
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Performance portability analysis of
SYCL with a classical CG on CPU,

GPU, and FPGA

Julian Franquinet

Course of Study: Simulation Technology

Examiner: Prof. Dr. Dirk Pflüger

Supervisor: Alexander Van Craen, M.Sc.

Commenced: October 20, 2022

Completed: April 20, 2023

Abstract

In this work, the capability of SYCL™ to execute code on different hardware devices is investigated.
This motivates conducting a performance portability analysis. The architectures investigated are
the CPU, GPU, and FPGA. As a benchmark algorithm, the CG algorithm is used, as it is widely
applicable to many fields and is more complex than simple matrix-vector multiplications. To
generate reference results on the different devices, OpenMP and CUDA are used. The CG is also
implemented using highly optimized libraries. These libraries are based on the BLAS standard. The
results show a significant increase in performance when using the libraries on the GPU for growing
problem sizes. Regarding the CPU, the optimizations are more significant for smaller problem sizes.
So far, optimized libraries for the FPGA do not exist and therefore are not investigated. As a result,
the performance of the FPGA is not as good as on the CPU and GPU. This is why the portability
performance analysis results in rather low performance portability. However, the results show that
SYCL™ is capable of executing code on various hardware devices, making it a promising standard
for future applications.

3

Contents

1 Introduction 15

2 Hardware 17
2.1 Central Processing Unit . 17
2.2 Graphics Processing Unit . 19
2.3 Field-Programmable Gate Array . 20

3 Software 23
3.1 Open Multi-Processing . 23
3.2 Compute Unified Device Architecture . 23
3.3 SYCL™ . 24
3.4 Basic Linear Algebra Subprograms . 25

4 Conjugate Gradient Method 27

5 Performance Portability 29

6 Implementation 31
6.1 Linear Algebra Kernels . 31
6.2 Conjugate Gradient Method . 36

7 Results 39
7.1 Runtimes . 39
7.2 Performance Portability Analysis . 46

8 Conclusion and Outlook 49

Bibliography 51

5

List of Figures

2.1 Scheme of the architecture of a Central Processing Unit 18
2.2 Scheme of the architecture of a Graphics Processing Unit 20
2.3 Scheme of the architecture of a Field-Programmable Gate Array 21

6.1 Memory access of a matrix-vector multiplication kernel on the Graphics Processing
Unit. 32

6.2 Memory access of a vector addition kernel on the Graphics Processing Unit. . . . 34
6.3 Memory access of a vector reduction kernel on the Graphics Processing Unit. . . 35

7.1 Runtimes of representative linear algebra kernels over dimension 𝑁 40
7.2 Runtimes of representative linear algebra kernels over dimension 𝑁 43
7.3 Runtimes of the Conjugate Gradient Method implementations on the Central

Processing Unit over problem size 𝑁 . 44
7.4 Runtimes of the Conjugate Gradient Method implementations on the Graphics

Processing Unit over problem size 𝑁 . 45
7.5 Runtimes of Conjugate Gradient Method over problem size 𝑁 45
7.6 Pseudo-efficiencies of Conjugate Gradient Method implementations over problem

size 𝑁 . 46

List of Tables

2.1 Key specifications of the Intel® Xeon®Gold 6128 18
2.2 Key specifications of the NVIDIA Quadro GP100 19
2.3 Key specifications of the Intel® Arria®10 GX 1150 21

6.1 Natively implemented linear algebra kernels . 37
6.2 Used Basic Linear Algebra Subprograms functions for the Conjugate Gradient Method 37

7.1 Fastest achieved averaged runtimes of the CG implementations on each device for
𝑁 = 4,096 . 46

7.2 Ideal amount of floating point operations for the Conjugate Gradient Method . . . 47
7.3 Runtimes and efficiencies of the Conjugate Gradient Method implementations . . 47
7.4 Results of the performance portability analysis for the Conjugate Gradient Method

with 𝑁 = 4,096 . 48

7

List of Algorithms

6.1 Matrix-vector multiplication kernel for Central Processing Unit and Field-
Programmable Gate Array . 32

6.2 Matrix-vector multiplication kernel for Graphics Processing Unit 33
6.3 Vector addition kernel for Central Processing Unit and Field-Programmable Gate

Array . 33
6.4 Vector addition kernel for Graphics Processing Unit 34
6.5 Vector reduction kernel for Central Processing Unit and Field-Programmable Gate

Array . 35
6.6 Vector reduction kernel for Graphics Processing Unit 36
6.7 Conjugate Gradient Method algorithm . 38

9

Acronyms

ALU Arithmetic Logic Unit. 17

API Application Programming Interface. 23

BLAS Basic Linear Algebra Subprograms. 25

CG Conjugate Gradient Method. 15

CLB Configurable Logic Block. 20

CPU Central Processing Unit. 15

CU Control Unit. 17

cuBLAS CUDA Basic Linear Algebra Subroutine. 16

CUDA Compute Unified Device Architecture. 15

DRAM Dynamic Random Access Memory. 17

FLOPS Floating Point Operations Per Second. 17

FPGA Field-Programmable Gate Array. 15

GPU Graphics Processing Unit. 15

L1 Level 1 Cache. 17

L2 Level 2 Cache. 17

L3 Level 3 Cache. 17

MMU Memory Management Unit. 17

oneMKL Intel® oneAPI Math Kernel Library. 16

OpenCL Open Computing Language. 15

OpenMP Open Multi-Processing. 23

PI Programable Interconnect. 20

11

Variables

Symbol Description

Ã Square, symmetric, and positive-definite matrix
A Matrix
𝛼 Scalar
�̃� Step size of incremental solution vector update

𝒃 Known vector
𝛽 Scalar
𝛽 Gram-Schmidt Conjugation coefficient

𝒅 Orthogonal search direction
𝛿 Squared residual norm

𝑒 Efficiency
Y Abortion criterion for the iterative solver

𝑜 Amount of operations

𝑃 Set of platforms
𝑝 Platform
𝒫 Performance portability
𝜙 Theoretical peak performance

𝑄 Set of all programs
𝑞 Program
𝒒 Temporary vector

�̃� Residual

𝑡 Runtime

𝒙 Vector
�̃� Unknown solution vector

𝒚 Vector

13

1 Introduction

In recent years, the amount of computational load in many fields has increased significantly.
Especially with massive progress in computational fluid dynamics, machine learning, and many
other fields, the demand for more computational power is growing. Particularly in times of climate
crisis, not just the computational time but also the energy consumption is important. Therefore,
it is crucial to find a balance between the two. One method is to use different hardware devices
according to their specific use cases in order to maximize time and energy efficiency. In the past,
nearly all scientific calculations were performed on the Central Processing Unit (CPU). The focus
was mainly on designing algorithms that can be executed on many CPUs in parallel. In recent years,
the Graphics Processing Unit (GPU) gained more and more importance, adding a new dimension to
parallel computing. The GPU is designed for highly parallel computing and is best suited for such
tasks. For example, NVIDIA provides Compute Unified Device Architecture (CUDA), a parallel
computing framework that also delivers an application programming interface. This architecture
can be used to write code that can be executed on all NVIDIA GPUs and results in a large increase
in performance and efficiency of many applications.However, there are limitations. Not all tasks are
suited for the GPU. Also, since CUDA runs only on NVIDIA GPUs, it creates a huge dependency
on one vendor.

Another hardware device that is becoming increasingly important is the Field-Programmable Gate
Array (FPGA). The FPGA is a hardware device that can be programmed to execute a specific task.
This makes it very flexible and could allow an increase in performance and efficiency for many
applications. While the FPGA is not currently widespread, it is expected to gain more importance in
the future, particularly with the release of SYCL™. Until the release of SYCL™, Open Computing
Language (OpenCL) was the only standard that could be used to write code that can be executed on
FPGAs. However, the complexity of OpenCL makes it hard to develop applications for the FPGA.
SYCL™ was developed to solve this problem.

With all these different hardware devices, a new challenge arises. How can a program be designed
that is executable on all of them? This is where SYCL™ could provide a solution. It not only
delivers a standard for programming on the FPGA, but also for programming on the CPU and GPU.
This allows the programmer to write code that can be executed on all devices without rewriting the
whole code.

This work investigates the capability of SYCL™ to execute code on different hardware devices. The
Conjugate Gradient Method (CG) algorithm is used as a benchmark, as it is widely applicable to
many fields. Runtimes are investigated and compared to reference implementations using different
methods. Additionally, a performance portability analysis is performed. This work is following up
on Baratta et al [1] who investigated the performance portability of SYCL™ on the CPU and
GPU. Also, this thesis contains the execution of the CG algorithm on the FPGA. Not just CPU and
GPU are compared but also the FPGA. Cali et al [3] has already conducted this approach, but
dealt with portability issues. Therefore, no runtimes were provided.

15

1 Introduction

As this work will not focus on optimizing the CG algorithm, highly optimized libraries will be
used as well. The rather simple, non-optimized native implementations will then be compared
to the highly optimized libraries. This allows measurement of the impact of the libraries on the
performance of algorithms. Both NVIDIA and Intel® provide highly optimized libraries with
CUDA Basic Linear Algebra Subroutine (cuBLAS) and Intel® oneAPI Math Kernel Library
(oneMKL) respectively. In the work of Khalilov & Timoveev [11] a performance analysis of
cuBLAS has already been performed. However, only simple matrix-vector multiplications were
used. Krainiuk et al [12] did the same for oneMKL, but also for rather simple algorithms. This
work will use more complex algorithms with the CG.

In the following work, the hardware devices and libraries that were used are introduced first. Then,
the CG algorithm is explained and a metric for the performance portability is introduced. Afterward,
the implementations are explained and the results are presented. Finally, the results are discussed
and conclusions are drawn.

16

2 Hardware

In modern computing clusters and programs, different hardware components are used. Each
component has its purpose and is designed to perform a specific task. In this chapter, the different
hardware components are introduced with a representative of each architecture that is used in this
work. For comparison, the key specifications of the representatives of each architecture used in
this work are listed. The Floating Point Operations Per Second (FLOPS) is a measurement that
describes the theoretical peak performance of each device. Since lower runtimes are not necessarily
better, as efficiency is essential in many cases, the theoretical peak performance is important to take
into count.

2.1 Central Processing Unit

The Central Processing Unit (CPU) is often referred to as the brain of a computer. It is the device’s
central processor and carries out most of the instructions of a program. It is also responsible for
running the operating system. The CPU is designed to handle a wide range of tasks quickly but is
limited to their concurrency. The main components of a CPU are the Control Units (CUs), Memory
Management Units (MMUs), Arithmetic Logic Units (ALUs), and several levels of caches. Modern
CPUs consist of multiple cores. Each core is a separate CPU consisting of a CU, MMU, ALU, and
caches. The cores are connected to shared memory and can communicate with each other.

The CU is the component that is in charge of the execution of instructions. It is the component
that fetches instructions from memory and decodes them. It is also responsible for the control flow
of the program. The MMU is the component managing the CPU’s memory. It translates virtual
addresses to physical addresses, handles memory protection, and loads memory from the Dynamic
Random Access Memory (DRAM). The component that takes care of the arithmetic and logical
operations is the ALU. It is the component that performs the actual operations.

The caches are ultra-fast built-in memories partly shared between the cores to provide quick memory
access. In Figure 2.1, a possible design of a CPU is shown. In this case, three levels of cache are
used. The Level 1 Cache (L1) is the fastest and closest to the core. It is the smallest and has the least
capacity. The Level 2 Cache (L2) is the next fastest, depending on the design, either exclusive or
shared between the cores. In the case of Figure 2.1, it is exclusive to each core. The Level 3 Cache
(L3) is the slowest and is shared between all cores. It is the largest and has the largest capacity.

Every core can only run a single process at a time. In order to increase the number of independent
instructions per core, multiple virtual cores can be addressed for each physical core. This can
increase the efficiency of each processor. If, for example, resources are not yet available for one
process, the other process can continue if its resources are already available. In Intel® chips,
this is done by two virtual cores and is called Hyper-Threading. It is essential to mention that
Hyper-Threading does not increase the computational power of a core but rather its efficiency.

17

2 Hardware

When developing a high-performance program that runs on the CPU, it is crucial to be aware of
multicore and Hyper-Threading. This means that the program has to be designed in a way that it
can be split up into independent tasks that can be executed in parallel. Additionally, data access has
to be taken into account. If data is shared between the tasks, it has to be synchronized, resulting in a
performance loss.

A more detailed description of the architecture of a CPU can be found in the Intel® developer
manual [6].

The CPU used in this work is the Intel® Xeon®Gold 6128. Specifications of it can be found on
webpage [10]. The key specifications are shown in Table 2.1.

Intel® Xeon®Gold 6128

Frequency 3.4 GHz
Cores 6
Theoretical peak performance 0.7104 TFLOPS
DRAM 188 GB

Table 2.1: Listed key specifications of the Intel® Xeon®Gold 6128 [10]

Core Core Core Core Core

L2 L2 L2 L2 L2 L2

CU

ALU CU

MMU L1

L3

MMU

DRAM

Figure 2.1: Depicted scheme of the architecture of a Central Processing Unit (CPU). This CPU
consists of six cores. Each core has its own Level 2 Cache (L2) and Level 1 Cache (L1).
Additionally, it contains an Arithmetic Logic Unit (ALU) for the actual calculation, a
Control Unit (CU) for the orchestration of the execution of instructions, and a Memory
Management Unit (MMU) for the management of the memory. All cores are connected
to a shared Level 3 Cache (L3). The shared MMU communicates with the Dynamic
Random Access Memory (DRAM). The shared Control Unit (CU) orchestrates the
cores.

18

2.2 Graphics Processing Unit

2.2 Graphics Processing Unit

First, only responsible for rendering images and videos, the Graphics Processing Unit (GPU)
nowadays has a broader field of applications. Their design is based on the idea of parallel computing.
Instead of processing a complex task serially like in a CPU, the idea of using a GPU is to break up
the task into many subtasks and to run them in parallel. Therefore, GPUs consist of many more but
smaller and less versatile cores than the CPU. This results in a smaller and more specific set of
instructions with higher instruction throughput.

In general, GPUs are either an independent piece of hardware with their own memory or an
integrated part that shares the memory with the CPU. Typically, integrated GPUs provide less
performance since they are smaller and share resources with the CPU.

The GPU shown in Figure 2.2 consists of two levels of cache. The L2 is shared along all cores,
whereas the L1 is shared along a group of cores. Such a group also consists of shared CUs.

For repetitive and highly-parallel computing tasks, such as machine learning or rendering tasks,
GPUs are best suited. In order to achieve best performance, a program has to be designed in a
certain way. Tasks should be split up into many independent tasks that can be executed in parallel.
Like with the CPU, it is vital to consider data access, especially when using shared memory. This
is because certain cores might share the same caches. Therefore, adapting the code based on
awareness of the architecture of the GPU can increase performance. Nevertheless, in scientific
programming not all tasks can be split into many independent tasks. Even if this is the case, another
key problem with GPU programming is that all tasks in a so called warp must execute exactly the
same instructions. If a warp divergence occurs, the different execution paths must be masked and
sequentialized. In this case, the cores could be in idle, resulting in a performance loss. Therefore,
the efficiency of the CPU can be higher than the efficiency of the GPU. Still, the GPU could be the
better choice, due to its pure computational power.

In this work, the NVIDIA Quadro GP100 is used. It is a GPU that is designed for high-performance
computing. The key specifications, like the theoretical peak performance, are shown in Table 2.2 and
can also be found in the NVIDIA Quadro GP100 Data Sheet [15]. For a more detailed description
of the architecture of a GPU, see the NVIDIA programming guide [14] and the NVIDIA whitepaper
[16].

NVIDIA Quadro GP100

Frequency 1304 MHz
Cores 3584
Theoretical peak performance 10.34 TFLOPS
DRAM 16 GB

Table 2.2: Listed key specifications of the NVIDIA Quadro GP100 [15]

19

2 Hardware

Core

Core

Core

Core

Core

CU

L1

Core

Core

Core

Core

Core

CU

L1

Core

Core

Core

Core

Core

CU

L1

Core

Core

Core

Core

Core

CU

L1

Core

Core

Core

Core

Core

CU

L1

Core

Core

Core

Core

Core

CU

L1

Core

Core

Core

Core

Core

CU

L1

Core

Core

Core

Core

Core

CU

L1

CU

L2

MMU

DRAM

Figure 2.2: Depicted scheme of the architecture of a Graphics Processing Unit (GPU). This GPU
consists of many smaller cores. A set of cores share a Level 1 Cache (L1) and a Control
Unit (CU). Additionally, all sets of cores share a Level 2 Cache (L2). Also, a Control
Unit (CU) is shared among all cores. The Control Unit (CU) orchestrates the cores.
The Memory Management Unit (MMU) manages the memory.

2.3 Field-Programmable Gate Array

Field-Programmable Gate Arrays (FPGAs) are integrated circuits consisting of Configurable Logic
Blocks (CLBs). The CLBs are connected via Programable Interconnects (PIs). This setup provides
a programmable hardware fabric that is highly flexible. High performance with low latency can be
achieved by customizing the FPGA to perform specific tasks or functions. Similar to GPUs, FPGAs
provide the ability to perform many calculations in parallel. Additionally, they are highly versatile,
as they still offer a broad set of instructions.

Another advantage of FPGAs is their low power consumption compared to other processing units.
Since FPGAs can be customized to implement only the necessary logic functions for a specific
application, they can operate at lower voltages and consume less power than CPUs and GPUs, which
have more general-purpose architectures.

Basically, the FPGA tries to combine the flexibility and efficiency of a CPU with the performance
of a GPU. Resulting in an ideal computing unit for scientific computing. Although it is still in its
early stages of development for scientific computing, the FPGA is a very promising technology.
However, developing for FPGAs is not as easy as for CPUs and GPUs. The FPGA is a very complex

20

2.3 Field-Programmable Gate Array

piece of hardware which is not easy to understand. Therefore, the development of FPGAs is more
time consuming and requires more specialized knowledge. Additional compiling code can take
several hours as the compiler must find the best possible hardware configuration for the given code.
This is why FPGAs are not as widespread as CPUs and GPUs. Therefore, there is still a lack of
documentation and example codes. Part of the motivation for this work is to address this problem.

In this work the Intel® Arria®10 GX 1150 is used. It is a FPGA that is designed for high-
performance computing. The key specifications are listed in Table 2.3. Additional specifications
can be found in the Intel® Arria®10 Product Sheet [8]. For a more detailed description of the
architecture of a FPGA, refer to the Intel® Arria®10 Datasheet [7].

Intel® Arria®10 GX 1150

CLBs 1150
Theoretical peak performance 1.366 TFLOPS
DRAM 157 GB

Table 2.3: Listed key specifications of the Intel® Arria®10 GX 1150 [8]

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O

I/O I/O

I/O I/O

I/O I/O

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

PI

Figure 2.3: Depicted scheme of the architecture of a Field-Programmable Gate Array (FPGA). The
Configurable Logic Blocks (CLBs) are connected trough Programable Interconnects
(PIs). Communication and data transfer is accomplished via the Input-Output-Blocks
(I/Os).

21

3 Software

In order to use the many different hardware devices, there are a wide range of software solutions.
This chapter describes the different software solutions and explains how they can be used to develop
parallel applications.

3.1 Open Multi-Processing

One of the most common ways to develop parallel applications is to use the Open Multi-Processing
(OpenMP) Application Programming Interface (API). It enables parallel programming on shared
memory architectures and is, therefore, suitable for running on multicore processors. By providing a
set of directives, functions, and environment variables that can be used, parallelism in a program can
be specified, allowing multiple threads to execute in parallel and share data. It enables incremental
parallelization and is therefore an easy way to improve the performance of a program.

Compiler instructions can be used by linking the Open Multi-Processing (OpenMP) directives to
the existing code, which indicates how to parallelize a specific section of code. Additionally, a
header file can be included, providing a set of runtime library functions to manage threads and their
synchronization.

OpenMP provides an easy and fast way to parallelize programs and increase efficiency. Algorithms
can be parallelized by adding only a few lines of code. Additional command line options for
the compiler are necessary to activate and allow interpretation of all OpenMP directives. Also,
this parallelism can be achieved step by step, and therefore the parallelization can be done
incrementally.

For further specification and a more detailed description refer to Dagum & Menon [4] and the
OpenMP reference guide [17]

3.2 Compute Unified Device Architecture

Traditionally, GPUs are used for graphics processing. However, because of their massively parallel
processing ability, they can be used for many more applications. With the Compute Unified Device
Architecture (CUDA), NVIDIA provided a parallel computing platform and programming model
to allow the developer to use NVIDIA GPUs for general-purpose computing tasks. This program
model is widely used and supported by many programming languages, including C, C++, and
Fortran. Unfortunately, the usage of CUDA is limited to NVIDIA GPUs.

23

3 Software

With just a minimal set of language extensions, the GPUs can be integrated into a workflow.
The extensions consist of routines for memory management, allocating memory on the GPU and
transferring data back and forth, defining and launching kernels, and synchronization.

In device programming with CUDA, the code is executed on the GPU and is therefore called a
kernel. The kernel is launched by the host and is executed in parallel on the GPU. In order to
organize kernels, the concept of threads and blocks is used. A thread is the smallest unit of parallel
execution. Every thread is assigned to a unique identifier and can be executed in parallel along
other threads, allowing computations to be performed simultaneously. A group of threads that
are executed together are referred to as one block. Blocks can be organized into a one-, two- or
three-dimensional grid. They also get assigned a unique identifier. The developer can specify
the number of blocks and the number of threads inside a block, but these settings depend on the
hardware, too. Inside a block, threads can be synchronized, and memory can be shared along
threads, so the sizes should be adapted to the specific hardware to maximize performance.

The developer has to take care of the data management by himself and synchronize the GPU
and the host. Memory is allocated and copied back and forth by explicit calls, meaning it is the
programmer’s responsibility that the data is available where it is needed. Unified shared memory
can be used depending on the hardware, allowing data sharing between the GPU and the host. In
this case, the data is copied automatically, meaning the programmer does not have to handle it.
However, this is only possible if the GPU and the host share the same memory address space, which
is only the case for some hardware. Also, the programmer still has to synchronize the GPU and the
host.

A more detailed description of the CUDA API can be found in the CUDA reference guide by
NVIDIA [14].

3.3 SYCL™

In order to generate high-performance and portable code that can be executed on a wide range
of heterogeneous devices, the Khronos®Group developed SYCL™. It enables computational
kernels to be written inside C++ source files as standard C++ code. Therefore, C++ features such
as templating, generic programming, functional programming, and inheritance can be used while
enabling heterogeneous multi-platform, multi-device execution. This allows the development of
adaptable libraries with the capability of portable high performance. Using SYCL™ development
takes place at a higher and more abstract layer than the native acceleration API. As this could limit
the adaptivity of the code, SYCL™ still provides access to the lower-level code due to the seamless
integration of the native acceleration API. However, this can limit the portability of the code.

Like in CUDA, kernels are defined and launched by the host. A kernel can be launched once or
multiple times, depending on the use case. When launching a kernel multiple times, the amount of
workers has to be specified. The SYCL™ runtime system takes care of the low-level details like the
distribution of the work across the device and the synchronization of the host and the device.

In SYCL™, data access and storage are separated using buffers and accessors. This makes the
manual managing and moving of storage unnecessary and removes the complexity of manually
managing event dependencies between kernel instances. Runtime libraries track the movement of
data and take care of correct behavior. Therefore, no explicit call is needed to move data between

24

3.4 Basic Linear Algebra Subprograms

the host and the device, and this is done automatically when needed. Also, SYCL™ provides the
ability to use unified shared memory, which allows data sharing between the host and the device.
When using this, no buffers are needed, and the data can be accessed directly. Still, this is not
supported by all hardware.

In the case of kernel launches, the SYCL™ runtime system takes care of the low-level details of
parallel execution, allowing developers to focus on the high-level logic of their computation. This
allows the expression of parallel computations naturally and intuitively.

For a more detailed description, refer to the Khronos®Group SYCL™ specification [20].

3.4 Basic Linear Algebra Subprograms

Basic Linear Algebra Subprograms (BLAS) routines were introduced in order to perform basic
linear algebra operations, such as matrix multiplication, vector addition, and reductions with high
performance. There are bindings for C and Fortran and implementations to use it with Python
and Matlab. This is why Basic Linear Algebra Subprograms (BLAS) routines are widely spread
and used in scientific and engineering programming as well as fields like data analysis, machine
learning, and computational fluid dynamics.

The routines are divided into three levels. Level one routines perform scalar, vector, and vector-vector
operations. Level two provides implementations to perform matrix-vector multiplication, and
consequently, level three provides results for matrix-matrix calculations. Refer to Blackford et
al. [2] for a more detailed description.

Both NVIDIA and Intel® provide implementations of the BLAS routines for CUDA and SYCL™,
respectively. cuBLAS is a library already shipped with CUDA and, therefore, easy to use. Only
certain flags have to be set, and the respective header must be included. oneMKL is part of
the Intel® oneAPI project but can also be installed separately as an external library. For both
implementations, it is referred to their respective reference guides [13] and [9].

25

4 Conjugate Gradient Method

For iteratively solving large systems of linear equations like

Ã �̃� = 𝒃 (4.1)

with Ã being a square, symmetric, and positive-definite matrix, 𝒃 any known vector, and �̃� the
unknown solution vector, the Conjugate Gradient Method (CG) is a very effective method. These
systems can be found in a wide field of applications like machine learning, computational fluid
dynamics, and more. This makes the CG an interesting and ideal example for this work to run on
different hardware. A brief explanation of the iterative method can be found in the following. For a
mathematical derivation as well as the convergence analysis of the method, refer to Hestenes &
Stiefel [5] and Shewchuk [19].

In every iterative step �̃�𝑖 of a problem like in Equation (4.1), the residual can be determined by

�̃�𝑖 = 𝒃 − Ã �̃�𝑖 . (4.2)

As first Ã-orthogonal search direction 𝒅0 the initial residual �̃�0 can be used, resulting in

𝒅0 = �̃�0. (4.3)

The incremental update to determine the solution vector �̃�𝑖+1 is performed as

�̃�𝑖+1 = �̃�𝑖 + �̃�𝑖 𝒅𝑖 , (4.4)

with the step size �̃�𝑖 defined as

�̃�𝑖 =
�̃�⊤
𝑖
�̃�𝑖

𝒅⊤
𝑖

Ã 𝒅𝑖
. (4.5)

As the matrix-vector multiplication of Ã and 𝒅𝑖 is already performed in Equation (4.5), the result
can be stored in a temporary vector 𝒒. With that, the updated residual �̃�𝑖+1 can also be calculated
as

�̃�𝑖+1 = �̃�𝑖 − �̃�𝑖 Ã 𝒅𝑖 = �̃�𝑖 − �̃�𝑖 𝒒, (4.6)
with the advantage of needing less computational power. In order to find another Ã-orthogonal
search direction 𝒅𝑖+1, the Gram-Schmidt Conjugation can be used. The Gram-Schmidt Conjugation
coefficient 𝛽𝑖+1 is defined as

𝛽𝑖+1 =
�̃�⊤
𝑖+1 �̃�𝑖+1

�̃�⊤
𝑖
�̃�𝑖

. (4.7)

A new Ã-orthogonal search direction can be determined as

𝒅𝑖+1 = �̃�𝑖+1 − 𝛽𝑖+1 𝒅𝑖 . (4.8)

With this new search direction 𝒅𝑖+1, the next iteration can be started.

Often, it is not the exact solution that is needed, but a solution with a certain accuracy. Therefore,
the loop can be aborted if the residual �̃�𝑖 is small enough or another abortion criterion is met.

27

5 Performance Portability

With the variety of different architectures, the performance of the algorithms can vary greatly. In
this chapter, a metric is defined to determine the portability of the performance of programs. This
metric was first introduced by Pennycook et al. [18].

In the first step, a set of devices 𝑃 is defined. This set contains all hardware platforms 𝑝 that are
considered for the performance portability analysis. Additionally, a set of programs 𝑄 is defined.
This set contains all programs 𝑞 that are considered for the performance portability analysis. With
that, the performance will be measured on each platform and each program in this set. Using the
runtimes and the number of operations, two efficiencies can be calculated for each combination
of platform and program. The first efficiency is the application efficiency 𝑒App. Eff., which is the
ratio of the program’s runtime on a specific platform 𝑡 (𝑝, 𝑞) and the best-observed runtime on that
architecture. The best-observed runtime is the minimum of all runtimes of all programs on the
platform.

𝑒App. Eff. (𝑝, 𝑞) =
min𝑞∈𝑄 𝑡 (𝑝, 𝑞)

𝑡 (𝑝, 𝑞) (5.1)

The second efficiency is the architectural efficiency 𝑒Arch. Eff., calculated as the ratio of achieved
FLOPS to the theoretical peak performance of the device 𝜙 (𝑝). The achieved FLOPSs are calculated
as the ideal number of operations 𝑜ideal divided by the program’s runtime on the device.

𝑒Arch. Eff. (𝑝, 𝑞) =
𝑜ideal

𝑡 (𝑝, 𝑞) · 𝜙 (𝑝) (5.2)

Using the ideal number of operations ensures that every hardware-specific operation is penalized
and that the hardware-specific optimizations do not benefit architectural efficiency.

The overall performance portability is then calculated as the harmonic mean of the respective
efficiency resulting in the following equations:

𝒫App. Eff. (𝑃, 𝑞) =

|𝑃 |∑
𝑝∈𝑃

1
𝑒App. Eff. (𝑝,𝑞)

, if 𝑞 is supported ∀𝑝 ∈ 𝑃

0, otherwise
(5.3)

and

𝒫Arch. Eff. (𝑃, 𝑞) =

|𝑃 |∑
𝑝∈𝑃

1
𝑒Arch. Eff. (𝑝,𝑞)

, if 𝑞 is supported ∀𝑝 ∈ 𝑃

0, otherwise
. (5.4)

29

6 Implementation

This chapter describes the implementation of the CG on the hardware devices of Chapter 2. Before
native implementing a CG, different kernels were implemented, performing various basic linear
algebra operations. These kernels were then used to implement the CG on the different devices.
The implementation of the CG on the GPU was done with the CUDA programming language
and SYCL™. For the CPU, the OpenMP programming language was used, as well as SYCL™
and a non-optimized sequential implementation. For running on FPGAs, only SYCL™ provided
the capability. C++ was used as the underlying programming language for all implementations.
Data management and synchronization between the different devices is not shown in the following
pseudo-codes. They depend on the APIs used and are not relevant for this chapter.

6.1 Linear Algebra Kernels

The basic linear algebra operation needed for a CG can be divided into three underlying ideas:
Matrix-Vector operation, vector addition, and vector reduction by the dot product. In the following,
a sequential implementation of the kernels is described, that will be used as a basis for the parallel
implementations. Extending the sequential implementation by OpenMP compiler instructions
provides a parallel implementation for the CPU. Additionally, a second kernel is described, splitting
the task of the first kernel into subtasks, which can be assigned to different threads. This kernel
is used for the GPU implementation with CUDA and SYCL™, as well as the implementation
on the CPU with SYCL™. With the FPGA optimized by the compilation process, the sequential
implementation is used, letting the FPGA compiler decide on the parallelization.

In all cases, optimization strategies are ignored on purpose, as this is not the purpose of this work
and can lead to hardware specific implementations. With cuBLAS and oneMKL highly optimized
implementations already exist. Therefore, these libraries are used as well, so efficiency of such
libraries can be compared to the simple implementations without optimizations.

6.1.1 Matrix-Vector Operation

A universal matrix-vector operation can be defined as

𝛼A 𝒙 + 𝛽𝒚 = 𝒓, (6.1)

where A represents a matrix of size 𝑀 × 𝑁 , 𝒙 and 𝒚 are vectors of size 𝑁 , and 𝛼 and 𝛽 are scalars.
The result, vector 𝒓, is of size 𝑁 .

31

6 Implementation

In a sequential setting, the kernel for any matrix-vector operation, like in Equation (6.1), consists
of two for-loops to perform the operation. This is shown in Algorithm 6.1. In order to reduce the
number of access operations, separate kernels can be implemented depending on whether scaling
with scalars or additional vector adding is needed. This task can be dynamically shared along the
CPU threads by including the OpenMP compiler instruction above the first for-loop.

Algorithm 6.1 Here the resulting kernel for a matrix-vector multiplication for the CPU and FPGA
is displayed. The vectors are of size 𝑁 and the matrix of size 𝑀 × 𝑁 . The OpenMP compiler
instruction can be included optionally when running on the CPU, to dynamically subdivide the loop
into subtasks assigned to different threads.

procedure MatrixVectorOperation(A, 𝒙, 𝒚, 𝛼, 𝛽, 𝒓, 𝑁 , 𝑀)(
#pragma omp parallel for

)
// OpenMP parallelization

for 𝑖 = 1, 2, . . . , 𝑁 do // Iterate over rows of A
𝑡𝑒𝑚𝑝 ← 0
for 𝑗 = 1, 2, . . . , 𝑀 do // Iterate over columns of A

𝑡𝑒𝑚𝑝 ← 𝑡𝑒𝑚𝑝 + 𝛼 · 𝐴[𝑖] [𝑗] · 𝑥 [𝑗]
end for
𝑟 [𝑖] ← 𝑡𝑒𝑚𝑝 + 𝛽 · 𝑦[𝑖]

end for
return 𝒓

end procedure

When designing for a high-multiprocessing device like a GPU, a fixed task decomposition can be
achieved by assigning one row to each thread. Data access is shown in Figure 6.1, where different
colors represent different threads. The resulting kernel is shown in Algorithm 6.2 and has to be
launched with at least 𝑁 amount of threads.

𝛼

©«

𝐴1,1 𝐴1,2 𝐴1,𝑛

𝐴2,1 𝐴2,2 𝐴2,𝑛

𝐴𝑚,1 𝐴𝑚,2 𝐴𝑚,𝑛

ª®®®®®®®¬

©«

𝑥1

𝑥2

𝑥𝑛

ª®®®®®®®¬
+ 𝛽

©«

𝑦1

𝑦2

𝑦𝑚

ª®®®®®®®¬
=

©«

𝑟1

𝑟2

𝑟𝑚

ª®®®®®®®¬
Figure 6.1: Depicted here is a memory access of a matrix-vector multiplication kernel on the GPU.

The matrix is of size 𝑀 × 𝑁 and the vectors of size 𝑁 . Each thread is represented by
one color. It accesses one row of the matrix, the whole 𝒙 vector, and one element of
the vector 𝒚. The scalars are shared among all threads.

32

6.1 Linear Algebra Kernels

Algorithm 6.2 The resulting kernel for a matrix-vector multiplication for the GPU is displayed in
this pseudo-code. The vectors are of size 𝑁 and the matrix of size 𝑀 × 𝑁 .The kernel is launched
with at least 𝑁 amount of threads.

procedure MatrixVectorOperation(A, 𝒙, 𝒚, 𝛼, 𝛽, 𝒓, 𝑁 , 𝑀)
𝑟𝑜𝑤 ← getGlobalID()
if 𝑟𝑜𝑤 < 𝑁 then // Check if current thread is within the bounds of the matrix

𝑡𝑒𝑚𝑝 ← 0
for 𝑖 = 1, 2, . . . , 𝑀 do // Iterate over columns of A

𝑡𝑒𝑚𝑝 ← 𝑡𝑒𝑚𝑝 + 𝛼 · 𝐴[𝑟𝑜𝑤] [𝑖] · 𝑥 [𝑖]
end for
𝑟 [𝑟𝑜𝑤] ← 𝑡𝑒𝑚𝑝 + 𝛽 · 𝑦[𝑟𝑜𝑤]

end if
return 𝒓

end procedure

6.1.2 Vector Addition

A general vector addition can be written as

𝛼𝒙 + 𝛽𝒚 = 𝒓, (6.2)

with 𝒙 and 𝒚 being vectors of size 𝑁 , 𝛼 and 𝛽 being scalars, and 𝒓 the resulting vector of size 𝑁 .

A vector operation, as in Equation (6.2), only needs one for-loop in a sequential setting. Algorithm 6.3
can be again extended by an OpenMP compiler instruction to dynamically subdivide the loop into
subtasks assigned to different threads taking care of a part of the loop.

Algorithm 6.3 Here the resulting kernel for a vector addition for the CPU and FPGA is displayed.
The vectors are of size 𝑁 . The OpenMP compiler instruction is optional when running on the CPU,
to dynamically subdivide the loop into subtasks assigned to different threads.

procedure VectorVectorOperation(𝒙, 𝒚, 𝛼, 𝛽, 𝒓, 𝑁)(
#pragma omp parallel for

)
// OpenMP parallelization

for 𝑖 = 1, 2, . . . , 𝑁 do // Iterate over rows
𝑟 [𝑖] ← 𝛼 · 𝑥 [𝑖] + 𝛽 · 𝑦[𝑖]

end for
return 𝒓

end procedure

Like in the matrix-vector setup, the sequential code can be divided into subtasks by assigning one
row to each thread. The data access, as shown in Figure 6.2, and the number of operations, can
be again reduced by defining multiple kernels with the template of Algorithm 6.4 but leaving out
operations that are not needed. As before, this kernel has to be launched with at least 𝑁 threads.

33

6 Implementation

𝛼

©«

𝑥1

𝑥2

𝑥𝑛

ª®®®®®®®¬
+ 𝛽

©«

𝑦1

𝑦2

𝑦𝑚

ª®®®®®®®¬
=

©«

𝑟1

𝑟2

𝑟𝑚

ª®®®®®®®¬
Figure 6.2: Here, memory access of a vector addition kernel on the GPU is depicted. The vectors

are of size 𝑁 . Each thread is represented by one color and accesses one element of
each vector while the scalars are shared.

Algorithm 6.4 The resulting kernel for a vector addition for the GPU is displayed in this pseudo-code.
The vectors are of size 𝑁 .The kernel is launched with at least 𝑁 amount of threads.

procedure VectorVectorOperation(𝒙, 𝒚, 𝛼, 𝛽, 𝒓, 𝑁)
𝑟𝑜𝑤 ← getGlobalID()
if 𝑟𝑜𝑤 < 𝑁 then // Check if current thread is within the bounds of the vectors

𝑟 [𝑟𝑜𝑤] ← 𝛼 · 𝑥 [𝑟𝑜𝑤] + 𝛽 · 𝑦[𝑟𝑜𝑤]
end if
return 𝒓

end procedure

6.1.3 Vector Reduction

With two vectors 𝒙 and 𝒚 of size 𝑁 , the dot product can be defined as

𝒙⊤𝒚 = 𝑟, (6.3)

resulting in a scalar 𝑟 .

Like in the vector addition, only a single for-loop is needed to achieve the dot product of two
vectors. The sequential code is shown in Algorithm 6.5. As the result is incremented by each thread
with its sub-result, setting the result to zero before starting the kernel is essential. In the case of
multi-threading, all threads have to access the same memory location. Therefore, it must be ensured
that no two threads are writing to the identical memory location at the same time. This can be
achieved by extending the added OpenMP compiler instruction above the loop.

In the case of native subtask implementation, attention must be paid to data access, too. Again,
access is first assigned by row to each thread. After the multiplication, the first thread of a block
sums up the results of the other threads of the same block. Afterward, atomicAdd is used to add
the result of the block to the global result, which is a blocking operation. The resulting kernel is
shown in Algorithm 6.6. The complete data access is shown in Figure 6.3, where thread 1 to 𝑙

represent one block, and every color represents a different thread. In this case, the result has to be
set to zero before starting the kernel to avoid multiple access to the same memory location. In this

34

6.1 Linear Algebra Kernels

Algorithm 6.5 Here, the resulting kernel for a vector reduction for the CPU and FPGA is displayed.
The OpenMP compiler instruction can be included optionally when running on the CPU to
dynamically subdivide the loop into subtasks assigned to different threads.

procedure VectorReduction(𝒙, 𝒚, 𝑟 , 𝑁)
𝑟𝑢𝑙𝑧 ← 0(
#pragma omp parallel for reduction(+:r)

)
// OpenMP parallelization

for 𝑖 = 1, 2, . . . , 𝑁 do // Iterate over rows
𝑟 ← 𝑟 + 𝑥 [𝑖] · 𝑦[𝑖]

end for
return 𝑟

end procedure

implementation, the block size is of crucial importance. If the block size is too small, the overhead
of the many launched blocking operations will be too high. If the block size is too large, all threads,
except one of a block, have a lot of idle time.

©«

𝑥1

𝑥𝑙

𝑥𝑙+1

𝑥𝑛

ª®®®®®®®®®®®®®®¬

⊤

·

©«

𝑦1

𝑦𝑙

𝑦𝑙+1

𝑦𝑛

ª®®®®®®®®®®®®®®¬
𝑟

𝑙∑︁
𝑖=1

𝑥𝑖 · 𝑦𝑖

𝑛∑︁
𝑖=𝑙+1

𝑥𝑖 · 𝑦𝑖

+

+

atomicAdd

Figure 6.3: Depicted memory access of a vector reduction kernel on the GPU. The vectors are
of size 𝑁 . Each thread is represented by one color and accesses one element of each
vector. Threads inside one block share the same memory location for the multiplication
of the entries. In each block, the first thread sums up the partial results of the other
threads and adds the result to the global result with a blocking operation.

35

6 Implementation

Algorithm 6.6 Here, the resulting kernel for a vector reduction for the GPU is displayed. All threads
of a block write to a shared memory location. The first thread of a block sums up the results of the
other threads of the same block and adds the result to the global result with a blocking operation.

procedure VectorReduction(𝒙, 𝒚, 𝑟 , 𝑁)
𝑟𝑜𝑤 ← getGlobalID()
𝑙𝑜𝑐𝑎𝑙𝐼𝐷 ← getLocalID()
𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 ← getBlockSize()
if 𝑟𝑜𝑤 < 𝑁 then // Check if current thread is within the bounds of the vectors

𝑡𝑒𝑚𝑝 [𝑙𝑜𝑐𝑎𝑙𝐼𝐷] ← 𝑥 [𝑟𝑜𝑤] · 𝑦[𝑟𝑜𝑤]
else

𝑡𝑒𝑚𝑝 [𝑙𝑜𝑐𝑎𝑙𝐼𝐷] ← 0
end if
syncThreads() //Wait for all threads within same block to finish
if 𝑙𝑜𝑐𝑎𝑙𝐼𝐷 = 0 then

for 𝑖 = 1, 2, . . . , 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 do // Sum up all values in temp
𝑡𝑒𝑚𝑝 [0] ← 𝑡𝑒𝑚𝑝 [0] + 𝑡𝑒𝑚𝑝 [𝑖]

end for
atomicAdd(𝑡𝑒𝑚𝑝 [0], 𝑟) // Add the partial sum to the global result

end if
return 𝑟

end procedure

6.2 Conjugate Gradient Method

The CG, as described in Chapter 4, consists of multiple basic linear operations. In order to fulfill
the predefined abortion criterion Y, the squared norm of the residual 𝛿 can be defined as

𝛿 = ∥ �̃�∥2 = �̃�⊤ �̃�. (6.4)

Together with the maximum amount of steps, this determines the abortion criterion for the while-loop
of the iterative solver. Because of the limited precision of floating point numbers, propagation of
errors occurs. Therefore, error correction can be added by occasionally calculating the residual
by Equation (4.2) instead of Equation (4.6). In this implementation, this is done every 50th step.
Nevertheless, this operation is more expensive and should be avoided, if possible.

All required operations are listed in Table 6.1. In order to reduce data access and calculations, every
operation is implemented separately.

In the case of using the BLAS library, only certain operations are needed. Nevertheless, a BLAS
function is only available in some cases, resulting in possible unnecessary data accesses and
additional operations. It is also important to mention that these functions mostly perform in-place
operations, meaning the result is written to the same memory location as the input. This can be
problematic if the input is still needed in the following steps leading to additional operations by first
copying into temporary memory. All used BLAS functions are listed in Table 6.2.

The resulting CG functions are presented in Algorithm 6.7. On the left, the implementation using
native functions is shown. In the middle, the implementation using BLAS functions is written down.
The comments on the right side indicate the matching equation. In some cases, additional functions

36

6.2 Conjugate Gradient Method

Equation Native Function Template

A 𝒙 r←Ax(A, 𝒙, 𝑁, 𝑁) Algorithm 6.1 & Algorithm 6.2
𝒚 − A 𝒙 r←ymAx(A, 𝒙, 𝒚, 𝛼, 𝑁, 𝑁) Algorithm 6.1 & Algorithm 6.2
𝛼𝒙 + 𝒚 r←axpy(𝒙, 𝒚, 𝛼, 𝑁) Algorithm 6.3 & Algorithm 6.4
𝒙 + 𝛼𝒚 r←xpay(𝒙, 𝒚, 𝛼, 𝑁) Algorithm 6.3 & Algorithm 6.4
𝒙⊤𝒚 𝑟 ←VecReduc(𝒙, 𝒚, 𝑁) Algorithm 6.5 & Algorithm 6.6

Table 6.1: All natively implemented linear algebra kernels are listed here. The first two columns
show the equation and the corresponding native function. The third column shows the
corresponding underlaying template the functions were implemented with.

Equation BLAS Function

𝛼A 𝒙 + 𝛽 𝒚 𝒚 ←gemv(𝑁, 𝑁, 𝛼,A, 𝒙, 𝛽, 𝒚)
𝛼𝒙 + 𝒚 𝒚 ←axpy(𝑁, 𝛼, 𝒙, 𝒚)
𝛼𝒙 𝒚 ←scal(𝑁, 𝛼, 𝒙)
𝒙⊤𝒚 𝑟 ←dot(𝑁, 𝒙, 𝒚)

Table 6.2: All used Basic Linear Algebra Subprograms (BLAS) functions for the Conjugate
Gradient Method algorithm are listed here.

must be performed when using BLAS operations, as an exact implementation is not provided. In
the case of the dot product, the BLAS kernel sets the result to zero, which is why this must not be
performed before the kernel call.

37

6 Implementation

Algorithm 6.7 The CG algorithm implemented with native functions and BLAS functions on the
left and right side respectively are shown. The comments on the right side indicate the matching
equation.

procedure CG(Ã, 𝒃, �̃�, 𝑁, 𝑖max, Y)
�̃� ←ymAx(Ã, �̃�, 𝒃, 𝑁, 𝑁)

𝒅 ← �̃�
𝛿New ← 0
𝛿New ←VecReduc(�̃�, �̃�, 𝑁)
𝛿0 ← 𝛿New
𝑖 ← 0
while 𝑖 < 𝑖max∧Y2𝛿0 < 𝛿New do

𝒒 ←Ax(Ã, 𝒅, 𝑁, 𝑁)
�̃�← 0
�̃�← VecReduc(𝒅, 𝒒, 𝑁)
�̃�← 𝛿New/�̃�
�̃� ← axpy(𝒅, �̃�, �̃�, 𝑁)
if 𝑖%50 then

�̃� ←aAxpy(Ã, �̃�, 𝒃,−1, 𝑁, 𝑁)

else
�̃� ← axpy(𝒒, �̃�,−�̃�, 𝑁)

end if
𝛿Old ← 𝛿New
𝛿New ← 0
𝛿New ←VecReduc(�̃�, �̃�, 𝑁)
𝛽← 𝛿New/𝛿Old
𝑑 ← xpay(�̃�, 𝒅, 𝛽, 𝑁)

𝑖 ← 𝑖 + 1
end while
return �̃�

end procedure

procedure CGblas(Ã, 𝒃, �̃�, 𝑁, 𝑖max, Y)
�̃� ← 𝒅
�̃� ←gemv(𝑁, 𝑁,−1, Ã, �̃�, 1, �̃�)
𝒅 ← �̃�
𝛿New ←dot(𝑁, �̃�, �̃�)

𝛿0 ← 𝛿New
𝑖 ← 0
while 𝑖 < 𝑖max ∧ Y2𝛿0 < 𝛿New do

𝒒 ←gemv(1, Ã, 𝒅, 0, 𝒒, 𝑁, 𝑁)
�̃�← dot(𝑁, 𝒅, 𝒒)
�̃�← 𝛿New/�̃�

�̃� ← axpy(𝑁, �̃�, 𝒅, �̃�)
if 𝑖%50 then

�̃� ← 𝒅
�̃� ←gemv(𝑁, 𝑁,−1, Ã, �̃�, 1, �̃�)

else
�̃� ← axpy(𝑁, �̃�, 𝒒, �̃�)

end if
𝛿Old ← 𝛿New
𝛿New ←dot(𝑁, �̃�, �̃�)

𝛽← 𝛿New/𝛿Old
𝒅 ← scal(𝑁, 𝛽, 𝒅)
𝒅 ← axpy(𝑁, 1, �̃�, 𝒅)
𝑖 ← 𝑖 + 1

end while
return �̃�

end procedure

// �̃� = 𝒃 − Ã · �̃�

// 𝛿New = �̃�⊤ · �̃�

// 𝒒 = Ã · 𝒅
// �̃� =

𝛿New
𝒅⊤ ·𝒒

// �̃� = �̃� · 𝒅 + �̃�

// �̃� = 𝒃 − Ã · �̃�

// �̃� = �̃� − �̃� · 𝒒

// 𝛿New = �̃�⊤ · �̃�

// 𝒅 = �̃� + 𝛽 · 𝒅

38

7 Results

7.1 Runtimes

The different kernels explained in Section 6.1 were investigated in the first step. In Figure 7.1, the
runtimes of the different kernels are plotted using all implementations mentioned in Chapter 3. The
subfigures show the execution time on the CPU and GPU of Chapter 2, respectively. In the case of
matrix-vector operations, only square matrices (𝑁 = 𝑀) are investigated. For better clarity, not all
measuring points and their variance are displayed.

For running on the CPU runtimes of a sequential, OpenMP, native SYCL™, and oneMKL
implementation are compared. With smaller matrix sizes of 𝑁 = 64, the sequential implementation
of the matrix-vector operation provides 𝑡Sequ = 2 µs. This is the fastest runtime on the CPU, as
observable in Figure 7.1a. OpenMP has a runtime of 𝑡OpenMP = 22.6 µs and is more than ten times
slower than the sequential implementation. With 𝑡SYCL™ = 1,426 µs the SYCL™ implementation is
by far the slowest implementation on the CPU. The oneMKL implementation provides a speedup
of nearly ten compared to native SYCL™, but is still slower than the OpenMP implementation.
Slower runtimes of the OpenMP, SYCL™, and oneMKL implementations are caused by non-
neglectable overheads. As the matrices are small, the communication between threads as well
as the data movement between the different caches result in a significant overhead compared to
the computational intensity. With increasing dimension, the overhead becomes less significant.
OpenMP already performs the operation faster than the sequential implementation at 𝑁 = 512.
For SYCL™ and oneMKL this is the case for 𝑁 = 1,024. With larger matrices (𝑁 = 65,536) the
sequential implementation takes with 𝑡Sequ = 7,040,549 µs nearly seven times longer than the other
implementations. The sequential code only uses one core compared to the other implementations
using all six. When taking overhead due to communication between cores into account, a factor
of smaller than six is expected. Due to Hyper-Threading and therefore a more efficient usage of
the cores this speedup increases more, explaining the factor of seven. OpenMP, SYCL™, and
oneMKL show nearly the same runtimes of 𝑡OpenMP = 1,029,308.8 µs, 𝑡SYCL™ = 1,088,051.4 µs,
and 𝑡oneMKL = 1,148,045.4 µs, respectively. The native SYCL™ implementation is slightly faster
than the oneMKL implementation, but in smaller cases performs worse. Meaning, the oneMKL
implementation provides a significant speedup over the native SYCL™ implementation, but only
with smaller matrices. Still, on the CPU OpenMP provides the fastest implementation for large
matrices.

Similar behavior on the CPU can be observed with vector addition in Figure 7.1c. The sequential
implementation is the fastest for small vectors of size 𝑁 = 64. It is seven times faster than
OpenMP, 80 times faster than oneMKL and more than 6,000 times faster than the native SYCL™
implementation. Especially the overhead of the native SYCL™ implementation is enormous. With
increasing vector size, the overheads of the implementations become less significant resulting in
OpenMP and oneMKL catching up with the sequential implementation. With vector sizes 𝑁 > 4,096

39

7 Results

Sequential
oneMKL

OpenMP
CUDA

SYCL™
cuBLAS

103 105

𝑁 [−]

100

102

104

106

108

Ex
ec

ut
io

n
tim

e
[`

m
]

(a) 𝒚 − A 𝒙 on CPU

103 105

𝑁 [−]

100

102

104

106

108

Ex
ec

ut
io

n
tim

e
[`

m
]

(b) 𝒚 − A 𝒙 on GPU

103 105 107 109

𝑁 [−]

100

102

104

106

108

Ex
ec

ut
io

n
tim

e
[`

m
]

(c) 𝛼𝒙 + 𝒚 on CPU

103 105 107 109

𝑁 [−]

100

102

104

106

108

Ex
ec

ut
io

n
tim

e
[`

m
]

(d) 𝛼𝒙 + 𝒚 on GPU

103 105 107 109

𝑁 [−]

100

102

104

106

108

Ex
ec

ut
io

n
tim

e
[`

m
]

(e) 𝒙⊤𝒚 on CPU

103 105 107 109

𝑁 [−]

100

102

104

106

108

Ex
ec

ut
io

n
tim

e
[`

m
]

(f) 𝒙⊤𝒚 on GPU

Figure 7.1: The graphs show runtimes over vector size 𝑁 of representative linear algebra kernels.
Not all measuring points and their variance are displayed for better readability. On the
left side, the runtimes on the CPU are shown, on the right side the runtimes on the
GPU. For the CPU OpenMP, SYCL™, oneMKL, and a sequential implementation are
compared. For the GPU SYCL™, oneMKL, CUDA, and cuBLAS are compared.

40

7.1 Runtimes

both provide better runtimes than the sequential code. The native SYCL™ implementation is
still the slowest. Vector sizes of 𝑁 = 1,073,741,824 are the largest sizes that can be processed by
all implementations. In this case, the OpenMP implementation is the fastest with a runtime of
𝑡OpenMP = 1,002,829.1 µs. This is more than 1.7 times faster than the oneMKL implementation.
The native SYCL™ implementation is more than ten times slower than the OpenMP implementation
and still more than three times slower than the sequential implementation.

The vector reduction kernel (Figure 7.1e) shows a similar behavior as the vector addition kernel.
The sequential implementation is the fastest for small vectors of size 𝑁 = 64 on the CPU. It is
more than ten times faster than OpenMP, 65 times faster than oneMKL and more than 6,000 times
faster than the native SYCL™ implementation. Again OpenMP and oneMKL catch up with the
sequential implementation with increasing vector size. In contrast to the vector addition kernel,
the native SYCL™ implementation provides faster runtimes than the sequential implementation,
but only for large vector sizes 𝑁 > 268,435,456. Investigating the runtimes at 𝑁 = 1,073,741,824,
again, the OpenMP implementation is the fastest. It is more than six times faster than the sequential
implementation. Again, this is explainable due to the sequential implementation only using one core
instead of six and Hyper-Threading. Due to all threads accessing the same memory, the overhead is
slightly bigger than in the matrix-vector operation. Therefore the speedup is minimal smaller. The
oneMKL implementation as well as the native SYCL™ implementation provide equal runtimes and
are only slightly slower (∼ 1.1) than the OpenMP implementation.

For the GPU, the linear algebra kernels were implemented using CUDA, cuBLAS, SYCL™, and
oneMKL. In the case of the matrix-vector operation, all four implementations provide nearly the
same runtimes as shown in Figure 7.1b. Due to the smaller size of the DRAM of the GPU compared
to the DRAM of the CPU, the sizes of the matrix and the vector are more limited. Therefore, not all
matrix sizes can be processed by all implementations. With dimension set to 𝑁 = 64 the differences
in the overheads can be observed. The native CUDA implementation with 𝑡CUDA = 119.6 µs
provides the fastest runtime. The cuBLAS implementation is more than 3.5 times slower and
therefore the slowest implementation. The SYCL™ implementation needs more than two times as
long as the native CUDA implementation and the oneMKL implementation more than 3 times.

The same behavior on the GPU can be observed for the vector addition (Figure 7.1d) and the vector
reduction (Figure 7.1f). For small vectors, the differences in the overheads of the implementations
become visible. Again, the native CUDA implementation is the fastest, while the cuBLAS
implementation is the slowest. SYCL™ and oneMKL are in between. With increasing vector
size, the computational intensity increases and the overheads of the implementations become less
significant. Therefore, all four implementations again provide nearly the same runtimes. The fact
that all implementations provide nearly the same runtimes for large problems indicates that the data
movement between the CPU and the GPU is more time-consuming than the actual computation.

A comparison of the architectures is achieved in Figure 7.2 by plotting the runtime over the size of
the problem for a representative of each device. Again, for readability reasons not all data points
and their respective variance are plotted. In the case of the CPU, the OpenMP implementation is
used as it provides the fastest results. The cuBLAS implementation is used for the GPU. For the
FPGA, the native SYCL™ implementation had to be used as SYCL™ is the only library providing
the possibility to include FPGA devices. Although oneMKL states that it is possible to use FPGA
devices, the oneMKL implementation could not be run on the FPGA device. As the different

41

7 Results

devices provide different computational power, the runtimes of the kernels can be scaled with their
theoretical peak performance, resulting in a pseudo-efficiency. This pseudo-efficiency is plotted
over the dimension 𝑁 in Figure 7.2 as well.

In all cases (matrix-vector operation, vector addition, and vector reduction), the CPU was the fastest
device. However, this is because of a considerable overhead. The matrices and vectors must be
moved back and forth from the CPU to the GPU and FPGA, respectively. As only one simple linear
algebra operation is performed, the overhead is significant, resulting in the runtime of the CPU
being much lower than the runtime of the GPU and FPGA.

Figure 7.2a, showing runtimes for the matrix-vector multiplication, indicates a faster execution of
the GPU in comparison to the FPGA, while the scaling is similar. The GPU is able to perform the
matrix-vector multiplication around five times faster than the FPGA independent of the sizes. The
CPU is significantly faster and has a runtime of 𝑡CPU = 19,990.7 µs for 𝑁 = 8,192. With a matrix
of size 8,192 × 8,192 and three vectors of size 8,192, the minimal duration of copying the data back
and forth to the GPU would be 33,566.72 µs as the GPU is connected via PCIe 3.0 x16. This is
more than 1.5 times the runtime of the CPU, explaining why the CPU is faster than the GPU. The
same holds for the FPGA.

Figure 7.2c shows that the FPGA is significantly slower and, more importantly, scales a lot worse
than the CPU and GPU in case of vector addition. For 𝑁 = 64 the FPGA needs 𝑡FPGA = 644.6 µs to
perform the vector addition, while the CPU needs 𝑡CPU = 6.8 µs and the GPU 𝑡GPU = 425.1 µs. In
this case, the CPU is around 60 times faster than the GPU and even nearly 100 times faster than the
FPGA. The GPU becomes faster for larger dimensions resulting in the runtime only being a factor
of five slower for 𝑁 = 16,777,216. For the FPGA the runtime is more than 1,000 times slower,
underlying the insufficient scaling of the FPGA for vector addition.

The vector reduction is the only kernel where the FPGA can compete with the GPU, as shown in
Figure 7.2e. Both devices are still significantly slower than the CPU, but this is again because of the
overhead. With 𝑡GPU = 396.3 µs and 𝑡FPGA = 421.1 µs the GPU and FPGA, respectively, provide
similar runtimes for 𝑁 = 64. For sizes of 𝑁 = 16,777,216 the CPU is around five times faster than
the GPU and around 40 times faster than the FPGA. The GPU is still faster than the FPGA, but the
difference is not as significant as for the vector addition.

The matrix-vector operation reveals an equal pseudo-efficiency for the GPU and the FPGA, while
the CPU is significantly more efficient with a factor of at least 380. Still, this pseudo-efficiency
also contains the overhead due to the data transfer, resulting in a significant difference between the
pure kernel launch pseudo-efficiency and the shown pseudo-efficiency in Figure 7.2b. As already
observed in the runtime of the vector addition, Figure 7.2d states similar results for the efficiency.
The FPGA can not keep up with the GPU. The vector reduction is the only kernel where the FPGA
provides a better pseudo-efficiency than the GPU, as one can see in Figure 7.2f. Still, the overhead
of the data transfer is significant, resulting in the pseudo-efficiency of the FPGA being lower than
the pseudo-efficiency of the CPU.

The runtimes of the complete CG implementation point out similar relations as the runtimes of
the kernels for the CPU (Figure 7.3). The sequential algorithm is the fastest for small vector sizes,
because there is no implied overhead. It is more than 15 times faster than OpenMP, nearly 100
times faster than oneMKL and 300 times faster than the native SYCL™ implementation in case
of 𝑁 = 64. For increasing problem sizes the OpenMP implementation becomes the fastest code.
For 𝑁 = 8,192 the OpenMP implementation is around five times faster than the sequential code.

42

7.1 Runtimes

OpenMP (CPU) SYCL™ (FPGA) cuBLAS (GPU)

103 105

𝑁 [−]

100

102

104

106

108

Ex
ec

ut
io

n
tim

e
[`

m
]

(a) Selected comparisons of 𝒚 − 𝛼A𝒙

103 105

𝑁 [−]

100

102

104

106

Ps
eu

do
-e

ffi
ci

en
cy
[`

m
·T

FL
O

PS
]

(b) Scaled comparisons of 𝒚 − 𝛼A𝒙

103 105 107 109

𝑁 [−]

100

102

104

106

108

Ex
ec

ut
io

n
tim

e
[`

m
]

(c) Selected comparisons of 𝛼𝒙 + 𝒚

103 105 107 109

𝑁 [−]

100

103

106

109

Ps
eu

do
-e

ffi
ci

en
cy
[`

m
·T

FL
O

PS
]

(d) Scaled comparisons of 𝛼𝒙 + 𝒚

103 105 107 109

𝑁 [−]

100

102

104

106

108

Ex
ec

ut
io

n
tim

e
[`

m
]

(e) Selected comparisons of 𝒙⊤𝒚

103 105 107 109

𝑁 [−]

100

102

104

106

Ps
eu

do
-e

ffi
ci

en
cy
[`

m
·T

FL
O

PS
]

(f) Scaled comparisons of 𝒙⊤𝒚

Figure 7.2: The plots illustrate runtimes and pseudo-efficiency over vector size 𝑁 of representative
linear algebra kernels. For better clarity, not all measuring points and their variance are
plotted. OpenMP is used as representative for the CPU, cuBLAS for the GPU, and
SYCL™ for the FPGA. The pseudo-efficiency is calculated by multiplying the runtime
with the theoretical peak performance.

43

7 Results

SYCL™ and oneMKL provide similar runtimes that are approximately two times slower than the
OpenMP implementation. It is observable in Figure 7.3 that the optimizations of oneMKL are
effective only for smaller problem sizes, as it only provides faster runtimes for smaller 𝑁 .

102 103 104

𝑁 [−]

100

102

104

106

108

1010

Ex
ec

ut
io

n
tim

e
[`

m
]

Sequ OpenMP SYCL™ oneMKL

Figure 7.3: Runtimes over problem size 𝑁 of the CG implementations on the CPU are compared
here. The implementations are the sequential code, the OpenMP implementation, the
native SYCL™ implementation and the oneMKL implementation.

Figure 7.4 shows the runtimes of the CG implementations on the GPU. In this case, the overhead
of moving the data to the GPU is negligible compared to the runtime of the kernels. For smaller
problems, both implementations using SYCL™ indicate a slightly larger overhead compared to
the CUDA implementations. This results in the CUDA implementations being around three times
faster than the SYCL™ implementations in case of 𝑁 = 64. For larger problems, the overhead of
the SYCL™ implementations is negligible. Overall, the BLAS libraries oneMKL and cuBLAS,
increase efficiency with increasing problem size compared to the native implementations. For a
problem size of 𝑁 = 16,384 the cuBLAS implementation and the oneMKL implementation need
𝑡cuBLAS = 773 s and 𝑡oneMKL = 785 s, respectively. This is around four times faster than the native
SYCL™ 𝑡SYCL™ = 3,067 s and CUDA 𝑡CUDA = 3,318 s implementations.

Again, the OpenMP implementation as the fastest representative for the CPU can be compared
with the cuBLAS implementation as the fastest representative for the GPU and the SYCL™
implementation as the only one that runs on the FPGA. This is shown in Figure 7.5. Since the
computational effort increases significantly compared to a single linear algebra kernel, the overhead
of moving the data back and forth from CPU to GPU and FPGA is less significant. Therefore, the
comparison is more meaningful. Independent of the vector size, the FPGA is always by far the
slowest device. The runtimes are always at least ten times longer than the ones of the CPU and
GPU. This is due to the slow performance of the vector addition. For small problems, the OpenMP
implementation is the fastest and close to two times faster than the cuBLAS code. It is important to
mention that, due to the overhead, OpenMP was not the fastest implementation on the CPU in cases
of small problems. Therefore, the sequential implementation would state an even more significant
advantage of the CPU over the GPU with a factor of 30. With increasing problem size, the GPU
becomes significantly faster than every other device, solving for the solution vector the fastest. In

44

7.1 Runtimes

102 103 104

𝑁 [−]

100

102

104

106

108

1010

Ex
ec

ut
io

n
tim

e
[`

m
]

CUDA SYCL™ cuBLAS oneMKL

Figure 7.4: Graphs show runtimes over problem size 𝑁 of the CG implementations on the GPU.
SYCL™, oneMKL, CUDA, and cuBLAS are compared.

case of 𝑁 = 8,192 it is already faster than the CPU by a factor of six. With the runtimes increasing
rapidly, not all devices were able to solve the problem in a reasonable time. That is why CPU and
especially FPGA runtimes are not depicting runtimes for large problems.

102 103 104

𝑁 [−]

100

102

104

106

108

1010

Ex
ec

ut
io

n
tim

e
[`

m
]

CPU (OpenMP) FPGA (SYCL™) GPU (cuBLAS)

Figure 7.5: The graphs illustrate runtimes over problem size 𝑁 of the CG implementations. OpenMP
is used as the representative for the Central Processing Unit (CPU), cuBLAS for the
GPU and SYCL™ for the FPGA.

Also, in the case of the CG, the runtimes can be scaled with the theoretical peak performance of the
devices. This is shown in Figure 7.6. This points out the CPU as the most efficient device for the
CG implementation. Even for large problem sizes like 𝑁 = 8,192 the pseudo-efficiency is higher by
1.66 compared to the pseudo-efficiency of the GPU. This makes the GPU the second most efficient
device, while the FPGA still performs poorly.

45

7 Results

102 103 104

𝑁 [−]

100

102

104

106

108

1010

Ps
eu

do
-e

ffi
ci

en
cy
[`

m
·T

FL
O

PS
] CPU (OpenMP) FPGA (SYCL™) GPU (cuBLAS)

Figure 7.6: Pseudo-efficiencies over problem size 𝑁 of the CG implementations are plotted here.
OpenMP is used as the representative for the CPU, cuBLAS for the GPU and SYCL™
for the FPGA. The pseudo-efficiency is calculated as the multiplication of the theoretical
peak performance of the respective device and the runtime of the implementation.

7.2 Performance Portability Analysis

In order to perform a performance portability analysis, the metric described in Chapter 5 is used.
The analysis is applied to the CG implementations with a vector size of 𝑁 = 4096, as this is the
largest problem size that all devices were capable of solving. Again each implementation is executed
ten times on each device. These runtimes are then averaged. The best averaged runtimes of each
device are listed in Table 7.1.

𝑝 min𝑞∈𝑄 𝑡 [`s]

CPU 1.960e7
GPU 2.445e6
FPGA 3.259e9

Table 7.1: Fastest achieved averaged runtimes of the CG implementations on each device for
𝑁 = 4,096 are listed here.

The amount of ideal floating point operations must be determined to calculate the architectural
efficiency. In Table 7.2, the ideal amount of operations for the linear algebra operations used in the
while-loop of the CG algorithm is listed.

Table 7.3 shows runtimes and the corresponding applicational as well as architectural efficiencies
for the CG implementations. The architectural efficiency is calculated by using only one iteration of
the loop. Therefore, the runtime of the CG is divided by the amount of iterations. This implies
an overhead since moving the data and calculations before the loop can not be excluded from the
runtime.

46

7.2 Performance Portability Analysis

Routine 𝑜ideal

𝒒 = Ã · 𝒅 (𝑁 + (𝑁 − 1)) · 𝑁
�̃� =

𝛿New
𝒅⊤ ·𝒒 1 + 𝑁 + (𝑁 − 1)

�̃� = �̃� · 𝒅 + �̃� 𝑁 + 𝑁
�̃� = 𝒃 − Ã · �̃� (𝑁 + (𝑁 + (𝑁 − 1)) · 𝑁) · 1/50
�̃� = �̃� − �̃� · 𝒒 (𝑁 + 𝑁) · 49/50
𝛿New = �̃�⊤ · �̃� 𝑁 + (𝑁 − 1)
𝛽 =

𝛿New
𝛿Old

1
𝒅 = �̃� + 𝛽 · 𝒅 𝑁 + 𝑁
𝑖 = 𝑖 + 1 1

Total 51
25𝑁

2 + 224
25 𝑁 + 1

Table 7.2: Here, the ideal amount of floating point operations of each subtask for the CG imple-
mentation is calculated.

𝑞 𝑝 𝑡 [`s] 𝑒App. Eff. [%] 𝑒Arch. Eff. [%]

OpenMP CPU 1.960e7 100 0.02518
OpenMP GPU - - -
OpenMP FPGA - - -
CUDA CPU - - -
CUDA GPU 5.685e7 4.301 0.0005215
CUDA FPGA - - -
cuBLAS CPU - - -
cuBLAS GPU 2.445e6 100 0.01176
cuBLAS FPGA - - -
SYCL™ CPU 3.778e7 51.88 0.01299
SYCL™ GPU 6.022e7 4.060 0.0005219
SYCL™ FPGA 3.259e9 100 7.966e−5
oneMKL CPU 3.564e7 54.99 0.01269
oneMKL GPU 3.778e6 64.72 0.007607
oneMKL FPGA - - -

Table 7.3: The table lists runtimes and efficiencies of the CG implementations with 𝑁 = 4,096 on
the CPU, GPU, and FPGA using OpenMP, CUDA, cuBLAS, SYCL™, and oneMKL.

47

7 Results

As already discussed in Section 7.1, the OpenMP implementation is the fastest implementation
for the CPU. This is the reason why its applicational efficiency is 100 %. The same holds for the
cuBLAS code on the GPU. As the native SYCL™ implementation is the only one running on the
FPGA it also has a applicational efficiency of 100 %.

When looking at the architectural efficiencies, it is observable that all CPU implementations are
more efficient than the ones on the GPU. This means that even for the CG implementation, consisting
of basically only matrix and vector operations, the GPU is not more efficient than the CPU. This
underlines the statement of Chapter 2, that it is challenging to design a GPU kernel that is more
efficient than the CPU implementation. In the case of the FPGA the efficiency is extremely low. As
originally the FPGA promised high efficiency, this is unexpected and underlines the need for further
research and optimizations.

The final results of the performance portability analysis are shown in Table 7.4. Only SYCL™ is
able to achieve performance portability that is not zero. It is still worth mentioning that separate
kernels for the FPGA and GPU had been written in the native SYCL™ implementation. Otherwise,
the performance would have been significantly worse.

𝑞 𝒫App. Eff. [%] 𝒫Arch. Eff. [%]

OpenMP 0 0
CUDA 0 0
cuBLAS 0 0
SYCL™ 10.89 2.062e−4
oneMKL 0 0

Table 7.4: Results of the performance portability analysis for the CG with 𝑁 = 4,096 implementa-
tions are shown in this table.

48

8 Conclusion and Outlook

The main goal of this work was to investigate the performance of SYCL™ on different hardware
architectures. Therefore, a performance portability analysis was performed. At first, different
hardware architectures were briefly described and APIs to execute code on these hardware devices.
Next, the CG algorithm was briefly explained as it provides a good benchmark for the performance
of the APIs. Also, a metric to perform a performance portability analysis was introduced.

In order to be able to compare the performance of SYCL™ to other APIs, a reference implementation
was needed. Therefore, a CUDA implementation was written for the GPU as well as an OpenMP
implementation for the CPU. The different linear algebra operations needed for the CG were
investigated separately for a deeper understanding. The results show that the runtimes of SYCL™
are in the range of OpenMP implementation for the CPU. The same holds for a native implementation
of the linear algebra operations on the GPU with CUDA and SYCL™. When using cuBLAS,
the performance is significantly better. With the oneMKL, similar runtimes can be achieved.
Additionally, SYCL™ was able to run on the FPGA, although the performance was not as good as
on the CPU and GPU, especially in the case of vector addition.

After investigating the linear algebra operations separately, the CG algorithm was implemented in
SYCL™ and compared to the reference implementations. The results show that the performance of
SYCL™ is in the range of the OpenMP implementation for the CPU and the CUDA implementation
for the GPU as well. The same holds for the oneMKL implementation on the GPU compared to
cuBLAS. When executing on the FPGA, the runtimes were also poor.

The performance portability analysis led to unexpected disappointing results. Except for the native
SYCL™ implementation, none of the programs could run on all devices and end up with a score
of zero. As using oneMKL on the FPGA was not possible, the efficiency of the native SYCL™
implementation on the GPU was unsatisfactory, leading to a extremely low scoring. Overall, the
performance of SYCL™ was not as good as expected.

As a next step, possible optimizations for the FPGA could be investigated and implemented,
especially in the case of vector addition. Combining oneMKL with the native FPGA implementation
for the FPGA could be a way to enhance the performance portability, especially as oneMKL
performed well on the GPU and CPU.

If Intel® provides an oneMKL implementation for the FPGA in the future, a performance portability
analysis could be performed again. This work showed that the performance of oneMKL is very
good compared to native SYCL™ implementations, so a higher score could be expected.

49

Bibliography

[1] I. Baratta, C. Richardson, G. Wells. “Performance analysis of matrix-free conjugate gradient
kernels using SYCL”. In: International Workshop on OpenCL. IWOCL’22. New York, NY,
USA: Association for Computing Machinery, May 2022, pp. 1–10. isbn: 978-1-4503-9658-5.
doi: 10.1145/3529538.3529993. url: https://dl.acm.org/doi/10.1145/3529538.3529993
(visited on 04/12/2023) (cit. on p. 15).

[2] S. Blackford, G. Corliss, J. Demmel, J. Dongarra, I. Du, S. Hammarling, G. Henry, M. Heroux,
C. Hu, W. Kahan, L. Kaufman, B. Kearfott, F. Krogh, X. S. Li, Z. Maany, A. Petitet, R. Pozo,
K. Remington, W. Walster, C. Whaley, J. W. V. Gudenberg. “Document for the Basic
Linear Algebra Subprograms (BLAS) standard: BLAS Technical Forum”. In: 2001. url:
https://www.semanticscholar.org/paper/Document-for-the-Basic-Linear-Algebra-

Subprograms-Blackford-Corliss/6986ad2142883178202a709c870cb0b690fa5c77 (visited on
03/23/2023) (cit. on p. 25).

[3] S. Cali, W. Detmold, G. Korcyl, P. Korcyl, P. Shanahan. Implementation of the conjugate
gradient algorithm for heterogeneous systems. arXiv:2111.14958 [hep-lat]. Nov. 2021. doi:
10.48550/arXiv.2111.14958. url: http://arxiv.org/abs/2111.14958 (visited on 04/12/2023)
(cit. on p. 15).

[4] L. Dagum, R. Menon. “OpenMP: an industry standard API for shared-memory programming”.
In: IEEE Computational Science and Engineering 5.1 (Jan. 1998). Conference Name: IEEE
Computational Science and Engineering, pp. 46–55. issn: 1558-190X. doi: 10.1109/99.
660313 (cit. on p. 23).

[5] M. Hestenes, E. Stiefel. “Methods of conjugate gradients for solving linear systems”. en. In:
Journal of Research of the National Bureau of Standards 49.6 (Dec. 1952), p. 409. issn:
0091-0635. doi: 10.6028/jres.049.044. url: https://nvlpubs.nist.gov/nistpubs/jres/
049/jresv49n6p409_A1b.pdf (visited on 03/03/2023) (cit. on p. 27).

[6] Intel®. Intel® 64 and IA-32 Architectures Software Developer’s Manual, Combined Volumes:
1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. en. Dec. 2022 (cit. on p. 18).

[7] Intel®. Intel® Arria® 10 Device Datasheet. en. Feb. 2022 (cit. on p. 21).
[8] Intel®. Intel® Arria® 10 Product Table (Gen-1010-2.1). en (cit. on p. 21).
[9] Intel®. Intel® oneAPI Math Kernel Library. 2023 (cit. on p. 25).

[10] Intel® Xeon® Gold 6128 Processor (19.25M Cache, 3.40 GHz) Product Specifications. en.
url: https://www.intel.com/content/www/us/en/products/sku/120482/intel-xeon-gold-
6128-processor-19-25m-cache-3-40-ghz.html (visited on 04/03/2023) (cit. on p. 18).

51

https://doi.org/10.1145/3529538.3529993
https://dl.acm.org/doi/10.1145/3529538.3529993
https://www.semanticscholar.org/paper/Document-for-the-Basic-Linear-Algebra-Subprograms-Blackford-Corliss/6986ad2142883178202a709c870cb0b690fa5c77
https://www.semanticscholar.org/paper/Document-for-the-Basic-Linear-Algebra-Subprograms-Blackford-Corliss/6986ad2142883178202a709c870cb0b690fa5c77
https://doi.org/10.48550/arXiv.2111.14958
http://arxiv.org/abs/2111.14958
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.6028/jres.049.044
https://nvlpubs.nist.gov/nistpubs/jres/049/jresv49n6p409_A1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/049/jresv49n6p409_A1b.pdf
https://www.intel.com/content/www/us/en/products/sku/120482/intel-xeon-gold-6128-processor-19-25m-cache-3-40-ghz.html
https://www.intel.com/content/www/us/en/products/sku/120482/intel-xeon-gold-6128-processor-19-25m-cache-3-40-ghz.html

[11] M. Khalilov, A. Timoveev. “Performance analysis of CUDA, OpenACC and OpenMP
programming models on TESLA V100 GPU”. en. In: Journal of Physics: Conference
Series 1740.1 (Jan. 2021). Publisher: IOP Publishing, p. 012056. issn: 1742-6596. doi:
10 . 1088 / 1742 - 6596 / 1740 / 1 / 012056. url: https : / / dx . doi . org / 10 . 1088 / 1742 -

6596/1740/1/012056 (visited on 04/12/2023) (cit. on p. 16).
[12] M. Krainiuk, M. Goli, V. R. Pascuzzi. “oneAPI Open-Source Math Library Interface”. In:

2021 International Workshop on Performance, Portability and Productivity in HPC (P3HPC).
Nov. 2021, pp. 22–32. doi: 10.1109/P3HPC54578.2021.00006 (cit. on p. 16).

[13] NVIDIA. cuBLAS (Release 12.1). Feb. 2023. url: https://docs.nvidia.com/cuda/pdf/
CUBLAS_Library.pdf (cit. on p. 25).

[14] NVIDIA. CUDA C++ Programming Guide (Release 12.1). Feb. 2023. url: https://docs.
nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf (cit. on pp. 19, 24).

[15] NVIDIA. NVIDIA QUADRO GP100 Data Sheet. en. url: https://www.pny.com/file%
20library/company/support/product%20brochures/nvidia%20quadro/english/pny-

nvidia-quadro-gp100-datasheet-mixed-mode-computation.pdf (cit. on p. 19).
[16] NVIDIA. NVIDIA Tesla P100. en. url: https://images.nvidia.com/content/pdf/tesla/

whitepaper/pascal-architecture-whitepaper.pdf (cit. on p. 19).
[17] OpenMP Architecture Review Board. OpenMP Application Program Interface (Version 4.0).

July 2013. url: https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf (cit. on
p. 23).

[18] S. J. Pennycook, J. D. Sewall, V. W. Lee. A Metric for Performance Portability.
arXiv:1611.07409 [cs]. Nov. 2016. url: http://arxiv.org/abs/1611.07409 (visited
on 03/08/2023) (cit. on p. 29).

[19] J. R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing
Pain. Technical Report. USA: Carnegie Mellon University, 1994 (cit. on p. 27).

[20] The Khronos® SYCL™ Working Group. SYCL™ 2020 Specification (revision 6). Nov. 2022.
url: https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf (cit. on
p. 25).

All links were last followed on April 11, 2023.

https://doi.org/10.1088/1742-6596/1740/1/012056
https://dx.doi.org/10.1088/1742-6596/1740/1/012056
https://dx.doi.org/10.1088/1742-6596/1740/1/012056
https://doi.org/10.1109/P3HPC54578.2021.00006
https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.pny.com/file%20library/company/support/product%20brochures/nvidia%20quadro/english/pny-nvidia-quadro-gp100-datasheet-mixed-mode-computation.pdf
https://www.pny.com/file%20library/company/support/product%20brochures/nvidia%20quadro/english/pny-nvidia-quadro-gp100-datasheet-mixed-mode-computation.pdf
https://www.pny.com/file%20library/company/support/product%20brochures/nvidia%20quadro/english/pny-nvidia-quadro-gp100-datasheet-mixed-mode-computation.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://arxiv.org/abs/1611.07409
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Hardware
	2.1 Central Processing Unit
	2.2 Graphics Processing Unit
	2.3 Field-Programmable Gate Array

	3 Software
	3.1 Open Multi-Processing
	3.2 Compute Unified Device Architecture
	3.3 sycl
	3.4 Basic Linear Algebra Subprograms

	4 Conjugate Gradient Method
	5 Performance Portability
	6 Implementation
	6.1 Linear Algebra Kernels
	6.2 Conjugate Gradient Method

	7 Results
	7.1 Runtimes
	7.2 Performance Portability Analysis

	8 Conclusion and Outlook
	Bibliography

