutC∞(G, V )K : (`(x)f)(y) := f(x−1y)

for x, y ∈ G. Furthermore, the space C∞(G, V )K is identified with the space of sections
of the associated bundle G×ρ V over M . The identification is given by

Γ(G×ρ V )→ C∞(G, V )K : s 7→ ŝ,
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where ŝ is defined by s([x]) = [x, ŝ(x)] for any x ∈ G. If V can be expressed in terms of
the isotropy representation m, then G×ρ V is a tensor bundle; for example, we have

X(M) = Γ(TM) ∼= Γ(G×ρ m) ∼= C∞(G,m)K ,
Ω1(M) = Γ(T ∗M) ∼= Γ(G×ρ m∗) ∼= C∞(G,m)K ,

S 2(M) = Γ(Sym2 T ∗M) ∼= Γ(G×ρ Sym2 m∗) ∼= C∞(G, Sym2 m)K ,
S 2

0 (M) = Γ(Sym2
0 T
∗M) ∼= Γ(G×ρ Sym2

0 m
∗) ∼= C∞(G, Sym2

0 m)K ,

where Sym2
0, S 2

0 denotes the space of trace-free elements with respect to the metric. Note
that the invariant Riemannian metric yields an equivalence between m and m∗.
Suppose that V is a complex representation. Choose a maximal torus T inside G

with Lie algebra t. Recall that up to equivalence, every irreducible finite-dimensional
complex representation of G is characterized by its highest weight γ ∈ t∗. By the Peter-
Weyl theorem and Frobenius reciprocity (cf. [Wal73]), the left-regular representation
C∞(G, V )K can be decomposed into irreducible summands as3

C∞(G, V )K ∼=
⊕
γ

Vγ ⊗ HomK(Vγ, V ), (4.1)

where γ runs over all highest weights of G-representations and (Vγ, ργ) is the (up to
equivalence) unique irreducible representation of G with highest weight γ. For any

α⊗ A ∈ Vγ ⊗ HomK(Vγ, V ),

the corresponding element of C∞(G, V )K is defined by

fAα : G→ V : x 7→ A(ργ(x−1)α).

Since the Lichnerowicz Laplacian ∆L on Γ(G×ρV ) is a G-invariant differential operator,
Schur’s Lemma implies that on each of the isotypical subspaces

Vγ ⊗ HomK(Vγ, V ),

∆L acts as an endomorphism of the finite-dimensional vector space HomK(Vγ, V ), that is,

∆Lf
A
α = fLγ(A)

α

for some Lγ ∈ End HomK(Vγ, V ).
3Here, the bar over the direct sum denotes the closure in C∞(G,V )K (with the L2 inner product). In
other words,

⊕
γ Vγ ⊗ HomK(Vγ , V ) is dense in C∞(G,V )K . In fact, it is dense in L2(G,V )K , but

for our purposes, it suffices to consider smooth sections.
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In order to obtain the spectrum of ∆L, one would have to find the eigenvalues of each Lγ
– a potentially very cumbersome task. We will shortly see that this matter is considerably
simpler in the symmetric case.
Fix an Ad-invariant inner product 〈·, ·〉g on the Lie algebra g. If we assume that G is

semisimple, one such inner product is given by −Bg, where Bg is the Killing form on g,
defined by

Bg(X, Y ) := tr(ad(X) ◦ ad(Y ))

for X, Y ∈ g. Recall that for any representation π : G → AutW , the Casimir operator
CasGπ with respect to the chosen inner product is an equivariant endomorphism of W ,
defined as

CasGπ := −
∑
i

π∗(ei) ◦ π∗(ei)

for any orthonormal basis (ei) of g.
The following proposition combines two well-known results that allow us to compute

the eigenvalues of ∆L on compact symmetric spaces, the latter being a formula due to
H. Freudenthal (cf. [FH91]).

4.4.1 Proposition. Let (M = G/K, g) be a compact Riemannian symmetric space where
the Riemannian metric is induced by an Ad-invariant inner product 〈·, ·〉g on g, and let
ρ : K → AutV be a representation.

1. On the left-regular representation Γ(G×ρ V ), the Lichnerowicz Laplacian ∆L coin-
cides with the Casimir operator CasG` of the representation ` : G→ Aut Γ(G×ρ V ).

2. On each irreducible representation Vγ, the Casimir eigenvalue is given by

CasGγ = 〈γ, γ + 2δg〉t∗ ,

where δg is the half-sum of positive roots and 〈·, ·〉t∗ is the inner product on t∗ induced
by the inner product on t ⊂ g.

4.4.2 Remark. The first statement is a consequence of a more general result. Let G be
a compact Lie group and (M = G/K, g) be a reductive Riemannian homogeneous space.
To the reductive decomposition corresponds a canonical G-invariant connection on M

(also called the Ambrose–Singer connection), which we denote by ∇̄. This connection in
turn defines a curvature tensor R̄ and an analogue to the Lichnerowicz Laplacian via

∆̄ := ∇̄∗∇̄+ q(R̄),

called the standard Laplacian of this connection (introduced in [SW18]). Then, in fact,
∆̄ = CasG` on Γ(G ×ρ V ). The above statement follows when we note that on Rieman-
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nian symmetric spaces, the Ambrose–Singer connection coincides with the Levi–Civita
connection.

According to (4.1) we can write the complexified left-regular representation on trace-free
symmetric 2-tensors as

S 2
0 (M)C ∼=

⊕
γ

Vγ ⊗ HomK(Vγ, Sym2
0 m

C).

Recall that irreducible symmetric spaces of compact type can be endowed with a Rie-
mannian metric induced by the Killing form (the so-called standard metric). In this case,
the critical eigenvalue of ∆L is 2E = 1. Supposing we have a representation Vγ with
subcritical Casimir eigenvalue CasGγ < 1 occurring in this decomposition, it remains to
check whether the tensors in the corresponding subspace are divergence-free. By Schur’s
Lemma, the G-invariant operator

δ : S 2
0 (M)C → Ω1(M)C

is constant on each irreducible subspace. This means that we can regard δ as a linear
mapping

δ
∣∣∣
γ

: HomK(Vγ, Sym2
0 m

C)→ HomK(Vγ,mC),

the so-called prototypical differential operator associated to δ and Vγ. For a further dis-
cussion of invariant differential operators on homogeneous spaces, we refer the reader to
[SW22, §2].
The following lemma is of use when we need to calculate δ explicitly. A derivation of

essentially the same formula can also be found in [SW22, §2].

4.4.3 Lemma. Suppose (M, g) is a Riemannian symmetric space. Let h ∈ S 2(M)C

correspond to an element

α⊗ A ∈ Vγ ⊗ HomK(Vγ, Sym2 mC)

in the decomposition (4.1) of S 2(M)C. Let further (ei) be an orthonormal basis of m.
Then we have

(δh)o(X) =
∑
i

〈A((ργ)∗(ei)α), ei �X〉

for any X ∈ m ∼= ToM .

Proof. The element of C∞(G, Sym2 mC)K corresponding to h ∈ S 2(M) is given by

ĥ = fAα : G→ Sym2 mC : x 7→ A(ργ(x−1)α),
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where ργ is the representation of G on Vγ. The covariant derivative of h at the base point
may be expressed by

(∇h)o(X, Y ) = 〈dĥe, X � Y 〉

for X, Y ∈ m ∼= ToM , since ∇ coincides with the Ambrose-Singer connection on M as a
reductive homogeneous space. This implies that

(δh)o(X) = −
∑
i

eiy∇eih(X) = −
∑
i

∇eih(ei, X) = −
∑
i

〈dĥ(ei), ei �X〉

= −
∑
i

〈dfAα (ei), ei �X〉 =
∑
i

〈A((ργ)∗(ei)α), ei �X〉.

4.5 tt-Eigenspaces of the Lichnerowicz Laplacian

We return to the general setting of a compact Einstein manifold (M, g). Define

θ : Ω1(M)→ S 2
0 (M) : α 7→ δ∗α + 2

n
δα · g,

so that θα is precisely the trace-free part of δ∗α ∈ S 2(M). The kernel of this operator
is (via the metric) isomorphic to the space of conformal Killing fields on (M, g), that is,
the space of vector fields X ∈ X(M) such that LXg = fg for some f ∈ C∞(M). We thus
call θ the conformal Killing operator.
The following lemma is a generalization of a proposition by Koiso [Koi82, Prop. 3.3].

For the proof, we refer the reader to the Appendix.

4.5.1 Lemma. Let (M, g) be a compact Einstein manifold of dimension n ≥ 3. For any
λ ∈ R, the dimension of the eigenspace of ∆L to the eigenvalue λ on tt-tensors is given
by

dim ker(∆L − λ)
∣∣∣
S 2

tt(M)
= dim ker(∆L − λ)

∣∣∣
S 2

0 (M)
− dim ker(∆− λ)

∣∣∣
Ω1(M)

+ dim
(

ker(∆− λ)
∣∣∣
Ω1(M)

∩ ker θ
)
.

At first glance the third term on the right hand side of the above formula does not
look very amenable to computation. However, matters are made easier if we observe the
following properties of (conformal) Killing vector fields on Einstein manifolds, both of
which are proven in the Appendix.

4.5.2 Lemma. On any compact Einstein manifold (M, g) not isometric to a standard
round sphere, conformal Killing fields are actually Killing, that is, LXg = fg for some
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f ∈ C∞(M) implies f = 0. Equivalently, ker θ = ker δ∗ on Ω1(M).

4.5.3 Lemma. Any Killing field X ∈ X(M) on an Einstein manifold with Einstein
constant E satisfies

∆X[ = 2EX[.

Equivalently, ker δ∗ ⊂ ker(∆− 2E) on Ω1(M).

If we assume that (M, g) is not isometric to a standard sphere, we can immediately
conclude that the intersection ker(∆ − λ)

∣∣∣
Ω1(M)

∩ ker θ is trivial if λ 6= 2E. By virtue of
Lemma 4.5.1, we obtain the following.

4.5.4 Corollary. Let (M, g) be a compact Einstein manifold that is not isometric to a
standard round sphere, and let E be its Einstein constant. For any λ 6= 2E, the dimension
of the eigenspace of ∆L to the eigenvalue λ on tt-tensors is given by

dim ker(∆L − λ)
∣∣∣
S 2

tt(M)
= dim ker(∆L − λ)

∣∣∣
S 2

0 (M)
− dim ker(∆− λ)

∣∣∣
Ω1(M)

.

4.5.5 Remark. If we set λ = 2E in Lemma 4.5.1 and note that

ker(∆− 2E)
∣∣∣
Ω1(M)

∩ ker θ = ker δ∗
∣∣∣
Ω1(M)

(as Koiso did in his proof of [Koi82, Prop. 3.3]), we recover the original formula for the
critical eigenvalue

dim ker(∆L − 2E)
∣∣∣
S 2

tt(M)
= dim ker(∆L − 2E)

∣∣∣
S 2

0 (M)
− dim ker(∆− 2E)

∣∣∣
Ω1(M)

+ dim ker δ∗
∣∣∣
Ω1(M)

.

4.5.6 Remark. Although the dimension formula of Lemma 4.5.1 works on any compact
Einstein manifold (M, g), it is worth mentioning that if additionally, (M, g) carries the
structure of a Riemannian homogeneous space M = G/K, the result can be refined in
terms of irreducible representations of G. Namely, if Vγ is an irreducible representation of
G, then the multiplicity of Vγ in the (complexified) left-regular representation on tt-tensors
is given by

dim HomG(Vγ,S 2
tt(M)C) = dim HomK(Vγ, Sym2

0 m
C)− dim HomK(Vγ,mC)

+ dim HomG(Vγ, (ker θ)C).

As in the proof of Lemma 4.5.1, the dimension formula essentially arises from the short
exact sequence

0 −→ ker θ ⊂−→ Ω1(M) θ−→ S 2
0 (M) P−→ S 2

tt(M) −→ 0
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and the fact that the Laplacian commutes with every arrow. In the homogeneous case,
we note that we have a short exact sequence of G-representations and use Frobenius
reciprocity to arrive at the statement.

4.6 The symmetric space SU(n)

Throughout what follows, let n ≥ 3. As a symmetric space, SU(n) = G/K where G =
SU(n)× SU(n) and K = SU(n) is diagonally embedded, i.e. via

SU(n) ↪→ SU(n)× SU(n) : k 7→ (k, k).

Let g and k denote the corresponding Lie algebras of G and K, respectively. We endow
M with the standard metric g induced by the Killing form on g. Hence, M is Einstein
with critical eigenvalue 2E = 1. The reductive decomposition of g with respect to g is
given by

g = k̃⊕m,

where

k̃ = {(X,X) |X ∈ k},

m = {(X,−X) |X ∈ k}.

The K-representations k, k̃ and m are all equivalent. We denote by E = Cn the standard
representation of K.

4.6.1 Lemma. Let Vγ be an irreducible complex representation of G with CasGγ < 1 and

HomK(Vγ, Sym2
0 k

C) 6= 0.

Then Vγ is equivalent to one of the G-representations E ⊗ E∗ and E∗ ⊗ E. In fact,

dim HomK(Vγ, Sym2
0 k

C) = 1

and the Casimir eigenvalue is CasGγ = (n−1)(n+1)
n2 .

Proof. Let t be the torus of diagonal matrices in k. The dual t∗ is generated by the weights
ε1, . . . , εn of the defining representation E. Explicitly,

εj(X) = Xj, 1 ≤ j ≤ n

for X = diag(iX1, . . . , iXn) ∈ t. Note that ε1 + . . .+ εn = 0.
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Fix the ordering on roots and weights such that the simple roots of k are given by

εj − εj+1, 1 ≤ j ≤ n− 1.

The semigroup of dominant integral weights is then generated by the fundamental weights

ωj =
j∑

k=1
εj, 1 ≤ j ≤ n− 1,

cf. [FH91, §15.1]. The highest weights of representations of K, i.e. all the dominant
integral weights, are precisely the linear combinations

γ =
n−1∑
r=1

arωr

with coefficients ar ∈ N0. The fundamental weights themselves correspond to the repre-
sentations

Vωr = ΛrE ∼= Λn−rE∗.

Let γ, γ′ ∈ t∗ be two dominant integral weights. In particular, they satisfy

〈γ, γ′〉t∗ ≥ 0.

Using Freudenthal’s formula for the Casimir operator CasKγ of a K-representation Vγ, this
implies the estimate

CasKγ+γ′ = 〈γ + γ′ + 2δk, γ + γ′〉t∗ = 〈γ + 2δk, γ〉t∗ + 2〈γ, γ′〉t∗ + 〈γ′ + 2δk, γ′〉t∗

≥ 〈γ + 2δk, γ〉t∗ + 〈γ′ + 2δk, γ′〉t∗ = CasKγ + CasKγ′ .

In particular we obtain
CasKγ ≥

∑
r

ar CasKωr (∗)

for γ = ∑n−1
r=1 arωr.

The Casimir eigenvalues of the fundamental representations are given as

CasKωr = (n+ 1)r(n− r)
2n2

for r = 1, . . . , n − 1. Note that this expression is symmetric around r = n
2 and strictly
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increasing for r ≤ n
2 . Furthermore, we can compute that

CasKω1 = (n+ 1)(n− 1)
2n2 < 1,

CasKω2 = (n+ 1)(n− 2)
n2 < 1,

CasKω3 =



7
8 < 1, n = 6,
48
49 < 1, n = 7,
3(n+1)(n−3)

2n2 > 1, n ≥ 8,

CasKω1 + CasKω2 > 1, n ≥ 4,
CasK2ω1 > 1,

CasKω1+ωn−1 = 1,

cf. table on p. 15 of [SW22]. Combining the above with inequality (∗), we can deduce
that if γ is a highest weight with CasKγ < 1, then necessarily

γ ∈ {0, ω1, ωn−1, ω2, ωn−2, ω3, ωn−3︸ ︷︷ ︸
if n=6,7

}.

These dominant integral weights are, respectively, highest weights of the representations
C, E, E∗, Λ2E, Λ2E∗, Λ3E, Λ3E∗ of K.
The irreducible representations of G = K × K are precisely the tensor products of

irreducible representations of K. Let γ, γ′ be highest weights of K-representations such
that

CasG(γ,γ′) = CasKγ + CasKγ′ < 1

holds. Assuming that γ, γ′ 6= 0, we conclude that γ, γ′ ∈ {ω1, ωn−1}. This yields the four
pairwise inequivalent G-representations E⊗E, E⊗E∗, E∗⊗E and E∗⊗E∗. Furthermore,
in the case of γ = 0 or γ′ = 0 we obtain the representations of K that were listed above,
composed with the projection onto one factor,

G→ K : (k1, k2) 7→ k1 or (k1, k2) 7→ k2,

respectively. By restricting the mentioned G-representations to K via the embedding

K → G : k 7→ (k, k),

we again obtain the irreducible K-representations C, E, E∗, Λ2E, Λ2E∗, Λ3E, Λ3E∗ as
well as the tensor product representations E ⊗ E, E ⊗ E∗ and E∗ ⊗ E∗. The latter are
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not irreducible, but decompose into irreducible summands as follows:

E ⊗ E = Sym2E ⊕ Λ2E,

E ⊗ E∗ = E ⊗0 E
∗ ⊕ C,

E∗ ⊗ E∗ = Sym2E∗ ⊕ Λ2E∗.

Here E⊗0 E
∗ is the set of trace-free elements of E⊗E∗ when regarded as n×n-matrices

over C. As a representation of K, we have

E ⊗0 E
∗ ∼= Vω1+ωn−1

∼= kC.

The K-representation Sym2 kC ∼= Sym2(E ⊗0 E
∗) appears on one hand as a summand

of
Sym2(E ⊗ E∗) ∼= Sym2(E ⊗0 E

∗ ⊕ C) ∼= Sym2(E ⊗0 E
∗)⊕ E ⊗0 E

∗ ⊕ C.

On the other hand, the symmetric power of the tensor product is given by4

Sym2(E ⊗ E∗) ∼= Sym2E ⊗ Sym2E∗ ⊕ Λ2E ⊗ Λ2E∗.

The tensor products Sym2E⊗Sym2E∗ and Λ2E⊗Λ2E∗ can in turn be decomposed into

Sym2E ⊗ Sym2E∗ ∼= V2ω1+2ωn−1 ⊕ Vω1+ωn−1 ⊕ C,

Λ2E ⊗ Λ2E∗ ∼=

E
∗ ⊗ E ∼= Vω1+ωn−1 ⊕ C, n = 3,

Vω2+ωn−2 ⊕ Vω1+ωn−1 ⊕ C, n ≥ 4.

By comparing summands we see that

Sym2(E ⊗0 E
∗) ∼= V2ω1+2ωn−1 ⊕ Vω2+ωn−2︸ ︷︷ ︸

if n≥4

⊕E ⊗0 E
∗ ⊕ C.

Hence the trace-free part is given by

Sym2
0(E ⊗0 E

∗) ∼= V2ω1+2ωn−1 ⊕ Vω2+ωn−2︸ ︷︷ ︸
if n≥4

⊕E ⊗0 E
∗.

Now that we have decomposed the relevant representations into irreducible summands,
we recognize that E ⊗E∗ and E∗ ⊗E are the only two of the specified subcritical repre-
sentations of G that, after restriction to K, have a common summand with Sym2

0 k
C. In

4This is a consequence of, for example, the formula Symd(V ⊗ W ) =
⊕

Sλ(V ) ⊗ Sλ(W ) in [FH91,
Ex. 6.11].
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each case, the summand in question E ⊗0 E
∗ ∼= kC appears with multiplicity 1; hence we

have
dim HomK(E ⊗ E∗, Sym2

0 k
C) = dim HomK(E∗ ⊗ E, Sym2

0 k
C) = 1.

Moreover, both G-representations exhibit the same Casimir eigenvalue

CasG(ω1,ωn−1) = CasG(ωn−1,ω1) = CasKω1 + CasKωn−1 = (n− 1)(n+ 1)
n2 .

According to Lemma 4.6.1, the only representations of G (up to equivalence) with
subcritical Casimir eigenvalue that occur in decomposition (4.1) of S 2

0 (M)C are E ⊗ E∗

and E∗ ⊗ E, and we have

dim HomK(E ⊗ E∗, Sym2
0 m

C) = dim HomK(E∗ ⊗ E, Sym2
0 m

C) = 1

(recall that m ∼= k), i.e. the summand occurs with multiplicity 1. It remains to check
whether the tensors in the corresponding subspaces are divergence-free. Since

E ⊗ E∗ ∼= kC ⊕ C

as a representation of K, we have

dim HomK(E ⊗ E∗,mC) = dim HomK(E∗ ⊗ E,mC) = 1,

meaning that both summands also occur in the left-regular representation Ω1(M) with
the same multiplicity. It now follows from Corollary 4.5.4 that

dim ker(∆L − λ)
∣∣∣
S 2

tt(M)
= 0

for λ = (n−1)(n+1)
n2 . Since this is the only subcritical eigenvalue on S 2

0 (M), we have shown
the following.

4.6.2 Proposition. The symmetric space SU(n) is linearly stable.
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4.7 The symmetric space E6/F4

Let (H, ◦) be the Albert algebra, where H is the set of Hermitian 3× 3-matrices over the
octonions, i.e.

H :=



a x ȳ

x̄ b z

y z̄ c


∣∣∣∣∣∣∣∣∣a, b, c ∈ R, x, y, z ∈ O

 ,
and with Jordan multiplication defined by

X ◦ Y := 1
2(XY + Y X).

The exceptional Lie group E6 can be realized as

E6 :=
{
α ∈ AutC HC

∣∣∣α preserves determinant and inner product
}
,

while F4 is defined as the set of algebra automorphisms

F4 := Aut(H, ◦).

By complex-linearly extending linear automorphisms of H, one obtains the inclusion
AutR H ⊂ AutCHC. In this sense, we have F4 ⊂ E6. In fact,

F4 = E6 ∩ AutRH.

As a representation of E6, HC is irreducible. As an F4-representation, H decomposes into
the irreducible summands

H ∼= H0 ⊕ R,

where H0 is the set of trace-free elements of H. An invariant inner product on H is defined
by

〈A,B〉 := tr(A ◦B)

for A,B ∈ H. An orthogonal basis of H (cf. [Yok09, §2.1]) is given by the matrices

E1 :=


1 0 0
0 0 0
0 0 0

 , E2 :=


0 0 0
0 1 0
0 0 0

 , E3 :=


0 0 0
0 0 0
0 0 1

 ,

F1(x) :=


0 0 0
0 0 x

0 x̄ 0

 , F2(x) :=


0 0 x̄

0 0 0
x 0 0

 , F3(x) :=


0 x 0
x̄ 0 0
0 0 0

 ,
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where x runs through the standard basis of O as a real vector space.
In this section we consider the Riemannian symmetric spaceM = E6/F4 equipped with

the standard metric (hence with critical eigenvalue 2E = 1). The reductive decomposition
of e6 with respect to the standard metric is given by

e6 = f4 ⊕m,

where m ∼= H0 as a representation of F4.

4.7.1 Lemma. Let Vγ be an irreducible complex representation of E6 with CasE6
γ < 1 and

HomF4(Vγ, Sym2
0 H

C
0 ) 6= 0.

Then Vγ is equivalent to one of the E6-representations HC and HC. In fact,

dim HomF4(HC, Sym2
0 H

C
0 ) = dim HomF4(HC, Sym2

0 H
C
0 ) = 1,

and the Casimir eigenvalue is CasE6
γ = 13

18 .

Proof. We abstain from specifying a particular choice of simple root system and fun-
damental weights for E6 and F4, since we are merely interested in the corresponding
fundamental representations of the respective Lie group. Following the enumerative con-
vention of Bourbaki (as used by the software package LiE), if we denote the fundamental
weights of E6 by ω1, . . . , ω6 and of F4 by η1, . . . , η4, then the associated representations
are identified as

Vω1 = 27 ∼= HC, Vω2 = 78 ∼= eC6 , Vω3 = 351 ∼= Λ2HC,

Vω4 = 2925 ∼= Λ3HC, Vω5 = 351 ∼= Λ2HC, Vω6 = 27 ∼= HC,

Vη1 = 52 ∼= fC4 , Vη2 = 1274, Vη3 = 273, Vη4 = 26 ∼= HC
0 ,

where the number indicates the dimension.
As in the proof of Lemma 4.6.1, we have the estimate

CasE6
γ ≥

6∑
r=1

ar CasE6
ωr

for any representation Vγ of E6 with highest weight

γ =
6∑
r=1

arωr.
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Among the fundamental representations, only the Casimir eigenvalues

CasE6
ω1 = CasE6

ω6 = 13
18

are smaller than 1 (see table on p. 16 of [SW22]). Since 13
18 + 13

18 > 1, it follows that only
the representations to the highest weights C,HC,HC come into question.
Consider now the F4-representation HC

0
∼= Vη4 . We obtain5 the decomposition

Sym2 Vη4
∼= V2η4 ⊕ Vη4 ⊕ C

into irreducible summands, hence

Sym2
0 H

C
0
∼= V2η4 ⊕ HC

0 .

Furthermore, we have
HC ∼= HC ∼= HC

0 ⊕ C

as a representation of F4. The assertion follows by comparison of summands.

Lemma 4.7.1 now tells us that the representations of E6 with subcritical Casimir eigen-
value that occur in decomposition (4.1) of S 2

0 (M)C are precisely HC and HC, both with
multiplicity 1, i.e.

dim HomF4(HC, Sym2
0 m

C) = dim HomF4(HC, Sym2
0 m

C) = 1,

since m ∼= H0. Again, we have to check whether the tensors in the corresponding subspace
are divergence-free. It follows from the decomposition H = H0 ⊕R as a representation of
F4 that

dim HomF4(HC,mC) = dim HomF4(HC,mC) = 1,

so as in the previous section, the summand has the same multiplicity in the left-regular
representation Ω1(M). Again, it follows from Corollary 4.5.4 that

dim ker(∆L − λ)
∣∣∣
S 2

tt(M)
= 0

for λ = 13
18 , and since this is the only subcritical eigenvalue on S 2

0 (M), we have shown
the following, which, together with Prop. 4.6.2, finishes the proof of the main theorem.

4.7.2 Proposition. The symmetric space E6/F4 is linearly stable.

5This has been verified through use of the software package LiE [LiE]. Simply enter the command
sym_tensor(2,[0,0,0,1],F4) into the LiE shell.
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4.8 Appendix

4.8.1 Proofs of general statements

Proof of Lemma 4.5.1. The following is a slightly generalized version of the proof of a
result by N. Koiso [Koi82, Prop. 3.3]. We first note that

(δα · g, h)g =
∫
M
δα〈g, h〉g volg = 1

2(δα, trg h)g = 1
2(α, d trg h)g

for α ∈ Ω1(M), h ∈ S 2(M), so the formal adjoint of θ is given by

θ∗ : S 2
0 (M)→ Ω1(M) : h 7→ δh+ 1

n
d trg h.

We show that θ is overdetermined elliptic. The principal symbol of θ is

σξ(θ)α = σξ(δ∗)α + 2
n
σξ(δ)α · g = ξ � α− 2

n
〈ξ, α〉gg

for ξ, α ∈ T ∗pM . If ξ 6= 0, then σξ(θ) is injective: Suppose σξ(θ)α = 0. Then

ξ � α = 2
n
〈ξ, α〉gg.

Take an orthonormal basis (ei) with respect to g of TpM and write

ξ =
∑
i

ξie
[
i, α =

∑
i

αie
[
i.

For i, j = 1, . . . , n it follows that

ξiαj + ξjαi = 2
n
〈ξ, α〉gδij

and so ξiαj = −ξjαi if i 6= j, as well as ξiαi = ξjαj for any i, j. Then

ξ2
i αj = −ξiαiξj = −ξ2

jαj.

If αj 6= 0, this would imply that ξ2
i + ξ2

j = 0 and so ξi = ξj = 0 which contradicts the
assumption that ξ 6= 0. Overall we conclude that α = 0 and thus the injectivity is proven.
From ellipticity we obtain the orthogonal decomposition

S 2
0 (M) = im θ ⊕ ker θ∗.
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Let h ∈ ker(∆L − λ)
∣∣∣
S 2

0 (M)
. According to the above decomposition we can write h as

h = θα + ψ

where θ∗ψ = 0. Then also
δψ = θ∗ψ − 1

n
d trg ψ = 0.

Since (M, g) is Einstein, ∆L commutes with δ on S 2(M) and with δ∗ on Ω1(M) [Lic61,
pp. 10.7/10.8]. Furthermore ∆L(fg) = (∆f)g for any f ∈ C∞(M). We conclude that ∆L

commutes with θ and θ∗ as well. This implies that

θ(∆− λ)α = (∆L − λ)θα = (∆L − λ)(h− ψ) = −(∆L − λ)ψ,
θ∗(∆L − λ)ψ = (∆− λ)θ∗ψ = 0,

and so
θ∗θ(∆− λ)α = −θ∗(∆L − λ)ψ = 0.

It follows that
‖θ(∆− λ)α‖2

g = (θ∗θ(∆− λ)α, (∆− λ)α)g = 0

and so θ(∆− λ)α = 0 = (∆L − λ)ψ. In total ψ ∈ ker(∆L − λ)
∣∣∣
S 2

tt(M)
.

Also, if h is an element of ker(∆L − λ)
∣∣∣
S 2

tt(M)
, then

θ∗h = δh+ 1
n
d trg h = 0

and so ψ = h. This means that the mapping

P : ker(∆L − λ)
∣∣∣
S 2

0 (M)
→ ker(∆L − λ)

∣∣∣
S 2

tt(M)
: h 7→ ψ

defines a projection, and the dimension formula

dim ker(∆L − λ)
∣∣∣
S 2

tt(M)
= dim

(
ker(∆L − λ)

∣∣∣
S 2

0 (M)

)
− dim kerP

holds.
By definition, the kernel of P consists of those h ∈ ker(∆L − λ)

∣∣∣
S 2

0 (M)
with h = θα for

some α ∈ Ω1(M), i.e. h ∈ im θ. Hence we know that

kerP = ker(∆L − λ)
∣∣∣
S 2

0 (M)
∩ im θ.

Let α ∈ ker(∆ − λ)
∣∣∣
Ω1(M)

. We have seen that ∆L commutes with θ, so it follows that
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θα ∈ ker(∆L − λ)
∣∣∣
S 2

0 (M)
and therefore

θ
(

ker(∆− λ)
∣∣∣
Ω1(M)

)
⊂ kerP.

Conversely, let h ∈ kerP . Then there exists some α ∈ Ω1(M) such that h = θα, and also
h ∈ ker(∆g

L− λ)
∣∣∣
S 2

0 (M)
. By the ellipticity of the operator ∆− λ we can decompose α into

α = β + (∆− λ)γ

with β ∈ ker(∆− λ)
∣∣∣
Ω1(M)

, γ ∈ Ω1(M). Then

0 = (∆L − λ)θα
= (∆L − λ)θβ + (∆L − λ)θ(∆− λ)γ
= θ(∆− λ)β + (∆L − λ)2θγ

= (∆L − λ)2θγ.

Since ∆L is self-adjoint, we have

‖(∆L − λ)θγ‖2
g =

(
(∆L − λ)2θγ, θγ

)
g

= 0

and thus
θ(∆− λ)γ = (∆L − λ)θγ = 0,

i.e. (∆− λ)γ ∈ ker θ. This implies that h = θα = θβ, so

θ : ker(∆− λ)
∣∣∣
Ω1(M)

→ kerP

is surjective and we obtain the dimension formula

dim kerP = dim ker(∆− λ)
∣∣∣
Ω1(M)

− dim
(

ker(∆− λ)
∣∣∣
Ω1(M)

∩ ker θ
)
.

Proof of Lemma 4.5.2. Let E be the Einstein constant of (M, g). Let α ∈ Ω1(M) such
that

θα = δ∗α + 2
n
δα · g = 0.

Taking the divergence yields

δθα = δδ∗α− 2
n
dδα = 0,
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since δ(fg) = −df for f ∈ C∞(M). We make use of the well-knownWeitzenböck identities

δδ∗ − δ∗δ = ∇∗∇− q(R) on S k(M),
∆ = d∗d+ dd∗ = ∇∗∇+ q(R) on Ωk(M).

For k = 1 and since δ∗ = d = ∇ on functions and (M, g) is Einstein, these amount to

δδ∗α− dδα = ∇∗∇α− Eα,
d∗dα + dδα = ∇∗∇α + Eα.

Putting these together we obtain

δθα =
(

1− 2
n

)
dδα +∇∗∇α− Eα =

(
2− 2

n

)
dδα + d∗dα− 2Eα = 0.

Taking the L2 inner product with α then yields
(

2− 2
n

)
‖δα‖2

g + ‖dα‖2
g − 2E‖α‖g = 0.

If E < 0, this directly implies that α = 0. If E = 0, it implies δα = 0 and dα = 0, and
since θα = 0, it follows that δ∗α = 0. If E > 0, then applying the codifferential to δθα
yields (

2− 2
n

)
d∗dδα + (d∗)2dα− 2Ed∗α =

(
2− 2

n

)
∆δα− 2Eδα = 0,

so δα would be an eigenfunction of the Laplacian to the eigenvalue En
n−1 = scalg

n−1 . By a
theorem of Obata [BGM71, Thm. D.I.6], this eigenvalue can only be attained on the
standard sphere, so necessarily δα = 0. It follows again from θα = 0 that δ∗α = 0.

Proof of Lemma 4.5.3. Let α ∈ Ω1(M) such that δ∗α = 0. Then also δα = 0, since
δα = − trg δ∗α = 0. By virtue of the Weitzenböck formulae that were already employed
in the proof of Lemma 4.5.2 we conclude that

∆α = ∇∗∇α + Eα = δδ∗α− dδα + 2Eα = 2Eα.
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4.8.2 Alternative proof of the stability of SU(n)

An alternative method of checking that the prototypical differential operators

δ
∣∣∣
E⊗E∗

: HomK(E ⊗ E∗, Sym2
0 m

C)→ HomK(E ⊗ E∗,mC),

δ
∣∣∣
E∗⊗E

: HomK(E∗ ⊗ E, Sym2
0 m

C)→ HomK(E∗ ⊗ E,mC)

are injective is an explicit computation by means of Lemma 4.4.3. To do so, we first pick
out an explicit element

A ∈ HomK(E ⊗ E∗, Sym2
0 m

C)

and then proceed to compute the divergence on the corresponding subspace of S 2
0 (M).

4.8.1 Lemma. Let π : Sym2(E ⊗ E∗)→ E ⊗ E∗ denote the mapping defined by

π(A�B) := AB∗ +BA∗,

where A,B ∈ E ⊗ E∗ are regarded as complex n× n-matrices. Then

π ∈ HomK(Sym2(E ⊗ E∗), E ⊗ E∗).

Moreover, the restriction

π : Sym2
0(E ⊗0 E

∗)→ E ⊗0 E
∗

is surjective, and W :=
(

kerπ
∣∣∣
Sym2

0(E⊗0E∗)

)⊥
∼= E ⊗0 E

∗.

Proof. The equivariance of π under the action of K follows from

π(kAk−1 � kBk−1) = kAk−1(k−1)∗B∗k∗ + k−1Bk(k−1)∗A∗k∗ = k(AB∗ +BA∗)k−1

for any k ∈ K = SU(n) and A,B ∈ E ⊗ E∗. Furthermore, we have

tr(π(A�B)) = tr(AB∗ +BA∗) = 〈A,B〉+ 〈B,A〉 = tr(A�B),

where the last trace is taken with respect to the inner product on E ⊗ E∗. This means
that

π(Sym2
0(E ⊗ E∗)) ⊂ E ⊗0 E

∗.

Next we want to show that π does not vanish when restricted to Sym2
0(E ⊗0 E

∗). If we
denote by Eij the n×n-matrix that has entry 1 at position (i, j) and 0 elsewhere, then we
have for example E21, E31 ∈ E ⊗0 E

∗ and 〈E21, E31〉 = 0, so E21 � E31 ∈ Sym2
0(E ⊗0 E

∗)
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and
π(E21 � E31) = E21E13 + E31E12 = E23 + E32 6= 0.

Now, since E ⊗0 E
∗ is irreducible, the mapping

π : Sym2
0(E ⊗0 E

∗)→ E ⊗0 E
∗

must be surjective. We have seen in the proof of Lemma 4.6.1 that E⊗0E
∗ appears in the

decomposition of Sym2
0(E ⊗0 E

∗) with multiplicity 1; hence W :=
(

kerπ
∣∣∣
Sym2

0(E⊗0E∗)

)⊥
must be the irreducible summand of Sym2

0(E ⊗0 E
∗) that is equivalent to E ⊗0 E

∗.

Alternative proof of Prop. 4.6.2. The properties of π from Lemma 4.8.1 allow us to define

Ã := π
∣∣∣−1

W
∈ HomK(E ⊗0 E

∗, Sym2
0(E ⊗0 E

∗))

and extend it with zero to a mapping Ã ∈ HomK(E ⊗ E∗, Sym2
0(E ⊗0 E

∗)). Via the
identification mC ∼= E ⊗0 E

∗, this gives rise to a mapping

A ∈ HomK(E ⊗ E∗, Sym2
0 m

C).

From the equivariance of π
∣∣∣
W
, the irreducibility of W ∼= E ⊗0 E

∗ and Schur’s Lemma it
follows that π

∣∣∣
W

is unitary up to a positive constant, that is

〈π(v), π(w)〉E⊗0E∗ = c · 〈v, w〉Sym2
0(E⊗0E∗)

for all v, w ∈ W and some c > 0. Denote the tensor product representation of G on
E ⊗ E∗ by

ρ : G→ Aut(E ⊗ E∗) : ρ(k1, k2)F = k1Fk
−1
2

for F ∈ E ⊗ E∗. Its differential is given by

ρ∗ : g→ End(E ⊗ E∗) : dρ(X1, X2)F = X1F − FX2

for X1, X2 ∈ k. In particular

ρ∗(X,−X)F = XF + FX.

Let (ei) be an orthonormal basis of m, ei = (fi,−fi) with fi ∈ k. Under the identification
mC ∼= E⊗0E

∗, the invariant inner product changes by some positive constant factor, and
ei is mapped to fi. Hence, (fi) is an orthonormal basis of k ⊂ E ⊗0 E

∗ up to a positive
factor.
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Now, let X ∈ k and F ∈ E ⊗ E∗. Using the formula from Lemma 4.4.3 it follows that

(δh)o(X,−X) =
∑
i

〈A(dρ(ei)F ), ei � (X,−X)〉Sym2
0 mC

= c ·
∑
i

〈Ã(fiF + Ffi), fi �X〉Sym2
0(E⊗0E∗)

= c ·
∑
i

〈Ã(fiF + Ffi), prW (fi �X)〉Sym2
0(E⊗0E∗)

= c′ ·
∑
i

〈fiF + Ffi, π(prSym2
0(E⊗0E∗)(fi �X))〉E⊗0E∗

for some c, c′ > 0. Since the trivial summand of Sym2(E ⊗0 E
∗) can only be mapped to

the trivial summand of E ⊗ E∗ under the equivariant map π, we have

π ◦ prSym2
0(E⊗0E∗) = prE⊗0E∗ ◦ π

on Sym2(E ⊗0 E
∗), implying that

(δh)o(X,−X) = c′ ·
∑
i

〈fiF + Ffi, prE⊗0E∗(fiX
∗ +Xf ∗i )〉

= −c′ ·
∑
i

〈fiF + Ffi, prE⊗0E∗(fiX +Xfi)〉.

Choose the (up to a positive factor) orthonormal basis (fi) of k in such a way that
f1 = E12 − E21. Furthermore, let X = F = E13 − E31. Then,

f1F + Ff1 = (E12 − E21)(E13 − E31) + (E13 − E31)(E12 − E21) = −E23 − E32 ∈ E ⊗0 E
∗

and we obtain

∑
i

〈fiF + Ffi, prE⊗0E∗(fiX +Xfi)〉 =
∑
i

〈fiF + Ffi, prE⊗0E∗(fiF + Ffi)〉

≥〈f1F + Ff1, prE⊗0E∗(f1F + Ff1)〉 = 〈E23 + E32, E23 + E32〉 = 2 > 0.

In particular, we have found Y ∈ m such that (δh)o(Y ) 6= 0, where h ∈ S 2
0 (M) is

associated to
F ⊗ A ∈ (E ⊗ E∗)⊗ HomK(E ⊗ E∗, Sym2

0 m
C).

This means that the linear mapping

δ
∣∣∣
E⊗E∗

: HomK(E ⊗ E∗, Sym2
0 m

C)→ HomK(E ⊗ E∗,mC)

is nonzero. Hence, there are no tt-eigentensors for the subcritical Casimir eigenvalue.
This proves the assertion.
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4.8.3 Alternative proof of the stability of E6/F4

As we did before in the situation of SU(n), we want to apply Lemma 4.4.3 to verify that
the mappings

δ
∣∣∣
HC

: HomF4(HC, Sym2
0 m

C)→ HomF4(HC,mC),

δ
∣∣∣
HC

: HomF4(HC, Sym2
0 m

C)→ HomF4(HC,mC)

are injective. Surprisingly, the computation works very similar to the SU(n) case.

4.8.2 Lemma. Let π : Sym2 H→ H denote the mapping defined by

π(A�B) := AB +BA = 2A ◦B.

Then we have
π ∈ HomF4(Sym2 H0,H).

The restriction
π : Sym2

0 H0 → H0

is surjective, and W :=
(

kerπ
∣∣∣
Sym2

0 H0

)⊥
∼= H0.

Proof. The proof is completely analogous to the proof of Lemma 4.8.1. First, we note
that π is well-defined since (H, ◦) is a commutative algebra. The equivariance of π under
the action of F4 follows from

π(f(A)� f(B)) = 2f(A) ◦ f(B) = f(2A ◦B) = f(π(A�B))

for any f ∈ F4 = Aut(H, ◦) and A,B ∈ H. Furthermore, we have

tr(π(A�B)) = 2 tr(A ◦B) = 2〈A,B〉 = tr(A�B),

where the last trace is taken with respect to the inner product on H. This means that

π(Sym2
0 H) ⊂ H0.

Now we want to show that π does not vanish when restricted to Sym2
0 H0. For example,

take F1(1), F2(1) ∈ H0. We have 〈F1(1), F2(1)〉 = 0 and thus F1(1) � F2(1) ∈ Sym2
0 H0.

Also,
π(F1(1)� F2(1)) = 2F1(1) ◦ F2(1) = F3(1) 6= 0.
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Since H0 is irreducible over F4, the mapping

π : Sym2
0 H0 → H0

must be surjective. From the proof of Lemma 4.7.1, we know that H0 appears in the
decomposition of Sym2

0 H0 with multiplicity 1; hence W :=
(

kerπ
∣∣∣
Sym2

0 H0

)⊥
must be the

irreducible summand of Sym2
0 H0 that is equivalent to H0.

Alternative proof of Prop. 4.7.2. By Lemma 4.8.2 we can define

A := π
∣∣∣−1

W
∈ HomF4(H0, Sym2

0 H0),

extend it with zero to H and then complex-linearly to a mappingA ∈ HomF4(HC, Sym2
0 H

C
0 ).

Again, we need that π
∣∣∣
W

is unitary up to a positive constant, which follows by Schur’s
Lemma from the equivariance of π

∣∣∣
W

and the irreducibility ofW ∼= H0. By Theorem 3.2.4
in [Yok09], every element α ∈ e6 ⊂ EndC(HC) can be written as

α = β + iT◦

with unique elements β ∈ f4 ⊂ e6 and T ∈ H0. This corresponds to the F4-invariant
decomposition

e6 ∼= f4 ⊕ H0.

Throughout what follows we identify m ∼= H0. If we denote the defining representation by

ρ : E6 → AutHC,

then in particular
ρ∗(X) = iX◦

forX ∈ m. Let (ei) be an orthonormal basis of H0 (again, under the identification m ∼= H0,
the invariant inner product changes at most by some positive constant factor), X ∈ m

and F ∈ HC. Using Lemma 4.4.3, we thus obtain

(δh)o(X) = c ·
∑
i

〈A(dρ(ei)F ), ei �X〉Sym2
0 HC

0
= c ·

∑
i

〈A(iei ◦ F ), ei �X〉Sym2
0 HC

0

= c ·
∑
i

〈A(iei ◦ F ), prW (ei �X)〉Sym2
0 HC

0
= c′ ·

∑
i

〈iei ◦ F, π(prSym2
0 H0(ei �X))〉HC

0

for some c, c′ > 0. The trivial summand of Sym2 H0 can only be mapped to the trivial
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summand of H under the equivariant map π, implying that

π ◦ prSym2
0 H0 = prH0 ◦π

on Sym2 H0. Thus, we have

(δh)o(X) = ic′ ·
∑
i

〈ei ◦ F, prH0(π(ei �X))〉 = 2ic′
∑
i

〈ei ◦ F, prH0(ei ◦X)〉.

Now let X = F = F1(1). Choose the (up to a positive factor) orthonormal basis (ei) of
H0 in such a way that e1 = F2(1). Then we have

e1 ◦ F = F2(1) ◦ F1(1) = 1
2F3(1) ∈ H0

and it follows that

∑
i

〈ei ◦ F, prH0(ei ◦X)〉 =
∑
i

〈ei ◦ F, prH0(ei ◦ F )〉 ≥ 〈e1 ◦ F, prH0(e1 ◦ F )〉

= 1
4 〈F3(1), F3(1)〉 = 1

2 > 0.

In particular, we have found Y ∈ m such that (δh)o(Y ) 6= 0, where h ∈ S 2
0 (M) is

associated to
F ⊗ A ∈ HC ⊗ HomF4(HC, Sym2

0 m
C).

This means that the linear mapping

δ
∣∣∣
HC

: HomF4(HC, Sym2
0 m

C)→ HomF4(HC,mC)

is nonzero. The same argument works for the E6-representation HC, since we exclusively
used real elements and automorphisms in the computation. In total, there are no tt-
eigentensors for the subcritical Casimir eigenvalue, which proves the assertion.
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5 Coindex and rigidity of Einstein
metrics on homogeneous Gray
manifolds

5.1 Abstract

Any 6-dimensional strict nearly Kähler manifold is Einstein with positive scalar curvature.
We compute the coindex of the metric with respect to the Einstein-Hilbert functional on
each of the compact homogeneous examples. Moreover, we show that the infinitesimal
Einstein deformations on F1,2 = SU(3)/T 2 are not integrable into a curve of Einstein
metrics.

5.2 Introduction

The special case of dimension 6 has been a primary focus of nearly Kähler geometry since
P.-A. Nagy showed that every nearly Kähler manifold is locally isometric to a Riemannian
product of 6-dimensional nearly Kähler manifolds, nearly Kähler homogeneous spaces
and twistor spaces over positive scalar curvature quaternionic-Kähler manifolds [Nag02].
Moreover, nearly Kähler manifolds that are non-Kähler (so-called strict nearly Kähler
manifolds) of dimension 6 exhibit other notable properties, such as carrying a real Killing
spinor and thus being Einstein with positive scalar curvature.
On a compact manifoldM , Einstein metrics can be variationally characterized as critical

points of the total scalar curvature functional S (also called Einstein–Hilbert action),
defined on the set of all Riemannian metrics on M of a fixed volume. Given a compact
Einstein manifold (M, g), one can ask whether g locally maximizes S (after restricting to a
suitable subclass of Riemannian metrics). Such an Einstein metric g is called stable with
respect to S. The linearized problem considers the Hessian S ′′g of the Einstein-Hilbert
action at g. Accordingly, an Einstein metric g is called linearly stable if S ′′g ≤ 0 on the
space of tt-tensors (i.e. trace- and divergence-free symmetric 2-tensors on M). A closely
related notion is that of infinitesimal deformability of the Einstein metric g – it is called
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infinitesimally deformable if S ′′g is degenerate on tt-tensors.
A compact, 6-dimensional, strict nearly Kähler manifold (M, g, J) with scalar curvature

normalized to scalg = 30 (hence Einstein constant E = 5) is called a Gray manifold,
after A. Gray who studied them in the 70s. The stability and infinitesimal deformability
of Einstein metrics on Gray manifolds have already been investigated. In [SWW20],
U. Semmelmann, C. Wang and M. Y.-K. Wang show linear instability if the second or
third Betti number does not vanish – in fact, the coindex of g (see §5.3.2 for a definition)
is bounded below by b2 + b3. A. Moroianu and U. Semmelmann [MS11] give a description
of the space of infinitesimal Einstein deformations in terms of eigenspaces of the Hodge
Laplacian on coclosed primitive (1, 1)-forms. The present article generalizes this result
to a similar description of eigenspaces of the Lichnerowicz Laplacian on tt-tensors to
arbitrary eigenvalues not exceeding a certain threshold (see Lemma 5.4.2).
Homogeneous Gray manifolds have been classified by J.-B. Buitruille [But05]. There

are only four cases: S6 = G2
SU(3) , S

3 × S3 = SU(2)×SU(2)×SU(2)
∆ SU(2) , CP3 = Sp(2)

Sp(1) U(1) = SO(5)
U(2) and

the flag manifold F1,2 = SU(3)
T 2 , all of them equipped with the Killing form metric (up to

scaling). In [WW18], C. Wang and M. Y.-K. Wang show instability of the latter three
spaces. S6 carries the round metric and is thus strictly stable.
One aim of this article is to improve the coindex estimates from [SWW20] to equalities

for the homogeneous examples. Our first main result can be stated as follows.

5.2.1 Theorem. Let (M, g) be a homogeneous Gray manifold with standard metric g.
The coindex of the Einstein metric g is

• equal to 2 if M = S3 × S3 = SU(2)×SU(2)×SU(2)
∆ SU(2) ,

• equal to 1 if M = CP3 = SO(5)
U(2) ,

• equal to 2 if M = F1,2 = SU(3)
T 2 .

The destabilizing directions, i.e. contributions to the coindex, can be viewed as arising
from harmonic 3-forms in the first and from harmonic 2-forms in the second and third case
via the construction in [SWW20]. For the last two cases there is an additional geometric
explanation: consider the Riemannian submersions given by the twistor fibrations

CP3 = SO(5)
U(2) −→

SO(5)
SO(4) = S4,

F1,2 = SU(3)
T 2 −→ SU(3)

S(SU(2) U(1)) = CP2.

In both cases the canonical variation (scaling the base against the fiber) yields a destabi-
lizing direction by [WW18, Prop. 4.4]. For the flag manifold there are actually three such
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fibrations whose canonical variations give rise to a two-dimensional space of tt-tensors,
explaining the coindex of 2 (see Remark 5.5.9).
Also worth noting is the G-invariant stability problem in which the Einstein–Hilbert

functional S is restricted to the class of G-invariant metrics on a fixed homogeneous space
M = G/H. Since the destabilizing directions on CP3 and on F1,2 are G-invariant, it
follows that these spaces are G-unstable. On the other hand, S3×S3 is G-stable. In fact,
CP3 and F1,2 are G-strongly unstable, i.e. all G-invariant variations of the metric are
destabilizing and hence these metrics are local minima of S among G-invariant metrics.
For F1,2 this has already been shown by J. Lauret [Lau22, Table 2].
Let us return to the general setting of a compact manifold M . An Einstein metric g

on M is called rigid if it is isolated in the moduli space of Einstein structures (disre-
garding variation by homothetic scaling and action of diffeomorphisms). If an Einstein
manifold (M, g) admits infinitesimal Einstein deformations, one naturally asks whether
they are integrable into a curve of Einstein metrics on M . In fact, not every infinites-
imally deformable Einstein must lie within a nontrivial curve of Einstein metrics. The
first example of such a metric is the canonical symmetric metric on CP1 × CP2k found
by N. Koiso [Koi82], who started the investigation of stability and infinitesimal deformat-
ibility of symmetric spaces [Koi80]. Another recent example due to Batat et. al is the
bi-invariant metric on SU(2n + 1) [BH+21]. We add one more example to this list by
proving the following result.

5.2.2 Theorem. The Einstein metric on the Gray manifold F1,2 is rigid, that is, its
infinitesimal Einstein deformations are not integrable.

In all of the above examples integrability fails at an obstruction to second order (see
the end of §5.3.2). We suspect that this phenomenon occurs generically. Given some
infinitesimal Einstein deformation, i.e. an element of the null space of S ′′g , the obstruction
polynomial (5.2) has no immediate compulsion to vanish and should do so only coinci-
dentally – see for example the case SU(2n) in [BH+21].
Since Gray manifolds are Einstein, every infinitesimal deformation of the nearly Käh-

ler structure corresponds to an infinitesimal Einstein deformation, but not necessarily
vice versa [MS11]. Infinitesimal deformability of the nearly Kähler structure has been
investigated by A. Moroianu, P.-A. Nagy and U. Semmelmann [MNS08]. The question
whether a given infinitesimal nearly Kähler deformation can be integrated into a curve
of nearly Kähler structures has been studied by L. Foscolo in [Fos17], where a similar
polynomial occurs as integrability obstruction to second order. In particular, he showed
that the infinitesimal nearly Kähler deformations on F1,2 are all obstructed. One can view
Theorem 5.2.2 as a generalization of this result to the Einstein picture.
This article is organized as follows. In §5.3, notation is fixed and the necessary pre-
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liminaries are recapitulated. §5.4 concerns itself with a description of eigenspaces of the
Lichnerowicz Laplacian on tt-tensors on general Gray manifolds as well as a discussion of
the homogeneous case, in which explicit calculations are possible by means of harmonic
analysis. These results are applied in §5.5 to each of the unstable Gray manifolds S3×S3,
CP3 and F1,2 to obtain the results collected in Theorem 5.2.1. Finally, §5.6 recalls the
description of the infinitesimal Einstein deformations on F1,2 given in [MS10] and proceeds
to show the nonintegrability to second order, proving Theorem 5.2.2.
The author owes gratitude to Prof. U. Semmelmann for helpful exchanges about a gap

in the argument given in the proof of [MS11, Thm. 5.1] (the corrected argument is the
proof of Lemma 5.4.1, which includes the aforementioned as the special case λ = 10).
Furthermore, the author would like to thank Prof. G. Weingart for his useful suggestions
regarding the rigidity argument.

5.3 Preliminaries

5.3.1 Nearly Kähler manifolds

An almost Hermitian manifold (M, g, J) is an even-dimensional Riemannian manifold
(M, g) with an almost complex structure J that is compatible with the metric, i.e.

g(JX, JY ) = g(X, Y )

for any X, Y ∈ TpM . The Kähler form ω is then defined by

ω(X, Y ) := g(JX, Y ).

Any almost Hermitian structure has an associated canonical Hermitian connection ∇h

(see for example [But08, §2] for a general definition). In particular it satisfies ∇hg = 0
and ∇hJ = 0.
Let ∇ denote the Levi-Civita connection of the Riemannian manifold (M, g). An al-

most Hermitian manifold (M, g, J) is called nearly Kähler if ∇J is skew-symmetric, or
equivalently, if

(∇XJ)X = 0

for all X ∈ TpM . In this case, the canonical Hermitian connection can be described by

∇h
XY = ∇XY −

1
2J(∇XJ)Y

for any two vector fields X, Y ∈ X(M). A nearly Kähler manifold is called strictly nearly
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Kähler if it is not Kähler. Gray manifolds are compact strict nearly Kähler manifolds of
dimension 6.
As usual, the almost complex structure J defines a splitting of the complexified cotan-

gent bundle T ∗MC = Λ1,0M ⊕Λ0,1M and hence of the bundle of k-forms into (p, q)-forms
with p + q = k. The complex bundle of (p, q)-forms will be denoted with the prefix Λp,q,
and the space of its smooth sections by Ωp,q. The Kähler form ω is of type (1, 1). A
(p, q)-form α is called primitive if it vanishes under contraction with the Kähler form, i.e.
if ωyα = 0. We will denote the bundle of primitive (p, q)-forms by Λp,q

0 . Furthermore, let
Λp,q

R denote the projection of the complex bundle Λp,q to the real bundle Λp+q.
Likewise, the bundle SymTM of g-symmetric endomorphisms of the tangent bundle

splits into a direct sum Sym+ TM⊕Sym− TM , where the elements of Sym± TM commute
(resp. anticommute) with J . We further denote by Sym+

0 TM the subbundle of trace-free
endomorphisms in Sym+ TM , and with S ±, S +

0 the spaces of smooth sections in the
respective bundles.
Let S k = Γ(Symk T ∗M) denote the space of symmetric k-tensor fields. Note that the

metric yields a natural identification Sym2 T ∗M ∼= SymTM . The subspace of tt-tensors
in S 2 (i.e. h ∈ S 2 satisfying trg h = 0 and δh = 0) will be denoted by S 2

tt.
If (M, g, J) is nearly Kähler, then the tensor Ψ+ := ∇ω is totally skew-symmetric and

in fact the real part of a ∇h-parallel complex volume form Ψ+ + iΨ−. The imaginary part
Ψ− can be described by XyΨ− = J ◦ (∇XJ) for all X ∈ TM . The strict nearly Kähler
case is characterized by the non-vanishing of Ψ+.
Let (M, g, J) be a strict nearly Kähler manifold of dimension 6. There are ∇h-parallel

isomorphisms

TM ∼= Λ2,0
R M, Sym+

0 TM
∼= Λ1,1

0,RM, Sym− TM ∼= Λ2,1
R M

X 7→ XyΨ+ h 7→ J ◦ h h 7→ h∗Ψ+
(5.1)

of vector bundles with structure group SU(3), each arising from an equivalence of SU(3)-
representations. Here, h∗ denotes the extension of the endomorphism h ∈ EndTM to
tensor bundles as a derivation.

5.3.2 Stability and rigidity

The Lichnerowicz Laplacian ∆L of a Riemannian manifold (M, g) is an operator that
generalizes the Hodge Laplacian ∆ on differential forms to tensor fields of any rank. It is
defined by

∆L := ∇∗∇+ q(R),
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where q(R) is the curvature endomorphism acting on tensors by

q(R) :=
∑
i<j

(ei ∧ ej)∗R(ei, ej)

for some local orthonormal frame (ei) of TM . The asterisk denotes the natural action of
Λ2T ∼= so(T ). In particular, q(R) = Ric on 1-forms.
On an almost Hermitian manifold we analogously define the Hermitian Laplace operator

∆h by replacing the Levi-Civita connection ∇ in the above definition by the canonical
Hermitian connection ∇h, i.e.

∆h := ∇h∗∇h + q(Rh).

Here, R and Rh denote the curvature tensors of the connections ∇ and ∇h, respec-
tively. Both ∆L and ∆h are instances of the standard Laplacian of a given connection
(see [SW18]), an operator with several neat properties – for example, it commutes with
parallel bundle maps. Comparison formulas for the two Laplace operators in the set-
ting of 6-dimensional nearly Kähler manifolds can be found in [MS10] and [MS11]. For
our purposes, it is important to note that ∆ and ∆h coincide on coclosed primitive (1, 1)-
forms, as well as on coclosed (2, 1)- and (1, 2)-forms, which follows from combining [MS11,
Prop. 3.4, Cor. 4.4].
Consider a fixed compact orientable smooth manifoldM of dimension n > 2. On the set

of all Riemannian metrics onM , the total scalar curvature functional (or Einstein–Hilbert
action) is defined by

g 7→ S(g) =
∫
M

scalg volg .

Einstein metrics on M are then precisely the critical points of the restriction of S to
metrics of a fixed total volume. Let (M, g) be an Einstein manifold with Ric = Eg. If
(M, g) not isometric to the standard sphere, there is a well-known decomposition

S 2 = Rg ⊕ C∞g g ⊕ LXg ⊕S 2
tt

that is orthogonal with respect to the second variation S ′′g (see [Bes87]). Furthermore,

S ′′g > 0 on C∞g g, where C∞g = {f ∈ C∞(M) | (f,1)L2 = 0},
S ′′g = 0 on LXg = {LXg |X ∈ X(M)},

S ′′g (h, h) = −1
2 (∆Lh− 2Eh, h)L2 on S 2

tt = {h ∈ S 2 | trg h = 0, δh = 0}.

On the latter space S ′′g has finite coindex and nullity, i.e. the maximal subspace of S 2
tt

on which S ′′g is nonnegative is finite-dimensional. The sum LXg ⊕S 2
tt = TgS can also be
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regarded as formal tangent space to the set S of metrics with constant scalar curvature
and fixed total volume.
The stability problem is to decide whether an Einstein metric g is a local maximum or

a saddle point of S
∣∣∣
S
. We are primarily concerned with the linearized version, considering

only the second variation of S at g. An Einstein metric g is called (linearly) stable if
S ′′g
∣∣∣
S 2

tt
≤ 0, or, equivalently, if ∆L ≥ 2E on S 2

tt. If strict inequality holds, we call g strictly
stable. On the other hand, g is called (linearly) unstable if there exists h ∈ S 2

tt such that
S ′′g (h, h) > 0, or, equivalently, if (∆Lh, h)L2 < 2E‖h‖2

L2 . The dimension of the maximal
subspace of S 2

tt on which S ′′g > 0 is called the coindex of g.
A closely related notion is that of rigidity. An Einstein metric g is called rigid if it is

isolated in the moduli space, i.e. the space of Einstein metrics modulo diffeomorphisms
and homotheties. This is equivalent to the nonexistence of a smooth curve (gt) of Einstein
metrics through g = g0 with nonvanishing first-order jet ġ0 ∈ S 2

tt.
Denote by ε(g) = {h ∈ S 2

tt |∆Lh = 2Eh} the null space of S ′′g , also called the space of
(essential) infinitesimal Einstein deformations (EID). If ε(g) 6= 0, we call g infinitesimally
deformable. A metric with ε(g) = 0 is automatically rigid – in particular, strict stability
implies rigidity.
In general EID need not be integrable into a curve of Einstein metrics. On the set of

unit volume Riemannian metrics, define the Einstein operator E by

E(g) := Ricg−
S(g)
n

g.

Then a metric g is Einstein if and only if E(g) = 0. An EID h ∈ ε(g) is called formally
integrable to order k if there exist h2, . . . , hk ∈ S 2 such that

E

g + th+
k∑
j=2

tk

k!hk

 = 0.

A classical result [Bes87] is that an EID h ∈ ε(g) can be integrated into a curve (gt) of
Einstein metrics with ġ0 = h if and only if it is formally integrable to all orders k ≥ 2.
The integrability criterion to each order can be expressed in terms of derivatives of E.

By a result of N. Koiso [Koi82, Lem. 4.7], h ∈ ε(g) is integrable to order 2 if and only if
E ′′g (h, h) ⊥ ε(g) in the L2 sense. Also due to N. Koiso [Koi82, Lem. 4.3] is the formula

2
(
E ′′g (h, h), h

)
L2

=
∫
M

(
2Ehijhikhjk + 3(∇ei∇ejh)klhijhkl

− 6(∇ei∇ejh)klhikhjl
)

volg
(5.2)

for the second order obstruction, where we implicitly sum over a local orthonormal frame
(ei) of TM . The vanishing of the quantity in (5.2) is a necessary condition for the
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integrability of h.

5.3.3 Harmonic analysis

Let (M = G/H, g) be a Riemannian homogeneous space, where G is some Lie group and
H is a closed subgroup. We will always denote the corresponding Lie algebras by g and
h, respectively. The homogeneous space M is called reductive if there exists an Ad

∣∣∣
H
-

invariant complement m of h ⊂ g. This is always the case if H is compact (in particular if
G is compact). Through the canonical projection π : G→M , the reductive complement
m ⊂ g ∼= TeG is canonically identified with the tangent space ToM at the base point
o = eH.
The G-invariant metric on a reductive Riemannian homogeneous space (M, g) is deter-

mined by an Ad(H)-invariant inner product on m. Suppose that Q is an Ad(G)-invariant
inner product on g. Then m := h⊥ is an Ad(H)-invariant subspace. We call (M, g) a nor-
mal homogeneous space if the metric is induced by the restriction Q to m, i.e. go = Q

∣∣∣
m×m

.
If G is compact and semisimple, then the Killing form Bg is negative-definite. In this case,
the standard metric is defined by go = −Bg

∣∣∣
m×m

.
A normal homogeneous space is in particular naturally reductive, i.e.

go([X, Y ]m, Z) + go(Y, [X,Z]m) = 0

(where Xm denotes the projection of X to m) holds for all X, Y, Z ∈ m.
Let ρ : H → AutV be a finite-dimensional (real or complex) representation. Denote

by VM = G×ρ V the associated homogeneous vector bundle over M . Its sections can be
viewed as H-equivariant smooth V -valued functions on G – the isomorphism is explicitly
given by

Γ(VM)
∼=−→ C∞(G, V )H : s 7→ ŝ,

where s(xH) = [x, ŝ(x)] for any x ∈ G. Left-translation on sections of VM gives rise to
the left-regular representation on C∞(G, V )H , explicitly given by

` : G→ AutC∞(G, V )H : (`(x)f)(y) = f(x−1y)

for x, y ∈ G.
If M is reductive, we can write every tensor bundle as an associated bundle of some

tensor power of the reductive complement. For example

S 2 = Γ(Sym2 T ∗M) ∼= Γ(G×ρ Sym2 m) ∼= C∞(G, Sym2 m)H

(note that the H-representations m and m∗ are equivalent via the Riemannian metric).
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For a compact Lie group G we denote by Ĝ the set of dominant integral weights of G
(after choosing a suitable maximal torus T ⊂ G). Recall that the elements of Ĝ are in
one-to-one correspondence with equivalence classes of irreducible complex representations
of G. Any representative of such a class with highest weight γ ∈ Ĝ will be denoted by
(Vγ, ργ). Let V be a unitary representation of H. The homogeneous version of the Peter–
Weyl theorem [Wal73, Thm. 5.3.6] states that the left-regular representation decomposes
into

L2(G, V )H ∼=
⊕
γ∈Ĝ

Vγ ⊗ HomH(Vγ, V ). (5.3)

Here HomH(Vγ, V ) simply counts the multiplicity of Vγ inside L2(G, V )H and is called the
space of Fourier (matrix) coefficients. The equivalence in (5.3) is made explicit by

Vγ ⊗ HomH(Vγ, V ) ↪→ C∞(G, V )H : v ⊗ F 7→
(
x 7→ F (ρ−1

γ (x)v)
)
. (5.4)

Let V,W be unitary representations of H and D : Γ(VM)→ Γ(WM) be a G-invariant
differential operator. Combining (5.3) with Schur’s Lemma, the operator D acts as a
linear mapping

D
∣∣∣
γ

: HomH(Vγ, V ) −→ HomH(Vγ,W )

for each fixed γ ∈ Ĝ. We call this mapping the prototypical differential operator associated
to D and γ (as introduced by U. Semmelmann and G. Weingart in [SW22]).
On a reductive homogeneous space, a choice of reductive complement m determines

a G-invariant connection ∇̄ on VM , called the canonical reductive (or Ambrose–Singer)
connection, by stipulating that

̂̄∇Xs = X̃(ŝ) (5.5)

for all X ∈ TM , s ∈ Γ(VM), where the horizontal lift X̃ ∈ TG is the unique vector
in the canonical horizontal distribution H = ⋃

x∈G dlx(m) such that dπ(X̃) = X. This
connection has the important property that all G-invariant sections of VM are parallel.
If (M, g) is naturally reductive, ∇̄ is a metric connection with parallel totally skew torsion
tensor T̄ , given (at the base point) by

T̄o(X, Y ) = −[X, Y ]m.

On any representation ρ : G→ AutV of a compact Lie group G, the Casimir operator
with respect to a fixed Ad(G)-invariant inner product on g is the equivariant endomor-
phism of V defined by

Casg,Qρ = −
∑
i

ρ∗(ei)2,

where (ei) is an orthonormal basis of g with respect to Q. We omit the superscript Q if
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the choice of inner product is clear from context. For γ ∈ Ĝ the Casimir operator on Vγ
acts as multiplication with the Casimir constant

Casg,Qγ = 〈γ, γ + 2δg〉t∗,Q (5.6)

by Freudenthal’s formula, cf. [FH91]. Here 〈·, ·〉t∗,Q is the inner product induced by Q

on the dual t∗ of the Lie algebra t of the torus T ⊂ G, while δg denotes the half-sum of
positive roots of g.
A crucial fact [MS10, Lem. 5.2] is that on a normal homogeneous space with Riemannian

metric induced by an Ad(G)-invariant inner product Q on g, the standard Laplacian of
∇̄ is precisely the Casimir operator of G acting on the left-regular representation, i.e.

∆̄ := (∇̄)∗∇̄+ q(R̄) = Casg,Q` . (5.7)

In particular the prototypical differential operator associated to ∆̄ and γ is simply multi-
plication by the Casimir constant. In other words, the eigenspaces of ∆̄ are the isotypical
components

Vγ ⊗ HomH(Vγ, V )

in the Peter-Weyl decomposition (5.3). The eigenvalues are readily computable by means
of Freudenthal’s formula (5.6).
It should be noted that in the symmetric case, the torsion of ∇̄ vanishes. Hence ∇̄

coincides with the Levi-Civita connection ∇. It follows that ∆L = ∆̄, so the spectrum
of the Lichnerowicz Laplacian on any tensor bundle is easily computable, facilitating the
foundational work by N. Koiso on the stability of symmetric spaces [Koi80].

5.3.4 3-symmetric spaces

A homogeneous space M = G/H is called 3-symmetric if there exists an automorphism
σ ∈ AutG of order 3 such that Gσ

0 ⊂ H ⊂ Gσ, where Gσ is the fixed point set of σ and
Gσ

0 is the connected component of the identity in Gσ.
The complexified Lie algebra gC decomposes into eigenspaces of the differential at the

base point σ∗ : g→ g as
gC = hC ⊕m+ ⊕m−.

The eigenvalues of σ∗ are 1 on hC, j := e
2πi
3 on m+ and j2 = j̄ = e

4πi
3 on m−, respectively.

M then carries a natural G-invariant almost complex structure J with ±i-eigenspaces m±,
given by

σ∗
∣∣∣
m

= 1
2 Idm +

√
3

2 Jo
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at the base point, where mC = m+ ⊕ m−. Furthermore, M is a reductive homogeneous
space, since m is invariant under the adjoint action of H ⊂ Gσ.
When endowed with a G-invariant Riemannian metric g compatible with J , (M, g) is

called a Riemannian 3-symmetric space. In particular, (M, g, J) is almost Hermitian.
Furthermore, the almost Hermitian structure (M, g, J) is nearly Kähler if and only if
(M, g) is naturally reductive [But08, Prop. 3.8].
For an extensive treatment of 3-symmetric spaces see [But08]. The final thing we

need for our purposes is the key observation [But08, Prop. 3.5] that on a Riemannian
3-symmetric space, the canonical reductive connection ∇̄ associated to m coincides with
the canonical Hermitian connection ∇h defined in §5.3.1.

5.4 Small Lichnerowicz eigenvalues on Gray
manifolds

Throughout what follows, let (M, g, J) be a Gray manifold. In order to find destabilizing
directions for the Einstein–Hilbert functional, we need to solve the system

∆Lh = λh,

δh = 0
(L1)

in h ∈ S 2
0 for some λ < 2E = 10. We follow the discussion in [MS11, §5] to transform

(L1) into an eigenvalue problem for the more familiar Hodge–de Rham Laplacian. Viewed
as a section of SymTM , the tensor h splits into h = h++h− with h+ ∈ S +

0 and h− ∈ S −.
By applying the bundle isomorphisms given in (5.1), we obtain tensors ϕ := h+ ◦J ∈ Ω1,1

0,R

and σ := h−∗ Ψ+ ∈ Ω2,1
0,R carrying the information of h.

5.4.1 Lemma. Under the isomorphisms h+ 7→ ϕ and h− 7→ σ above, if λ < 16, the
system of equations (L1) is equivalent to



∆ϕ = (λ− 6)ϕ− δσ,

∆σ = (λ− 4)σ − 4dϕ,

δϕ = 0,

δσ ∈ Ω1,1
0,R.

(L2)

Proof. Using the formulae from [MS11, Prop. 3.4, Cor. 4.4], the first equation of (L1) can
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be rewritten as

(∇h∗∇h + q(Rh))(h+ + h−) =λ(h+ + h−)− (3h+ + s)− (2h− − (δh−yΨ+ + δσ) ◦ J)
− 3h+ − 2h−,

with s ∈ S − defined by s∗Ψ+ = 2δh+ ∧ ω + 4dϕ. We note that (δh−yΨ+ + δσ) ◦ J is
necessarily a traceless symmetric 2-tensor, hence automatically δh−yΨ+ + δσ ∈ Ω1,1

0,R, or,
equivalently,

δh−yΨ+ + (δσ)2,0 = 0.

Using that ∇h∗∇h + q(Rh) preserves the spaces S ± and Ω2,0
R , we can write (L1) equiva-

lently as 
(∇h∗∇h + q(Rh))h+ = (λ− 6)h+ + (δσ)1,1 ◦ J,

(∇h∗∇h + q(Rh))h− = (λ− 4)h− − s,

δh+ + δh− = 0.

Let now η ∈ Ω1 such that (δσ)2,0 = ηyΨ+. Since δh+ = −Jδϕ and ∇h∗∇h + q(Rh)
commutes with the bundle isomorphisms from (5.1), we can apply them to obtain



(∇h∗∇h + q(Rh))ϕ = (λ− 6)ϕ− (δσ)1,1,

(∇h∗∇h + q(Rh))σ = (λ− 4)σ − 2η ∧ ω − 4dϕ,

δϕ = Jη,

(δσ)2,0 = ηyΨ+.

Using the remaining formulae in [MS11, Prop. 3.4, Cor. 4.4], we see that this is equivalent
to 

∆ϕ = (λ− 6)ϕ− δσ,

∆σ = (λ− 4)σ − 4dϕ− 4η ∧ ω,

δϕ = Jη,

(δσ)2,0 = ηyΨ+.

Suppose now that λ < 16. By applying δ to the first line of the above, it follows that

∆δϕ = δ∆ϕ = (λ− 6)δϕ.

The Lichnerowicz estimate ∆ ≥ 2q(R) = 2E = 10 on coclosed 1-forms now implies that
δϕ = 0 and hence η = 0, simplifying the above to (L2).1

1This bridges the gap in the proof of [MS11, Thm. 5.1], where η = 0 was assumed without justification.
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The space of solutions is described by the following lemma, which is a generalization of
[MS11, Lem. 5.2].

5.4.2 Lemma. Suppose that λ = 10 − ε in system (L2) for some ε > 0. Denote with
E(µ) := ker(∆− µ)

∣∣∣
Ω1,1

0,R
∩ ker δ the µ-eigenspace of ∆ on coclosed primitive (1, 1)-forms.

(i) Suppose that ε < 25
4 and ε 6= 6. Then the space of solutions to system (L2) is

isomorphic to the direct sum E(µ1)⊕E(µ2)⊕E(µ3) where µ1,2 = 7− ε±
√

25− 4ε
and µ3 = 6− ε. The isomorphism is given by

Ψ : (ϕ, σ) 7→ ((3−
√

25− 4ε)ϕ+ δσ, (3 +
√

25− 4ε)ϕ+ δσ, ∗dσ).

The inverse is given by

Φ : (α, β, γ) 7→
(

β − α
2
√

25− 4ε
,

dβ − dα
2(6− ε)

√
25− 4ε

+ dα + dβ

2(6− ε) −
∗dγ

6− ε

)
.

If 6 < ε < 25
4 , then E(µ3) becomes trivial and thus γ = ∗dσ = 0.

(ii) If ε = 6, then the space of solutions to (L2) is isomorphic to E(2) ⊕ ker ∆
∣∣∣
Ω3
, with

isomorphism given by

Ψ6 : (ϕ, σ + τ) 7→ (ϕ, τ) =
(
−1

4δσ, τ
)

for any σ ∈ im ∆
∣∣∣
Ω3

and τ ∈ ker ∆
∣∣∣
Ω3
, and inverse

Φ6 : (ϕ, τ) 7→ (ϕ,−2dϕ+ τ) .

(iii) If ε = 25
4 , then the space of solutions to (L2) is isomorphic to E(3

4), with isomorphism
given by

Ψ 25
4

: (ϕ, σ) 7→ ϕ = −1
3δσ

and inverse
Φ 25

4
: ϕ 7→ (ϕ,−4dϕ) .

(iv) If ε > 25
4 , then the space of solutions to (L2) is trivial.

Proof. The proof of the first part works completely analogously to the one of [MS11,
Lem. 5.2]. We observe that if (ϕ, σ) is a solution to (L2), then

∆ϕ
∆δσ

 = A

 ϕ
δσ

 , A :=
 4− ε −1
−4(4− ε) 10− ε

 .
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The eigenvalues of the matrix A are µ1,2 = 7 − ε ±
√

25− 4ε with corresponding eigen-
vectors v1,2 = ( 3∓

√
25−4ε
1 ), if ε 6= 25

4 .
Let (α, β, γ) := Ψ(ϕ, σ). Then

α
β

 =
3−

√
25− 4ε 1

3 +
√

25− 4ε 1

 ϕ
δσ

 ,
 ϕ
δσ

 = 1
2
√

25− 4ε

 −1 1
3 +
√

25− 4ε −3 +
√

25− 4ε

α
β

 .
If ε < 25

4 , then 25− 4ε > 0 and we can always recover the data (ϕ, δσ) from (α, β, γ). We
also have

∗dγ = ∗d ∗ dσ = −δdσ

and thus
dδσ − ∗dγ + 4dϕ = ∆σ + 4dϕ = (6− ε)σ.

Hence if ε 6= 6, we can also recover σ. In total, Ψ is invertible, and one can check that its
inverse is given by Φ.
If 6 < ε < 25

4 , then µ3 < 0 and since ∆ is nonnegative, E(µ3)=0.
Let ε = 6. If (ϕ, σ) is a solution to (L2), then

∆dσ = d∆σ = −4d∆dϕ = −4∆d2ϕ = 0,

i.e. dσ is harmonic. But this implies that δdσ = 0 and hence dσ = 0. Also, 2ϕ+δσ ∈ E(2)
and 4ϕ+ δσ ∈ E(0). At the same time,

4ϕ+ δσ = 2(2ϕ+ δσ)− δσ.

Since both E(2) and im δ are orthogonal to E(0), it follows that 4ϕ+ δσ = 0. Now

2ϕ+ δσ = −2ϕ = 1
2δσ ∈ E(2).

Furthermore dσ = 0 and σ⊥ ker ∆
∣∣∣
Ω3

imply that σ ∈ im d
∣∣∣
Ω2
. Since

(σ, dη)L2 = (δσ, η)L2 = (−4ϕ, η)L2 = (−2∆ϕ, η)L2 = (−2δdϕ, η)L2 = (−2dϕ, dη)L2

for any η ∈ Ω2, it follows that σ = −2dϕ. One can check that (ϕ,−2dϕ + τ) solves (L2)
for any ϕ ∈ E(2) and τ ∈ ker ∆

∣∣∣
Ω3
. Note that ker ∆

∣∣∣
Ω3
⊂ Ω2,1

0,R by a theorem of Verbitsky
[Ver05, Thm. 6.2].
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Let ε = 25
4 . In this case, µ1 = µ2 and the matrix A is not diagonalizable. If we set

α′ := 1
3δσ, β′ := 3ϕ+ δσ,

then we obtain the system ∆α′

∆β′

 =
3

4 1
0 3

4

α′
β′

 .
For any β ∈ E(3

4), we therefore need to solve (∆− 3
4)α′ = β′. But im(∆− 3

4)⊥ ker(∆− 3
4),

hence there can only exist a solution if β′ = 0. In this case, we obtain ∆α′ = 3
4α
′.

Furthermore, ∗dσ ∈ E(−1
4). Since ∆ is nonnegative, this implies that dσ = 0. We can

recover σ from α′ by

1
4σ = −∆σ − 4dϕ = −dδσ + 4

3dδσ = dα′

and ϕ by 3ϕ+ δσ = β′ = 0. In total, the space of solutions is isomorphic to E(3
4).

Let ε > 25
4 . Then µ1, µ2 are imaginary and µ3 < 0. Since ∆ is nonnegative, E(µi) = 0

for i = 1, 2, 3. The mapping Ψ is still an isomorphism, hence the space of solutions is
trivial.

5.4.3 Remark. Note that in case (i) of the above lemma, the eigenvalues µi are subject
to the bounds µ1 < 12, µ2 < 2 and µ3 < 6 if we assume that ε > 0. In the critical case
where we set ε = 0, we recover the description

ε(g) ∼= E(2)⊕ E(6)⊕ E(12)

by A. Moroianu and U. Semmelmann [MS11, Thm. 5.1].

Recall from §5.3.4 that a naturally reductive Riemannian 3-symmetric space (G/H, g)
carries a nearly Kähler structure whose Hermitian connection∇h coincides with the canon-
ical reductive connection ∇̄ of the homogeneous structure. In fact, these assumptions hold
for all of the homogeneous Gray manifolds, namely S6, S3×S3, CP3 and the flag manifold
SU(3)/T2.
The Hermitian Laplace operator ∆h therefore coincides with the standard Laplacian ∆̄.

In light of §5.3.3 this enables us to describe the eigenspaces of ∆h in terms of irreducible
complex representations of G; in particular on Ω1,1

0 , where ∆h = ∆.
However, the statement of Lemma 5.4.2 involves the eigenspaces of ∆ restricted to the

subspace of coclosed forms in Ω1,1
0,R. To single out the coclosed elements in an eigenspace,

we are going to perform explicit computations utilizing the following lemma. A similar
formula for the divergence on symmetric tensors has already been employed to decide the
stability of certain symmetric spaces, cf. [Sch22b, Lem. 3.3] and [SW22, §2].
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5.4.4 Lemma. Let (M = G/H, g, J) be a homogeneous Gray manifold with reductive
decomposition g = h ⊕ m as in §5.3.4. Let δ : Ω1,1

0 → Ω1
C denote the codifferential. Its

prototypical differential operator is given by

δ
∣∣∣
γ

: HomH(Vγ,Λ1,1
0 m)→ HomH(Vγ,mC) : F 7→

∑
i

eiyF ◦ (ργ)∗(ei)

for any orthonormal basis (ei) of m.

Proof. By (5.5), the Ambrose–Singer connection ∇̄ = ∇h translates into a directional
derivative on C∞(G,Λ1,1

0 m). Fix some γ ∈ Ĝ, a vector v ∈ Vγ and a homomorphism
F ∈ HomH(Vγ,Λ1,1

0 m), and let α ∈ Ω1,1
0 be associated to v ⊗ F via the equivalence (5.3).

Differentiating the smooth function

α̂ : G→ Λ1,1
0 m : x 7→ F (ρ−1

γ (x)v)

defined in (5.4), we find that, for any x ∈ G and X ∈ m ∼= ToM ,

∇̂h
Xα = X(α̂) = −F ((ργ)∗(X)v)

Let (ei) denote some local orthonormal frame of TM . It follows from [MS11, Lem. 4.2]
that

δα = −
∑
i

eiy∇eiα = −
∑
i

eiy∇h
ei
α

(essentially using that ∇h has skew torsion). Combining the above, we obtain

δ̂α = −
∑
i

eiy∇̂h
ei
α =

∑
i

eiyF ((ργ)∗(ei)v).

at the base point. The assertion now follows from the G-invariance of δ.

5.5 Case-by-case stability analysis

5.5.1 Nearly Kähler S3 × S3

Let K = SU(2) with Lie algebra k = su(2), let G = K × K × K with Lie algebra
g = k⊕ k⊕ k and let H = ∆K ⊂ G be the diagonal, with Lie algebra h ∼= k. We consider
the homogeneous space M = G/H. Let Bk denote the Killing form of k. The inner
product on g that is given by − 1

12(Bk ⊕ Bk ⊕ Bk) defines a normal Riemannian metric g
on M , which has scalar curvature scalg = 30. The automorphism

σ : G→ G : (k1, k2, k3) 7→ (k2, k3, k1)
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that cyclically permutes the factors is of order three, fixes H and hence gives M the
structure of a Riemannian 3-symmetric space.
We denote by E = C2 the standard representation of K = SU(2). Furthermore, we

label the irreducible complex representations of K by k ∈ N0, where Vk = Symk E is the
unique (k + 1)-dimensional irreducible complex representation of K.

5.5.1 Lemma. Let Vγ be an irreducible complex representation of G with CasGγ < 12 and

HomH(Vγ,Λ1,1
0 m) 6= 0.

Then Vγ is equivalent to one of the representations E⊗E⊗C, E⊗C⊗E and C⊗E⊗E
of G. In any of those cases

dim HomH(Vγ,Λ1,1
0 m) = 1

and the Casimir eigenvalue is CasGγ = 9.

Proof. Since irreducible representations of G = K × K × K are precisely the threefold
tensor products of irreducible representations of K, we can label them by

V(a,b,c) := Va ⊗ Vb ⊗ Vc,

where a, b, c ∈ N0. Restricting the representation V(a,b,c) to the diagonal H ⊂ G simply
yields the tensor product Va ⊗ Vb ⊗ Vc as a representation of K. The Clebsch–Gordan
rules allow us to decompose these into irreducible summands. From [MS10, (31)] we know
that the Casimir eigenvalues of G with respect to the inner product − 1

12(Bk ⊕ Bk ⊕ Bk)
are given by

CasG(a,b,c) = CasSU(2)
a + CasSU(2)

b + CasSU(2)
c = 3

2(a(a+ 2) + b(b+ 2) + c(c+ 2))

for a, b, c ∈ N0. The results for the first few Casimir eigenvalues are listed in Table 5.1.

γ = (a, b, c) Branching of Vγ to K CasGγ
(0, 0, 0) C = V0 0

(1, 0, 0), (0, 1, 0), (0, 0, 1) V1 ⊗ C⊗ C = V1
9
2

(1, 1, 0), (1, 0, 1), (0, 1, 1) V1 ⊗ V1 ⊗ C ∼= V2 ⊕ V0 9
(1, 1, 1) V1 ⊗ V1 ⊗ V1 ∼= V3 ⊕ V1 ⊕ V1

27
2

(2, 0, 0), (0, 2, 0), (0, 0, 2) V2 ⊗ C⊗ C = V2 12

Table 5.1: The first few Casimir eigenvalues of G = K ×K ×K

By [MS10, Lem. 5.5] we know that Λ1,1
0 m ∼= V4⊕V2 as a representation ofK. Comparing

summands now yields that the only irreducible complex representations Vγ of G with
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Casimir eigenvalue smaller than 12 and nontrivial HomH(Vγ,Λ1,1
0 m) are V(1,1,0), V(1,0,1)

and V(0,1,1).

Since ∆h acts as the Casimir operator, this means that 9 is the only eigenvalue smaller
than 12 in the spectrum of ∆h on Ω1,1

0 . The eigenvalue 12 itself does also occur on Ω1,1
0 , but

in [MS10] it is shown that the corresponding eigenforms are not coclosed, hence proving
that (M, g) has no infinitesimal Einstein deformations. It now remains to check whether
this is the case for the eigenforms to the eigenvalue 9.

5.5.2 Lemma. The eigenspace of ∆h on Ω1,1
0,R to the eigenvalue 9 contains no nontrivial

coclosed forms.

Proof. We explicitly calculate the codifferential on the summands in question using the
formula from Lemma 5.4.4.
Lemma 5.5.1 tells us that the relevant summands of the left-regular representation on

Ω1,1
0 are V(1,1,0), V(1,0,1) and V(0,1,1). First, the representation V(1,1,0) = E ⊗ E ⊗ C is given

by
ρ : G→ Aut(E ⊗ E) : ρ(k1, k2, k3)(v1 ⊗ v2) = k1v1 ⊗ k2v2

for any k1, k2, k3 ∈ K and v1, v2 ∈ E. Recall that mC = m+ ⊕ m−, where m+ is the
eigenspace of σ∗ to the eigenvalue j = −1

2 + 3
2 i, and m− is the eigenspace to j2 = −1

2 −
3
2 i.

Explicitly,
m+ = {(Y, jY, j2Y ) |Y ∈ k}, m− = {(Y, j2Y, jY ) |Y ∈ k}.

Let (Y1, Y2, Y3) be an orthonormal basis of k with respect to the inner product −Bk. Then

Xi := 2(Yi, jYi, j2Yi) ∈ m+, Xi := 2(Yi, j2Yi, jYi) ∈ m−, i = 1, 2, 3

constitute an orthonormal basis of mC with respect to − 1
12(Bk ⊕ Bk ⊕ Bk). With respect

to the basis
B = (z1 ⊗ z1, z1 ⊗ z2, z2 ⊗ z1, z2 ⊗ z2) of E ⊗ E,

we can represent ρ∗(Xi) by the 4× 4-matrices

ρ∗(X1) = i√
2


0 j 1 0
j 0 0 1
1 0 0 j
0 1 j 0

 , ρ∗(X2) = 1√
2


0 −j −1 0
j 0 0 −1
1 0 0 −j
0 1 j 0

 ,
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ρ∗(X3) = i√
2


1 + j 0 0 0

0 1− j 0 0
0 0 −1 + j 0
0 0 0 −1− j

 . (5.8)

This works similarly for Xi by means of simply replacing the symbol j with j2.
Turning to the decomposition of Λ1,1m and E ⊗ E into K-irreducible summands, we

have

Λ1,1m = m+ ⊗m− ∼= kC ⊗ kC ∼= Sym2
0 k

C ⊕ Λ2kC ⊕ C,

E ⊗ E = Sym2E ⊕ Λ2E

with common summand Λ2kC ∼= kC ∼= V2 = Sym2E. If we choose the basis of the image
of Λ2kC in Λ1,1m as

B′ =
(
X1 ∧X2 −X2 ∧X1, X2 ∧X3 −X3 ∧X2, X3 ∧X1 −X1 ∧X3

)
,

then a generator of HomK(E ⊗ E,Λ1,1
0 m) is represented by the matrix

F = 1√
2


0 1 1 0
1 0 0 1
−i 0 0 i


with respect to B and B′. Taking

B′′ :=
(
X1, X2, X3, X1, X2, X3

)
as a basis of mC, we compute δ

∣∣∣
(1,1,0)

F according to Lemma 5.4.4:

δ
∣∣∣
(1,1,0)

F =
∑
i

Xiy(F ◦ ρ∗(Xi)) +
∑
i

Xiy(F ◦ ρ∗(Xi)) =



0 0 0 0
0 0 0 0
0 1− j2 −1 + j2 0
0 0 0 0
0 0 0 0
0 1− j −1 + j 0


with respect to the bases B and B′′. We have thus shown that

δ
∣∣∣
(1,1,0)

: HomH(V(1,1,0),Λ1,1
0 m)→ HomH(V(1,1,0),m

C)
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does not vanish. For the other two representations V(1,0,1) and V(0,1,1) modeled on the
vector space E ⊗ E with the same Casimir eigenvalue, the only thing that changes is
the action of G, amounting to cyclic permutations of the factors 1, j, j2 in (5.8). The
computations work out analogously. We conclude that the eigenspace of ∆h on Ω1,1

0 to
the eigenvalue 9 contains no nonzero coclosed forms.

It remains to apply Lemma 5.4.2 in order to finally obtain the desired result.

5.5.3 Proposition. On the nearly Kähler manifold S3 × S3, the space of unstable direc-
tions for its Einstein metric g consists solely of the 2-dimensional ∆L-eigenspace to the
eigenvalue 4, the latter arising from harmonic 3-forms. In total, the coindex of g is 2.

Proof. We recall the bounds µ1 < 12, µ2 < 2 and µ3 < 6 from Lemma 5.4.2. Lemmas
5.5.1 and 5.5.2 imply that E(µ) is trivial for all µ < 12. However, 5.4.2, (ii) yields a space
of solutions isomorphic to the space of harmonic 3-forms in the case ε = 6. Since b3 = 2,
this gives us a 2-dimensional subspace of S 2

tt such that

∆Lh = (10− 6)h = 4h

for any element h.

5.5.2 Nearly Kähler CP3

Let G = SO(5) and H = U(2). We consider H embedded into G via the natural inclusions
U(2) ⊂ SO(4) ⊂ SO(5). The normal Riemannian metric g induced by − 1

12Bg on the
homogeneous space M = G/H is the nearly Kähler metric on CP3, normalized to scalg =
30. It should be noted that (M, g) is, again, naturally reductive and 3-symmetric, with
reductive complement m = h⊥.
Let t = {diag(iθ1, iθ2) | θ1, θ2 ∈ R} ⊂ h ⊂ g be the maximal torus Lie algebra. The

positive roots αi ∈ t∗ of G can then be expressed as

α1 = θ1, α2 = θ2, α3 = θ1 + θ2, α4 = θ1 − θ2.

In terms of root spaces of G we have

mC = gα1 ⊕ g−α1 ⊕ gα2 ⊕ g−α2 ⊕ gα3 ⊕ g−α3 . (5.9)

The almost complex structure J can be defined by specifying its ±i-eigenspaces

m+ = gα1 ⊕ gα2 ⊕ g−α3 , m− = g−α1 ⊕ g−α2 ⊕ gα3 .

In passing we note that the standard complex structure on CP3 has m+ = gα1⊕gα2⊕gα3 .
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We label the irreducible complex representations Vγ of G by their highest weights
γ = (a, b), where a, b ∈ N0, a ≥ b. For example V(1,0) = C5 is the complexified standard
representation of G, while V(1,1) = so(5)C is the complexified adjoint representation.
Again, let E = C2 be the standard representation of SU(2). Let furthermore Ck denote

the representation of U(1) on C defined by

U(1)× C→ C : (z, w) 7→ zkw

for any k ∈ Z. The irreducible complex representations of H ∼= (SU(2) × U(1))/Z2 are
then given by Ea

b := SymaE ⊗ Cb for a ∈ N0 and b ∈ Z, a ≡ b mod 2.

5.5.4 Lemma. Let Vγ be an irreducible complex representation of G with CasGγ < 12 and

HomH(Vγ,Λ1,1
0 m) 6= 0.

Then Vγ is equivalent to either the trivial representation V(0,0) or the standard represen-
tation V(1,0). In both cases,

dim HomH(Vγ,Λ1,1
0 m) = 1

and the Casimir eigenvalues are CasG(0,0) = 0 and CasG(1,0) = 8, respectively.

Proof. We first work out how to decompose the restriction of V(1,0) to H into irreducible
summands. We know that V(1,0) = C5 is the complexified standard representation of
G. The inclusion U(2) ⊂ SO(4) can be understood as realification (E1

1)R of the defining
representation E1

1 of U(2). Furthermore, the inclusion SO(4) ⊂ SO(5) defines a five-
dimensional real representation R4 ⊕ R of SO(4), where the group acts as on its defining
representation on the first summand and trivially on the second. In total, the restriction
of the real standard representation of G = SO(5) to H = U(2) is given by (E1

1)R ⊕ R.
Complexifying then yields the decomposition

V(1,0) = (E1
1)RC ⊕ C ∼= E1

1 ⊕ E1
−1 ⊕ E0

0 .

For the branching of V(1,1) under the restriction to H, we refer to [MS10, Lem. 5.9]. Using
the decomposition

V(1,0) ⊗ V(1,0) ∼= V(2,0) ⊕ V(1,1) ⊕ V(0,0)

of G-representations, the known branchings of V(1,1) and V(1,0) as well as the Clebsch–
Gordan rules, we can also work out the branching of V(2,0) to H, although it will not be
needed hereafter.
By [MS10, (33)], we know that on the irreducible representation V(a,b) of G, the Casimir
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eigenvalue of G with respect to the inner product − 1
12Bg is given by

CasG(a,b) = 2(a(a+ 3) + b(b+ 1)).

Table 5.2 lists the results for the smallest few Casimir eigenvalues of G.

γ = (a, b) Branching of Vγ to H CasGγ
(0, 0) C = E0

0 0
(1, 0) E1

1 ⊕ E1
−1 ⊕ E0

0 8
(1, 1) E2

0 ⊕ E1
1 ⊕ E1

−1 ⊕ E0
2 ⊕ E0

0 ⊕ E0
−2 12

(2, 0) E2
2 ⊕ E2

0 ⊕ E2
−2 ⊕ E1

1 ⊕ E1
−1 ⊕ E0

0 20

Table 5.2: The first few Casimir eigenvalues of G = SO(5)

[MS10, Lem. 5.8] tells us that

Λ1,1
0 m ∼= E2

0 ⊕ E1
3 ⊕ E1

−3 ⊕ E0
0

as a representation of H = U(2). By comparing summands, we conclude that V(0,0) and
V(1,0) are the only irreducible complex representations Vγ of G with Casimir eigenvalue
smaller than 12 and nontrivial HomH(Vγ,Λ1,1

0 m).

Again, ∆h acts as the Casimir operator. We therefore know that 0 and 8 are the only
eigenvalues smaller than 12 in the spectrum of ∆h on Ω1,1

0 . As in the case S3 × S3, the
eigenvalue 12 does occur on Ω1,1

0 , but the corresponding eigenforms are not coclosed (see
[MS10]). Hence (M, g) has no infinitesimal Einstein deformations. It remains to check
whether the eigenforms to the eigenvalues 0 and 8 are coclosed.

5.5.5 Lemma. The eigenspace of ∆h on Ω1,1
0,R to the eigenvalue 0 consists of coclosed

forms, while the eigenspace to the eigenvalue 8 contains no nontrivial coclosed forms.

Proof. The eigenspace of ∆ to the eigenvalue 0 corresponds to the trivial summand in
the left-regular representation, i.e. to G-invariant elements of Ω1,1

0 . But these are parallel
with respect to the Ambrose–Singer connection (which equals the canonical Hermitian
connection ∇h). Recall that

δ = −
∑
i

eiy∇ei = −
∑
i

eiy∇h
ei

on Ω1,1
0

by [MS11, Lem. 4.2]. It follows any element in the 0-eigenspace of ∆h on Ω1,1
0 is coclosed.

For the eigenspace to the eigenvalue 8 we again make use of the formula from Lemma
5.4.4 in an explicit calculation. Lemma 5.5.4 tells us that the relevant summand of the
left-regular representation on Ω1,1

0 is V(1,0). A generator F of the one-dimensional space
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HomH(V(1,0),Λ1,1
0 m) must map the trivial summand E0

0 in the H-representation

V(1,0) ∼= E1
1 ⊕ E1

−1 ⊕ E0
0

to the trivial summand in

Λ1,1
0 m ∼= E2

0 ⊕ E1
3 ⊕ E1

−3 ⊕ E0
0 .

The former is spanned by v5, where (v1, . . . , v5) is the standard basis of V(1,0) = C5. To
describe the latter we remark that the root spaces in decomposition (5.9) can be written
as

gα1 = span{e1 − ie2}, g−α1 = span{e1 + ie2},

gα2 = span{e3 − ie4}, g−α2 = span{e3 + ie4},

gα3 = span{f1 − if2}, g−α3 = span{f1 + if2}

in terms of the basis

e1 := E15 − E51, e2 := E25 − E52, e3 := E35 − E53,

e4 := E45 − E54, f1 := E13 − E24 − E31 + E42, f2 := E14 + E23 − E32 − E41

of m ⊂ so(5), where Eij denotes the 5 × 5-matrix with 1 at position (i, j) and zero
at all other entries. Note that under the inner product − 1

12Bg, the basis (
√

2ei, fj) is
orthonormal. It follows from the definition of J in terms of m± that the Kähler form can
be written as

ω = 2e12 + 2e34 − f12.

By [MS10, (32)] the root space g−α3 ⊂ gC is H-invariant and equivalent to E0
−2. By

conjugation, gα3 ∼= E0
2 . Hence H acts trivially on g−α3 ⊗ gα3 ∼= E0

−2 ⊗ E0
2 = E0

0 . Recall
that g−α3 ⊂ m+ and gα3 ⊂ m−. It follows that f12 = i

2(f1 + if2)∧ (f1− if2) spans a trivial
subspace of Λ1,1m = m+ ∧ m−. Since Λ1,1

0 m is the orthogonal complement of ω in Λ1,1m,
the remaining trivial summand in Λ1,1

0 m must be spanned by

η = e12 + e34 + f12.

Having found the H-trivial subspaces of V(1,0) and Λ1,1
0 m, we see that the space of equi-

variant homomorphisms HomH(V(1,0),Λ1,1
0 m) is spanned by

F : C5 → Λ1,1
0 m : (z1, . . . , z5) 7→ z5η.
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Observe that fjvk ⊥ v5 for all j, k and eivk ⊥ v5 for all i, k, except for

e1v1 = e2v2 = e3v3 = e4v4 = −v5.

Hence, by Lemma 5.4.4,

〈(δ
∣∣∣
(1,0)

F )(vi), X〉 = 2〈F (eivi), ei ∧X〉 = −2〈η, ei ∧X〉 = −2〈eiyη,X〉

for any X ∈ mC. We have thus shown that

δ
∣∣∣
(1,0)

: HomH(V1,0,Λ1,1
0 m)→ HomH(V1,0,m

C)

is not the zero map – in fact, it maps δ
∣∣∣
(1,0)

F = F ′, where

F ′(vi) = −2eiyη for i = 1, . . . , 4, F ′(v5) = 0.

Thus the eigenspace of ∆h on Ω1,1
0 to the eigenvalue 8 contains no nonzero coclosed

forms.

As before, the desired result follows from an application of Lemma 5.4.2.

5.5.6 Proposition. On the nearly Kähler manifold CP3, the space of unstable direc-
tions for its Einstein metric g consists solely of the 1-dimensional ∆L-eigenspace to the
eigenvalue 6, arising from harmonic 2-forms. Consequently the coindex of g is 1.

Proof. Lemmas 5.5.4 and 5.5.5 imply that E(µ) from Lemma 5.4.2 is trivial for all µ < 12
except if µ = 0. We have already seen that E(0) consists of harmonic forms. In fact,
[Ver05, Thm. 6.2] implies that all harmonic 2-forms on M lie in E(0). If we solve

µ1,2 = 7− ε±
√

25− ε = 0

for ε, we obtain ε = 5 ± 1; from µ3 = 6 − ε = 0 we obtain ε = 6. If ε = 6, i.e. in case
(ii) of Lemma 5.4.2, the space of solutions to (L2) is isomorphic to E(2)⊕ker ∆

∣∣∣
Ω3
. Since

2 does not appear in the spectrum on Ω1,1
0 and b3(CP3) = 0, this space is trivial. The

only possibility in which E(0) contributes to the space of solutions of (L2) is in case (i)
of Lemma 5.4.2 with ε = 4. Since b2 = 1, we obtain a 1-dimensional subspace of S 2

tt on
which

∆Lh = (10− 4)h = 6h

for any of its elements h.
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5.5.3 The flag manifold F1,2

Let G = SU(3) and H = T 2, the latter embedded into G via

H = U(1)× U(1) ↪−→ G : (z1, z2) 7→ diag(z1, z2, (z1z2)−1).

The homogeneous space M = G/H is a description of the manifold F1,2 of flags in C3.
As in the previous examples we endow M with the normal Riemannian metric g induced
by − 1

12Bg, which has scalar curvature scalg = 30. The Riemannian homogeneous space
(M, g) is naturally reductive, 3-symmetric and hence nearly Kähler. For more information
on the nearly Kähler structure see [MS10, §5.6].
Denote by E = C3 the standard representation of G. Any irreducible complex repre-

sentation of G can then be described as the Cartan summand V(k,l) of the tensor product
Symk E ⊗ Syml Ē for some k, l ∈ N0. For example V(1,1) is equivalent to the complexified
adjoint representation su(3)C of G.

5.5.7 Lemma. Let Vγ be an irreducible complex representation of G with CasGγ < 12 and

HomH(Vγ,Λ1,1
0 m) 6= 0.

Then Vγ is the trivial representation and dim HomH(C,Λ1,1
0 m) = 2.

Proof. It follows from [MS10, (35)] that the Casimir eigenvalue on the irreducible repre-
sentation V(k,l) of G with respect to the inner product − 1

12Bg is given by

CasG(k,l) = 2(k(k + 2) + l(l + 2)).

(k, l) dim HomH(V(k,l),Λ1,1
0 m) CasG(k,l)

(0, 0) 2 0
(1, 0) 0 6
(0, 1) 0 6
(1, 1) 4 12

Table 5.3: The first few Casimir eigenvalues of G = SU(3)

By analyzing the weights of the respective representations it has already been checked
in [MS10, §5.6] that

HomH(V(1,0),Λ1,1
0 m) = HomH(V(0,1),Λ1,1

0 m) = 0

and dim HomH(V(1,1),Λ1,1
0 m) = 4.
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The maximal subspace of Ω1,1
0 on which G acts trivially is precisely the kernel of the

Casimir operator. We can argue exactly as in the proof of Lemma 5.5.5 that the elements
of this space are coclosed. Furthermore, we recall that ∆ = ∆h on coclosed primitive (1, 1)-
forms. Since ∆h acts as the Casimir operator, we are simply talking about the subspace
of harmonic forms in Ω1,1

0 . By Verbitsky’s theorem [Ver05, Thm. 6.2] all harmonic 2-forms
lie in Ω1,1

0 . Thus, the multiplicity of the trivial representation C in Ω1,1
0 is b2(F1,2) = 2.

By Frobenius reciprocity this is also the dimension of HomH(C,Λ1,1
0 m).

The results of the above discussion are listed in Table 5.3.

We have thus shown that 0 is the only eigenvalue smaller than 12 in the spectrum of ∆h

on Ω1,1
0 . Besides, it has been proven in [MS10, §6] that an 8-dimensional subspace of the

32-dimensional eigenspace to the eigenvalue 12 consists of coclosed forms and hence yields
infinitesimal Einstein deformations of (M, g). We will describe these more explicitly in
§5.6.

5.5.8 Proposition. On the nearly Kähler manifold F1,2, the space of unstable directions
for its Einstein metric g consists solely of a 2-dimensional ∆L-eigenspace to the eigenvalue
6, arising from harmonic 2-forms. In total, the coindex of g is 2.

Proof. One last time, we want to apply Lemma 5.4.2. By Lemma 5.5.7 and the fact that
harmonic forms are coclosed, we see that for µ < 12, the eigenspace E(µ) is only nontrivial
if µ = 0. With the same reasoning as in the proof of Proposition 5.5.6, we conclude that
(L2) can be solved for ε = 4, yielding a 2-dimensional subspace of S 2

tt such that

∆Lh = (10− 4)h = 6h

for all its elements h.

5.5.9 Remark. The space of destabilizing directions (or of harmonic 2-forms) can be
described rather explicitly. The 3-dimensional space

Λ1,1mH ∼= HomH(V(0,0),Λ1,1m)

of H-invariant elements of Λ1,1m corresponds to the space (Ω1,1)G of G-invariant (1, 1)-
forms on F1,2 and is spanned by

e12, e34, e56,

using the notation introduced in §5.6. The Kähler form ω corresponding to the strict
nearly Kähler structure on F1,2 is given by

ω̂ = e12 − e34 + e56.
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The 2-dimensional space Λ1,1
0 mH ∼= (Ω1,1

0 )G = ker ∆
∣∣∣
Ω2

responsible for the destabilizing
directions is now the orthogonal complement of ω̂ in Λ1,1mH .
The twistor space over CP2 can be identified with F1,2 in three distinct ways, giving

rise to three fibrations F1,2 → CP2, which in turn induce six almost complex structures
on F1,2. Three of them are actually integrable with respective Kähler forms ω1, ω2, ω3,
described by

ω̂1 = −e12 − e34 + e56, ω̂2 = e12 + e34 + e56, ω̂3 = e12 − e34 − e56,

while the other three coincide with the almost complex structure with Kähler form ω. See
[Mor14, §3.2.3] for a detailed description.
Thus, in light of the construction in §5.4 using the isomorphism

S +
0 → Ω1,1

0,R : h 7→ h ◦ J,

the destabilizing directions of the nearly Kähler metric g on F1,2 can be viewed as coming
from variations of ω = g(J ·, ·) in the directions of ω1, ω2, ω3 while fixing J .
Alternatively, consider the canonical variation, i.e. change of scale of fiber against base,

on each of the three aforementioned fibrations

πj : F1,2 = SU(3)
T 2 −→ SU(3)

S(U(2)× U(1)) = CP2, j = 1, 2, 3.

In [WW18, Prop. 4.4] it is shown that these variations yield destabilizing tt-tensors.
General destabilizing directions h ∈ S 2

tt are thus (at the base point) of the form

h = t1g
∣∣∣
m1

+ t2g
∣∣∣
m2

+ t3g
∣∣∣
m3
, m = m1 ⊕m2 ⊕m3,

with t1 + t2 + t3 = 0, where each of the pairwise orthogonal subspaces mj is the vertical
tangent space with respect to πj. Since πj are Riemannian submersions with totally
geodesic fibers, the destabilizing directions are Killing tensors by [HMS16, Ex. 7.3], that
is, they satisfy the Killing equation2

∇Xh(X,X) = 0 ∀X ∈ TM.

2This can be verified directly, using the description of ∇X − ∇h
X in §5.6.2 and the fact that h is G-

invariant and hence ∇h-parallel.
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5.6 Rigidity of F1,2

5.6.1 The infinitesimal Einstein deformations of F1,2

We will utilize the explicit description of the infinitesimal Einstein deformations of F1,2

given in [MS10, §6]. For this, it is helpful to representM = F1,2 as a quotient of G = U(3)
by the diagonally embedded torus H = T 3.
Denote by Eij the 3 × 3-matrix with a 1 at position (i, j) and zero entries elsewhere.

Let {h1, h2, h3, e1, . . . , e6} be the basis of g = u(3) given by

h1 = iE11, h2 = iE22, h3 = iE33,

e1 = E12 − E21, e2 = i(E12 + E21), e3 = E13 − E31,

e4 = i(E13 + E31), e5 = E23 − E32, e6 = i(E23 + E32).

Note that {h1, h2, h3} span the Lie algebra h ⊂ g, while the reductive complement m ⊂ g

is spanned by {e1, . . . , e6}. We now define the inner product 〈·, ·〉 on g (and the induced
bi-invariant metric on G) in such a way that (ei,

√
2hj) is an orthonormal system. One

easily checks that this coincides with − 1
12Bsu(3) when restricted to su(3) ⊂ g, so we recover

the same metric g on F1,2.
The space ε(g) of infinitesimal Einstein deformations of g is equivalent to su(3) via the

following prodecure. For a fixed element ξ ∈ su(3) ⊂ g, let ξ∗ ∈ C∞(G, g) be given by
ξ∗(x) = Ad(x)ξ. This defines smooth, real-valued functions x1, x2, x3, v1, . . . , v6 on G via

ξ∗ =


2iv1 x1 + ix2 x3 + ix4

−x1 + ix2 2iv2 x5 + ix6

−x3 + ix4 −x5 + ix6 2iv3

 .

As before, we identify sections in a tensor bundle E = G×H V overM with H-equivariant
functions on G with values in V and denote this by

Γ(E) 3 ϕ 7→ ϕ̂ ∈ C∞(G, V )H .

As seen in Remark 5.5.9, the Kähler form ω ∈ Ω2 corresponds to the (constant) function

ω̂ = e12 − e34 + e56 ∈ C∞(G,Λ2m)H

(we write eij = ei∧ej to shorten notation). Define a real-valued function ϕ̂ ∈ C∞(G,Λ2m)
by

ϕ̂ξ = v1e56 − v2e34 + v3e12.
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Using the description of the Kähler form via ω̂ and the fact that v1 + v2 + v3 = 0, it is
easy to check that ϕ̂ξ is in fact Λ1,1

0 -valued.
The functions vi ∈ C∞(G) are H-invariant since

vi(x) = 〈ξ∗(x), hi〉 = 〈Ad(x−1)ξ, hi〉 = 〈ξ,Ad(x)hi〉

and ad(hj)hi = [hj, hi] = 0, hence dvi(hj) = 0. Using the commutator relations of u(3),
one can check that the 2-forms e12, e34, e56 ∈ Λ2m are H-invariant as well. This implies
that the function ϕ̂ξ is H-equivariant. In total, ϕ̂ξ ∈ C∞(G,Λ1,1

0,Rm)H and thus ϕ̂ξ projects
to a primitive (1, 1)-form ϕξ on M . The coclosedness of ϕξ has also been checked in
[MS10, §6].
It is worth noting that in the language of harmonic analysis on homogeneous spaces,

ϕξ is associated to the element

ξ ⊗ F ∈ su(3)C ⊗ HomT 2(su(3)C,Λ1,1
0 m),

where the Fourier coefficient F is given by

F (X) = 〈X, h1〉e56 − 〈X, h2〉e34 + 〈X, h3〉e12.

It is therefore no surprise that ∆hϕξ = 12ϕξ, since 12 is the eigenvalue of the Casimir
operator on V(1,1) = su(3)C (see Table 5.3). The fact that each tensor ϕξ thus obtained
is coclosed amounts to δ

∣∣∣
(1,1)

F = 0, where δ
∣∣∣
(1,1)

also denotes the prototypical differential
operator

δ
∣∣∣
(1,1)

: HomT 2(su(3),Λ1,1
0,Rm) −→ HomT 2(su(3),m)

associated to the invariant differential operator δ : Ω1,1
0,R → Ω1.

The corresponding symmetric 2-tensor, which is the actual infinitesimal Einstein defor-
mation, is now given as hξ = −J ◦ ϕξ. By composing ϕ̂ξ with ω̂ξ, we obtain

ĥξ = v3 · (e1 ⊗ e1 + e2 ⊗ e2) + v2 · (e3 ⊗ e3 + e4 ⊗ e4) + v1 · (e5 ⊗ e5 + e6 ⊗ e6).

In this way, each ξ ∈ su(3) determines a unique element ϕξ ∈ Ω1,1
0,R and hence a unique

hξ ∈ ε(g).
In passing, we note that the infinitesimal Einstein deformations of F1,2 in fact coincide

with the infinitesimal deformations of the nearly Kähler structure [MS10, Cor. 5.12]. Their
nonintegrability in the nearly Kähler sense was already established [Fos17]. We now turn
to the question whether the integrability in the Einstein sense is also obstructed.
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5.6.2 The obstruction against integrability

We first note that via the equivalence ε(g) ∼= su(3) constructed in §5.6.1, the integrability
obstruction to second order

Ψ : ε(g)× ε(g)× ε(g)→ R : Ψ(h1, h2, h3) :=
(
E ′′g (h1, h2), h3

)
L2

can be viewed as a G-equivariant multilinear map that is symmetric in the first two entries,
i.e. Ψ ∈ (Sym2 su(3)∗ ⊗ su(3)∗)G. Both of the spaces

(Sym3 su(3))G ⊂ (Sym2 su(3)⊗ su(3))G

turn out to be one-dimensional and hence equal – in particular Ψ must be totally sym-
metric. Hence

(
E ′′g (h, h), k

)
L2

can be recovered from expressions of the type Ψ(h, h, h)
via polarization. Concretely,

(
E ′′g (h, h), k

)
L2

= 1
3
d

dt

∣∣∣
t=0

Ψ(h+ tk, h+ tk, h+ tk) (5.10)

for h, k ∈ ε(g).
The space (Sym3 su(3))G is generated by theG-invariant cubic homogeneous polynomial

i det. We therefore know that Ψ(hξ, hξ, hξ) = c · i det(ξ) for some c ∈ R. Next, we proceed
to show that c 6= 0.
Introducing the notation ασ(X1, . . . , Xr) := α(Xσ(1), . . . , Xσ(r)) for any permutation

σ ∈ Sr and any tensor α of rank r, we can rewrite formula (5.2) as

2Ψ(h, h, h) =
∫
M

2E trg(h3) volg +3
(
∇2h, h⊗ h

)
L2
− 6

(
∇2h, (h⊗ h)(23)

)
L2
.

Integrating by parts and computing

∇∗(h⊗ h) = −
∑
i

fiy∇fi(h⊗ h) = −
∑
i

fiy(∇fih⊗ h+ h⊗∇fih)

= δh⊗ h−
∑
j

fj ⊗∇h(fj)h = −∇h(·)h,

∇∗(h⊗ h)(23) = −
∑
i

fiy(∇fih⊗ h+ h⊗∇fih)(23)

= (δh⊗ h)(12) −
∑
j

(fj ⊗∇h(fj)h)(12) = −(∇h(·)h)(12)
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with some local orthonormal frame (fi) of TM , we obtain

Ψ(h, h, h) = 1
2

∫
M

(2EI0 − 3I1 + 6I2) volg

for h ∈ ε(g), where I0, I1, I2 ∈ C∞(M) are defined by

I0 := trg(h3), I1 := 〈∇h,∇h(·)h〉g, I2 := 〈∇h, (∇h(·)h)(12)〉g.

The functions I0, I1, I2 onM give rise to H-invariant functions Î0, Î1, Î2 ∈ C∞(G)H , the
first of which can already be easily computed:

Î0 = tr(ĥ3) = 2v3
1 + 2v3

2 + 2v3
3 = 6v1v2v3,

using that v1 + v2 + v3 = 0. In order to obtain the other two terms we have to compute
derivatives of h. Recall that the canonical Hermitian connection ∇h and the Levi-Civita
connection ∇ are related by

∇X = ∇h
X + 1

2AX , X ∈ TM,

where AX = J ◦ (∇XJ) on TM and then extended as a derivation to tensors of arbitrary
rank. Identifying 2-forms with skew-symmetric endomorphisms of TM , we can also write
AX = XyΨ−, where Ψ− ∈ Ω3 is the imaginary part of the complex volume form of M ,
which is G-invariant and at the base point given by

Ψ− = e236 − e146 − e135 − e245

(see also [MS10, §6]).
The canonical horizontal distribution H ⊂ TG is spanned by the left-invariant vector

fields e1, . . . , e6. For any vector X ∈ TM , let X̃ ∈ H denote its horizontal lift. Since ∇h

is the Ambrose–Singer connection of the homogeneous space M = G/H, it follows from
(5.5) that

∇̂h
Xh = X̃(ĥ) = X̃(v3) · (e1 ⊗ e1 + e2 ⊗ e2) + X̃(v2) · (e3 ⊗ e3 + e4 ⊗ e4)

+ X̃(v1) · (e5 ⊗ e5 + e6 ⊗ e6).
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We compute

e1(ĥ) = x2 · (e3 ⊗ e3 + e4 ⊗ e4 − e5 ⊗ e5 − e6 ⊗ e6),
e2(ĥ) = x1 · (−e3 ⊗ e3 − e4 ⊗ e4 + e5 ⊗ e5 + e6 ⊗ e6),
e3(ĥ) = x4 · (e1 ⊗ e1 + e2 ⊗ e2 − e5 ⊗ e5 − e6 ⊗ e6),
e4(ĥ) = x3 · (−e1 ⊗ e1 − e2 ⊗ e2 + e5 ⊗ e5 + e6 ⊗ e6),
e5(ĥ) = x6 · (e1 ⊗ e1 + e2 ⊗ e2 − e3 ⊗ e3 − e4 ⊗ e4),
e6(ĥ) = x5 · (−e1 ⊗ e1 − e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4).

Secondly it follows from the G-invariance of A that3

ÂXh = AX̂ ĥ = v3 · (AX̂e1 � e1 +AX̂e2 � e2) + v2 · (AX̂e3 � e3 +AX̂e4 � e4)
+ v1 · (AX̂e5 � e5 +AX̂e6 � e6).

Using the above expression for Ψ− we compute

Ae1ĥ = (v1 − v2) · (e3 � e5 + e4 � e6),
Ae2ĥ = (v1 − v2) · (e4 � e5 − e3 � e6),
Ae3ĥ = (v3 − v1) · (e1 � e5 − e2 � e6),
Ae4ĥ = (v3 − v1) · (e1 � e6 + e2 � e5),
Ae5ĥ = (v2 − v3) · (e1 � e3 + e2 � e4),
Ae6ĥ = (v2 − v3) · (e1 � e4 − e2 � e3).

To obtain ∇h we simply combine:

X̂y∇̂h = ∇̂Xh = ∇̂h
Xh+ 1

2ÂXh = X̃(ĥ) + 1
2AX̂ ĥ.

The coefficients of ∇̂h ∈ C∞(G,m⊗3) with respect to the basis (ei) are listed in Table 5.4.
Now we can finally tackle the terms I1 and I2 in the integrability obstruction. Let (fi)

be a local orthonormal frame of TM . Then

I1 = 〈∇h,∇h(·)h〉T ∗M⊗3 =
∑
i

〈∇fih,∇h(fi)h〉T ∗M⊗2

=
∑
i,j

h(fi, fj)〈∇fih,∇fjh〉T ∗M⊗2 .

3We write α� β = α⊗ β + β ⊗ α for α, β ∈ m.
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i ∇̂h(ei, e1, ·) ∇̂h(ei, e2, ·) ∇̂h(ei, e3, ·)
1 0 0 x2e3 + v1−v2

2 e5
2 0 0 −x1e3 + v2−v1

2 e6
3 x4e1 + v3−v1

2 e5 x4e2 + v1−v3
2 e6 0

4 −x3e1 + v3−v1
2 e6 −x3e2 + v3−v1

2 e5 0
5 x6e1 + v2−v3

2 e3 x6e2 + v2−v3
2 e4 −x6e3 + v2−v3

2 e1
6 −x5e1 + v2−v3

2 e4 −x5e2 + v3−v2
2 e3 x5e3 + v3−v2

2 e2

i ∇̂h(ei, e4, ·) ∇̂h(ei, e5, ·) ∇̂h(ei, e6, ·)
1 x2e4 + v1−v2

2 e6 −x2e5 + v1−v2
2 e3 −x2e6 + v1−v2

2 e4
2 −x1e4 + v1−v2

2 e5 x1e5 + v1−v2
2 e4 x1e6 + v2−v1

2 e3
3 0 −x4e5 + v3−v1

2 e1 −x4e6 + v1−v3
2 e2

4 0 x3e5 + v3−v1
2 e2 x3e6 + v3−v1

2 e1
5 −x6e4 + v2−v3

2 e2 0 0
6 x5e4 + v2−v3

2 e1 0 0

Table 5.4: Coefficients of ∇̂h.

By the G-invariance of the Riemannian metric on M it follows that

Î1 =
∑
i,j

̂h(fi, fj)〈∇̂fih, ∇̂fjh〉m⊗2 =
∑
i,j

ĥ(f̂i, f̂j)〈f̂iy∇̂h, f̂jy∇̂h〉m⊗2 .

Note that (f̂i(x)) forms an orthonormal basis of m at each point x ∈ G. Since the above
expression is independent of the choice of orthonormal basis, we can substitute in the
orthonormal basis (ei) of m. Hence the above is equal to

Î1 =
∑
i,j

ĥ(ei, ej)〈eiy∇̂h, ejy∇̂h〉m⊗2 .

Similarly we have
Î2 =

∑
i,j

ĥ(ei, ej)〈eiy(∇̂h)(12), ejy∇̂h〉m⊗2 .

Plugging in the coefficients from Table 5.4 we obtain

Î1 = −18v1v2v3 + 4(x2
1 + x2

2)v3 + 4(x2
3 + x2

4)v2 + 4(x2
5 + x2

6)v1,

Î2 = 9v1v2v3.

One can check that these functions are indeed H-invariant and thus project to functions
I0, I1, I2 on M . Recall that scalg = 30, whence E = 5. Subsuming the above results, the
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full integrability obstruction is given by

Ψ(h, h, h) = 1
2

∫
M

(10I0 − 3I1 + 6I2) vol = 1
Vol(K)

∫
G
I vol,

I = 84v1v2v3 − 6(x2
1 + x2

2)v3 − 6(x2
3 + x2

4)v2 − 6(x2
5 + x2

6)v1.

Integrating over G amounts to projecting the integrand to its G-invariant, i.e. constant,
part. If we view v1, . . . , x6 as linear forms on su(3), the integrand I is an H-invariant cubic
homogeneous polynomial in su(3)∗. Recall that the inner product on su(3) is induced by
− 1

12Bsu(3), and
vi = 〈ξ∗, hi〉, xi = 〈ξ∗, ei〉.

We therefore have the relations 〈xi, xj〉 = 〈ei, ej〉 = δij as well as 〈xi, vj〉 = 〈ei, hj〉 = 0,
while

〈vi, vj〉 = 〈prsu(3) hi, prsu(3) hj〉 =


1
3 i = j,

−1
6 i 6= j.

The generator i det of (Sym3 su(3))G can be written as

i det = 8v1v2v3 + 2(x1x3x5 − x1x4x6 − x2x3x6 − x2x4x5)
− 2(x2

1 + x2
2)v3 − 2(x2

3 + x2
4)v2 − 2(x2

5 + x2
6)v1.

The inner product on Symk su(3) is induced by the inner product on su(3) via

〈a1 · · · ak, b1 · · · bk〉 =
∑
σ∈Sk

k∏
i=1
〈ai, bσ(i)〉 for a1, . . . , ak, b1, . . . , bk ∈ su(3).

We therefore see that

〈I, i det〉Sym3 su(3) = 84 · 3 · |v1v2v3|2Sym3 su(3)

+ 6 · 2 · (|x2
1v3|2Sym3 su(3) + . . .+ |x2

6v1|2Sym3 su(3))

= 672 · 1
18 + 12 · 6 · 2

3 = 256
3 6= 0

and hence Ψ(h, h, h) = c · i det(h) for some c 6= 0.
Suppose now that det(ξ) = 0 for some nonzero ξ ∈ su(3). By equation (5.10), E ′′g (hξ, hξ)

is orthogonal to ε(g) if and only if ξ is a critical point of det, i.e. if

d

dt

∣∣∣
t=0

det(ξ + tη) = 0

104



for all η ∈ su(3). Equivalently, the rank of the complex 3 × 3-matrix ξ is equal to 1.
However no such element of su(3) exists since nonzero skew-hermitian matrices have rank
at least 2.
This concludes the proof of Theorem 5.2.2.
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6 Stability of the Non–Symmetric
Space E7/PSO(8)

6.1 Abstract

We prove that the normal metric on the homogeneous space E7/PSO(8) is stable with
respect to the Einstein-Hilbert action, thereby exhibiting the first known example of a
non-symmetric metric of positive scalar curvature with this property.

6.2 Introduction

Einstein metrics are Riemannian or pseudo-Riemannian metrics whose Ricci tensor is
proportional to the metric, i.e. Ricg = Eg for some constant E called the Einstein constant
of g. It is a well-known fact that Einstein metrics on closed manifolds are precisely the
critical points of the Einstein–Hilbert functional S(g) :=

∫
M scalg volg restricted to the

space of metrics of unit volume. Einstein metrics are always saddle points but they can
be local maxima if the functional is further restricted to the set of unit volume metrics
with constant scalar curvature. Tangent to this is the space of tt-tensors, i.e. trace-
and divergence-free symmetric 2-tensors. The second variation of the Einstein-Hilbert
functional S on tt-tensors can be expressed in terms of the Lichnerowicz Laplacian ∆L on
symmetric 2-tensors as

S ′′g (h, h) = −1
2
(
∆Lh− 2Eh, h

)
L2
.

Following Koiso [Koi80] we will call an Einstein metric g stable if g is a local maximum
of the Einstein-Hilbert functional S restricted to the space of tt-tensors. In particular
this is the case if S ′′g < 0 on tt-tensors, or equivalently if ∆L > 2E. If g is a saddle
point instead, the metric g is called unstable. The existence of a tt-tensor h such that
S ′′g (h, h) > 0, or equivalently, ∆Lh = µh for some eigenvalue µ < 2E, implies instability
of the metric. These eigentensors for eigenvalues less than 2E are also called destabilizing
directions. Unstable Einstein metrics are particularly interesting since they turn out to
also be unstable with respect to Perelman’s ν-entropy as well as dynamically unstable
with respect to the Ricci flow (see [CH15; Krö15]). Finally, metrics g with S ′′g ≤ 0 on
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tt-tensors, or equivalently ∆L ≥ 2E, will be called linearly stable.
In [Koi80] Koiso studied the stability question for symmetric spaces. It turned out that

most of the irreducible symmetric spaces of compact type are linearly stable and only
very few are unstable (see also [SW22; Sch22b] for the proof in the cases not covered
by Koiso). Further examples of stable Einstein metrics are provided by Einstein metrics
of negative sectional curvature (see [Bes87, Cor. 12.73]), or by Kähler–Einstein metrics
of negative scalar curvature (see [DWW07]). All known compact manifolds of vanishing
Ricci curvature, in other words all manifolds admitting parallel spinors, are linearly stable
(see [DWW05]). On the other side there are many examples of unstable Einstein metrics,
e.g. metrics on the total space of a Riemannian submersion over an unstable base (see
[Böh05; WW21]). Sometimes destabilizing directions are related to harmonic forms, as on
Kähler–Einstein manifolds of positive scalar curvature with b2 > 0 (see [CHI04]), nearly
Kähler manifolds in dimension 6 with b2 > 0 or b3 > 0 (see [SWW20]), or on Einstein–
Sasaki manifolds with b2 > 0 (see [SWW22]). Recently, many more unstable examples on
homogeneous spaces appeared in the work of J. Lauret et al. (see [Lau22],[LW22b],[LL23]).
It is interesting to note that all these unstable examples have positive scalar curvature.
Indeed it is rather surprising that so far, except on the symmetric spaces, no example of
a stable Einstein metric of positive scalar curvature was found.
In this article we will consider the generalized Wallach space E7/PSO(8) and its uni-

versal cover. The standard metric on this non-symmetric homogeneous space induced by
minus the Killing form is known to be Einstein of positive scalar curvature. Moreover it
was shown in [LW22b] that the standard metric is G-stable in the sense that it is a local
maximum of the Einstein–Hilbert functional S restricted to the space of G-invariant met-
rics. The main result of our article is the stability of the standard metric on E7/PSO(8)
in the much larger class of all Riemannian metrics. This provides the first example of a
stable non-symmetric Einstein metric of positive scalar curvature.

6.2.1 Theorem.
Let g be the standard Riemannian metric of positive Einstein constant E = scalg

105 = 13
36

on the connected homogeneous space M = E7/PSO(8) or its universal cover. Then the
Lichnerowicz Laplacian ∆L restricted to the space of tt-tensors satisfies

∆L ≥
30
13E > 2E.

Equality is realized exactly on left invariant, trace free symmetric 2-tensors. In particular,
the Riemannian metric g is a stable, non-symmetric Einstein metric of positive scalar
curvature.

The proof of the main theorem rests on an estimate of ∆L against a curvature term
q(R). The strategy of the article is as follows. §6.3 sets up the necessary preliminaries
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about the Lichnerowicz Laplacian, normal homogeneous spaces and Casimir operators
and introduces along the way the auxiliary operator A∗A that depends on the torsion of
the reductive connection on a homogeneous space. In §6.4 the curvature endomorphism
q(R) is related to A∗A and a formula for the latter is given in terms of Casimir operators.
The Lie algebra e7 as well as the homogeneous space E7/PSO(8) and its relevant structure
are discussed in §6.5. Finally, in §6.6 we compute the eigenvalues of A∗A and thus q(R),
yielding a sufficient lower bound on ∆L to prove Theorem 6.2.1.

6.3 Preliminaries

6.3.1 The Lichnerowicz Laplacian

Let (M, g) be a Riemannian manifold with Levi-Civita connection denoted by ∇. The
Riemannian curvature tensor and Ricci tensor are given by

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

Ric(X, Y ) := tr(Z 7→ R(Z,X)Y ).

We use the term tensor bundle to refer to a vector bundle VM that is associated to the
frame bundle of (M, g) by some representation of SO(n). Equivalently, a tensor bundle is
a SO(TM)-invariant subbundle of some tensor power of TM .
On any tensor bundle VM the standard curvature endomorphism is the symmetric

endomorphism q(R) ∈ End(VM) defined by

q(R) :=
∑
i<j

(ei ∧ ej)∗R(ei, ej)∗,

where (ei) is a local orthonormal frame of TM . The asterisk denotes the natural action of
so(T ) on tensors, i.e. extension as a derivation. We also implicitly identify Λ2T ∼= so(T )
via

X ∧ Y 7−→ (Z 7→ g(X,Z)Y − g(Y, Z)X).

On TM the endomorphism q(R) coincides with the Ricci endomorphism, i.e.

g(q(R)X, Y ) = Ric(X, Y ).

Applied to the bundle Sym2 T ∗M of symmetric 2-tensors, q(R) can be written as

q(R) = −2R̊−DerRic,
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where R̊ is the so-called curvature operator of second kind given by

(R̊h)(X, Y ) =
∑
i

h(R(ei, X)Y, ei), h ∈ Sym2 T ∗M,

while DerA denotes the extension of some endomorphism A ∈ End(T ) to higher-rank
tensors as a derivation.
The Lichnerowicz Laplacian ∆L is now defined on tensor fields, i.e. smooth sections of

VM , by
∆L := ∇∗∇+ q(R).

This is a Laplace type operator with a discrete spectrum accumulating only at positive
infinity. On differential forms ∆L coincides with the Hodge Laplacian ∆ = d∗d + dd∗,
thus generalizing the latter to tensors of arbitrary algebraic type. Even more generally,
the Lichnerowicz Laplacian is an instance of the standard Laplace operator on geometric
vector bundles introduced in [SW18].
Since we aim to investigate the spectrum of ∆L on tt-tensors, the bundle we will pri-

marily consider is Sym2 T ∗M . We will denote by

S p(M) := Γ(Symp T ∗M), p ∈ N,

the space of smooth sections of Symp T ∗M .
The divergence operator on symmetric tensors is defined as the metric contraction of

the covariant derivative, i.e.

δ : S p+1(M)→ S p(M) : h 7→ δh := −
∑
i

eiy∇eih

for a local orthonormal frame (ei) of TM .
As explained in the introduction, the stability of an Einstein metric g is decided by

a spectral property of the Lichnerowicz operator ∆L on the space S 2
tt(M) of tt-tensors,

i.e. on symmetric 2-tensors h with trg h = 0 and δh = 0. On this space we have the lower
bound

∆L ≥ 2q(R) (6.1)

(see [HMS16, Prop. 6.2]), which will be the main tool for our proof of the stability of the
standard metric on E7/PSO(8). The estimate is consequence of the Weitzenböck formula

∆L − 2q(R) = ∇∗∇− q(R) = δδ∗ − δ∗δ,

where the symmetrized covariant derivative (or Killing operator) δ∗ : S 2(M)→ S 3(M)
is formally adjoint to the divergence δ. Tensors in the kernel of δ∗ are called Killing
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tensors (see [HMS16] for further details). We see that a divergence-free tensor h satisfies
the equality ∆Lh = 2q(R)h if and only if it is Killing. In many cases, e.g. for the Berger
space SO(5)/ SO(3)irr (see [SWW22]), destabilizing directions for Einstein metrics are
realized by Killing tensors.

6.3.2 Normal homogeneous spaces

Let M = G/H be a homogeneous space and let g and h denote the Lie algebras of G
and H, respectively. Let further Q be an Ad(G)-invariant inner product on g, and let
m := h⊥Q denote the Q-orthogonal complement of h in g, which is canonically identified
with the tangent space ToM at the base point o = eH. In particular, we obtain an Ad(H)-
invariant decomposition g = h⊕m. We will use subscripts Xh, Xm to denote the projection
of X ∈ g to the respective direct summand. The unique G-invariant Riemannian metric
g which coincides with the restriction Q

∣∣∣
m
at the base point is called the normal metric

induced by Q.
For compact and semisimple G, the Killing form Bg is negative-definite – hence, −Bg

is an Ad(G)-invariant inner product on g. The metric g on M induced by −Bg will be
called the standard metric. Naturally, if G is simple, every normal metric will be a scalar
multiple of the standard metric.
A normal homogeneous space is in particular naturally reductive, that is, it satisfies

g([X, Y ]m, Z) + g(Y, [X,Z]m) = 0 for all X, Y, Z ∈ m.

In other words, the G-invariant (2, 1)-tensor A defined by AXY := [X, Y ]m is totally
skew-symmetric.
Since m ⊂ g is Ad(H)-invariant, the decomposition is reductive – therefore, it defines

a G-invariant connection ∇̄ on M , called the canonical, reductive (or Ambrose–Singer)
connection, which is induced by the left-invariant principal connection

prh ◦ θ : TG −→ h,

where θ : TG→ g denotes the Maurer–Cartan form and prh some H-equivariant projec-
tion from g to h. It can also be viewed as the affine Ehresmann connection corresponding
to the horizontal distribution H = ⋃

x∈G dlx(m) in TG. A distinctive property of the re-
ductive connection is that every G-invariant tensor is ∇̄-parallel. The G-invariant torsion
and curvature tensors of ∇̄ are given by

T̄ (X, Y ) = −[X, Y ]m = −AXY,
R̄(X, Y )Z = −[[X, Y ]h, Z]

for X, Y, Z ∈ m. (6.2)
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In particular ∇̄ is a metric connection with parallel and totally skew-symmetric torsion.
If we extend the endomorphism AX ∈ so(m) to tensors as a derivation (AX)∗, it induces
a ∇̄-parallel bundle map

A : VM → T ∗M ⊗ VM : v 7→
∑
i

e[i ⊗ (Aei)∗v

for any tensor bundle VM , with metric adjoint

A∗ : T ∗M ⊗ VM → VM : α⊗ v 7→
∑
i

α(ei)(Aei)∗v.

This allows us to express the relation between the reductive connection and the Levi-
Civita connection of g by

∇ = ∇̄+ 1
2A.

Recall that if (M, g) is a Riemannian symmetric space, it satisfies the Cartan relation
[m,m] ⊂ h, implying T̄ = 0 and thus ∇ = ∇̄. In this sense the tensor A measures the
failure of a normal homogeneous space (M, g) to be (locally) symmetric.
It is worth noting that the standard Laplacian ∇̄∗∇̄ + q(R̄) coincides with the action

of the Casimir operator (see §6.3.3) on the left-regular representation of G on sections
of tensor bundles over M . This fact has been vital for Koiso’s study of the stability of
compact symmetric spaces [Koi80].
We further note that the composition A∗A is a ∇̄-parallel self-adjoint bundle endomor-

phism of VM that can, by combining the above, be written as

A∗A = −
∑
i

(Aei)2
∗.

This auxiliary operator will be employed in order to compute the spectrum of q(R) on the
symmetric 2-tensors of the normal homogeneous space E7/PSO(8), utilizing the formulae
in §6.4.

6.3.3 Casimir operators

The leitmotif of analysis and geometry on normal homogeneous spaces is to reduce calcu-
lations as far as possible to the computation of eigenvalues of Casimir operators. Fix some
invariant inner product Q on a compact Lie algebra g. Given a representation (V, ρ∗) of
g, its Casimir operator is the endomorphism defined by

Casg,QV := −
∑
i

ρ∗(ei)2 ∈ End(V ).
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This operator is g-equivariant. By Schur’s Lemma it hence acts as multiplication with a
constant when applied to an finite-dimensional irreducible complex representation of g.
This constant can be computed by means of Freudenthal’s formula. Choose a maximal
torus t ⊂ g and let 〈·, ·〉 be the inner product on the dual t∗ that is induced by Q

∣∣∣
t×t

.
We label the (equivalence classes of) finite-dimensional irreducible representations Vγ of
g by their highest weights γ ∈ t∗. If the complex representation Vγ has a real structure,
we will sometimes abuse notation and denote the real form by Vγ as well. The Casimir
eigenvalue on Vγ is then given by

Casg,Qγ := 〈γ, γ + 2δg〉, (6.3)

where δg is the half-sum of positive roots of g. We omit the superscript Q if the inner
product is clear from context. When working on a normal homogeneous space M = G/H

with metric induced by Q, we will encounter Casimir operators of both Lie algebras g and
h. Unless otherwise stated, the inner product on g will be Q and the inner product on h

will be the restriction Q
∣∣∣
h×h

.
Suppose g is a compact Lie algebra, i.e. Bg is negative definite, and h ⊂ g is a sub-

algebra. Fix the standard inner product −Bg on both g and h and consider the adjoint
representation g as a representation of h. An easy calculation then shows that

trg Cash,−Bg
g = dim h. (6.4)

In particular the Casimir operator of g on its adjoint representation satisfies the normal-
ization condition

Casg,−Bg
g = 1.

On a normal homogeneous space M = G/H the standard curvature endomorphism
q(R̄) of the reductive connection ∇̄ acts as

q(R̄) = CashV (6.5)

on any tensor bundle VM . In particular the Ricci endomorphism Ric of the reductive
connection coincides with Cashm. It is well-known that if g is the standard metric, (M, g)
is Einstein if and only if Cashm has only one eigenvalue. In this case the Einstein constant
E can easily be computed by means of the relation

Cashm = 2E − 1
2 , (6.6)

cf. [Bes87, Prop. 7.89, 7.92].
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6.4 Curvature formulae

In order to compute the endomorphism q(R) on a normal homogeneous space, we would
like to relate it to the curvature endomorphism q(R̄) of the reductive connection, which
coincides with the Casimir operator Cash on the fiber. As mentioned in §6.3.2, the re-
ductive connection is an instance of a metric connection ∇̄ with parallel skew torsion
T̄ . Such a connection can always be recovered from its torsion by means of the formula
∇̄ = ∇+ 1

2 T̄ . Moreover there is a well-known relation (cf. [CMS21])

(R− R̄)(X, Y ) = 1
4([T̄X , T̄Y ]− 2T̄T̄XY ) (6.7)

between its curvature tensor R̄ and the Riemannian curvature R, where T̄X := T̄ (X, ·).
Note that with AXY = [X, Y ]m the torsion of the reductive connection is given by

T̄ = −A. Despite only the case of the reductive connection being necessary for our
purposes, we state the following lemma in its full generality.

6.4.1 Lemma. Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇ and
another metric connection ∇̄ = ∇+ 1

2 T̄ with parallel skew torsion. On symmetric tensors
of any rank,

q(R)− q(R̄) = −1
4
∑
i

(T̄ei)2
∗.

Proof. Let (ei) be an orthonormal basis of TxM and denote aijk := g(T̄ (ei, ej), ek). Note
that aijk is antisymmetric in the indices i, j, k. It follows from the definition of the
curvature endomorphism and equation (6.7) that

q(R)− q(R̄) = 1
4
∑
j<k

(ej ∧ ek)∗([T̄ej , T̄ek ]− 2T̄T̄ej ek)∗.

Looking at the individual terms,

[T̄ej , T̄ek ] =
∑
i

l<m

(akliajim − ajliakim)el ∧ em,

T̄T̄ej ek =
∑
i

l<m

ajkiailmel ∧ em.

It follows that

∑
i

(T̄ei)2
∗ =

∑
i

j<k
l<m

aijkailm(ej ∧ ek)∗(el ∧ em)∗ =
∑
j<k

(ej ∧ ek)∗(T̄T̄ej ek)∗.

Let S(X, Y ) := [T̄X , T̄Y ]− T̄T̄XY . It remains to show that q(S) = 0 on symmetric tensors.
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Indeed,

q(S)ek =
∑
i<j

(ei ∧ ej)∗([T̄ei , T̄ej ]ek − T̄T̄eiejek)

=
∑
i,j

g([T̄ei , T̄ej ]ek − T̄T̄eiejek, ei)ej

=
∑
i,j,l

(ailiajkl − ajliaikl − aijlalki)ej = 0

using the antisymmetry of aijk, so q(S) vanishes on TxM . Let now p ∈ N and denote by
� the associative symmetric product. For X1, . . . , Xp ∈ TxM ,

q(S)(X1 � . . .�Xp) =
∑
i<j

(ei ∧ ej)∗S(ei ∧ ej)∗(X1 � . . .�Xp)

=
∑
i<j
k

X1 � . . .� (ei ∧ ej)∗S(ei ∧ ej)Xk � . . .�Xp

+
∑
i<j
k 6=l

X1 � . . .� (ei ∧ ej)∗Xk � . . .� S(ei ∧ ej)∗Xl � . . .�Xp.

Summing over i, j in the first sum reduces it to having a factor of the form q(S)X in each
summand, which was just shown to vanish. The second sum, on the other hand, can be
grouped to contain factors of the type

∑
i<j

((ei ∧ ej)∗X � S(ei, ej)Y + S(ei, ej)X � (ei ∧ ej)∗Y )

=
∑
i,j

(g(ei, X)ej � S(ei, ej)Y + g(ei, Y )S(ei, ej)X � ej)

=
∑
j

ej � (S(X, ej)Y + S(Y, ej)X),

which vanishes as well since

〈S(ei, ej)ek + S(ek, ej)ei, el〉 =
∑
m

(ajkmaiml − aikmajml − aijmamkl

+ ajimakml − akimajml − akjmamil) = 0.

Combining the above, we obtain q(S) = 0 on Symp TxM . The same calculation works for
Symp T ∗xM up to sign changes in the action of so(TxM), which however cancel out in the
end. In total, this proves the assertion.

6.4.2 Corollary. If (M, g) is normal homogeneous with reductive connection ∇̄, then

q(R)− q(R̄) = 1
4A
∗A.
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From now on we stay in the normal homogeneous setting as introduced in §6.3.2, where
∇̄ is the reductive connection and AXY = [X, Y ]m. The H-equivariant endomorphism
A∗A can itself be written in terms of Casimir operators, yielding an approach to the
computation of its spectrum. For p ∈ N, consider the p-fold tensor power m⊗p embedded
into g⊗p, and let

prm⊗p : g⊗p −→ m⊗p

be the orthogonal projection onto m⊗p with respect to the inner product naturally induced
by Q on the tensor power.

6.4.3 Lemma. On tensors of rank p,

A∗A = prm⊗p Casgg⊗p
∣∣∣
m⊗p
− Cashm⊗p −DerCashm

.

Proof. Let X ∈ m. Since [m, h] ⊂ m, the operator ad(X) ∈ so(g) can be written as a
block matrix

ad(X) =
 0 r′X

rX AX


with respect to the decomposition g = h⊕m, where

rX = ad(X)
∣∣∣
h

and r′X = −(rX)∗ = prh ad(X)
∣∣∣
m
.

Consider now the p-fold tensor power

g⊗p = (h⊕m)⊗p =
p⊕
r=0

vr (6.8)

where vr ∼=
(
p
r

)
h⊗p−r⊗m⊗r. In particular vp = m⊗p. Note that the induced endomorphism

ad(X)∗ ∈ so(g⊗p) is a derivation, changing only one factor in the tensor product at once.
Hence

ad(X)∗ : vr → vr−1 ⊕ vr ⊕ vr+1

(we set v−1 = vp+1 = 0). In other words, it takes the block form

ad(X)∗ =



0 ∗ 0 . . . 0
∗ ∗ . . . . . . ...
0 . . . . . . . . . 0
... . . . . . . ∗ ∗
0 . . . 0 ∗ (AX)∗


with respect to decomposition (6.8). The nonzero entries of the last row and column are
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given by

ap−1,p = prvp−1 ad(X)∗
∣∣∣
m⊗p

= (r′X)∗,

ap,p−1 = prm⊗p ad(X)∗
∣∣∣
vp−1

= rX ⊗ Idm⊗(p−1) ,

ap,p = prm⊗p ad(X)∗
∣∣∣
m⊗p

= (AX)∗.

Combining these, the lowest rightmost entry of ad(X)2
∗ is

prm⊗p ad(X)2
∗

∣∣∣
m⊗p

= (rX ⊗ Idm⊗(p−1)) ◦ (r′X)∗ + (AX)2
∗.

For X1, . . . , Xp ∈ m⊗p we have

(rX ⊗ Idm⊗(p−1)) ◦ (r′X)∗(X1 ⊗ . . .⊗Xp)
= (rX ⊗ Idm⊗(p−1))([X,X1]h ⊗X2 ⊗ . . .⊗Xp + . . .+X1 ⊗ . . .⊗Xp−1 ⊗ [X,Xp]h)
= [X, [X,X1]h]⊗X2 ⊗ . . .⊗Xp + . . .+X1 ⊗ . . .⊗Xp−1 ⊗ [X, [X,Xp]h]
= Der[X,[X,·]h](X1 ⊗ . . .⊗Xp).

Together with (6.2) and (6.5) this implies

∑
i

(rei ⊗ Idm⊗(p−1)) ◦ (r′ei)∗ =
∑
i

Der[ei,[ei,·]h] = −DerRic = −DerCashm
,

where (ei) is an orthonormal basis of m. Note that (ei) extends any orthormal basis of h
to an orthonormal basis of g. Thus by definition

Casgg⊗p = −
∑
i

ad(ei)2
∗ − Cashg⊗p .

By virtue of m⊗p ⊂ g⊗p being an H-invariant subspace,

Cashg⊗p
∣∣∣
m⊗p

= Cashm⊗p .

Putting everything together, we obtain

A∗A = −
∑
i

(Aei)2
∗ = −

∑
i

(prm⊗p ad(ei)2
∗

∣∣∣
m⊗p
− (rei ⊗ Idm⊗(p−1)) ◦ (r′ei)∗)

= prm⊗p Casgg⊗p
∣∣∣
m⊗p
− Cashm⊗p −DerCashm

.
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6.5 The normal homogeneous space E7/PSO(8)

We begin with a construction of the exceptional Lie algebra e7 that has the advantage
of introducing the chain of subalgebras so(8) ⊂ su(8) ⊂ e7 along the way, which will be
important later on. If Sym2

0 R8 denotes the space of trace-free symmetric 8 × 8-matrices
over R, then

su(8) −→ so(8)⊕ Sym2
0 R8 : X 7→ (ReX, ImX)

is a vector space isomorphism. According to the classification of symmetric spaces, there
exists a symmetric pair su(8) ⊂ e7 whose complex isotropy representation is equal to
Λ4C8. In other words, there exists an SU(8)-invariant real structure on Λ4C8, i.e. a real
SU(8)-module W such that Λ4C8 = WC, and e7 = su(8)⊕W .
Upon restriction to so(8) ⊂ su(8), the isotropy representation W ∼= Λ4

+R8 ⊕ Λ4
−R8

decomposes into the self-dual and anti-self-dual forms, which in turn are equivalent to
the trace-free second symmetric powers Sym2

0 Σ± of the two half-spin representations Σ±

(both isomorphic, but not equivalent to the defining representation R8).
Summarizing this argument, we can construct the exceptional Lie algebra e7 as a Lie

algebra with underlying vector space

e7 := so(8)⊕m := so(8)⊕ (m0 ⊕m1 ⊕m2), ma := Sym2
0 R8

a, a = 0, 1, 2,

where R8
0,R8

1,R8
2 denote the three inequivalent representations of so(8) on R8. Due to

triality in dimension eight, it is actually immaterial which of the three representations
R8

0, R8
1 and R8

2 we identify with the defining representation. Indeed there exists an outer
automorphism Θ ∈ Aut(so(8)) of order 3, which cyclically permutes the R8

a and extends
to an automorphism of e7 by cyclically permuting the summands ma, a = 0, 1, 2.
Throughout this and the next chapter we will encounter several different representations

of so(8), su(8) and e7 and decompose some of their tensor products. As in §6.3.3 we will
label irreducible finite-dimensional complex representations Vγ of some Lie algebra by
their highest weights γ. It is therefore appropriate to introduce a basis of fundamental
weights for each of the three relevant Lie algebras. Here we follow the convention of
Bourbaki [Bou81, Planches I, IV, VI], using the same sets of fundamental weights in the
same order. The fundamental weights are denoted as follows:

ω1, . . . , ω7 for e7 (type E7) with adjoint representation Vω1 = e7,

ζ1, . . . , ζ7 for su(8) (type A7) with standard representation Vζ1 = C8,

η1, . . . , η4 for so(8) (type D4) with standard representation Vη1 = R8.
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Under this convention we can write the so(8)-modules ma as

m0 = Sym2
0 R8 = V2η1 , m1 = Sym2

0 Σ+ = V2η3 , m2 = Sym2
0 Σ− = V2η4 . (6.9)

It will become important that precomposing a so(8)-representation with the triality auto-
morphism Θ cyclically permutes the weights η1, η3, η4. The tensor product decompositions
in §6.6 are computed with the help of the software package LiE[LiE] which uses the same
enumerative convention.
In passing we remark that similar to the construction of the exceptional Lie algebras

g2 and f4, the real division algebra of octonions plays a crucial role in the construction of
the Lie algebra e7. It provides both the automorphism Θ and the remaining parts of the
Lie brackets that are not covered by the action of so(8).1 For our purposes it suffices to
note that the Lie bracket satisfies the commutator relations

[ma,mb] ⊂ mc for distinct a, b, c = 0, 1, 2, [ma,ma] ⊂ so(8). (6.10)

These properties of the Lie bracket, which is constituted by so(8)-equivariant homomor-
phisms ma ⊗mb → e7, can be deduced directly using the decompositions of ma ⊗mb into
irreducible so(8)-modules combined with Schur’s Lemma (note that the ma are self-dual
as they are modules of an orthogonal group). For example

m0 ⊗m1 ∼= V2η1+2η3 ⊕ Vη1+η3+η4 ⊕m2

implies that all so(8)-equivariant homomorphisms m0⊗m1 → e7 must map into m2, since
the two other summands in the above decomposition do not occur as so(8)-submodules
of e7.
We endow e7 with the standard inner product −Be7 , where Be7 is the Killing form of

e7, and fix the inner products on so(8), su(8) ⊂ e7 as the respective restrictions of −Be7 .
Given an irreducible representation of any of the three Lie algebras, its Casimir eigenvalue
is calculated using Freudenthal’s formula (6.3). The calculation may be implemented with
LiE. The scale factors coming from the choice of inner product on the Lie algebra have to
be treated with particular caution. However we can always normalize the result using the

1Choosing an isometry O ∼= R8 or, equivalently, an orthonormal basis (e1, . . . , e8) ⊂ O with respect to
〈X,Y 〉 := Re(X̄Y ), we may in fact define a bilinear convolution product • on the vector space R8×8

by setting

A •B :=
8∑

i,j=1
AijLiBL

>
j ,

where Li ∈ R8×8 are the matrices representing the endomorphisms x 7→ eix. In terms of this convolu-
tion product, the triality automorphism on so(8) reads Θ(X) := 1

4 Id8×8 •X, while [X,Y ] := 1
2X • Y

defines the partial Lie bracket Sym2
0 R8

0 × Sym2
0 R8

1 → Sym2
0 R8

2.

119



Casimir eigenvalues of the adjoint representation, since the ratio cg(Vγ) := Casgγ /Casgg is
independent of the chosen multiple of the Killing form.
The proper Casimir eigenvalues of the adjoint representations are accessible to us by

means of identity (6.4). Writing the trace in terms of eigenvalues, we have

dim h = trg Cashg =
∑
i

dim gi · Cashgi ,

where g = ⊕
i gi is a decomposition into irreducible h-modules. Note that in the cases

we are interested in, h is simple, so Cashh can be treated as a constant. This constant can
now be expressed as

Cashh = dim h∑
i dim gi · ch(gi)

.

The ratios ch(gi) on the right hand side can now be computed with whatever inner product
on h is convenient. We ultimately arrive at the normalizations

Case7
e7 = 1, Cassu(8)

su(8) = 4
9 , Casso(8)

so(8) = 1
6 .

Furthermore we find that the modules ma have the same Casimir eigenvalue Casso(8)
ma = 2

9 ,
a = 0, 1, 2, which is expected as the Casimir operator is invariant under automorphisms
of the Lie algebra.
Let E7 := Aut0(e7) ⊂ SO(e7) be the compact adjoint form of e7. The unique simply

connected compact Lie group Ẽ7 with Lie algebra e7, which is the 2-fold universal cover
of E7, can be constructed as the preimage Ẽ7 ⊂ Spin(e7) under the spin covering. Inside
both E7 and Ẽ7 one finds the projective special orthogonal group

PSO(8) := SO(8)/{± Id}

as the unique connected subgroup with Lie algebra so(8). In consequence there are actu-
ally two connected homogeneous spaces

M := E7/PSO(8) = Ẽ7/PSO(8)× Z2
, M̃ := Ẽ7/PSO(8)

representing the pair so(8) ⊂ e7 of Lie algebras, the latter the universal cover of the
former. Note that SO(8) is not contained in either E7 or Ẽ7.
Let g denote the standard metric induced by −Be7 on both M and M̃ . The Casimir

operator Casso(8)
m of the isotropy representation is a multiple of the identity, namely 2

9 ,
so g is an Einstein metric with Einstein constant E = 13

36 by virtue of (6.6). Since there
is a decomposition of the isotropy representation m = m0 ⊕ m1 ⊕ m2 into three pair-
wise orthogonal PSO(8)-modules satisfying the commutator relations (6.10), the normal
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homogeneous space (M, g) is a so-called generalized Wallach space (see [LNF04]).
Finally we note that the normal homogenous space E7/PSO(8) fibres over the symmet-

ric space E7/(SU(8)/Z4) in a Riemannian submersion of totally geodesic fibres. Notably,
the fiber (SU(8)/ SO(8))/Z2 is itself locally symmetric. It is easy to check that the condi-
tions of [Bes87, Thm. 9.73] for the existence of a second Einstein metric in the canonical
variation of metrics are satisfied. This is again an invariant Einstein metric belonging to
the 3-dimensional family of invariant metrics on E7/PSO(8). In fact there are three dis-
tinct such submersions with vertical tangent spaces m0, m1 and m2, respectively, yielding
three invariant Einstein metrics on E7/PSO(8) besides the normal one. The G-instability
of those was shown in [LW22b], but also follows from results of [WW21].

6.6 The spectrum of the standard curvature
endomorphism

In this section we will calculate the eigenvalues and eigenspaces of the auxiliary curvature
term A∗A and thus, via Corollary 6.4.2, the standard curvature endomorphism q(R) on
the fiber Sym2 m∗ of the vector bundle Sym2 T ∗M over the base point of the homogeneous
space M = E7/PSO(8) or its universal cover. The minimal eigenvalue of q(R) will then
give a lower bound for the Lichnerowicz Laplacian ∆L, concluding the proof of Theorem
6.2.1. All subsequent calculations use the standard Riemannian metric g with Einstein
constant E = 13

16 as defined in §6.5. For any other normal metric 1
c
g onM , the eigenvalues

have to be multiplied by c > 0.
In order to compute the spectrum of the PSO(8)-equivariant endomorphism A∗A we

exploit the inclusions so(8) ⊂ su(8) ⊂ e7. In fact there are several distinct intermediate
subalgebras of type su(8), exhibiting a certain symmetry under triality.

6.6.1 Definition. For a = 0, 1, 2, let su(8)a := so(8) ⊕ ma. By (6.10), these are Lie
subalgebras of e7 which are isomorphic to one another via the triality automorphism Θ.
Denote by m⊥a the orthogonal complement of ma ⊂ m. We define a representation of
su(8)a on m = ma ⊕m⊥a as follows:

(i) On ma the Lie algebra su(8)a acts trivially.

(ii) On m⊥a the Lie algebra su(8)a acts through the Lie bracket of e7.2

(iii) Further, when so(8) ⊂ su(8)a acts on m through restriction of the action defined
above, we indicate this by the subscript so(8)a.

2This is well-defined by (6.10) since both so(8) and ma preserve m⊥a = mb ⊕ mc (a, b, c distinct) under
the Lie bracket of e7.
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6.6.2 Lemma. On any tensor bundle over E7/PSO(8),

A∗A = (A∗A)0 + (A∗A)1 + (A∗A)2 where (A∗A)a = Cassu(8)a −Casso(8)a .

Moreover the endomorphism (A∗A)0 determines the other parts by

(A∗A)a+1 = Θ−1
∗ ◦ (A∗A)a ◦Θ∗, a ∈ Z3.

Proof. Recall that A∗A is defined as a sum over an orthonormal basis of the isotropy
representation m, which has the invariant orthogonal decomposition m = m0 ⊕ m1 ⊕ m2.
In turn we can write A∗A as a sum

A∗A = (A∗A)0 + (A∗A)1 + (A∗A)2

of PSO(8)-equivariant self-adjoint endomorphisms (A∗A)a defined by summing over an
orthonormal basis (e(a)

i ) of ma, i.e.

(A∗A)a := −
∑
i

(
A
e

(a)
i

)2

∗
.

The extended triality automorphism Θ ∈ Aut(e7) maps the subspace m ⊂ e7 isometrically
to itself and permutes m0, m1 and m2. In consequence Θ preserves A, that is,

Θ(AXY ) = Θ([X, Y ]m) = [ΘX,ΘY ]m = AΘX(ΘY ),

and maps any orthonormal basis of ma to an orthonormal basis of ma−1. It is then easy
to see that

(A∗A)a+1 = Θ−1 ◦ (A∗A)a ◦Θ, a ∈ Z3,

holds on m. Provided we replace Θ with its induced action Θ∗ on tensors, these relations
continue to hold on tensor powers of m,
Let now X ∈ ma and Y ∈ mk for some a, b = 0, 1, 2. By the commutator relations

(6.10),

AXY = [X, Y ]m =

0 a = b,

[X, Y ] a 6= b.

This means X acts on m through the su(8)a-action defined in 6.6.1. Completing (e(a)
i ) to

an orthonormal basis of su(8)a, we immediately obtain

Cassu(8)a = (A∗A)a + Casso(8)a .
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6.6.3 Isotypical decomposition of Sym2 m. Since A∗A is a symmetric PSO(8)-equi-
variant endomorphism of Sym2 m∗, all its eigenspaces are necessarily PSO(8)-invariant
subspaces. Hence we will begin by decomposing the fiber Sym2 m∗ into isotypical sub-
spaces. We note that m∗ ∼= m is self-dual via the invariant inner product, thus also
Sym2 m ∼= Sym2 m∗. The second symmetric power of m = m0 ⊕m1 ⊕m2 initially decom-
poses as

Sym2 m = Sym2 m0 ⊕ Sym2 m1 ⊕ Sym2 m2 ⊕ (m0 ⊗m1)⊕ (m0 ⊗m2)⊕ (m1 ⊗m2).

Recall the description (6.9) of the PSO(8)-modules ma in terms of highest weights. With
help of LiE, the above decomposition can be refined as follows:

Sym2 m0 = Sym2 V2η1 = R⊕ V4η1 ⊕ V2η1 ⊕ V2η2 ,

Sym2 m1 = Sym2 V2η3 = R⊕ V4η3 ⊕ V2η3 ⊕ V2η2 ,

Sym2 m2 = Sym2 V2η4 = R⊕ V4η4 ⊕ V2η4 ⊕ V2η2 ,

m0 ⊗m1 = V2η1 ⊗ V2η3 = V2η1+2η3 ⊕ Vη1+η3+η4 ⊕ V2η4 ,

m0 ⊗m2 = V2η1 ⊗ V2η4 = V2η1+2η4 ⊕ Vη1+η3+η4 ⊕ V2η3 ,

m1 ⊗m2 = V2η3 ⊗ V2η4 = V2η3+2η4 ⊕ Vη1+η3+η4 ⊕ V2η1 .

(6.11)

Note that the last three lines imply the relations [ma,mb] ⊂ mc in (6.10) for the e7 Lie
bracket, as hinted at in §6.5. Note also the symmetry under triality, i.e. under permutation
of the weights η1, η3 and η4.
These highest weight modules can be further interpreted as

V4η1 = m0 �m0 = Sym4
0 R8

0, V2η2 = Λ2R8
0 � Λ2R8

0,

Vη1+η3+η4 = R8
0 � Λ3R8

0, V2η1+2η3 = m0 �m1

and similarly for permutations of η1, η3, η4 (resp. R8
0,R8

1,R8
2). Here, � denotes the Cartan

product of irreducible representations,

Vγ � Vγ′ := Vγ+γ′ ⊂ Vγ ⊗ Vγ′ .

Moreover V2η2 can be identified with the space of algebraic Weyl tensors over any of the
8-dimensional representations of so(8).

6.6.4 Actions of e7 and su(8). In order to compute the spectrum of A∗A on Sym2 m

by means of Lemmas 6.4.3 and 6.6.2, one needs to evaluate Casimir operators of e7, su(8)a
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and so(8)a. It is therefore essential to identify how these Lie algebras act on each isotypical
summand of Sym2 m, or, to be more precise, how each summand embeds into a module of
each e7, su(8)a and so(8)a. We thus turn to decompositions of suitable modules that are
invariant under e7 or su(8), respectively. All subsequent decompositions and branchings
to subalgebras are computed with help of LiE.
First, consider the embedding Sym2 m ⊂ Sym2 e7. The right hand side decomposes into

irreducible e7-modules as
Sym2 e7 = R⊕ Vω6 ⊕ V2ω1 .

Branching to so(8) gives

Vω6
∼= V2η1 ⊕ V2η3 ⊕ V2η4 ⊕ 3Vη1+η3+η4 ⊕ V2η2 ⊕ 3Vη2 ,

V2ω1
∼= 3R⊕ 3V2η1 ⊕ 3V2η3 ⊕ 3V2η4 ⊕ V4η1 ⊕ V4η3 ⊕ V4η4 ⊕ 3Vη1+η3+η4 ⊕ 3V2η2

⊕ V2η1+2η3 ⊕ V2η1+2η4 ⊕ V2η3+2η4 ⊕ Vη2+2η1 ⊕ Vη2+2η3 ⊕ Vη2+2η4 .

(6.12)

By comparison with (6.11), we find that the summands ma � mb necessarily embed into
V2ω1 for a, b = 0, 1, 2. Moreover, by considering the tracefree part Sym2

0 e7 ∼= Vω6 ⊕ V2ω1 ,
we see that the 2-dimensional trivial submodule (Sym2

0 m)so(8) ∼= 2R of Sym2
0 m also lies

inside V2ω1 . Thus on these summands the Case7
e7⊗e7-term from Lemma 6.4.3 is simply

multiplication by the constant Case7
2ω1 .

Second, recall that as an su(8)a-representation

m = ma ⊕m⊥a , a = 0, 1, 2,

where ma is trivial and m⊥a
∼= W with WC ∼= Λ4C8 = Vζ4 . Thus

Sym2 m = Sym2 ma︸ ︷︷ ︸
trivial

⊕(ma ⊗m⊥a︸ ︷︷ ︸
∼=35Vζ4

)⊕ Sym2 m⊥a ,

Sym2 m⊥a = R⊕ V2ζ4 ⊕ Vζ2+ζ6 .

Since so(8)0 is embedded into su(8)0 in the standard way, the branchings of the su(8)0-
representations V2ζ4 , Vζ2+ζ6 to so(8)0 can easily be computed:

V2ζ4
∼= V4η3 ⊕ V4η4 ⊕ V2η3+2η4 ⊕ V2η2 ⊕ V2η1 ⊕ R,

Vζ2+ζ6
∼= V2η3 ⊕ V2η4 ⊕ V2η2 ⊕ Vη1+η3+η4 .

(6.13)

The branchings of su(8)1,2-representations to so(8)1,2 work similarly, but with η1, η3, η4

permuted by triality. Comparing with the isotypical decomposition of Sym2 m, we can
again identify the actions of su(8)a as well as so(8)a on some summands of (6.11). The
results are collected in Table 6.1. Whenever a summand of Sym2 m embeds into a unique
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isotypical module Vγ of e7 or su(8)a, the corresponding Casimir operator acts as multipli-
cation by the constant Casγ. In each of those cases this constant is computed using LiE
and listed in Table 6.2.

6.6.5 Eigenvalues of A∗A on remaining components. On any isotypical summand
of Sym2 m where the preceding has shown that the Casimir operators of either e7 or su(8)a
are multiples of the identity, we find the eigenvalue of A∗A by one of the formulas from
Lemmas 6.4.3 and 6.6.2 (see Table 6.3). This works for most summands of Sym2 m, except
for

(i) the three copies of the representation V2η2 of Weyl tensors on R8,

(ii) the trace part in Sym2 m, i.e. the trivial summand spanned by Be7

∣∣∣
m
.

Issue (ii) is swiftly remedied by noting that

AXg(Y, Z) = −g(AXY, Z)− g(Y,AXZ) = 0

since the (2, 1)-tensor A is totally skew-symmetric, and thus A∗Ag = 0. However (i)
requires a more careful analysis.
Denote by Wa the copy of V2η2 occurring inside Sym2 ma, cf. (6.11), and

W := W0 ⊕W1 ⊕W2 ⊂ Sym2 m, W ∼= 3V2η2 .

Consider the operator (A∗A)0 on W. By the construction of (A∗A)0 and commutator
relations (6.10), (A∗A)0 must annihilateW0 ⊂ Sym2 m0 and preserveW1⊕W2. Combined
with the symmetries under triality, it follows that (A∗A)0 takes the block form

(A∗A)0

∣∣∣
W

=


0 0 0
0 s t

0 t s

 , s, t ∈ R, (6.14)

with respect to the above decomposition of W. This matrix has eigenvalues 0 and s± t.
Since (A∗A)0 determines (A∗A)1 and (A∗A)2 by triality, these have a similar block form.
Summing up, we find that the matrix of A∗A reads

A∗A
∣∣∣
W

= (A∗A)0

∣∣∣
W

+ (A∗A)1

∣∣∣
W

+ (A∗A)2

∣∣∣
W

=


2s t t

t 2s t

t t 2s

 .

We look for clues to determine s and t. First, recall that su(8)0 acts on Sym2 m⊥0 through
the Lie bracket, thus W1 ⊕W2 ∼= 2V2η2 as an so(8)0-submodule of Sym2 m⊥0 . But the
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module V2η2 occurs with multiplicity 1 in each of V2ζ4 , Vζ2+ζ6 ⊂ Sym2 m⊥0 , cf. (6.13). It
follows from Lemma 6.6.2 that (A∗A)0

∣∣∣
W1⊕W2

has eigenvalues

(A∗A)0

∣∣∣
(W1⊕W2)∩V2ζ4

= Cassu(8)
2ζ4 −Casso(8)

2η2 = 4
9 ·

5
2 −

1
6 ·

7
3 = 13

18 ,

(A∗A)0

∣∣∣
(W1⊕W2)∩Vζ2+ζ6

= Cassu(8)
ζ2+ζ6 −Casso(8)

2η2 = 4
9 ·

7
4 −

1
6 ·

7
3 = 7

18 .

In light of (6.14) this implies that s = 10
18 and t = ± 3

18 . In turn A∗A is of block form

A∗A
∣∣∣
W

= 1
18


20 ±3 ±3
±3 20 ±3
±3 ±3 20

 ,

which has eigenvalues 13
9 ,

17
18 ,

17
18 or 23

18 ,
23
18 ,

7
9 .

Second, looking at the decompositions (6.12), we find that V2η2 has multiplicity 4 in
Sym2 e7. Denote the V2η2-isotypical component of Sym2 e7, viewed as an so(8)-module, by
W′ ∼= 4V2η2 . Then W′ ∩ V2ω1

∼= 3V2η2 . Since

W ∩ V2ω1 = W ∩ (W′ ∩ V2ω1) ⊂W′

and the intersection of any two 3-dimensional subspaces in R4 is at least 2-dimensional,
it follows with Schur’s Lemma that W∩V2ω1

∼= cV2η2 with c ≥ 2. On this subspace, Case7

is just multiplication by the constant Case7
2ω1 = 19

9 . Thus the eigenvalue of A∗A is readily
computed as

A∗A
∣∣∣
W∩V2ω1

= Case7
2ω1 −Casso(8)

2η2 −2 Casso(8)
m = 19

9 −
1
6 ·

7
3 − 2 · 2

9 = 23
18 .

Combined with the considerations above, we conclude that t = − 3
18 and the spectrum of

A∗A
∣∣∣
W

is given by

7
9 on diag(V2η2) ⊂W,

23
18 on diag(V2η2)⊥ ∼= 2V2η2 ⊂W.

6.6.6 Proof of Theorem 6.2.1. Now that the spectrum of A∗A is assembled, we turn
to the operator q(R) on Sym2 m. Recall from (6.5) that q(R̄) = Casso(8)

Sym2 m
, which is a

constant on each isotypical component of Sym2 m. By virtue of Corollary 6.4.2, we now
obtain q(R) from

q(R) = 1
4A
∗A+ Casso(8)

Sym2 m
.
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The respective eigenvalues are listed in Table 6.3. Notice that q(R) ≥ 5
12 on Sym2

0 m

(excluding the trace part spanned by Be7

∣∣∣
m
), and recall that E = 13

36 . Together with
inequality (6.1) this implies that

∆L ≥ 2q(R) ≥ 5
6 = 30

13E > 2E

holds true on S 2
tt(M). Thus the strict stability of the standard metric on E7/PSO(8) is

shown.

6.6.7 Remark. This bound on ∆L is sharp and realized by E7-invariant tensors arising
from the canonical variation in the three Riemannian submersions(

SU(8)/SO(8)
)
/Z2
−→ E7/PSO(8) −→ E7/SU(8)/Z4

with totally geodesic fibres, or, equivalently, from scaling the standard metric on one of
the summands in the decomposition m = m0 ⊕ m1 ⊕ m2. Indeed, by results of [HMS16],
these are Killing tensors and thus satisfy ∆Lh = 2q(R)h. The Lichnerowicz eigenvalue
of these invariant tensors had originally been found by J. Lauret and C. Will [LW22b,
Table 2], who also showed that these tensors constitute (up to tracelessness) destabilizing
directions for any of the three non-normal Einstein metrics on E7/PSO(8).
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su(8)0 so(8)0 su(8)1 so(8)1 su(8)2 so(8)2 e7

m0 �m0 trivial trivial V2ζ4 V4η1 V2ζ4 V4η1 V2ω1

m1 �m1 V2ζ4 V4η3 trivial trivial V2ζ4 V4η3 V2ω1

m2 �m2 V2ζ4 V4η4 V2ζ4 V4η4 trivial trivial V2ω1

V2η2 ⊂ Sym2 m0 trivial trivial V2ζ4 ⊕ Vζ2+ζ6 V2η2 V2ζ4 ⊕ Vζ2+ζ6 V2η2 V2ω1 ⊕ Vω6

V2η2 ⊂ Sym2 m1 V2ζ4 ⊕ Vζ2+ζ6 V2η2 trivial trivial V2ζ4 ⊕ Vζ2+ζ6 V2η2 V2ω1 ⊕ Vω6

V2η2 ⊂ Sym2 m2 V2ζ4 ⊕ Vζ2+ζ6 V2η2 V2ζ4 ⊕ Vζ2+ζ6 V2η2 trivial trivial V2ω1 ⊕ Vω6

m0 �m1 Vζ4 V2η3 Vζ4 V2η1 V2ζ4 V2η1+2η3 V2ω1

m0 �m2 Vζ4 V2η4 V2ζ4 V2η1+2η4 Vζ4 V2η1 V2ω1

m1 �m2 V2ζ4 V2η3+2η4 Vζ4 V2η4 Vζ4 V2η3 V2ω1

m0 ⊂ Sym2 m0 trivial trivial Vζ2+ζ6 V2η1 Vζ2+ζ6 V2η1 V2ω1 ⊕ Vω6

m1 ⊂ Sym2 m1 Vζ2+ζ6 V2η3 trivial trivial Vζ2+ζ6 V2η3 V2ω1 ⊕ Vω6

m2 ⊂ Sym2 m2 Vζ2+ζ6 V2η4 Vζ2+ζ6 V2η4 trivial trivial V2ω1 ⊕ Vω6

m0 ⊂ m1 ⊗m2 V2ζ4 V2η1 Vζ4 V2η4 Vζ4 V2η3 V2ω1 ⊕ Vω6

m1 ⊂ m0 ⊗m2 Vζ4 V2η4 V2ζ4 V2η3 Vζ4 V2η1 V2ω1 ⊕ Vω6

m2 ⊂ m0 ⊗m1 Vζ4 V2η3 Vζ4 V2η1 V2ζ4 V2η4 V2ω1 ⊕ Vω6

Vη1+η3+η4 ⊂ Sym2 m0 Vζ2+ζ6 Vη1+η3+η4 Vζ4 V2η4 Vζ4 V2η3 V2ω1 ⊕ Vω6

Vη1+η3+η4 ⊂ Sym2 m1 Vζ4 V2η4 Vζ2+ζ6 Vη1+η3+η4 Vζ4 V2η1 V2ω1 ⊕ Vω6

Vη1+η3+η4 ⊂ Sym2 m2 Vζ4 V2η3 Vζ4 V2η1 Vζ2+ζ6 Vη1+η3+η4 V2ω1 ⊕ Vω6

(Sym2
0 m)so(8) R⊕ V2ζ4 trivial R⊕ V2ζ4 trivial R⊕ V2ζ4 trivial V2ω1

RBe7

∣∣∣
m

R⊕ V2ζ4 trivial R⊕ V2ζ4 trivial R⊕ V2ζ4 trivial R⊕ V2ω1

Table 6.1: All so(8)-irreducible summands of Sym2 m and the highest weight modules they embed into.
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Cassu(8)a Casso(8)a Cassu(8)b Casso(8)b Case7 Casso(8)

ma �ma 0 0 10
9

5
9

19
9

5
9

V2η2 ⊂ Sym2 ma 0 0 – 7
18 – 7

18
ma �mc

1
2

2
9

10
9

1
2

19
9

1
2

ma ⊂ Sym2 ma 0 0 7
9

2
9 – 2

9
ma ⊂ mb ⊗mc

10
9

2
9

1
2

2
9 – 2

9
Vη1+η3+η4 ⊂ Sym2 ma

7
9

1
3

1
2

2
9 – 1

3
(Sym2

0 m)so(8) – 0 – 0 19
9 0

RBe7

∣∣∣
m

– 0 – 0 – 0

Table 6.2: Casimir eigenvalues on the summands in Table 6.1. Here a, b, c are distinct. A
dash indicates that the summand might not be contained in a single eigenspace
of the Casimir operator.

(A∗A)a (A∗A)b A∗A q(R̄) q(R)
ma �ma 0 5

9
10
9

5
9

5
6

diag(V2η2) ⊂W – – 7
9

7
18

7
12

diag(V2η2)⊥ ⊂W – – 23
18

7
18

17
24

ma �mc
5
18

11
18

7
6

1
2

19
24

ma ⊂ Sym2 ma 0 5
9

10
9

2
9

1
2

ma ⊂ mb ⊗mc
8
9

5
18

13
9

2
9

7
12

Vη1+η3+η4 ⊂ Sym2 ma
4
9

5
18 1 1

3
7
12

(Sym2
0 m)so(8) – – 5

3 0 5
12

RBe7

∣∣∣
m

– – 0 0 0

Table 6.3: The eigenvalues of A∗A, q(R̄) and q(R) on the summands of Sym2 m. Here
a, b, c are distinct.
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7 The Lichnerowicz Laplacian on
normal homogeneous spaces

7.1 Abstract

We give a new formula for the Lichnerowicz Laplacian on normal homogeneous spaces in
terms of Casimir operators. We derive some practical estimates and apply them to the
known list of non-symmetric, compact, simply connected homogeneous spaces G/H with
G simple whose standard metric is Einstein. This yields many new examples of Einstein
metrics which are stable in the Einstein–Hilbert sense, which have long been lacking in
the positive scalar curvature setting.

7.2 Introduction

In 1961 André Lichnerowicz introduced a second order differential operator, known today
as the Lichnerowicz Laplacian ∆L, acting on tensor fields on any Riemannian manifold
(M, g) [Lic61]. It is a generalization of the Hodge–deRham Laplacian on differential forms
for which there is a Weitzenböck formula

d∗d+ dd∗ = ∇∗∇+ q(R),

where q(R) is a fibrewise operator depending linearly on the Riemannian curvature R.
The right hand side makes sense not only for alternating tensors fields (i.e. differential
forms) but for tensor fields of any type and is thus taken as a definition for ∆L.
Most notably, the Lichnerowicz Laplacian occurs in the stability analysis of Einstein

manifolds [Bes87]. An Einstein metric g onM is a Riemannian metric whose Ricci tensor
satisfies Ric = Eg for some constant E ∈ R, called the Einstein constant of (M, g).
Let M be a compact and oriented Riemannian manifold. The Einstein–Hilbert func-

tional, defined as
S(g) =

∫
M

scalg volg,

assigns to each Riemannian metric g on M its total scalar curvature. It is well-known
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that Einstein metrics on M can be characterized as the critical points of S restricted to
the ILH manifold1 of unit volume metrics.
These critical points turn out to always be saddle points. It gets more interesting once

we restrict to the manifold S of unit volume metrics with constant scalar curvature –
then an Einstein metric can also be a local maximum, in which case it is called stable.
Fix some Einstein metric g on M and consider the linearized problem. Tangent to S

lies the space of tt-tensors (short for traceless and transverse), denoted S 2
tt(M). The

transversality is merely a gauge condition in light of the diffeomorphism invariance of S.
For h ∈ S 2

tt(M), the second variation of S takes the form

S ′′g (h, h) = −1
2 (∆Lh− 2Eh, h)L2 .

This demonstrates a direct relation between the linear stability of g and the spectrum of
∆L on S 2

tt(M). It follows from the spectral properties of ∆L that S ′′g has finite coindex
and nullity, i.e. the maximal subspace of S 2

tt(M) on which S ′′g ≥ 0 is finite-dimensional.
Null directions for S ′′g are the infinitesimal Einstein deformations of g, that is, those
tt-perturbations of g which preserve the Einstein condition to first order.
For the purpose of this article we drop the prefix “linearly” and call an Einstein metric

stable if ∆L > 2E on S 2
tt(M), semistable if ∆L ≥ 2E on S 2

tt(M), and unstable if ∆L has
an eigenvalue µ < 2E on S 2

tt(M).
In 1980 Koiso published a seminal article which treats the case of Riemannian symmetric

spaces [Koi80]. Irreducible symmetric spaces are isotropy-irreducible, thus they carry
only one invariant Riemannian metric up to homothety which, in addition, is Einstein.
If (M, g) is a locally symmetric space of noncompact type with no local two-dimensional
factors, it is stable thanks to a curvature criterion [Koi80, Cor. 2.9]. The case where
(M, g) is of compact type required a more extensive analysis which is facilitated by the
key fact that ∆L coincides with a Casimir operator, a representation-theoretic entity
whose spectrum is straightforward to compute thanks to the theorem of Peter–Weyl, the
Frobenius reciprocity theorem, and a formula of Freudenthal. This enabled Koiso to carry
out the stability analysis of irreducible symmetric spaces of compact type, leaving open
some gaps that were filled recently [Sch22b; SW22].
Although the symmetric case is a particularly pleasant one, utilizing a Casimir operator

is already possible once we are dealing with an Ad-invariant inner product on some Lie
algebra. Thus an appropriate class of spaces to extend this approach to is that of normal
homogeneous spaces, that is, homogeneous manifolds M = G/H carrying an invariant
Riemannian metric which is induced by an Ad(G)-invariant inner product on the Lie
algebra g of G. All normal homogeneous Einstein manifolds with G simple are known:

1That is, an (infinite-dimensional) manifold modeled on an inverse limit of Hilbert spaces.
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they consist of

1. irreducible symmetric spaces of compact type, classified by Cartan in 1927.

2. (non-symmetric) strongly isotropy irreducible spaces in the sense that the identity
component of the isotropy group H acts irreducibly on the tangent space of M ,
classified by Wolf [Wol68] in 1968. Here G is necessarily simple. These spaces were
indepently classified by Manturov [Man61a; Man61b; Man66] in 1961 and are also
contained in a more extensive list of Krämer [Krä75] from 1975.

3. (non-symmetric) normal homogeneous Einstein manifolds with G simple which are
not strongly isotropy irreducible, classified by Wang and Ziller [WZ85] in 1985.

The purpose of the present article is to find a suitable description for the Lichnerowicz
Laplacian in terms of Casimir operators and initiate the stability analysis of the second
and third case. We remark that if we choose G connected such that G/H is simply
connected, then H is automatically also connected. We shall thus tacitly assume these
properties and speak simply of isotropy irreducible spaces.
The third of the above classes has been investigated by E. Lauret, J. Lauret and C. Will

in [Lau22; LW22b; LL23] with regard to a weaker notion of stability, the so-called G-
stability. An invariant Einstein metric on a homogeneous space G/H is called G-stable
(or G-semistable, G-unstable) if the respective spectral properties of the Lichnerowicz
Laplacian hold on the subspace of G-invariant tt-tensors. In particular a G-unstable
metric is also unstable in the classical sense. Restricted to the G-invariant setting, the
Lichnerowicz Laplacian reduces to a term of order zero (1

2A
∗A in our notation) for which,

in the naturally reductive case, a formula in terms of structural constants was developed
[Lau22, Thm. 5.3].
For a long time there were no known non-symmetric examples of stable Einstein met-

rics of positive scalar curvature (p.s.c.). This contrasts the fact that negative sectional
curvature is sufficient for stability [Bes87, Cor. 12.73], or that all Einstein metrics coming
from parallel spinors (which are Ricci-flat) are semistable [DWW05]. On the other hand
all known examples of unstable Einstein metrics so far have p.s.c. In [SSW22] the sta-
bility of the p.s.c. standard Einstein metric on the generalized Wallach space E7/PSO(8)
is proved, after its G-stability was already shown in [LW22b], yielding the first known
example a stable p.s.c. Einstein metric. The result follows from the discussion of the
zeroth order curvature term q(R) and already utilizes Casimir operators in a crucial way.
Our aim is to treat the full second order operator ∆L instead. We lay out the necessary

preliminaries in Sec. 7.3 and develop an exact formula for ∆L in terms of Casimir operators
in §7.4, from which two useful estimates follow. After a short digression on how to compute
the relevant Casimir eigenvalues in §7.5, we give in §7.7 an explicit algorithm employing
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the new estimates in order to find lower bounds on ∆L on individual Fourier modes (see
§7.3.4 for a clarification of this term) and single out potential sources of instability. This
algorithm is then applied, case-by-case, to the lists of Wolf and Wang–Ziller of compact,
simply connected standard homogeneous Einstein manifolds, all of which have nonnegative
sectional curvature.
In order to carry out the necessary calculations, computer assistance has been indis-

pensable. We implemented our algorithm in the software system SageMath [Sage] and
heavily relied on its interface to the computer algebra package LiE [LiE]. Both systems
are open source. The Sage code used to implement to the algorithm in §7.7 and with
which the data in §7.8 was generated is available on GitHub2.
By the nature of our approach we were only able to reap the rewards of Alg. 7.7.1

on a finite number of spaces. It also remains unclear in many cases whether the found
potentially destabilizing Fourier modes actually contain destabilizing tt-tensors. Although
our results are only partial, they produce a lot of stable examples, such as

• some members of the isotropy irreducible families I, II, III, VII and IX (see Tables 7.1
and 7.5),

• some members of the isotropy reducible families XV, XVI and XVIIa (see Tables 7.2
and 7.8), the latter being the full flag manifolds SO(2n)/T n,

• and many of the exceptional spaces in Tables 7.3, 7.4 and 7.6.

The results are listed and discussed in detail in §7.8. Overall we are led to the conclusion
that stable p.s.c. Einstein metrics are not as scarce as previously believed.

7.3 Preliminaries

7.3.1 The Lichnerowicz Laplacian

We begin with a compact, oriented Riemannian manifold (M, g). A tensor bundle over
M is a SO(TM)-invariant subbundle of some tensor power of TM , or more abstractly,
any vector bundle VM associated to the frame bundle of (M, g) via some representa-
tion of SO(n). On any such bundle, the standard curvature endomorphism q(R) of the
Riemannian curvature R is defined by

q(R) =
∑
i<j

(ei ∧ ej)∗R(ei, ej)∗ ∈ gl(VM),

2https://github.com/PSchwahn/LLBounds
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where (ei) is a local orthonormal frame of TM and A∗ denotes the natural action of some
A ∈ gl(T ) on tensors as a derivation. For the sake of notational clarity we will also write
DerA instead whenever appropriate.
Note that on TM itself q(R) coincides with the Ricci endomorphism, i.e.

g(q(R)X, Y ) = Ric(X, Y ).

Let ∇ denote the Levi-Civita connection of g, as well as the connection induced on
the tensor bundle VM . The Lichnerowicz Laplacian is the self-adjoint elliptic operator
defined by

∆L = ∇∗∇+ q(R)

on sections of VM . It is an instance of the standard Laplace operator on geometric
vector bundles [SW18]. As for any Laplace-type operator, ∆L has discrete spectrum
accumulating only at positive infinity. The Lichnerowicz Laplacian generalizes the Hodge-
deRham Laplacian in the sense that ∆L = d∗d+ dd∗ on Ωp(M).
A tensor bundle of particular importance is Symp T ∗M , the bundle of covariant sym-

metric p-tensors. Its space of smooth sections will be denoted by S p(M). Let δ denote
the (metric) divergence operator defined by

δ : S p+1(M)→ S p(M) : δh = −
∑
i

eiy∇eih.

Symmetric 2-tensors h that are divergence-free (δh = 0, also transverse) and trace-free
(trg h = 0) are called tt-tensors. As explained in the introduction, the space S 2

tt(M) of
tt-tensors is the central stage for the stability analysis of an Einstein metric. There is the
estimate

∆L ≥ 2q(R) on S 2
tt(M), (7.1)

cf. [HMS16, Prop. 6.2]. A sufficient criterion for stability is thus the condition q(R) > E

on trace-free symmetric 2-tensors, which will serve as an important shortcut in some cases.
It provides the striking advantage of only having to analyze a fibrewise term instead of a
second order differential operator.

7.3.2 Normal homogeneous spaces

Let M = G/H be a reductive homogeneous space and let g = h ⊕ m be its reductive
(i.e. Ad(H)-invariant) decomposition, where g and h denote the Lie algebras of G and
H, respectively. As usual, m is identified with the tangent space of M at the base point
and called the isotropy representation of H. There is then a one-to-one correspondence
between H-invariant inner products on m and G-invariant Riemannian metrics on M .

135



Such an invariant metric is called normal if it is induced by the restriction Q
∣∣∣
m
, where

Q is some Ad(G)-invariant inner product on g. If G is compact and semisimple, there is
the canonical choice Q = −Bg, where Bg is the (negative-definite) Killing form of g. This
particular metric is called the standard metric on M . If G is simple, then clearly every
normal metric is homothetic to the standard metric.
Let A be the G-invariant (2, 1)-tensor field on M defined by AXY = adm(X)Y =

prm[X, Y ] for X, Y ∈ m. If (M, g) is normal homogeneous, then it is also naturally
reductive – equivalently, A is totally skew-symmetric. The tensor field A can be thought
of as measuring the failure of (M, g) to be locally symmetric since the vanishing of A is
equivalent to the third Cartan relation [m,m] ⊂ h.
Let further ∇̄ denote the canonical reductive (or Ambrose–Singer) connection on M .

This G-invariant connection has the distinctive property that it leaves every G-invariant
tensor field parallel. In particular ∇̄ is a metric connection. It is, however, not torsion-free;
notably, its torsion tensor is given by −A.
For any X ∈ m, consider the endomorphism AX = adm(X) ∈ so(m) and extend it

to tensors of valence p as a derivation DerAX = (AX)∗ = ad⊗pm (X). Given some tensor
bundle VM , this defines a ∇̄-parallel bundle map

A : VM → T ∗M ⊗ VM : v 7→
∑
i

ei ⊗ (Aei)∗v

with metric adjoint

A∗ : T ∗M ⊗ VM → VM : α⊗ v 7→ −
∑
i

α(ei)(Aei)∗v,

where (ei) again denotes a local orthonormal frame of TM . The Levi-Civita connection
∇ of a normal metric g can then be expressed in terms of ∇̄ and A as

∇ = ∇̄+ 1
2A. (7.2)

7.3.3 Casimir operators

Consider a real Lie algebra g equipped with an invariant inner product Q. Given a
representation ρ∗ : g→ EndV , the Casimir operator is a g-equivariant endomorphism of
V defined by

Casg,QV := −
∑
i

ρ∗(ei)2.

On an irreducible module, the Casimir operator acts as multiplication with a constant as
a consequence of Schur’s Lemma, henceforth called the Casimir constant. For compact
semisimple g, the Casimir constant of an irreducible g-module V with highest weight λ ∈
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t∗, where t ⊂ g is a suitably chosen maximal abelian subalgebra, is given by Freudenthal’s
formula:

Casg,Qλ = Q∗(λ, λ+ 2δg), (7.3)

where δg is the half-sum of positive roots and Q∗ is the inner product on t∗ dual to Q
∣∣∣
t
.

On the other hand, if g is abelian, the Casimir constant on the weight space defined by
the weight λ ∈ g∗ is simply given by the squared length of the weight, i.e.

Casg,Qλ = Q∗(λ, λ). (7.4)

Two issues arise in practice when the Casimir constants are to be computed: first,
how to find and represent the highest weights; second, how to find the appropriate inner
product on the weight lattice, especially when g is not simple. Section 7.5 is devoted to
handling these problems.
For our purposes, it suffices to express the weights of a semisimple Lie algebra of rank

r in the basis of fundamental weights (ωi)ri=1, such that each dominant integral weight λ
can be written as

λ =
r∑
i=1

aiωi, ai ∈ Z≥0

(also called coroot style notation). We use Bourbaki’s convention for the ordering of
fundamental weights of a simple Lie algebra, as do LiE and Sage.
Throughout what follows we will omit the superscript Q in Casg,QV if the inner product

is clear from context. If Casimir operators of both g and a subalgebra h are present, the
implied inner product on h shall be the restriction Q

∣∣∣
h
unless otherwise stated. If g is

compact and Q = −Bg is the standard inner product, the Casimir operator on the adjoint
representation is the identity, that is

Casg,−Bg
g = 1, (7.5)

which may serve as a normalization condition to find the “right” inner product on the
weight lattice.
We remark that the Einstein condition for a standard homogeneous space is itself

encoded in a Casimir operator – namely, the standard metric on a compact homogeneous
space G/H is Einstein if and only if the Casimir operator of the isotropy representation
Cashm has only one eigenvalue. If this is the case, the eigenvalue is 2E − 1

2 where E is the
Einstein constant [Bes87, Prop. 7.89, 7.92].
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7.3.4 Harmonic analysis on homogeneous spaces

Let M = G/H be a homogeneous space and ρ : H → AutV a finite-dimensional repre-
sentation. We denote with VM = G×ρ V the associated vector bundle over M with fiber
V . Its sections are identified with H-equivariant V -valued functions on G, i.e.

Γ(VM)
∼=−→ C∞(G, V )H : s 7→ ŝ, where s(xH) = [x, ŝ(x)] ∈ G×ρ V.

This space is an infinite-dimensional G-module via the left-regular representation

` : G→ AutC∞(G, V )H : (`(x)f)(y) = f(x−1y), x, y ∈ G.

Every tensor bundle on M can be understood as associated to a suitable tensor power of
the isotropy represention m of M , for example Symp T ∗M ∼= G×ρ Sympm∗.
The canonical reductive connection ∇̄, acting as covariant derivative on sections of a

tensor bundle Γ(VM), translates simply into the directional derivative on C∞(G, V )H ,
i.e.

̂̄∇Xs = X(ŝ) = −`∗(X)ŝ, X ∈ m.

Suppose G is compact and denote with Ĝ the set of equivalence classes of finite-
dimensional irreducible complex G-modules. Each such module Vγ is (up to equivalence)
uniquely determined by its highest weight γ. The set Ĝ is thus parametrized by the
dominant integral weights of G, after the necessary choices have been made.
If V is a unitary H-module, then an irreducible decomposition of the left-regular repre-

sentation on sections of VM is given by a consequence of the classical Peter–Weyl theorem
and Frobenius reciprocity, also known as the Peter–Weyl theorem for homogeneous vector
bundles [Wal73, Thm. 5.3.6]. It states that

L2(G, V )H ∼=
⊕
γ∈Ĝ

Vγ ⊗ HomH(Vγ, V ). (7.6)

For each Fourier mode γ ∈ Ĝ we call HomH(Vγ, V ) = (V ∗γ ⊗ V )H the space of matrix
coefficients. Given v ∈ Vγ and F ∈ HomH(Vγ, V ), the equivariant (smooth) function
corresponding to v ⊗ F is given by x 7→ F (x−1v).
Any G-invariant differential operator D : Γ(VM) → Γ(WM) between such vector

bundles can be analyzed in the Fourier image where it consists of a sequence (D
∣∣∣
γ
)γ∈Ĝ of

linear operators
D
∣∣∣
γ

: HomH(Vγ, V ) −→ HomH(Vγ,W ).

One important invariant differential operator is the standard Laplacian of the connection
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∇̄, defined by
∆̄ = ∇̄∗∇̄+ q(R̄).

A key observation is that on normal homogeneous spaces this operator coincides with the
Casimir operator of the left-regular representation [MS10, Lem. 5.2], that is

∆̄ = Casg` (7.7)

(so that ∆̄
∣∣∣
γ
is just multiplication by the constant Casgγ). We remark that if the underlying

space is symmetric, i.e. A = 0, then ∇̄ coincides with the Levi-Civita connection ∇ and
thus ∆̄ with the Lichnerowicz Laplacian ∆L, a fact that has been of vital importance for
the foundational work of Koiso [Koi80] on the stability of symmetric spaces. Our aim is
to give a similarly satisfying formula for ∆L also in the case A 6= 0.

7.4 Formulas and estimates for the Lichnerowicz
Laplacian

Let M = G/H be a homogeneous space, where G is a compact Lie group, equipped
with a normal Riemannian metric g. Let g and h denote the Lie algebras of G and H,
respectively. We begin with a description of the Lichnerowicz Laplacian on symmetric
tensor fields in terms of the reductive connection ∇̄ and the tensor field A.

7.4.1 Lemma. On S p(M), ∆L = ∆̄ +A∗∇̄+ 1
2A
∗A.

Proof. By definition, ∆L = ∇∗∇+ q(R) and ∆̄ = ∇̄∗∇̄+ q(R̄). We first compare the two
rough Laplacians. Noting that ∇̄∗A = A∗∇̄ since A is ∇̄-parallel, it follows from (7.2)
that

∇∗∇ = ∇̄∗∇̄+A∗∇̄+ 1
4A
∗A.

Combining this with [SSW22, Cor. 3.2], which states that q(R) = q(R̄) + 1
4A
∗A on

symmetric tensors of any valence, we obtain the desired relation.

We recognize the standard Laplace operator ∆̄ of the reductive connection, which is
nothing but the Casimir operator on the left-regular representation by (7.7). Our goal is
to obtain an expression of ∆L purely in terms of Casimir operators so that the calculation
of its spectrum reduces to a representation-theoretic problem as in the symmetric case.
Fortunately, this turns out to be possible. First, we need to recall an earlier result about
the zeroth order term in the formula of Lemma 7.4.1.

7.4.2 Lemma ([SSW22], Lem. 3.3). On m⊗p,

A∗A = prm⊗p Casgg⊗p −Cashm⊗p −DerCashm
.

139



Recall that Cashm simply acts as multiplication with the constant c = 2E − 1
2 if (M, g)

is Einstein with Einstein constant E. Extending this as a derivation to the p-fold tensor
power results in multiplication with pc. This simplifies the formula in Lemma 7.4.2.

7.4.3 Corollary. If (M, g) is Einstein, then on m⊗p,

A∗A = prm⊗p Casgg⊗p −Cashm⊗p −2pE + p

2 .

We turn now to a description of the first order differential operator A∗∇̄. By means of
the inclusion m⊗p ⊂ g⊗p and forgetting the H-invariance we can consider C∞(G,m⊗p)H

as a subspace of the G-module C∞(G, g⊗p) ∼= C∞(G) ⊗ g⊗p. On the level of matrix
coefficients this corresponds to the inclusion (V ∗γ ⊗ m⊗p)H ⊂ V ∗γ ⊗ g⊗p. Suggestively
denoting the representation of G on C∞(G, g⊗p) by `⊗Ad⊗p, it becomes possible to write
the first order term A∗∇̄ in terms of Casimir operators.

7.4.4 Lemma. On C∞(G,m⊗p)H ,

A∗∇̄ = 1
2 Casg` +1

2 prm⊗p(Casgg⊗p −Casg
`⊗Ad⊗p)− Cashm⊗p .

Proof. Let F ∈ C∞(G,m⊗p)H . The H-invariance means precisely that (`⊗ Ad⊗p)
∣∣∣
H

acts
trivially on F . In particular Cash

`⊗Ad⊗p F = 0 and thus, if (ei) denotes an orthonormal
basis of m,

Casg
`⊗Ad⊗p F = −

∑
i

(`⊗ Ad⊗p)∗(ei)2F

= −
∑
i

(
`∗(ei)2F + 2 ad⊗p(ei)`∗(ei)F + ad⊗p(ei)2F

)
.

Let us analyze the occurring terms separately. First,

−
∑
i

`∗(ei)2F = Casg` F − Cash` F

and Cash` F = Cashm⊗p F by the H-invariance of F . Second, recall that for any X ∈ m,
∇̄X on sections of TM⊗p translates into −`∗(X) on C∞(G,m⊗p)H and thus

A∗∇̄F =
∑
i

ad⊗pm (ei)`∗(ei)F = prm⊗p
∑
i

ad⊗p(ei)`∗(ei)F.

Third,
−
∑
i

ad⊗p(ei)2F = Casgg⊗p F − Cashm⊗p F.
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After orthogonally projecting to m⊗p in the fiber, we thus obtain

prm⊗p Casg
`⊗Ad⊗p F = Casg` F − 2A∗∇̄F + prm⊗p Casgg⊗p −2 Cashm⊗p

and the assertion follows.

Combining (7.7), Lemma 7.4.1, Corollary 7.4.3 and Lemma 7.4.4, we obtain the follow-
ing final formula.

7.4.5 Corollary. If (M, g) is Einstein, then on C∞(G, Sympm)H ,

∆L = 3
2 Casg` + prSymp m

(
CasgSymp g−

1
2 Casg

`⊗Ad⊗p

)
− 3

2 CashSymp m−pE + p

4 .

This exact formula for ∆L is quite powerful provided the necessary representation-
theoretic data is available. However, given a fixed Fourier mode γ ∈ Ĝ, it is in general
difficult to explicitly describe the two operators prSymp m CasgSymp g and prSymp m Casg

`⊗Ad⊗p

on the space HomH(Vγ, Sympm) of matrix coefficients. As an example, the first of the two
is treated in [SSW22] on the generalized Wallach space E7/PSO(8), where it is possible
to exploit additional symmetries. Indeed, for the general setting of normal homogeneous
spaces this seems currently out of reach.
Nevertheless it is possible to obtain at least some estimates on ∆L

∣∣∣
γ
in terms of the

Fourier mode γ. We will do this in two ways. The first (crude) estimate relies only on
bounds for the fibrewise term A∗A, as well as the Casimir eigenvalue Casgγ which can be
quickly computed by means of Freudenthal’s formula. This has the striking advantage
that the fibrewise data needs only be computed once. The second (refined) estimate is a
direct consequence of the formula in Corollary 7.4.5. It is sharper, but the problematic
terms mentioned above need to be handled separately for each Fourier mode.
For the stability analysis of a given space (M, g), both estimates work together effec-

tively: the crude one rules out all but finitely many Fourier modes as candidates for
instabilities, so that it remains to apply the refined one to each of the remaining Fourier
modes. This synergy will be drawn on by the algorithm described in §7.7.
Let λmin[L] (resp. λmax[L]) denote the minimal (resp. maximal) eigenvalue of a self-

adjoint linear operator L on a finite-dimensional vector space.

7.4.6 Theorem (Crude Estimate). For any γ ∈ Ĝ,

∆L

∣∣∣
γ
≥ Casgγ +1

2λmin[A∗A]−
√
λmax[A∗A] · (Casgγ −λmin[CashSymp m])

on symmetric p-tensors.
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Proof. By (7.7) and Lemma 7.4.1 we can write

∆L

∣∣∣
γ

= Casgγ +A∗∇̄
∣∣∣
γ

+ 1
2A
∗A ≥ Casgγ +λmin[A∗∇̄

∣∣∣
γ
] + 1

2λmin[A∗A].

Let now F ∈ HomH(Vγ, Sympm). Then
∣∣∣(A∗∇̄F, F)

L2

∣∣∣ =
∣∣∣(∇̄F,AF)

L2

∣∣∣ ≤ ‖∇̄F‖L2 · ‖AF‖L2 ,

‖∇̄F‖2
L2 =

(
∇̄∗∇̄F, F

)
L2

=
(
(Casgγ −CashSymp m)F, F

)
L2

≤ (Casgγ −λmin[CashSymp m]) · ‖F‖2
L2 ,

‖AF‖2
L2 = (A∗AF, F )L2 ≤ λmax[A∗A] · ‖F‖2

L2 .

Thus, the operator norm of the self-adjoint operator A∗∇̄
∣∣∣
γ
is bounded above by

‖A∗∇̄
∣∣∣
γ
‖2 ≤ λmax[A∗A] · (Casgγ −λmin[CashSymp m])

and together with λmin[A∗∇̄
∣∣∣
γ
] ≥ −‖A∗∇̄

∣∣∣
γ
‖ the assertion follows.

7.4.7 Theorem (Refined Estimate). Suppose (M, g) is Einstein and γ ∈ Ĝ is fixed. Let
V = span{imF |F ∈ HomH(Vγ, Sympm)} ⊂ Sympm, letW ⊂ Symp g denote the smallest
G-invariant subspace containing V, and likewise U ⊂ Hom(Vγ, Symp g) the smallest G-
invariant subspace containing Hom(Vγ, Sympm)H . Then

∆L

∣∣∣
γ
≥ 3

2 Casgγ −
1
2λmax

[
CasgVγ⊗Symp g

∣∣∣
U

]
+ λmin

[
CasgSymp g

∣∣∣
W

]
− 3

2λmax

[
CashSymp m

∣∣∣
V

]
− pE + p

4 .

on symmetric p-tensors.

Proof. This is a direct consequence of Corollary 7.4.5 if we note that U , V and W are by
construction the smallest possible subspaces on which the eigenvalues of the respective
Casimir operators are of interest. Moreoever, since ∆L is self-adjoint, it suffices to estimate
the expression (∆LF, F )L2 for F ∈ HomH(Vγ, Sympm), whence the orthogonal projections
occurring in the formula of Corollary 7.4.5 can be dropped.

7.5 Computation of Casimir eigenvalues

In the previous section the Lichnerowicz Laplacian and related quantities were expressed
solely in terms of Casimir operators. For the actual computation of their eigenvalues, a
few remarks are in order.
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We briefly lay out our setting of interest: let g be a compact simple Lie algebra, equipped
with the standard inner product −Bg, and let h ⊂ g be some subalgebra. In general h
splits as a direct sum into

h = h1 ⊕ . . .⊕ hk ⊕ z,

where h1, . . . , hk are simple and z = z(h) is the central part of h. We denote with (ωi) a
basis of fundamental weights of g.
Any irreducible (complex) h-module V has the form

V = Vλ1 ⊗ . . .⊗ Vλk ⊗ Cλz ,

where Vλi are the highest weight modules to the weights λi of hi, and Cλz is the z-
module associated to the weight λz ∈ z∗. We collect all those into a “highest weight”
λ = (λ1, . . . , λk, λz). The Casimir constant on V is then simply the sum

Cashλ = Cash1
λ1 + . . .+ Cashkλk + Caszλz . (7.8)

The inner product on h (and thus on its components) shall be the restriction of −Bg.
We discuss the simple and abelian components separately.

7.5.1 The Casimir operator on simple subalgebras. Let λ = ∑
i aiωi be a weight

of a simple Lie algebra g and let a = (a1, . . . , ar)> be its coefficient vector. If Cg denotes
the Cartan matrix of g, then

〈λ, λ〉 = a>C−1
g a

defines an inner product which is proportional to the one induced by −Bg. To find the
proportionality constant, we utilize the normalization condition (7.5) for the adjoint repre-
sentation of g. The standard Casimir constants can thus be computed with Freudenthal’s
formula (7.3) using just the inner product 〈·, ·〉:

Casg,−Bg

λ = 〈λ, λ+ 2δg〉
〈λad, λad + 2δg〉

=
a>C−1

g (a + 2)
a>adC

−1
g (aad + 2) ,

where λad denotes the highest root of g. We recall also that δg = ω1 + . . . + ωr, so its
coefficient vector is 1 = (1, . . . , 1)>.
Let now h ⊂ g be a simple subalgebra. The Killing forms of g and h (and thus the

Casimir operators of h defined by them) differ by an integer factor [g : h], i.e.

Bg = [g : h]Bh, Cash,−Bg = [g : h]−1 Cash,−Bh ,

called the index of h in g. In order to compute the index, consider the adjoint represen-
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tation of g restricted to h. A simple calculation then shows that

tr Cash,−Bg
g = dim h.

Thus if m = m1 ⊕ . . .⊕ml is the irreducible decomposition of the isotropy representation
of g/h, we have

dim h = [g : h]−1 ·

dim h +
l∑

j=1
dimmj · Cash,−Bh

mj

 ,
from which the quantity [g : h] is easily computable.

7.5.2 The Casimir operator on abelian subalgebras. Let now h ⊂ g be abelian
and let tg ⊂ g be a maximal abelian subalgebra containing h. Customarily, the inclusion
ι : h ↪→ tg ⊂ g is characterized by a restriction matrix ; that is, a matrix R representing
the adjoint map ι∗ : t∗g → h∗, where t∗g carries the basis of fundamental weights of g, and
h∗ some arbitrary basis of its integral lattice.
Let us again denote with a the coefficient vector of a weight λ ∈ h∗ of h with respect

to the chosen basis of h∗. The inner product on h∗ defined by

〈λ, λ〉 = a>(RCgR
>)−1a

is then again proportional to the one coming from −Bg. Repeating the trace argument
above with the (complexified) isotropy representation m = Cλ1 ⊕ . . . ⊕ Cλl of g/h, the
Casimir constant of λ can now by (7.4) be computed as

Cash,−Bg

λ = ch · 〈λ, λ〉 = ch · a>(RCgR
>)−1a,

where the proportionality constant ch is obtained by

dim h = ch ·
l∑

j=1
a>j (RCgR

>)−1aj.

7.5.3 Computation of the Einstein constant. Returning to the general setting of
a compact simple Lie group G with a closed subgroup H such that the standard metric
on the homogeneous space G/H is Einstein, the computation of the Einstein constant E
(and the checking of the Einstein condition) is straightforward once the necessary data
is assembled. Given an irreducible decomposition m = m1 ⊕ . . . ⊕ ml of the isotropy
representation and a restriction matrix characterizing the embedding of H in G, one
computes the Casimir constants Cash,−Bg on each summand mj by means of (7.8) and the
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preceding two paragraphs. We recall that the standard metric on G/H is Einstein if and
only if Cash,−Bg

mj
, j = 1, . . . , l, all act by multiplication with the same constant c, in which

case the Einstein constant is calculated from c = 2E − 1
2 .

7.6 tt-tensors and Killing vector fields

In §7.4 we obtained general estimates for the Lichnerowicz Laplacian on S p(M) if (M, g)
is a normal homogeneous Einstein manifold. In order to analyze the stability of (M, g) we
thus specialize to p = 2. However, only the spectrum of ∆L on the subspace S 2

tt(M) is of
relevance for the stability discussion. Thus we ought to address the issue of distinguishing
the tt-tensors among S 2(M).
Curiously, tt-tensors are closely related to (conformal) Killing vector fields. For a

compact manifold (Mn, g), let

δ∗ : S p(M)→ S p+1(M) : δ∗h =
∑
i

ei �∇eih

denote the formal adjoint of the divergence operator, also called the Killing operator. In
the case p = 1, this reduces to

δ∗α = Lα]g, α ∈ Ω1(M),

so that ker δ∗
∣∣∣
Ω1

is precisely dual to the space of Killing vector fields. Taking the trace-free
part we obtain a differential operator

θ : Ω1(M)→ S 2
0 (M) : θα = δ∗α + 2

n
δα · g

whose kernel is dual to the space of conformal Killing vector fields. The relation hinted
at above is now made manifest in the short exact sequence

0 −→ ker θ ⊂−→ Ω1(M) θ−→ S 2
0 (M) P−→ S 2

tt(M) −→ 0 (7.9)

(cf. [Sch22b, Lem. 4.1, Rem. 4.6]), where P shall be the L2-orthogonal projection onto
S 2

tt(M). Owing to the fact that ∆L commutes with every arrow in (7.9), one may obtain
a similar sequence and thus a dimension formula pertaining to the eigenspaces of ∆L on
Ω1(M), S 2

0 (M) and S 2
tt(M). This has indeed been utilized in the stability analysis of

the irreducible symmetric spaces of compact type [Sch22b; SW22].
Returning to the compact, Riemannian homogeneous setting M = G/H, we observe
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that every arrow of (7.9) is G-equivariant. Thus, introducing the linear operators

θ
∣∣∣
γ

: HomH(Vγ,m) −→ HomH(Vγ, Sym2
0 m),

δ
∣∣∣
γ

: HomH(Vγ, Sym2
0 m) −→ HomH(Vγ,m),

(in the notation of §7.3.4) we obtain a short exact sequence

0 −→ ker θ
∣∣∣
γ
−→ HomH(Vγ,m) −→ HomH(Vγ, Sym2

0 m) −→ ker δ
∣∣∣
γ
−→ 0 (7.10)

for each Fourier mode γ ∈ Ĝ, from which the dimension formula

dim ker δ
∣∣∣
γ

= dim HomH(Vγ, Sym2
0 m)− dim HomH(Vγ,m) + dim ker θ

∣∣∣
γ

follows.
What to make of this? The dimensions of HomH(Vγ,m) and HomH(Vγ, Sym2

0 m) may
easily be computed using representation theory. We now recall the following well-known
fact: If (M, g) is an Einstein manifold not isometric to a round sphere, then every confor-
mal Killing vector field is Killing, i.e. ker θ = ker δ∗ [Sch22b, Lem. 4.2]. Recall also that
Killing vector fields are the infinitesimal generators of isometries. Provided G acts almost
effectively on M , a lower dimension bound on ker δ∗ is thus given by the inclusion

g ↪→ iso(M, g) = ker δ∗ : X 7→ X̃, X̃p = d

dt

∣∣∣
t=0

exp(tX).p

mapping each Lie algebra element to the fundamental vector field generated by it. More-
over it is not hard to show that these fundamental vector fields do under left-translation
in fact transform as the adjoint representation of g, that is, they are of Fourier type λad.
The corresponding matrix coefficient in HomH(g,m) is simply the projection prm.
In general, iso(M, g) might be larger than g, so Killing vector fields may not be confined

to the Fourier mode λad alone. Strikingly, in the isotropy irreducible case, a result due to
Wolf tells us that this does not happen in practice:

7.6.1 Proposition ([Wol68], Thm. 17.1). Let M = G/H be a non-Euclidean, simply
connected, isotropy irreducible space with G connected and effective, K compact, and with
a G-invariant Riemannian metric g.

• If G/H = G2/ SU(3), then (M, g) is the round S6, so Iso(M, g)0 = SO(7).

• If G/H = Spin(7)/G2, then (M, g) is the round S7, so Iso(M, g)0 = SO(8).

• In every other case, Iso(M, g)0 = G.
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Even more welcomely, Wang–Ziller extended this statement to the wider class of spaces
that we are interested in.

7.6.2 Proposition ([WZ85], Thm. 5.1). Let M = G/H be a compact, simply connected,
isotropy reducible homogeneous space with G compact, connected, simple and effective and
a normal Einstein metric g. Then Iso(M, g)0 = G.

Having established that Killing vector fields are exclusively of Fourier type λad if (M, g)
is not isometric to a round sphere, it follows that ker θ

∣∣∣
γ

= ker δ∗
∣∣∣
γ

= 0 if γ 6= λad,
i.e. θ

∣∣∣
γ

: HomH(Vγ,m) → HomH(Vγ, Sym2
0 m) is injective. We can thus formulate a

corollary.

7.6.3 Corollary. If M = G/H is a compact, simply connected homogeneous space with
G simple and acting almost effectively, equipped with a normal Einstein metric g such
that (M, g) is not isometric to a round sphere, then ker θ = ker δ∗ ∼= g as a G-module,
and ker θ

∣∣∣
γ

= 0 if γ 6= λad.

When combined with (7.10), we obtain a simple criterion for when a Fourier mode
contains no tt-tensors, which rules them out for the stability discussion.

7.6.4 Corollary. Under the same assumptions as in Corollary 7.6.3, a Fourier mode
γ ∈ Ĝ contains no tt-tensors (i.e. ker δ

∣∣∣
γ

= 0) if and only if

dim HomH(Vγ, Sym2
0 m)− dim HomH(Vγ,m) =

0, γ 6= λad,

−1, γ = λad.

7.7 Algorithm for obtaining lower bounds on the
Lichnerowicz Laplacian

We lay out an overview of the algorithm used in our computations, without any explicit
regard to implementation details. The necessary steps for the calculation of the Casimir
constants have been subsumed in §7.5. In any of the occurring direct sum decompositions,
multiplicities of irreducible summands can be disregarded since they are irrelevant for the
computation. The algorithm has been implemented using SageMath (version 9.2) and its
interface to the software package LiE.

7.7.1 Algorithm (Lower Bounds for ∆L). Let M = G/H be a homogeneous space with
G compact and simple such that the standard metric g is Einstein. Assume that (M, g)
is not isometric to a round sphere (required for Step 9b).

1. Branch the adjoint representation on g to h to find the isotropy representation m.
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2. Compute Cashm and Einstein constant E.

3. Decompose Sym2
0 m = ⊕

i∈I vi into h-isotypes and Sym2
0 g = ⊕

j∈J wj into g-isotypes.

4. For each j ∈ J :

a) Compute Casgwj .

b) Branch wj to h.

5. For each i ∈ I:

a) Compute Cashvi .

b) Find Ji = {j ∈ J | HomH(vi,wj) 6= 0}.

c) Find minimum/maximum of {Casgwj | j ∈ Ji}. These are lower/upper bounds
for CasgSym2 g

on the smallest G-invariant subspace of Sym2
0 g containing vi.

d) Combine to find bounds for A∗A and q(R) using [SSW22, Cor. 3.2] and Corol-
lary 7.4.3.

e) Check if q(R) > E, in which case the vi cannot contribute to instability.

6. Let P = ⊕{vi | q(R) 6> E by the above bounds}. If P = 0, then q(R) > E on
Sym2

0 m and hence (M, g) is stable by (7.1).

7. Combine the bounds for A∗A with the crude estimate from Theorem 7.4.6 and find
C > 0 such that ∆L

∣∣∣
γ
> 2E if Casgγ > C.

8. Find ĜC = {γ ∈ Ĝ | Casgγ ≤ C}.

9. For each γ ∈ ĜC :

a) Check whether HomH(Vγ,P) = 0. If so, then q(R)h > E for all h ∈ S 2
0 (M)

of Fourier type γ. Thus γ cannot contribute to instability by (7.1).

b) Check whether dim HomH(Vγ,m) = dim HomH(Vγ, Sym2
0 m) (+1 if γ = λad). If

so, then γ contains no tt-tensors by Corollary 7.6.4 and thus cannot contribute
to instability.

c) Find V = ⊕{vi | HomH(vi, Vγ) 6= 0} (the relevant part of Sym2
0 m) and compute

Cash there to find λmax[CashSym2 m

∣∣∣
V
].

d) Find W = ⊕{wj | HomH(wj,V) 6= 0} (the relevant part of Sym2
0 g) and com-

pute Casg there to find λmin[CasgSym2 g

∣∣∣
W

].

e) Compute the tensor product of g-modules Vγ ⊗W = ⊕
j∈Jγ uj.

f) For each j ∈ Jγ:
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i. Compute Casguj .

ii. Branch uj to h and check whether uHj = 0.

g) Find λmax[Casg
Vγ⊗Sym2 g

∣∣∣
U

] = max{Casguj | u
h
j 6= 0}.

h) Combine Casimir bounds with the refined estimate from Theorem 7.4.7 to find
a lower bound for ∆L

∣∣∣
γ
.

7.8 Results and discussion

7.8.1 Setup and remarks

We begin with listing our spaces of interest, namely

1. the compact, simply connected isotropy irreducible homogeneous spaces G/H which
are not symmetric, as classified by Wolf [Wol68], consisting of 10 infinite families
I–X (see Table 7.1) and 13 exceptions3 (see Tables 7.3 and 7.4),

2. the compact, simply connected homogeneous spaces G/H with G simple where the
standard metric is Einstein and which are isotropy reducible, as classified by Wang
and Ziller [WZ85], consisting of 9 infinite families XI–XIX (see Table 7.2) and 22
exceptions (see Table 7.6).

Throughout what follows the spaces in question will be labeled only by pairs of Lie
algebras (g, h). There is a unique simply connected homogeneous manifold M = G/H

corresponding to each pair (g, h), although G and H need of course not be unique. If g is
classical, the embedding h ↪→ g will usually be defined via a defining representation of h
which can be of unitary, symplectic or orthogonal type and thus yields an embedding into
g = su(n), sp(n) or so(n), respectively. In this case it suffices to specify the highest weight
of the defining representation, which we express in the usual basis of fundamental weights
(ηi). For semisimple h, this basis will be the union of bases (ηi), (η′i), etc. corresponding
to each simple factor.
For isotropy reducible spaces, the definition of the embedding h ↪→ g tends to be a bit

more involved. For the definitions of the families XI–XIX we refer the reader to [LL23]
where they are discussed in proper detail.
The family XIX deserves special mention. It is defined as SO(p)/H where K/H is a

(reducible) symmetric space as in [WZ85, Ex. 3]. Here p = p1 ⊕ . . . ⊕ pl denotes the
isotropy representation of K/H. This construction actually gives rise to most of the
standard homogeneous Einstein manifolds of the form SO(n)/H (except for Spin(8)/G2).
In particular it already completely covers the families XV–XVIII. In order to divide up

3We do not list the space so(20)/su(4) appearing in [Wol68] as it is a member of family X (n = 6).
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No. g h Condition Defining rep. E

I su(n(n−1)
2 ) su(n) n ≥ 5 η2

1
4 + 2

n(n−2)

II su(n(n+1)
2 ) su(n) n ≥ 3 2η1

1
4 + 2

n(n+2)

III su(pq) su(p)⊕ su(q) 2 ≤ p ≤ q,
p+ q 6= 4

η1 + η′1
1
4 + p2+q2

2p2q2

IV sp(n) sp(1)⊕ so(n) n ≥ 3 η1 + η′1
3
8 + n+16

8n(2n−1)

V so(n2 − 1) su(n) n ≥ 3 η1 + ηn−1
1
4 + 1

n2−3
VI so((n− 1)(2n+ 1)) sp(n) n ≥ 3 η2

1
4 + 1

(n−1)(n+1)(2n−3)

VII so(2n2 + n) sp(n) n ≥ 2 2η1
1
4 + 1

2n2+n−2
VIII so(4n) sp(1)⊕ sp(n) n ≥ 2 η1 + η′1

3
8 + n+4

8n(2n−1)

IX so(n(n−1)
2 ) so(n) n ≥ 7 η2

1
4 + 2

n2−n−4
X so( (n−1)(n+2)

2 ) so(n) n ≥ 5 2η1
1
4 + 2n

(n−2)(n+2)(n+3)

Table 7.1: The 10 families of isotropy irreducible spaces.

No. g h Condition E

XIa su(n) Rn−1 n ≥ 3 1
4 + 1

2n
XIb su(kn) ksu(n)⊕ (k − 1)R k ≥ 3, n ≥ 2 1

4 + 1
2n

XII su(l + pq) su(l)⊕ su(p)⊕ su(q)⊕ 2R 2 ≤ p ≤ q,
lpq = p2 + q2 + 1

1
4 + p2+q2

2(p2+1)(q2+1)

XIII sp(kn) ksp(n) k ≥ 3, n ≥ 1 1
4 + 2n+1

4(kn+1)

XIV sp(3n− 1) su(2n− 1)⊕ sp(n)⊕ R n ≥ 1 5
12

XV so(4n2) 2sp(n) n ≥ 2 1
4 + 2n+1

2n(2n2−1)

XVI so(n2) 2so(n) n ≥ 3 1
4 + n−1

n(n2−2)

XVIIa so(2n) Rn n ≥ 3 1
4 + 1

4(n−1)

XVIIb so(kn) kso(n) k, n ≥ 3 1
4 + n−1

2(kn−2)

XVIII so(3n+ 2) su(n+ 1)⊕ so(n)⊕ R n ≥ 3 5
12

XIX so(n) h1 ⊕ . . .⊕ hl see [LL23, §7] 1
4 + dim hi

(n−2) dim pi

Table 7.2: The 8 families of isotropy reducible spaces.
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the spaces in question more evenly we impose the same contraints as given in [LL23, §7]
and collect everything not listed among the families XV–XVIII or the exceptions into our
“band of outcasts” XIX.
Tables 7.1 and 7.2 also list the Einstein constants of the families I–XIX. They can

be derived a priori using the results of Wang and Ziller. For each isotropy irreducible
space G/H the Casimir constant of its isotropy representation is in their notation given
as c = E(χ)/αG, where αG and E(χ) are listed in the tables on [WZ85, pp. 583, 588].
The Einstein constant is then E = 1

4 + c
2 . Similarly the Einstein constants of the isotropy

reducible families are derived in [LL23].
Tables 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9 are to be read as follows. The column Potential

instabilities lists all Fourier modes γ ∈ Ĝ for which Alg. 7.7.1 does not yield the estimate
∆L

∣∣∣
γ
> 2E. If the weaker estimate ∆L

∣∣∣
γ
≥ 2E holds, the Fourier mode γ is printed in

blue. Each γ will be expressed in the basis (ωi) of fundamental weights of g.
The abbreviations in the column Notes will stand for the following:

• SQ: stable by Step 6 of Alg. 7.7.1. That is, q(R) > E is fulfilled, which is sufficient
for stability by (7.1).

• SF: stable by Step 9 of Alg. 7.7.1, i.e. after applying the new estimates (Theo-
rem 7.4.6 and 7.4.7).

• SF0: semistable by Step 9 of Alg. 7.7.1.

We remark that the spaces so(7)/g2 and g2/su(3) from Tables 7.3 and 7.4 are round
spheres and thus already known to be stable. Moreover the Berger space sp(2)/su(2)
can also be written as so(5)/so(3) (the highest weight of defining representation is then
4η1) and the Fourier mode ω2 (expressed as weight of sp(2)) is known to be destabilizing
[SWW22, §5]. The stability of the space e7/so(8) in Table 7.6 was shown recently [SSW22].

7.8.2 Discussion of results

We begin with discussing the isotropy irreducible case. Tables 7.3 and 7.4 show the
obtained results for the exceptional spaces. In some cases (mostly those with g of type E),
the curvature estimate q(R) > E is already sufficient to prove stability. This phenomenon
persists for the isotropy reducible spaces, cf. Table 7.6. We note that the spaces

so(8)
g2

,
so(26)

sp(1)⊕ sp(5)⊕ so(6) ,
f4

so(8) ,
e6

so(8)⊕ R2 ,
e7

3su(2)⊕ so(8)

were shown to be G-unstable in [LW22b; LL23] – this corresponds to the Fourier mode
listed as “0”. Remarkably, combining our analysis with the G-stability results of [LW22b;
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LL23], which rule out the “0” mode, leads to (semi-)stability for the spaces

e6

3su(2) ,
e7

7su(2) ,
e8

2su(5) ,
e8

2so(8) .

Notable is also the space e7
3su(2)⊕so(8) , shown to be G-unstable in [LL23] (with a G-coindex

of 2). According to our analysis, “0” is the only potential instability – so the coindex
coincides with the G-coindex here.
Considering the isotropy irreducible families (Table 7.5), we observe varying behavior

with respect to stability. Within the scope of our computational capacity, we could show
stability for the following spaces:

from I: su(n(n− 1)
2 )/su(n), 8 ≤ n ≤ 11,

from II: su(n(n+ 1)
2 )/su(n), 6 ≤ n ≤ 8,

from III: su(pq)/(su(p)⊕ su(q)), 13 ≤ pq ≤ 36,
from VII: so(2n2 + n)/sp(n), 3 ≤ n ≤ 6,

from IX: so(n(n− 1)
2 )/so(n), 7 ≤ n ≤ 13.

We turn next to the isotropy reducible families (Tables 7.7, 7.8 and 7.9). These were
extensively studied in [Lau22; LW22b; LL23], where the G-instability of XI–XIV, XVIIb,
XVIII and XIX was already proved. This leaves open the cases XVI (G-stable) and XVIIa
(G-semistable) as well as the family XV where the G-stability type is still unknown. We
managed to show stability for the following examples:

from XV: so(4n2)/(sp(n)⊕ sp(n)), 3 ≤ n ≤ 5,
from XVI: so(n2)/(so(n)⊕ so(n)), 4 ≤ n ≤ 10,

as well as semistability of so(2n)/Rn from XVIIa if n = 6, 7, which follows from the
G-semistability result of [LL23].
The effectiveness of Alg. 7.7.1, Step 9b in ruling out instabilities is underwhelming

in light of how useful the same method is on symmetric spaces [Sch22b; SW22], only
eliminating the Fourier modes ω2 on so(8)

su(3) (from the family V), ω2 on so(18)
so(4)⊕sp(3) (from the

family XIX, defined by the isotropy representation of the symmetric space S4 × SU(6)
Sp(3) ),

and ω2 on so(26)
sp(1)⊕sp(5)⊕so(6) (exceptional). It shows however that the absence of tt-tensors

in a given Fourier mode is quite a rare phenomenon.
In general we observe a trend towards stability in the infinite families as the rank

increases. Some cases (I, II, III, VII, IX, XV, XVI, XVIIa) seem to become and stay
stable at some point. For others (IV, V, VI, VIII, X) there seem to be some Fourier
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modes that always harbor potential instabilities.

7.8.3 Outlook

In order to decide the stability of the cases with remaining potential instabilities, it would
be sufficient to compute the Lichnerowicz Laplacian seperately on each of the potentially
destabilizing Fourier modes. In particular this requires the problems mentioned in §7.4
to be overcome. Moreover, in order to tackle the stability analysis on the countable
families in their entirety, a systematic approach to (at least) estimating the Lichnerowicz
Laplacian on each family would be needed.
Another matter entirely is the question of how our approach may be generalized even

further to non-normal metrics – say, metrics that are “almost normal” in the sense that
they can be written as

g = α1Q
∣∣∣
m1

+ α2Q
∣∣∣
m2
, m = m1 ⊕m2, α1, α2 > 0

for some Ad(G)-invariant inner product Q on g. This is the case for metrics in the
canonical variation of a homogeneous fibration H/K ↪→ G/K � G/H with normal fiber
and base. Special symmetries of the form

[m1,m1] ⊂ k, [m2,m2] ⊂ k⊕m1

that may simplify computations are available if we suppose that fiber and base are sym-
metric, but also for Kähler–Einstein metrics on generalized flag manifolds with b2(M) = 1
and two isotropy summands.
In the homogeneous fibration setting there is a natural first choice of tt-tensors to

investigate, namely those of the form h = β1Q
∣∣∣
m1

+ β2Q
∣∣∣
m2

with β1, β2 ∈ R chosen such
that trg h = 0. These are an instance of Killing tensors (that is, they are annihilated by
the Killing operator δ∗). Trace-free Killing tensors have the advantage that they realize
the equality in (7.1), that is

∆Lh = 2q(R)h, (7.11)

and the fibrewise term q(R) is in general easier to handle. Moreover, Killing tensors have
often been sources of instability – see [WW21] for tensors of the particular form above on
fiber bundles, and [SWW22] for an exploitation of (7.11) to show instability of the Berger
space SO(5)/ SO(3).
We aim to return to all of these issues in future work.
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g h Defining rep. E Potential instabilities Notes
su(16) so(10) η4

11
32 ω1 + ω15

su(27) e6 η1
11
36 ω1 + ω26 SF0

so(7) g2 η1
9

20 – SQ
so(133) e7 η3

135
524 – SF

sp(2) su(2) 3η1
9

20 ω2, 2ω2, 2ω1 + ω2, 4ω1

sp(7) sp(3) η3
29
80 ω2

sp(10) su(6) η3
15
44 ω2

sp(16) so(12) η5
43

136 ω2

sp(28) e7 η7
17
58 – SF

so(14) g2 η2
1
3 2ω1

so(16) so(9) η4
23
56 2ω1, ω4

so(26) f4 η4
1
3 ω1, 2ω1

so(42) sp(4) η4
19
70 – SF

so(52) f4 η1
27

100 – SF
so(70) su(8) η4

179
680 – SF

so(78) e6 η2
5

19 – SF
so(128) so(16) η7

173
672 – SF

so(248) e8 η8
125
492 – SF

Table 7.3: Results for the isotropy irreducible exceptions with g classical.

g h E Potential instabilities Notes
e6 su(3) 11

36 – SQ
e6 3su(3) 5

12 ω2, ω1 + ω6

e6 g2
25
72 – SQ

e6 su(3)⊕ g2
19
48 ω2, ω1 + ω6

e7 su(3) 71
252 – SQ

e7 su(6)⊕ su(3) 5
12 ω1, ω6

e7 g2 ⊕ sp(3) 7
18 – SF

e7 su(2)⊕ f4
47

108 ω6

e8 su(9) 5
12 – SQ

e8 e6 ⊕ su(3) 5
12 – SF

e8 g2 ⊕ f4
23
60 – SF

f4 2su(3) 5
12 ω4, ω1, ω3, 2ω4

f4 su(2)⊕ g2
29
72 ω4, 2ω4, ω1 + ω4

g2 su(2) 43
112 2ω1, ω1 + ω2, 2ω2

g2 su(3) 5
12 – SQ

Table 7.4: Results for the isotropy irreducible exceptions with g exceptional. The embed-
ding h ⊂ g is always characterized by h being a maximal subalgebra.
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Family Param. r = rk g Potential instabilities Notes

I
n = 5, 6, 7 9, 14, 20 ω1 + ωr

n = 8 . . . 11 27, 35, 44, 54 – SF

II
n = 3 5 ω1 +ω5, ω1 +ω2, ω2 +ω4, 3ω1 *
n = 4, 5 9 ω1 + ωr

n = 6, 7, 8 20, 27, 35 – SF

III

(p, q) = (2, 3) 5 ω1 + ω5, ω2 + ω4, 2ω1 + ω4,
2ω1 + 2ω5

*

(p, q) = (2, 4) 7 ω1 + ω7, ω4, ω1 + ω3, ω2 + ω6,
2ω2

*

(p, q) = (3, 3) 8 ω1 + ω8, ω3, ω1 + ω2 *
(p, q) = (2, 5) 9 ω1 + ω9, ω2 + ω8

12 ≤ pq ≤ 22; or (2, q) with
12 ≤ q ≤ 20; or (3, q) with

8 ≤ q ≤ 11

pq − 1 ω1 + ωr

(3, q) with 12 ≤ q ≤ 16; or (p, q)
with p ≥ 4 and 24 ≤ pq ≤ 49

pq − 1 – SF

IV

n = 3 3 ω2, ω1 + ω3, 2ω2, 2ω1 + ω2,
4ω1, ω1 + ω2 + ω3, 3ω1 + ω3

n = 4 4 ω2, ω1 + ω3, 2ω2, 2ω1 + ω2,
4ω1, ω2 + ω4, 2ω1 + ω4

n = 5 5 ω2, ω1 + ω3, 2ω2, 4ω1

n = 6 6 ω2, 2ω2

n = 7 . . . 100 n ω2

V
n = 3 4 ω1, ω1 + ω3, 2ω1, ω1 + ω2,

ω1 + ω3 + ω4, 2ω1 + ω3, 2ω2

**

n = 4 7 ω1, 2ω1, ω2

n = 5 . . . 18 bn
2−1
2 c ω1

VI
n = 3 7 ω1, 2ω1

n = 4 . . . 11 b (n−1)(2n+1)
2 c ω1

VII
n = 2 5 2ω1, ω3, ω4 + ω5, ω1 + ω2

n = 3 . . . 13 b 2n2+n
2 c – SF

VIII

n = 2 4 2ω4, ω2 + ω4, 2ω2

n = 3 6 2ω1, ω4, 2ω2

n = 4 8 2ω1, ω1 + ω7, ω4

n = 5 . . . 75 2n 2ω1

IX n = 7 . . . 27 bn(n−1)
4 c – SF

X n = 5 . . . 22 b (n−1)(n+2)
4 c ω1

Table 7.5: Some results for the isotropy irreducible families I–X.
* To obtain all potential instabilities from the listed ones, take closure under the duality
automorphism of Ar which sends ωk 7→ ωr+1−k.
** To obtain all potential instabilities from the listed ones, take closure under the automor-
phisms of D4 which permute ω1, ω3 and ω4.
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g h Embedding E Potential instabilities Notes

so(8) g2 g2
η1
↪→ so(7) ⊂ so(8) 5

12 0, ω1, ω1 + ω3, 2ω1, ω1 + ω2,
ω1 + ω3 + ω4, 2ω1 + ω3

*

so(26) sp(1)⊕
sp(5)
⊕ so(6)

sp(1)⊕ sp(5)
η1+η′

1
↪→

so(20)
29
80 0, 2ω1

f4 so(8) so(8) ⊂ so(9)
max.
⊂ f4

4
9 0, ω4, ω3, 2ω4, ω3 + ω4

e6 3su(2) su(2)
2η1
↪→ su(3),

3su(3)
max.
⊂ e6

5
16 0 [LL23]⇒SF0

e6 su(2)⊕
so(6)

so(6) ⊂ su(6),
su(2)⊕ su(6)

max.
⊂ e6

3
8 0, ω2

e6 so(8)⊕ R2 so(8)⊕ R ⊂ so(10),
so(10)⊕ R

max.
⊂ e6

5
12 0, ω2, ω1 + ω6, ω4

e6 R6 max. torus 7
24 – SQ

e7 7su(2) 3so(4) ⊂ su(12),
su(12)⊕ su(2)

max.
⊂ e7

1
3 0 [LL23]⇒SF

e7 so(8) so(8) ⊂ su(8)
max.
⊂ e7

13
36 – SQ

e7 3su(2)
⊕ so(8)

so(8)⊕ so(4) ⊂ su(12),
su(12)⊕ su(2)

max.
⊂ e7

7
18 0

e7 R7 max. torus 5
18 – SQ

e8 8su(2) 4so(4) ⊂ so(16)
max.
⊂ e8

3
10 – SQ

e8 4su(3) 3su(3)
max.
⊂ e6,

e6 ⊕ su(2)
max.
⊂ e8

19
60 – SQ

e8 4su(2) su(2)
2η1
↪→ su(3),

4su(3) ⊂ e8 as above
11
40 – SQ

e8 2su(3) 2su(3)
η1+η′

1
↪→ su(9),

su(9)
max.
⊂ e8

17
60 – SQ

e8 2su(5) max. subalgebra 7
20 0 [LL23]⇒SF

e8 so(9) so(9) ⊂ su(9)
max.
⊂ e8

13
40 – SQ

e8 so(9) so(9)
η4
↪→ so(16)

max.
⊂ e8

13
40 – SQ

e8 2so(8) 2so(8) ⊂ so(16)
max.
⊂ e8

11
30 0 [LW22b]⇒SF

e8 so(5) max. subalgebra 13
48 – SQ

e8 2sp(2) 2sp(2)
η1+η′

1
↪→ so(16)

max.
⊂

e8

7
24 – SQ

e8 R8 max. torus 4
15 – SQ

Table 7.6: Results for the isotropy reducible exceptions.
* To obtain all potential instabilities/IED from the listed ones, take closure under the auto-
morphisms of D4 which permute ω1, ω3 and ω4.
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Family Param. r = rk g Potential instabilities Notes

XIa

n = 3 2 0, ω1 + ω2, 3ω1, 2ω1 + 2ω2 *
n = 4 3 0, ω1 + ω3, 2ω2, 2ω1 + ω2,

2ω1 + 2ω3

*

n = 5 4 0, ω1 + ω4, ω2 + ω3, 2ω1 + ω3 *
n = 6, 7, 8, 9 5, 6, 7, 8 0, ω1 + ωr

XIb

(k, n) = (3, 2) 5 0, ω1 + ω5, ω2 + ω4, 2ω3,
2ω1 + ω4, 2ω1 + 2ω5

*

(k, n) = (4, 2) 7 0, ω1 + ω7, ω2 + ω6

(k, n) = (3, 3) 8 0, ω1 + ω8, ω2 + ω7, 2ω1 + ω7,
2ω1 + 2ω8

*

(k, n) = (5, 2) 9 0, ω1 + ω9

(k, n) = (3, 4) 11 0, ω1 + ω11, ω2 + ω10,
2ω1 + ω10

*

(k, n) = (4, 3), (6, 2) 11 0, ω1 + ω11

XII (p, q, l) = (2, 5, 3) 12 0, ω1 + ω12

XIII

(k, n) = (3, 1) 3 0, ω2, 2ω1, ω1 + ω3, 2ω2,
2ω1 + ω2

(k, n) = (4, 1) 4 0, ω2, 2ω1, ω4, ω1 + ω3, 2ω2

(k, n) = (5, 1) 5 0, ω2, 2ω1, ω4, ω1 + ω3

(k, n) = (6, 1) 6 0, ω2, 2ω1, ω4

(k, n) = (3, 2) 6 0, ω2, 2ω1, ω4, ω1 + ω3, ω6,
2ω2

(k, n) = (4, 2) 8 0, ω2, 2ω1, ω4

(k, n) = (3, 3) 9 0, ω2, 2ω1, ω4, ω1 + ω3, 2ω2

(k, n) = (10, 1) 10 0, ω2, 2ω1

(k, n) = (11, 1) 11 0, ω2

(k, n) = (3, 4) 12 0, ω2, 2ω1, ω4, ω1 + ω3

(k, n) = (7, 1), (8, 1), (9, 1), (5, 2),
(6, 2), (4, 3), (7, 2), (5, 3), (3, 5), (8, 2),

(4, 4), (6, 3), (3, 6)

kn 0, ω2, 2ω1

XIV

n = 1 2 0, ω2, 2ω1, 2ω2, 2ω1 + ω2,
4ω1, 3ω2, 2ω1 + 2ω2

n = 2 5 0, ω2, 2ω1, ω4, ω1 + ω3, 2ω2,
2ω1 + ω2, ω1 + ω5, 4ω1,
ω2 + ω4, 2ω1 + ω4

n = 3 8 0, ω2, 2ω1, ω4, ω1 + ω3, 2ω2,
2ω1 + ω2, 4ω1, ω6

n = 4 11 0, ω2, 2ω1, ω4, ω1 + ω3, 2ω2,
2ω1 + ω2, 4ω1

n = 5 14 0, ω2, 2ω1, ω4, ω1 + ω3, 2ω2,
2ω1 + ω2

n = 6 17 0, ω2, 2ω1, ω4, ω1 + ω3

n = 7 20 0, ω2, 2ω1, ω4

n = 8, 9, 10 23, 26, 29 0, ω2, 2ω1

Table 7.7: Some results for the isotropy reducible families XI–XIV.
* To obtain all potential instabilities from the listed ones, take closure under the duality
automorphism of Ar which sends ωk 7→ ωr+1−k.
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Family Param. r = rk g Potential instabilities Notes

XV
n = 2 8 0, 2ω1

n = 3 . . . 9 2n2 – SF

XVI
n = 3 4 0, ω1, 2ω1, ω3, 2ω4

n = 4 . . . 16 bn
2

2 c – SF

XVIIa
n = 4 4 0, ω2, 2ω1, 2ω3, 2ω4

n = 5 5 0, ω2, 2ω1

n = 6, 7 6, 7 0 [LL23]⇒SF0

XVIIb

(k, n) = (3, 3) 4 0, ω2, 2ω1, ω3, 2ω4,
ω1 + ω2

(k, n) = (3, 4) 6 0, ω2, 2ω1, ω4

(k, n) = (6, 3) 9 0, ω2

(k, n) = (6, 4) 12 0, ω2, 2ω1

(k, n) = (4, 3), (5, 3), (4, 4), (5, 4); or
(k, 5) with 3 ≤ k ≤ 6; or (k, n) with

n ≥ 6 and kn ≤ 40

bkn2 c 0, ω2, 2ω1

(k, n) = (7, 3), (8, 3), (9, 3), (7, 4),
(10, 3), (7, 5)

bkn2 c 0

XVIII

n = 3 5 0, ω1, ω2, 2ω1, ω3, ω4,
ω1 + ω2, 2ω5, ω1 + ω3,

2ω2, ω1 + ω4

n = 4 7 0, ω2, 2ω1, ω4, ω1 + ω3,
2ω2

n = 5 8 0, ω2, 2ω1, ω4, ω1 + ω3

n = 6 10 0, ω2, 2ω1, ω4

n = 7 . . . 19 b 3n
2 c+ 1 0, ω2, 2ω1

Table 7.8: Some results for the isotropy reducible families XV–XVIII.
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Family K/H = K1/H1 × . . .×Kl/Hl r = rk g Potential instabilities

XIX

SU(3)2

SO(3)2 , S3 × SO(5), S4 × SU(6)
Sp(3) 5, 6, 9 0, ω1, 2ω1

S3 × SU(3) 5 0, ω1, ω2, 2ω1, ω3, ω1 + ω2

(S3)2 × SU(3) 7 0, ω1, ω2, 2ω1

SU(3)2, (S3)3 × SU(3) 8 0, ω1, ω2, 2ω1

S3 ×G2 8 0, 2ω1

S3 × SU(4), SU(3)× SO(5) 9 0, ω1, ω2

(S4)2 × SU(6)
Sp(3) 11 0, ω1, 2ω1, ω2

(S3)k × SO(5) with 3 ≤ k ≤ 5; or (S3)k ×G2
with 2 ≤ k ≤ 4; or (S3)k × SO(5)2 with

0 ≤ k ≤ 2; or S3× SO(7), S3× Sp(3), SO(5)×G2

bdimK/H
2 c 0

all other with dimK/H ≤ 26 bdimK/H
2 c 0, ω1

Table 7.9: Some results for the isotropy reducible family XIX.
K/H denotes the symmetric space used in the construction of M = SO(p)/H. Concerning
the individual symmetric factors Ki/Hi we insist that Lie groups are presented as Hi×Hi

Hi

and spheres as Sk = SO(k+1)
SO(k) .
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