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Abstract:

In this work, we present the implementation of a two-scale heat conduction problem in porous
media simulation software DuMux, where macro and micro simulations are coupled using the
coupling library preCICE, as well as its DuMux adapter and micro manager. We show that
multiscale coupled simulations can generally be realised using these software components, and
provide a tutorial case for future users. As the same example problem has an existing Nutils
implementation, we also compare the results of the various combinations of Nutils and DuMux

macro and micro simulations with each other.
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1 Introduction

1.1 Motivation and research questions

The coupling library preCICE [1] couples existing solver software and programs into one connected
yet partitioned simulation, allowing users to select a specialized software component for each
part of their problem. This can be of great use for multidomain, multiphysics and multiscale
simulations. To streamline the coupling procedure and improve user experience, preCICE also
develops and maintains its own adapters to many standard open-source solvers.

One of the more recent releases has been the DuMux adapter1. DuMux [2] is an open-source
simulation software for Multi-{Phase, Component, Scale, ...} flow and transport in porous media,
developed in C++. It is based on DUNE [3], a toolbox for solving PDEs with grid-based methods.
The DuMux adapter, following the classic adapter design patter, forms the interface between
preCICE and DuMux, providing standard preCICE functions adapted to DuMux syntax, as well
as additional functionalities mostly related to the storage of the communicated data, and to making
them accessible to the various components of the DuMux simulation.

While the adapter has already been used in multi-domain problems coupling between free flow
and porous medium flow [4], it has not yet been tested in multiscale simulations. Especially for
porous media problems as simulated by DuMux, these are however of particular relevance, as pore-
scale phenomena can often have a significant effect on Darcy-scale behaviour. Given the extreme
computational costs of simulating at pore-scale over macro-scale simulation domain, multi-scale
simulations offer a more feasible alternative. Hence the importance of testing the DuMux adapter
for such applications.

Additionally, this is of particular interest due to its potential uses in the current research
surrounding adaptive macro-micro simulations with preCICE and the preCICE Micro Manager [5],
a python-based tool designed to efficiently facilitate many-to-one coupling. Furthermore, the
adapter has so far only been used in DuMux-DuMux coupled simulations.

All of these aspects lead to two main research questions:

• Can multi-scale coupling using DuMux, preCICE, the DuMux adapter and the Micro Man-
ager be achieved?

1https://github.com/precice/dumux-adapter

https://github.com/precice/dumux-adapter
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• Is the current DuMux adapter capable of handling multiscale simulations? If not, what is
missing and which extensions are necessary?

In response, we therefore present an example of a two-scale ("micro-macro") problem coupled
via preCICE, the DuMux adapter and the Micro Manager, showcasing the compatibility of the
software components with each other and testing the DuMux adapter’s capabilities in a multi-
scale context, as well as coupling it to a different solver for the first time. As a way to verify our
numerical results, and to test the inter-solver coupling between DuMuX and Nutils, we compare
our results to an existing implementation of the same test problem in Nutils, a python-based
library for Finite Element Method computations [6]. We test all four possible combinations of
macro- and micro simulations.

Figure 1.1: General setup of the communications chain for all four simulation components.
Micro simulations may be active (purple) or inactive (grey).

1.2 The software stack

The general setup and chain of communications of the coupled simulations for all four compo-
nents is shown in Figure 1.1. preCICE uses a partitioned blackbox approach to coupling, i.e.
after initialization where grid information on the macro side is used to launch the correct micro
simulation, only select input and output data is exchanged between the simulations. The macro
simulation is coupled directly via preCICE using its corresponding preCICE adapter.
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On the micro side, no adapter is used. Instead, the preCICE Micro Manager [5] handles the
many-to-one coupling of the micro simulations. As it is python-based, this requires using the
python bindings for DuMux micro simulations, which are written in C++. The Micro Manager
can adaptively activate and deactivate micro simulations using on adaptivity criteria based on the
input and output data communicated. Micro simulations can be launched at arbitrary points of
the macro simulation. In the DuMux example project, there is only exactly one micro simulation
per macro cell, situated at the cell center (see Figure 1.2).

Macro domain X Micro domain Y

grain

void

Figure 1.2: Illustration of the two-scale simulation.



2 Theory of the coupled heat problem

Porous media problems lend themselves to a multi-scale approach whenever changes in the mi-
crostructure (at pore-scale) become significant enough to impact macroscopic phenomena, such
as flow behaviour or heat conductivity. Reasons for deformation on the microscale include min-
eral precipitation and dissolution as detailed in [7], and temperature changes, as described in the
two-scale heat conduction problem in [5]. We choose the latter as our example problem to test
the DuMux adapter in a realistic setting, as it has already been implemented1 in Nutils.

In the following, the problems on both scales are explained:

2.1 The micro problem

On the micro scale, the porous medium consists of solid circular "grains" of one material, sur-
rounded by "void" (pores) filled with a second, different material, which can be imagined as sand
or a stationary fluid. The specifics of these materials beyond their respective densities ρg, ρv, spe-
cific heat capacities cg, cv and heat conductivities kg, kv mostly don’t matter, as in the constructed
problem there is no flow and the equations are dimensionless. Based on the current corresponding
macro temperature, each simulation on the micro scale simulates the expansion or contraction of
a single grain of the porous medium. We achieve this by using a phase-field approach as proposed
in [8]; the changing cell geometry is represented by a phase-field indicator ϕ, which approaches 0

within the grain, and 1 in the void. Between these, a transition layer of non-vanishing width is
constructed, in which ϕ changes smoothly. This eradicates the need for differentiation between
time-dependent void and grain domains, as the same equations now apply consistently across the
whole micro domain Y. Each micro-simulation then essentially goes through the same four steps
(for further details and the derivation of the following equations see [5] and [8]):

1. The evolution of the phase-field based on the macro temperature u is determined by solving
the Allen-Cahn equation

λ2∂tϕ+ γP ′(ϕ) = γλ2∇2ϕ− 4λϕ(1− ϕ)f(u), (2.1)

1https://github.com/IshaanDesai/coupled-heat-conduction

https://github.com/IshaanDesai/coupled-heat-conduction
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where P (ϕ) = 8ϕ2(1 − ϕ)2 is the double-well potential, γ is the diffusion coefficient and
f(u) = ku

(
u2

u2
eq
− 1

)
determines the rate at which grains expand or contract, dependent on

a constant ku and an equilibrium temperature ueq.

2. The "cell problem"

∇ · ((kg(1− ϕ) + kvϕ)(ej +∇ψj)) = 0 with
∫

Y
ψjdy = 0 (2.2)

is solved for the weights ψj.

3. Integrating the updated ϕ over the entire micro domain returns the porosity Φ =
∫
Y ϕdy.

4. Using the calculated ψj, the effective upscaled conductivity matrix K = (Kij) is determined
by means of

Kij =

∫
Y
(kg(1− ϕ) + kvϕ)(δij + ∂yiψ

j)dy. (2.3)

Φ and K are then passed to the macro problem.

2.2 The macro problem

On the macro scale, there is no differentiation between the different materials; instead, we assume a
homogenous "porous medium", with porosity Φ and (potentially anisotropic) effective conductivity
tensor K as communicated by the micro problem. Each macro cell then solves the heat equation

∂t(Φρvcvu+ (1− Φ)ρgcgu) = ∇ · (K∇u) in X (2.4)

for temperature u, which is consequently passed to the corresponding micro problem.



3 The DuMux implementation of the
macro and micro simulations

For simplicity, we use a structured, regular 2D grid in both the macro and micro simulation. At the
center of each grid cell, a micro-simulation is launched, leading to a 1-to-1 correspondence between
macro grid cells and micro simulations, which differs from the use of several macro simulations
per (triangular) macro cell in [5].

All three of our model equations - the macro heat equation, the Allen-Cahn equation and
equation of the cell problem can be brought into the form of a balance equation

∂m(u)

∂t
+∇ · f(u,∇u) + q(u) = 0, (3.1)

where u is the quantity to be solved for, m is the storage, f is the flux, and q is the source. In
DuMux, m, f and q have to be implemented depending on the specific problem and discretization.
In our case, both macro and micro DuMux equations are spatially discretized using the same
cell-centered finite volume scheme, the two-point flux approximation (TPFA). The general finite
volume theory detailed here has been taken mostly from the dumux handbook1.

3.1 Finite volumes and the CCTPFA discretization

Finite volume formulations are derived by integrating the relevant equations over a control volume
K and applying the Gauss divergence theorem. For cell-centered schemes, the control volumes
correspond directly to the grid elements. For (3.1), this leads to∫

K

∂m(u)

∂t
dΩ +

∫
∂K

f(u,∇u) · ndΓ +

∫
K

qdx = 0, (3.2)

and discretely,

MK +
∑
σ∈∂K

FK,σ +QK = 0, (3.3)

1https://dumux.org/docs/handbook/releases/3.6/dumux-handbook.pdf

https://dumux.org/docs/handbook/releases/3.6/dumux-handbook.pdf
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where FK,σ is a discrete approximation FK,σ ≈
∫
σ
f(u,∇u) · ndΓ of the exact flux through face σ

flowing out of cell K. Amongst other aspects, finite volume schemes most strongly differ through
how they define this approximative term FK,σ. Our three flux terms

(i) −(γλ2∇ϕ) · n for the Allen-Cahn equation,

(ii) −((kg(1− ϕ) + kvϕ)∇ψj) · n for the cell problem and

(iii) −(K∇u) · n for the macro heat equation

can all be written in the form (−Λ∇u) · n for a 2 × 2 tensor Λ, i.e. FK,σ ≈
∫
σ
(−ΛK∇u) · ndΓ.

We assume ΛK to be symmetric and positive definite, which is trivial for (i) and (ii); for (iii),
off-diagonal elements approach zero. Then (ΛK∇u) · n = ∇u ·ΛKn, the directional derivative of
u in direction ΛKn. For TPFA, we then apply co-normal decomposition

ΛKnK,σ = tK,σdK,σ + d⊥
K,σ with tK,σ =

nT
K,σΛKdK,σ

dT
K,σdK,σ

, (3.4)

where dK,σ is the distance vector between the cell center and the center of the shared face between
two adjacent cells and d⊺

K,σd
⊥
K,σ = 0 (see Figure 3.1). The tK,σ are called transmissibilities. We

neglect the second term, resulting in

∇u ·ΛKnK,σ ≈ tK,σ∇u · dK,σ ∀K, σ. (3.5)

Using ∇u · dK,σ ≈ uσ − uK , we finally arrive at our flux approximation

FK,σ = −|σ|tK,σ(uσ − uK). (3.6)

We use local flux conservation FK,σ + FL,σ = 0 to derive

uσ =
tK,σuK + tL,σuL
tK,σ + tL,σ

(3.7)

and obtain

FK,σ = |σ| tK,σtL,σ
tK,σ + tL,σ

(uK − uL), (3.8)

as discrete values are generally defined at cell centers. TPFA is only consistent for cases in which
∇u · d⊥

K,σ ≈ 0. For the regular, rectangular grid used here, this condition is always fulfilled.
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Figure 3.1: Two adjacent cells K, L, with common face σ and cell centers xK , xL.2

3.2 The DuMux implementation of the macro simulation

In DuMux, we construct the heat conduction problem as a single phase non-isothermal (OnePNI)
porous medium flow problem, which is solved using Newton’s method and an implicit Euler scheme.
This allows us to utilize a lot of existing functionality of the API. The nonisothermal model uses
the following energy conservation equation

Φ
∂(ρv(hv − p/ρv)Sv)

∂t
+(1−Φ)

∂(ρgcgu)

∂t
−∇

(
ρvhv

krv
µv

P(∇p− ρvg)

)
−∇(K∇u)− q = 0 (3.9)

which, upon closer inspection – with enthalpy hv = cv∗(T−Tref)+p/ρv for a reference temperature
Tref, zero gravity g, source term q = 0, saturation Sv = 1 and constant pressure p – reduces to
Equation 2.4, the macro heat conduction equation.

Thus DuMux is solving the desired problem, as long as the pressure is constant, which we
enforce through appropriate pressure boundaries and initial conditions, set to inhibit all flow. For
the temperatures, we use adiabatic boundary conditions everywhere except the bottom left corner,
where zero-Dirichlet boundary conditions are used, see 3.2

As detailed in Section 2, the macro simulation receives the conductivity tensors K and porosi-

Figure 3.2: Temperature boundary conditions used in the macro problem

2https://dumux.org/docs/handbook/releases/3.5/dumux-handbook.pdf

https://dumux.org/docs/handbook/releases/3.5/dumux-handbook.pdf
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ties ϕ from all the micro simulations. Once received, the conductivities and porosities then have
to be fed into the DuMux simulation instead of DuMux’s default values. The base implementation
in DuMuX assumes a static, scalar conductivity; however setting a local, potentially anisotropic
conductivity tensor is essential to the example problem, especially to the asymmetric case. As
the relevant equations in DuMux already support tensorial conductivities, we set these in each
element through some modifications to the VolumeVariables and EnergyVolumeVariables.

3.3 The DuMux implementation of the micro simulation

In the implementation of the micro simulation, there are three non-trivial aspects: the Allen-Cahn
problem, the cell problem, and the integrataion of the conductivity tensorial components (2.3),
specifically the calculation of the partial derivatives ∂yiψj therein. We use periodic boundary
conditions.

An Allen-Cahn problem has already been implemented as part of the DuMux module
dumux-phasefield3, which we adapt to our purposes. The initial phasefield is defined ana-
lytically as

ϕ(x, y) =
1

(1 + exp( −4

λ
√

(y−y0)2+(x−x0)2−R0

, (3.10)

where (x0, y0) is the cell center and R0 is the initial radius of the grain. Like the macro problem,
the Allen-Cahn problem is solved using Newton’s method and an implicit Euler scheme.

The Cell Problem is implemented as a new custom problem. Following the considerations
in Section 3.1, we set storage and source terms to zero and construct our flux (ii) according to
the derived approximation FK,σ in (3.8). We base our implementation on the DuMux TPFA
implementation of a single-phase isothermal (porous medium) flow model4. It builds on Darcy’s
law and solves a mass continuity equation whose flux term

∇
(
−ρK

µ
(∇p− ρg)

)
(3.11)

with density ρ, permeability tensor K, viscosity µ, gravity vector g and pressure p as the primary
variable resembles our cell problem in form. The cell problem is stationary, and is solved twice
per iteration (once per unit vector ej) using a linear solver.

The derivative ∂yiψ
j in the K integral had to be newly implemented as DuMux currently

does not provide any methods to calculate spatial derivatives of primary variables for TPFA

3Mathis Kelm, https://git.iws.uni-stuttgart.de/dumux-appl/dumux-phasefield
4https://dumux.org/docs/doxygen/releases/3.6/a20035.html
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discretization. We base our considerations on the discrete gradient defined in [9],

∇Ku =
1

|K|
∑
σ∈εK

|σ|(uσ − uK)nK,σ, (3.12)

where K is the control volume (element), |K| its volume, σ a face of the control volume with
area |σ|. The solution on the face uσ is calculated as in (3.7), i.e. as the harmonic average of the
neighbouring solution values with the corresponding transmissibilities for ΛK = 1.

3.4 Parameters

All simulations, both in Nutils and DuMux, were run with the following parameters, following our
reference example in [7] as closely as possible, although we use a timestep dt = 0.005 instead of
dt = 0.01 to ensure convergence.

General
Timestep width dt 0.005
Size of the macro domain 1 0.5
Number of micro simulations 128

Adaptivity
History parameter 0.1
Coarsening constant 0.2
Refining constant 0.05

Allen-Cahn problem
Phasefield parameter λ 0.08
Phasefield diffusivity γ 0.01
Equilibrium concentration ueq 0.05
Initial grain radius 0.4

Cell Problem
Solid thermal conductivity kg 0.0
Liquid thermal conductivity ks 1.0

Macro problem
Initial Temperature T0 0.5
Solid density ρg 1.0
Liquid density ρv 1.0
Solid heat capacity cg 1.0
Liquid heat capacity cv 1.0
Liquid reference temperature 0.5

Adaptivity parameters here refer to the adaptivity of the Micro Manager, which determines
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which/how many micro simulations are active.
There do however remain several differences between the DuMux and Nutils implementations.

Two aspects are most significant: Firstly, Nutils as a Finite Element solver does not launch one
micro simulation per macro cell as is the case in our DuMux implementation; instead, each macro
cell launches four micro simulations at Gauss points (see [5]). For better comparison, we therefore
fix the number of total micro simulations at 128, leading to a 16× 8 macro grid in DuMux versus
a 8× 4 grid in Nutils. Secondly, the Nutils micro simulation uses adaptive grid refinement, with
a 10 × 10 grid on the coarsest level and up to 3 levels of refinement. In DuMux, we are instead
simulating the full simulation on an 80× 80 grid.



4 Results

Results are shown in Figures 4.1 and 4.2 for concentrations/temperatures u, in Figure 4.3 for
porosities ϕ and in Figure 4.4 for the first component K00 of the conductivity tensor. We compare
all four combinations for macro- and micro solvers: Dumux-Dumux, Dumux-Nutils, Nutils-Dumux,
and Nutils-Nutils.

For the concentrations/temperatures, we observe the expected overall behaviour, with lower
temperatures "diffusing" out from the bottom left corner, where Dirichlet boundary conditions
are set to 0.0. Lower temperatures lead to smaller grain sizes and higher porosities.

We also observe that due to the large gradient near our "sink" in the bottom left corner, at
the early timestep t = 0.05 (Figure 4.1), the form of the grid cells still leads to the most striking
feature and appears to dominate the simulation. With better resolution, this difference should
however be diminished. In comparison in the later time step t = 0.25 (Figure 4.2), we see that
the behaviour of the micro simulations now seems to dominate, with DuMux micro simulations
leading to a stronger/faster overall decrease in temperature in the upper left part of the domain.
Of course, we would expect micro simulation behaviour more or less equivalent; looking at K00 in
Figure 4.4, this is however clearly not the case, with DuMux and Nutils micro simulations, while
showing the same overall behaviour, also exhibiting a clear shift in values. While some of this
might be attributed to the above differences between Nutils and DuMux, such a strong shift might
also indicate a modelling or implementation error, which should be investigated further.
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(a) DuMux-DuMux (b) Nutils-DuMux

(c) DuMux-Nutils (d) Nutils-Nutils

Figure 4.1: Concentrations at t = 0.05.

(a) DuMux-DuMux (b) Nutils-DuMux

(c) DuMux-Nutils (d) Nutils-Nutils

Figure 4.2: Concentrations at t = 0.25.
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(a) DuMux-DuMux (b) Nutils-DuMux

(c) DuMux-Nutils (d) Nutils-Nutils

Figure 4.3: Porosities at t = 0.25.

(a) DuMux-DuMux (b) Nutils-DuMux

(c) DuMux-Nutils (d) Nutils-Nutils

Figure 4.4: First component K00 of the conductivity tensor at t = 0.25.



5 Conclusion

As this work shows, the DuMux adapter can be used in a multi-scale context and preCICE can
not only successfully couple DuMux-DuMux simulations, but also succeeds in coupling between
DuMux to other solvers. Over the course of the project, we have also improved the adapter
by fixing smaller errors - such as dependencies and CMake macros - and added vector quantity
support.

We have furthermore provided another example of successfully using the preCICE Micro Man-
ager to facilitate many-to-one coupling. Set in motion by this project, C++ bindings have been
added to the Micro Manager, vastly increasing its future usability. We are also showcasing the
capabilites of the adaptive scheme, which allows even the python-based simulations to be run on
local machines. While the results of the micro simulations of the two solvers still show differences,
the entire software stack has been shown to work well together, and future projects with a similar
setup are to be expected.
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