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Abstract

Partial differential equations constitute a powerful tool to describe many natural phenomena. In a

variety of real-world applications, occurring problems are modeled through hyperbolic conservation

laws. Such models often involve experimental data to characterize physical properties, such as porosity

or heat conductivity. To account for insufficient measurements or underlying uncertainties in this data,

random coefficients may be incorporated. Additionally, these random fields may contain discontinuities

to represent, e.g., heterogeneities or fractures of a (porous) medium. In oder to tackle these challenges,

the key focus of this manuscript lies on scalar conservation laws with a random discontinuous flux
function and the corresponding uncertainty quantification. This dissertation addresses the question of

well-posedness of the resulting random problem as well as the numerical simulation of the corresponding

solutions.

As a first contribution, suitable admissibility criteria for the resulting scalar conservation laws with a

random discontinuous flux function are introduced and well-posedness is established. While the question

of pathwise existence and uniqueness can be answered by means of the underlying deterministic setting,

establishing strong measurability of the random solution requires special treatment. Standard techniques

for showing strong measurability of solutions utilize continuous dependence results or leverage the

deterministic existence proof. However, these procedures are not applicable in the random discontinuous

flux setting or require very restrictive assumptions, such as strong measurability of the flux function.

With general randomized positions of the flux discontinuities, such an assumption is out of reach and

merely measurable flux functions can be expected at best. To establish strong measurability of random

solutions for such merely measurable flux functions, a novel proof strategy is presented.

Moreover, the numerical approximation of solutions to the random discontinuous-flux conservation law

is addressed. For these simulations and as an example of the developed theory, a Lévy-type random field
is employed in the flux function. This coefficient is constructed via a (continuous) Gaussian part and a

spatially discontinuous jump field. Consequently, the Lévy-type random field enables a more realistic

modeling of, e.g., heterogeneities or fractures in a (porous) medium, as compared to state-of-the-art

continuous coefficients. Numerical simulations demonstrate the ability of sample-adapted discretization

schemes to approximate pathwise solutions of the resulting random discontinuous-flux conservation

law. In particular, a novel jump-adapted wave-cell meshing technique is introduced, which reduces

the samplewise variance of finite volume approximations by accounting for standing-wave profiles

caused by the flux discontinuities. For estimating statistical moments of the solution, these pathwise

approximations are combined with a fast and precise multilevel Monte Carlo method.

xi





Zusammenfassung

Partielle Differentialgleichungen stellen ein wichtiges Mittel zur Beschreibung vieler natürlicher Phä-

nomene dar. In einer Vielzahl von praktischen Anwendungen werden auftretende Probleme durch

hyperbolische Erhaltungsgleichungen modelliert. Solche Modelle beinhalten häufig experimentelle

Daten, um physikalische Eigenschaften wie beispielsweise Porösität oder Wärmeleitfähigkeit zu charak-

tierisieren. Um zugrundeliegenden Unsicherheiten oder unzureichenden Messungen in diesen Daten

Rechnung zu tragen, können randomisierte Koeffizienten in die Modelle einbezogen werden. Um He-

terogenitäten oder Risse in einem (porösen) Medium zu berücksichtigen, sollten diese Zufallsfelder

Unstetigkeiten beinhalten dürfen. Motiviert durch diese Herausforderungen, liegt das Hauptaugenmerk

dieses Manuskripts auf skalaren Erhaltungsgleichungen mit zufälligen unstetigen Flussfunktionen und

der entsprechenden Unsicherheitsquantifizierung. Kurzgefasst befasst sich diese Dissertation mit der

Frage der Wohlgestelltheit des resultierenden randomisierten Problems sowie mit der numerischen

Simulation der entsprechenden Lösungen.

Zuerst werden geeignete Auswahlkriterien für die Lösung der resultierenden skalaren Erhaltungsglei-

chungen mit randomisierter unstetiger Flussfunktion eingeführt und die Wohlgestelltheit nachgewiesen.

Während die Frage der pfadweisen Existenz und Eindeutigkeit mit Hilfe der zugrundeliegenden deter-

ministischen Probleme und Lösungsansätze beantwortet werden kann, erfordert der Beweis starker

Messbarkeit der zufälligen Lösung eine besondere Betrachtung. Standardmethoden für den Nachweis

starker Messbarkeit von Lösungen nutzen Ergebnisse zu stetiger Abhängigkeit oder machen sich den

deterministischen Existenzbeweis zu Nutze. Diese Verfahren sind bei zufälligen unstetigen Flüssen

jedoch nicht anwendbar oder erfordern sehr restriktive Annahmen, wie etwa die starke Messbarkeit
der Flussfunktion. Allerdings ist eine solche Annahme bei allgemeinen Flussfunktionen mit zufälliger

Position der Unstetigkeiten unerreichbar und es können bestenfalls messbare Flussfunktionen erwartet

werden. Um die starke Messbarkeit von zufälligen Lösungen für solche Flussfunktionen, die lediglich

messbar sind, nachzuweisen, wird eine neuartige Beweisstrategie vorgestellt.

Darüber hinaus behandelt diese Arbeit die numerische Approximation von Lösungen zu zufälligen Er-

haltungsgleichungen mit unstetigen Flüssen. Für diese Simulationen und als Beispiel für die entwickelte

Lösungstheorie wird ein Lévy-artiges Zufallsfeld in der Flussfunktion verwendet. Dieser Koeffizient wird

über einen (kontinuierlichen) Gaußschen Teil und ein Sprungfeld mit räumlichen Unstetigkeiten erzeugt.

Mit Hilfe dieser Konstruktion ermöglicht das Lévy-artige Zufallsfeld eine realistischere Modellierung

von Heterogenitäten oder Rissen in einem (porösen) Medium als dies mit modernen stetigen Koeffizi-

enten möglich wäre. In numerischen Simulationen wird deutlich, dass Diskretisierungsmethoden, die

an die spezielle Form der Stichproben angepasst sind, die Fähigkeit haben, die pfadweisen Lösungen

der zufälligen Erhaltungsgleichung mit unstetiger Flussfunktion besser als Standardverfahren anzunä-

hern. Inbesondere wird ein neuartiges Sprung-adaptiertes Wave-cell meshing Verfahren eingeführt, das

xiii



xiv Abstract (German)

die sampleweise Varianz der Finite-Volumen-Approximation reduziert, indem stehende Wellenprofile

berücksichtigt werden, die von den Unstetigkeiten der Flussfunktion verursacht werden. Zur Schätzung

der statistischen Momente der Lösung werden diese pfadweisen Approximationen mit einer schnellen

und präzisen multilevel Monte Carlo Methode kombiniert.
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Introduction 1

"As far as the laws of mathematics refer to reality, they are not certain; and as far as
they are certain, they do not refer to reality." [97]

This quote by Albert Einstein is particularly relevant for the field of mathematical modeling, which aims

at developing theoretical frameworks to describe natural phenomena. Such mathematical models are

employed in a wide range of disciplines such as natural sciences, engineering, computer science or even

social sciences. In the spirit of Einstein [97], a "law of mathematics" should include uncertainty to

be able to "refer to reality". This is typically achieved by randomizing model parameters. Discussing

the consequences of such randomizations is a key area in the fields of stochastic analysis, uncertainty

quantification and statistics. To describe phenomena considered in the natural sciences, it is essential

to take the fundamental laws of nature into account, such as conservation laws. These state that

some quantity (e.g., mass or energy) in an isolated system
1

does not change over time. Mathematically,

conservation laws are described as dynamical systems. Specifically, they are formulated as (partial)

differential equations.

In a variety of fields, conservation laws are employed as mathematical models. These include hydro-

dynamics (see, e.g., [61, 100]), nonlinear elasticity (e.g., [15, 65]), semiconductor simulation (e.g., [125,

195]) or kidney physiology (see, e.g., [232]). Nowadays, models are improved by including experimental

data about physical properties, such as porosity or conductivity of a medium. Starting from the classical

formulation of a conservation law, there are two natural extensions:

(i) The underlying material might be heterogeneous or may contain fractures. To represent these

situations in the model, the flux function of the conservation law should be allowed to depend

(possibly discontinuously) on the spatial and temporal variables. Such an approach has been

considered in many applications, such as two-phase flow [9, 14, 122, 149, 154], traffic simulations

[11, 53, 69] or sedimentation processes [49–51, 90, 91].

1

An isolated system does not interact with its surroundings. While such a system is an idealization, it is frequently postulated

to clarify the nature of physical laws.

1



2 1 Introduction

(ii) Most of the time experimental data is only available at specific locations in the domain and

outside of these points data is unknown. Additionally, the data might not be accurate due to

insufficient measurements. Both of these phenomena can be captured in a mathematical model

by incorporating uncertainty via random parameters. This approach to account for uncertain

behavior has been carried out by including randomized flux functions [41, 42, 189, 190] or by

considering stochastic source terms [139, 159, 163].

This thesis combines these two extensions by considering random conservation laws, whose flux function

depends discontinuously on the spatial variable. Thereby, this work focusses on two objectives: Building

an appropriate theoretical framework for the constructed mathematical model is combined with the

development and improvement of numerical simulation methods that enable describing the solution via

suitable approximations.

From a mathematical point of view, obtaining a proper model implies that the formulated problem is

well-posed. In a deterministic framework, such well-posedness infers the existence of a unique solution.

For random problems as they are considered in this work, it is also necessary to ensure that the stochastic

solution is strongly measurable as a random variable. With this strong measurability, the solution can be

described via its stochastic moments, such as expectation and variance.

The technical complexity in establishing the three properties of existence, uniqueness and strong mea-

surability differ strongly: For most cases, the question of existence and uniqueness can be reduced to the

deterministic setting by fixing a random parameter, such that the arguments leading to deterministic

existence and uniqueness can be applied. Unfortunately, the combination of stochasticity and discontin-

uous flux functions prohibits the general usage of classical arguments, which can only be applied under

extremly restrictive assumptions. To overcome this obstacle, a novel proof strategy is invented which

ensures strong measurability of the random solution, even if the underlying flux functions are merely

measurable.

Once a suitable theoretical framework is established, the numerical approximation of random solutions

can be considered. Hereby, pathwise approximations should converge to the correct theoretical solution.

This convergence usually depends on the specific parameter sample and as a consequence is stochastic.

To improve these pathwise approximations, sample-adapted approaches are designed that account for

the structure of each sample. In particular, such an approach can lead to a significant reduction of the

samplewise variance.

As soon as pathwise approximations are available, stochastic moments of the random solution can be

computed to describe the statistical behavior of the solution. For this purpose, methods for uncertainty

quantification can be employed, such as (multilevel) Monte Carlo methods or stochastic Galerkin

approaches. Combining these algorithms with the novel sample-adapted approximations enables fast

and precise computations of moments of the random solution.

1.1 Deterministic conservation laws with discontinuous flux functions

Since the middle of the last century, hyperbolic conservation laws have aroused the interest of many

researchers. Generally, these conservation laws formulate the problem of finding a unique solution u to

the equation

∂tu+ divx f(t,x, u) = 0 (1.1)

Conservation Laws with Random Discontinuous Flux Functions



1.1 Deterministic conservation laws with discontinuous flux functions 3

on some space-time domain XT and equipped with an initial condition u0. Here, t ∈ T := [0, T ] denotes

the time variable and 0 < T <∞ is referred to as the final time. Further, x is a spatial point of some

domain X and f describes the flux of the unknown u through the domain X.

It is well known that such scalar conservation laws may lead to solutions that develop spatial disconti-

nuities in finite time. This phenomenon is caused by appearing shock-waves and can even be observed

in case of smooth flux functions and initial conditions. In general, weak solutions to these equations

are not unique. Therefore, an additional selection criterion is necessary that selects the physically

meaningful solution. For the case of sufficiently smooth flux functions f, such a selection principle was

first introduced by Kružkov [173] in 1970. Considering the special case of X = Rd and T = R>0, he

demanded that a solution u satisfies the entropy inequality

∂t
∣∣u(t,x)− k

∣∣+ divx

(
sign

(
u(t,x)− k

)(
f
(
t,x, u(t,x)

)
− f(t,x, k)

))
+ sign

(
u(t,x)− k

)
divx f

(
t,x, k

)
≤ 0

(1.2)

for every constant k ∈ R in the sense of distributions. That means that for any smooth nonnegative test

function ψ ∈ D := C∞
c (R>0 × Rd;R), the following inequality is satisfied:∫

X

∣∣u0(x)− k
∣∣ψ(0,x) dx+

∫
XT

∣∣u(t,x)− k
∣∣∂tψ(t,x) dt dx

+

∫
XT

(
sign

(
u(t,x)− k

)(
f(t,x, u(t,x))− f(t,x, k)

))
· ∇ψ(t,x) dt dx

+

∫
XT

sign
(
u(t,x)− k

)
divx f(t,x, k)ψ(t,x) dt dx ≥ 0 ,

where we have set XT := R>0 × Rd to denote the space-time domain. Additionally to this inequality,

the solution u has to converge to the initial condition u0 in the L1
sense, which means that we have

lim
t↘0

∫
Rd
|u(t,x)− u0(x)| dx = 0 .

In the work of Kružkov [173], the flux f is assumed to be Lipschitz continuous in all variables.

It provides the framework of Kružkov entropy solutions that can be represented via entropy solution
semigroups having the L1

-contraction property. The modern theory for Equation (1.1) goes back to the

ideas of Hopf [142], Oleïnik [224, 225], Vol’pert [278] and Kružkov [173]. For details on these

approaches, we refer to the fundamental monographs [43, 80, 181, 257].

Many classical models naturally lead to Lipschitz continuous flux functions, for example the Lighthill-

Whitham-Richards (LWR) model for vehicular traffic flow [81, 187, 243] or the Buckley-Leverett model

for two-phase flow in porous media [37, 44, 82]. However, in order to develop more accurate models

one may want to consider flux functions that are discontinuous. This line of research has attracted a

lot of attention during the last two decades. In general, the discontinuity can appear in the space-time

dependency or in the unknown of the flux (or a combination thereof). In the following, we discuss the

ideas and advances of both cases to summarize the current state of research in this field. Nevertheless,

this dissertation limits its scope to a discontinuous dependence regarding the spatial dependency
2
.

2

In the first part of this work, the spatial discontinuity is allowed to depend on time, leading to spatio-temporal interfaces.

We refer to Part I for the formal setting and the discussion of various discontinuity geometries.
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4 1 Introduction

1.1.1 Flux functions discontinuous in the solution

Flux functions that depend discontinuously on the solution can be applied in a variety of fields to

improve models which have the goal of capturing real-world behavior. For example, in the LWR model,

the flux describes the velocity of traffic flow. Here, discontinuities at specific vehicle density can model

the transition between free and congested traffic areas [48, 271]. Flux functions, which are discontinuous

in the solution, also occur in models with implicit constitutive relations
3
, e.g., if one wants to model

problems of elasticity with discontinuous relations between the Cauchy stress tensor and the deformation

gradient [45, 126].

If flux functions are discontinuous in the solution, the phenomenon of zero waves arises, which are waves

traveling at infinite speed. The first to consider such problems was Gimse [120] in 1993. He investigated

the occurrence of these zero waves and solved the corresponding Riemann problem via a front tracking

algorithm. Later, Carillo [57] extended this work and proved existence and uniqueness of solutions

using comparison principles and a modified entropy inequality. Another approach to existence was

proposed by Dias and Figueira [87–89], who considered a mollified problem and showed that

solutions to this regularized problem converge to solutions of the original problem. They also defined a

notion of weak entropy solutions and developed a numerical method for solving the occurring Riemann

problem. This approach was later applied by Wiens et al. [285] to a piecewise linear flux function

with a single discontinuity. Another approach that considers the convergence of approximate solutions

in the case of continuous flux functions, was presented by Lu et al. [192]. Based on the vanishing

viscosity approach [38], Coclite et al. [70] showed the existence of solutions, where the main

idea is to establish convergence of approximate solutions via an estimate for functions having bounded

variation (BV) and applying Murat’s compact embedding [217].

A different approach to well-posedness was introduced by Bulíček et al. [45]. They extended the

concept of weak entropy solutions and measure-valued solutions, such that it covers flux functions

which are discontinuous in the solution, but reduces to the standard notions if the flux is continuous.

This idea was extended in [46] to the case of flux functions discontinuous in both the unknown and

the spatial variable. In a similar setting, Gwiazda et al. [126] showed existence and uniqueness of

solutions by formulating the problem in the framework of multi-valued mappings. The assumptions for

this approach were relaxed in [47] by Bulíček et al., who also derived an equivalent description of the

solution via a kinetic formulation.

From a methodical point of view, the ideas for proving well-posedness have a remarkable common

ground: They are based on developing techniques, such that the original ideas of Kružkov entropy

solutions [173] or of measure-valued solutions [95, 265] can be exploited. The usual approach in the

literature is based on a monotone, possibly multi-valued change of the unknown, see e.g. [45, 46, 126].

Additionally to the theoretical perspectives, the field of conservation laws with discontinuous flux

functions has attracted a lot of attention for designing suitable numerical approximation methods. Since

the zero waves travel with infinite speed, employing explicit schemes seems hopeless, because these

waves contain information about the flux, but are transported instantaneously. Martin and Vovelle

3

The implicit constitutive theory aims at describing relations between the stress and kinematic equations in an implicit

manner to model, e.g., viscoelastic phenomena. This is contrary to classical constitutive models such as the Navier-Stokes

fluid model [73, 176, 220, 264, 267] or the Hookean model for solid materials [141, 213, 250]. For details on implicit constitutive

theory, we refer to the works of Rajagopal [238–240].
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1.1 Deterministic conservation laws with discontinuous flux functions 5

[196] designed a finite volume scheme and showed convergence to the unique entropy solution. Recently,

Towers [271] presented a finite difference scheme based on a flux splitting.

1.1.2 Flux functions with space-time discontinuities

When modeling heterogeneous material properties in the scalar conservation law given by Equation

(1.1), one is interested in spatio-temporal discontinuities of the flux function. Via such discontinuities

sudden changes in the heat conductivity or permeability at interfaces or fractures may be described.

This line of research has aroused more attention of researchers than discontinuities in the solution, since

the challenges in developing a well-posedness theory change drastically. For flux functions containing a

discontinuity in the spatial dependency, the Kružkov entropy Condition (1.2) is not applicable, since the

last term of Inequality (1.2) is not properly defined anymore. As a result, new admissibility conditions

are necessary, which select the sought notion of solution. Therefore, formulating appropriate selection

criteria becomes part of modeling the considered physical problem. Consequently, the selected solution

to the same equation may vary for disparate applications
4
. Here, an important result was established by

Adimurthi et. al . [3] in 2005, which states the following:

There exist infinitely many different,

but mathematically equally consistent notions of solutions.
(1.3)

Each of these notions form an L1
-contractive entropy solution semigroup, which can be characterized

by an individual admissibility condition. In the literature, mainly two types of selection criteria are

distinguished:

(i) Admissibility conditions that invoke the classical Kružkov entropy condition (1.2) outside of the

discontinuities and impose an additional penalty term along the discontinuity interfaces.

(ii) Admissibility conditions that adapt the classical Kružkov entropy condition (1.2) in a suitable

way, such that it defines a meaningful criterion in the presence of discontinuities. This approach

leads to so-called adapted entropy conditions.

For both types of selection criterion there exists a variety of admissibility conditions. We summarize the

major ideas of both approaches in the following. Let us stress that the distinction between these two

types remains important throughout this manuscript.

Admissibility conditions introducing an interface penalty term

The main and common idea of admissibility conditions based on interface penalty terms is to enforce

the Rankine-Hugoniot condition
5

[146, 147, 241] across every flux discontinuity. This condition ensures

continuity of the flux at the heterogeneities by requiring the following: The left trace of the flux

function evaluated at the solution value left of the discontinuity has to be equal to the right trace with

4

An extensive example for such a situation, in which two different admissibility conditions for the same equation lead to

different solutions, is given in [234, Section 1.2].

5

For the rigorous definition of the Rankine-Hugoniot condition, we refer the reader to the presentation in Section 3.2 and in

particular to Equation (3.9) in Definition 3.14.
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6 1 Introduction

corresponding right solution value. In order to define the appropriate traces, each flux discontinuity

needs to be considered separately. In particular, this implies that the flux discontinuities occur at

isolated points (for one space dimension) or at locally finite interfaces (for multiple space dimensions or

space-time discontinuities).

Probably the most considered admissibility condition approach is based on vanishing viscosity limit

solutions for conservation laws. This line of research started with Gimse and Risebro [120–122] in

1991. At the beginning of this century, Vasseur [276] and Seguin and Vovelle [255] started the

study of this type of admissibility condition for scalar conservation laws with discontinuous coefficients.

At the same time, Karlsen et al. [158] studied the L1
-stability for solutions of degenerate parabolic

convection-diffusion equations with discontinuous coefficients. In addition, the authors extend the

classical Kružkov condition in [155] to coefficients, whose discontinuities are located in the space-time

plane. In 2006, Bachmann and Vovelle [20] proved the existence and uniqueness of entropy

solutions to discontinuous-flux scalar conservation laws via a kinetic formulation. This bypasses

additional assumptions on convexity or genuine nonlinearity, which were required before. The question

of existence and uniqueness of entropy solutions for conservation laws was also considered in a bounded

domain and was positively answered by Jimenez and Lévi in [150, 152]. Here, we also want to mention

the work [9], in which different vanishing capillarity limits of the one-dimensional Buckley-Leverett

equation were considered based on various choices of the physically relevant vanishing capillarity.

The work on vanishing viscosity solutions has also been extended to multi-dimensional scalar con-

servation laws with discontinuous flux functions. Here, we want to highlight the early works of

Andreianov et al. [12] and Panov [230]. In [151], the vanishing viscosity method was used to

prove existence of entropy solutions in multi-dimensional bounded domains. For arguing the uniqueness,

the doubling of variables approach was combined with a pointwise reasoning along the discontinuity

curve. In 2013, the setting of multi-dimensional discontinuous-flux conservation laws was extended to

the case of discontinuities in the spatial variable and in the solution by Bulíček [46].

The vanishing viscosity method is closely related to the work of Diehl, who selected unique solutions

via a Γ-condition [90, 91]. This condition was also derived from investigating viscosity profiles and their

stability [92, 94].

Another important admissibility criterion is the Karlsen-Risebro-Towers condition. This formulation was

initiated by Klingenberg and Risebro [166], who employed a wave entropy condition to select a

unique entropy solution. The stability of entropy solutions with this type of admissibility condition was

investigated by Klausen and Risebro [165]. Based on this idea, Towers [268] defined a notion

of entropy solutions, in which the entropy condition is embedded in the weak formulation instead of

local restrictions. While the flux in [268] is required to be convex, this assumption was dropped in [269].

Recently, Towers [270] extended this framework to the case of time and space discontinuities. For

fluxes of bounded variation, Piccoli and Tournus [234] proved a general existence result under

the assumption of concavity of the flux. This assumption on concavity of the flux can be omitted due to

the recent result of Towers in [272].

The above ideas have been generalized by Panov [231], who introduced, for every k ∈ R, the entropy

inequality

∂t|u(t,x)− k|+ divx

(
sign

(
u(t,x)− k

)(
f(t,x, u(t,x))− f(t,x, k)

))
≤ − sign(u(t,x)− k)

(
divx f(t,x, k)

)ac
+
∣∣( divx f(t,x, k))s∣∣ (1.4)
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1.1 Deterministic conservation laws with discontinuous flux functions 7

in the sense of distributions. Here, the Jordan decomposition [7, 72, 127] of a Radon measure has been

used to split divx f(t,x, k) up into its absolutely continuous and its singular part:

divx f(t,x, k) =
(
divx f(t,x, k)

)ac
+
∣∣( divx f(t,x, k))s∣∣ .

With this condition, Panov [231] was able to proof existence of solutions via the vanishing viscosity

method. However, in the entropy inequality (1.4), the contribution of the flux discontinuities are

estimated quite roughly. This is a major obstacle for proving uniqueness of solutions, which—to the

best of the author’s knowledge—is still an open problem.

A more sophisticated way of accounting for the flux discontinuities was proposed by Andreianov

and Mitrovic [10] based on the unpublished idea of Mitrovic [212], who replaced the entropy

Inequality (1.4) by

∂t|u(t,x)− k|+ divx

(
sign

(
u(t,x)− k

)(
f(t,x, u(t,x))− f(t,x, k)

))
≤ − sign(pu − k) divx f(t,x, k) .

(1.5)

Here, pu is a globally defined Borel-measurable function that satisfies pu = u almost everywhere with

respect to the Lebesgue measure of the space-time domain. Note, for general flux functions one needs

to make sense of the last term in (1.5). The required tools have been developed in [75] using advanced

tools of analysis of either functions having bounded variation (BV) or special functions of bounded

variation (SBV)
6
. For details on the BV and SBV framework, we refer the reader to the original work

of Vol’pert [278] or to the monographs of Halmos [127], Ambrosio et al. [7] or Evans and

Gariepy [99]. However, we will not discuss this approach any further in this dissertation.

For proving well-posedness, all of the above approaches need to guarantee uniform L∞
-bounds on

approximate solutions. The easiest assumption to ensure this is by requiring, e.g.,

f(·, ·, 0) = 0Rd = f(·, ·, 1) 0 ≤ u0(·) ≤ 1. (1.6)

Such an assumption is natural for models describing a relative density, such as road traffic or porous

medium models. However, in general, this is a main restriction on the flux function.

To conclude this presentation of selection criteria, which are based on describing conditions at the

discontinuity interface, we want to mention the work of Andreianov et al. [13]. The purpose of [13]

is to develop a framework which unifies the above approaches via the notion of so-called admissibility
germs. This theory combines the admissibility approaches for conservation laws with discontinuous

flux functions, but also includes earlier selection criteria developed for continuous flux functions. For

details, we refer the reader to Section 3.2, where these germs are employed for specifying admissible

solutions to random conservation laws.

Admissibility conditions adapting the classical Kružkov condition

Requiring every discontinuity point of the flux function to occur on isolated points clearly is a major

restriction. The additional requirement of a confinement assumption in the sense of the Estimation (1.6)

6

There has been an increasing activity in analyzing scalar conservation laws with tools from the BV and SBV framework,

see [74, 76]. In general, the results, techniques and assumptions are complementary to the methods presented above: The

flux f may be less regular, but the solution u is more regular than in the discussed approaches.
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8 1 Introduction

can be an even greater limitation for possible real-world applications. A framework that overcomes both

drawbacks was proposed by Audusse and Perthame [18] in 2005, based on the ideas of Baiti

and Jenssen [23] from 1997. Here, the framework is formulated without additional interface terms

and as a result the existence of traces is not required. This makes it possible to consider an infinite

number of discontinuity points in the flux function. However, the general framework was derived for

one-dimensional problems and extending it to multiple dimensions is still an open problem. Moreover,

the considered discontinuities are assumed to be stationary, i.e., independent of the temporal variable.

The basic idea of the adapted entropy framework is to replace the constants k ∈ R in (1.2) with a family

of functions kα(x), α ∈ R. Here, the function kα(x) is the unique solution of the steady-state problem

f(x, kα(x)) = α for a.e. x ∈ R .

One approach to extend this framework to the multi-dimensional case was proposed by Panov [230]

in 2009. He considered the special class of flux functions satisfying

f(x, u) = g
(
Z(x, u)

)
, (1.7)

where g(Z) ∈ C(R;R) is a continuous function and Z(x, u) is a Carathéodory function, which means

that Z is measurable in x and continuous in u. For this class of flux functions, Panov showed existence

and uniqueness of solutions even in the multi-dimensional setting. Additionally, he proved for the

one-dimensional case that a change of unknowns yields equivalence between the Audusse-Perthame

adapted entropy solution and the classical Kružkov entropy solution.

For flux functions of Panov-type (1.7), Ghoshal et al. [116] proved uniqueness for adapted entropy

solutions via a different proof strategy. This uniqueness proof is based on adapting the rather complicated

version of doubling of variables of [18] to the multi-dimensional setting. The existence in [116] is proved

via the convergence of Godunov-type finite volume schemes, cf. Section 1.4. In the one-dimensional

setting, Ghoshal et al. [115] extended the existence, uniqueness and BV regularity results to

discontinuous fluxes with possibly flat regions. Furthermore, for hyperbolic conservation laws with

spatial discontinuities, Ghoshal and Jana [113] investigated the optimal jump set of entropy solutions

and some qualitative properties of these solutions.

1.2 Stochastic conservation laws

As mentioned in the beginning of this chapter, realistic models should contain information about

underlying uncertainties. These may arise via uncertain initial or boundary conditions, random system

parameters or stochastic external forcing. Including these uncertainties in scalar conservation laws has

attracted the attention of many researchers in the last two decades. To summarize the work in this area,

we first consider conservation laws with stochastic forcing in Section 1.2.1. Afterwards, in Section 1.2.2,

we present the results on stochastic or random flux functions.

1.2.1 Conservation laws with stochastic forcing

In the area of stochastic source terms, the concept of stochastic weak and entropy solutions was initially

introduced by Holden and Risebro [139] for nonlinear hyperbolic problems. For additive noise

Conservation Laws with Random Discontinuous Flux Functions



1.2 Stochastic conservation laws 9

terms, this concept was further developed by Kim [163], who applied a change of variables to use

the classical Kružkov entropy condition for showing well-posedness. We also refer to Vallet and

Wittbold [275] for this line of research.

However, the approach via a change of variables is not applicable if the noise is multiplicative. Here,

Feng and Nualart [103] overcame this issue by introducing an additional, rather technical condition.

In their work [103], Feng and Nualart consider multiplicative Gaussian noise, which is almost surely

continuous. In case of the random force being driven by a Brownian motion, Chen et al. [62]

investigated vanishing viscosity approximations of stochastic balance laws and established existence of

entropy solutions as well as continuous dependence results. For general noise driven by a geometric

p-rough path, Friz and Gess [107] proved existence and uniqueness. Furthermore, they obtained

stability of the solutions with respect to the driving noise. In 2012, Bauzet et al. [35] provided a

framework that bypasses the additional condition from Feng and Nualart [103]. To do so, they

establish existence and uniqueness of entropy solutions via the entropy formulation of Kružkov and

the notion of measure-valued solutions. Recently, this approach was generalized by Karlsen and

Storrøsten [159], who included Malliavin differentiable random variables in the Kružkov entropy

condition. In this context, they also provide existence and uniqueness results.

Instead of considering hyperbolic conservation laws, a number of works studied the related case of

degenerate parabolic partial differential equations in the stochastic setting. In this field, Debussche

and Vovelle [83, 84] proved the well-posedness for periodic multi-dimensional scalar first-order

conservation laws with stochastic forcing. To show this, the authors leverage a kinetic formulation of the

problem. This approach was extended by Hofmanová in [137] to scalar semilinear equations. Here,

Hofmanová adapted the kinetic formulation to prove a comparison principle and employed the vanishing

viscosity method for showing existence of solutions. Both above works were generalized in [86], where

the authors developed a well-posedness theory that includes the L1
-contraction property and simplifies

the proof of the previous works. These results were further generalized by Gess and Hofmanová

in [111], who also established regularity results via averaging techniques. At this point, let us mention

that Hofmanová also investigated the approximation of the kinetic solution via Bathnagar-Gross-Krook
approximations in [138]. Instead of employing a kinetic formulation for degenerate parabolic equations,

Bauzet et al. [36] showed existence and uniqueness of a solution by using an adapted entropy

formulation.

As a last field of research on conservation laws with stochastic forcing, we want to mention results on

invariant measures. The work in this area goes back to the important paper of Weinan et al. [282],

who analyzed the invariant measure for the periodic inviscid Burgers’ equation with stochastic forcing

in one space dimension. This work has been extended to higher dimensions in [148] and to the case of

fractional noise in [253]. Recently, in 2015, Debussche and Vovelle [85] studied the invariant

measure for periodic scalar first-order conservation laws with stochastic forcing in any space dimension.

1.2.2 Conservation laws with random flux functions

To the best of the author’s knowledge, Wehr and Xin [281] were the first to consider conservation

laws with a random flux function. Specifically, they investigated the long-time asymptotics of the front

speed in the Burgers’ equation. However, general well-posedness theory for random flux functions has

only gained attention in the last years, starting with the work of Mishra et al. [211], who defined a
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notion of random entropy solution. Here, the authors work with random data that allows to employ

pathwise existence and uniqueness results from the deterministic theory via continuous dependence

results.

Random flux functions were also considered by Lions et al. [189] for the case of rough (stochastic)

fluxes. This concept was extended in [190] to the case of space-dependent rough fluxes. Recently,

Hoel et al. [134] investigated the spatial regularity of such solutions and derived fine properties of

the stochastic solution map for fixed time. The combination of such rough stochastic flux functions

with stochastic forcing was considered by Hofmanová [136], who proved well-posedness of the

corresponding kinetic formulation and its solution. In 2017, Gess and Souganidis [112] investigated

the long-time behavior and regularity of pathwise entropy solutions. Therefore, they considered spatially

homogeneous, but random-in-time flux functions. Recently, Müller and Bock [215] applied the

setting of stochastic flux functions to the Lighthill-Witham-Richards traffic model.

1.3 Extension to random discontinuous flux functions

The existing (theoretical) results of the previous subsections focus either on the stochasticity or on the flux

discontinuities. Therefore, this dissertation aims at extending these results to flux functions containing

stochastic discontinuities. Traditionally, the strong measurability of solutions in the case of stochastic

flux functions is proven via continuous dependence results. However, this line of argumentation requires

the stochastic flux function to be strongly measurable, which imposes a major restriction for possible

fluxes
7
. In this setting of strongly measurable stochastic fluxes, Badwaik et al. [22] proposed a

multilevel Monte Carlo finite volume method to approximate moments of random scalar conservation

laws.

To overcome this restriction in the measurability proof, we employ advanced analytical tools to develop a

novel proof strategy. This approach via set-valued mappings and so-called entropy functionals allows the

flux function to be merely measurable, while guaranteeing the strong measurability of the underlying

entropy solution. To round off the investigation of random discontinuous flux functions, numerical

simulations are conducted that approximate the random entropy solutions. Here, a special class of

random discontinuous flux functions is considered, in which the randomness and the discontinuous

dependence is introduced via a stochastic jump coefficient. This random coefficient is designed to allow

very flexible modeling [27, 30] and consists of a continuous (Gaussian) part and a discontinuous (jump)

part. Such a construction is inspired by the Lévy-Khintchine formula [16, 161], which states that every

Lévy process can be uniquely characterized via the composition of three independent components,

namely, a drift term, a Brownian motion and a pure jump process.

In the numerical experiments, we investigate the strong convergence of approximations to the unique

entropy solution. Additionally, we present novel discretization techniques that reduce the variance of

approximations and thus can significantly improve the strong convergence rate. Furthermore, these

pathwise methods are combined with (multilevel) Monte Carlo methods to enable fast and precise

uncertainty quantification.

7

In general, requiring strong measurability of the stochastic discontinuous flux function prohibits the use of random

discontinuities. Therefore, the class of permitted flux functions is much smaller compared to merely measurable flux

functions. For completeness, a counterexample demonstrating the lack of strong measurability for a flux functions having

stochastic discontinuities is presented in Appendix B.
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1.4 Numerical simulation of (random) conservation laws with
discontinuous flux function

As mentioned in the last section, we conduct numerical simulations on the analyzed random conservation

laws. Therefore, this section summarizes the current state-of-the-art developments of numerical methods

for discontinuous-flux conservation laws in Section 1.4.1. Afterwards, in Section 1.4.2, modern methods

for uncertainty quantification are presented, which allow the computation of statistics of a quantity of

interest. Here, such a quantity of interest can be, e.g., moments of the stochastic solution or a functional

applied to it. Finally, Section 1.4.3 summarizes approaches for combining these two types of numerical

methods for the approximation of stochastic entropy conditions.

1.4.1 Numerical approximation of deterministic conservation laws with
discontinuous flux function

The numerical investigation of conservation laws with discontinuous flux functions started three decades

ago with the early works of Gimse [120–122], who used the front tracking method introduced by

Dafermos [79]. The idea of the front tracking method is an explicit treatment of appearing interfaces

in the solution. Therefore, a piecewise constant approximation of the solution is considered, for which

the resulting independent Riemann problems can be solved exactly. The solutions to those Riemann

problems consist of a series of shocks, each traveling with constant speed. Therefore, the Riemann

problems have to be solved with updated values, if two shock fronts meet. Consequently, the front

tracking approximation yields a unique entropy solution for all times. This approach has also been

successfully applied to prove existence of solutions, see, e.g., [23, 49, 68, 115, 166, 167, 207, 234]. For

an extensive overview on the front tracking method, we refer to the monograph of Holden and

Risebro [140]. Recently, Ruf [249] was able to prove a first-order convergence rate of front tracking

approximations for the case of discontinuous-flux conservation laws. Such a first-order convergence

had already been proved by Lucier [193] in L1
and Solem [261] in the p-Wasserstein distance for the

case of flux functions with no spatial dependency.

Another numerical method that has been proposed and analyzed for the approximation of discontinuous-

flux conservation laws is the finite volume method. Here, the basic idea is to integrate the governing

equation over a small volume, the so-called control volume, and apply the divergence theorem to obtain

integrals over the surface of these volumes. This approach yields a piecewise constant approximation

with discontinuities along the volume surfaces. To describe the evolution of this approximation over

time, a numerical flux is employed that describes the transport of information between two adjoint

control volumes. An important property of the finite volume method is its local conservativity.

Finite volume schemes with an upwind-type flux (e.g., Godunov or Engquist-Osher scheme) have been

successfully applied to conservation laws with discontinuous flux functions, see, e.g. [4, 54, 157, 283].

For this type of fluxes Badwaik and Ruf [21] showed an optimal convergence rate of 1/2 for the

finite volume method. As for the front tracking method, various finite volume methods have been used

to prove the existence of entropy solutions, see, e.g., [114, 268, 269, 272]. Let us also mention the works

of Karlsen [155, 156] and Mishra [204, 206], who investigated the convergence of finite volume

schemes for various numerical fluxes and entropy conditions. Note that the above list is far from being

extensive. For a comprehensive discussion on the various numerical approaches to conservation laws
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with a possibly discontinuous flux, we refer the reader to the review paper of Mishra [205] on finite

volume methods or to numerous monographs on the topic, such as Kröner [170], LeVeque [182,

183], Hirsch [133] or Hesthaven [131].

1.4.2 Computational methods in uncertainty quantification

Methods for uncertainty quantification are used to describe the statistics of the considered stochastic

model. Oftentimes, the problem is formulated in a way such that the sought quantity is the expected

value of a suitable chosen random variable. In general, one can discriminate two types of approaches to

uncertainty quantification: statistical and non-statistical methods.

Non-statistical methods for uncertainty quantification

The idea of non-statistical methods is to approximate the random space to transform the stochastic

problem into a higher-dimensional deterministic one. A popular approach in this direction is the

stochastic collocation method [259, 260, 287], which uses a polynomial interpolation of the stochastic

space. Typically, Lagrange polynomials are employed and the interpolation is chosen to satisfy the

stochastic model at prescribed collocation points. As a result, a set of collocated deterministic problems

has to be solved. The stochastic collocation method has successfully been applied to random partial

differential equations, especially if the uncertainty is introduced via stochastic input data [19, 221, 288,

289].

Another idea for non-statistical approaches is the stochastic Galerkin method [177, 178]. Here, the problem

is considered in a weak formulation with respect to the random variables. This approach is based on the

polynomial chaos expansion [63, 77, 223, 256, 284, 289] and the underlying polynomials are chosen to be

orthonormal with respect to some inner product on the stochastic space. Using these polynomials in the

weak formulation yields a highly coupled deterministic problem, which has to be solved to approximate

the stochastic problem. The stochastic Galerkin method has been applied to stochastic partial differntial

equations, see, e.g., [33, 96, 203] and the references therein.

The above non-statistical approaches aim at exploring structural properties of the underlying problem.

Let us mention that these methods are superior to statistical algorithms, if the stochastic dependence of

the problem is sufficiently smooth [71, 254]. However, for the setting of this dissertation, they have two

major drawbacks:

(i) Both methods suffer the curse of dimensionality, which leads to an enormous computational effort

for high-dimensional stochastic spaces. However, such high-dimensional spaces are necessary

to accurately describe many important random fields.

(ii) For discontinuous coefficients or random fields, it is still an open question to find a suitable basis

that can represent these stochastic objects.

Statistical methods for uncertainty quantification

The most intuitive and straightforward approach for uncertainty is the Monte Carlo method, which is

based on ideas of Ulam [202, 274], von Neumann [279] and Fermi [104]. We refer to [201] for the

historical development and to [105, 124, 128, 169, 216, 247] for a general introduction of this method. It is

based on the strong law of large numbers and consist of drawing a large number of independent samples
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1.4 Numerical simulation of (random) conservation laws 13

from the random variable’s distribution and computing the arithmetic mean over all these samples

to approximate the expected value. This approach has the advantage that it does not depend on the

dimension of the stochastic space and thus does not suffer the curse of dimensionality. Unfortunately,

this property comes at the price of a slow convergence rate of order 1/2. As a result, the Monte Carlo

method is not feasible for problems in which the computation of one sample is very expensive. To

overcome this obstacle, a variety of techniques has been developed to increase the efficiency of the

Monte Carlo method.

An effective approach is the multilevel Monte Carlo (MLMC) method, which has been invented by

Heinrich [130] and further developed by Giles [118, 119]. The main idea is to consider a hierarchy of

discretizations and corresponding approximated random variables. A large number of samples with

low accuracy is sampled, which is computationally inexpensive and reduces the statistical error. The

induced approximation error resulting from coarse discretizations is then corrected by sampling the

difference between two adjoined discretizations of the same sample. Here, the number of computed

samples decreases with finer discretization size.

The multilevel Monte Carlo method has successfully been used to significantly reduce computational time.

In the last decade, this method has been applied to a variety of problems of uncertainty quantification

[1, 26, 31, 32, 34, 60, 78, 266]. Among these applications, we want to highlight the works of Barth

and Stein [27, 263], in which the MLMC method has successfully been applied to partial differential

equations involving discontinuous Lévy-type coefficients. Since the MLMC method is able to handle

high-dimensional stochastic domains and improves the computational time significantly compared

to the standard Monte Carlo approach, it is the method of choice for approximating moments of the

solution to conservation laws in this dissertation. We refer to Section 2.5.1 for details on this algorithm.

1.4.3 Numerical computation of random entropy solutions

The methods for uncertainty quantification, presented in the last section, have also been applied to

conservation laws to compute random entropy solutions or moments thereof. In an early work, Poëtte

et al. [235] used the stochastic Galerkin method for a stochastic system of conservation laws. In

[273], the authors developed an adaptive stochastic Galerkin method to approximate scalar conservation

laws with uncertain input data. Here, a finite volume algorithm was employed to solve the resulting

deterministic system. In 2014, Bürger et al. [55] developed a hybrid adaptive stochastic Galerkin

method, which yields a partially decoupled system.

The multilevel Monte Carlo (MLMC) method has been successfully combined with a variety of de-

terministic methods for conservation laws, the most popular being the finite volume method. Here,

Mishra and Schwab [208] developed a sparse MLMC finite volume approach for random initial

data. This method was extended to systems [209] and applied to the shallow-water equations [210]. In

2018, Barth and Kröker [25] employed an MLMC finite volume method to conservation laws with

spatial noise. We also refer to [168] for a multilevel Monte Carlo method for random scalar degenerate

convection-diffusion equations based on a finite difference method. In [211], an MLMC finite volume

method was used to approximate scalar conservation laws with random (spatially homogeneous) flux

functions. Recently, Badwaik et al. [22] considered the MLMC method for random conservation

laws with strongly measurable discontinuous flux functions
8
.

8

Recall that this strong measurability assumption is a major restriction (cf., Footnote 7 and Appendix B).
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For other deterministic methods being combined with the multilevel Monte Carlo approach, we refer

to [244] for an MLMC front tracking method for random conservation laws. Here, the flux function

was considered to be stochastic, but without spatial dependency. In [29], the MLMC approach was

combined with a Discontinuous Galerkin ansatz for semilinear hyperbolic problems with Lévy noise.

For a general overview on methods for uncertainty quantification applied to conservation laws, we refer

to the monograph [153] and to the review paper [2].

1.5 Structure and notation

As previously mentioned, one goal of this dissertation is to develop a theoretic framework for random

conservation laws with discontinuous flux functions. Once such a framework is established, the second

goal is to employ and develop efficient numerical methods to approximate the random solution as well

as enabling its uncertainty quantification. The main body of this dissertation consist of two parts, which

differ by the considered admissibility conditions:

(i) Part I establishes the theoretical framework and numerical methods for admissibility conditions

with locally finite discontinuities (and specific flux interface conditions).

(ii) In the second part, the theoretical framework and numerical methods for admissibility conditions

with an infinite number of discontinuities is developed.

In both parts, first the theoretical results are established and afterwards numerical simulations are

conducted that investigate the behavior of the methods as well as demonstrate their ability of significantly

increasing the efficiency of simulations.

Before we start with the main body of this thesis, Chapter 2 familiarizes the reader with important

concepts. While the focus is on fundamental theoretical results that are necessary for proving well-

posedness of random scalar conservation laws, this chapter also introduces the approximation schemes

that are used in the numerical experiments throughout this manuscript.

Part I: Random scalar conservation laws
with a locally finite number of flux discontinuities

In the first Part of the thesis, we consider random scalar conservation laws that have a sole flux

discontinuity. This simple geometry of the flux interface divides the space-time domain into two parts

and is a suitable model problem for introducing the main concepts for admissibility of solutions in Chapter

3. We start the discussion with defining and investigating the flux discontinuities and properties thereof.

Based on these constructions, admissibility criteria for solutions are developed, which are utilized for

showing well-posedness of solutions afterwards. Chapter 3 is concluded with several examples for

abstract theoretical objects that are introduced for the theoretical investigations.

In Chapter 4, an advanced type of flux discontinuity geometries is considered. In particular, the discussed

compound flux discontinuities allow for multiple, possibly crossing flux interfaces. After discussing

relevant definitions and properties of these geometries, the tools for showing admissibility and well-

posedness are extended to this generalized flux discontinuity. The chapter is concluded by proving
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well-posedness of entropy solutions to the random scalar conservation law and discussing the existence

of statistical moments of these solutions.

The first part on random scalar conservation laws with a locally finite number of flux discontinuities is

concluded by conducting numerical simulations in Chapter 5. In this section, we introduce a specific

problem setting of two-phase flow in heterogeneous medium. First, the theoretical assumptions that lead

to well-posedness of the problem are verified for the presented simulation setting. Afterwards, numerical

experiments are conducted that investigate the strong convergence behavior of approximations.

Part II: Random scalar conservation laws with infinitely many flux discontinuities

The second part, Part II, of this manuscript is devoted to the development of an adapted entropy frame-

work for random scalar conservation laws that allows for possibly infinitely many flux discontinuities.

As a first investigation, Chapter 6 derives a well-posedness theory for one-dimensional random scalar

conservation laws based on the Audusse-Perthame adapted entropy formulation for existence and

uniqueness. Afterwards, strong measurability of such adapted entropy solutions is shown as well as the

existence of moments.

In Chapter 7 this theory is extended to multi-dimensional random scalar conservation laws, where the

flux function is of Panov-type. As in Chapter 6, the strong measurability of adapted entropy solutions is

shown after the pathwise existence and uniqueness is established. The chapter concludes by investigating

the existence of moments of such solutions.

In the final chapter of this second part, numerical simulations are performed, which rely on the well-

posedness results of Chapter 6. In particular, a novel pathwise discretization scheme is introduced based

on a specific class of stochastic coefficients that allow for very flexible modeling. The behavior of this

discretization method is investigated and the strong convergence is analyzed. Finally, the statistical

moments of random entropy solutions are estimated by the multilevel Monte Carlo method.

The dissertation is concluded by some remarks and an outlook on future research perspectives in Chapter

9. Furthermore, the appendices in Part III provide some additional material and background information

for the reader’s convenience.

Notational conventions

For the remainder of this dissertation, we introduce some notational conventions: In general, matrices

are denoted by capitalized bold letters, vectors by lowercase bold characters and scalars by lightface

letters. The same convention holds for matrix-, vector- and scalar-valued functions. Additionally, the

n-th entry of a vector x is denoted by xn. Analogously, we write xk:n to denote the sub-vector consisting

of the k-th to n-th entry of the vector x. For the reader’s convenience, the backmatter of this dissertation

contains a list of symbols and their explanation.
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The purpose of this chapter is to familiarize the reader with preliminary results and concepts that build

the foundation of investigating random scalar conservation laws in the remainder of this manuscript. As

already mentioned in Chapter 1, the novelty of the considered equations is the combination of stochasticity

with discontinuous flux functions, while these fluxes do not need to be strongly measurable. While

transferring pathwise existence and uniqueness results to the randomized setting is straightforward,

showing strong measurability of solutions poses a major challenge, since well-known standard results

cannot be applied. To introduce the reader to the concepts of measurability, Section 2.1 briefly discusses

basic ideas of measure theory.

In Section 2.2, we give an introduction to set-valued mappings and extend the notion of (strong)

measurability to this generalized setting. Furthermore, a metric hyperspace is discussed that allows to

describe set-valued mappings as a single-valued mapping into this hyperspace. Section 2.2 is concluded

by discussing measurability of set-valued mappings in terms of this metric hyperspace.

With these preliminaries at hand, Section 2.3 aims at familiarizing the reader with random variables and

related concepts. Here, we discuss weakly measurable as well as Bochner-integrable random variables.

The latter have the advantage that they can be characterized by their moments, such as expectation and

variance. While this description is beneficial for describing solutions to random conservation laws, it

requires these solutions to be strongly measurable, which is a major obstacle in showing well-posedness

of the considered problems. We conclude the discussion by introducing the reader to covariance operators

and spectral expansions of random fields in Section 2.3.3.

As motivated in Chapter 1, this manuscript considers random scalar conservation laws with discontinuous

flux functions. While the theoretical investigations are based on general discontinuous fluxes, the

numerical investigations rely on Lévy-type random fields. The choice for this type of random fields is

motivated and introduced in Section 2.4, which is concluded by discussing the numerical approximation

of these random fields.

Finally, Section 2.5 discusses numerical approximation techniques for random scalar conservation laws.

In particular, Section 2.5.1 introduces the concepts of (multilevel) Monte Carlo methods, which are

sampling-based approaches to uncertainty quantification. Afterwards, a possible discretization technique

for approximating pathwise solutions is introduced by discussing finite volume methods.
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2.1 Measure theory

This section aims at familiarizing the reader with the basic concepts of measure theory. An important

object for defining these concepts are σ-algebras. For any nonempty set T a σ-algebra A is a collection

of subsets of the set T , which is closed under complement as well as closed under countable unions

and contains T itself. Before we continue, let us introduce the Borel σ-algebra, which is an important

example of a σ-algebra.

Example 2.1 (Borel σ-algebra): LetE be a topological space. Then, the Borel σ-algebra overE, denoted
by B(E), is the σ-algebra generated by the open sets of E. This means that B(E) is the smallest σ-algebra
over E that contains all open sets of E.

The notion of (strong) measurability of a mapping heavily relies on the concept of such σ-algebras as

the following definition demonstrates.

Definition 2.2 ((Strongly) Measurable function):
Let (Ω,Σ) and (T,A) be measurable spaces, meaning that Ω and T are nonempty sets with corresponding
σ-algebras Σ and A, respectively. A function f : Ω → T is called (Σ−A)-measurable, if for every set
E ∈ A, the preimage of E under the function f is in Σ, i.e.,

f−1(E) := {ω ∈ Ω | f(ω) ∈ E} ∈ Σ.

Moreover, if the image f(Ω) of f is separable, we call f strongly (Σ−A)-measurable.

As an important property of measurable functions, the following lemma states that the composition of a

measurable function with a Borel-measurable function
9

is also measurable. For details, the reader is

referred to [102, property (4) on page 73].

Lemma 2.3 (Composition with Borel-measurable function is measurable):
Let (Ω,Σ) and (T,A) be measurable spaces and let E be a topological space equipped with the Borel
σ-algebra B(E). Furthermore, let f : Ω → T be a (Σ−A)-measurable function and let g : T → E be a
Borel-measurable function. Then, the composition g ◦ f is a

(
Σ− B(E)

)
-measurable function.

In the remainder of this section, we introduce two important measures and discuss their relation. To do

this, we restrict ourselves to the case of the d-dimensional real space Rd. The following two definitions

introduce the Lebesgue and Hausdorff measure, respectively.

Definition 2.4 (Lebesgue Measure):
Let the d-dimensional real space Rd be equipped with the Borel σ-algebra B(Rd) and let I denote the set of
all half-open intervals in Rd. Then, the function Ld satisfying

Ld
(
[a, b)

)
:=

d∏
i=1

(bi − ai) , for all [a, b) ∈ I ,

can be uniquely extended to a measure on
(
Rd,B(Rd)

)
, which is called the Lebesgue measure.

9

A function g : T → E is called Borel-measurable if it is B(T )− B(E) measurable, where B(·) denotes the Borel σ-algebra.
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Definition 2.5 (Hausdorff Measure, [106, pp. 349–350]):
Let the d-dimensional real space Rd be equipped with the Borel σ-algebra B(Rd). For any set E ⊂ Rd and
two scalar values s ≥ 0 and δ > 0, we define

Hs
δ(E) := inf


∞∑
j=1

(diam Uj)
s | E ⊂

∞⋃
j=1

Uj and diam Uj ≤ δ

 ,

with the convention that inf ∅ = ∞. Here, as δ decreases, the infimum is taken over a smaller family of
countable coverings of E by sets Uj , which satisfy diam Uj ≤ δ. The limit

Hs(E) = lim
δ↘0

Hs
δ(E) ,

is called the s-dimensional Hausdorff measure of E.

We conclude this introduction to measure theory with the following theorem stating that the d-

dimensional Hausdorff and Lebesgue measure coincide on Rd. The proof of this standard result is

omitted. For the details of the argumentation we refer to the monographs of Folland [106, Proposition

11.20] or Evans and Gariepy [99, Theorem 2 in Section 2.2].

Theorem 2.6 (Equivalence of Lebesgue and Hausdorff measure):
Let the d-dimensional real space Rd be equipped with the Borel σ-algebra B(Rd). Then, there exists a
constant CH

d > 0 that depends solely on the dimension d ∈ N, such that CH
d Hd is equivalent to the

d-dimensional Lebesgue measure Ld on
(
Rd,B(Rd)

)
.

2.2 Set-valued mappings

In this section, we give an introduction to the theory of set-valued mappings. In the literature, many

different terms like set-valued maps [17, 110], correspondences [5], multi-valued maps [143, 245] or

multifunctions [58] have been used to describe mappings that associate a point to a corresponding set.

These set-valued maps are an important tool to justify the (strong) measurability of solutions in the

well-posedness investigation of this manuscript. Additionally, the notion of correspondences can be

exploited to verify important properties of admissibility germs and associated remainder functions10
.

Note that we will use the terms set-valued map and correspondence interchangeably throughout this

thesis. We start with formally defining set-valued maps and the corresponding notion of measurability.

Definition 2.7 (Set-valued mappings):
Let (T,A) be a measurable space, i.e., let T be an arbitrary nonempty set and let A be a σ-algebra of
subsets of T . Furthermore, let Y be a topological space. If for every t ∈ T , there exists a corresponding
Ξ(t) ⊂ Y , then Ξ(·) is called a set-valued map from T to Y and is denoted by Ξ : T ⇒ Y . Furthermore,
the set-valued mapping Ξ : T ⇒ Y is measurable, if for every open set O ⊂ Y , the set Ξ−1(O) ⊂ T is
measurable, i.e., Ξ−1(O) ∈ A. In particular, the set domΞ := Ξ−1(Y ) must be measurable.

10

These germs and associated remainder functions are important tools to describe the admissibility of solutions in the first

part of the manuscript.
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As we already mentioned, an important feature is measurability. Therefore, we subsequently collect

some results describing the measurability of set-valued mappings. We start by stating that measurability

of a correspondence is equivalent to the measurability of its closure.

Proposition 2.8 (Measurability of closure, [110, Proposition 6.1.9]):
Let (T,A) be a measurable space and let Y be a topological space. A correspondence Ξ : T ⇒ Y is
measurable if and only if its closure, denoted by cl

(
Ξ(·)

)
, is measurable.

For the next result, we consider correspondences with a given structure. In particular, we establish that

the area under the graph of a Carathéodory function defines a measurable set-valued mapping. We

precise this in the following lemma.

Lemma 2.9 (Measurable correspondence via Carathéodory function, [110, Proposition 6.3.4]):
Let a measurable space (T,A) be given and let Y be a separable metric space. Furthermore, let the function
g : T × Y → R be Carathéodory, i.e., measurable in t ∈ T and continuous in y ∈ Y . Then, the set-valued
mapping Ξ : T ⇒ Y given by

Ξ(t) =
{
y ∈ Y | g(t, y) ≤ 0

}
, for t ∈ T

is measurable.

As an immediate consequence, the previous result implies that any set-valued mapping is measurable if

it can be written as the zero-level set of a Carathéodory function. We formalize this corollary in the

following statement.

Corollary 2.10 (Measurable correspondence via zero-level set, [110, Proposition 6.3.9]):
Let (T,A) be a measurable space and let Y be a separable metric space. Furthermore, let g : T × Y → R
be a Carathéodory function. Then, the set-valued mapping Ξ : T ⇒ Y given by

Ξ(t) =
{
y ∈ Y | g(t, y) = 0

}
, for t ∈ T ,

is measurable.

2.2.1 The metric hyperspace CS(Rd)

An important class of set-valued maps are closed-valued correspondences. For these, we can construct

a hyperspace11
, which allows us to describe the set-valued maps as single-valued functions into this

hyperspace. Such a hyperspace can be constructed to be a complete metric space for which we can derive

measurability results. However, for such a metric space, we need a notion of set convergence, which

does not discriminate between a set and its closure. The development and corresponding results of this

setting are based on the monograph of [246], where also details and motivations of the constructions

are discussed extensively.

11

The term hyperspace is adopted from the discussion by Rockafellar and Wets in [246].
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The main tool for constructing this hyperspace is the space of all nonempty, closed subsets of Rd, which

we denote by CS(Rd). Throughout this section, we will see that this space can form a complete metric

space, once it is equipped with a suitable metric. As a beginning of the discussion, we start by defining

two (pseudo-) distances for the space CS(Rd).

Definition 2.11 (ρ-(pseudo-)distance & Pompeiu-Hausdorff distance):
For any value ρ ∈ R≥0 we define the pseudo metric

dρ : CS(Rd)× CS(Rd) → R≥0 dρ(C,D) := max
|x|≤ρ

∣∣ distC(x)− distD(x)
∣∣ ,

where distC(x) denotes the Euclidean distance of the set C ⊂ Rd and the point x ∈ Rd. We call dρ(C,D)

the ρ-distance between C and D. Taking the limit ρ→ ∞ leads to the metric

d∞(C,D) := sup
x∈Rd

|distC(x)− distD(x)| ,

which is called the Pompeiu-Hausdorff distance between C and D.

Even though the above family of (pseudo-)distances enables us to measure the distance between two

closed sets, it cannot be used as a metric on CS(Rd), if we want the resulting space to be complete.

However, we can use this family to define a new metric, which is called the (integrated) set distance.

Definition 2.12 ((Integrated) Set distance):
For two sets C,D ∈ CS(Rd), the function

d : CS(Rd)× CS(Rd) → R≥0 d(C,D) :=

∫ ∞

0
dρ(C,D)e−ρ dρ ,

is called the (integrated) set distance between the sets C and D.

The motivation for defining this (integrated) set distance d was to define a metric, such that the space

CS(Rd) equipped with the metric d is complete. Luckily, this is precisely the statement of the subsequent

theorem.

Theorem 2.13 (Complete metric space, [246, Theorem 4.42]):
The (integrated) set distance defines a metric on the hyperspace CS(Rd) of closed subsets of Rd and the
resulting metric space

(
CS(Rd),d

)
is complete.

While the (integrated) set distance d allows us to equip the hyperspace CS(Rd) with a metric such that

the resulting space is complete, handling the construction via the integration of the ρ-(pseudo-)distances

can be tidious to handle. However, the following result shows that the Pompeiu-Hausdorff distance

defines an upper bound on the (integrated) set distance d.

Lemma 2.14 (Distance estimate):
The (integrated) set distance d satisfies the estimate

d(C,D) ≤ d∞(C,D) , (2.1)

for any two sets C,D ∈ CS(Rd).
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Proof. By Definition 2.11 of the ρ-(pseudo-)distance, for all values ρ ∈ R≥0 the estimation

dρ(C,D) ≤ d∞(C,D)

holds. Thus, the assertion follows by noting that the function e−ρ satisfies

∫∞
0 e−ρ dρ = 1 . ■

The hyperspace CS(Rd) allows us to define a minimal selector sg of a function g. The idea of such a

selection is that sg returns the minimum value of the function g over a closed set A ∈ CS(R). The

following result now states that this minimal selector is locally Lipschitz continuous provided that the

underlying function g is also locally Lipschitz continuous.

Lemma 2.15 (Minimization over closed bounded set is locally Lipschitz continuous):
Let g : R → R be a locally Lipschitz continuous function that takes values in a bounded interval U ⊂ R
and consider the function sg : CS(R) → R defined as

sg(A) := inf
a∈A

g(a) ,

where the space CS(R) of closed subsets of the real numbers is equipped with the (integrated) set distance
d. Then, the function sg is locally Lipschitz continuous.

Proof. Let two sets A,B ∈ CS(R) be given. The definition of sg allows us to rewrite the difference

|sg(A)− sg(B)| as∣∣sg(A)− sg(B)
∣∣ := ∣∣∣ inf

a∈A
g(a)− inf

b∈B
g(b)

∣∣∣ = ∣∣∣ inf
a∈A

g(a) + sup
b∈B

(
− g(b)

)∣∣∣ .
Here, the last step leverages the identity− infb∈B g(b) = supb∈B

(
−g(b)

)
. Inserting the term g(0)−g(0)

and applying the triangle inequality, we can estimate the above term via∣∣sg(A)− sg(B)
∣∣ ≤ ∣∣∣ inf

a∈A

(
g(a)− g(0)

)∣∣∣+ ∣∣∣ sup
b∈B

(
g(0)− g(b)

)∣∣∣
Based on this estimation, we can utilize the local Lipschitz continuity of g to obtain∣∣sg(A)− sg(B)

∣∣ ≤ LAg

∣∣∣ inf
a∈A

∣∣a− 0
∣∣∣∣∣+ LBg

∣∣∣ sup
b∈B

∣∣0− b
∣∣∣∣∣ ,

where LAg and LBg denote the Lipschitz constants of g over the set A and B, respectively. Define Lg
as the maximum of both Lipschitz constants, i.e., Lg := max

{
LAg , L

B
g

}
. Then, using again the identity

− infb∈B g(b) = supb∈B
(
− g(b)

)
leads to the estimation∣∣sg(A)− sg(B)

∣∣ ≤ Lg

∣∣∣ inf
a∈A

∣∣a− 0
∣∣∣∣∣+ Lg

∣∣∣ inf
b∈B

∣∣b− 0
∣∣∣∣∣ = ∣∣∣Lg( distA(0) + distB(0)

)∣∣∣ .
Here, distA(0) denotes the Euclidean distance between the set A and the point 0. Inserting the terms

distB(0)− distB(0) and distA(0)− distA(0), we can again employ the triangle inequality to obtain∣∣sg(A)− sg(B)
∣∣ ≤ ∣∣∣Lg(distA(0)− distB(0) + distB(0)− distA(0) + distA(0)− distB(0)

)∣∣∣
≤ 3Lg

∣∣distA(0)− distB(0)
∣∣ .

However, by [246, Lemma 4.41], the above term can be bounded by the set distance d leading to∣∣sg(A)− sg(B)
∣∣ ≤ 3Lgd(A,B) ,

which concludes the proof of sg being locally Lipschitz continuous. ■
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2.2.2 Measurability in hyperspace terms

In the previous section, we have seen how to identify a correspondence with a single-valued map into the

hyperspace

(
CS(Rd),d

)
. Now, we use this representation to derive measurability results of set-valued

maps, whose values are contained in this hyperspace. Here, measurability in the hyperspace has the

standard interpretation of single-valued maps via the preimage of Borel subsets. The Borel σ-algebra on

CS(Rd) is the one generated by the Painlevé-Kuratowski set topology, or equivalently, the one induced

by the (integrated) set distance d.

Theorem 2.16 (Measurability in hyperspace terms, [246, Theorem 14.4]):
A closed-valued correspondence Ξ : T ⇒ Rd is measurable if and only if it is measurable when viewed as a
single-valued mapping from domΞ into the metric hyperspace

(
CS(Rd),d

)
.

As a last tool that we will frequently employ, we define a set-dependent indicator function. In contrast to

the classical definition of an indicator function, the set-dependent version has an additional argument,

which allows us to specify the (closed) set on which the function is nonzero. We precise this construction

in the subsequent definition. Afterwards, we conclude this section by proving that the set-dependent

indicator function 1 is separately measurable.

Definition 2.17 (Set-dependent indicator function):
Let CS(Rd) be the hyperspace of closed nonempty subsets of Rd equipped with the (integrated) set distance
d. Then, the function 1 : CS(Rd)× Rd → R given by

1(Z,x) =

{
1 x ∈ Z ,

0 x /∈ Z ,

is called the set-dependent indicator function.

Lemma 2.18 (Measurability of set-dependent indicator function):
The set-dependent indicator function 1 : CS(Rd) × Rd → R as defined in Definition 2.17 is separately
measurable.

Proof. To show the measurability in the first argument, let a set Z ∈ CS(Rd) be fixed. By definition,

the set Z is closed and thus measurable. This is already sufficient to have measurability with respect to

the spatial coordinate x ∈ Rd, since the indicator function of a measurable set is also measurable [248,

Proposition 1.9 (d)].

Now, let x ∈ Rd be fixed and let A ∈ B(R) be arbitrary, where B(R) denotes the Borel σ-algebra on R.

We denote by 1−1
x [A] the preimage of A under 1(·,x), i.e.,

1−1
x [A] :=

{
Z ∈ CS(Rd) : 1(Z,x) ∈ A

}
.

Additionally, let Zx ⊂ CS(Rd) be the set of closed nonempty subsets of Rd containing x, i.e.,

Zx =
{
Z ∈ CS(Rd) : 1(Z,x) = 1

}
.

Based on these two definitions of the preimage 1−1
x [A] and the set Zx and for the spatial variable x ∈ Rd
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still being fixed, we obtain an explicit representation of 1−1
x [A] given by

1−1
x [A] =


CS(Rd) 0, 1 ∈ A ,

Zx 1 ∈ A, 0 /∈ A ,

Zcx 1 /∈ A, 0 ∈ A ,

∅ 0, 1 /∈ A .

If all these four sets are measurable, then the mapping Z 7→ 1(Z,x) is Borel-measurable. Thus, it

remains to show that Zx and Zcx are measurable.

We now show that the setZx is closed and thus, Zx andZcx areB(CS(Rd))-measurable, whereB(CS(Rd))
denotes the Borel σ-algebra over CS(Rd). Let P ∈ Zcx be arbitrary but fixed. Then, by definition, P

is closed with x /∈ P and in particular, there exists a constant α > 0 such that d(P,x) > α. Now,

define the constant 0 < ε := α/2 and the set Q := P − εd for some arbitrary d ∈ Rd with ∥d∥ = 1. By

construction, it holds that

d∞(P,Q) := sup
x∈Rd

|distP (x)− distQ(x)| = ε,

and by the estimate (2.1) it holds that

d(P,Q) ≤ d∞(P,Q) = ε.

Furthermore, since P is closed by definition, it follows that Q is closed and, additionally, we have by

construction that x /∈ Q. Thus, we get Q ∈ Zcx and therefore, Zcx is open. Consequently, Zx is closed

and therefore, Zx and Zcx are B(CS(Rd))-measurable, which concludes the proof of showing that the

set-dependent indicator function 1 is separately measurable. ■

2.3 Random variables

The purpose of this section is to familiarize the reader with random variables in general Banach and

Hilbert spaces. The presented frameworks can be seen as the theoretical basis for introducing Lévy-type

random fields in the next section. We start in Section 2.3.1 by discussing weakly measurable random

variables. Afterwards, Bochner-integrable random variables are introduced, which can be characterized

via their moments. We conclude this introduction of random variables by discussing covariance operators

and spectral expansions in Section 2.3.3. Before we start, the notion of a random variable is introduced

in the subsequent definition.

Definition 2.19 (Random variable):
Let (Ω,Σ,P) be a probability space and let (T,A) be a measurable space. Then, a (Σ−A)-measurable
function X : Ω → T is called a (T,A)-valued random variable.

To describe random variables, oftentimes their statistical properties are employed, such as expectation,

variance or higher moments. Let us stress that these moments do not need to exist.
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2.3.1 Weakly measurable random variables

The Definition 2.19 of a random variable is the common one when considering uncertain parameters

or coefficients. From a theoretical point of view, this definition can be generalized by relaxing the

requirement of measurability. This leads to the notion of weakly measurable random variables, which

may take values in an arbitrary Banach space B. For such random variables to be weakly measurable

it is sufficient, if the composition with any element of the dual space is measurable. We precise this

construction with the following definition.

Definition 2.20 (Weakly measurable random variable):
Let a probability space (Ω,Σ,P) be given and let (B, ∥·∥B) be a Banach space with dual B′. A function
X : Ω → B is weakly measurable, if for every element of the dual space x′ ∈ B′, the functionXx′ : Ω → R
defined by

Xx′(ω) :=
〈
X(ω), x′

〉
,

is measurable. Then, we call X : Ω → B a weakly measurable random variable.

To describe the statistical moments of weakly measurable random variables, a suitable way of integrating

the random variableX over sample space Ω against the probability measure P needs to be defined. Here,

the notion of the Pettis integral and the Dunford integral can be employed. Both integrals are defined in

the subsequent definition.

Definition 2.21 (Pettis & Dunford integrals):
Let (Ω,Σ,P) be a probability space and let (B, ∥·∥B) be a Banach space. Furthermore, letX : Ω → B be a
weakly measurable random variable. Then, the Pettis integral ofX is the unique element x ∈ B satisfying〈

x, x′
〉
=

∫
Ω

〈
X,x′

〉
dP ,

for every dual element x′ ∈ B′. The Dunford integral of X is the unique element x′′ in the double dual
space B′′ of B satisfying 〈

x′, x′′
〉
=

∫
Ω

〈
X,x′

〉
dP ,

for every dual element x′ ∈ B′.

Based on this Pettis-integrability, one can define the expectation of a weakly measurable random variable.

Before we continue, let us introduce some notation: For a probability space (Ω,Σ,P) and a Banach

space B, consider a weakly measurable random variable X : Ω → B. We write X ∈ Lpw(Ω;B), with

p ≥ 1, if the mapping ⟨X,x′⟩ satisfies ⟨X,x′⟩ ∈ Lp(Ω;R) for all dual elements x′ ∈ B′
. Therewith, we

are ready to define the expectation and covariance operator of weakly measurable random variables.

Definition 2.22 (Expectation & covariance of weakly measurable random variables):
Let (Ω,Σ,P) be a probability space and let (B, ∥·∥B) be a Banach space. Furthermore, let X ∈ Lpw(Ω;B)

be a weakly measurable random variable. Then, the element x ∈ B is called the expectation of X , if the
relation ∫

Ω

〈
X,x′

〉
dP =

〈
x, x′

〉
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is satisfied for every dual element x′ ∈ B′. We write EP (X) := x to denote the Pettis integral of the
random variable X . Additionally, the continuous linear operator Q : B′ → B satisfying〈

Qx′1, x
′
2

〉
=

∫
Ω

〈
X − EP (X) , x′2

〉 〈
X − EP (X) , x′1

〉
dP ,

is called covariance operator.

2.3.2 Bochner-integrable random variables

While the notion of weakly measurable random variables is very general and can be applied to a

tremendeous amount of problems, it also introduces some inconveniences. In practical applications,

it is often important to compute or approximate the expectation and higher moments of the random

variable. Unfortunately, to the best of the author’s knowledge, numerically approximating the Pettis

integral is not possible or unfeasible due to its construction. Nevertheless, restricting the situation to

Bochner-integrable random variables leads to a feasible notion of statistical moments, which can be

approximated numerically. This restriction requires the random variable to be strongly measurable,

which means that it is a random variable in the sense of Definition 2.19 with a separable image. Based

on such strongly measurable random variables, we can introduce Lebesgue-Bochner spaces in the next

definition.

Definition 2.23 (Lebesgue-Bochner space):
Let (Ω,Σ, µ) be a measure space and let (B, ∥·∥B) be a Banach space. For any value p ∈ [1,∞), we define
the set

Lp(Ω;B) :=

{
X : Ω → B is strongly measurable and

∫
Ω
∥X(ω)∥pB dµ(ω) < +∞

}
and the seminorm

∥X∥Lp(Ω;B) :=
(∫

Ω
∥X∥pB dµ

)1/p
.

Furthermore, define the set

N p := {X ∈ Lp | X = 0 µ-almost everywhere } .

Then, the Lebesgue-Bochner space is defined as the function space Lp(Ω;B) := Lp \ N p with the norm
∥[X]∥Lp(Ω;B) := ∥X∥Lp(Ω;B), for some representative X of the equivalence class [X].

Let us stress that, in the remainder of this thesis, we do not explicitly distinguish between equivalence

classes and functions. With this definition of Lebesgue-Bochner spaces, we have also obtained an

integral notion for defining the statistical moments of (strongly measurable) random variables. We

specify the expectation as well as higher moments of a Bochner-integrable random variable in the

following definition.

Definition 2.24 (Moments of Bochner-integrable random variables):
Let (Ω,Σ,P) be a probability space and let (B, ∥·∥B) be a Banach space. Furthermore, let X : Ω → B be
a B-valued random variable.
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(i) If the random variable X satisfies X ∈ L1(Ω;B), the expectation of X is defined as the Lebesgue-
Bochner integral

E (X) :=

∫
Ω
X(ω) dP(ω) .

(ii) For some value n ∈ N, let the random variable X satisfy X ∈ Ln(Ω;B). Then, for any value
1 ≤ k ≤ n, the value Mk (X), given by

Mk (X) := E
(
Xk
)
,

is called the k-th moment of X .

2.3.3 Covariance operators and spectral expansions

Based on the Bochner-integrable random variables of the previous section, an extensive theory has been

developed for random variables with finite second moments. In this so-called L2
-theory for random

fields, it is natural to consider covariance operators. These also allow to derive spectral expansions of the

random fields. Throughout this section on covariance operators and the associated spectral expansions,

we restrict ourselves to the discussion of H-valued random variables, where (H, ⟨·, ·⟩H) is a separable

Hilbert space.

To start the discussion of covariance operators and spectral expansions based on the L2
-theory, we

first specify the second moment of an H-valued random variable. In particular, the following definition

introduces the variance and covariance of a random variable X .

Definition 2.25 (Covariance & variance of random variable):
Let (Ω,Σ,P) be a probability space and let (H, ⟨·, ·⟩H) be a separable Hilbert space. Furthermore, let
X : Ω → H be an H-valued random variable satisfying X ∈ L2(Ω;H). Then, the covariance of X is
defined by

Cov (X) := E
((
X − E (X)

)
⊗
(
X − E (X)

))
as an element of the tensor product space H ⊗H . Additionally, the term

V (X) := E
(∥∥∥(X − E (X)

)
⊗
(
X − E (X)

)∥∥∥
H⊗H

)
= E

(∥∥X − E (X)
∥∥2
H

)
=
∥∥X − E (X)

∥∥2
L2(Ω;H)

is called the variance of X .

Let us stress that the covariance of X is well defined as an element of H ⊗H as soon as X satisfies

X ∈ L2(Ω;H). This follows directly from the estimation

∥∥Cov (X)
∥∥
H⊗H ≤ E

(∥∥∥(X − E (X)
)
⊗
(
X − E (X)

)∥∥∥
H⊗H

)
=
∥∥X − E (X)

∥∥2
L2(Ω;H)

< +∞ .
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It is also possible to interpret the covariance of an H-valued random variable as an operator on the

Hilbert space (H, ⟨·, ·⟩H). Therefore, letL (H) denote the set of all linear operators onH and letL+
N (H)

be the set of all nonnegative, symmetric, nuclear operators on H . Then, the covariance can be defined

via the unique covariance operator Q ∈ L+
N (H) satisfying

⟨Cov (X) , ψ ⊗ ϕ⟩H⊗H = ⟨Qψ, ϕ⟩H⊗H

for all ψ, ϕ ∈ H . The following result guarantees the existence of a unique covariance operator

Q ∈ L+
N (H) for a square-integrable H-valued random variable X .

Lemma 2.26 (Existence of unique covariance operator, [262, Lemma 3.1.2]):
Let (Ω,Σ,P) be a probability space and let (H, ⟨·, ·⟩H) be a separable Hilbert space. Then, for any square-
integrable H-valued random variable, i.e., X ∈ L2(Ω;H), there exists a unique covariance operator
Q ∈ L+

N (H).

Due to the Hilbert-Schmidt theorem [242, Theorem VI.16], for any covariance operator Q ∈ L+
N (H),

there exists an orthonormal basis (vi, i ∈ N) of H satisfying

Qvi = λivi .

Here, (λi, i ∈ N) is a decaying sequence of nonnegative eigenvalues with zero being the only accumula-

tion point. Furthermore, Q being a nuclear operator implies that it is also trace-class operator, which

means that we have

Tr(Q) :=
∑
i∈N

⟨Qvi,vi⟩H =
∑
i∈N

λi < +∞ .

Due to the covariance operatorQ ∈ L+
N (H) being a trace-class operator, the square-integrableH-valued

random variable X admits the following spectral representation.

Theorem 2.27 (Karhunen-Loéve expansion):
Let (Ω,Σ,P) be a probability space and let (H, ⟨·, ·⟩H) be a separable Hilbert space. Furthermore, let
X ∈ L2(Ω;H) be anH-valued random variable with trace-class covariance operatorQ ∈ L+

N (H). Denote
by
(
(λi,vi), i ∈ N

)
the sequence of eigenpairs of the covariance operator Q with decaying eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ 0. Then, the random variable X admits the Karhunen-Loéve expansion

X = E (X) +
∑
i∈N

√
λiviZi . (2.2)

Here, (Zi, i ∈ N) is a sequence of uncorrelated, real-valued centered random variables.

2.4 Lévy-type random fields and their numerical approximation

When modeling uncertainty, the classical approach in the literature employs continuous random fields,

see, e.g., [59, 66, 71, 222, 266]. For many applications, such as subsurface flows through heterogeneous

porous media, it might be necessary to incorporate spatial and/or temporal discontinuities to model

sudden changes of heat conductivity or permeability within the heterogeneous porous medium. However,
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such an extension is not possible using continuous random fields. To overcome this problem, one may

employ Lévy-type random fields, which pose a possible extension of Lévy processes to higher-dimensional

parameter spaces.

The fundamental concept of Lévy processes was introduced by Lévy and Khintchine in various works,

such as [162, 184–186]. This general form of stochastic processes has been the foundation for extensive

research throughout the last centuries as the standard works by Applebaum [16] or Sato [161] prove.

Unfortunately, extending the general form of Lévy processes to higher-dimensional parameter spaces

while still being able to simulate the resulting random fields is still an open problem and active field of

current research. Nevertheless, by sacrificing some of the generality one can define specific instances

of Lévy-type random fields. One possibility is to restrict the setting to random fields with a certain

structure, such as subordinated random fields. Such an extension has been addressed for example in the

works of Merkle and Barth [197–199].

Another extension of Lévy processes to higher-dimensional parameter spaces is based on the Lévy-

Khintchine decomposition [16, 161]. This theoretical result states that every Lévy process may be

uniquely characterized via a continuous and a discontinuous part. In particular, the Lévy-Khintchine

formula states that every Lévy process can be seen as the composition of three independent components:

A deterministic drift term, a Brownian motion and a pure jump process. For a precise statement of this

decomposition, we refer to [233, Theorem 4.23]. It is exactly this decomposition of Lévy processes that

motivates the following definition of Lévy-type random fields.

Definition 2.28 (Lévy-type random fields, [27, Definition 3.1]):
Let (Ω,Σ,P) be a complete probability space and let Rd be the spatial domain. Then, a Lévy-type random

field a is defined as a function

a : Ω× Rd → R>0 , (ω,x) 7→ a(x) + Φ
(
G(ω,x)

)
+P(ω,x) , (2.3)

where

▶ a ∈ C(Rd;R≥0) is a deterministic, uniformly bounded mean function.

▶ Φ ∈ C1(Rd;R>0) is a continuously differentiable, positive mapping.

▶ G ∈ L2
(
Ω;L2(Rd;R)

)
is a zero-mean Gaussian random field associated to a nonnegative, symmetric

trace-class (covariance) operator Q : L2(Rd;R) → L2(Rd;R).

▶ T : Ω → B(Rd), ω 7→ {T1, . . . ,Tτ} is a random partition of the domain Rd in the sense that
{Ti}τi=1 is a family of disjoint open subsets of Rd satisfying Rd = ∪τi=1Ti. The number of elements
in T is given by an integrable random variable τ : Ω → N on the probability space (Ω,Σ,P).

▶ A finite measure Λ on the measurable space
(
Rd,B(Rd)

)
is associated to the partition T and controls

the distribution of the positions of the random elements Ti.

▶ For a sequence (pi, i ∈ N) of random variables on the probability space (Ω,Σ,P) with arbitrary
nonnegative distribution(s), we define the jump field P as

P : Ω× Rd → R>0, (ω,x) 7→
τ∑
i=1

1Ti(x)pi(ω) ,

where the sequence (pi, i ∈ N0) is independent of the number τ of elements in the partition T, but
not necessarily pairwise independent and identically distributed.
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While inspecting the construction of Lévy-type random fields in Definition 2.28 via Equation (2.3) it

immediately becomes apparent that the ingredients are inspired by the Lévy-Khintchine decomposition

of Lévy processes. Nevertheless, some comments on the construction of the jump field P are in order.

Remark 2.29 (Jump measure & independence): Let us stress that we do not require the Gaussian
random field G and the jump field P to be stochastically independent. On a further note, observe that the
jump measure Λ on

(
Rd,B(Rd)

)
, which is associated to the partition T of Rd, does not only affect the

average number of partition elements. Additionally, this measure Λ also controls the size of the partition
elements Ti and can be utilized to concentrate the discontinuities of the jump-advection coefficient a to
specific areas of the domain Rd.

Before we continue with a discussion on how to numerically approximate the constructed Lévy-type

random fields, let us illustrate the influence of the jump measure Λ on the resulting random field.

Therefore, Figure 2.1 depicts a realization of a random field for which the underlying jump measure

corresponds to a uniform and a normal distribution in Figure 2.1a and 2.1b, respectively.
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(a) Jump field P with a partition T controlled by a jump

measure Λ corresponding to a uniform distribution.
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(b) Jump fieldP with a partition T controlled by a jump

measure Λ corresponding to a normal distribution

with mean x = 1/2.

Figure 2.1: Illustration of the jump measure Λ on the discontinuous jump-advection coefficient.

While the jump positions in Figure 2.1a are evenly distributed over the spatial domain X, they are

concentrated around the center of the domain in Figure 2.1b. This is not surprising, as the jump measure

underlying the random field shown in Figure 2.1b corresponds to a normal distribution with mean

x = 1/2, which results in a higher density around that mean. Consequently, this illustration shows how

the jump field P can be influenced by the jump measure Λ.

Based on the form of the Lévy-type random field given by Equation (2.3), a numerical approximation

can be obtained by approximating both the continuous (Gaussian) random field and the pure jump field,

separately. Depending on the specific construction of the jump field P it might be possible to evaluate

the jump field exactly. All jump fields considered in this manuscript admit such an exact evaluation.

However, if it is not possible to exactly evaluate the jump field P, an approximation can be obtained via

Fourier inversion [28, 117, 145].

In general, there is no hope for an exact evaluation of the Gaussian random field and a numerical

approximation technique needs to be employed. Luckily, since the covariance operator Q is trace-class,

the Gaussian random field admits the spectral representation via the Karhunen-Loéve expansion defined

in Theorem 2.27. This representation given by Equation (2.2) allows us to approximate the random

variable (or random field) by truncating the series after NKL ∈ N terms. The subsequent theorem states

that such an approximation converges to the random variable. Additionally, an upper bound on the

truncation error is obtained. For the proof of this result, the reader is referred to [262, Theorem 3.1.6].
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Theorem 2.30 (Truncated Karhunen-Loéve expansion):
Let (Ω,Σ,P) be a probability space and let (H, ⟨·, ·⟩H) be a separable Hilbert space. Furthermore, let
X ∈ L2(Ω;H) be an H-valued random variable with trace-class covariance operator Q ∈ L+

N (H)

and denote by
(
(λi,vi), i ∈ N

)
the sequence of eigenpairs of the covariance operator Q with decaying

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0. Then, the Karhunen-Loéve expansion given by Equation (2.2) converges in
L2(Ω;H) and the truncation error is bounded by∥∥∥∥∥∥

∞∑
i>NKL

√
λiviZi

∥∥∥∥∥∥
2

L2(Ω;H)

= E

∥∥∥∥∥∥
∞∑

i>NKL

√
λiviZi

∥∥∥∥∥∥
2

H

 =
∑
i>NKL

λi ,

for some truncation index NKL ∈ N.

Let us stress that approximating the Gaussian random field via the truncated Karhunen-Loéve expansion

requires the eigenbasis of the covariance operator Q. In many situations such an eigenbasis might

not be available in an explicit or analytical form. However, for a given covariance operator or discrete

evaluations thereof, Nyström’s method provides a solution to obtain the eigenbasis. Nyström’s method

was originally introduced by Baker [24] and Press et al. [237]. For an extensive discussion, the

reader is referred to the monograph [286].

2.5 Numerical approximation techniques for random scalar
conservation laws

The purpose of this section is to introduce the numerical methods for approximating random conservation

laws that are employed throughout this manuscript. Therefore, the discussion starts by introducing

(multilevel) Monte Carlo methods for approximating moments of random variables in Section 2.5.1.

Afterwards, in Section 2.5.2, the finite volume method is discussed, which is suitable to approximate

pathwise solutions to random scalar conservation laws.

Let us point out that this section does not aim at giving an overview of existing algorithms, but rather

explain the employed methods in more detail. For an overview of numerical approximation techniques

for random scalar conservation laws, the reader is referred to Section 1.4 and the references therein. In

this introductory Section 1.4 also advantages and possible shortcomings are discussed.

2.5.1 (Multilevel) Monte Carlo methods

In this section, we introduce the ideas of the Monte Carlo method and its multilevel version. The main

concepts of Monte Carlo methods are based on ideas that Ulam [202, 274], von Neumann [279] and

Fermi [104] formulated in the middle of the last century. For the historical development of the Monte

Carlo method, the reader is referred to [201].

Monte Carlo method

The idea of the sampling-based Monte Carlo method is straightforward: By drawing a large number of

independent samples from the distribution of a random variable, the arithmetic mean of these samples

approximates the expected value of the random variable. This idea motivates the following definition of

the Monte Carlo estimator of the expectation of a random variable.
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Definition 2.31 (Monte Carlo estimator):
Let (Ω,Σ,P) be a probability space, (B, ∥·∥B) a Banach space and let X : Ω → B be a random variable
that satisfies E (∥X∥B) < +∞. Then, the Monte Carlo estimator of E (X) is defined as

EM (X) :=
1

M

M∑
i=1

X(i) ,

where
{
X(i)

}M
i=1

, with M ∈ N, are independent and identically distributed (i.i.d.) copies of the random
variable X .

Based on this construction, we can deduce several observations. First, the Monte Carlo estimator is

unbiased, which means that it satisfies E (EM (X)) = E (X). Additionally, the strong law of large

numbers [64, 135] ensures convergence to the expectation P-almost surely, which means that we have

lim
M→∞

EM (X) = E (X) , P-almost surely.

To investigate the convergence behavior of the Monte Carlo estimator EM further, we need to take the

Rademacher type of the Banach space into account.

Definition 2.32 (Rademacher type of Banach space, [168, Definition 2.2]):
Let (Zi, i ∈ N) be a sequence of Bernoulli-Rademacher random variables. For 1 ≤ pB ≤ ∞, a Banach
space B is said to be of Rademacher type pB if there exists a type constant CB > 0 such that for all finite
sequences

{
X(i)

}M
i=1

⊂ B, with M ∈ N, the estimate

∥∥∥∥∥
M∑
i=1

ZiX
(i)

∥∥∥∥∥
B

≤ CB

(
M∑
i=1

∥∥∥X(i)
∥∥∥pB
B

)1/pB

is satisfied.

Before we continue, the following remark summarizes some important results regarding the Rademacher

type of a Banach space.

Remark 2.33 (Rademacher type of Banach space, [168, Remark 2.3]):

▶ The triangle inequality implies that every Banach space has Rademacher type 1.

▶ Hilbert spaces (and finite-dimensional spaces) have Rademacher type 2 and the type constant CB
depends on the dimension.

▶ For 1 ≤ p <∞, Lp-spaces have Rademacher type pB = min{2, p}.

With this definition of a Rademacher type pB of a general Banach space, it is now possible to obtain

the following result regarding the convergence of a Monte Carlo estimator. For the technical details on

convergence rates for the Monte Carlo method in Banach spaces, the reader is referred to the recent

work of Kirchner and Schwab [164].
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Theorem 2.34 (Convergence of Monte Carlo estimator, [168, Proposition 2.4]):
Let (Ω,Σ,P) be a probability space and let (B, ∥·∥B) be a Banach space of Rademacher type pB with type
constant CB . Then, for every finite sequence

{
X(i)

}M
i=1

of independent random variables in LpB (Ω;B)

with zero mean, the estimation

E

(∥∥∥∥∥
M∑
i=1

X(i)

∥∥∥∥∥
pB

B

)
≤ (2CB)

pB

M∑
i=1

E
(∥∥∥X(i)

∥∥∥pB
B

)
(2.4)

is satisfied. In the particular case of B being a Hilbert space and X satisfying X ∈ L2(Ω;B), the
convergence of the Monte Carlo estimator EM can be described via the root-mean-squared-error ERMS,
which is given by

ERMS := E
(∥∥EM(X)− E (X)

∥∥2
B

)1/2
=

V (X)
1/2

√
M

,

where V (X) denotes the variance of X .

By the latter error estimate, we obtain mean-square convergence of the Monte Carlo method as soon as

X is square-integrable. Furthermore, Monte Carlo methods are implemented very easily and due to

the independence of the samples, parallelization is straightforward. However, the slow convergence of

O
(
M

1/2
)

is a major obstacle and therefore employing a Monte Carlo estimator can be unfeasible if the

simulation of X is computationally expensive. For example, this can be the case, if the random variable

X is (based on) the solution of a partial differential equation.

Multilevel Monte Carlo method

To overcome this obstacle of the slow convergence rate, the multilevel Monte Carlo method has been

developed by Giles [118, 119] based on the ideas of Heinrich [130]. Instead of a single random

variable X , consider now a hierarchy of approximations of X , denoted by X0, . . . , XL, for L ∈ N. With

this hierarchy of approximations, we can write the approximation with the highest accuracy as the

telescoping sum

XL = X0 +

L∑
l=1

Xl −Xl−1 . (2.5)

Based on this representation, the idea of the multilevel Monte Carlo (MLMC) method is now to decouple

the computational effort in approximating the expected value of X : On a coarse discretization level,

many (computationally inexpensive) samples can be computed to obtain an accurate approximation

of the underlying stochastic at the price of a low spatial resolution. This low spatial resolution can be

corrected by sampling the difference Xl −Xl−1 of two approximations of the random variable with

the standard Monte Carlo method. Under the assumption that the variance V (Xl −Xl−1) decays

sufficiently fast, this leads to a fast decreasing level-dependent number of samples M0 > · · · > ML.

This (spatial) accuracy versus number of (stochastic) samples trade-off leads to the following multilevel
Monte Carlo estimator.
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Definition 2.35 (Multilevel Monte Carlo estimator):
Let (Ω,Σ,P) be a probability space and let (B, ∥·∥B) be a Banach space of Rademacher type pB with
type constant CB . Furthermore, let X ∈ L2(Ω;B) be a random variable with finite second moment, i.e.,
E
(
∥X∥2B

)
< +∞. Additionally, for L ∈ N, let X0, . . . , XL be a hierarchy of approximations of X and

let M0 > · · · > ML be a decreasing sequence of sample numbers. Then, the multilevel Monte Carlo

(MLMC) estimator of E (XL) is defined as

EL(XL) := EM0(X0) +
L∑
l=1

EMl
(Xl −Xl−1) =

1

M0

M0∑
i=1

X
(i)
0 +

L∑
l=1

1

Ml

Ml∑
i=1

(
X

(i)
l −X

(i)
l−1

)
, (2.6)

where
{
X

(i)
l

}Ml

i=1
, with Ml ∈ N, are i.i.d. copies of the random variable Xl.

Let us emphasize that the correction termX
(i)
l −X(i)

l−1 in Equation (2.6) has to be sampled from the same

set of random variables. Additionally, note that the correction terms themselves are again independent

random variables. To conclude the fundamental discussions of (multilevel) Monte Carlo methods in this

section, the convergence of the MLMC estimator is investigated. Therefore, the subsequent theorem

provides an estimation of the root-mean-squared-error ERMS that describes the convergence of the

MLMC estimator. While the stochastic error can be bounded similar to the convergence of the standard

Monte Carlo estimator, the additional error induced by the spatial discretization has to be accounted for.

Theorem 2.36 (Convergence of Multilevel Monte Carlo estimator):
Let (Ω,Σ,P) be a probability space and let (B, ∥·∥B) be a Banach space of Rademacher type pB with type
constant CB . Furthermore, let (Xl, l ∈ N0) ⊂ LpB (Ω;B) be a sequence of random variables converging to
X ∈ LpB (Ω;B). Additionally, let the approximations Xl satisfy ∥X −Xl∥LpB (Ω;B) ≤ CMLMC∆

l
x,max,

for some constant CMLMC > 0 and a decreasing sequence (∆l
x,max, l ∈ N0) of refinement parameters.

Then, for a number L ∈ N of levels and a decreasing sequence M0 > · · · > ML of sample numbers, the
multilevel Monte Carlo estimator EL(XL) satisfies the estimation

∥∥EL(XL)− E (X)
∥∥
L2(Ω;B)

≤ CMLMC∆
L
x,max + CB

L∑
l=0

M1−pB
l V (Xl −Xl−1)

1/pB

where V (Xl −Xl−1) denotes the variance of the difference of two consecutive approximations to the
random variable X .

Proof. As a first step, applying the triangle inequality to the root-mean-squared-error of the

multilevel Monte Carlo estimator EL(XL) yields∥∥EL(XL)− E (X)
∥∥
L2(Ω;B)

≤
∥∥EL(XL)− E (XL)

∥∥
L2(Ω;B)

+ ∥E (XL)− E (X)∥L2(Ω;B) .

The definition of the L2(Ω;B)-norm allows us to estimate the second term as

∥E (XL)− E (X)∥L2(Ω;B) =

∥∥∥∥∫
Ω
XL −X dP

∥∥∥∥
B

≤
∫
Ω
∥XL −X∥B dP = E (∥XL −X∥B) .

Now, due to the approximation assumption, this can be further estimated as

∥E (XL)− E (X)∥L2(Ω;B) ≤ E (∥XL −X∥B) ≤ CMLMC∆
L
x,max .
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It remains to estimate the term

∥∥EL(XL)− E (XL)
∥∥
L2(Ω;B)

. To do this, we define X−1 := 0 and

∆Xl := Xl −Xl−1. With these definitions and the telescoping sum (2.5) of the random variable XL,

we have ∥∥EL(XL)− E (XL)
∥∥pB
L2(Ω;B)

=

∥∥∥∥∥
L∑
l=0

EMl
(∆Xl)− E

(
L∑
l=0

∆Xl

)∥∥∥∥∥
pB

L2(Ω;B)

=

∥∥∥∥∥
L∑
l=0

(
EMl

(∆Xl)− E (∆Xl)
)∥∥∥∥∥
pB

L2(Ω;B)

=

∥∥∥∥∥
L∑
l=0

Ml∑
i=1

(
∆X

(i)
l − E (∆Xl)

Ml

)∥∥∥∥∥
pB

L2(Ω;B)

.

For fixed l = 0, . . . , L, defining

Z
(i)
l :=

∆X
(i)
l − E (∆Xl)

Ml
, for i = 1, . . . ,Ml ,

leads to a finite sequence of independent random variables with zero-mean. Consequently, we can apply

the estimate (2.4) on the convergence of the Monte Carlo estimator (see also [179, Proposition 9.11] or

[168, Corollary 2.5]). Hence, we obtain

∥∥EL(XL)− E (XL)
∥∥pB
L2(Ω;B)

≤ CB

L∑
l=0

Ml∑
i=1

∥∥∥Z(i)
l

∥∥∥pB
L2(Ω;B)

= CB

L∑
l=0

Ml

∥∥∥Z(1)
l

∥∥∥pB
L2(Ω;B)

= CB

L∑
l=0

Ml

∥∥∥∥∥∆X
(1)
l − E (∆Xl)

Ml

∥∥∥∥∥
pB

L2(Ω;B)

= CB

L∑
l=0

M1−pB
l

∥∥∥∆X(1)
l − E (∆Xl)

∥∥∥pB
L2(Ω;B)

,

where CB is a constant depending on the Rademacher type pB of the Banach space B.

Based on this estimation, we can conclude that

∥∥EL(XL)− E (XL)
∥∥pB
L2(Ω;B)

≤ CB

L∑
l=0

M1−pB
l V (∆Xl)

pB ,

which completes the proof. ■

For the precise statement of computational gain of the multilevel Monte Carlo method, we refer to

the famous complexity theorem in [118]. Roughly speaking, the multilevel Monte Carlo methods have

successfully been used to reduce the computational time by several orders of magnitude compared to

the classical Monte Carlo method.
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2.5.2 Finite volume methods

In this last section on numerical approximation techniques for random conservation laws, the finite

volume method is introduced. Since the last century, finite volume methods have been extensively studied

by scientists and have been used for the numerical simulation of various problems in engineering. As an

important feature, finite volume schemes contain local conservativity of the fluxes within the considered

problem. This property is an important physical characteristic in the description of phenomena.

The basic idea of finite volume schemes is to track the numerical fluxes of the unknown through the

considered domain. This is achieved by observing so-called control volumes, which are the cells that

result from discretizing the computational domain. For each such control volume, the flux across its

boundary is then obtained via an integral formulation of the problem.

Discretization of the space-time domain

To start the discussion of finite volume methods, we describe the discretization of the considered space-

time domain XT is a rather extensive way. Consider a triangulation X∆ of the spatial domain X ⊂ Rd.

We use the term triangulation for a partition of the domain into a finite set of polyhedra Xi ⊂ X, which

are disjoint, open and convex. For each such control volume X, we denote its boundary as ΓX , which is

itself a finite union of closed, plane faces. As important characteristics of the control volumes Xi ∈ X∆,

we write |Xi| to denote the volume of the i-th cell and ∆Xi denotes its diameter. Furthermore, for any

control volume X ∈ X∆, we define the set N(X) of neighboring cells as

N(X) :=
{
Y ∈ X∆ | Y ≠ X and Hd−1

(
cl
(
X
)
∩ cl

(
Y
))
> 0
}
.

Here, Hd−1
denotes the (d − 1)-dimensional Hausdorff measure. It remains to discretize the time

interval T = [0, T ] ⊂ R>0, where 0 < T < ∞ is some final time for the simulation. Therefore, let

T∆ = {tm}m∈N ⊂ T be a sequence of points in the time interval T. For stability reasons, we may

require the time step sizes ∆m
t = tm − tm−1

to satisfy the Courant-Friedrichs-Lewy (CFL) condition,

which is given as

∆m
t

min{∆Xi | Xi ∈ X∆}
CmCFL < 1 . (2.7)

Here, the constant CmCFL > 0 depends on the maximum wave speed at the m-th time step.

Weak formulation of conservation law and numerical scheme

Based on the aforementioned discretization, we have now everything at hand to introduce and discuss

finite volume methods. Recall that the goal of the finite volume method is to obtain a discretization to

enable numerically simulating a scalar conservation law of the form

∂tu+ divx f(t,x, u) = 0 in X× T ,
u(0,x) = u0(x) on X× {0} .

(2.8)

Here u0 is some initial condition to the considered problem. One could write Equation (2.8) by means of

a space-time divergence in which case deriving the finite volume scheme would require a space-time
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control volume. Another possibility, which we consider in this thesis, is based on only integrating over a

spatial control volume. Thus, to approximate the time derivative, a finite difference scheme is employed.

With the Euler time discretization, this results in the approximation

∂tu ≈ um+1 − um

∆m
t

.

Here, um denotes an approximate value of the solution u at time tm. The fundamental idea of the

finite volume method is to integrate the scalar conservation law given by Equation (2.8) over each cell

X ∈ X∆ of the triangulation X∆. Using the explicit (forward) Euler time discretization
12

, this leads to

the following weak formulation of the conservation law:∫
X

um+1(x)− um(x)

∆m
t

dx+

∫
ΓX

f
(
tm,x, um(x)

)
· nX(x) dHd−1 = 0 .

Here, nX(x) denotes the outer unit normal vector of cell X at point x ∈ ΓX and dHd−1
denotes the

differential for integrating against the (d − 1)-dimensional Hausdorff measure. The remaining step

in defining the finite volume method is to approximate the flux f
(
tm,x, um(x)

)
· nX(x) across the

boundary ΓX for each cell X. We write GmX,Y(t
m,Xc,Yc, U

m
X , U

m
Y ) to denote an approximation of the

flux between the control volumes X and Y . This approximation depends on approximate values UmX , U
m
Y

of the solution u at time tm on cells X,Y ∈ X∆ as well as on the center points Xc,Yc of the cell X and

Y , respectively. Usually, the values UmX are approximations to the cell average of the solution u, i.e.,

UmX ≈ 1

|X|

∫
X
u(tm,x) dx .

Combining the presented approximations of the solution u and the flux function f, this leads to the

numerical approximation scheme

Um+1
X = UmX − ∆m

t

|X|
∑

Y∈N(X)

GmX,Y
(
tm,Xc,Yc, U

m
X , U

m
Y
)
.

Before we conclude the discussion of finite volume approximations, let us stress two important properties

of the finite volume method:

(i) The scheme is conservative in the sense that the numerical flux GmX,Y satisfies

GmX,Y
(
tm,Xc,Yc, U

m
X , U

m
Y
)
= GmY,X

(
tm,Yc,Xc, U

m
Y , U

m
X
)
,

for all cells X,Y ∈ X∆ in the triangulation X∆ and for all time steps m ∈ N.

(ii) The numerical flux GmX,Y of the finite volume method is consistent with the flux given by

f(tm,x, u) · nX .

It is a standard result that combining these two properties with suitable stability properties results in

convergence of the presented finite volume method (see, e.g., [101] or [183]).

12

Alternatively, the implicit (backward) Euler time discretization can be employed, in which case the term f
(
tm,x, um(x)

)
is replaced by f

(
tm+1,x, um+1(x)

)
. In general, any stability preserving Runge-Kutta time integration scheme can be

employed. For the details, we refer to the monographs [101, 131, 183].
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Numerical flux functions

Before we conclude the discussion of finite volume methods we have a closer look into the approximations

of the flux function f. For the ease of presentation, we subsequently restrict ourselves to the one-

dimensional setting. A standard procedure to derive numerical fluxes is based on considering Riemann

problems. These are one-dimensional initial value problems based on the scalar conservation law of

Equation (2.8), where the initial condition u0 is of the form

u0(x) :=

{
uL for x < 0 ,

uR for x > 0 ,

for some tuple (uL, uR) ∈ R2
. Here, we tacitly assume uL ̸= uR. For deriving a numerical flux, such a

Riemann problem is solved or approximated for any edge of the cell X ∈ X∆. One important numerical

flux based on this approach is the Godunov flux, which—for the case of spatially independent flux

functions—is given by

GGod
X,Y (UX , UY) :=


min

UX≤θ≤UY
f(θ) · nX,Y if UX ≤ UY ,

max
UX≤θ≤UY

f(θ) · nX,Y if UX ≥ UY .
(2.9)

Here, nX,Y denotes the outward unit normal vector pointing from cell X to cell Y . For more examplary

fluxes based on this approach, such as the Roe or Harten-Lax-van Leer fluxes, the reader is referred to

the extensive discussion in [183].

An important property of numerical flux functions is monotonicity. A numerical flux GX,Y : R2 → R is

called monotone, provided that

(i) the function GX,Y(·, ξ) is monotone increasing for all scalar values ξ ∈ R and

(ii) the function GX,Y(ξ, ·) is monotone decreasing for all scalar values ξ ∈ R.

Examples for monotone fluxes are the Godunov flux (compare Equation (2.9)) or the Lax-Friedrichs flux.

Approximation error and (theoretical) convergence results

To conclude the discussion of prerequisites of finite volume methods we give an overview of existing

results regarding the convergence rates of finite volume schemes. As before, this discussion is limited to

the case of deterministic conservation laws and flux functions.

We start by summarizing convergence results for the L1
-theory of conservation laws. Due to the result

of Harten et al. [129] the convergence rate of monotone finite volume approximations in the L1

space is restricted to 1, since finite volume schemes are at most first-order accurate. For this result, the

authors considered spatially independent flux functions. An extension to fluxes with a discontinuous

spatial dependency was recently introduced by Badwaik and Ruf [21]. In this work, the authors

derive a L1
convergence rate of 1/2 for conservation laws with discontinuous flux functions in the case

where a monotone finite volume scheme is considered and the solution u dependency of the flux function

is strictly monotone. In a sequel work, Badwaik et al. [22] state that the L1
convergence rate of 1/2
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“cannot be improved without further assumptions on the initial datum”. Here, possible assumptions are

regarding the regularity of the initial datum and the statement is based on a result of Sabac [251] from

1997.

As a last consideration of this section, the convergence behavior and results in the L∞(T;L1) space are

discussed. The first theoretical result goes back to Kuznetsov [174], who proved a convergence of

order 1/2 in L∞(T;L1) for spatially independent flux functions when a structured grid is used for the

finite volume discretization. This result has been extended to a convergence rate of 1/4 on unstructured

grids by Cockburn et al. [67], Vila [277] and Eymard et al. [101]. In contrast to this theoretical

result, error rates that are observable in numerical simulations may show a different behavior. For

example, Merlet and Vovelle [200] find that “[. . .] numerical tests give an order h
1/2

for structured

as well as unstructured meshes”. To conclude the discussion of convergence results, let us not that–to

the best of our knowledge–no theoretical results for L∞
convergence rates have been established for

the case where the flux function contains spatial discontinuities.
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Random conservation laws
with a sole flux discontinuity 3

The purpose of this chapter is to develop a well-posedness theory for random scalar conservation laws

with a discontinuous flux function. While we allow the conservation law to be defined in multiple

space dimensions, we restrict ourselves to the rather simple case of a sole flux discontinuity. This basic

geometrical form of the jump interface of the flux function allows us to discuss the admissibility of

entropy solutions and the well-posedness of such, whilst avoiding heavy technical arguments.

Throughout this chapter, let (Ω,Σ,P) be a complete probability space. Furthermore, for a time interval

T := [0, T ], with 0 < T <∞, and a spatial domain X := Rd, with d ∈ N, we denote the corresponding

space-time domain as XT := T×X. Then, for unknown u := u(ω, t,x), the random scalar conservation

law is given by

∂tu+ divx f(ω, t,x, u) = 0 in Ω× T× X ,

u(ω, 0,x) = u0(ω,x) on Ω× {0} × X ,
(3.1)

where u0 ∈ Lq
(
Ω;Lp(X)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, is a stochastic initial condition.

Furthermore, the random flux function f is assumed to depend discontinuously on the spatial variable.

This discontinuity D(ω) ⊂ XT, which is discussed in detail in Section 3.1, is assumed to be a random

hypersurface that divides the space-time domain into two parts.

For the well-posedness of random entropy solutions, three ingredients need to be established, namely the

existence of a unique solution as well as the measurability with respect to the stochastic variable of such

a solution. To achieve this, we start by discussing random sole discontinuity hypersurfaces in Section 3.1.

These (potentially curved) hypersurfaces describe the flux discontinuities that are considered throughout

this chapter. Afterwards, in Section 3.2, two different approaches and techniques for the definition

and admissibility of entropy solutions are discussed. The first one is based on a local consideration of

admissible solutions, while the second approach employs a global entropy inequality to describe the

admissibility of solutions. Both approaches will be leveraged in various ways to argue the well-posedness

of the random scalar conservation law given by Equation (3.1) in Section 3.3. Here, we first reduce the

question of existence and uniqueness of pathwise entropy solutions to the corresponding deterministic

case. Thereafter, the measurability of entropy solutions is derived, followed by an investigation of the

existence of moments of the solution.
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3.1 Sole flux discontinuities

A rather simple, though very important case of discontinuity geometries is given by sole discontinuities,
which consist of a single discontinuity hypersurface that divides the space-time domain XT into two

parts. Even though the jump manifold is allowed to be curved, this type of discontinuity is a model
geometry that simplifies the presentation and is suitable to describe the main ideas and difficulties. The

section starts with the definition of such discontinuities and discusses some direct consequences thereof

in Section 3.1.1. Afterwards, in Section 3.1.2, the measurability of the hypersurface is investigated. Then,

we have a brief look at the normal vector field of the discontinuity manifold in Section 3.1.3, before

concluding this section by looking at the resulting left and right domain parts and relevant properties in

Section 3.1.4.

3.1.1 Sole flux discontinuities and their parametrization

We start by defining the notion of a sole flux discontinuity (hypersurface), which is given as an equation-

defined manifold of the space-time domain XT.

Definition 3.1 (Sole flux discontinuity):
Let D ⊂ XT be a hypersurface in the space-time domain XT. If there exists a continuously differentiable
function ΦD ∈ C1(T× Rd−1;R), such that D is given by the graph of ΦD, i.e.,

D = GrΦD :=
{
(t,x) ∈ XT | x1 = ΦD(t,x2:d)

}
, (3.2)

then D is called a sole discontinuity (hypersurface). Here, x = (x1, . . . , xd) denotes the spatial variable
and we write x2:d for the vector (x2, . . . , xd). Furthermore, if D depends on ω ∈ Ω and D(ω) is a
sole discontinuity for every ω ∈ Ω, then D is called a random sole discontinuity (hypersurface). This
dependency is formalized by writing D as a correspondence D : Ω ⇒ XT.

By this construction of the jump interface, we immediately obtain the following characterization of a

sole discontinuity as a parametrized submanifold of the space-time domain XT.

Lemma 3.2 (Parametrization of (random) sole discontinuity):
For a random sole discontinuity D : Ω ⇒ XT, the function PD : Ω× T× Rd−1 → XT given by

PD(ω, t,y) :=
(
t,ΦD(ω, t,y),y

)
, (3.3)

defines a parametrization of D.

Another property of the jump interface is its closedness, which we directly obtain from the definition.

This property is important, since it implies measurability of the discontinuity hypersurface as a subset

of

(
XT,B(XT)

)
, where B(XT) denotes the Borel σ-algebra of the space-time domain XT.

Corollary 3.3 (Sole discontinuity is closed):
If D ⊂ XT is a sole discontinuity hypersurface, then D is closed as a subset of XT. Additionally, if
D : Ω ⇒ XT is a random sole discontinuity, then D is a closed-valued correspondence.
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Proof. By Definition 3.1 and Equation (3.2), the discontinuity D is given as the graph of a continuous

function ΦD ∈ C1(T×Rd−1;R). Now, since ΦD
is continuous and both T×Rd−1

and R are Hausdorff

spaces, the graph of ΦD
is closed, which proves the first assertion. If D : Ω ⇒ XT is a random sole

discontinuity, then by Definition 3.1 the preceeding argumentation holds for every ω ∈ Ω, which

concludes the proof. ■

Additionally to implying measurability, the closedness of D allows us to represent random sole disconti-

nuities D : Ω ⇒ XT as single-valued mappings, which is useful for a variety of proofs.

3.1.2 Measurability of random sole discontinuities

In the last section, the (spatio-temporal) measurability of sole discontinuities has been established. If

such a manifold is randomized, we additionally need stochastic measurability, i.e., measurability with

respect to ω ∈ Ω. Unfortunately, this property cannot be derived from the definition. Therefore, we

impose the following assumption on random sole discontinuities.

Assumption 3.4 (Stochastic measurability of random sole discontinuities):
We assume that the random sole discontinuity D : Ω ⇒ XT is a measurable correspondence.

If we combine this stochastic measurability assumption with the Definition 3.1 of random sole discon-

tinuities, for every ω ∈ Ω we can derive a representation of D(ω) via the level set of a Carathéodory

function. We show this in the following Lemma.

Lemma 3.5 (Sole discontinuity as level set):
Let D : Ω ⇒ T× X be a random sole discontinuity. Then, there exists a function ΨD : Ω× T× X → R
such that, for every stochastic parameter ω ∈ Ω, the discontinuity D(ω) is given as the zero-level set

D(ω) =
{
(t,x) ∈ T× X | ΨD(ω, t,x) = 0

}
(3.4)

of the continuously differentiable function ΨD(ω, ·, ·). Furthermore, if D satisfies the stochastic measura-
bility Assumption 3.4, then the function ΨD is Carathéodory in the sense that

(i) for fixed (t,x) ∈ T× X, the mapping ω 7→ ΨD(ω, t,x) is measurable.

(ii) for fixed ω ∈ Ω, the mapping (t,x) ∈ T× X 7→ ΨD(ω, t,x) is continuous.

Proof. Let D : Ω ⇒ T×X be a random sole discontinuity. Then, by Definition 3.1 of a random sole

discontinuity, for every ω ∈ Ω, there exists a differentiable function ΦD(ω, ·, ·) ∈ C1(T× X;R) such

that Equation (3.2) holds. Defining now the function ΨD : Ω× T× X → R via

ΨD(ω, t,x) := ΦD(ω, t,x2:d)− x1 (3.5)

we have proven the existence of a function ΨD
. Furthermore, from ΦD(ω, ·, ·) being continuously

differentiable, we immediately obtain that the function ΨD(ω, ·, ·) ∈ C1(T × X;R) is continuously

differentiable (and thus especially continuous). If additionally D : Ω ⇒ T × X is measurable by the

stochastic measurability Assumption 3.4, then Equation (3.4) and Lemma 2.9 imply that ΨD(·, t,x) is

measurable. This completes the proof. ■
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To conclude the measurability investigation of random sole jump interfaces, we show that the parametriza-

tion PD, defined via Equation (3.3), is jointly measurable.

Lemma 3.6 (Parametrization is jointly measurable):
Let D : Ω ⇒ XT be a random sole discontinuity that satisfies the measurability Assumption 3.4. Then, the
corresponding parametrization PD : Ω× T× Rd−1 → XT is jointly measurable.

Proof. Since the measurability Assumption 3.4 of the sole discontinuity D is satisfied, we can apply

Lemma 3.5 to obtain that there exists a Carathéodory function ΨD
that is defined by Equation (3.5).

However, Equation (3.5) directly implies that ΦD
is Carathéodory, and with [5, Lemma 4.51] also jointly

measurable. Now, the joint measurability of the parametrization follows immediately from its definition

via Equation (3.3) and [5, Lemma 4.49]. ■

3.1.3 Normal vector field of random sole discontinuities

After deriving the measurability properties of the sole discontinuity and its parametrization, we also

need to investigate the normal vector field of these hypersurfaces. To do this, we can employ the

representation of D via the level set of a Carathéodory function. This specific form of the discontinuity

allows us to define a normal vector field of D via the Gaussian mapping, as the following result shows.

Lemma 3.7 (Normal vector field of sole discontinuity hypersurface):
Let D : Ω ⇒ XT be a random sole discontinuity that satisfies the stochastic measurability Assumption 3.4.
Furthermore, let ΨD : Ω×XT → R be a Carathéodory function, such that Equation (3.4) is satisfied. Then,
for each ω ∈ Ω, the unit vector field defined by the Gaussian mapping

nD(ω,d) :=
(∇xΨ

D)(ω,d)

|(∇xΨD)(ω,d)|
, d ∈ D(ω) (3.6)

is normal to the discontinuity hypersurface D(ω) and ∇xΨ
D denotes the spatio-temporal gradient of the

function ΨD.

Proof. Recall that the discontinuity manifold D : Ω ⇒ XT is equation-defined by Equation (3.4) via

the zero-level set of the Carathéodory function ΨD
. For each random parameter ω ∈ Ω, [236, Theorem

50] implies that the gradient (∇xΨ
D)(ω,d) spans the normal space of the flux discontinuity manifold

D(ω) at the point d ∈ D(ω). Combining this result with the normalization in Equation (3.6), we obtain

that nD(ω,d) defines a unit normal vector of the discontinuity hypersurface D(ω) at d ∈ D(ω), which

concludes the proof. ■

When discussing the admissibility of solutions to Problem (3.1), we want to consider the normal compo-

nents of the flux corresponding to the normal unit vector field nD of the discontinuity D. While we

have successfully argued the existence and form of this normal unit vector field of the random sole

discontinuity, let us also discuss the existence of an extension of this normal field, which is Carathéodory.

Such an extension allows us to formulate the random normal field nD(ω, ·) as a mapping n̂D(ω, ·),
whose domain XT is independent of the stochastic parameter ω ∈ Ω.
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Lemma 3.8 (Extension of normal unit vector field):
Let D : Ω ⇒ XT be a random sole discontinuity hypersurface that satisfies the stochastic measurability
Assumption 3.4. Then, the unit vector field

n̂D(ω, x) :=
(∇xΨ

D)(ω, x)

|(∇xΨD)(ω, x)|
, ω ∈ Ω, x ∈ XT , (3.7)

defines an extension of the normal vector field nD to the whole space-time domain XT. Furthermore, the
mapping n̂D : Ω× XT → XT is Carathéodory.

Proof. The definition of ΨD
in Equation (3.5), yields

∣∣(∇xΨ
D)(ω, x)

∣∣ ≥ 1 for every x ∈ XT.

Therefore, the definition of n̂D via Equation (3.7) is meaningful for every x ∈ XT. Further, it is obvious

that n̂D satisfies n̂D

∣∣
D(ω)

≡ nD and thus defines an extension of nD.

Now, by Definition 3.1 and Lemma 3.5, the function ΨD
is measurable in ω ∈ Ω and continuously

differentiable in x. This means that (∇xΨ
D)(ω, x) is Carathéodory and since

∣∣(∇xΨ
D)(ω, x)

∣∣ ≥ 1, the

extension n̂D : Ω× XT → XT of the unit normal vector field is also Carathéodory. ■

3.1.4 Left and right space-time domain part

To conclude the discussion of sole discontinuities, we look at the left and right space-time domain parts

created by the manifold. To do so, we first define what we mean by left and right domain part.

Definition 3.9 (Domain parts):
Let D be a sole discontinuity given by Equation (3.2). Then, the interface D splits the space-time domain
XT into a left and right domain part, denoted Xl,rT , which are given by

XlT :=
{
(t,x) ∈ XT | x1 < ΦD(t,x2:d)

}
XrT :=

{
(t,x) ∈ XT | x1 > ΦD(t,x2:d)

}
.

(3.8)

Here, ΦD ∈ C1(T × Rd−1;R) is implicitly defined by D via Equation (3.2). If D is a random sole
discontinuity, we write Xl,rT : Ω ⇒ XT.

As a direct consequence of this definition, we obtain that the set-valued mappings Xl,rT : Ω ⇒ XT are

stochastically measurable as soon as the discontinuity hypersurface D : Ω ⇒ XT is measurable w.r.t.

the random parameter ω ∈ Ω. We show this in the following corollary.

Corollary 3.10 (Stochastic measurability of domain parts):
Let D : Ω ⇒ XT be a sole discontinuity satisfying the measurability Assumption 3.4. Then, the left and
right domain parts Xl,rT : Ω ⇒ XT corresponding to D are measurable set-valued mappings.

Proof. By Lemma 3.5 there exists a Carathéodory function ΨD : Ω × T × X → R such that, for

for every random parameter ω ∈ Ω, the left and right domain parts Xl,rT (ω) can be written as the area
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above and below the graph of ΨD
, respectively. This leads to the representation

XlT(ω) :=
{
(t,x) ∈ XT | ΨD(ω, t,x) > 0

}
, ω ∈ Ω ,

XrT(ω) :=
{
(t,x) ∈ XT | ΨD(ω, t,x) < 0

}
, ω ∈ Ω .

Similar, we can describe the closure of XlT(ω) and XrT(ω) by again utilizing the function ΨD
:

cl
(
XlT(ω)

)
:=
{
(t,x) ∈ XT | ΨD(ω, t,x) ≥ 0

}
, ω ∈ Ω ,

cl
(
XrT(ω)

)
:=
{
(t,x) ∈ XT | ΨD(ω, t,x) ≤ 0

}
, ω ∈ Ω .

These closures are measurable correspondences by Lemma 2.9. However, by Proposition 2.8, a set-valued

map is measurable if and only if its closure is measurable. Consequently, we have proven that the left

and right domain parts Xl,rT : Ω ⇒ XT are measurable correspondences. ■

To describe the admissibility of entropy solutions to the random scalar discontinuous-flux conservation

law given by Problem (3.1), functions need to be defined on the domain parts Xl,rT (ω). In order to create

such functions, which depend on the different domain parts, we introduce the corresponding indicator

functions of these domain parts as follows.

Definition 3.11 (Domain part indicator function):
Let D : Ω ⇒ XT be a random sole discontinuity manifold and let Xl,rT : Ω ⇒ XT denote the corresponding
left and right space-time domain parts. Then, the function 1Xl,rT

: Ω× XT → R defined via

1Xl,rT
(ω, x) := 1Xl,rT (ω)

(x) =

{
1 x ∈ Xl,rT (ω) ,

0 x /∈ Xl,rT (ω) ,

is called the (random) domain part indicator function.

These particular indicator functions are separately measurable, if the discontinuity interface is stochas-

tically measurable. Proving this in the following statement concludes this section on random sole

discontinuity hypersurfaces.

Lemma 3.12 (Measurability of (random) domain part indicator function):
LetD : Ω ⇒ XT be a random sole discontinuity that satisfies the measurability Assumption 3.4. Furthermore,
let Xl,rT : Ω ⇒ XT denote the corresponding left and right domain parts. Then, the indicator function 1Xl,rT
of the domain part Xl,rT is separately measurable.

Proof. The proof is divided into two steps: First, the measurability with respect to the space-time

variable x ∈ XT is shown and afterwards, we prove the measurability with respect to ω ∈ Ω.

(i) Let the stochastic variable ω ∈ Ω be fixed. Recall that by Definition 3.1 of a sole flux discontinuity,

the function ΦD(ω, ·, ·) ∈ C1(T × Rd−1;R) is continuously differentiable. Furthermore, by

construction of the domain parts Xl,rT (ω) via Equation (3.8), the sets Xl,rT (ω) are open and

therefore, also Borel-measurable.
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Since Borel subsets of XT are Lebesgue measurable (see, e.g., [72, Proposition 1.3.8]), we obtain

the measurability of Xl,rT (ω) as subsets of XT. This immediately implies the measurability of

1Xl,rT
with respect to x ∈ XT, since the indicator function of a measurable set is a measurable

function (see, e.g., [248, Proposition 1.9 (d)]).

(ii) Let x ∈ XT be fixed. Note, we can rewrite the indicator function as

1Xl,rT (ω)
(x) = 1XT(x)− 1XT\Xl,rT (ω)

(x) = 1XT(x)− 1cl
(
Xr,lT (ω)

)(x) .
Here, cl

(
Xr,lT (ω)

)
denotes the closure of Xr,lT (ω) and 1XT denotes the indicator of the whole

space-time domain XT. However, 1XT is measurable in ω ∈ Ω, since it is independent of it.

Furthermore, the indicator function 1
cl
(
Xr,lT (ω)

)
is measurable:

cl
(
Xr,lT (ω)

)
is a closed nonempty subset ofXT, so we have cl

(
Xr,lT (ω)

)
∈ CS(XT), where CS(XT)

is the hyperspace of nonempty closed subsets of XT as introduced in Section 2.2.1. Additionally,

by Corollary 3.10 the correspondences Xl,rT : Ω ⇒ XT are measurable and by Proposition 2.8

a set-valued map is measurable if and only if its closure is measurable. Therefore, the closure

cl
(
Xr,lT (ω)

)
is measurable in ω ∈ Ω. The measurability of the random domain part indicator

function 1Xl,rT
follows now immediately via the measurability of the set-dependent indicator

function, which was shown in Lemma 2.18, and by noting that the composition of two Borel-

measurable functions is again Borel-measurable.

Combining the above results, we have shown the separate measurability of the domain part indicator

functions 1Xl,rT
: Ω× XT → R. ■

3.2 Random admissibility conditions and random G-entropy solutions

In this section, we introduce and discuss admissibility criteria for random scalar conservation laws

having a sole flux discontinuity. Such conditions are necessary to select a unique weak solution of

Problem (3.1), which coincides with the modeled physical phenomenon. As we have mentioned in Result

(1.3) in the introduction, there may exist infinitely many notions of solutions to the discontinuous-flux

Problem (3.1) that are mathematically equally consistent, which was shown in [3]. In general, two types

of admissibility conditions can be distinguished:

The first type of criterion is based on locally identifying strong one-sided traces of admissible solutions

that enforce the Rankine-Hugoniot condition across the discontinuity interface, which guarantees

local conservativity of solutions. The main tool for defining solutions in this local manner, so-called

admissibility germs, are introduced in Section 3.2.1, where also relevant properties of germs are derived.

The corresponding type of admissibility criterion is discussed in Section 3.2.2. Alternatively, one can

modify the Kružkov entropy Condition (1.2) by incorporating the contribution of the discontinuity

interface into the Inequality (1.2). This leads to global admissibility criteria, which are discussed in

Section 3.2.3. We conclude this section by showing equivalence of these two definitions for the case of

L1
-dissipative admissibility germs and highlighting advantages and shortcomings of the two presented

ways to express admissibility in Section 3.2.4

Before we dive into these various aspects of admissibility conditions and selection criteria for entropy

solutions, let us introduce an assumption on the stochastic discontinuous flux function f that we impose

throughout this section and the remainder of this chapter.
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50 3 Random conservation laws with a sole flux discontinuity

Assumption 3.13 (Flux function with sole discontinuity):
A flux function f having a sole discontinuity hypersurface D : Ω ⇒ XT satisfies the following assumptions
for every random parameter ω ∈ Ω:

(F-1) The flux function f : Ω× XT × R → X has the form

(ω, x, υ) 7→

{
fl(ω, x, υ) for x ∈ XlT(ω) ,
fr(ω, x, υ) for x ∈ XrT(ω) ,

where fl,r are the restrictions of f to the random left and right space-time domain part Xl,rT (ω),
respectively.

(F-2) For fixed space-time variable x ∈ XT, the left and right flux functions fl,r(ω, x, ·) are locally

Lipschitz continuous.

(F-3) For fixed scalar value υ ∈ R, the left and right flux functions fl,r(ω, ·, υ) are globally Lipschitz

continuous.

Let us briefly comment on the locally Lipschitz Assumption (F-2). In the deterministic setting, one can

relax the locally Lipschitz assumption. For one-dimensional deterministic problems, mere continuity

would be sufficient, while an additional assumption on the character of continuity needs to be imposed

for multi-dimensional problems, see [171, 172]. However, in the randomized setting, the locally Lipschitz

Assumption (F-2) is crucial to proving the existence of moments of the solution.

3.2.1 Admissibility germs and their properties

In this section, we introduce the theory of so-called admissibility germs that describe admissible solutions

by explicitly prescribing possible jumps across the flux discontinuity. This unifying framework was

initially introduced by Andreianov et al. [13] for a deterministic one-dimensional model problem.

Many of these deterministic ideas can be generalized to the stochastic setting in a straightforward

manner. In this section, we recapitulate the main definitions and properties, while focusing on their

extension to our random scalar multi-dimensional conservation law with a sole flux discontinuity, which

is given by Equation (3.1). We start the discussion with the following basic definition of an admissibility

germ, which is a main tool for locally describing the permissibility of solutions.

Definition 3.14 (Admissibility germ):
Let a couple of continuous functions gl,r ∈ C(R;R) be given. Any set G ⊂ R2 is called an admissibility

germ associated to the couple (gl, gr), if the Rankine-Hugoniot condition

gl(ul) = gr(ur) (3.9)

is satisfied for every pair (ul, ur) ∈ G.

For the task of finding admissible solutions, the Rankine-Hugoniot Condition (3.9) ensures local conser-

vativity across jump discontinuities. As we are dealing with random sole jump interfaces of the flux, we

extend this notion of admissibility germs to random families of admissibility germs in the next definition.
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Definition 3.15 (Random family of admissibility germs):
Let ω ∈ Ω and x ∈ XT be fixed. Further, let gl,r(ω, x, ·) denote the normal components of the flux functions
fl,r(ω, x, ·), i.e.,

gl(ω, x, ·) := fl(ω, x, ·) · n̂D(ω, x) , gr(ω, x, ·) := fr(ω, x, ·) · n̂D(ω, x) , (3.10)

where, n̂D is the normal field of the random sole discontinuity extended to the whole space-time domain
XT, as defined in Equation (3.7).
Based on these normal components, any family of admissibility germs G(ω, x) associated to the pair
of continuous functions

(
gl(ω, x, ·), gr(ω, x, ·)

)
is called a random family of admissibility germs. The

dependency on the random parameter ω ∈ Ω and the space-time variable x ∈ XT is formalized by writing
the random family of admissibility germs as a set-valued mapping G : Ω× XT ⇒ R2.

To establish a well-posedness theory with these random families of admissibility germs, we need to

specify the dependency of G on the stochastic parameter ω ∈ Ω and the space-time variable x ∈ XT.

Therefore, we impose the following joint measurability assumption on the random family of admissibility

germs.

Assumption 3.16 (Joint measurability of random family of germs):
We assume that any random family of germs G : Ω × XT ⇒ R2 as defined in Definition 3.15 is jointly
measurable.

At a first glance, this joint measurability assumption might seem rather restrictive. However, measura-

bility of a family of germs is closely related to the existence of G-entropy solutions as the example in

[8, Section 1.3 and Appendix] demonstrates for a deterministic discontinuous-flux setting. A similar

example and argumentation can be used for the joint measurability Assumption 3.16 in the stochastic

setting at hand. Additionally, in Section 3.4, we verify this joint measurability property for the important

example of a random family of vanishing viscosity admissibility germs.

An important class of admissibility germs are those, which satisfy a L1
-dissipativity condition. Such

L1
-dissipativity is inspired by interpreting the solutions of Riemann problems as trajectories of an

L1
-dissipative solver for the discontinuous-flux conservation law – we refer to [13] for the details of

this interpretation. We specify this condition as well as the corresponding type of admissibility germ in

the next definition.

Definition 3.17 (L1-dissipative admissibility germ):
Let G ⊂ R2 be an admissibility germ associated to a couple of continuous functions (gl, gr). If the
L1-dissipativity condition

ql(ul, vl) ≥ qr(ur, vr) (3.11)

holds for all (ul, ur), (vl, vr) ∈ G, we call G an L1
-dissipative (admissibility) germ, or L1D germ for short.

Here, ql,r denotes the Kružkov entropy flux

q(u, v) := sign(u − v)
(
g(u)− g(v)

)
associated to the functions gl,r . A random family of germs G : Ω×XT ⇒ R2 is a L1

-dissipative family of

germs, if G(ω, x) is a L1D admissibility germ for every ω ∈ Ω and Hd-almost every x ∈ XT.
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Building upon this definition, we are also interested in identifying all couples (ûl, ûr) ∈ R2
, such that

the L1
-dissipativity is satisfied for all pairs (ul, ur) ∈ G contained in a fixed germ G. This leads to the

notion of a dual germ.

Definition 3.18 (Dual germ of G):
Let G ⊂ R2 be an admissibility germ. The dual germ of G, denoted G∗, is the set of all tuples (ûl, ûr) ∈ R2

satisfying the following two conditions:

(i) The L1-dissipativity condition (3.11) is satisfied for all pairs (ul, ur) ∈ G.

(ii) The tuple (ûl, ûr) satisfies the Rankine-Hugoniot condition (3.9).

If G : Ω× XT ⇒ R2 is a random family of germs, then G∗ : Ω× XT ⇒ R2 is the family of dual germs,
if G∗(ω, x) is the dual germ of G(ω, x) for every ω ∈ Ω and every x ∈ XT.

To show the uniqueness of G-entropy solutions, we need the notion of a definite germ. However,

this definiteness property requires the concept of a maximal germ and an extension of a germ. We

introduce these aforementioned features in the next definition, which concludes this section on (random)

admissibility germs and their properties.

Definition 3.19 (Extension of germs and properties maximal and definite):
Let G ⊂ R2 be an admissibility germ. We define the following properties of the germ G:

▶ Extension of G: Any set Ĝ ⊂ R2 is called extension of G, if it satisfies G ⊂ Ĝ and every (ul, ur) ∈ Ĝ

satisfies the Rankine-Hugoniot condition (3.9), i.e., if Ĝ is itself a germ. If both G and Ĝ are a L1D
germs, then Ĝ is called a L1D extension of G.

▶ Maximal germ: If an admissibility germ G does not admit a nontrivial extension, then G is called a
maximal germ.

▶ Definite germ: If a germ G possesses a unique maximal L1D extension, then G is called a definite

germ.

If G : Ω×XT ⇒ R2 is a random family of germs, then Ĝ : Ω×XT ⇒ R2 is an extension of G, if Ĝ(ω, x)

is an extension of G(ω, x) for every ω ∈ Ω and every x ∈ XT. Furthermore, G is called a random family of

maximal/definite germs, if G(ω, x) is maximal/definite for every ω ∈ Ω and every x ∈ XT.

As was shown in [13, Proposition 3.4], definiteness of an admissibility germ G implies that the corre-

sponding dual germ G∗
is the unique maximal L1

D extension of G. Furthermore, it follows that G being

definite is a necessary and sufficient condition for G∗
to be L1

-dissipative.

3.2.2 G-entropy solutions via admissibility germs

After the preliminary discussion of admissibility germs, we are almost ready to define admissible

solutions. The main idea of these germ-based admissibility criteria is the following: Away from the flux

discontinuity, i.e., locally in each domain part Xl,rT , the solution should be a Kružkov entropy solution

in the sense of Condition (1.2). Additionally, along the discontinuity D, the solution should satisfy the

local conservativity induced by the Rankine-Hugoniot condition. To evaluate the Rankine-Hugoniot

condition with the values of a solution across the discontinuity hypersurface, we utilize strong one-sided

traces of such a solution, which are defined in the subsequent definition.
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Definition 3.20 (Strong one-sided traces):
Let D ⊂ XT be a sole discontinuity manifold, which is described via the graph of a continuous function
ΦD ∈ C1(T × Rd−1;R) as in Equation (3.2). A function g ∈ L∞(XT;R) admits strong

13
right- and

left-sided traces γr,lg on D, if for all test functions ψ ∈ D(XT) it holds that

lim
h→0

1

h

∫
T

∫ h

0

∫
Rd−1

∣∣∣g(d± ye2
)
− (γrg)(d)

∣∣∣ψ(d) dx2:d dy dt = 0 .

Here, d =
(
t,ΦD(t,x2:d),x2:d

)
∈ D ⊂ XT ⊂ Rd+1 denotes a point on the discontinuity hypersurface D

and e2 ∈ Rd+1 denotes the second canonical basis vector of Rd+1. Similarly, we can define the strong

initial trace γ0g on the set {(t,x) ∈ XT | t = 0}.

Unfortunately, we cannot ensure the existence of strong one-sided traces of a solution for our general

setting. Therefore, we impose the following assumption that overcomes this problem.
14

Assumption 3.21 (Genuine nonlinearity of flux function):
Let a random parameter ω ∈ Ω, a time t ∈ T and a space location x ∈ X be fixed. We assume that the left
and right flux functions fl,r(ω, t,x, ·) are genuinely nonlinear in the sense that

L1

(
υ̂ ∈ R | ∂

∂υ
fl,r (ω, t,x, υ̂) = 0

)
= 0,

where L1 denotes the one-dimensional Lebesgue measure. In other words, the assumption postulates that
the left and right fluxes fl,r(ω, t,x, ·) are not constant on any nontrivial interval I ⊂ R.

The above genuine nonlinearity assumption ensures the existence of strong traces of the solution. By

virtue of the following remark, this also implies that the flux functions fl,r and the Kružkov entropy

fluxes ql,r admit strong one-sided traces.

Remark 3.22 (Composition admits traces): Let D ⊂ XT be a sole discontinuity hypersurface. Further-
more, let a function h : XT × R → R be continuous and let g ∈ L∞(XT;R) admit strong one-sided traces
γl,rg on D. Then, the composition h ◦ g := h(·, g(·)) admits strong one-sided traces on D. Additionally,
the equality (

γl,r(h ◦ g)
)
(d) = h

(
d, (γl,rg)(d)

)
holds for Hd-almost every d ∈ D.

Equipped with these strong one-sided traces and the admissibility germs presented in the previous

section, we have all necessary tools at hand to define pathwise admissible G-entropy solutions to the

random scalar conservation law given by Equation (3.1).

13

We use the word “strong” to indicate that these traces should be understood in the L1
loc topology.

14

The existence of traces of a solution is not necessary in the general case. One rather works with strong traces of the normal

components of the flux function and the normal components of the corresponding Kružkov entropy flux. We refer to Panov

[229] for the appropriate notion of traces. Additionally, we refer to [13] for a formulation that avoids the existence of traces

γl,ru of the solution u.
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Definition 3.23 (Pathwise G-entropy solution via germ formulation):
Let the following conditions be fulfilled:

▶ Let D : Ω ⇒ XT be a random sole discontinuity as defined in Definition 3.1.

▶ Let f be a flux function that satisfies the sole-flux-discontinuity Assumption 3.13 and the genuine
nonlinearity Assumption 3.21.

▶ Let G : Ω × XT ⇒ R2 be a random family of L1-dissipative admissibility germs satisfying the
joint measurability Assumption 3.16 and let G∗ : Ω× XT ⇒ R2 be the family of dual germs of G
according to Definition 3.18.

Then, for fixed ω ∈ Ω, a function u(ω, ·, ·) ∈ L∞(T× X;R) is called a G-entropy solution to Problem

(3.1), if the following conditions are satisfied:

(i) The restriction of u(ω, ·, ·) to the domain parts Xl,rT (ω) is a Kružkov entropy solution of Equation
(3.1) with flux functions fl,r , respectively, in the sense of Condition (1.2).

(ii) For Hd-almost every d ∈ D(ω), the couple of strong traces (γlu, γru) of u(ω, ·, ·) on the disconti-
nuity D(ω) belongs to the dual germ G∗(ω,d).

(iii) Hd-almost everywhere on {0}×X, the initial trace γ0u of u(ω, ·, ·) is equal to the initial condition
u0(ω, ·).

Let us briefly comment on why this definition makes sense: Condition (i) implies the existence of the

initial trace γ0u due to the result of Panov [228]. Since the discontinuity is given by the graph of a

continuously differentiable function and the fluxes fl,r are genuine nonlinear, the boundary traces γl,ru

of u on D(ω) exist (see Panov [229]).

3.2.3 Global admissibility via adapted entropy conditions

In the previous section, the admissibility of pathwise G-entropy solutions has been described in a local

manner via admissibility germs. The purpose of this section is to derive an equivalent global admissibility

criterion, similar to the Kružkov entropy Condition (1.2). While the definition via germs is very useful

for proving uniqueness, these kind of global inequalities are better suited for numerical analysis or to

perform investigation on the measurability of random solutions.

As a starting point, we adapt the classical notion of Kružkov entropies and Kružkov entropy fluxes to

the discontinuous flux setting in the following two definitions.

Definition 3.24 (Adapted Kružkov entropy):
Let D : Ω ⇒ XT be a random sole discontinuity hypersurface and denote by Xl,rT : Ω ⇒ XT the resulting
left and right part of the space-time domain XT. Then, for a fixed pair of entropy values k = (kl, kr) ∈ R2,
the adapted Kružkov entropy is defined as

k(ω, t,x) := kl1XlT
(ω, t,x) + kr1XrT

(ω, t,x) , (3.12)

where 1Xl,rT
denotes the indicator function of Xl,rT as defined in Definition 3.11.
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Definition 3.25 (Kružkov entropy flux):
Let f be a flux function that satisfies the sole-flux-discontinuity Assumption 3.13. Then, the Kružkov entropy

flux q : Ω× XT × R× R → X is defined as

q(ω, x, υ, υ̃) := sign(υ − υ̃)
(
f(ω, x, υ)− f(ω, x, υ̃)

)
. (3.13)

The left and right entropy fluxes ql,r are defined similarly by replacing f in Equation (3.13) with the left
and right flux function fl and fr , respectively.

Now, we can define the main tool in deriving a global admissibility criterion corresponding to a germ G,

which is a (random) remainder function. The purpose of such a remainder function is to measure how

close a tuple k consisting of values (kl, kr) ∈ R2
is to a fixed germ G.

Definition 3.26 (Remainder function of admissibility germ):
Let G : Ω× XT ⇒ R2 be a random family of L1-disspative germs as defined in Definitions 3.15 and 3.17.
A function RG : Ω × XT × R2 → R≥0 associated to G is called a remainder function of the family of
L1D germs G, if it satisfies the following conditions:

(i) For fixed ω ∈ Ω and fixed x ∈ XT, the function RG(ω, x; ·) is continuous.

(ii) For fixed ω ∈ Ω and Hd almost every x ∈ XT, the function RG(ω, x; ·) vanishes for all k ∈ G(ω, x)

in the sense that

for all k ∈ G(ω, x) : lim
r↘0

−
∫

Br(x)∩D(ω)

RG(ω, z;k) dz = 0 ,

where Br(x) denotes the closed ball around x ∈ XT with radius r ∈ R>0 . Note, the integral −
∫
E

denotes that the integral
∫
E is divided by the volume of its domain E.

(iii) For fixed ω ∈ Ω and Hd almost every x ∈ XT, the function RG(ω, x; ·) is an upper bound on the
Kružkov entropy flux, i.e., for all k ∈ R2 and (ul, ur) ∈ G(ω, x) it holds that(

qr(ω, x, ur, kr)− ql(ω, x, ul, kl)
)
· n̂D(ω, x) ≤ RG(ω, x;k) ,

where ql,r is the left and right entropy flux given by Equation (3.13) and n̂D denotes the extended
normal unit vector of D(ω) as defined in Equation (3.7).

The continuity requirement (i) is most natural, since the purpose of RG is, roughly speaking, to measure

some distance between G ⊂ R2
and a tuple k ∈ R2

. Possible choices for RG that might depend

on the flux functions fl,r are given in Appendix A. The conditions (ii) and (iii) in Definition 3.26 are

closely related to arguing equivalence of the two formulations of admissible solutions. Therefore, the

corresponding discussion is postponed to Section 3.2.4.

With this remainder function, all necessary tools for stating an adapted Kružkov entropy condition as a

global admissibility criterion are available. Similar to the classical entropy condition, this new criterion

is supposed to hold in the sense of distributions, which implies integration (after multiplication with a

test function). However, integrating the remainder function is only defined, if the remainder function is

measurable. By its construction, the remainder function RG can only be (jointly) measurable, if the

associated admissibility germ G is (jointly) measurable. To simplify the well-posedness presentation,

we impose the following measurability assumption on the remainder function.
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Assumption 3.27 (Measurability of remainder function):
Let G : Ω × XT ⇒ R2 be a random family of L1-dissipative admissibility germs satisfying the joint
measurability Assumption 3.16. Then, the remainder function RG : Ω× XT × R2 → R≥0 associated to G

is also jointly measurable.

This assumption is simplifying in the sense that the remainder function can take various forms. In

Appendix A, we discuss the measurability of some particular choices for the remainder function. We

can now state the definition of a G-entropy solution via a global admissibility criterion, the adapted
entropy inequality.

Definition 3.28 (Pathwise G-entropy solution via entropy inequality):
Let the following requirements be fulfilled:

▶ Let D : Ω ⇒ XT be a random sole discontinuity.

▶ Let f be a flux function satisfying the sole-flux-discontinuity Assumption 3.13.

▶ Let G : Ω×XT ⇒ R2 be a random family of L1D germs associated to the left and right flux function
fl,r that satisfies the joint measurability Assumption 3.16.

▶ Suppose that RG : Ω× XT × R2 → R≥0 is the remainder function associated to G and satisfies the
joint measurability Assumption 3.27.

Then, for fixed stochastic parameter ω ∈ Ω, a function u(ω, ·, ·) ∈ L∞(T× X;R) is called a G-entropy

solution to Problem (3.1), if the following two conditions are satisfied:

(i) The function u(ω, ·, ·) is a solution in the sense of distributions, i.e., for any nonnegative test function
ψ ∈ D(T× X;R), it holds that∫

T

∫
X
u(ω, t,x)∂tψ(t,x) + f

(
ω, t,x, u(ω, t,x)

)
· ∇x ψ(t,x) dx dt = 0 .

(ii) For all pairs of entropy values k := (kl, kr) ∈ R2 let k(ω, t,x) denote the corresponding adapted
Kružkov entropies given by Equation (3.12). For all nonnegative test functions ψ ∈ D(T× X;R)
the function u(ω, ·, ·) satisfies the adapted entropy inequality∫

T

∫
X

|u(ω, t,x)− k(ω, t,x)|∂tψ(t,x) dx dt

+

∫
T

∫
X

q(ω, t,x;u(ω, t,x), k(ω, t,x)) · ∇x ψ(t,x) dx dt

−
∫
X

|u0(ω,x)− k(ω, 0,x)|ψ(0,x) dx+

∫
D(ω)

RG(ω,d;k)ψ(d) dd ≥ 0 ,

(3.14)

where RG is the remainder function associated to G as defined in Definition 3.26.

Before we continue, the following two remarks reflect on the two above-mentioned global conditions

for pathwise G-entropy solutions to the random scalar discontinuous-flux conservation law given by

Equation (3.1): First, we comment on the explicit demand of the function u(ω, ·, ·) being a weak solution.

Afterwards, we discuss, how the integral of the remainder function RG over the random discontinuity

hypersurface D(ω) should be understood.
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Remark 3.29 (Requirement of pathwise G-entropy solution being weak solution, [13]): The explicit
requirement in Definition 3.28 (i) stating that u(ω, ·, ·) should be a solution in the sense of distributions,
might seem superfluous. Indeed, its only purpose is to guarantee that the Rankine-Hugoniot condition holds
across the jump discontinuity of the flux function. While for specific choices of the admissibility germ G the
function u(ω, ·, ·) might automatically be a weak solution, this does not hold in the general case.

Remark 3.30 (Integral over discontinuity hypersurface): The domain of the last integral in the adapted
entropy Inequality (3.14) is the random discontinuity hypersurface D(ω). Therefore, the integral should be
understood in the sense of integration on manifolds. In particular, we emphasize the following insights
and concepts regarding the integration over the discontinuity hypersurface D(ω):

(i) If the integrand IR(ω, x;k) := RG(ω, x;k)ψ(x) is continuous and compactly supported with respect
to the space-time variable x ∈ XT, then dd corresponds to the Riemannian volume (differential)
form of the discontinuity hypersurface D(ω). This question reduces to whether the mapping
x 7→ IR(ω, x;k) is continuous, as the compact support property is satisfied by ψ ∈ C∞

c (XT;R).
If the integrand IR is not continuous, then dd needs to be interpreted as the Riemannian volume
density of D(ω), where the Riemannian structure is guaranteed by D(ω) being a d-dimensional
submanifold of the space-time domain XT = T× Rd. 15

(ii) This surface integral of the discontinuity hypersurface D is equivalent to integration against the
d-dimensional Hausdorff measure Hd (since D(ω) is a hypersurface of the (d + 1)-dimensional
space-time domain XT). 16

3.2.4 Equivalency of definitions and discourse of selection criteria

In the previous sections, we introduced two notions of pathwise G-entropy solutions to the random

scalar discontinuous-flux conservation law given by Equation (3.1). As using the same name for both

definitions already indicates, the notions of solutions are indeed equivalent. This leads to the following

theorem on the equivalency of the two definitions of G-entropy solutions.

Theorem 3.31 (Equivalency of definitions):
Suppose the following conditions are satisfied:

▶ Let D : Ω ⇒ XT be a random sole discontinuity.

▶ Let the flux f satisfy the sole-flux-discontinuity Assumption 3.13 and the genuine nonlinearity
Assumption 3.21.

▶ Let G : Ω× XT ⇒ R2 be a random family of L1-dissipative admissibility germs associated to the
left and right flux functions fl,r .

15

Depending on the depth of information, a discussion on this topic of integration on manifolds can be found in many books,

see, e.g., the introductory text [106, Section 11.4], the monographs [191, 280] on the theory of integrating differential forms

and densities or the general works [99, 102] on geometric measure theory.

16

This is a well-known consequence of standard results in the field of geometric measure theory. We refer to the monographs

[99, 102, 194] for details on this approach. Let us also mention the book [180], which discusses this equivalency of the surface

integral to the Hausdorff measure from a perspective of (smooth) manifolds.
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▶ Let RG : Ω× XT × R2 → R≥0 be the remainder function associated to G and let RG satisfy the
joint measurability Assumption 3.27.

Then, for every ω ∈ Ω, the definitions of pathwise G-entropy solutions via Definition 3.23 based on the
germ formulation and Definition 3.28 using the adapted entropy inequality are equivalent.

The equivalence of Definitions 3.23 and 3.28 has been proven for general L1
-dissipative germs by

Andreianov et al. in [13, Theorem 3.18] for a one-dimensional deterministic model problem. This

result can also be established in the multi-dimensional sole-flux-discontinuity setting in a similar fashion.

We refer to [12, Proposition 9], where the equivalency was established for the particular choice of the

vanishing viscosity germ, which will also be introduced in Section 3.3.1. The proof presented in [12,

Proposition 9] does not depend on the specific form of this vanishing viscosity germ. We give the main

ideas of the proof, since these details provide insight on the conditions (ii) and (iii) of Definition 3.26 of

the remainder function.

Proof of Theorem 3.31 (main ideas). Let the presumptions of Theorem 3.31 be satisfied and let

the stochastic parameter ω ∈ Ω be fixed. By a truncation argument, the equivalence reduces to showing

that Definition 3.23 (ii) is equal to all couples (kl, kr) ∈ R2
satisfying the inequality

lim inf
h↘0

∫
T

∫
X
ψ(t,x)q

(
ω, t,x, u(ω, t,x), k(ω, t,x)

)
· ∇x ψh(t,x) dx dt

+

∫
D(ω)

RG(ω,d;k)ψ(d) dd ≥ 0 .

Here, h denotes the truncation variable of the test function ψ. By the existence of strong traces γl,ru,

this inequality can be reformulated to∫
D(ω)

(
ql
(
ω,d, γlu(ω,d), k(ω,d)

)
− qr

(
ω,d, γru(ω,d), k(ω,d)

)
+RG(ω,d;k)

)
ψ(d) dd ≥ 0 , (3.15)

which has to hold for all pairs (kl, kr) ∈ R2
. Based on this inequality, we can now prove equivalency of

the two definitions:

▶ Assume that Definition 3.23 (ii) holds. One immediately observes that the Inequality (3.15) is

satisfied as soon as the remainder function RG satisfies Definition 3.26 (iii). This is due to the L1
-

dissipativity property of the germ G. Possible choices for the remainder function were introduced

in [13], which are also presented in Appendix A where also the measurability Assumption 3.27 is

verified. Let us also refer to the appendix of [8], where the question of measurability is answered

for a general family of admissibility germs via a so-called topology of germs.

▶ Assume that a remainder function RG is given that satisfies the conditions of Definition 3.26 as

well as the joint measurability Assumption 3.27. For test functions, which satisfy that ψ
∣∣
D(ω)

is

concentrated at a Lebesgue point d of D(ω), Definition 3.26 (ii) implies

ql
(
ω,d, γlu(ω,d), k(ω,d)

)
− qr

(
ω,d, γru(ω,d), k(ω,d)

)
≥ 0 ,

for all (kl, kr) ∈ G(ω,d). However, by the L1
-dissipativity condition of the family of germs G,

we can conclude that

(
γlu(ω,d), γru(ω,d)

)
belongs to the dual germ G∗(ω,d).

The above considerations have shown that one can deduce the Definitions 3.23 and 3.28 of G-entropy

solutions from one another, which proves the assertion. ■
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We conclude this section by comparing the two formulations of G-entropy solutions and highlighting

advantages and drawbacks implied by the definitions. The preferred choice of the formulation is highly

dependent on the given situation as the following argumentation demonstrates. Let us emphasize that

the arguments carry over from the deterministic theory and we refer to [8] for details.

Identifying an admissibility germ G that encodes specific modeling assumptions at the discontinuity

interface is rather challenging. In contrast, formulating an entropy inequality might be simpler, if some

knowledge about the germ is available. Here, information of a very small subset of this germ might

suffice to successfully formulate the appropriate entropy inequality. However, this advantage vanishes,

if the underlying germ depends on some parameter of the discontinuity, such as time or space.

Not only the formulation of admissibility criteria requires a different amount of work for both definitions.

As we see in the next section, both notions of G-entropy solutions are differently well-suited to perform

well-posedness analysis. Apparently, once a (definite) admissibility germ is identified, showing unique-

ness of solutions appears natural. However, the approach via entropy inequalities is better suited for

investigating the stochastic measurability of solutions and also for showing existence of such solutions

via convergence of approximation schemes or conducting numerical analysis.

3.3 Well-posedness of random entropy solutions

In this section, the well-posedness of G-entropy solutions to the random scalar conservation law

given by Equation (3.1) is shown. In contrast to deterministic well-posedness investigations, not only

the (pathwise) existence and uniqueness of G-entropy solutions to Problem (3.1) needs to be argued.

Additionally, strong measurability with respect to the stochastic parameterω ∈ Ω needs to be established,

as we aim at interpreting the solution u as a L∞(XT;R)-valued, Bochner-integrable random variable

u : Ω → L∞(XT;R).17 Once this strong measurability of the solution has been established, the existence

of moments of random G-entropy solutions can be investigated. These allow us to describe the statistical

properties of the solution u, when interpreted as a Bochner-integrable random variable.

We start this well-posedness investigation with a discussion of pathwise existence and uniqueness

of G-entropy solutions in Section 3.3.1. Afterwards, in Section 3.3.2, we introduce so-called entropy
functionals and discuss their properties. These functionals provide an important tool for establishing

the strong measurability of G-entropy solutions with respect to the stochastic parameter ω ∈ Ω in

Section 3.3.3. This section on well-posedness is concluded by investigating the existence of moments of

G-entropy solutions in Section 3.3.4.

3.3.1 Pathwise existence and uniqueness of G-entropy solutions

In the beginning of this section, the uniqueness of G-entropy solutions is investigated. Therefore,

we utilize the definition of solutions via the underlying admissibility germs. This strategy allows to

17

The space L∞(XT;R) is not separable. Therefore, a random variable u : Ω → L∞(XT;R) can only be strongly measurable,

if u only takes values in a separable subspace S ⊂ L∞(XT;R). If such a separable subspace cannot be established, one has

to work in the more general setting introduced in Section 2.3.1. However, such an investigation based on weakly measurable

solutions u exceeds the scope of this thesis.
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formulate a general uniqueness result as soon as the germ G is definite. Unfortunately, such a general

result cannot be established for the existence of G-entropy solutions. However, for a one-dimensional

model problem, we state a general result from [13] that provides the existence of a unique solution,

as soon as the underlying germ is complete18
. We conclude this pathwise existence and uniqueness

investigation by discussing the existence of solutions to the multi-dimensional problem for the particular

choice of the important (randomized) family of vanishing viscosity germs.

Pathwise uniqueness of G-entropy solutions

Let us start the well-posedness investigation by showing the pathwise uniqueness ofG-entropy solutions.

Actually, for the presented sole-flux-discontinuity setting of the previous sections, we are able to show

the validity of the Kato inequality. From this result, it is a standard argumentation that the locally

Lipschitz Property (F-2) of the flux function f can be used to deduce the L1
-contraction property as well

as uniqueness of solutions. We precise this statement in the following theorem.

Theorem 3.32 (Pathwise uniqueness of G-entropy solutions):
Let the following requirements be fulfilled:

▶ Let D : Ω ⇒ XT be a random sole discontinuity hypersurface.

▶ Let f be a flux function satisfying the sole-flux-discontinuity Assumption 3.13 and the genuine
nonlinearity Assumption 3.21.

▶ Let G : Ω× XT ⇒ R2 be a random family of definite admissibility germs.

Now, for fixed ω ∈ Ω, let u(ω, ·, ·), ũ(ω, ·, ·) ∈ L∞(T × X;R) be two pathwise G-entropy solutions to
Problem (3.1) corresponding to the two initial conditions u0(ω, ·), ũ0(ω, ·) ∈ L∞(X), respectively. Then,
the two solutions u, ũ satisfy the Kato inequality

−
∫
T

∫
X
|u(ω, t,x)− ũ(ω, t,x)|∂tψ(t,x) dx dt

−
∫
T

∫
X
q
(
ω, t,x, u(ω, t,x),ũ(ω, t,x)

)
· ∇x ψ(t,x) dx dt

≤
∫
X
|u0(ω,x)− ũ0(ω,x)|ψ(0,x) dx

(3.16)

for every nonnegative test function ψ ∈ D(T× X;R). Additionally, if the pointwise difference of the two
initial conditions is integrable, i.e., |u0(ω,x)− ũ0(ω,x)| ∈ L1(X), the L1-contraction property∫

X
|u(ω, t,x)− ũ(ω, t,x)| dx ≤

∫
X
|u0(ω,x)− ũ0(ω,x)| dx (3.17)

holds for almost every time t ∈ T. In particular, the pathwise G-entropy solution to the random scalar
discontinuous-flux conservation law given by Problem (3.1) is unique, if it exists.

18

This property of an admissibility germ G is defined in Definition 3.33 and is connected to the related Riemann problems of

the discontinuous-flux conservation law.
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Proof (main ideas). The proof is based on the Definition 3.23 of a G-entropy solution via the

traces being in the corresponding dual germ G∗
. For a fixed random parameter ω ∈ Ω, the conditions (i)

and (iii) of Definition 3.23 and the Kružkov doubling of variables approach give the Kato Inequality (3.16)

for nonnegative test functions ψ ∈ D
(
XT \D(ω);R

)
. We refer to Panov [228] for the details of this

argumentation. Now, using a truncated test function

ψh(t,x) := ψ(t,x)min

{
1,

∣∣x1 − ΦD(ω, t,x2:d)
∣∣

h

}
h > 0 ,

similar to the proof of Theorem 3.31, it suffices to show that

lim inf
h↘0

∫
T

∫
X
ψ(t,x)q

(
ω, t,x, u(ω, t,x), ũ(ω, t,x)

)
· ∇x ψh(t,x) dx dt ≥ 0 . (3.18)

We refer to [12, Section 3] and [13, Proof of Theorem 3.11] for the details on this step. Since the functions

u(ω, ·, ·), ũ(ω, ·, ·) are G-entropy solutions, we obtain the existence of strong traces γl,ru and γl,rũ.

With these traces and the definition of ψh, the Inequality (3.18) can be rewritten to the condition

ql(ω, x, γlu, γlũ) ≥ qr(ω, x, γru, γrũ) Hd − a.e. on D(ω) .

Since G is a family of definite admissibility germs, it follows directly that the corresponding dual germs

G∗
form a family of L1

-dissipative germs. This completes the proof of the Kato inequality (3.16), since

the L1
-dissipativity condition of the dual germ G∗

is implied by Definition 3.23 (ii). Since the flux

function f is assumed to be locally Lipschitz by Assumption (F-2), it is a standard result that the Kato

inequality implies the L1
-contraction property (3.17) and uniqueness of the pathwise G-entropy solution

to Problem (3.1).
19 ■

Pathwise existence of G-entropy solutions in one space dimension

With the above discussion, we have established the uniqueness of G-entropy solutions, as soon as

the underlying admissibility germ is definite. Unfortunately, such a general result is not possible for

ensuring existence of solutions in the multi-dimensional sole-flux-discontinuity setting. However, a

general existence result can be established for the one-dimensional model problem

∂tu+ divx f(ω, x, u) = 0 in Ω× XT

u(ω, 0, x) = u0(ω, x) on Ω× {0} × R .
(3.19)

Here, the flux function f : Ω× R× R → R is assumed to be defined via the mapping

(ω, x, υ) 7→

{
fl(ω, υ) x < d(ω) ,

fr(ω, υ) x > d(ω) .
(3.20)

Before we are able to state the existence theorem for G-entropy solutions on Problem (3.19), (3.20), we

need to define the notion of a complete germ.

19

The local Lipschitz assumption on the flux f is crucial for deducing the L1
-contraction and uniqueness in several spatial

dimensions. Indeed, mere continuity of the flux is not sufficient as the counterexample in [171] demonstrates. This issue of

non-uniqueness for merely continuous flux functions is closely related to the property of infinite speed of propagation. We

refer to [171, 172, 227] for details on this topic.
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Definition 3.33 (Complete germs):
Let G ⊂ R2 be a germ. Then G is called complete, if all Riemann problems of Equation (3.19) admit
a self-similar solution20 u, such that the pair of left and right traces21 (γlu, γru) are contained in G. A
random germ G : Ω ⇒ R2 is called complete, if G(ω) is complete for every ω ∈ Ω.

Completeness of the germ G implies the availability of uniform L∞
-bounds on the solution (see [13,

Section 3.4] for details). However, such an assumption is rather restrictive and can be seen as the main

limitation of the presented theory. Nevertheless, with the help of complete germs, we can now state the

following existence result.

Theorem 3.34 (Pathwise existence of G-entropy solutions in one space dimension):
Let G : Ω ⇒ R2 be a random complete L1-dissipative germ associated to a pair (fl, fr) of flux functions
such that f is given by Equation (3.20) and that f satisfies Assumption (F-2). Then, for any initial function
u0 ∈ Lq

(
Ω;Lp(X)

)
and fixed ω ∈ Ω, there exists a unique G-entropy solution to the random scalar

conservation law given by Equation (3.19).

Proof (main ideas). The idea of the proof is showing the convergence of approximate solutions to

Problem (3.19) for fixed stochastic parameter ω ∈ Ω. These approximations are obtained by a monotone

three-point finite volume scheme (compare Section 2.5.2), which is adapted to the flux discontinuity by

employing the Godunov scheme (2.9) at the jump interface. Due to the completeness of the admissibility

germ G(ω), uniform L∞
-bounds on the solution are available, similar to the result of [13, Proposition

3.20]. To argue the compactness of the family of approximate solutions, theBVloc estimate from Bürger

et al. [52, 54] is used for compactly supported initial conditions u0(ω, ·) ∈ BV(R;R). This estimate

establishes convergence of the constructed approximations.

Afterwards, the BVloc estimates are used to argue that the limit of these approximations is indeed

the unique G-entropy solution. To conclude this result, one can deduce that the constructed scheme

yields an approximation, such that per definition its traces belong to the admissibility germ G. This

concludes the pathwise existence proof for compactly supported initial conditions u0(ω, ·) ∈ BV(R;R).
The generalization to arbitrary initial conditions u0(ω, ·) ∈ L∞(R;R) can then be argued via the

L1
-contraction principle: A truncation and regularization of the initial condition u0 can be used to

construct a strongly compact sequence of approximations. Afterwards, Definition 3.28 can be leveraged

for passing to the limit. ■

Pathwise existence of G-entropy solutions in multiple space dimensions

To the best of the author’s knowledge, a general existence result analogous to Theorem 3.34 is not

available for multiple spatial dimensions. However, the existence of pathwise G-entropy solutions can

be established for the vanishing viscosity germ GVV. This germ describes the behavior of GVV-entropy

solutions as the limit of solutions to the vanishing viscosity problem

∂tu
η + divx f(ω, t,x, u

η) = η∆uη . (3.21)

20

A solution u is called self-similar if it only depends on the ratio ξ := x/t.

21

Due to the specific form of the random model Problem (3.19), the traces γl,ru are just the limits of u as x approaches the

random flux discontinuity d(ω) from below and above, respectively.
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As a starting point to argue the existence of vanishing viscosity solutions, a formal definition of the

underlying vanishing viscosity germ GVV is necessary.

Definition 3.35 (Vanishing viscosity germ):
Let G ⊂ R2 be an admissibility germ as defined in Definition 3.14, associated to the pair of continuous
functions (gl, gr). The germ is called vanishing viscosity germ, denoted GVV, if it consists of all pairs
(ul, ur) ∈ R satisfying one of the following conditions

▶ ul = ur ,

▶ ul < ur and there exists a uo ∈ [ul, ur] such that

{
gl(ρ) ≥ s for all ρ ∈ [ul, uo] ,

gr(ρ) ≥ s for all ρ ∈ [uo, ur] ,

▶ ul > ur and there exists a uo ∈ [ur, ul] such that

{
gl(ρ) ≤ s for all ρ ∈ [uo, ul] ,

gr(ρ) ≤ s for all ρ ∈ [ur, uo] ,

where s := gl(ul) = gr(ur) is defined via the Rankine-Hugoniot Condition (3.9). Analogous to the
construction in Definition 3.15, we call GVV : Ω × XT ⇒ R2 a random family of vanishing viscosity

germs, if for every stochastic parameter ω ∈ Ω and every space-time variable x ∈ XT, it holds that
GVV(ω, x) is the vanishing viscosity germ associated to the normal components of the flux functions
gl,r(ω, x, ·) as defined in Equation (3.10).

To prove the pathwise existence, the corresponding deterministic proof presented in [12, Section 4]

should be exploited. Here, to obtain the existence, the Kato Inequality (3.16) is utilized for solutions

of the inhomogeneous vanishing viscosity Equation (3.21). However, to conclude the proof, a blow-up

technique has to be employed, which requires the following additional regularity assumption on the

discontinuity hypersurface.

Assumption 3.36 (Regularity of discontinuity hypersurface):
Let D : Ω ⇒ R2 be a random sole flux discontinuity as defined in Definition 3.1. Then, for every ω ∈ Ω,
the interface D is assumed to satisfy one of the following regularity assumptions:

(i) The function ΦD, defined by Equation (3.2), satisfies ΦD(ω, ·, ·) ∈ C2(T× Rd−1;R).

(ii) The function ΦD is (globally) Lipschitz continuous with respect to (t,x2:d) ∈ T × Rd−1 and
additionally ∆x2:d

ΦD(ω, ·, ·) is a Radon measure on T× Rd−1.

Theorem 3.37 (Pathwise existence of GVV-entropy solutions):
Let D : Ω ⇒ XT be a random sole discontinuity hypersurface that satisfies the additional regularity
Assumption 3.36. Furthermore, let u0 ∈ Lq

(
Ω;Lp(X;R)

)
be a random initial condition and let the flux

function f of Problem (3.1) satisfy the sole-flux-discontinuity Assumption 3.13 and the genuine nonlinearity
Assumption 3.21. For fixed stochastic parameter ω ∈ Ω, let {uη}η>0 be a sequence of solutions to the
random vanishing viscosity problem

∂tu
η + divx f(ω, x, u

η) = η∆uη (3.22)

that is bounded in L∞(XT;R) and satisfies uη
∣∣
t=0

= uη0 and uη0 → u0 in L1
loc(XT;R).

Then, for vanishing viscosity η ↘ 0, the sequence of solutions {uη}η>0 converges almost everywhere on
XT to the unique pathwise GVV(ω)-entropy solution of Problem (3.1).

Lukas Brencher University of Stuttgart



64 3 Random conservation laws with a sole flux discontinuity

Proof (main ideas). Before we summarize the main ideas of the existence proof, let us mention that,

for every ω ∈ Ω and every x ∈ XT, the vanishing viscosity germ GVV(ω, x) is a maximal L1
-dissipative

germ. This is proven in [12, Proposition 7] and implies that a GVV-entropy solution is unique, if it exists.

We summarize the main ideas of the pathwise existence proof. For fixed ω ∈ Ω, the statement reduces to

the deterministic result of [12, Theorem 5 (ii)]: Due to the uniform L∞
-bounds of the viscous approxima-

tions uη and the genuine nonlinearity Assumption 3.21 on the flux function, the precompactness results

of Lions et al. [188] and Panov [231] can be applied on XT \D(ω). This ensures the convergence of

{uη}η>0 to some function u that is a Kružkov entropy solution away from the discontinuity hypersurface

and satisfies the Rankine-Hugoniot condition on the discontinuity D(ω). The existence of strong traces

of the solution u is justified almost everywhere on D(ω) with respect to the d-dimensional Hausdorff

measure Hd
via the Kato Inequality (3.16). To conclude the proof, a blow-up technique is applied to an

inhomogeneous version of the random vanishing viscosity Problem (3.22). ■

As in the one-dimensional setting, the major restriction of this theorem is the existence of uniform

L∞
-bounds on the solutions of the vanishing viscosity Problem (3.22). Such L∞

-bounds can be ensured

via a variety of assumptions. We conclude this section by presenting an exemplary assumption, which

has applications in porous medium simulations and road traffic models: In these fields of porous medium

or road traffic investigations, the solution u oftentimes is understood as a relative density (e.g., of liquid

saturation or traffic volume). Therefore, it is natural to assume the solution u to be confined to the

interval [0, 1]. Such a confinement assumption can be established in a (slightly) more general way.

Assumption 3.38 (Confinement assumption):
We assume that, for every ω ∈ Ω, there exists an interval U = [u, u] ⊂ R that might depend on ω ∈ Ω,
such that the following two conditions are satisfied:

(a) For a.e. t ∈ T, the flux function f satisfies

f(ω, t, ·, u) ≡ const. and f(ω, t, ·, u) ≡ const. ,

which means that f is constant at the boundaries of the interval U.

(b) The initial condition satisfies u ≤ u0(ω, ·) ≤ u.

From a theoretical perspective, the confinement Assumption 3.38 ensures that, for fixed stochastic

parameter ω ∈ Ω, the functions u(ω, t,x) ≡ u and u(ω, t,x) ≡ u are a sub- and supersolution, respec-

tively, of the random scalar discontinuous-flux conservation law given by Equation (3.1). Consequently,

the solution u as well as appropriately constructed approximations are confined to the interval U.

3.3.2 Random entropy functionals

In this section, we define the notion of random entropy functionals. Roughly speaking, these functionals

are a tool to evaluate, whether a function υ ∈ L∞(T×X;R) satisfies the adapted G-entropy inequality

for a fixed adapted entropy k and a fixed test function ψ ∈ D(T×X;R). We specify this approach with

the subsequent definition.
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Definition 3.39 (Random G-entropy functional):
Let the following requirements be fulfilled:

▶ Let D : Ω ⇒ XT be a random sole discontinuity hypersurface.

▶ Let f be a flux function that satisfies the sole-discontinuity flux Assumption 3.13 and the genuine
nonlinearity Assumption 3.21.

▶ Let G : Ω× XT ⇒ R2 be a random family of admissibility germs associated to the flux function f

that satisfies the joint measurability Assumption 3.16.

▶ Let RG be a remainder function associated to G satisfying the joint measurability Assumption 3.27.

Then, for a fixed pair of Kružkov entropy values k = (kl, kr) ∈ R2 and a fixed nonnegative test function
ψ ∈ D(T×X;R), we define the random G-entropy functional Jkψ associated to Problem (3.1) as a mapping
Jkψ : Ω× L∞(T× X;R) → R given by

(ω, υ) 7→
∫
T

∫
X

∣∣υ(t,x)− k(ω, t,x)
∣∣∂tψ(t,x) dx dt (3.23a)

+

∫
T

∫
X
q
(
ω, t,x; υ(t,x), k(ω, t,x)

)
· ∇x ψ(t,x) dx dt (3.23b)

−
∫
X
|u0(ω,x)− k(ω, 0,x)|ψ(0,x) dx (3.23c)

+

∫
D(ω)

RG(ω,d;k)ψ(d) dd . (3.23d)

Here, k denotes the adapted Kružkov entropy defined via Equation (3.12) corresponding to k ∈ R2. Further-
more, q is the Kružkov entropy flux given by Equation (3.13).

The remainder of this section is devoted to establishing two important properties of the G-entropy

functional:

(i) In Theorem 3.47 we show that the random G-entropy functional Jkψ is Carathéodory, which

means that it is measurable in ω ∈ Ω and continuous in υ ∈ L∞(T× X;R).

(ii) The random G-entropy functional Jkψ depends continuously on the adapted entropy constants

k = (kl, kr) ∈ R2
, which is shown in Theorem 3.47.

Prerequisites

Before these properties of the G-entropy functional can be shown, some preparatory results need

to established. We start by arguing that the adapted Kružkov entropy k, given by Equation (3.12), is

measurable with respect to the stochastic parameterω ∈ Ω, as soon as the sole discontinuityD : Ω ⇒ XT
is measurable as a set-valued mapping.

Proposition 3.40 (Stochastic measurability of adapted Kružkov entropy):
Let D : Ω ⇒ XT be a random sole discontinuity hypersurface satisfying the measurability Assumption 3.4.
Then, for a fixed pair of entropy values k = (kl, kr) ∈ R2 and a fixed space-time variable x ∈ XT, the
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66 3 Random conservation laws with a sole flux discontinuity

adapted Kružkov entropy k defined in Equation (3.12) as

k(ω, x) := kl1XlT
(ω, x) + kr1XrT

(ω, x) ,

is measurable in the sense that the mapping ω 7→ k(ω, x) is measurable.

Proof. By hypothesis, the sole discontinuity D : Ω ⇒ XT satisfies the measurability Assumption 3.4.

Thereby, we can apply Lemma 3.12 to obtain the stochastic measurability of the domain part indicator

functions 1Xl,rT
(ω, x). Now, the assertion follows from the construction of k in Equation (3.12). ■

So far, we cannot make any statement on the (stochastic) measurability of the G-entropy functional

because we do not have any knowledge about the measurability of the flux function f. To overcome this

issue, the following stochastic measurability assumption is imposed.

Assumption 3.41 (Stochastic measurability of flux function):
Let f be a flux function that satisfies the sole-discontinuity-flux Assumption 3.13. We assume that the
flux function f is stochastically measurable in the sense that, for fixed x ∈ XT and υ ∈ R, the mappings
ω 7→ fl(ω, x, υ) and ω 7→ fr(ω, x, υ) are measurable.

With this stochastic measurability assumption on the flux function, we are able to show that the left and

right Kružkov entropy fluxes ql,r are also measurable. Actually, we can prove an even stronger result,

as the next corollary shows.

Corollary 3.42 (Left/right Kružkov entropy fluxes are Carathéodory):
Let f be a flux function that satisfies the sole-flux-discontinuity Assumption 3.13 and the stochastic measur-
ability Assumption 3.41. Then, the left and right Kružkov entropy fluxes ql,r : Ω× XT × R× R → X as
defined in Definition 3.25 via

ql,r(ω, x, υ, υ̃) := sign(υ − υ̃)
(
fl,r(ω, x, υ)− fl,r(ω, x, υ̃)

)
(3.24)

are Carathéodory in the sense that they are measurable w.r.t. the stochastic parameterω ∈ Ω and continuous
in the remaining arguments.

Proof. Since the flux functions fl,r are measurable in the stochastic parameter ω ∈ Ω by the

measurability Assumption 3.41, we directly obtain that the mappings ω 7→ ql,r(ω, x, υ, υ̃) are measurable

for fixed space-time variable x ∈ XT and fixed scalar values υ, υ̃ ∈ R. Furthermore, the continuous

dependence of ql,r with respect to the space-time variable x ∈ XT follows immediately from the global

Lipschitz Assumption (F-3) on the flux functions fl,r .

It remains to show the continuity in υ ∈ R and υ̃ ∈ R. However, the local Lipschitz Assumption (F-2)

on fl,r and Equation (3.24) yield the estimation∥∥ql,r(ω, x, υ, υ̃)∥∥
d
≤
∣∣∣ sign(υ − υ̃)Lfl,r |υ − υ̃|

∣∣∣ ≤ Lfl,r |υ − υ̃| .

Here, Lfl,r denotes the Lipschitz constants of fl,r. Noting that ql,r vanishes for υ = υ̃ concludes the

proof of ql,r being Carathéodory. ■
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G-entropy functional is Carathéodory

On the way to showing that the random G-entropy functional Jkψ is Carathéodory, we argue in the

subsequent proposition that the functional Jkψ depends measurably on the stochastic parameter ω ∈ Ω.

Proposition 3.43 (Stochastic measurability of random G-entropy functional):
Suppose the following conditions are fulfilled:

▶ Let D : Ω ⇒ XT be a random sole discontinuity that satisfies the measurability Assumption 3.4.

▶ Let the flux function f satisfy the sole-discontinuity-flux Assumption 3.13 and the stochastic measur-
ability Assumption 3.41.

▶ Let G : Ω×XT ⇒ R2 be a random family of L1-dissipative germs satisfying the joint measurability
Assumption 3.16.

▶ LetRG : Ω×XT×R2 → R≥0 be a remainder function associated toG that satisfies the measurability
Assumption 3.27.

Now, let k = (kl, kr) ∈ R2 and a nonnegative test function ψ ∈ D(T× X;R) be fixed. Then, the random
G-entropy functional Jkψ given by Equation (3.23) is stochastically measurable in the sense that, for fixed
υ ∈ L∞(T× X;R), the mapping ω 7→ Jkψ(ω, υ) is measurable.

Proof. To show the measurability of the stochastic entropy functional Jkψ with respect to the

stochastic parameter ω ∈ Ω, we consider the four integrals of the Mapping (3.23) separately:

Stochastic measurability of Integral (3.23a). The adapted Kružkov entropy k is measurable in

the sense that the mapping ω 7→ k(ω, t,x) is measurable for fixed (t,x) ∈ T× X by Proposition 3.40.

Since k is the only ingredient in Integral (3.23a) that depends on ω ∈ Ω, we obtain that the integrand is

measurable. Now, since the test function ψ ∈ C∞
c (T× X;R) is compactly supported, we have∫

T

∫
X

|υ(t,x)− k(ω, t,x)|∂tψ(t,x) dx dt =

∫
suppψ

|υ(t,x)− k(ω, t,x)|∂tψ(t,x) dx dt .

However, since suppψ is compact, taking the integral is a bounded linear operator. Linear operators

are bounded if and only if they are continuous and thus, taking the integral over suppψ is a continuous

operation. Since the composition of a continuous operation with a measurable function is measurable

[5, Lemma 4.22], the Integral (3.23a) is measurable.

Stochastic measurability of Integral (3.23b). First, the sole-flux-discontinuity Assumption 3.13

imposed on the flux function f admits splitting up the Integral (3.23b) over the space-time domain XT
into the left and right domain parts Xl,rT as∫
XT

q
(
ω, x; υ(x), k(ω, x)

)
· ∇x ψ(x) dx =

∫
XlT(ω)

ql
(
ω, x; υ(x), k(ω, x)

)
· ∇x ψ(x) dx

+

∫
XrT(ω)

qr
(
ω, x; υ(x), k(ω, x)

)
· ∇x ψ(x) dx .
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However, to avoid the dependence of the integral domain on the stochastic parameter ω ∈ Ω, we can

further rewrite the Integral (3.23b) as∫
XT

q
(
ω, x; υ(x), k(ω, x)

)
· ∇x ψ(x) dx =

∫
XT

(
ql
(
ω, x; υ(x), k(ω, x)

)
1XlT

(ω, x)
)
· ∇x ψ(x) dx

+

∫
XT

(
qr
(
ω, x; υ(x), k(ω, x)

)
1XrT

(ω, x)
)
· ∇x ψ(x) dx ,

where 1Xl,rT
(ω, x) denotes the indicator functions of the domain parts Xl,rT (ω) as defined in Definition

3.11. Now, by Corollary 3.42, the left and right Kružkov entropy fluxes ql,r are Carathéodory in the

sense that they are measurable in ω ∈ Ω and continuous in all remaining arguments. In particular, by

being Carathéodory the entropy fluxes ql,r are jointly measurable [5, Lemma 4.51]. Consequently, the

integrand of Integral (3.23b) is measurable in ω ∈ Ω, since the adapted Kružkov entropy is measurable

in ω ∈ Ω by Proposition 3.40 and the domain part indicator functions are separately measurable by

Lemma 3.12.

As in the previous step, the test function ψ is compactly supported and thus taking the integral is a

continuous operation. The measurability of Integral (3.23b) follows as the composition of a continuous

operation with a measurable function.

Stochastic measurability of Integral (3.23c). In Proposition 3.40, we have already established

that the adapted Kružkov entropy k is measurable as a mapping ω 7→ k(ω, t,x). Recall that by the

definition of Problem (3.1), the initial condition u0 satisfies u0 ∈ Lq
(
Ω;Lp(X;R)

)
. This immediately

allows us to conclude the measurability of the integrand of Integral (3.23c) with respect to the stochastic

parameter ω ∈ Ω. Now, since the support suppψ of the test function is compact by hypothesis, the

stochastic measurability of the Integral (3.23c) follows via the composition of a continuous operation

with a measurable function.

Stochastic measurability of Integral (3.23d). It remains to show the stochastic measurability of

Integral (3.23d). According to Remark 3.30 (ii) on the integration over the random sole discontinuity

hypersurface, the surface integral is equivalent to integrating against the d-dimensional Hausdorff

measure Hd
: ∫

D(ω)
RG(ω,d;k)ψ(d) dd =

∫
D(ω)

RG(ω,d;k)ψ(d) dHd(d) .

Here, RG is the remainder function associated to the random family of L1
D germs G : Ω× XT ⇒ R2

as introduced in Definition 3.26. By construction, the integrand RG(ω, x;k)ψ(x) is nonnegative, since

both RG and ψ are nonnegative. By hypothesis, G satisfies the joint measurability Assumption 3.16

and RG satisfies the joint measurability Assumption 3.27. Combining this with the continuity of ψ, we

obtain the measurability of RG(ω, x;k)ψ(x) with respect to the space-time variable x ∈ XT. Since we

established that the integrand is measurable and nonnegative, we can apply [106, Theorem 11.25] to

write this surface integral as∫
D(ω)

RG(ω,d,k)ψ(d) dd =

∫
T×Rd−1

RG

(
ω,PD(ω,y);k

)
ψ
(
PD(ω,y)

)
J
(
DyPD(ω,y)

)
dHd(y) . (3.25)

Here, we denote by y = (t,y) ∈ T × Rd−1
a point of the (lower-dimensional) space T × Rd−1

. The

function PD : Ω× T× Rd−1 → XT is a parametrization of the sole discontinuity hypersurface D as

Conservation Laws with Random Discontinuous Flux Functions



3.3 Well-posedness of random entropy solutions 69

defined in Equation (3.3). Furthermore, DyPD is the differential of PD, i.e., it is the linear map from

T× Rd−1
to T× Rd whose matrix is given by[

∂
(
PD

)
ι

∂yκ
(ω,y)

]
, 1 ≤ ι ≤ d+ 1 , 1 ≤ κ ≤ d .

Finally, for some linear map T the term J(T ) is defined as J(T ) :=
√
det(TTT ), where TT

denotes

the transpose of T .
22

To conclude the measurability of the integral, we first show that the integrand is measurable: Since

PD is jointly measurable by Lemma 3.6, we immediately obtain the measurability of ψ
(
PD(ω,y)

)
and J

(
DyPD(ω,y)

)
. By the measurability Assumption 3.27, the random remainder function is

jointly measurable, since G is jointly measurable by hypothesis. Consequently, the composition

RG

(
ω,PD(ω,y);k

)
is measurable in ω ∈ Ω. As the product of measurable functions is again measur-

able, the integrand in Integral (3.23d) is measurable.

It remains to show that measurability of the integrand implies measurability of the Integral (3.23d).

Recall that we have ψ ∈ C∞
c (XT;R) compactly supported. Therefore, it is sufficient to integrate over

the set SD(ω) = D(ω) ∩ suppψ, which is also compact
23

: The boundedness is inferred by suppψ

being bounded in combination with the definition of SD(ω). Since D(ω) is closed by Corollary 3.3 and

suppψ is closed by being compact, the closedness of SD is obtained as the finite intersection of closed

sets. Thereby, we can rewrite the Integral (3.25) as∫
D(ω)

RG(ω,d;k)ψ(d) dd =

∫
T×Rd−1

RG

(
ω,PD(ω,y);k

)
ψ
(
PD(ω,y)

)
J
(
DyPD(ω,y)

)
dHd(y)

=

∫
SD

RG

(
ω,PD(ω,y);k

)
ψ
(
PD(ω,y)

)
J
(
DyPD(ω,y)

)
dHd(y) .

As SD is compact, integrating over SD is a bounded linear operator. Since linear operators are bounded

if and only if they are continuous, this is a continuous operation. As the composition of a continuous

operator with a measurable function is measurable by [5, Lemma 4.22], we obtain the measurability of

the Integral (3.23d) in ω ∈ Ω.

Thus, combining the measurability results of the four integrals, we obtain the stochastic measurability

of the random entropy functional Jkψ with respect to ω ∈ Ω. ■

The above proposition has shown the measurability of the random G-entropy functional Jkψ with respect

to the stochastic parameter ω ∈ Ω. To constitute that the functional Jkψ is Carathéodory, the second

ingredient can now be justified: The continuous dependence of Jkψ on the function υ ∈ L∞(XT;R).
The corresponding result is established in the subsequent proposition.

22

Note that TTT is a positive semidefinite operator and, therefore, its determinant is nonnegative.

23

In case we have D(ω) ∩ suppψ = ∅, the integral vanishes. Anyway, since the empty set ∅ is compact due to being finite,

the argumentation for establishing measurability remains true.
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Proposition 3.44 (Continuous dependence of entropy functional on solution function):
Suppose the following conditions are satisfied:

▶ Let D : Ω ⇒ XT be a random sole discontinuity.

▶ Let the flux function f satisfy the sole-discontinuity-flux Assumption 3.13.

▶ Let G : Ω× XT ⇒ R2 be a random family of L1-dissipative germs.

▶ Let RG : Ω× XT × R2 → R≥0 be a remainder function associated to G.

Furthermore, let the stochastic parameter ω ∈ Ω, a pair of entropy values k = (kl, kr) ∈ R2 and a
nonnegative test function ψ ∈ D(XT;R) be fixed. Then, the random G-entropy functional Jkψ depends
continuously on the function ν ∈ L∞(XT;R).

Proof. Let a stochastic parameter ω ∈ Ω, a pair of entropy values k = (kl, kr) ∈ R2
and a

nonnegative test function ψ ∈ D(XT;R) be fixed. To show that the random G-entropy functional Jkψ
depends continuously on ν ∈ L∞(XT;R), we consider the four integrals in Equation (3.23) separately:

The Integrals (3.23c) and (3.23d) are both independent of the function ν ∈ L∞(XT;R), which directly

proves their continuous dependence property with respect to this function. Considering the Integral

(3.23a) observe that its integrand is essentially bounded, i.e., |ν(x)− k(ω, x)| ∈ L∞(XT;R), since both

ν and k(ω, ·) are essentially bounded. This implies that the integral is finite because the test function

ψ and its time derivative ∂tψ are compactly supported. The continuous dependence follows now via

the dominated convergence theorem. We refer to [98, Theorem 5.6] for a precise formulation of this

argument. Consequently, it remains to show the continuous dependence on the function ν ∈ L∞(XT;R)
of the second Integral (3.23b):

To show the continuous dependence of Integral (3.23b), let two functions u, ν ∈ L∞(XT;R) be given.

The idea of the proof is to show that there exists a constant CJ > 0 such that the estimate∣∣∣ ∫
XT

q
(
ω,x;u(x), k(ω, x)

)
· ∇x ψ(x) dx

−
∫
XT

q
(
ω, x; ν(x), k(ω, x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ CJ∥u− ν∥L∞(XT;R)

(3.26)

holds. Recall that the entropy flux q : Ω× XT × R× R → X depends on the flux function f and was

introduced in Definition 3.25 as the mapping

q(ω, x, ν, υ) := sign(ν − υ)
(
f(ω, x, ν)− f(ω, x, υ)

)
.

We start our investigation by introducing four sets D(·)(ω) ⊂ XT, where the superscript will become

clear via the definition. These sets allow us to divide the space-time domain XT in a certain way that

depends on the values of sign
(
u(x)−k(ω, x)

)
and sign

(
ν(x)−k(ω, x)

)
. For every stochastic parameter

ω ∈ Ω, these four subsets D(·)(ω) of the space-time domain XT are defined as

D=(ω) :=
{
x ∈ XT | sign

(
u(x)− k(ω, x)

)
= sign

(
ν(x)− k(ω, x)

)}
,

D±(ω) :=
{
x ∈ XT | sign

(
u(x)− k(ω, x)

)
= − sign

(
ν(x)− k(ω, x)

)}
,
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Duk(ω) :=
{
x ∈ XT | u(x) = k(ω, x)

}
,

Dνk(ω) :=
{
x ∈ XT | ν(x) = k(ω, x)

}
.

Let us emphasize that these sets are not necessarily disjoint. However, a closer inspection of the definition

immediately reveals that the intersection of the sets D(·)(ω) is given for every ω ∈ Ω as

D=(ω) ∩ D±(ω) ∩ Duk(ω) ∩ Dνk(ω) =
{
x ∈ XT | u(x) = k(ω, x) = ν(x)

}
.

Therefore, the integral of the entropy flux q over these overlapping areas vanishes. This allows us to

split the integral over XT into the four integrals over the sets D(·)(ω).

To improve the readability of the upcoming estimation, let us introduce a function Qk
ω,x that describes

the difference of two entropy fluxes whose third argument varies. We define Qk
ω,x as the mapping

Qk
ω,x(ν, υ) := q

(
ω, x, ν, k(ω, x)

)
− q

(
ω, x, υ, k(ω, x)

)
.

To start the estimation of the left-hand side of Inequality (3.26), recall that we fixed a stochastic parameter

ω ∈ Ω as well as an entropy pair k ∈ R2
and use the linearity of the integral. After splitting up the

space-time domain XT into the sets D(·)(ω), we can employ the triangle inequality to obtain∣∣∣ ∫
XT

q
(
ω, x;u(x),k(ω, x)

)
· ∇x ψ(x) dx−

∫
XT

q
(
ω, x; ν(x), k(ω, x)

)
· ∇x ψ(x) dx

∣∣∣
≤
∣∣∣ ∫
D=(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ (3.27a)

+
∣∣∣ ∫
D±(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ (3.27b)

+
∣∣∣ ∫
Duk(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ (3.27c)

+
∣∣∣ ∫
Dνk(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ . (3.27d)

For simplicity of the proceeding estimation, the continuous dependence on u, ν ∈ L∞(XT;R) is

considered for each integral in the above Inequality (3.27) separately:

Continuous dependence of Integral (3.27a). To obtain an estimate for Term (3.27a), first Hölder’s

inequality is applied. Utilizing the Cauchy-Schwarz-Bunyakovsky inequality afterwards yields∣∣∣ ∫
D=(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ ∫
D=(ω)

∥∥∥Qk
ω,x

(
u(x), ν(x)

)∥∥∥
d

∥∥∥∇x ψ(x)
∥∥∥
d
dx .

Here, ∥·∥d denotes the Euclidean distance norm of the spatial domain X = Rd. Using the definitions of

the function Qk
ω,x and the entropy flux q, we can leverage the construction of the set D=(ω) as the set

of space-time points x ∈ XT that fulfill the condition that sign
(
u(x)− k(ω, x)

)
= sign

(
ν(x)− k(ω, x)

)
.
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Thereby, we obtain the estimation:∣∣∣ ∫
D=(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣
≤

∫
D=(ω)

∥∥q(ω, x, u(x), k(ω, x))− q
(
ω, x, ν(x), k(ω, x)

)∥∥
d

∥∥∥∇x ψ(x)
∥∥∥
d
dx

=

∫
D=(ω)

∥∥∥f(ω, x, u(x))− f
(
ω, x, ν(x)

)∥∥∥
d

∥∥∥∇x ψ(x)
∥∥∥
d
dx .

By Assumption (F-2) the flux function f is locally Lipschitz continuous. Since both u, ν are essentially

bounded, we can apply this local Lipschitz property to estimate∣∣∣ ∫
D=(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ ∫
D=(ω)

Lf

∣∣∣u(x)− ν(x)
∣∣∣∥∥∥∇x ψ(x)

∥∥∥
d
dx

≤ Lf∥u− ν∥L∞(XT;R)

∫
D=(ω)

∥∥∥∇x ψ(x)
∥∥∥
d
dx .

Here, the last estimation is possible since we have |u(x)− ν(x)| ≤ ∥u− ν∥L∞(XT;R) for almost every

x ∈ XT. Since the nonnegative test function ψ ∈ D(XT;R) is compactly supported and smooth, its

gradient ∇x ψ inherits these properties of being smooth and compactly supported. In particular, this

implies that ∇x ψ is bounded. This leads to the estimation∣∣∣ ∫
D=(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ CψLf

∥∥∥u− ν
∥∥∥
L∞(XT;R)

,

which concludes the proof of showing continuous dependence of the Integral (3.27a) on the functions

u, ν ∈ L∞(XT;R).

Continuous dependence of Integral (3.27b). To show that the Integral (3.27b) depends contin-

uously on the functions u, ν ∈ L∞(XT;R), we start by applying first Hölder’s and afterwards, the

Cauchy-Schwarz-Bunyakovsky inequality to obtain∣∣∣ ∫
D±(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ ∫
D±(ω)

∥∥∥Qk
ω,x

(
u(x), ν(x)

)∥∥∥
d

∥∥∥∇x ψ(x)
∥∥∥
d
dx .

We continue by inserting the definitions of the function Qk
ω,x and the entropy flux q. Afterwards, the

construction of the set D±(ω) consisting of those space-time points x ∈ XT, which satisfy the relation

sign
(
u(x)− k(ω, x)

)
= − sign

(
ν(x)− k(ω, x)

)
, permits to perform the estimation:∣∣∣ ∫

D±(ω)

Qk
ω,x

(
u(x),ν(x)

)
· ∇x ψ(x) dx

∣∣∣
≤

∫
D±(ω)

∥∥∥q(ω, x, u(x), k(ω, x))− q
(
ω, x, ν(x), k(ω, x)

)∥∥∥
d

∥∥∥∇x ψ(x)
∥∥∥
d
dx

≤
∫

D±(ω)

∥∥∥f(ω, x, u(x))+ f
(
ω, x, ν(x)

)
− 2f

(
ω, x, k(ω, x)

)∥∥∥
d

∥∥∥∇x ψ(x)
∥∥∥
d
dx .
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Recall that the flux function f is locally Lipschitz continuous by Assumption (F-2). Proceeding the

estimation by first applying the triangle inequality and employing the local Lipschitz property thereafter,

we obtain∣∣∣ ∫
D±(ω)

Qk
ω,x

(
u(x), ν(x)

)
·∇x ψ(x) dx

∣∣∣ ≤ Lf

∫
D±(ω)

(∣∣∣u(x)− k(ω, x)
∣∣∣+∣∣∣ν(x)− k(ω, x)

∣∣∣)∥∥∥∇x ψ(x)
∥∥∥
d
dx .

For any two scalar values ξ1, ξ2 ∈ R, the identity |ξ1 − ξ2| = sign(ξ1 − ξ2)(ξ1 − ξ2) holds. Combining

this identity with the construction of the integral domain D±(ω) allows us to further estimate∣∣∣ ∫
D±(ω)

Qk
ω,x

(
u(x), ν(x)

)
·∇x ψ(x) dx

∣∣∣ ≤ Lf

∫
D±(ω)

∣∣∣ sign (u(x)−k(ω, x))(u(x)− ν(x))∣∣∣∥∥∥∇x ψ(x)
∥∥∥
d
dx .

Observe that for any two scalar values ν, υ ∈ R the estimate

∣∣ sign(ν − υ)
∣∣ ≤ 1 holds by construction.

Furthermore, the estimation |u(x)− ν(x)| ≤ ∥u− ν∥L∞(XT;R) holds for almost every x ∈ XT. Since

the test function ψ is smooth and compactly supported, we obtain boundedness of its gradient ∇x ψ.

Thereby, we can conclude∣∣∣ ∫
D±(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ CψLf

∥∥∥u− ν
∥∥∥
L∞(XT;R)

.

Consequently, we have shown the continuous dependence of Integral (3.27b) on u, ν ∈ L∞(XT;R).

Continuous dependence of Integral (3.27c). For showing the continuous dependence of Integral

(3.27c), we start again by applying Hölder’s inequality and the Cauchy-Schwarz-Bunyakovsky inequality.∣∣∣ ∫
Duk(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ ∫
Duk(ω)

∥∥∥Qk
ω,x

(
u(x), ν(x)

)∥∥∥
d

∥∥∥∇x ψ(x)
∥∥∥
d
dx .

Using the definitions of the function Qk
ω,x and the entropy flux q and then leveraging the construction

of the set Duk(ω) this leads to the estimation∣∣∣ ∫
Duk(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣
≤

∫
Duk(ω)

∥∥q(ω, x, u(x), k(ω, x))− q
(
ω, x, ν(x), k(ω, x)

)∥∥
d

∥∥∥∇x ψ(x)
∥∥∥
d
dx

=

∫
Duk(ω)

∥∥∥ sign (ν(x)− k(ω, x)
)(

f
(
ω, x, ν(x)

)
− f
(
ω, x, k(ω, x)

))∥∥∥
d

∥∥∥∇x ψ(x)
∥∥∥
d
dx .

By construction, it holds that |sign(ν − υ)| ≤ 1 for two scalar values ν, υ ∈ R. Recall that the flux

function f is locally Lipschitz by Assumption (F-2). Thus, we obtain∣∣∣ ∫
Duk(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ Lf

∫
Duk(ω)

|ν(x)− k(ω, x)|
∥∥∥∇x ψ(x)

∥∥∥
d
dx .
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By definition of the set Duk(ω), we have u(x) = k(ω, x) for every spatio-temporal point x ∈ Duk(ω).
Since |u(x)− ν(x)| ≤ ∥u− ν∥L∞(XT;R) holds for almost every x ∈ XT, we can conclude

∣∣∣ ∫
Duk(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ CψLf

∥∥∥u− ν
∥∥∥
L∞(XT;R)

.

Here, we exploited that the gradient of the test function ∇x ψ is bounded, since the test function ψ

is compactly supported and smooth. Consequently, we have shown that the Integral (3.27c) depends

continuously on the functions u, ν ∈ L∞(XT;R).

Continuous dependence of Integral (3.27d). Arguing the continuous dependence of Integral

(3.27d) is analogous to showing that the Integral (3.27c) depends continuously on u, ν ∈ L∞(XT;R).
Therefore, we first employ Hölder’s inequality and the Cauchy-Schwarz-Bunyakovsky inequality, and

obtain ∣∣∣ ∫
Dνk(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ ∫
Dνk(ω)

∥∥∥Qk
ω,x

(
u(x), ν(x)

)∥∥∥
d

∥∥∥∇x ψ(x)
∥∥∥
d
dx .

We continue by using the definitions of the function Qk
ω,x and the entropy flux q. Furthermore, the con-

struction of the set Duk(ω) and the local Lipschitz property of the flux function f induced by Assumption

(F-2) lead to∣∣∣ ∫
Dνk(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ Lf

∫
Dνk(ω)

|u(x)− k(ω, x)|
∥∥∥∇x ψ(x)

∥∥∥
d
dx .

By construction of the set Duk(ω), the equality ν(x) = k(ω, x) holds for every space-time variable

x ∈ Duk(ω). Inserting this into the above inequality and using the smoothness and the compact support

of the test function ψ, we can deduce the estimate∣∣∣ ∫
Dνk(ω)

Qk
ω,x

(
u(x), ν(x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ CψLf∥u− ν∥L∞(XT;R) .

This concludes the proof of showing the continuous dependence of the Integral (3.27d) on the functions

u, ν ∈ L∞(XT;R).

Combining the above results, we have shown that the estimate∣∣∣∫
XT

q
(
ω, x;u(x), k(ω, x)

)
·∇x ψ(x) dx−

∫
XT

q
(
ω, x; ν(x), k(ω, x)

)
·∇x ψ(x) dx

∣∣∣ ≤ 4CψLf

∥∥∥u− ν
∥∥∥
L∞(XT;R)

holds, which proves that the random G-entropy functional Jkψ depends continuously on the function

ν ∈ L∞(XT;R). ■

By virtue of the previous two propositions, we have established the following theorem, which states that

the random G-entropy functional Jkψ is Carathéodory, meaning that it is measurable in the stochastic

parameter ω ∈ Ω and continuous with respect to the function υ ∈ L∞(XT;R).
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Theorem 3.45 (Entropy functional is Carathéodory):
Let the following conditions be satisfied:

▶ Let D : Ω ⇒ XT be a random sole discontinuity satisfying the measurability Assumption 3.4.

▶ Let f be a flux function satisfying the sole-flux-discontinuity Assumption 3.13 and the stochastic
measurability Assumption 3.41.

▶ Let G : Ω×XT ⇒ R2 be a random family of L1-dissipative germs satisfying the joint measurability
Assumption 3.16.

▶ LetRG : Ω×XT×R2 → R≥0 be a remainder function associated toG that satisfies the measurability
Assumption 3.27.

Furthermore, let k = (kl, kr) ∈ R2 and a nonnegative test function ψ ∈ D(T× X;R) be fixed. Then, the
random G-entropy functional Jkψ is Carathéodory, which means that it depends measurably on ω ∈ Ω and
is continuous in ν ∈ L∞(T× X;R).

Continuous dependence of G-entropy functional on adapted Kružkov entropy

We have now established that G-entropy functionals are Carathéodory. Therefore, we can turn to the

second property that we want to establish: the continuous dependence on the pair of entropy values

k = (kl, kr) ∈ R2
and the corresponding adapted Kružkov entropy. Before we are able to prove

such a continuous dependence result, we need the following integrability assumption on the (random)

remainder function.

Assumption 3.46 (Integrability of remainder function):
Let G : Ω×XT ⇒ R2 be a random family of L1-dissipative germs and let RG : Ω×XT ×R2 → R≥0 be
a remainder function associated to G. We assume that RG satisfies that for each compact set K ⊂ R2 and
fixed ω ∈ Ω, the function

MR
K(ω, x) := sup

k∈K
|RG(ω, x,k)|

is locally Lebesgue integrable, i.e., MR
K(ω, ·) ∈ L1

loc(XT;R).

Analogously to the measurability Assumption 3.27 of the remainder function, the above integrability

assumption is verified for particular choices of the remainder function in Appendix A. With this

assumption, we can now prove the continuous dependence result for random G-entropy functionals

with respect to the pair of entropy values k ∈ R2
, which concludes this section.

Theorem 3.47 (Continuous dependence of entropy functional on entropy pair):
Suppose the following conditions are satisfied:

▶ Let D : Ω ⇒ XT be a sole discontinuity hypersurface.

▶ Let f be a flux function satisfying the sole-flux-discontinuity Assumption 3.13.

▶ Let G : Ω × XT ⇒ R2 be a random family of L1-dissipative admissibility germs satisfying the
measurability Assumption 3.16.
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76 3 Random conservation laws with a sole flux discontinuity

▶ Let RG be a remainder function associated to G, which satisfies the measurability Assumption 3.27
and the integrability Assumption 3.46.

Then, for fixed stochastic parameter ω ∈ Ω, fixed test function ψ ∈ D(XT;R) and a fixed function
ν ∈ L∞(XT;R), the random G-entropy functional Jkψ depends continuously on k ∈ R2.

Proof. Let a stochastic parameter ω ∈ Ω, a nonnegative test function ψ ∈ D(XT;R) and a function

ν ∈ L∞(XT;R) be fixed. We prove the continuous dependence of the random G-entropy functional Jkψ
on the entropy pair k ∈ R2

by considering each integral of the mapping (3.23) separately. To do this, let

k, c ∈ R2
be fixed and denote by k, c the corresponding adapted Kružkov entropies.

Continuous dependence of Integral (3.23a). Since the integral operator is linear, we can first

apply Hölder’s inequality and afterwards utilize the Cauchy-Schwarz-Bunyakovsky inequality, to obtain∣∣∣ ∫
XT

|ν(x)− k(ω, x)|∂tψ(x) dx−
∫
XT

∣∣ν(x)− c(ω, x)
∣∣∂tψ(x) dx∣∣∣

≤
∫
XT

∣∣∣∣∣∣ν(x)− k(ω, x)
∣∣∣− |ν(x)− c(ω, x)|

∣∣∣∣∣∣∂tψ(x)∣∣∣ dx .
Observe that the adapted Kružkov entropies k, c satisfy |k(ω, x)− c(ω, x)| ≤ ∥k − c∥2 for every space-

time point x ∈ XT. Here, ∥·∥2 denotes the Euclidean distance in R2
. Employing this estimate after

applying the reverse triangle inequality, we obtain∣∣∣ ∫
XT

|ν(x)− k(ω, x)|∂tψ(x) dx−
∫
XT

|ν(x)− c(ω, x)|∂tψ(x) dx
∣∣∣ ≤ ∫

XT

∣∣c(ω, x)− k(ω, x)
∣∣|∂tψ(x)| dx

≤ ∥k − c∥2
∫
XT

|∂tψ(x)| dx .

Recall that the test function ψ ∈ D(XT;R) is compactly supported and smooth, which implies that its

time derivative ∂tψ is bounded. Therefore, we can conclude∣∣∣ ∫
XT

|ν(x)− k(ω, x)|∂tψ(x) dx−
∫
XT

|ν(x)− c(ω, x)|∂tψ(x) dx
∣∣∣ ≤ Cψ∥k − c∥2 .

This shows that the Integral (3.23a) depends continuously on the entropy pair k ∈ R2
.

Continuous dependence of Integral (3.23b). Showing continuous dependence of the Integral

(3.23b) on the entropy pair k ∈ R2
is similar to arguing its continuous dependence on the function

ν ∈ L∞(XT;R). We aim at establishing∣∣∣ ∫
XT

q
(
ω, x; ν(x), k(ω, x)

)
·∇x ψ(x) dx−

∫
XT

q
(
ω, x; ν(x), c(ω, x)

)
·∇x ψ(x) dx

∣∣∣ ≤ CJ∥k − c∥2 . (3.28)

We introduce four sets D(·)(ω) that depend on the terms sign
(
ν(x)−k(ω, x)

)
and sign

(
ν(x)− c(ω, x)

)
.

For every random parameter ω ∈ Ω, we define

D=(ω) :=
{
x ∈ XT | sign

(
ν(x)− k(ω, x)

)
= sign

(
ν(x)− c(ω, x)

)}
,

D±(ω) :=
{
x ∈ XT | sign

(
ν(x)− k(ω, x)

)
= − sign

(
ν(x)− c(ω, x)

)}
,
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Dνk(ω) :=
{
x ∈ XT | ν(x) = k(ω, x)

}
,

Dνc (ω) :=
{
x ∈ XT | ν(x) = c(ω, x)

}
.

With these sets, we want to split up the integration over the space-time domain XT. Even though these

sets are not necessarily disjoint, for every random parameter ω ∈ Ω, their intersection is given as

D= ∩ D± ∩ Dνk ∩ Dνc =
{
x ∈ XT | k(ω, x) = ν(x) = c(ω, x)

}
.

This characterization allows us to divide the integral over the space-time domain XT into four integrals

over the setsD(·)(ω), since the integrand in (3.28) vanishes on their intersection. For increased readability,

we introduce the function Qν
ω,x that describes the difference of two entropy fluxes via the mapping

Qν
ω,x(k, c) := q

(
ω, x; ν(x), k(ω, x)

)
− q

(
ω, x; ν(x), c(ω, x)

)
.

We can now start with the estimation of the left-hand side of Inequality (3.28). The linearity of the

integral operation and the sets D(·)(ω) allow us to employ the triangle inequality to obtain∣∣∣ ∫
XT

q
(
ω, x;ν(x), k(ω, x)

)
· ∇x ψ(x) dx−

∫
XT

q
(
ω, x; ν(x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣
≤
∣∣∣ ∫

D=(ω)
Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣ (3.29a)

+
∣∣∣ ∫

D±(ω)
Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣ (3.29b)

+
∣∣∣ ∫

Dνk(ω)
Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣ (3.29c)

+
∣∣∣ ∫

Dνc (ω)
Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣ . (3.29d)

To proceed with the estimation that shows the continuous dependence of Integral (3.23b) on k ∈ R2
via

Inequality (3.28), we consider the four terms in Inequality (3.29) separately:

Continuous dependence of Integral (3.29a). To show the continuous dependence of the Integral

(3.29a) on the entropy value pair k ∈ R2
, we first apply Hölder’s inequality followed by the Cauchy-

Schwarz-Bunyakovsky inequality. This leads to the following estimation:∣∣∣ ∫
D=(ω)

Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ ∫
D=(ω)

∥∥∥Qν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx .

We can now employ the definitions of the function Qν
ω,x and the entropy flux q. Additionally, utilizing

the definition of the set D=(ω) we can further estimate∣∣∣ ∫
D=(ω)

Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣
≤

∫
D=(ω)

∥∥∥q(ω, x; ν(x), k(ω, x))− q
(
ω, x; ν(x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx

≤
∫

D=(ω)

∥∥∥f(ω, x, c(ω, x))− f
(
ω, x, k(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx .

By Assumption (F-2) the flux function f is locally Lipschitz continuous. Since the adapted Kružkov en-
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tropies k, c satisfy |k(ω, x)− c(ω, x)| ≤ ∥k − c∥2 for every space-time point x ∈ XT, we can conclude∣∣∣ ∫
D=(ω)

Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ Lf

∥∥∥c− k
∥∥∥
2

∫
D=(ω)

∥∥∇x ψ(x)
∥∥
d
dx .

Since the test function ψ is compactly supported and smooth, its gradient ∇x ψ is bounded and we

obtain ∣∣∣ ∫
D=(ω)

Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ CψLf

∥∥∥c− k
∥∥∥
2
,

which concludes the proof of Integral (3.29a) depending continuously on the entropy pair k ∈ R2
.

Continuous dependence of Integral (3.29b). To show that the Integral (3.29b) depends continu-

ously on the pair of entropy values k ∈ R2
, we start by applying first Hölder’s inequality. Employing

the Cauchy-Schwarz-Bunyakovsky inequality afterwards, we obtain the estimation∣∣∣ ∫
D±(ω)

Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ ∫
D±(ω)

∥∥∥Qν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∥∇x ψ(x)
∥∥∥
d
dx .

Now, we can continue by exploiting the definitions of the function Qν
ω,x and the entropy flux q. Addi-

tionally, using the construction of D±(ω) we can estimate∣∣∣ ∫
D±(ω)

Qν
ω,x

(
k(ω, x),c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣
≤

∫
D±(ω)

∥∥∥q(ω, x; ν(x), k(ω, x))− q
(
ω, x; ν(x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx

≤
∫

D±(ω)

∥∥∥2f(ω, x, ν(x))− f
(
ω, x, k(ω, x)

)
− f
(
ω, x, c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx .

Recall that by Assumption (F-2) the flux function is locally Lipschitz continuous. By employing the

triangle inequality first and the local Lipschitz property afterwards, this yields∣∣∣∫
D±(ω)

Qν
ω,x

(
k(ω, x), c(ω, x)

)
·∇x ψ(x) dx

∣∣∣ ≤ Lf

∫
D±(ω)

(∣∣ν(x)−k(ω, x)∣∣+∣∣ν(x)−c(ω, x)∣∣) ∥∥∇x ψ(x)
∥∥
d
dx .

For any two scalar values ξ1, ξ2 ∈ R, the identity |ξ1 − ξ2| = sign(ξ1 − ξ2)(ξ1 − ξ2) holds. Combining

this identity with the construction of the set D±(ω) allows us to further estimate∣∣∣ ∫
D±(ω)

Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣
≤ Lf

∫
D±(ω)

∣∣∣ sign (ν(x)− k(ω, x)
)(
c(ω, x)− k(ω, x)

)∣∣∣ ∥∥∥∇x ψ(x)
∥∥∥
d
dx .

Recall that the adapted Kružkov entropies k, c satisfy |k(ω, x)− c(ω, x)| ≤ ∥k − c∥2 for every space-

time point x ∈ XT. Furthermore, the gradient of the test function ∇x ψ is compactly supported and
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bounded. Consequently, the following estimation holds∣∣∣ ∫
D±(ω)

Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ CψLf∥c− k∥2 .

Therefore, we have shown that the Integral (3.29b) depends continuously on k ∈ R2
.

Continuous dependence of Integral (3.29c). To estimate the Integral (3.29c) we start by applying

Hölder’s inequality. Then, the Cauchy-Schwarz-Bunyakovsky inequality yields∣∣∣ ∫
Dνk(ω)

Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ ∫
Dνk(ω)

∥∥∥Qν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∥∇x ψ(x)
∥∥∥
d
dx .

Inserting the definitions of Qν
ω,x and q as well as leveraging that ν(x) = k(ω, x) for every space-time

point x ∈ Dνk(ω) by the definition of the set Dνk(ω) leads to∣∣∣ ∫
Dνk(ω)

Qν
ω,x

(
k(ω, x), c(ω, x)

)
·∇x ψ(x) dx

∣∣∣ ≤ ∫
Dνk(ω)

∥∥∥f(ω, x, k(ω, x))−f
(
ω, x, c(ω, x)

)∥∥∥
d

∥∥∥∇x ψ(x)
∥∥∥
d
dx .

By Assumption (F-2) the flux function is locally Lipschitz continuous. Furthermore, the adapted

Kružkov entropies k, c satisfy |k(ω, x)− c(ω, x)| ≤ ∥k − c∥2 for every space-time point x ∈ XT.

With recalling that the gradient of the test function ∇x ψ is bounded, we obtain∣∣∣ ∫
Dνk(ω)

Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ CψLf

∥∥∥k − c
∥∥∥
2
.

Thus, we have proven that the Integral (3.29c) depends continuously on k ∈ R2
.

Continuous dependence of Integral (3.29d). Proving the continuous dependence of the Integral

(3.29d) on the pair of entropy values k ∈ R2
is completely analogous to the estimation of the Integral

(3.29c). Ultimately, this calculation yields∣∣∣ ∫
Dνc (ω)

Qν
ω,x

(
k(ω, x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣ ≤ CψLf

∥∥∥c− k
∥∥∥
2
,

which implies the sought continuous dependence result.

Combining the estimations of the four Integrals (3.29a), (3.29b), (3.29c) and (3.29d) shows that the Integral

(3.23b) depends continuously on the pair of entropy values k ∈ R2
.

Continuous dependence of Integral (3.23c). For the two adapted Kružkov entropies k, c, em-

ploying the linearity of the integral operation and Hölder’s inequality yields∣∣∣ ∫
X

∣∣u0(ω,x)− k(ω, 0,x)
∣∣ψ(0,x) dx−

∫
X

∣∣u0(ω,x)− c(ω, 0,x)
∣∣ψ(0,x) dx∣∣∣

≤
∫
X

∣∣∣∣∣u0(ω,x)− k(ω, 0,x)
∣∣− ∣∣u0(ω,x)− c(ω, 0,x)

∣∣∣∣∣∣∣ψ(0,x)∣∣ dx .
We continue by applying the reverse triangle inequality. Recall that two entropy pairs k, c ∈ R2

and the

corresponding adapted Kružkov entropies k, c satisfy |k(ω, x)− c(ω, x)| ≤ ∥k − c∥2 for every point
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x ∈ XT. This leads to the estimate∣∣∣ ∫
X

∣∣u0(ω,x)− k(ω, 0,x)
∣∣ψ(0,x) dx−

∫
X

∣∣u0(ω,x)− c(ω, 0,x)
∣∣ψ(0,x) dx∣∣∣
≤ ∥c− k∥2

∫
X

∣∣ψ(0,x)∣∣ dx .
Since the test function ψ is smooth and compactly supported it is in particular bounded. This permits to

conclude the estimation∣∣∣ ∫
X

∣∣u0(ω,x)− k(ω, 0,x)
∣∣ψ(0,x) dx−

∫
X

∣∣u0(ω,x)− c(ω, 0,x)
∣∣ψ(0,x) dx∣∣∣ ≤ Cψ

∥∥∥c− k
∥∥∥
2
,

for some constant Cψ > 0 that solely depends on the test function ψ ∈ D(XT;R). This shows the

continuous dependence of the Integral (3.23c) on the entropy pair k ∈ R2
.

Continuous dependence of Integral (3.23d). We now prove that the Integral (3.23d) depends

continuously on the pair of entropy values k ∈ R2
. Recall that the remainder function RG is continuous

in k ∈ R2
by its construction in Definition 3.26. Furthermore, by the integrability Assumption 3.46 on

the remainder function RG, for every compact set K ⊂ R2
and every stochastic parameter ω ∈ Ω, there

exists a function MR
K defined by

MR
K(ω, x) := sup

k∈K
|RG(ω, x;k)| ,

which is locally integrable in the sense that MR
K(ω, ·) ∈ L1

loc(XT;R). Now, for any compact setK ⊂ R2
,

this majorant of the remainder function RG provides us with the upper bound∫
D(ω)

RG(ω,d;k)ψ(d) dd ≤
∫

D(ω)

MR
K(ω,d)ψ(d) dd . (3.30)

Since the test function ψ ∈ D(XT;R) is compactly supported and the function MR
K(ω, ·) is locally

integrable, the Integral (3.30) is finite. Therefore, we can apply the dominated convergence theorem

to obtain that the Integral (3.23d) depends continuously on the pair of entropy values k ∈ R2
, which

completes the proof. For more details on this argumentation, we refer to [98, Theorem 5.6].

Combining the continuous dependence results of the four integrals in Mapping (3.23), we have shown

that the random G-entropy functional Jkψ depends continuously on the entropy pair k ∈ R2
. ■

3.3.3 Measurability of random entropy solutions

After this intermittent discussion of random G-entropy functionals, we can turn to investigating the

(strong) measurability of random G-entropy solutions. For showing the measurability, we demand

the pathwise existence and uniqueness of such solutions. However, as we have seen in our discussion

of pathwise existence and uniqueness in Section 3.3.1, arguing existence of solutions might require

various assumptions on the problem at hand, such as additional regularity assumptions on the flux

discontinuity D or the existence of uniform L∞
-bounds on approximate solutions. At this point, to

simplify the presentation of the measurability study, we formulate the following assumption on the

pathwise existence and uniqueness of G-entropy solutions. Recall that showing strong measurability

requires the pathwise solution u to take values in a separable subspace S of the nonseparable space

L∞(XT;R).
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Assumption 3.48 (Pathwise existence of unique G-entropy solution):
For every stochastic parameter ω ∈ Ω, there exists a unique G-entropy solution to the random scalar
discontinuous-flux conservation law given by Equation (3.1) in the sense of Definition 3.23 or Definition
3.28. Furthermore, this pathwise G-entropy solution u(ω, ·, ·) is assumed to be separably-valued, i.e., the
function u(ω, ·, ·) only takes values in a separable subspace S ⊂ L∞(XT;R).

The above assumption on the random G-entropy solution u being separably-valued might seem very

restrictive. However, the following example demonstrates two situations, in which separability appears

most naturally and as a direct consequence of the considered problem.

Example 3.49 (Separable subspaces of L∞(XT;R)): The following two situations demonstrate exam-
ples of separable subspaces of L∞(XT;R) that occur under mild assumptions on the flux discontinuity or
the initial data:

(i) So far, we have considered random initial data that satisfies u0 ∈ Lq
(
Ω;Lp(X;R)

)
, for 1 ≤ p ≤ ∞.

If we require 1 ≤ p <∞, theL1-contraction (3.17) implies that the pathwise solution u(ω, ·) satisfies
u(ω, ·) ∈ Lp(XT;R). Since u(ω, ·) ∈ L∞(XT;R) holds by definition, we obtain a separable
subspace S of L∞(XT;R) by setting S = L∞(XT;R) ∩ Lp(XT;R). The separability of S follows
from the separability of the space Lp(XT;R) for 1 ≤ p <∞.

(ii) If the sole discontinuity hypersurface D : Ω ⇒ XT is stationary (i.e., independent of the temporal
variable), it holds that the pathwise G-entropy solution u(ω, ·) satisfies u(ω, ·) ∈ L∞(XT;R) ∩
C
(
T;L1

loc(X;R)
)
. Here, C

(
T;L1

loc(X;R)
)

denotes the space of continuous functions from the
time interval T into the function space L1

loc(X;R) of locally integrable functions. Note, the space
L1
loc(X;R) is separable, since the space L1(X;R) of integrable functions is separable and a dense

subspace of L1
loc(X;R). Furthermore, assuming that the time interval T has the form [0, T ] ⊂ R,

the space C
(
T;L1

loc(X;R)
)

is separable because the time interval T is compact and L1
loc(X;R) is

separable (see, e.g., [160, Theorem 4.19]). Therefore, defining S = L∞(XT;R) ∩ C
(
T;L1

loc(X;R)
)
,

we obtain a separable subspace of L∞(XT;R).

We are now able to state the main result that guarantees strong measurability of G-entropy solutions to

the random scalar discontinuous-flux conservation law given by Equation (3.1). This result allows us to

interpret the solution u as a L∞(XT;R)-valued, Bochner-integrable random variable.

Theorem 3.50 (Measurability of random G-entropy solutions):
Suppose the following conditions are satisfied:

▶ Let u0 ∈ Lq
(
Ω;Lp(X)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞ be a random initial condition to the

scalar conservation law given by Problem (3.1).

▶ Let D : Ω ⇒ XT be a random sole discontinuity satisfying the measurability Assumption 3.4.

▶ Let the flux function f satisfy the sole-flux-discontinuity Assumption 3.13 and the measurability
Assumption 3.41.

▶ Let G : Ω× XT ⇒ R2 be a family of L1D germs satisfying the joint measurability Assumption 3.16.

▶ LetRG : Ω×XT×R2 → R≥0 be a remainder function associated toG that satisfies the measurability
Assumption 3.27 and the integrability Assumption 3.46.
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82 3 Random conservation laws with a sole flux discontinuity

▶ Let the pathwise existence and uniqueness Assumption 3.48 of a separably-valued G-entropy solution
u be satisfied.

Then, the pathwise G-entropy solution u to Problem (3.1) is strongly measurable in the sense that the
mapping u : Ω → S is strongly measurable.

Proof. The proof is divided into three steps: First, we construct a modified entropy functional that

inherits the properties of being Carathéodory and continuously depending on the entropy constants from

the standard adapted G-entropy functional. Afterwards, we prove that this modified entropy functional

can represent a particular version of the adapted entropy Condition (3.14) and that a corresponding

set-valued map is measurable. In the third step, we connect the constructed set-valued map to the

G-entropy solution of Problem (3.1) to show its measurability. A technical justification of an argument

in step three is postponed for readability purposes. This result is argued directly after this proof.

Step 1: Random modified entropy functional. We start by defining a sequence of function

spaces consisting of smooth nonnegative functions with compact support. Therefore, for N ∈ N, define

DN :=
{
ψ ∈ C∞(R>0×Rd;R≥0) | supp(ψ) ⊆

{
(t,x) ∈ R>0×Rd | t ∈ [0, N ] and x ∈ BN (0Rd)

}}
.

Here, BN (x) denotes the closed ball with radius N around x and 0Rd is the d-dimensional zero-

element. Each space DN is a subspace of C∞(R>0 × Rd;R≥0) by construction. Thereby, since C∞
has

a countable basis, DN also has a countable basis. Consequently, for every nonnegative test function

ψ ∈ D(XT;R) = C∞
c (XT;R), there exists a constant Rψ ∈ N, such that ψ ∈ DRψ .

Now, fix a number N ∈ N and let (ψiN , i ∈ N) ⊂ DN be a basis of the space DN . Then, for a fixed

pair of constants k = (kl, kr) ∈ R2
and a fixed number i ∈ N, we define the random modified entropy

functional Jki,N : Ω× S → R via the mapping

(ω, ν) 7→
∫
T

∫
X

∣∣ν(t,x)− k(ω, t,x)
∣∣∂tψiN (t,x) dx dt

+

∫
T

∫
X
q
(
ω, t,x; ν(t,x), k(ω, t,x)

)
· ∇x ψ

i
N (t,x) dx dt

−
∫
X

∣∣u0(ω,x)− k(ω, t,x)
∣∣ψiN (0,x) dx+

∫
D(ω)

RG(ω,d;k)ψ
i
N (d) dd .

Here, k is the adapted Kružkov entropy given by Equation (3.12) corresponding to k, q is the entropy

flux defined via Equation (3.13) and RG is the remainder function associated to the random family of

germs G as introduced in Definition 3.26. Note, we can apply Theorem 3.45 to obtain that the modified

entropy functional Jki,N is Carathéodory.

Step 2: Measurable set-valued map. For k ∈ R2
and i,N ∈ N still being fixed, we define the

set-valued mapping

Ξk
i,N : Ω ⇒ S ω 7→

{
ν ∈ S | Jki,N (ω, ν) ≥ 0

}
.

This multifunction selects all functions ν ∈ S satisfying the adapted entropy Condition (3.14) for a fixed

couple of entropy values k = (kl, kr) ∈ R2
and a fixed test function ψiN ∈ DN . Since, by Assumption

3.48, the subspace S ⊂ L∞(XT;R) is separable, we can apply Lemma 2.9 to obtain that the set-valued

map Ξk
i,N is measurable.
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Step 3: Singleton containing solution. To omit functions ν ∈ S that only satisfy the adapted

entropy Condition (3.14) for some fixed test function ψiN , we define the set-valued map

Ξk : Ω ⇒ S Ξk(ω) :=
⋂
i∈N

⋂
N∈N

Ξk
i,N (ω) for ω ∈ Ω .

This correspondence is measurable, since the countable intersection of measurable maps is again

measurable. Furthermore, Ξk
now contains all the functions that satisfy the entropy condition for fixed

k, but for all test functions ψ ∈ D. Now, we can define

Ξ : Ω ⇒ S Ξ(ω) :=
⋂

k∈Q2

Ξk(ω) for ω ∈ Ω .

Again, this set-valued map is measurable via the countable intersection of measurable maps. The

measurable mapping Ξ now contains all those functions ν ∈ S satisfying the stochastic entropy

condition (without any restrictions due to fixed variables or functions). While the adapted entropy

condition (3.14) is formulated to hold for every entropy k ∈ R2
, it is sufficient to only consider k ∈ Q2

.

For readability purposes, the verification of this claim is postponed until after this proof.

To conclude the proof, we note that by Assumption 3.48 there exists a unique G-entropy solution for

every ω ∈ Ω. Therefore, the correspondence Ξ only contains this pathwise G-entropy solution of

Problem (3.1), which is measurable as a map u : Ω → S due to the measurability of Ξ. ■

Sufficiency of intersecting over rationals. It remains to show that it is sufficient to intersect

over k ∈ Q2
to select functions that satisfy the stochastic entropy condition for every k ∈ R2

. We show

this via a contradiction:

Assume that intersecting over Q2
is not sufficient to select the adapted entropy solution, which is unique

by Assumption 3.48. Then, for k ∈ Q2
, the set Ξ(ω) does contain the stochastic adapted entropy solution

u and another function ν. By construction, both functions satisfy the adapted entropy Condition (3.14)

for k ∈ Q2
. However, due to the uniqueness Assumption 3.48, for c ∈ (R \Q)2, the image of Ξ(ω) only

contains the adapted entropy solution. By Definition 3.39 of the random G-entropy functional, this

means that there exist j,M ∈ N such that

Jki,N (ω, ν) ≥ 0 for all i,N ∈ N Jcj,M (ω, ν) < 0 for j,M ∈ N .

Due to Theorem 3.47 the random G-entropy functional Jcj,M is continuous with respect to the pair

of entropy values c. Thus, for ε > 0, there exists an ε-neighborhood Bε around the value Jcj,M (ω, ν)

such that for every ξ ∈ Bε it holds that ξ < 0. Again using the continuous dependence of Jcj,M in c

and noting that Q is a dense subset of R, there exists a δ > 0 and c̃ ∈ Q2
such that ∥c− c̃∥2 < δ and

Jc̃j,M (ω, ν) ∈ Bε. Here, ∥·∥2 denotes the Euclidean distance of R2
.

However, Jc̃j,M (ω, ν) ∈ Bε implies that Jc̃j,M (ω, ν) < 0, which contradicts to Jki,N (ω, ν) ≥ 0 for all

numbers i,N ∈ N and all entropy pairs k ∈ Q2
. Consequently, it is sufficient to intersect over Q2

instead of R2
to select the unique adapted entropy solution. ■
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3.3.4 Existence of moments of random entropy solutions

By the strong measurability result of the previous section, the random G-entropy solution can be

interpreted as an S-valued, Bochner-integrable random variable. Thereby, its statistical properties can

be described via stochastic moments, if these exist. The subsequent investigation describe conditions,

such that the q-th moment of the solution exists, with 1 ≤ q < ∞. Here, the main ingredient of

this consideration is the L1
-contraction principle (3.17) of the random G-entropy solutions. Therefore,

throughout this section, we require the (random) initial condition u0 to be integrable. Additionally, we

need to impose the following technical assumption on the flux function. Afterwards, we state the main

theorem of this section.

Assumption 3.51 (Zero mass creation):
We assume that the flux function f is chosen such that the zero initial condition u0 ≡ 0 leads to the
vanishing G-entropy solution u ≡ 0.

Theorem 3.52 (Existence of moments of G-entropy solution):
Let u0 ∈ Lq

(
Ω;L1(X)

)
, with 1 ≤ q <∞, be a random initial condition to Problem (3.1). Furthermore, let

the following conditions be satisfied:

▶ Let D : Ω ⇒ XT be a random sole discontinuity hypersurface that satisfies the measurability
Assumption 3.4.

▶ Let the flux function f satisfy the sole-flux-discontinuity Assumption 3.13 and the measurability
Assumption 3.41 as well as the zero-mass-creation Assumption 3.51.

▶ Let G : Ω × XT ⇒ R2 be a family of L1-dissipative germs satisfying the joint measurability
Assumption 3.16.

▶ Let RG : Ω × XT × R2 → R≥0 be a remainder function associated to G that satisfies the joint
measurability Assumption 3.27 and the integrability Assumption 3.46.

▶ Let the pathwise existence and uniqueness Assumption 3.48 of a separably-valued G-entropy solution
u be satisfied.

Then, at almost every t ∈ T, the stochastic G-entropy solution u admits moments up to order q. In particular,
the random G-entropy solution satisfies the estimation

∥u(ω, t,x)∥Lq(Ω;L1(X;R)) ≤ ∥u0(ω,x)∥Lq(Ω;L1(X;R)) (3.31)

for almost every time t ∈ T.

Proof. We only prove the Estimation (3.31), which directly implies the existence of moments up

to order q ∈ [1,∞) because the initial condition u0 satisfies u0 ∈ Lq
(
Ω;L1(X;R)

)
by hypothesis.

First, note that the term ∥u(ω, t,x)∥Lq(Ω;L1(X;R)) makes sense. For every random parameter ω ∈ Ω, a

pathwise unique G-entropy solution exists and takes values only in a separable space S ⊂ L∞(XT;R)
due to Assumption 3.48. Furthermore, the mapping u : Ω → S is strongly measurable by the result
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of Theorem 3.50. Recall the L1
-contraction Property (3.17) of the pathwise G-entropy solution u(ω, ·),

which was given by∫
X
|u(ω, t,x)− ũ(ω, t,x)| dx ≤

∫
X
|u0(ω,x)− ũ0(ω,x)| dx .

Due to the zero-mass creation Assumption 3.51, we can choose ũ0 ≡ 0 and immediately obtain ũ ≡ 0.

Based on this estimation, for 1 ≤ q <∞, we can compute∥∥∥u(ω, t,x)∥∥∥q
Lq(Ω;L1(X;R))

=

∫
Ω

∥∥∥u(ω, t,x)∥∥∥q
L1(X;R)

dP ≤
∫
Ω

∥∥∥u0(ω,x)∥∥∥q
L1(X;R)

dP .

The assertion of the theorem follows by taking the q-th root and noting that these integrals exists due

to the presumption that the initial condition u0 satisfies u0 ∈ Lq(Ω;L1(X;R)). ■

Roughly speaking, the above theorem states that a random G-entropy solution inherits the moments of

the underlying stochastic initial condition u0. Let us stress that this result does not require the random

initial condition and the stochastic discontinuity interface to be independent. The above statement

allows us to deduce the following special case, if the initial condition is deterministic.

Corollary 3.53 (Existence of moments with deterministic initial conditions):
Let u0 ∈ L1(X;R) be a deterministic initial condition to Problem (3.1). Furthermore, as in Theorem 3.52,
let the following conditions be satisfied:

▶ Let D : Ω ⇒ XT be a random sole discontinuity that satisfies the measurability Assumption 3.4.

▶ Let the flux function f satisfy the sole-flux-discontinuity Assumption 3.13 and the measurability
Assumption 3.41 as well as the zero-mass-creation Assumption 3.51.

▶ Let G : Ω × XT ⇒ R2 be a family of L1-dissipative germs satisfying the joint measurability
Assumption 3.16.

▶ LetRG : Ω×XT×R2 → R≥0 be a remainder function associated toG that satisfies the measurability
Assumption 3.27 and the integrability Assumption 3.46.

▶ Let the pathwise existence and uniqueness Assumption 3.48 of a separably-valued G-entropy solution
u be satisfied.

Then, at almost every t ∈ T, the random G-entropy solution u admits all moments of order 1 ≤ q <∞.

Proof. From Theorem 3.52, we know that for 1 ≤ q <∞ the estimation

∥u(ω, t,x)∥q
Lq
(
Ω;L1(X;R)

) ≤ ∫
Ω
∥u0∥qL1(X;R) dP = ∥u0∥qL1(X;R)

holds. Thus, the assertion follows by taking the q-th root and noting that the initial condition satisfies

u0 ∈ L1(X;R) by hypothesis. ■

Let us conclude this examination of stochastic moments with another specific existence result, which

focuses on stationary flux discontinuities. Time independency (i.e., stationarity) of sole discontinuity
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hypersurfaces has already been described in Example 3.49 (ii). In particular, by the result of [228], each

pathwise G-entropy solution u(ω, ·) has a representative in the space C
(
T;L1

loc(X;R)
)

of continuous

functions mapping from the time interval T into the function space L1
loc(X;R) of locally integrable

functions. This motivates the following theorem.

Theorem 3.54 (Existence of moments for stationary flux discontinuities):
Let u0 ∈ Lq

(
Ω;L1(X;R)

)
, with 1 ≤ q <∞, be a random initial condition to Problem (3.1). Furthermore,

as in the existence-of-moments Theorem 3.52 for general flux functions, let the following conditions be
satisfied:

▶ Let D : Ω ⇒ XT be a random sole discontinuity hypersurface that satisfies the measurability
Assumption 3.4.

▶ Let the flux function f satisfy the sole-flux-discontinuity Assumption 3.13 and the measurability
Assumption 3.41 as well as the zero-mass-creation Assumption 3.51.

▶ Let G : Ω × XT ⇒ R2 be a family of L1-dissipative germs satisfying the joint measurability
Assumption 3.16.

▶ Let RG : Ω × XT × R2 → R≥0 be a remainder function associated to G that satisfies the joint
measurability Assumption 3.27 and the integrability Assumption 3.46.

▶ Let the pathwise existence and uniqueness Assumption 3.48 of a separably-valued G-entropy solution
u be satisfied.

Then, if the sole discontinuity D(ω) is stationary for every ω ∈ Ω, the following estimation holds:∥∥∥u(ω, t,x)∥∥∥
Lq(Ω;C(T;L1(X)))

≤
∥∥∥u0∥∥∥

Lq(Ω;L1(X;R))

In particular, the random G-entropy solution u admits all moments up to order 1 ≤ q <∞.

Proof. Recall that by Assumption 3.48 and Example 3.49 (ii), the solution u satisfies for every ω ∈ Ω

that u(ω, ·, ·) ∈ S = L∞(XT) ∩ C
(
T;L1

loc(X). Thereby, we can estimate∥∥∥u(ω, t,x)∥∥∥q
Lq
(
Ω;C(T;L1(X;R))

) = ∫
Ω
sup
t∈T

∥u(ω, t, ·)∥qL1(X;R) dP

≤
∫
Ω

∥∥∥u0(ω, ·)∥∥∥q
L1(X;R)

dP

≤ ∥u0∥qLq(Ω;L1(X;R))
.

Here, we leveraged the L1
-contraction property 3.17 of the G-entropy solution u in a similar manner as

in Theorem 3.52. The latter norm in the estimation is finite by the hypothesis that u0 ∈ Lq
(
Ω;L1(X;R)

)
and therefore, the assertion follows by taking the q-th root. ■
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3.4 Examples of (random) admissibility germs and remainder
functions

In this section, we provide examples of random admissibility germs and remainder functions. For

the presented families of random admissibility germs, we verify the joint measurability Assumption

3.16, which is necessary to prove that the corresponding G-entropy solution is strongly measurable.

Similarly, for the presented random remainder functions, the joint measurability Assumption 3.27 and

the integrability Assumption 3.46 are verified.

As a first example, Section 3.4.1 discusses the Rankine-Hugoniot admissibility germ, which is a very

fundamental germ containing all value pairs that satisfy the Rankine-Hugoniot condition. This property

readily implies that any other admissibility germ is a subset of the Rankine-Hugoniot admissibility

germ. Afterwards, in Section 3.4.2, we consider the vanishing viscosity germ GVV, which was already

introduced and discussed in Section 3.3.1. We conclude this Section by discussing the simplest choice for

the random remainder function in Section 3.4.3, which requires an additional assumption of the flux

function. However, Appendix A discusses various other types of random remainder functions, which

avoid this additional assumption and have a more general form.

3.4.1 Rankine-Hugoniot admissibility germ

The first admissibility germ discussed is very essential. It consists of all pairs (ul, ur) ∈ R×R that satisfy

the Rankine-Hugoniot condition. Hence, it is called the (random) Rankine-Hugoniot germ. Note that by

the Definition 3.14 of an admissibility germ G, every couple of values (ul, ur) ∈ G ⊂ R2
needs to satisfy

this Rankine-Hugoniot condition. Thus, any admissibility germ is a subset of the Rankine-Hugoniot

germ GRH, which is defined subsequently.

Definition 3.55 (Random Rankine-Hugoniot germ):
Let D : Ω ⇒ XT be a random sole discontinuity hypersurface (cf., Definition 3.1) that satisfies the stochastic
measurability Assumption 3.4. Furthermore, let n̂D : Ω× XT → XT denote the extension of the normal
field nD of the sole discontinuity D as defined in Equation (3.7). Then, the family of sets GRH(ω, x) ⊂ R2

containing all pairs (ul, ur) ∈ R× R satisfying the Rankine-Hugoniot condition

s(ω, x) := fl(ω, x, ul) · n̂D(ω, x) = fr(ω, x, ur) · n̂D(ω, x) (3.32)

is called a random family of Rankine-Hugoniot germs.

An important property of random families of admissibility germs is their joint measurability, which

we ensured via Assumption 3.27. While such measurability is crucial to show that the random entropy

solution is strongly measurable, it is also related to showing existence of solutions. For the details on

this relation, we refer to the deterministic work [8], where the connection of measurability and existence

of solutions is extensively discussed. In the subsequent proposition, we show that a random family of

Rankine-Hugoniot germs as defined in Definition 3.55 is jointly measurable in (ω, x) ∈ Ω× XT.
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Proposition 3.56 (Joint measurability of random Rankine-Hugoniot germs):
Let D : Ω ⇒ XT be a random sole flux discontinuity that satisfies the stochastic measurability Assumption
3.4. Furthermore, let GRH ⊂ R2 be a random family of Rankine-Hugoniot germs as defined in Definition
3.55 and let the flux function f satisfy the sole-flux-discontinuity Assumption 3.13 as well as the stochastic
measurability Assumption 3.41. Then, GRH can be written as a set-valued mapping GRH : Ω× XT ⇒ R2,
which is jointly measurable.

Proof. First, recall that by Lemma 3.8 the extended normal vector field n̂D is Carathéodory as a

mapping n̂D : Ω× XT → XT. This implies that it is jointly measurable in (ω, x) ∈ Ω× XT due to [5,

Lemma 4.51]. Now, let the function ΠRH : Ω× XT × R2 → R be given by

ΠRH

(
ω, x, (ul, ur)

)
:= fl(ω, x, ul) · n̂D(ω, x)− fr(ω, x, ur) · n̂D(ω, x)

=
(
fl(ω, x, ul)− fr(ω, x, ur)

)
· n̂D(ω, x) .

This function vanishes as soon as the Rankine-Hugoniot Condition (3.32) is satisfied. Therefore, we aim

at writing the germ GRH as the zero-level set of the function ΠRH. Before we do so, some properties of

ΠRH need to be established, such that joint measurability of GRH can be deduced. By the stochastic

measurability Assumption 3.41 and the sole-flux-discontinuity Assumption 3.13, the functions fl,r are

measurable in ω ∈ Ω and continuous in the remaining arguments. Thus, by [5, Lemma 4.51], they are

jointly measurable. This immediately implies that the function ΠRH is Carathéodory in the sense that it

is jointly measurable in (ω, x) ∈ Ω× XT and continuous in (ul, ur) ∈ R2
, since the normal vector field

extension n̂D is jointly measurable in (ω, x) ∈ Ω× XT and the fluxes fl,r are also jointly measurable in

(ω, x) ∈ Ω×XT and continuous in (ul, ur) ∈ R2
. Exploiting the construction of ΠRH, we can write the

random family of Rankine-Hugoniot germs as a correspondence GRH : Ω× XT ⇒ R2
defined as

GRH(ω, x) :=
{
(ul, ur) ∈ R2 | ΠRH

(
ω, x, (ul, ur)

)
= 0
}
. (3.33)

Since the function ΠRH is Carathéodory, Equation (3.33) and Lemma 2.9 prove the assertion. ■

The Rankine-Hugoniot germ is the simplest admissibility germ one can choose, since it does not impose

any additional restriction on the jump of the entropy solution u across the flux discontinuity (besides

the Rankine-Hugoniot condition). For the one-dimensional model Problem (3.19) with strictly increasing

(or strictly descreasing) flux functions fl,r , which are also uniformly Lipschitz continuous, the Rankine-

Hugoniot germ corresponds to the entropy formulation developed by Baiti and Jenssen [23].

For the details on this admissibility condition and an analysis of the corresponding germ, we refer to

Andreianov et al. [13, Section 4.4].

3.4.2 Vanishing viscosity germ

The next family of (random) admissibility germs we consider has already been discussed briefly in

Section 3.3.1 and is called the vanishing viscosity germ, denoted GVV. This admissibility germ describes

the behavior of entropy solutions as the limit of solutions to a problem containing a small viscosity

term. For details on the motivation for considering such vanishing viscosity solutions, we refer to the

numerical experiments in Chapter 5 as well as to the monograph [80] or to the work [38]. For the ease

of presentation, we start by recalling the definition of a random family of vanishing viscosity germs.
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Definition 3.57 (Random vanishing viscosity germ):
Let D : Ω ⇒ XT be a random sole discontinuity that satisfies the stochastic measurability Assumption 3.4.
Furthermore, let n̂D : Ω× XT → XT denote the extension of the normal field nD of the sole discontinuity
D as defined in Equation (3.7). Then, the sets GVV(ω, x) ⊂ R2 containing all pairs (ul, ur) ∈ R× R that
satisfy the Rankine-Hugoniot condition

s(ω, x) := fl(ω, x, ul) · n̂D(ω, x) = fr(ω, x, ur) · n̂D(ω, x) (3.34)

and one of the following conditions

(i) ul = ur

(ii) ul < ur and there exists a uo ∈ [ul, ur] such that
fl(ω, x, ρ) · n̂D(ω, x) ≥ s(ω, x) for all ρ ∈ [ul, uo] ,

and

fr(ω, x, ρ) · n̂D(ω, x) ≥ s(ω, x) for all ρ ∈ [uo, ur] .

(iii) ul > ur and there exists a uo ∈ [ur, ul] such that
fl(ω, x, ρ) · n̂D(ω, x) ≤ s(ω, x) for all ρ ∈ [uo, ul] ,

and

fr(ω, x, ρ) · n̂D(ω, x) ≤ s(ω, x) for all ρ ∈ [ur, uo] .

are called a random family of vanishing viscosity germs.

There exists an equivalent formulation for admissible vanishing viscosity solutions via the Γ-condition of

Diehl [93]. This Γ-condition was originally derived via a standing-waves approach
24

for the vanishing

viscosity method including smoothing [90–92, 94]. The equivalence of the vanishing viscosity germ

and the Γ-condition was argued in [12] for the deterministic setting. We summarize this equivalency

in the subsequent remark, where we formulate the Γ-condition in a way that reminds of Oleïnik-type

admissibility conditions.

Remark 3.58 (Γ-condition represents vanishing viscosity solutions): The equivalency of the Γ-
condition to the vanishing viscosity germ becomes clear when using the formulation of [93]:

For ξ1, ξ2 ∈ R, denote by ch(ξ1, ξ2) the convex hull of ξ1 and ξ2, given by
[
min{ξ1, ξ2},max{ξ1, ξ2}

]
.

A couple (ul, ur) ∈ R2 satisfies the Γ-condition, if the Rankine-Hugoniot Condition (3.34) is satisfied and
there exists a uo ∈ ch(ul, ur) such that

▶ (ur − uo)
(
fr(ω, x, ρ)− fr(ω, x, ur)

)
· n̂D(ω, x) ≥ 0 for all ρ ∈ ch(ur, uo) ,

▶ (uo − ul)
(
fl(ω, x, ρ)− fl(ω, x, ul)

)
· n̂D(ω, x) ≥ 0 for all ρ ∈ ch(ul, uo) ,

where n̂D : Ω× XT → XT is the extended normal vector field of the random discontinuity hypersurface
D : Ω ⇒ XT.

24

For details on the standing-waves approach, we refer to [80, 140] or to the early work [109].
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The remainder of this section is devoted to establishing that the family of random vanishing viscosity

germs is jointly measurable. As a preparational result, the following proposition enables us to represent

the Condition (ii) of Definition 3.57 as a jointly measurable correspondence.

Proposition 3.59 (Vanishing viscosity condition via jointly measurable correspondence):
Let D : Ω ⇒ XT be a random sole discontinuity that satisfies the stochastic measurability Assumption 3.4.
Furthermore, let n̂D : Ω× XT → XT denote the extension of the normal field nD of the sole discontinuity
D as defined in Equation (3.7). Additionally, let the flux f satisfy the sole-flux-discontinuity Assumption
3.13 as well as the stochastic measurability Assumption 3.41 and the confinement Assumption 3.38. Then,
there exists a set-valued mapping Θl<r

VV : Ω× XT ⇒ R2 such that every couple (ul, ur) ∈ Θl<r
VV satisfies

Condition (ii) of Definition 3.57.

Proof. The proof is divided into four steps: First, we construct a representation of the condition part

fl(ω, x, ρ) · n̂D(ω, x) ≥ s(ω, x) for all ρ ∈ [ul, uo] via a correspondence. Afterwards, we show that the

derived set-valued mapping is Carathéodory. This allows us to formulate the whole part of Condition

(ii) of Definition 3.57 regarding the existence of a value uo via correspondences. In the last step, we

conclude the assertion by combining the preceeding investigations.

Flux conditions for arbitrary intervals via correspondences. The goal of this first step is to

derive a general formulation of the condition

fl(ω, x, ρ) · n̂D(ω, x) ≥ s(ω, x) for all ρ ∈ [ul, uo] , (3.35)

where uo ∈ R, with ul ≤ uo, is a real number. Since the Rankine-Hugoniot Condition (3.34) implies

s(ω, x) := fl(ω, x, ul) · n̂D(ω, x), the Inequality (3.35) can be written as(
fl(ω, x, ρ)− fl(ω, x, ul)

)
· n̂D(ω, x) ≥ 0 for all ρ ∈ [ul, uo] . (3.36)

Based on this form of the inequality, we introduce a function H l : Ω× XT × CS(R)× R → R via

H l(ω, x, A, ul) := inf
a∈A

((
fl(ω, x, a)− fl(ω, x, ul)

)
· n̂D(ω, x)

)
.

Here, CS(R) is the hyperspace of closed subsets of the real numbers R as introduced in Section 2.2.1.

Due to the continuity of fl, the function H l
is continuous in the last argument. Additionally, Lemma

2.15 implies that the function H l(ω, x, ·, ul) is continuous. Thus, the joint measurability of the normal

vector field extension n̂D implies that H l
is Carathéodory in the sense that it is jointly measurable in

(ω, x) ∈ Ω× XT and continuous in the remaining arguments A ∈ CS(R) and ul ∈ R. Consequently,

the function H l
is jointly measurable due to [5, Lemma 4.51].

Let us note that the Inequality (3.36) can also be formulated via the function H l
by requiring

H l
(
ω, x, [ul, uo], ul

)
≥ 0 . (3.37)

Via a correspondence l we can describe the set of all values uo ∈ R such that Condition (3.37) is satisfied.

Specifically, this set-valued mapping l : Ω× XT × R ⇒ R is defined as

l(ω, x, ul) :=
{
uo ∈ R | ul ≤ uo and H l

(
ω, x, [ul, uo], ul

)
≥ 0
}
.
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Via a similar construction, one can define a correspondence r : Ω × XT × R ⇒ R to represent the

condition

fr(ω, x, ρ) · n̂D(ω, x) ≥ s(ω, x) for all ρ ∈ [uo, ur] .

This requires a function Hr
, which is based on the flux function fr. Nevertheless, the procedure is

completely analogous to the construction of the set-valued mapping l.

Correspondences for flux conditions are Carathéodory. We continue by showing that the

set-valued mapping l is Carathéodory in the sense that it is jointly measurable in (ω, x) ∈ Ω× XT and

continuous with respect to the value ul ∈ R. For fixed ul ∈ R, the joint measurability follows from

Lemma 2.9, since the function H l
is Carathéodory (with joint measurability in (ω, x) ∈ Ω× XT). This

argument becomes clear by writing l via the intersection

l(ω, x, ul) :=
{
uo ∈ R | ul ≤ uo

}
∩
{
uo ∈ R | H l

(
ω, x, [ul, uo], ul

)
≥ 0
}
,

since the latter set is the only one depending on (ω, x) ∈ Ω × XT. For the continuity in ul ∈ R, let

a stochastic parameter ω ∈ Ω and a space-time coordinate x ∈ XT be fixed. Now, the function H l
is

continuous in A ∈ CS(R) and in ul ∈ R. Therefore, the set-valued mapping l depends continuously
25

on the value ul ∈ R by [246, Example 5.5].

Consequently, we have shown that the correspondence l is Carathéodory in the sense that it is continuous

in ul ∈ R and jointly measurable in (ω, x) ∈ Ω× XT. Via an analogous argumentation one can show

that the set-valued mapping r is also Carathéodory.

Existence condition via correspondences. With the set-valued mappings l and r at hand, we are

now able to formulate the condition

there exists a uo ∈ R such that


fl(ω, x, ρ) · n̂D(ω, x) ≥ s(ω, x) for all ρ ∈ [ul, uo] ,

and

fr(ω, x, ρ) · n̂D(ω, x) ≥ s(ω, x) for all ρ ∈ [uo, ur] ,

via a jointly measurable correspondence Λl<r : Ω × XT ⇒ R2
. Therefore, let us first note that the

correspondences l and r are closed-valued by construction. To capture the existence of a scalar value uo

that is contained in both of these set-valued mappings, we define a function λ : Ω× XT × R2 → R via

λ
(
ω, x, (ul, ur)

)
:= O

(
l(ω, x, ul), r (ω, x, ur)

)
.

Here, the function O : CS(R)× CS(R) → R measures the distance between two closed subsets of the

real numbers. Specifically, it is defined as

O(A,B) := inf
a∈A

(
distB(a)

)
,

where dist is the Euclidean distance between the point a and the set B. Recall that the hyperspace

CS(R) is equipped with the set distance d. With this in mind, note that the function O is continuous

25

For a detailed discussion on the continuity of set-valued mappings, we refer to the monographs of Aubin and

Frankowska [17, Chapter 1], Rockafellar and Wets [246, Section 5.B] or Aliprantis and Border [5,

Section 17.2].
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in both arguments by Lemma 2.15. Therefore, the function λ is Carathéodory in the sense that it is

continuous with respect to (ul, ur) ∈ R × R and jointly measurable in (ω, x) ∈ Ω × XT. Based on

this Carathéodory function λ, we can construct the set-valued mapping Λl<r : Ω× XT ⇒ R2
as the

zero-level set of λ via

Λl<r(ω, x) :=
{
(ul, ur) ∈ R× R | λ

(
ω, x, (ul, ur)

)
= 0
}
.

By construction, this correspondence contains all values uo ∈ R such that the conditions
fl(ω, x, ρ) · n̂D(ω, x) ≥ s(ω, x) for all ρ ∈ [ul, uo] ,

and

fr(ω, x, ρ) · n̂D(ω, x) ≥ s(ω, x) for all ρ ∈ [uo, ur] ,

are satisfied. Furthermore, since the function λ is Carathéodory, Lemma 2.9 implies that the set-valued

map Λl<r is (jointly) measurable.

Condition (ii) of Definition 3.57 via jointly measurable correspondence. Let us now conclude

the assertion that Condition (ii) of Definition 3.57 can be written as a jointly measurable set-valued

mapping Θl<r
VV : Ω× XT ⇒ R2

. Therefore, define this correspondence as

Θl<r
VV(ω, x) := Λl<r(ω, x) ∩

{
(ul, ur) ∈ R× R | ul < ur

}
.

Due to the set

{
(ul, ur) ∈ R× R | ul < ur

}
, the mapping Θl<r

VV only contains values satisfying ul < ur ,

which is the first requirement in Condition (ii) of Definition 3.57. Additionally, due to the construction of

the correspondence Λl<r , it only contains those values (ul, ur) ∈ R×R that admit a value uo ∈ [ul, ur]

satisfying the conditions on the flux. Since the set-valued mapping Λl<r is jointly measurable by

construction and the set {
(ul, ur) ∈ R× R | ul < ur

}
does neither depend on the stochastic parameter ω ∈ Ω nor on the space-time coordinate x ∈ XT, the

correspondence Θl<r
VV is jointly measurable, which proves the assertion. ■

Let us stress that an analogous result can be established for Condition (iii) of Definition 3.57. With these

joint measurability statements on the set-valued mappings Θl<r
VV and Θr<l

VV , we have all ingredients at

hand to argue that the vanishing viscosity germ GVV as defined in Definition 3.57 can be written as a

jointly measurable correspondence GVV : Ω× XT ⇒ R2
.

Theorem 3.60 (Joint measurability of random vanishing viscosity germs):
Let D : Ω ⇒ XT be a random sole discontinuity hypersurface (cf., Definition 3.1) that satisfies the stochastic
measurability Assumption 3.4. Furthermore, let n̂D : Ω× XT → XT denote the extension of the normal
field nD of the sole discontinuity D as defined in Equation (3.7). Additionally, let the flux function f satisfy
the sole-flux-discontinuity Assumption 3.13 as well as the stochastic measurability Assumption 3.41 and
the confinement Assumption 3.38. Then, the random vanishing viscosity germ GVV can be written as a
set-valued mapping GVV : Ω× XT ⇒ R2, which is jointly measurable.

Proof. Let us start by recalling that a pair (ul, ur) ∈ R×R belongs to the vanishing viscosity germ

GVV ⊂ R2
, if it satisfies the Rankine-Hugoniot Condition (3.34) and one of the conditions (i) – (iii) of

Definition 3.57. By Definition 3.55, the set of pairs (ul, ur) ∈ R× R satisfying the Rankine-Hugoniot
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Condition (3.34) corresponds to the Rankine-Hugoniot admissibility germ GRH ⊂ R2
. Additionally, by

Proposition 3.59, the values (ul, ur) ∈ R×R satisfying Condition (ii) of Definition 3.57 can be written via

a set-valued mapping Θl<r
VV : Ω× XT ⇒ R2

. Analogously, a correspondence Θr<l
VV : Ω× XT ⇒ R2

can

be used to describe Condition (iii) of Definition 3.57. Before we continue, we define the constant-valued

set-valued mapping Θl=r
VV : Ω× XT ⇒ R2

as

Θl=r
VV(ω, x) :=

{
(vl, vr) ∈ R2 | vl = vr

}
.

Let us stress that this correspondence is independent of the stochastic parameter ω ∈ Ω and the space-

time point x ∈ XT. With these set-valued mappings, we have collected all ingredients to write the

vanishing viscosity germ GVV(ω, x) ⊂ R2
as the following intersection:

GVV(ω, x) = GRH(ω, x) ∩
(
Θl=r

VV(ω, x) ∪Θl<r
VV(ω, x) ∪Θr<l

VV(ω, x)
)
. (3.38)

By Proposition 3.56, the Rankine-Hugoniot germ GRH : Ω × XT ⇒ R2
is jointly measurable. Since

the set-valued mapping Θl=r
VV : Ω × XT ⇒ R2

is constant-valued it is trivially jointly measurable.

Additionally, the correspondence Θl<r
VV : Ω× XT ⇒ R2

is jointly measurable by Proposition 3.59 and

ananalogous argumentation yields the joint measurability of the set-valued mapping Θr<l
VV .

Consequently, Equation (3.38) implies the joint measurability of the random family of vanishing viscosity

germs GVV : Ω × XT ⇒ R2
as the finite intersection of jointly measurable correspondences. This

concludes the proof. ■

3.4.3 Remainder function based on Euclidean distance

In this section we discuss a random remainder function, which is based on the Euclidean distance dist

in R2
and is probably the simplest choice for the remainder term. For a more extensive discussion on

possible choices of remainder functions, we refer the reader to Appendix A. To employ this choice of

the remainder term based on the Euclidean distance, we require the left and right flux function fl,r to be

globally Lipschitz continuous, which is a stronger restriction than the local Lipschitz continuity imposed

by Assumption (F-2). In particular, we assume that the functions fl,r(ω, x, ·) are Lipschitz continuous

with a common Lipschitz constant Lf for all spatio-temporal variables x ∈ XT. However, we allow

the Lipschitz constant Lf to depend on the stochastic parameter ω ∈ Ω. With these assumptions and

prerequisites, we are ready to define the remainder function based on the Euclidean distance.

Definition 3.61 (Remainder function via Euclidean distance):
Let D : Ω ⇒ XT be a random sole discontinuity hypersurface. Additionally, let G : Ω × XT ⇒ R2 be
a random family of L1-dissipative admissibility germs and let the flux functions fl,r(ω, x, ·) be globally
Lipschitz continuous with common Lipschitz constant for each space-time variable x ∈ XT that may depend
on the stochastic parameter ω ∈ Ω. Then, the function Rdist

G : Ω× XT × R2 → R≥0 given by

Rdist
G

(
ω, x; (kl, kr)

)
:= 2

∥∥∥(fl,r(ω, x, ·))′∥∥∥
L∞

inf
(ul,ur)∈G(ω;x)

{∣∣∣ul − kl
∣∣∣+ |ur − kr|

}
≡ Cf(ω) dist

(
(kl, kr),G(ω; x)

)
,

is called the remainder function via the Euclidean distance. Here, Cf ∈ R>0 is a sufficiently large constant
that may depend on the stochastic parameter ω ∈ Ω and dist denotes the Euclidean distance in R2.
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With this definition of the remainder function based on the Euclidean distance at hand, we can verify the

assumptions on joint measurability and integrability. Therefore, the following proposition states that

the function Rdist
G is jointly measurable if the underlying family of admissibility germs is also jointly

measurable.

Proposition 3.62 (Joint measurability of remainder function via Euclidean distance):
LetD : Ω ⇒ XT be a random sole flux discontinuity. Furthermore, letG : Ω×XT ⇒ R2 be a random family
of L1-dissipative admissibility germs that satisfies the joint measurability Assumption 3.16. Additionally,
let the flux functions fl,r(ω, x, ·) be globally Lipschitz continuous with common Lipschitz constant for each
space-time variable x ∈ XT which may depend on the stochastic parameter ω ∈ Ω.
Then, the remainder function Rdist

G based on the Euclidean distance, which is associated to the admissibility
germs G, is jointly measurable.

Proof. First, recall that the remainder function Rdist
G is defined as

Rdist
G

(
ω, x; (kl, kr)

)
≡ Cf dist

(
(kl, kr),G(ω; x)

)
,

where dist denotes the Euclidean distance of R2
. Now, for fixed stochastic parameter ω ∈ Ω and fixed

spatio-temporal coordinate x ∈ XT, the remainder function Rdist
G

(
ω, x; ·

)
is continuous due to the

continuity of the Euclidean distance function. However, by Assumption 3.16, the admissibility germ

G : Ω× XT ⇒ R2
is jointly measurable in (ω, x) ∈ Ω× XT. This implies that the remainder function

Rdist
G is Carathéodory in the sense that it is jointly measurable in (ω, x) ∈ Ω× XT and continuous in

(ul, ur) ∈ R2
. Consequently, by [5, Lemma 4.51], the remainder function Rdist

G is jointly measurable. ■

As a last property of the remainder function Rdist
G based on the Euclidean distance, we validate the

integrability Assumption 3.46. Before we do so, recall that the remainder function is a tool to transform

the admissibility condition via germs G into an entropy inequality. Therefore, we may assume that for

every stochastic parameter ω ∈ Ω, there exists a G-entropy solution u(ω, ·, ·) ∈ L∞(X× T;R). This

implies that there exists an interval U(ω) ⊂ R such that the solution u satisfies u(ω, ·, ·) ∈ U(ω) for

almost every (x, t) ∈ X× T. This allows us to formulate the following proposition.

Proposition 3.63 (Integrability of remainder function via Euclidean distance):
Let G : Ω × XT ⇒ R2 be a random family of L1-dissipative admissibility germs such that for every
stochastic parameter ω ∈ Ω there exists a solution u(ω, ·, ·) ∈ L∞(X×T;R). Then, the remainder function
Rdist

G is locally integrable in the sense of Assumption 3.46, meaning that for each compact set K ⊂ R2 and
fixed stochastic parameter ω ∈ Ω, the function

MR
K(ω, x) := sup

k∈K

∣∣∣Rdist
G (ω, x;k)

∣∣∣
is locally Lebesgue integrable, i.e., MR

K(ω, ·) ∈ L1
loc(XT;R).

Proof. By hypothesis, for every stochastic parameter ω ∈ Ω, there exists a G-entropy solution

u(ω, ·, ·) ∈ L∞(X × T;R). Therefore, there also exists a (possibly random) interval U(ω) ⊂ R such

that the solution u satisfies u(ω, ·, ·) ∈ U(ω) for almost every (x, t) ∈ X × T. However, this implies

that G(ω, x) ∩
(
U(ω) × U(ω)

)
̸= ∅ for almost every spatio-temporal coordinate x ∈ XT. Otherwise,

this would be a contradiction to the existence of a G-entropy solution. Now, recall that the remainder
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function is defined as

Rdist
G

(
ω, x; (kl, kr)

)
≡ Cf dist

(
(kl, kr),G(ω; x)

)
,

where Cf ∈ R>0 is a sufficiently large constant. Writing the interval U as U(ω) = [u(ω), u(ω)] we can

exploit the fact that G(ω, x) ∩ U(ω)2 ̸= ∅ for almost every x ∈ XT to estimate

Rdist
G (ω, x;k) ≤

√
2Cf|u(ω)− u(ω)| .

However, by construction of the majorant MR
K , it also holds that

MR
K(ω, x) ≤

√
2Cf|u(ω)− u(ω)| .

Since the upper bound does not depend on the spatio-temporal coordinate x ∈ XT, the function MR
K

satisfies MR
K(ω, ·) ∈ L∞(XT;R≥0). Due to the inclusion L∞(XT;R≥0) ⊂ L1

loc(XT;R), this concludes

the proof. ■
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Random conservation laws
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flux discontinuity 4

Undeniably, the case of a sole discontinuity is a simplifying model scenario. For real-world applications,

e.g., in physics or engineering problems, it is desirable to consider multiple, possibly curved and

intersecting discontinuities of the flux function. Let us illustrate this request with two geometrical

examples, which are both inspired by the modeling of a porous/layered medium: As a first example,

one might be interested in defining a homogeneous porous medium that has inclusions of some other

(homogeneous) porous medium. Alternatively, a (porous) medium might consist of a variety of materials

that are ordered in layers. Both examples lead to discontinuous fluxes as soon as the considered flux

function depends on material properties such as the conductivity or porosity.

While the construction of such more general geometries might seem straightforward from a geometrical

perspective, the well-posedness of the random conservation law needs to be ensured in this setting.

Therefore, in this chapter, we consider compound flux discontinuities that are constructed as the locally

finite union of sole discontinuity hypersurfaces. In the deterministic setting such an extension is

rather straightforward (up to heavy technical/notational changes). However, the randomization of the

flux imposes major difficulties, hence these geometries are a good starting point for generalizing the

discontinuity.

Similar to the previous chapter, let (Ω,Σ,P) be a complete probability space. Denote the space-time

domain again by XT := T × X for a time interval T := [0, T ] with T ∈ R>0 and a spatial domain

X := Rd with dimension d ∈ N. Then, for an unknown u := u(ω, t,x), we consider the random scalar

conservation law

∂tu+ divx f(ω, t,x, u) = 0 in Ω× T× X ,

u(ω, 0,x) = u0(ω,x) on Ω× {0} × Rd .
(4.1)

Here, u0 ∈ Lq
(
Ω;Lp(X)

)
, with 1 ≤ q <∞ and 1 ≤ p ≤ ∞, is a random initial condition and the flux

function f is assumed to depend discontinuously on the spatial variable x ∈ X.

The chapter is structured as follows: First, in Section 4.1, we define the notion of compound flux

discontinuities and investigate its properties. Afterwards, we adapt the admissibility conditions for

random G-entropy solutions to this new setting in Section 4.2. We conclude this chapter by investigating

the well-posedness of random G-entropy solutions in Section 4.3.
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98 4 Random conservation laws with a compound flux discontinuity

4.1 Compound flux discontinuities

In this section, we introduce the geometry of compound flux discontinuities. This type of discontinuity

can be seen as the straightforward generalization of sole discontinuities, since it is defined as the locally

finite union of such. We precise this construction subsequently.

Definition 4.1 (Compound flux discontinuity):
Let D ⊂ XT be a locally finite union of sole discontinuity hypersurfaces Di ⊂ XT, where each Di is defined
as in Definition 3.1. We call such union D a compound flux discontinuity and we symbolize the number of
discontinuity parts Di contained in D by writing ND ∈

(
N ∪ {∞}

)
.

Furthermore, if ND or any of the sole discontinuities Di is random, D is called a random compound

flux discontinuity and we indicate this dependency on the stochastic parameter ω ∈ Ω by writing D as a
set-valued mapping D : Ω ⇒ XT.

To be able to better describe the (random) sole discontinuitiesDi(ω) contained in the (random) compound

flux discontinuity D(ω), we introduce the following (random) index set ID(ω) that depends on the

number ND : Ω →
(
N ∪ {∞}

)
of sole discontinuities:

ID(ω) =

{{
i ∈ N | 1 ≤ i ≤ ND(ω)

}
if ND(ω) <∞ ,

N if ND(ω) = ∞ .

Note that this index set is random if and only if the number ND of sole discontinuities is random. By

means of this index set ID(ω) the following set of intersection points of the sole discontinuities Di can

be defined.

Definition 4.2 (Intersection points of sole discontinuities):
For a compound flux discontinuity D ⊂ XT, we define the set of intersection points ID ⊂ D of the
contained sole discontinuities Di as

ID :=
{
d ∈ D | there exist i, j ∈ ID(ω) : d ∈ Di ∩Dj

}
.

If the compound flux discontinuity D is random, then the corresponding set of intersection points ID is also
random. In this case, we write ID : Ω ⇒ XT to indicate the dependence on ω ∈ Ω.

Note that we do not require the set of intersection points ID to be a set of Hd
-measure zero. This means

that the sole discontinuities Di are allowed to overlap on sets with positive Hd
-measure.

We are now ready to investigate the measurability of random compound flux discontinuities. Their

spatio-temporal measurability is directly implied by the construction in Definition 4.1: Since any sole

discontinuity Di is a closed subset of the space-time domain XT, each Di is particularly measurable.

By definition, the compound flux discontinuity D is constructed as the locally finite union of these

measurable sole discontinuities Di, which implies that it is also measurable as a subset D ⊂ XT. In

particular, D is also a closed subset of XT.

If the compound flux discontinuity D is random, we aim at guaranteeing its stochastic measurability.

Unfortunately, but also not surprisingly, there is no chance of stating any stochastic measurability result
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based solely on the Definition 4.1 of compound flux discontinuities. Such a statement was already out of

reach for the sole discontinuity setting. Hence, we impose the following assumption on the stochastic

measurability of random compound discontinuities to overcome this lack of information.

Assumption 4.3 (Stochastic measurability of random compound flux discontinuities):
We assume that a random compound flux discontinuity D is measurable in the sense that it is measurable
as a set-valued mapping D : Ω ⇒ XT.

Let us mention some direct consequences of this stochastic measurability Assumption 4.3: First, the

random number ND : Ω →
(
N ∪ {∞}

)
of (random) sole discontinuities Di contained in the compound

discontinuity D(ω) is measurable. Note that this also implies the measurability of the corresponding

index set ID : Ω ⇒ N. Furthermore, we can deduce that, for every index i ∈ ID(ω), the corresponding

random sole discontinuity Di : Ω ⇒ XT is measurable. This follows from combining the stochastic

measurability Assumption 4.3 with the Definition 4.1 of a compound discontinuity.

4.1.1 Partitioning of compound flux discontinuities

The core idea of extending the admissibility of random G-entropy solutions is in locally reducing the

situation to the underlying sole discontinuity setting. If the sole discontinuities Di contained in the

compound flux discontinuity D are disjoint, such an extension is straightforward. However, in case the

set of intersection points ID is nonempty, we require some additional knowledge on the compound flux

discontinuity at hand. In particular, we need to demand the existence of a partition up to a null set of

the discontinuity. Additionally, such a partition up to a null set should satisfy some properties to be

specified throughout this subsection. We start by formally defining what we mean by a partition up to a
null set.

Assumption 4.4 (Compound discontinuity admits partition up to a null set):
Let D : Ω ⇒ XT be a random compound flux discontinuity. For every stochastic parameter ω ∈ Ω, the
corresponding compound flux discontinuityD(ω) admits a partition up to a null setCD(ω) =

{
CκD(ω)

}
κ∈N

in the sense that every partition part CκD(ω) ⊂ D(ω) is open and connected. Furthermore, for two indices
κ, ι ∈ N, the set of partition parts

{
CκD(ω)

}
κ∈N is assumed to satisfy

CκD(ω) ∩ CιD(ω) = ∅ for κ ̸= ι .

Additionally, by CD(ω) being a partition up to a null set of the compound discontinuity hypersurface
D(ω), we mean that CD(ω) satisfies

Hd
(
D(ω) \ CD(ω)

)
= Hd

(
IoD(ω)

)
= 0 .

Here, the set IoD(ω) ⊂ ID(ω) is a zero-Hd-measure subset of the (random) set of intersection points
ID : Ω ⇒ XT.

Let us stress two implications of this assumption: First, such a partition may not be unique. Secondly, a

partition up to a null set always consists of countable many parts, even though the underlying compound

flux discontinuity might only have finitely many sole discontinuities. Since partitions up to a null set are
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100 4 Random conservation laws with a compound flux discontinuity

the only type of partitions considered in this chapter, we may omit the term up to a null set if it benefits

the readability. Definition 4.1 of compound flux discontinuities implies local finiteness of the contained

sole discontinuity hypersurfaces. This property should also be inherited by the considered partition up

to a null set. To ensure this, we impose the following local finiteness assumption on the partition CD.

Assumption 4.5 (Partition is locally finite):
Let D : Ω ⇒ XT be a random compound flux discontinuity that, for every ω ∈ Ω, admits a partition CD(ω)

up to a null set by Assumption 4.4. We assume that this partition CD(ω) is locally finite in the sense that
any compact set K ⊂ XT intersects with at most finitely many parts CκD(ω) of the partition.

The construction of the compound flux discontinuity D allows the contained sole discontinuity hy-

persurfaces Di to overlap on sets with positive d-dimensional Hausdorff measure Hd
. Furthermore,

by Assumption 4.4 any compound flux discontinuity D admits a partition CD whose parts CκD satisfy

CκD ⊂ D. This implies that for fixed ω ∈ Ω it holds that for any index κ ∈ N there exists at least

one index i ∈ N such that CκD(ω) ⊂ Di(ω) is satisfied. If the partition part CκD(ω) is contained in the

intersection points ID(ω) there may exist finitely many indices i ∈ N satisfying the above condition.

Therefore, for every ω ∈ Ω, we introduce the following set-valued mapping sω : N ⇒ N that selects all

such indices i ∈ N via the condition

sω(κ) ⊂ N such that for every i ∈ sω(κ) it holds that CκD(ω) ⊂ Di(ω) . (4.2)

For reducing the compound flux discontinuity setting to the situation with sole discontinuities, for any

index κ ∈ N we want to be able to select a sole discontinuity Di(ω) containing the partition part CκD(ω).

In case the mapping sω is singleton-valued, this is straightforward. However, if we have overlappings in

the compound flux discontinuity D(ω) we need to be able to find a (measurable) selector that provides

us with a unique index i ∈ ID for every partition index κ ∈ N. Luckily, the following theorem states

that we can find such a selector.

Theorem 4.6 (Existence of measurable selector):
Let D : Ω ⇒ XT be a compound flux discontinuity that satisfies Assumption 4.4 on the existence of a
partition up to a null set and the stochastic measurability Assumption 4.3. Furthermore, for any random
parameter ω ∈ Ω let the set-valued mapping sω : N ⇒ N be implicitly defined via Condition (4.2). Then, if
we equip the natural numbers N with the discrete metric26, the correspondence sω admits a measurable
selector, which we denote again by sω : N → N.

Proof. The idea of the proof is to apply the Kuratowski-Ryll-Nardzewski selection theorem [5,

Theorem 18.13] to prove the existence of a measurable selector. Therefore, we have to ensure that the

correspondence sω : N ⇒ N is measurable, has nonempty closed values and maps from a measurable

space into a Polish space:

Let a stochastic parameter ω ∈ Ω be fixed and let the correspondence sω : N ⇒ N be implicitly defined

via Condition (4.2). By the construction of the partition CD in Assumption 4.4, for any index κ ∈ N
there exists at least one index i ∈ N such that CκD(ω) ⊂ Di(ω). This readily shows that the mapping

26

The discrete metric is defined by assigning the distance 1 to any two points, which are distinct. For details, the reader is

referred to [108, Equation (1.7)] or [290, Example 2 on page 2].
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sω is nonempty-valued. Furthermore, the natural numbers N equipped with the discrete metric form a

Polish space, i.e., a separable completely metrizable topological space. Furthermore, in a discrete metric

space any subspace is both open and closed, which implies that the set-valued mapping sω : N ⇒ N is

closed-valued.

It remains to argue that the correspondence sω : N ⇒ N is measurable. Let B(N) denote the Borel

σ-algebra of the set of natural numbers N 27
. For any open set O ∈ B(N) we want to show that the

preimage s−1
ω (O) is also contained in the Borel σ-algebra B(N). Recall that we have fixed the parameter

ω ∈ Ω, which implies that the numberND(ω) of sole discontinuities in D(ω) is also fixed. We distinguish

two cases for the arbitrary open set O ∈ B(N):

▶ First, assume that O does not contain any index of the index set ID(ω), i.e., O ∩ ID(ω) = ∅.

However, by construction of the correspondence sω , we have for any random parameter ω ∈ Ω

that sω(N) = ID(ω). That means that the preimage s−1
ω (O) = ∅ is empty, but by definition of

the Borel σ-algebra B(N), the empty set ∅ is contained in B(N), i.e., ∅ ∈ B(N).

▶ Now, assume that O ∩ ID(ω) ̸= ∅. This automatically implies by the construction of sω that the

preimage s−1
ω is a nonempty subset of N. However, since we equipped N with the discrete metric,

any subset of N is open. This concludes the measurability proof of the correspondence sω since

the Borel σ-algebra consists of all open subsets of N, which implies s−1
ω (O) ∈ B(N).

Thereby, we can conclude that all presumptions of the Kuratowski-Ryll-Nardzewski selection theorem

[5, Theorem 18.13] are satisfied, which proves that there exists a measurable selector of sω . ■

In the remainder of this chapter, we will write sω to denote the selector of the corresponding set-valued

map. By virtue of this selection function, we can now introduce the normal unit vector fields of the

partition parts CκD(ω) as well as the extension of those vector fields to the whole space-time domain.

The main idea of this construction is that for every index κ ∈ N, we can select a sole discontinuity

hypersurface Dsω(κ)(ω), which admits a normal unit vector field nDsω by Lemma 3.7. Restricting this

normal vector field nDsω to the partition part CκD(ω) yields the unit vector field of CκD(ω), which we

denote by nCκD
. Similarly, the extension of this vector field to the whole space-time domain XT, denoted

by n̂CκD
, is achieved by identifying nDsω with n̂Dsω . We formalize this in the following definition.

Definition 4.7 ((Extension of) normal unit vector field of partition part):
Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies Assumption 4.4 on the existence of
a partition CD(ω) as well as the stochastic measurability Assumption 4.3. Furthermore, for every random
parameter ω ∈ Ω, let sω : N → N be a selector of the sole discontinuities containing a partition part CκD(ω).
Then, for any index κ ∈ N, the normal unit vector field nCκD

of the partition part CκD(ω) is defined as the
restriction of the normal field nDsω to the partition part CκD(ω). Furthermore, the extension of the vector
field nCκD

to the whole space-time domain XT is defined as n̂CκD
= n̂Dsω , where n̂Dsω is the extension of

nDsω as constructed in Lemma 3.8.

We conclude this section on the partitioning of compound flux discontinuities by investigating possible

parametrizations of the partition parts CκD(ω). Any sole discontinuity admits a parametrization PD as

27

Since the natural numbers N are equipped with the discrete metric, every subset of N is open. In particular, because N is

countable, the Borel σ-algebra B(N) and the power set P(N) coincide. To emphasize that each subset of N is open, only

B(N) is used in the subsequent discussion.
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constructed in Lemma 3.2. Therefore, the existence of a parametrization of CκD(ω) is straightforward:

We can restrict the parametrization of Dsω(κ)(ω). However, this construction does not allow us to easily

verify important properties such as joint measurability. To overcome this issue, we impose the following

simplifying assumption.

Assumption 4.8 (Parametrization of partition):
For any κ ∈ N, we assume that the partition part CκD admits a parametrization P CκD

: Ω×T×Rd−1 → XT,
which is separately measurable in the sense that it is measurable in the random parameter ω ∈ Ω for fixed
points (t,y) ∈ T× Rd−1, and measurable with respect to the point (t,y) ∈ T× Rd−1 for fixed stochastic
parameter ω ∈ Ω.

Since we have already argued the existence of a parametrization, the above assumption can be broken

down into two parts, namely that the domain of P CκD
can be written as Ω× T× Rd−1

and the separate

measurability of the parametrization.

4.1.2 Investigation of the resulting space-time domain parts

As a last investigation of this section on random compound flux discontinuities, we can now turn to

the (random) space-time domain parts resulting from a stochastic compound flux discontinuity. Here,

by random space-time domain part we mean connected open subsets XsT(ω) ⊂ XT of the space-time

domain XT satisfying the following two conditions:

First, the random space-time domain part XsT(ω) does not contain any points d ∈ D(ω) of the random

compound flux discontinuity D(ω). Second, the boundary of the space-time domain part XsT(ω) is a

subset of the random compound flux discontinuity D(ω).

The purpose of discussing these random domain parts XsT(ω) is to establish two properties that are

necessary for the well-posedness investigation of random entropy solutions in Section 4.3:

(i) First, the random space-time domain parts XsT(ω) are measurable when considered as a corre-

spondence XsT : Ω ⇒ XT. The corresponding result is shown in Corollary 4.12.

(ii) Second, in Lemma 4.13 we prove that the indicator functions 1XsT
: Ω× XT → R of the random

space-time domain parts XsT are separately measurable.

Contrary to the random sole discontinuity setting of Chapter 3, in which we always obtained two space-

time domain parts, a general a-priori statement on the random number of resulting domain parts is not

easy to attain for random compound flux discontinuities. Therefore, denote by NXT : Ω →
(
N ∪ {∞}

)
the (random) number of space-time domain parts XsT(ω) ⊂ XT resulting from a random compound

discontinuity D : Ω ⇒ XT. Unfortunately, we cannot make any statement on the measurability of the

random variable NXT : Ω →
(
N ∪ {∞}

)
without imposing the following measurability assumption:

Assumption 4.9 (Measurability of number of domain parts):
For a random compound flux discontinuity hypersurface D : Ω ⇒ XT, the corresponding random number
NXT(ω) of resulting space-time domain parts XsT(ω) ⊂ XT is measurable, when viewed as a mapping
NXT : Ω →

(
N ∪ {∞}

)
.
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When we introduced random compound flux discontinuities in the beginning of this section, we also

defined an index set ID(ω) ⊂ N containing all indices i ∈ N of the sole discontinuities Di(ω) contained

in D(ω). Analogously, we can now define the index set IXT : Ω ⇒ N that describes the indices of the

domain parts resulting from a random compound discontinuity D(ω) via

IXT(ω) =

{
{i ∈ N | 1 ≤ i ≤ NXT(ω)} if NXT(ω) <∞ ,

N if NXT(ω) = ∞ .

This index set IXT allows us to describe the number of space-time domain parts and to formalize the

corresponding family as

{
XsT
}NXT (ω)

s=1
. However, to establish measurability of the random space-time

parts, we need to impose the following local finiteness assumption on this family of domain parts.

Assumption 4.10 (Space-time domain parts are locally finite):
For a random compound flux discontinuity D : Ω ⇒ XT, let NXT : Ω →

(
N ∪ {∞}

)
be the corresponding

number of connected space-time domain parts XsT(ω) ⊂ XT, with s ∈ IXT(ω). Then, we assume that the
family of domain parts

{
XsT
}NXT (ω)

s=1
is locally finite in the sense that each compact set K ⊂ XT intersects

only with a finite number of domain parts XsT(ω).

So far, the construction of random compound flux discontinuities D and associated variables and

properties such as ID has been rather straightforward. However, the stochasticity of the index sets ID
and IXT turn out to be quiet cumbersome for measurability investigations. To overcome this obstacle,

we make the following convention on the random domain parts:

For fixed s ∈ N it holds that XsT(ω) = ∅ if and only if s > NXT(ω) . (4.3)

Another important tool that we will frequently use are the left and right domain parts corresponding to

the i-th sole discontinuity Di(ω). Roughly speaking, these sets are the left and right domain part, if we

would only consider the i-th sole discontinuity. We formalize this construction with the next definition.

Definition 4.11 (Domain parts of sole discontinuities):
For any index i ∈ N, the random left and right domain parts Cl,ri : Ω ⇒ XT are defined via

Cli(ω) :=
{
(t,x) ∈ XT | x1 < ΦD

i (ω, t,x2:d)
}
,

Cri (ω) :=
{
(t,x) ∈ XT | x1 > ΦD

i (ω, t,x2:d)
}
,

(4.4)

where ΦD
i (ω, ·, ·) ∈ C1(T×Rd−1;R) is the function, whose graph defines the i-th sole discontinuity Di(ω)

of the random compound flux discontinuity D(ω).

With the help of these left and right domain parts corresponding to the i-th random sole discontinuity

hypersurface, we are now able to state the following stochastic measurability result of the domain

parts XsT : Ω ⇒ XT. As for the discontinuity and the domain parts for random sole discontinuities, we

formulate this measurability via correspondences.

Corollary 4.12 (Stochastic measurability of domain parts):
Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies the stochastic measurability
Assumption 4.3 and the local finiteness Assumption 4.10 on the resulting domain parts XsT. Furthermore,
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let the random number of space-time parts NXT : Ω →
(
N ∪ {∞}

)
satisfy the measurability Assumption

4.9. Then, for any index s ∈ N, the corresponding space-time domain part XsT : Ω ⇒ XT is a measurable
set-valued mapping.

Proof. Let an index s ∈ N be fixed. Showing the measurability of the space-time domain part

XsT : Ω ⇒ XT consists of two major steps: First, we divide the stochastic domain Ω into two parts

consisting of those ω ∈ Ω leading to empty-valued XsT(ω) and the corresponding complement leading

to nonempty-valued XsT(ω). After showing the measurability of these sets, we use this partitioning of Ω

to argue the measurability of the domain parts XsT.

Division of Ω. As a first step, we define a family of sets of parameters ω ∈ Ω that lead to exactly

n ∈
(
N ∪ {∞}

)
space-time domain parts as

Ωn
NXT

:= {ω ∈ Ω | NXT(ω) = n} .

Due to Assumption 4.9, the number NXT : Ω →
(
N ∪ {∞}

)
of domain parts is measurable. Therefore,

also the sets Ωn
NXT

are measurable. With the help of these sets, we can define the set

Ωs := {ω ∈ Ω | NXT(ω) ≤ s} =

s⋃
n=1

Ωn
NXT

,

which consists of all parameters ω ∈ Ω leading to at most s ∈ N domain parts. This set is measurable as

it is a countable union of measurable sets. From this measurability, we can immediately deduce that the

complement of ΩsNXT
, given by(

ΩsNXT

)c
= {ω ∈ Ω | NXT(ω) > s} =: Ωs∅ ,

is also measurable and consists of all those parameters ω ∈ Ω that lead to more than s ∈ N space-time

domain parts.

Measurability of XsT. With these two (measurable) sets, we can investigate the measurability of

the s-th domain part XsT : Ω ⇒ XT. Therefore, we write XsT(ω) via the following piecewise definition

XsT(ω) =

{
F(ω) for ω ∈ Ωs ,

G(ω) for ω ∈ Ωs∅ .
(4.5)

Both mappings F and G are correspondences defined implicitly via XsT. Equivalently to the piecewise

definition in Equation (4.5), we can write the space-time domain part XsT(ω) via the indicator functions

of the sets Ωs and Ωs∅, which yields

XsT(ω) = F(ω)1Ωs(ω) +G(ω)1Ωs∅(ω) .

Both indicator functions are measurable due to the measurability of the two sets Ωs and Ωs∅, cf. [248,

Proposition 1.9 (d)]. From this formulation, we can deduce that XsT is measurable if and only if both

F and G are measurable. In case the stochastic parameter ω satisfies ω ∈ Ωs∅, Convention (4.3) yields

XsT(ω) = ∅. This directly implies that G is the constant-valued mapping G ≡ ∅, whose image is the

empty set, due to its construction in Equation (4.5). Consequently, the correspondence G is measurable,

since constant-valued maps are measurable by construction.
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It remains to show the measurability of the set-valued mapping F. By construction of the set Ωs, it

holds that XsT(ω) ̸= ∅, whenever ω ∈ Ωs. This immediately implies that the mapping F is nonempty,

i.e., F(ω) ̸= ∅. Furthermore, for every index i ∈ ID(ω), we have the left and right domain parts

Cl,ri : Ω ⇒ XT of the i-th random sole discontinuity Di(ω) given by

Cli(ω) :=
{
(t,x) ∈ T× X | x1 < ΦD

i (ω, t,x2:d)
}
,

Cri (ω) :=
{
(t,x) ∈ T× X | x1 > ΦD

i (ω, t,x2:d)
}
.

(4.6)

By construction it holds for every parameter ω ∈ Ω that either XsT(ω) ⊂ Cli(ω) or XsT(ω) ⊂ Cri (ω)
is satisfied. Denoting the set Cl,ri (ω) containing XsT(ω) by Ci(ω), we obtain the measurability of

Ci : Ω ⇒ XT via the definitions in Equation (4.6). Here, measurability of the functions ΦD
i is implied by

the measurability Assumption 4.3.

If the index i is not contained in the index set ID(ω) we define Ci(ω) as the whole space-time domain,

i.e., Ci(ω) = XT. This allows us to reformulate the space-time part XsT via the sets Ci(ω), for i ∈ N, as

XsT(ω) =
⋂
i∈N

Ci(ω) . (4.7)

Since the countable intersection of measurable sets is again measurable, we have proven the assertion,

which states that the domain part XsT : Ω ⇒ XT is a measurable set-valued mapping. ■

For the space-time parts resulting from a random compound flux discontinuity, we can define the

corresponding domain part indicator functions completely analogous to the sole flux discontinuity

setting of Chapter 3. We refer to Definition 3.11 for the details. To conclude this section on compound

flux discontinuities, we show that these random domain part indicator functions 1XsT
: Ω× XT → R

are separately measurable.

Lemma 4.13 (Separate measurability of domain part indicator functions):
Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies the measurability Assumption 4.3
and the local finiteness Assumption 4.10 on the resulting domain parts XsT. Furthermore, let the number
NXT : Ω →

(
N ∪ {∞}

)
of space-time parts satisfy the measurability Assumption 4.9. Then, for any index

s ∈ N, the indicator function 1XsT : Ω× XT → R of the domain part XsT(ω) is separately measurable.

Proof. We show the spatio-temporal and the stochastic measurability of the domain part indicator

function 1XsT
separately:

(i) Let the stochastic parameter ω ∈ Ω and an index s ∈ N be fixed. We argue the spatio-temporal

measurability of 1XsT
by showing that XsT(ω) is an open set and therefore measurable:

In the case that we have ω ∈ Ωs∅, the domain part XsT(ω) is empty, i.e., XsT(ω) = ∅. However, by

definition, the empty set ∅ is open. Therefore, assume that the stochastic parameter ω satisfies

ω ∈ Ωs. By the construction of XsT(ω) in Equation (4.7), the set XsT(ω) corresponds to the

countable intersection of the sets Ci(ω). However, by their construction in Equation (4.4), the

sets Ci(ω) are open. This implies that XsT(ω) is open as well. Furthermore, open sets are Borel-

measurable and the indicator function of a measurable set is again measurable [248, Proposition

1.9 (d)].
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(ii) Let x ∈ XT and s ∈ N be fixed. Now, rewrite the indicator function of XsT(ω) as

1XsT
(ω, x) = 1XT(x)− 1XT\XsT

(ω, x) .

Since the space-time domain XT is independent of the stochastic parameter ω ∈ Ω, it is trivially

measurable. Furthermore, by the discussion of (i), the space-time partXsT(ω) is open and therefore

XT \XsT(ω) is closed as its complement. With this result, we can interpret the indicator function

1XT\XsT
as the composition of a measurable closed-valued correspondence and the set-dependent

indicator function. By Lemma 2.18, the set-dependent indicator function is separately measurable.

Noting that the composition of two Borel-measurable functions is again measurable, we can

conclude stochastic measurability of the indicator function 1XsT
of the space-time part XsT.

Combining the results of (i) and (ii), we conclude the assertion. ■

4.2 Admissibility conditions and G-entropy solutions

With the discussion of compound flux discontinuities and their properties in the previous section, we

can now proceed by extending the admissibility conditions for random entropy solutions to the scalar

discontinuous-flux conservation law given by Equation (4.1). Therefore, we start in Section 4.2.1 by

generalizing the notion of admissibility germs to this advanced setting of compound flux discontinuities

and define the associated notion of a random entropy solution. Afterwards, in Section 4.2.2, we discuss

the corresponding adapted Kružkov entropy conditions as well as defining the random G-entropy

solutions via these inequalities. We conclude this Section by discussing stochastic measurability of this

Kružkov entropy and Kružkov entropy flux for the random compound discontinuity setting in Section

4.2.3.

As in the investigation of admissible solutions for the sole discontinuity setting, we need to impose

some assumptions on the random discontinuous flux function f that we require to hold throughout this

section and in the remainder of this chapter.

Assumption 4.14 (Flux function with compound discontinuity):
A flux function f having a (random) compound discontinuity D : Ω ⇒ XT satisfies the following assump-
tions for every stochastic parameter ω ∈ Ω:

(C-1) The flux function f : Ω× XT × R → X has the form

(ω, x, υ) 7→
∑

s∈NXT (ω)

fs(ω, x, υ)1XsT
(ω, x) ,

where NXT(ω) is the number of space-time domain parts XsT resulting from the random compound
flux discontinuity D and for each index s ∈ NXT(ω) the function fs is globally defined as a function
fs : Ω× XT × R → X.

(C-2) For each s ∈ NXT(ω) and fixed x ∈ XT, the flux fs(ω, x, ·) is locally Lipschitz continuous.

(C-3) For each index s ∈ NXT(ω) and fixed scalar value υ ∈ R, the flux function fs(ω, ·, υ) is globally
Lipschitz continuous on the whole space-time domain XT.
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4.2.1 G-entropy solutions via admissibility germs

Roughly speaking, the idea of extending the admissibility of solutions to the compound flux discontinuity

case is to locally reduce the problem to the underlying sole discontinuity theory. Hence, we need to be

able to select the pair of flux functions fl,r from the family of functions

{
fs
}NXT (ω)

s=1
that locally represent

this associated sole discontinuity problem. The main tool of doing this selection are selection functions,
which we introduce with the following definition.

Definition 4.15 (Selection functions for flux function):
Let D : Ω ⇒ XT be a random compound discontinuity that satisfies Assumption 4.4 on the existence of
a partition up to a null set CD. Associated to CD, we define the selection functions s l,rf as the following
mappings:

s l,rf : Ω× N× XT × R → R ,

where s l,rf satisfies the condition that s l,rf (ω, κ, x, υ) = fk,m(ω, x, υ) for some indices k,m ∈ N such that
cl
(
Xk
T
)
∩ cl

(
Xm
T
)
∩ CκD ̸= ∅. For simplicity, we always identify the selection functions s l,rf with the flux

functions fk,m, such that the corresponding domain parts satisfy Xk
T ⊂ Clκ and Xm

T ⊂ Crκ, respectively. Here,
Cl,rκ are the left and right domain part of the κ-th sole discontinuity as defined in Definition 4.11.

These selection functions allow us to extend the framework of random admissibility germs. While the

core definition of an admissibility germ remains the same, we extend the family of germs to not only

depend on ω ∈ Ω and x ∈ XT, but also on a given part κ ∈ N of the partition up to a null set CD(ω) of

the random compound flux discontinuity D(ω). This idea leads to the following definition of a family

(of families) of admissibility germs.

Definition 4.16 (Families of random admissibility germs):
Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies Assumption 4.4 on the existence of
a partition up to a null set CD. Furthermore, let this partition CD satisfy the local finiteness Assumption 4.5.
Then, for every index κ ∈ N, we can define the random family of admissibility germs Gκ : Ω×XT ⇒ R2

associated to the sole discontinuity hypersurface Dsω(κ)(ω) and the normal components of the functions
s l,rf (ω, κ, x, ·), which are given by s l,rf (ω, κ, x, ·) · n̂CκD

. Here, n̂CκD
is the extension of the normal unit vector

to the partition part CκD as constructed in Definition 4.7.
Formally, the family {Gκ}κ∈N is a family of random families of germs. However, for simplicity we call
{Gκ}κ∈N a family of random admissibility germs.

Let us stress that for each index κ ∈ N, each stochastic parameterω ∈ Ω and every space-time coordinate

x ∈ XT, we obtain a standard admissibility germ associated to two continuous functions as introduced

in Definition 3.14 in Chapter 3. For this germ, we can define the same properties of L1
-dissipativity,

maximality, definiteness and completeness as well as corresponding extensions and its dual germ.

However, as in the sole discontinuity case, we need the following assumption on joint measurability of

each germ Gκ in this family of germs.

Assumption 4.17 (Joint measurability of family of germs):
Let {Gκ}κ∈N be a family of random admissibility germs G as defined in Definition 4.16. We assume that
this family {Gκ}κ∈N is jointly measurable in the sense that, for every index κ ∈ N, the family of germs
Gκ : Ω× XT ⇒ R2 is jointly measurable.
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We have now introduced every ingredient that we need to formalize the notion of random G-entropy

solutions via its traces and the underlying family of random admissibility germs. However, to ensure that

these traces exist, we need the following genuine nonlinearity assumption on the flux function, which

is completely analogous to the sole discontinuity setting. Afterwards, we define random G-entropy

solutions in the formulation via germs.

Assumption 4.18 (Genuine nonlinearity of flux functions):
Let a stochastic parameterω ∈ Ω and a space-time point x ∈ XT be fixed. Then, for every index s ∈ NXT(ω),
we assume that the corresponding flux function fs(ω, x, ·) is genuinely nonlinear in the sense that the function
fs(ω, x, ·) is not constant on any nontrivial interval I ⊂ R.

Definition 4.19 (Pathwise G-entropy solution via germ formulation):
Let the following conditions be satisfied:

▶ Let D : Ω ⇒ XT be a compound discontinuity satisfying Assumption 4.4 on the existence of a
partition up to a null set CD, which itself satisfies the locally finiteness Assumption 4.5.

▶ Let f be a flux function satisfying the compound-flux-discontinuity Assumption 4.14 and the genuine
nonlinearity Assumption 4.18.

▶ Let {Gκ}κ∈N : Ω×XT ⇒ R2 be a family of random L1D admissibility germs that satisfies the joint
measurability Assumption 4.17 and let {G∗

κ}κ∈N : Ω× XT ⇒ R2 denote the corresponding family
of dual germs.

Then, for fixed stochastic parameter ω ∈ Ω, a function u(ω, ·, ·) ∈ L∞(T × X;R) is called a random

G-entropy solution to Problem (4.1), if the following conditions are satisfied:

(i) For every s ∈ IXT(ω), the restriction of u(ω, ·, ·) to the domain parts XsT(ω) is a Kružkov entropy
solution of Equation (4.1) with flux function fs in the sense of the Kružkov entropy condition (1.2).

(ii) For every index κ ∈ N it holds that for Hd-almost every point d ∈ CκD(ω), the couple of strong
traces (γlu, γru) of u(ω, ·, ·) on the discontinuity part CκD(ω) belongs to the dual germ G∗

κ(ω,d).

(iii) Hd-almost everywhere on {0}×X, the initial trace γ0u of u(ω, ·, ·) is equal to the initial condition
u0(ω, ·).

4.2.2 G-entropy solutions via adapted entropy inequalities

Now that we have defined random G-entropy solutions in a local manner via admissibility germs,

we need to establish the corresponding global admissibility criterion via adapted Kružkov entropy

inequalities. While the main ideas are similar to the sole flux setting, the extension to compound

flux discontinuities requires vary generalizations that may not seem intuitive. However, to derive

the adapted Kružkov entropy inequalities, we start with a straightforward generalization of adapted

Kružkov entropies and the Kružkov entropy flux. This leads to the two subsequent definitions.

Definition 4.20 (Adapted Kružkov entropy):
Let D : Ω ⇒ XT be a random compound flux discontinuity and let the stochastic parameter ω ∈ Ω

be fixed. Furthermore, let
{
XsT
}NXT (ω)

s=1
be a family of resulting space-time parts, where NXT(ω) denotes

the random number of domain parts XsT. Then, for a fixed sequence k = {ks}NXT (ω)

s=1 ⊂ R, the adapted
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Kružkov entropy is defined as

k(ω, x) :=

NXT (ω)∑
s=1

ks1XsT
(ω, x) , (4.8)

where 1XsT : Ω× XT → R denotes the indicator function of the s-th domain part XsT.

Definition 4.21 (Kružkov entropy flux):
Let D : Ω ⇒ XT be a random compound flux discontinuity and let a stochastic parameter ω ∈ Ω be fixed.
Deducing from this, let

{
XsT
}NXT (ω)

s=1
be the family of resulting domain parts, where NXT(ω) denotes the

number of space-time parts XsT. Furthermore, let f be a flux function that satisfies the compound-flux-
discontinuity Assumption 4.14. Then, the Kružkov entropy flux is defined as

q(ω, x, υ, υ̃) :=

NXT (ω)∑
s=1

qs(ω, x, υ, υ̃)1XsT
(ω, x) ,

where each entropy flux function qs is defined as in the sole discontinuity case, i.e.,

qs(ω, x, υ, υ̃) = sign(υ − υ̃)
(
fs(ω, x, υ)− fs(ω, x, υ̃)

)
. (4.9)

Here, fs : Ω × XT × R → X is the s-th flux function as defined in the compound-flux-discontinuity
Assumption 4.14.

For deriving the global admissibility criterion in the sole discontinuity setting, we employed remainder

functions that were associated to an admissibility germ G. These functions were designed to measure

the distance of an arbitrary point c ∈ R2
to this germ G ⊂ R2

in a certain way that might depend on the

flux function f. For compound flux discontinuities, we already introduced a family of germs {Gκ}κ∈N
associated to a partition CD(ω) of the discontinuity D(ω). Therefore, we need to extend the notion

of this remainder function to a family of remainder functions associated to this family of admissibility

germs {Gκ}κ∈N. We do this in the next definition.

Definition 4.22 (Family of remainder functions):
Let D : Ω ⇒ XT be a random compound discontinuity satisfying Assumption 4.4 on the existence of a
partition up to a null set CD, which itself satisfies the locally finiteness Assumption 4.5. Furthermore, let
{Gκ}κ∈N be a random family of L1-dissipative germs. A random family of functions {Rκ

G}κ∈N, with
Rκ

G : Ω× XT × R2 → R≥0, is called a family of remainder functions, if for every stochastic parameter
ω ∈ Ω and every index κ ∈ N the function Rκ

G is a remainder function of the (family of) admissibility
germ(s) Gκ in the sense of Definition 3.26.

In the sole discontinuity setting, we assumed that the remainder function is jointly measurable as soon

as the associated admissibility germ is jointly measurable. This assumption was a simplifying one, since

the remainder function can take various forms that may depend on the flux function f. Again, we refer

to Appendix A for a discussion of the measurability for some choices of the remainder function. For

a compound discontinuity, we impose a similar measurability assumption on the family of remainder

functions. Let us stress that the joint measurability Assumption 4.17 on the family of germs {Gκ}κ∈N is

crucial for this assumption.
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Assumption 4.23 (Joint measurability of remainder functions):
Let {Gκ}κ∈N be a family of random admissibility germs, which satisfies the joint measurability Assumption
4.17. Then, we assume that for every index κ ∈ N, the remainder function Rκ

G is jointly measurable.

With the family of remainder functions {Rκ
G}κ∈N, we have almost every ingredient to define the global

admissibility criterion via adapted Kružkov entropy inequalities. However, recall that for a compound

discontinuity, the adapted Kružkov entropy is defined as a sequence k = {ks}NXT (ω)

s=1 . To formalize the

definition of the Kružkov entropy sequence k = {ks}NXT (ω)

s=1 ⊂ R in the subsequent discussion, let R≤N

denote the space of all finite or infinite real-valued sequences. Obviously, the Kružkov entropy sequence

k always satisfies k ∈ R≤N
.

To evaluate the remainder function Rκ
G for a given index κ ∈ N, we need to be able to select a pair of

entropy values of this sequence. Therefore, similarly to selecting the correct flux functions fk,m for the

admissibility germ at hand, we define a selection function for the Kružkov entropy sequence.

Definition 4.24 (Selection function for Kružkov entropy):
Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies Assumption 4.4 on the existence
of a partition up to a null set CD(ω). Furthermore, let

{
XsT
}NXT (ω)

s=1
be a family of space-time domain parts

resulting from the discontinuity D. For a sequence of Kružkov entropy values k ∈ R≤N associated to the
family

{
XsT
}NXT (ω)

s=1
of domain parts, we define the selection function sk for the Kružkov entropy as the

mapping

sk : Ω× N× R≤N → R2 sk(ω, κ,k) = (kk, km) .

Here, the indices k,m ∈ N are chosen such that we have kk, km ∈ k and such that the space-time parts
Xk,m
T (ω) satisfy the condition

cl
(
Xk
T(ω)

)
∩ cl

(
Xm
T (ω)

)
∩ CκD(ω) ̸= ∅ ,

as well as Xk
T(ω) ⊂ Clsω(κ)(ω) and Xm

T (ω) ⊂ Crsω(κ)(ω), where Cl,rsω(κ)(ω) are the left and right domain
parts of the sω(κ)-th sole discontinuity.

With this selection function for the Kružkov entropy sequence, we can define the notion of random

G-entropy solutions via a globally defined adapted Kružkov entropy inequality. While the idea is similar

to the sole discontinuity case, the contribution of the remainder function needs special treatment: Instead

of integrating one remainder function over the whole (sole) discontinuity, a family of functions needs to

be integrated. This is achieved by integrating this family of remainder functions over the corresponding

parts of the partition up to a null set of the random compound discontinuity.

Definition 4.25 (Pathwise G-entropy solution via entropy inequality):
Let the following conditions be satisfied:

▶ Let D : Ω ⇒ XT be a random compound discontinuity that satisfies Assumption 4.4 on the existence
of a partition up to a null set CD(ω), which itself satisfies the local finiteness Assumption 4.5.

▶ Let f : Ω×T×X×R → X be a flux function satisfying the compound-flux-discontinuity Assumption
4.14 and the genuine nonlinearity Assumption 4.18.
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▶ Let {Gκ}κ∈N be a random family of L1-dissipative admissibility germs satisfying the joint measura-
bility Assumption 4.17.

▶ Associated to the family of admissibility germs {Gκ}κ∈N, let {Rκ
G}κ∈N be a family of remainder

functions, which satisfies the joint measurability Assumption 4.23.

Then, for fixed stochastic parameter ω ∈ Ω, a function u(ω, ·, ·) ∈ L∞(T× X;R) is called a G-entropy

solution to the random scalar conservation law given by Equation (4.1), if the following conditions are
satisfied:

(i) The function u(ω, ·, ·) is a solution in the sense of distributions, i.e., for any nonnegative test function
ψ ∈ D(T× X;R), it holds that∫

T

∫
X
u(ω, t,x)∂tψ(t,x) + f

(
ω, t,x, u(ω, t,x)

)
· ∇x ψ(t,x) dx dt = 0 .

(ii) For all sequences k ∈ R≤N with the corresponding adapted Kružkov entropy k : Ω× T× X → R
as defined in Definition 4.20 and for all nonnegative test functions ψ ∈ D(T× X;R), the function
u(ω, ·, ·) satisfies the adapted entropy inequality∫

T

∫
X

∣∣u(ω, t,x)− k(ω, t,x)
∣∣∂tψ(t,x) dx dt

+

∫
T

∫
X

q
(
ω, t,x;u(ω, t,x), k(ω, t,x)

)
· ∇x ψ(t,x) dx dt

−
∫
X

|u0(ω,x)− k(ω, 0,x)|ψ(0,x) dx

+
∑
κ∈N

∫
CκD(ω)

Rκ
G

(
ω,d; sk(ω, κ,k)

)
ψ(d) dd ≥ 0 .

(4.10)

Here, CκD(ω) is the κ-th part of the partition up to a null set CD of the compound flux discontinuity
D(ω) and sk denotes the selection function for the Kružkov entropy sequence k as specified in
Definition 4.24.

Recall that the requirement of u(ω, ·, ·) being a solution in the sense of distributions is imposed to ensure

that the Rankine-Hugoniot condition is satisfied across the discontinuity of the flux function. Also

recollect that we can identify the surface integral of CκD(ω) with the d-dimensional Hausdorff measure

Hd
. For the details on these statements, we refer to the Remarks 3.29 and 3.30 in Chapter 3.

4.2.3 Measurability of adapted Kružkov entropy and entropy flux

To conclude this section on the admissibility conditions of random G-entropy solutions, we investigate

the stochastic measurability of the adapted Kružkov entropy k and the Kružkov entropy flux q. These

measurability results will be important for the discussion of well-posedness of random G-entropy

solutions in the next section. With the definitions and assumptions already made during this chapter, we

are able to state the following result on the stochastic measurability of the adapted Kružkov entropy.
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Proposition 4.26 (Measurability of adapted Kružkov entropy):
Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies the measurability Assumption
4.3. Furthermore, let the family XsT(ω) ⊂ XT, with s ∈ IXT(ω) of domain parts satisfy the local finiteness
Assumption 4.10. Then, for a fixed space-time point x ∈ XT and a fixed entropy sequence k = {ks}∞s=1 ⊂ R,
the adapted Kružkov entropy k defined via Equation (4.8) is stochastically measurable in the sense that the
mapping ω 7→ k(ω, x) is measurable.

Proof. By hypothesis, the random compound flux discontinuity D : Ω ⇒ XT satisfies the mea-

surability Assumption 4.3 and the local finiteness Assumption 4.10 on the resulting space-time parts{
XsT
}
s∈N. Thus, we can apply Lemma 4.13 to obtain that the indicator functions 1XsT

of these domain

parts are separately measurable. In particular, for a fixed space-time variable x ∈ XT, the indicator

functions 1XsT
, with index s ∈ N, are random variables. Recall that s > NXT(ω) makes sense due to

Convention (4.3) stating that XsT = ∅ if and only if s > NXT(ω). However, this proves the assertion due

to the construction of the adapted Kružkov entropy k in Equation (4.8) and the fact that the sum over

countably many random variables is measurable. ■

Unfortunately, without any knowledge on the stochastic measurability of the flux function f, we have

no hope for arguing the measurability of the Kružkov entropy flux. Before we impose an assumption

that allows us to overcome this obstacle, we formulate the following convention on the flux functions fs:

For fixed s ∈ N it holds that fs ≡ 0Rd if and only if s > NXT(ω) .

Note, this convention does not affect any of the previous definitions and statements. Rather, it allows us

to impose the following measurability assumption on the flux function f.

Assumption 4.27 (Stochastic measurability of flux function):
Let D : Ω ⇒ XT be a random compound flux discontinuity and let the resulting family

{
XsT
}
s∈N of

space-time parts satisfy the local finiteness Assumption 4.10. Furthermore, let f be a flux function that
satisfies the compound-flux-discontinuity Assumption 4.14. Then, we assume that the flux function f is
stochastically measurable in the sense that, for fixed space-time point x ∈ XT and fixed scalar value υ ∈ R,
the mapping ω 7→ fs(ω, x, υ) is measurable for every index s ∈ N.

With this assumption available, we are now able to show that the Kružkov entropy flux is measurably

dependent on the stochastic parameter ω ∈ Ω. Actually, we can include this in a stronger result stating

that the Kružkov entropy flux is Carathéodory in the sense that it is measurable in the stochastic

parameter ω ∈ Ω and continuous in all remaining arguments.

Proposition 4.28 (Kružkov entropy flux is Carathéodory):
Let D : Ω ⇒ XT be a random compound flux discontinuity such that the family

{
XsT
}
s∈N of resulting

domain parts satisfies the local finiteness Assumption 4.10. Furthermore, let the flux function f satisfy the
compound-flux-discontinuity Assumption 4.14 and the stochastic measurability Assumption 4.27. Then,
for any index s ∈ N, the Kružkov entropy flux function qs : Ω× XT × R× R → X is Carathéodory in
the sense that it is measurable in the stochastic parameter ω ∈ Ω and continuous in all of the remaining
arguments.
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Proof. Let an index s ∈ N and a space-time point x ∈ XT be fixed as well as two scalar values

υ, υ̃ ∈ R. Now recall the construction of the Kružkov entropy flux function qs in Equation (4.9) as

qs(ω, x, υ, υ̃) = sign(υ − υ̃)
(
fs(ω, x, υ)− fs(ω, x, υ̃)

)
.

Therefore, the stochastic measurability of the Kružkov entropy flux function qs reduces to the question,

whether fs is measurable with respect to ω ∈ Ω. However, the flux fs is measurable in the random

parameter ω ∈ Ω due to Assumption 4.27. The continuity results for the remaining arguments of the

Kružkov entropy fluxes qs are proven analogous to the sole-flux discontinuity case in Corollary 3.42,

which concludes the proof of qs being Carathéodory. ■

4.3 Well-posedness of random G-entropy solutions

In this section, we discuss the well-posedness of random G-entropy solutions. First, in Section 4.3.1,

we investigate the pathwise existence and uniqueness of random G-entropy solutions. As in the sole

discontinuity setting, pathwise uniqueness can be shown for (a family of) general definite admissibility

germs. For the pathwise existence result, we restrict ourselves to the case of vanishing viscosity solutions.

Afterwards, in Section 4.3.2, we discuss the entropy functionals for the compound flux discontinuity

setting, which we employ in Section 4.3.3 to prove the measurability of random G-entropy solutions.

We conclude this section on well-posedness of random G-entropy solutions by discussing the existence

of moments thereof in Section 4.3.4.

4.3.1 Pathwise existence and uniqueness of G-entropy solutions

We start the investigation of well-posedness of random G-entropy solutions by discussing their pathwise

uniqueness. Luckily, for a family {Gκ}κ∈N of definite admissibility germs, we are able to extend the

result of the sole flux discontinuity in a straightforward way. That is, we can establish the Kato inequality,

which provides the properties of L1
-contraction and uniqueness of G-entropy solutions. The proof of

this statement is completely analogous to the corresponding pathwise uniqueness Theorem 3.32 in the

sole flux discontinuity setting. Therefore, it is omitted in the subsequent presentation.

Theorem 4.29 (Pathwise uniqueness of G-entropy solutions):
Let the following conditions be satisfied:

▶ Let D : Ω ⇒ XT be a random compound flux discontinuity, such that the family
{
XsT
}
s∈N of

space-time parts satisfies the local finiteness Assumption 4.10.

▶ Let f be a flux function that satisfies the compound-flux-discontinuity Assumption 4.14 and the
genuine nonlinearity Assumption 4.18.

▶ Let {Gκ}κ∈N be a family of definite admissibility germs.

Then, for fixed ω ∈ Ω, let the functions u(ω, ·, ·), ũ(ω, ·, ·) ∈ L∞(T× X;R) be two pathwise G-entropy
solutions to Problem (4.1), with initial conditions u0(ω, ·), ũ0(ω, ·) ∈ L∞(X;R), respectively. Then, for all
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nonnegative test functions ψ ∈ D(T× X;R), the following Kato inequality

−
∫
T

∫
X

∣∣u(ω, t,x)− ũ(ω, t,x)
∣∣∂tψ(t,x) dx dt

−
∫
T

∫
X
q
(
ω, t,x, u(ω, t,x),ũ(ω, t,x)

)
· ∇x ψ(t,x) dx dt

≤
∫
X

∣∣u0(ω,x)− ũ0(ω,x)
∣∣ψ(0,x) dx

is satisfied. Additionally, if the initial conditions satisfy
∣∣u0(ω,x) − ũ0(ω,x)

∣∣ ∈ L1(X;R), the L1-
contraction property∫

X

∣∣u(ω, t,x)− ũ(ω, t,x)
∣∣ dx ≤

∫
X

∣∣u0(ω,x)− ũ0(ω,x)
∣∣ dx (4.11)

holds for almost every time t ∈ T. In particular, the pathwise G-entropy solution to Problem (4.1) is unique,
if it exists.

We can now turn to arguing pathwise existence of random G-entropy solutions. As in the multi-

dimensional sole discontinuity setting, we restrict ourselves to showing the existence of vanishing

viscosity solutions
28

. Unfortunately, Definition 4.1 of a (random) compound flux discontinuity does

not guarantee sufficient regularity of the discontinuity for the pathwise existence proof to succeed.

Therefore, we impose the following regularity assumption on the compound flux discontinuity, which is

the straightforward generalization of regularity Assumption 3.36 on sole discontinuity hypersurfaces.

Assumption 4.30 (Regularity of compound flux discontinuity):
Let D : Ω ⇒ R2 be a random compound flux discontinuity, which is defined as a locally finite union of sole
discontinuities Di : Ω ⇒ XT according to Definition 4.1. Furthermore, let ND(ω) denote the number of sole
discontinuities Di(ω) contained in D(ω). Then, for every stochastic parameter ω ∈ Ω, the compound flux
discontinuity D(ω) satisfies one of the following regularity assumptions:

(i) For every index i ∈ ND(ω), the function ΦD
i (ω, ·, ·), whose graph defines Di(ω) and which is

defined by Equation (3.2), satisfies ΦD
i (ω, ·, ·) ∈ C2(T× Rd−1;R).

(ii) For every i ∈ ND(ω), the function ΦD
i (ω, ·, ·), whose graph defines Di(ω), is (globally) Lipschitz

continuous with respect to (t,x2:d) ∈ T × Rd−1 and additionally ∆x2:d
ΦD
i (ω, ·, ·) is a Radon

measure on the lower-dimensional space-time domain T× Rd−1.

With this regularity assumption at hand, we can formulate the pathwise existence result for random

GVV-entropy solutions. Since the argumentation is completely similar to proving the pathwise exis-

tence Theorem 3.37 for sole flux discontinuities, we omit the proof. Stating this result also concludes

the investigation of pathwise existence and uniqueness of random G-entropy solutions to the scalar

conservation law given by Equation (4.1).

Theorem 4.31 (Pathwise existence of GVV-entropy solutions):
Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies the regularity Assumption

28

For a compound flux discontinuity, the vanishing viscosity problem is defined completely similar to the one with a sole

discontinuity. We refer to Equation (3.21) and Definition 3.35 for the details.
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4.30. Furthermore, let u0 ∈ Lq
(
Ω;Lp(X;R)

)
be a random initial condition to Problem (4.1) and let the

flux function f satisfy the compound-flux-discontinuity Assumption 4.14 and the genuine nonlinearity
Assumption 4.18. For a fixed stochastic parameter ω ∈ Ω, let {uη}η>0 be a sequence of solutions to the
random vanishing viscosity problem

∂tu
η + divx f(ω, x, u

η) = η∆uη , (4.12)

which is bounded in L∞(XT;R) and satisfies uη
∣∣
t=0

= uη0 and uη0 → u0 in L1
loc.

Then, for vanishing viscosity η ↘ 0, the sequence {uη}η>0 of solutions converges almost everywhere on XT
to the unique pathwise GVV(ω)-entropy solution of the scalar conservation law given by Equation (4.1).

4.3.2 Random G-entropy functionals

In this section, we discuss the random G-entropy functionals for the scalar conservation law given by

Equation (4.1), which has a random compound flux discontinuity. Recall that these functionals are a tool

of major importance for showing the measurability of random G-entropy solutions, since they allow us

to measure, whether a function ν ∈ L∞(T× X;R) is satisfying the Kružkov entropy condition.

The underlying ideas and the particular construction of these functionals were extensively discussed in

Section 3.3.2 for the sole flux discontinuity setting. While the ideas and the conceptional construction

of random G-entropy functionals are completely similar in the sole discontinuity setting and the

compound flux discontinuity case, the particular definition needs to be adapted to the generalized

adapted Kružkov entropy inequality (4.8).

Definition 4.32 (Random G-entropy functional):
Let the following requirements be satisfied:

▶ Let u0 ∈ Lq
(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, be a random initial condition to

Problem (4.1).

▶ Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies Assumption 4.4 on the
existence of a partition CD = {CκD}κ∈N, which itself satisfies the local finiteness Assumption 4.5.

▶ Let
{
XsT
}
s∈N be a family of space-time parts that satisfy the local finiteness Assumption 4.10.

▶ Let f be a flux function that satisfies the compound-flux-discontinuity Assumption 4.14 and the
genuine nonlinearity Assumption 4.18.

▶ Let {Gκ}κ∈N be a family of random admissibility germs associated to the flux function f, which
satisfies the joint measurability Assumption 4.17.

▶ Let {Rκ
G}κ∈N be a remainder function associated to the family of germs {Gκ}κ∈N that satisfies the

joint measurability Assumption 4.23.

Furthermore, let a Kružkov entropy sequence k ∈ R≤N and a nonnegative test function ψ ∈ D(T× X;R)
be fixed. Then, we define the random G-entropy functional Jkψ associated to Problem (4.1) as a mapping
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Jkψ : Ω× L∞(T× X;R) → R given by

(ω, ν) 7→
∫
T

∫
X

∣∣ν(t,x)− k(ω, t,x)
∣∣∂tψ(t,x) dx dt (4.13a)

+

∫
T

∫
X

q
(
ω, t,x; ν(t,x), k(ω, t,x)

)
· ∇x ψ(t,x) dx dt (4.13b)

−
∫
X

∣∣u0(ω,x)− k(ω, 0,x)
∣∣ψ(0,x) dx (4.13c)

+
∑
κ∈N

∫
CκD(ω)

Rκ
G

(
ω,d; sk(ω, κ,k)

)
ψ(d) dd . (4.13d)

Here, k denotes the adapted Kružkov entropy associated to the entropy sequence k as defined in Definition
4.20 and q denotes the Kružkov entropy flux introduced in Definition 4.21. Furthermore, sk is the selection
function for the Kružkov entropy sequence as in Definition 4.24.

The remainder of this section is devoted to showing two results: First, we show that the entropy

functional is Carathéodory in the sense that it is measurable in the stochastic parameter ω ∈ Ω and

continuous in the function ν ∈ L∞(T×X;R). Afterwards, we show that the entropy functional depends

continuously on the Kružkov entropy sequence k ∈ R≤N
.

Theorem 4.33 (Entropy functional is Carathéodory):
Let the following conditions be satisfied:

▶ Let u0 ∈ Lq
(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, be a random initial condition to

Problem (4.1).

▶ Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies the stochastic measurability
Assumption 4.3 and Assumption 4.4 on the existence of a partition up to a null set CD = {CκD}κ∈N,
which itself satisfies the local finiteness Assumption 4.5.

▶ Let the family
{
XsT
}
s∈N of space-time parts satisfy the local finiteness Assumption 4.10.

▶ Let f be a flux function that satisfies the compound-flux-discontinuity Assumption 4.14, the genuine
nonlinearity Assumption 4.18 and the stochastic measurability Assumption 4.27.

▶ Let {Gκ}κ∈N be a family of L1D germs satisfying the joint measurability Assumption 4.17.

▶ Let {Rκ
G}κ∈N be a remainder function associated to the family of germs {Gκ}κ∈N that satisfies the

joint measurability Assumption 4.23.

Furthermore, let a Kružkov entropy sequence k ∈ R≤N and a nonnegative test function ψ ∈ D(T× X;R)
be fixed. Then, the random G-entropy functional Jkψ is Carathéodory, i.e., it is measurable in ω ∈ Ω and
continuous in the function ν ∈ L∞(T× X;R).

Proof. Many arguments of proving that the random G-entropy functional is Carathéodory are

analogous to the similar result for a sole flux discontinuity, which was stated and proven in Theorem

3.45. To account for this similarity of the proofs, we do not provide all the details, but highlight the
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main differences of the two proofs. Therefore, the stochastic measurability of Jkψ and the continuous

dependence of the random G-entropy functional on ν ∈ L∞(T× X;R) are considered separately.

Continuity in ν ∈ L∞(T × X;R). Let ω ∈ Ω be fixed. Proving that the random G-entropy

functional Jkψ depends continuously on the function ν ∈ L∞(T × X;R) is completely analogous to

the sole discontinuity case: The continuity of the Terms (4.13a), (4.13c) and (4.13d) is obvious and the

continuous dependence of Integral (4.13b) follows from a case study analogous to Proposition 3.44. For

the details, we refer to the proof of Proposition 3.44.

Measurability in ω ∈ Ω. Let a function ν ∈ L∞(T × X;R) be fixed. Recall that the adapted

Kružkov entropy k associated to the sequence k ∈ R≤N
is measurable in ω ∈ Ω by Proposition 4.26.

Thereby, the integrand of the Integral (4.13a) is stochastically measurable. Since the test function ψ is

compactly supported, we can restrict the integral to suppψ. Due to this compactness of the support

suppψ, taking the integral is a bounded linear operator. Thus, the integration is a continuous operation.

Consequently, this shows the stochastic measurability of Integral (4.13a), since the composition of a

continuous operation and a measurable function is again measurable [5, Lemma 4.22].

A similar argument yields the stochastic measurability of Integral (4.13c): Since the initial condition u0
is stochastically measurable by the hypothesis u0 ∈ Lq

(
Ω;Lp(X;R)

)
and the adapted Kružkov entropy

k associated to the sequence k ∈ R≤N
is measurable by Proposition 4.26, the integrand of Term (4.13c) is

measurable in the stochastic parameter ω ∈ Ω. Restricting the integral domain to the compact support

of the test function ψ proves the measurability of Integral (4.13c).

Stochastic measurability of (4.13b). To show the stochastic measurability of the Integral (4.13b),

recall that by Convention (4.3) we have defined the space-time parts XsT(ω) to satisfy XsT(ω) = ∅ if

the index s ∈ N exceeds the (random) number of domain parts, i.e., s > NXT(ω). This allows us to

reformulate Term (4.13b) as∫
T

∫
X

q
(
ω, t,x; ν(t,x),k(ω, t,x)

)
· ∇x ψ(t,x) dx dt

=
∑
s∈N

∫
XsT(ω)

qs
(
ω, x, ν(x), k(ω, x)

)
· ∇x ψ(x) dx .

(4.14)

Here, we divided the integral over the space-time domain XT = T × X into a sum over the domain

parts XsT(ω) resulting from the random compound flux discontinuity D(ω). Additionally, we replaced

the tuple (t,x) ∈ XT by the generic space-time variable x ∈ XT. However, each integral in the sum of

Equation (4.14) can be written as∫
XsT(ω)

qs
(
ω, x, ν(x), k(ω, x)

)
·∇x ψ(x) dx =

∫
XT

(
qs
(
ω, x, ν(x), k(ω, x)

)
1XsT

(ω, x)
)
·∇x ψ(x) dx , (4.15)

where1XsT
denotes the indicator function of the space-time partXsT. By Lemma 4.13, the indicator function

1XsT
is separately measurable. Recall that by Proposition 4.28 the entropy fluxes qs are Carathéodory in

the sense that they are measurable in the stochastic parameter ω ∈ Ω and continuous in all remaining

arguments. In particular, this means that the entropy flux functions qs are jointly measurable by [5,

Lemma 4.51]. Since the adapted Kružkov entropy k is stochastically measurable by Proposition 4.26, the

integrand of Equation (4.15) is measurable. By restricting the integral domain on the right-hand side of
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Equation (4.15) to the compact support of the test function ψ ∈ D(XT;R), we can write the Integral

(4.13b) as ∫
T

∫
X

q
(
ω, t,x;ν(t,x), k(ω, t,x)

)
· ∇x ψ(t,x) dx dt

=
∑
s∈N

∫
suppψ

(
qs
(
ω, x, ν(x), k(ω, x)

)
1XsT

(ω, x)
)
· ∇x ψ(x) dx .

Since the support of the test function ψ is compact, each integral is measurable as the composition of a

continuous operation with a measurable function by [5, Lemma 4.22]. Leveraging the compact support

of the test function ψ, the local finiteness Assumption 4.10 on the domain parts guarantees that the sum

contains finitely many nonzero values. This proves that the Integral (4.13b) is stochastically measurable

because the finite sum of random variables is again a random variable and thus measurable.

Stochastic measurability of (4.13d). It remains to prove the stochastic measurability of the sum

of integrals in Term (4.13d). By Remark 3.30, we can identify the differential dd with the d-dimensional

Hausdorff measure Hd
, which yields

∑
κ∈N

∫
CκD(ω)

Rκ
G

(
ω,d; sk(ω, κ,k)

)
ψ(d) dd =

∑
κ∈N

∫
CκD(ω)

Rκ
G

(
ω,d; sk(ω, κ,k)

)
ψ(d) dHd(d) . (4.16)

Here, the integral domain CκD(ω) is the κ-th part of the partition up to a null set CD(ω) of the random

compound flux discontinuity D(ω). This partition CD exists due to Assumption 4.4.

By the measurability Assumption 4.17, the family {Gκ}κ∈N of admissibility germs is jointly measurable

in the sense that each germ Gκ : Ω× XT ⇒ R2
is jointly measurable. Therefore, also each remainder

function Rκ
G is jointly measurable by Assumption 4.23. Furthermore, the Assumption 4.8 on the existence

of a parametrization of the partition up to a null set implies that, for every index κ ∈ N, the partition

part CκD is separately measurable. On the other hand, this stochastic measurability of the partition

part CκD implies by the construction of the selection function sk of the Kružkov entropy sequence in

Definition 4.24 that the function sk is measurable in the stochastic parameter ω ∈ Ω. Consequently, we

have established the stochastic measurability of the integrands in Equation (4.16).

Now, for the partition up to a null set CD, Assumption 4.8 guarantees the existence of a parametrization

P CκD
: Ω × T × Rd−1 → T × X of the partition part CκD. Since the selection function sk does not

depend on the spatio-temporal point x ∈ XT, we can use an analogous argumentation as in the proof of

Proposition 3.43 to show that each integral is stochastically measurable.

Finally, due to the locally finiteness Assumption 4.5 on the partition CD, the sum over κ ∈ N consists of

only finitely many terms, which are nonzero. This follows directly from the fact that only finitely many

partition parts CκD intersect with the compact support of the test function ψ. However, a finite sum of

random variables is again a random variable and thus in particular measurable, which concludes the

stochastic measurability of Term (4.13d).

Combining the measurability result of the random G-entropy functional Jkψ with respect to the stochastic

parameter ω ∈ Ω and its continuous dependence on the function ν ∈ L∞(T× X;R), we have proven

the assertion that the random G-entropy functional Jkψ is Carathéodory. ■
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With the preceeding result that the random G-entropy functional Jkψ is Carathéodory, it remains to

show the continuous dependence of Jkψ on the Kružkov entropy sequence k ∈ R≤N
to complete this

section on entropy functionals. Before we move on to the corresponding result, recall that the pathwise

existence result of GVV-entropy solutions requires the sequence {uη}η>0 of solutions to the vanishing

viscosity problem (4.12) to be uniformly bounded in L∞(XT;R). Also, if a random G-entropy solution

is confined to an interval U = [u, u] ⊂ R, it is sufficient to consider the Kružkov entropy k ∈ R to be an

element of this interval, i.e., it suffices to have k ∈ U. This can easily be seen, since the two functions

u ≡ u and u ≡ u are sub- and supersolutions to the scalar conservation law, Problem (4.1), respectively.

Therefore, analogously to considering k ∈ U2
in the sole discontinuity case, it appears most naturally

to require the sequence k ∈ R≤N
of Kružkov entropy values to be bounded in the sense that it satisfies

k ∈ ℓ∞(U). To achieve this boundedness of the Kružkov entropy sequence, we impose the following

assumption.

Assumption 4.34 (Boundedness of entropy sequence):
We assume that one of the following two conditions is satisfied, which both lead to the Kružkov entropy
sequence being a bounded sequence k ∈ ℓ∞(R):

(i) For every stochastic parameter ω ∈ Ω, the random compound flux discontinuity D(ω) divides the
space-time domain XT in finitely many domain parts XsT(ω).

(ii) For every stochastic parameter ω ∈ Ω, the random G-entropy solution is confined to a deterministic
interval U ⊂ R (e.g., via the confinement Assumption 3.38).

For the first condition, we can identify the finite entropy sequence k =
{
ki
}NXT (ω)

i=1 with the sequence

k =
{
ki
}
i∈N such that ki = 0, if i > NXT(ω). Thereby, we obtain k ∈ ℓ∞(R). For the second condition,

the boundedness of the Kružkov entropy sequence k ∈ ℓ∞(R) is obvious. Another nice consequence of

this boundedness Assumption 4.34 is the availability of the continuous norm ∥·∥ℓ∞(R) of the sequence

space ℓ∞(R) rather than having to work with the (product) topology of the space R≤N
, which does not

admit any continuous norm.

As in the sole discontinuity setting, we also need to impose an integrability assumption on the family

{Rκ
G}κ∈N, since otherwise there is no hope for showing continuous dependence of the random G-

entropy functional Jkψ on the Kružkov entropy sequence k ∈ ℓ∞(R). Recall that the remainder function

RG can take various forms, which might depend on the underlying flux function f. Therefore, this

assumption is a simplifying one, since we do not impose a specific form of the remainder function RG.

However, the assumption is verified for particular choices of the remainder function in Appendix A.

Assumption 4.35 (Integrability of family of remainder functions):
Let {Gκ}κ∈N be a family of random admissibility germs and let {Rκ

G}κ∈N be the associated family of
remainder functions. For any index κ ∈ N, we assume that the function Rκ

G satisfies that for each compact
set K ⊂ R2 and fixed stochastic parameter ω ∈ Ω, the function

MR
κ,K(ω, x) := sup

k∈K
|Rκ

G(ω, x;k)|

is locally Lebesgue integrable in the sense that MR
κ,K(ω, ·) ∈ L1

loc(XT;R).
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With this boundedness Assumption 4.34 and the integrability Assumption 4.35 at hand, we can now

argue that the random G-entropy functional Jkψ depends continuously on the Kružkov entropy sequence

k ∈ ℓ∞(R). Showing this result in the subsequent theorem concludes the section on random G-entropy

functionals.

Theorem 4.36 (Entropy functional depends continuously on entropy sequence):
Let the following requirements be satisfied:

▶ Let u0 ∈ Lq
(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, be a random initial condition to

Problem (4.1).

▶ Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies Assumption 4.4 on the
existence of a partition CD = {CκD}κ∈N, which itself satisfies the local finiteness Assumption 4.5.

▶ Let the family
{
XsT
}
s∈N of domain parts satisfy the local finiteness Assumption 4.10.

▶ Let the boundedness Assumption 4.34 on the Kružkov entropy sequence k ∈ ℓ∞(R) be satisfied.

▶ Let the flux function f satisfy the compound-flux-discontinuity Assumption 4.14, the genuine nonlin-
earity Assumption 4.18 and the measurability Assumption 4.27.

▶ Let {Gκ}κ∈N be a family of L1D germs satisfying the joint measurability Assumption 4.17.

▶ Let {Rκ
G}κ∈N be a family of remainder functions associated to the germs {Gκ}κ∈N that satisfies the

joint measurability Assumption 4.23 and the integrability Assumption 4.35.

Furthermore, let the parameter ω ∈ Ω, a nonnegative test function ψ ∈ D(T × X;R) and a function
ν ∈ L∞(T × X;R) be fixed. Then, the random G-entropy functional Jkψ depends continuously on the
Kružkov entropy sequence k ∈ ℓ∞(R).

Proof. Let the stochastic parameter ω ∈ Ω, a nonnegative test function ψ ∈ D(T × X;R) and a

function ν ∈ L∞(T× X;R) be fixed. We show the continuous dependence of the random G-entropy

functional Jkψ on the Kružkov entropy sequence k ∈ ℓ∞(R) by considering each term of the mapping

(4.13) separately. Therefore, let k, c ∈ ℓ∞(R) be two Kružkov entropy sequences and denote by k, c the

corresponding adapted Kružkov entropies as defined in Definition 4.20.

Continuous dependence of Integral (4.13a). For the first integral of the random G-entropy

functional definition, given by Term (4.13a), we can do the following estimation:∣∣∣ ∫
XT

∣∣ν(x)− k(ω, x)
∣∣∂tψ(x) dx− ∫

XT

∣∣ν(x)− c(ω, x)
∣∣∂tψ(x) dx∣∣∣

=
∣∣∣ ∫

XT

(∣∣ν(x)− k(ω, x)
∣∣− ∣∣ν(x)− c(ω, x)

∣∣)∂tψ(x) dx∣∣∣
≤
∫
XT

∣∣∣∣∣ν(x)− k(ω, x)
∣∣− ∣∣ν(x)− c(ω, x)

∣∣∣∣∣∣∣∂tψ(x)∣∣ dx .
Applying the reverse triangle inequality to the integrand of this estimation and noting that the adapted

Kružkov entropies k, c satisfy |k(ω, x)− c(ω, x)| ≤ ∥k − c∥∞ for every space-time point x ∈ XT, we
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can further estimate∣∣∣ ∫
XT

∣∣ν(x)− k(ω, x)
∣∣∂tψ(x) dx− ∫

XT

∣∣ν(x)− c(ω, x)
∣∣∂tψ(x) dx∣∣∣ ≤ ∫

XT

∣∣c(ω, x)− k(ω, x)
∣∣|∂tψ(x)| dx

≤
∫
XT

∥k − c∥∞|∂tψ(x)| dx .

Since the test function ψ ∈ D(XT;R) is smooth and compactly supported, its time derivative ∂tψ is

bounded. Therefore, we can conclude∣∣∣ ∫
XT

∣∣ν(x)− k(ω, x)
∣∣∂tψ(x) dx− ∫

XT

∣∣ν(x)− c(ω, x)
∣∣∂tψ(x) dx∣∣∣ ≤ Cψ∥k − c∥∞ ,

which proves the continuous dependence of Integral (4.13a) on the sequence k ∈ ℓ∞(R).

Continuous dependence of Integral (4.13b). We continue by showing the continuous dependence

of Integral (4.13b) on the Kružkov entropy sequence k ∈ ℓ∞(R). Due to the locally finiteness Assumption

4.10 on the domain parts

{
XsT(ω)

}
s∈N, this family is countable. Recall that Convention (4.3) yields

XsT(ω) = ∅, if s > NXT(ω). This allows us to split the integral over the whole space-time domain XT
into the individual integrals over each space-time part XsT(ω):∫

XT

q
(
ω, x; ν(x), k(ω, x)

)
· ∇x ψ(x) dx =

∑
s∈N

∫
XsT(ω)

qs
(
ω, x; ν(x), k(ω, x)

)
· ∇x ψ(x) dx .

With this representation of the integral, we can consider the difference between the above term cor-

responding to the two entropy sequences k, c ∈ ℓ∞(R) by applying first Hölder’s inequality and the

Cauchy-Schwarz-Bunyakovsky inequality thereafter to obtain∣∣∣∑
s∈N

∫
XsT(ω)

qs
(
ω, x;ν(x), k(ω, x)

)
· ∇x ψ(x) dx−

∑
s∈N

∫
XsT(ω)

qs
(
ω, x; ν(x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣
≤
∑
s∈N

∫
XsT(ω)

∥∥∥qs(ω, x; ν(x), k(ω, x))− qs
(
ω, x; ν(x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx .

For any stochastic parameter ω ∈ Ω and any space-time part index s ∈ N, we can now introduce four

sets
sD(·)(ω) that depend on the terms sign

(
ν(x)− k(ω, x)

)
and sign

(
ν(x)− c(ω, x)

)
for space-time

variable x ∈ XsT(ω) as

sD=(ω) :=
{
x ∈ XsT(ω) | sign

(
ν(x)− k(ω, x)

)
= sign

(
ν(x)− c(ω, x)

)}
,

sD±(ω) :=
{
x ∈ XsT(ω) | sign

(
ν(x)− k(ω, x)

)
= − sign

(
ν(x)− c(ω, x)

)}
,

sDνk(ω) :=
{
x ∈ XsT(ω) | ν(x) = k(ω, x)

}
,

sDνc (ω) :=
{
x ∈ XsT(ω) | ν(x) = c(ω, x)

}
.

With these sets, we are able to split up the integration over the space-time domain parts XsT(ω) even

further. Even though these sets are not necessarily disjoint, note that the entropy flux function qs

vanishes on the intersection, which is given by

sD=(ω) ∩ sD±(ω) ∩ sDνk(ω) ∩ sDνc (ω) =
{
x ∈ XsT(ω) | k(ω, x) = ν(x) = c(ω, x)

}
.

We continue our investigation by splitting up the integral over the space-time domain parts by employing
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the four sets, we just introduced. As a result, we obtain the following estimation∣∣∣∑
s∈N

∫
XsT(ω)

qs
(
ω, x;ν(x), k(ω, x)

)
· ∇x ψ(x) dx−

∑
s∈N

∫
XsT(ω)

qs
(
ω, x; ν(x), c(ω, x)

)
· ∇x ψ(x) dx

∣∣∣
≤
∑
s∈N

( ∫
sD=(ω)

∥∥∥ sQν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx (4.17a)

+

∫
sD±(ω)

∥∥∥ sQν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx (4.17b)

+

∫
sDνk(ω)

∥∥∥ sQν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx (4.17c)

+

∫
sDνc (ω)

∥∥∥ sQν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx
)
. (4.17d)

As in the proof of Theorem 3.47, we employ a function
sQν

ω,x that describes the difference of the two

entropy flux functions via the mapping

sQν
ω,x(k, c) := qs

(
ω, x; ν(x), k(ω, x)

)
− qs

(
ω, x; ν(x), c(ω, x)

)
.

To proceed with the estimation, the four integrals in Inequality (4.17) are considered separately:

Continuous dependence of Integral (4.17a). With the definitions of the function
sQν

ω,x and the

entropy flux function qs, the definition of the integral set
sD=(ω) leads to the estimation∫

sD=(ω)

∥∥∥ sQν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx

≤
∫

sD=(ω)

∥∥∥fs(ω, x, c(ω, x))− fs
(
ω, x, k(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx .

Due to Assumption (C-2), the flux function fs is locally Lipschitz continuous. Furthermore, for any

space-time point x ∈ XT, the adapted Kružkov entropies k, c satisfy |k(ω, x)− c(ω, x)| ≤ ∥k − c∥∞.

This already concludes the continuous dependence of Integral (4.17a) on the Kružkov entropy sequence

k ∈ ℓ∞(R), since we obtain the following estimation:∫
sD=(ω)

∥∥∥ sQν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx ≤ Lfs∥k − c∥∞

∫
sD=(ω)

∥∥∇x ψ(x)
∥∥
d
dx

≤ CψLfs∥k − c∥∞ .

Here, the last estimation is possible, since the test function ψ is smooth and compactly supported, which

implies that its gradient ∇x ψ is bounded.

Continuous dependence of Integral (4.17b). To show the continuous dependence of Integral

(4.17b), we exploit the definitions of the function
sQν

ω,x and the entropy flux function qs. Thereby, with

the definition of the integral set
sD±(ω) we can establish the estimation∫

sD±(ω)

∥∥∥ sQν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx

≤
∫

sD±(ω)

∥∥∥2fs(ω, x, ν(x))− fs
(
ω, x, k(ω, x)

)
− fs

(
ω, x, c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx .
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With the triangle inequality and the local Lipschitz property of the flux function fs, which is ensured by

Assumption (C-2), this can be further estimated to obtain∫
sD±(ω)

∥∥∥ sQν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx

≤ Lfs

∫
sD±(ω)

(∣∣ν(x)− k(ω, x)
∣∣+ ∣∣ν(x)− c(ω, x)

∣∣) ∥∥∇x ψ(x)
∥∥
d
dx .

For any two scalar values ξ1, ξ2 ∈ R, the identity |ξ1 − ξ2| = sign(ξ1 − ξ2)(ξ1 − ξ2) holds. Combining

this identity with the construction of the set
sD±(ω) allows us to further estimate∫

sD±(ω)

∥∥∥ sQν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx

≤ Lf

∫
sD±(ω)

∣∣∣ sign (ν(x)− k(ω, x)
)(
c(ω, x)− k(ω, x)

)∣∣∣ ∥∥∥∇x ψ(x)
∥∥∥
d
dx .

Recall that the adapted Kružkov entropies k, c satisfy |k(ω, x)− c(ω, x)| ≤ ∥k − c∥∞ for every space-

time point x ∈ XT. Furthermore, the gradient of the test function ∇x ψ is compactly supported and

bounded. Thus, we obtain the estimation∫
sD±(ω)

∥∥∥ sQν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx ≤ CψLfs∥k − c∥∞ ,

which means that the Integral (4.17b) depends continuously on the sequence k ∈ ℓ∞(R).

Continuous dependence of Integral (4.17c). To show the continuous dependence of Integral

(4.17c), we start again by exploiting the definitions of
sQν

ω,x and qs. Combined with the definition of the

set
sDνk(ω), which guarantees ν(x) = k(ω, x) for every point x ∈ sDνk(ω), this leads to the estimation∫

sDνk(ω)

∥∥∥ sQν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx

≤
∫

sDνk(ω)

∥∥∥fs(ω, x, k(ω, x))− fs
(
ω, x, c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx .

With the local Lipschitz continuity Assumption (C-2) on the flux function fs and the boundedness of the

gradient of the test function ∇x ψ, we can conclude∫
sDνk(ω)

∥∥∥ sQν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx ≤ CψLfs∥k − c∥∞ .

Here, we also used the fact that, for every space-time point x ∈ XT, the adapted Kružkov entropies k, c

satisfy |k(ω, x)− c(ω, x)| ≤ ∥k − c∥∞.

Continuous dependence of Integral (4.17d). Proving the continuous dependence of the Integral

(4.17d) on k ∈ ℓ∞(R) is analogous to the estimation of Integral (4.17c). Ultimately, this calculation yields∫
sDνc (ω)

∥∥∥ sQν
ω,x

(
k(ω, x), c(ω, x)

)∥∥∥
d

∥∥∇x ψ(x)
∥∥
d
dx ≤ CψLf

∥∥∥c− k
∥∥∥
∞
,

which implies the sought continuous dependence result.
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Combining the estimations of the four Integrals (4.17a), (4.17b), (4.17c) and (4.17d) shows that the integrals

in Inequality (4.17) depend continuously on the entropy sequence k ∈ ℓ∞(R). Furthermore, the

summation over the index s ∈ N consists of finitely many nonzero terms due to the local finiteness

Assumption 4.10 on the family of domain parts

{
XsT
}
s∈N and the compact support of the test function

ψ. Therefore, the Integral (4.13b) depends continuously on the entropy sequence k ∈ ℓ∞(R).

Continuous dependence of Integral (4.13c). Proving continuous dependence of Integral (4.13c)

is analogous to showing continuity of Integral (4.13a). Therefore, we estimate∣∣∣ ∫
X

∣∣u0(x)− k(ω, 0,x)
∣∣ψ(0,x) dx−

∫
X

∣∣u0(x)− c(ω, 0,x)
∣∣ψ(0,x) dx∣∣∣

=
∣∣∣ ∫

X

(∣∣u0(x)− k(ω, 0,x)
∣∣− ∣∣u0(x)− c(ω, 0,x)

∣∣)ψ(0,x) dx∣∣∣
≤
∫
X

∣∣∣∣∣u0(x)− k(ω, 0,x)
∣∣− ∣∣u0(x)− c(ω, 0,x)

∣∣∣∣∣∣∣ψ(0,x)∣∣ dx .
Applying the reverse triangle inequality and noting that the adapted Kružkov entropies k, c satisfy

|k(ω, x)− c(ω, x)| ≤ ∥k − c∥∞ for every x ∈ XT, we can further estimate∣∣∣ ∫
X

∣∣u0(x)− k(ω, 0,x)
∣∣ψ(0,x) dx−

∫
X

∣∣u0(x)− c(ω, 0,x)
∣∣ψ(0,x) dx∣∣∣

=

∫
X
∥k − c∥∞|∂tψ| dx

= Cψ∥k − c∥∞ .

Here, in the last estimation, we used the boundedness of ψ due to its continuity and compact support.

Thus, this proves the continuous dependence of Integral (4.13c).

Continuous dependence of Term (4.13d). At this point, it remains to show continuous dependence

of Term (4.13d) on the Kružkov entropy sequence k ∈ ℓ∞(R). Recall that CD = {CκD}κ∈N denotes a

partition up to a null set of the random compound flux discontinuity D : Ω ⇒ XT. By the integrability

Assumption 4.35 on the family of remainder functions {Rκ
G}κ∈N, for each κ ∈ N and every ω ∈ Ω, there

exists a function MR
κ,K ∈ L1

loc(XT;R) dominating Rκ
G. This leads to the estimation:

∑
κ∈N

∫
CκD(ω)

Rκ
G

(
ω,d; sk(ω, κ,k)

)
ψ(d) dd ≤

∑
κ∈N

∫
CκD(ω)

MR
κ,K(ω,d)ψ(d) dd . (4.18)

Now, each integral on the right-hand side of Estimation (4.18) is finite, since the test function ψ ∈
D(XT;R) is compactly supported and each function MR

κ,K ∈ L1
loc(XT;R) is locally integrable. Addi-

tionally, by the local finiteness Assumption 4.5, the partition up to a null set CD(ω) is locally finite in

the sense that any compact set intersects only with finitely many partition parts CκD(ω). Therefore, the

summation contains only finitely many partition parts CκD(ω), which intersect with the compact support

of the test function ψ ∈ D(XT;R). Consequently, the sum is over finitely many terms and therefore

also finite. Thereby, we can apply the dominated convergence theorem to deduce that the term (4.13d)

depends continuously on the Kružkov entropy sequence k ∈ ℓ∞(R).

Combining the previous investigations, we have shown that the entropy functional Jkψ depends continu-

ously on the entropy sequence k ∈ ℓ∞(R). ■
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4.3.3 Measurability of random entropy solutions

With the random G-entropy functionals and their properties at hand, we can now turn to investigating

whether random G-entropy solutions are (strongly) measurable. To show this measurability, it is natural

to demand the pathwise existence and uniqueness of such solutions. Analogously to the discussion of

measurability in Chapter 3, we want to avoid specific assumptions that are only necessary for particular

choices of admissibility germs. Also, for being able to show strong measurability, we need the random

G-entropy solutions to take values of a separable subspace S ⊂ L∞(XT;R) only. To achieve this

separability and avoiding assumptions that are not necessary in general, we impose the following

assumption on the pathwise existence and uniqueness of G-entropy solutions.

Assumption 4.37 (Pathwise existence of unique G-entropy solution):
For every stochastic parameter ω ∈ Ω, there exists a unique G-entropy solution to the random scalar
conservation law given by Equation (4.1) in the sense of Definitions 4.19 and 4.25. Furthermore, the pathwise
G-entropy solution u(ω, ·, ·) is assumed to be separably-valued, i.e., the function u(ω, ·, ·) only takes values
in a separable subspace S ⊂ L∞(XT;R).

Let us note that this assumption is completely analogous to the one in Chapter 3 for sole flux disconti-

nuities. While assuming that the random G-entropy solution is separably-valued might seem restrictive,

such separability is most natural in many situations. We refer to Example 3.49 for details.

We have now gathered every ingredient that we need to show strong measurability of the random

G-entropy solution to Problem (4.1). This result allows us to interpret the G-entropy solution u as an

S-valued Bochner-integrable random variable.

Theorem 4.38 (Measurability of random G-entropy solutions):
Suppose the following requirements are satisfied:

▶ Let u0 ∈ Lq
(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞ be a random initial condition to

Problem (4.1).

▶ Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies the measurability Assump-
tion 4.3 and the Assumption 4.4 on the existence of a partition up to a null set CD = {CκD}κ∈N, which
itself satisfies the local finiteness Assumption 4.5.

▶ Let the family
{
XsT
}
s∈N of domain parts satisfy the local finiteness Assumption 4.10.

▶ Let the Kružkov entropy sequence k ∈ ℓ∞(R) satisfy the boundedness Assumption 4.34.

▶ Let the flux function f satisfy the compound-flux-discontinuity Assumption 4.14, the genuine nonlin-
earity Assumption 4.18 and the measurability Assumption 4.27.

▶ Let {Gκ}κ∈N be a family of L1D germs satisfying the joint measurability Assumption 4.17.

▶ Let {Rκ
G}κ∈N be a family of remainder functions associated to {Gκ}κ∈N that satisfies the joint

measurability Assumption 4.23 and the integrability Assumption 4.35.

▶ Let the pathwise existence and uniqueness Assumption 4.37 of a S-valued G-entropy solution u be
satisfied.

Then, the pathwise G-entropy solution u to Problem (4.1) is strongly measurable in the sense that the
mapping u : Ω → S is strongly measurable.
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Proof. The proof ideas are analogous to the measurability result of Theorem 3.50. Therefore, we

summarize the main ideas and highlight the differences in the argumentation.

Let DN be the separable subspace of C∞(R>0 × Rd;R≥0) consisting of functions ψ, whose support is

contained in [0, N ]× BN (0Rd). Then, with a basis (ψiN , i ∈ N) of DN , for fixed indices i,N ∈ N and

a fixed Kružkov entropy sequence k = {ks}∞s=1 ⊂ R, we can defined the modified entropy functional
Jki,N : Ω× S → R via the mapping

(ω, ν) 7→
∫
T

∫
X

∣∣ν(t,x)− k(ω, t,x)
∣∣∂tψiN (t,x) dx dt

+

∫
T

∫
X

q
(
ω, t,x; ν(t,x), k(ω, t,x)

)
· ∇x ψ

i
N (t,x) dx dt

−
∫
X

∣∣u0(ω,x)− k(ω, t,x)
∣∣ψiN (0,x) dx

+
∑
κ∈N

∫
CκD(ω)

Rκ
G

(
ω,d; sk(ω, κ,k)

)
ψ(d) dd .

Here, S ⊂ L∞(XT;R) is the separable subspace that by Assumption 4.37 contains the solution u.

Additionally, k and q denote the adapted Kružkov entropy corresponding to the sequence k and

the Kružkov entropy flux, respectively. Furthermore, {Rκ
G}κ∈N is the family of remainder functions

associated to the family of germs {Gκ}κ∈N and CD(ω) = {CκD(ω)}κ∈N is the partition up to a null set of

the random compound flux discontinuity D. Now, the modified entropy functional Jki,N is Carathéodory

by Theorem 4.33.

For the Kružkov entropy sequence k ∈ ℓ∞(R) and the indices i,N ∈ N still being fixed, we can now

define the set-valued mapping

Ξk
i,N : Ω ⇒ S ω 7→

{
ν ∈ S | Jki,N (ω, ν) ≥ 0

}
.

As in the measurability Theorem 3.50, this correspondence Ξk
i,N selects all functions ν ∈ S that satisfy

the adapted entropy Condition (4.10) for a fixed entropy sequence k ∈ ℓ∞(R) and fixed indices i,N ∈ N.

Furthermore, the correspondence Ξk
i,N is measurable by Lemma 2.9. Intersecting now over the indices

i ∈ N and N ∈ N, we obtain a set-valued map Ξk : Ω ⇒ S that contains all functions ν ∈ S that satisfy

the adapted entropy Inequality (4.10) for a fixed entropy sequence k ∈ ℓ∞(R), but for all test functions

ψ ∈ D(XT;R):
Ξk : Ω ⇒ S Ξk(ω) :=

⋂
i∈N

⋂
N∈N

Ξk
i,N (ω) ω ∈ Ω .

Note, the intersection is nonempty, since we assumed the pathwise existence of a unique S-valued

G-entropy solution via Assumption 4.37, which satisfies Inequality (4.10) for all entropy sequences

k ∈ ℓ∞(R) ⊂ R≤N
by Definition 4.25. The correspondence Ξk

is measurable, since it is constructed via

the countable intersection of measurable set-valued mappings Ξk
i,N .

While the proof of Theorem 3.50 continues by intersecting over entropy pairs k ∈ Q2
and using the

density of the rational numbers Q in the real numbers R, this is not possible in our current setting:

Neither the space of rational sequences Q≤N
nor the space of bounded rational sequences ℓ∞(Q) are

countable. Therefore, we cannot intersect over the Kružkov entropy sequences to exclude functions

ν ∈ S satisfying Inequality (4.10) only for particular k ∈ ℓ∞(R). Luckily, Assumption 4.34 provides us

with two possibilities to conclude the proof:
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Finitely many domain parts. If we assume that the random compound discontinuity D : Ω ⇒ XT
divides the space-time domain in only finitely many domain parts XsT(ω), we have identified the finite

sequence k = {ks}NXT (ω)

s=1 with the sequence k =
{
k1, . . . , kNXT (ω), 0, 0, . . .

}
. Here, NXT : Ω → N

denotes the random number of space-time domain parts. However, for each stochastic parameter ω ∈ Ω,

the set QNXT (ω) is countable as a finite Cartesian product of countable sets. This allows us to construct

the correspondence

Ξ : Ω ⇒ S Ξ(ω) :=
⋂

k∈QNXT (ω)

Ξk(ω) ω ∈ Ω ,

which is measurable as a countable intersection of measurable maps. As in the above argumentation, the

pathwise existence and uniqueness Assumption 4.37 guarantees that the set-valued map Ξ is nonempty

for every stochastic parameter ω ∈ Ω. This is due to the solution u ∈ S satisfying the adapted entropy

Inequality (4.10) for every Kružkov entropy sequence k ∈ R≤N
. Furthermore, this correspondence Ξ

contains all functions ν ∈ S that satisfy the adapted entropy Inequality (4.10) for any test function

ψ ∈ D(XT;R) and any k ∈ QNXT (ω).

Focusing on the adapted entropy Inequality (4.10), note that the values ks do not contribute for indices

s > NXT(ω): Due to the construction of the adapted Kružkov entropy k, the values ks are never taken

and the selection function sk does not select these values due to the condition

cl
(
Xk
T(ω)

)
∩ cl

(
Xm
T (ω)

)
∩ CκD(ω) ̸= ∅ .

Consequently, the measurable correspondence Ξ contains all functions ν ∈ S that satisfy the adapted

entropy Inequality (4.10) for any nonnegative test function ψ ∈ D(XT;R) and any Kružkov entropy

sequence k ∈ ℓ∞(Q).

Confinement assumption on solution. If we assume that the solution u is confined to an interval

U = [u, u] ⊂ R, it is sufficient to have k ∈ ℓ∞(U), since the functions u(ω, x) ≡ u and u(ω, x) ≡ u are

a sub- and supersolution, respectively. Now, for a finite number i ∈ N, define the set ki:∞ consisting of

sequences c ∈ ℓ∞(U), which are identical to the fixed Kružkov entropy sequence k ∈ ℓ∞(U) from the

(i+ 1)-th value onwards. For the first i values, we assume the sequence c ∈ ki:∞ to be rational. More

concisely, we define the set ki:∞ as

ki:∞ :=
{
c ∈ ℓ∞(U) | cj ∈ U ∩Q for j ∈ [1, . . . , i] and cj = kj for j > i

}
.

Since for any number i ∈ N the sets Qi
and

{
ki+1, ki+2, ki+3, . . .

}
are countable, we obtain countability

of the set ki:∞. This allows us to define the set-valued mapping

Ξk
i : Ω ⇒ S Ξk

i (ω) :=
⋂

c∈ki:∞

Ξc(ω) ω ∈ Ω ,

which is measurable as the countable intersection of measurable maps. Furthermore, the correspon-

dence Ξk
i contains all those functions ν ∈ S that satisfy the adapted entropy Inequality (4.10) for all

Kružkov entropy sequences c ∈ ki:∞. To also exclude functions ν ∈ S from the correspondence Ξk
i ,

that only satisfy the adapted entropy Inequality (4.10) for some values i ∈ N, we define the following

set-valued mapping:

Ξ : Ω ⇒ S Ξ(ω) :=
⋂
i∈N

Ξk
i (ω) ω ∈ Ω .
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128 4 Random conservation laws with a compound flux discontinuity

This set-valued map is measurable as the countable intersection of measurable maps and contains all

functions ν ∈ S satisfying the adapted entropy Inequality (4.10) for any nonnegative test function ψ

and any entropy sequence k ∈ ℓ∞(U ∩Q).

Both above argumentations lead to a measurable correspondence Ξ that contains all functions ν ∈ S
that satisfy the adapted entropy inequality for suitable rational-valued Kružkov entropy sequences.

Note that it is sufficient to only consider rational-valued entropy sequences k ∈ ℓ∞(Q) for the finite

space-time domain case and k ∈ ℓ∞(U ∩ Q) for the confined solution case: The verification of this

claim is completely analogous to the corresponding justification in the sole discontinuity setting.

In both cases, this establishes that the correspondence Ξ contains all functions ν ∈ S that satisfy the

adapted entropy Inequality (4.10) for any test function ψ ∈ D(XT;R) and any Kružkov entropy sequence

k ∈ ℓ∞(Q) and k ∈ ℓ∞(U ∩ Q), respectively. However, this is just the admissibility condition for

G-entropy solutions, which exist and are unique by Assumption 4.37. Consequently, the set-valued

mapping Ξ : Ω ⇒ S is a singleton containing only the random G-entropy solution, which is measurable

due to the measurability of the correspondence Ξ. This proves the assertion. ■

4.3.4 Existence of moments of random entropy solutions

With the strong measurability result on random G-entropy solutions to the scalar discontinuous-flux

conservation law, we have established the well-posedness of Problem (4.1). As an additional consequence,

we are able to interpret the solution as an S-valued, Bochner-integrable random variable. This allows

us to describe its statistical properties via the existence of stochastic moments. Therefore, we conclude

this Chapter on compound flux discontinuities with a discussion under which conditions the moment of

order 1 ≤ q <∞ exists. Since the main tool for arguing this existence is the L1
-contraction principle

(4.11) of random G-entropy solutions, we will assume throughout this section that the (random) initial

condition u0 is integrable. This leads to the following main theorem of this section, which is proven

completely analogous to the sole discontinuity setting. Due to the similarity of the result to Theorem

3.52, we omit its proof. Recall that Assumption 3.51 restricted the allowed flux functions to ensure that

the zero initial condition u0 ≡ 0 leads to a vanishing G-entropy solution u ≡ 0.

Theorem 4.39 (Existence of moments of G-entropy solution):
Let u0 ∈ Lq

(
Ω;L1(X;R)

)
, with 1 ≤ q <∞, be a random initial condition to the scalar conservation law,

Problem (4.1). Furthermore, let the following conditions be satisfied:

▶ Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies the measurability Assump-
tion 4.3 and Assumption 4.4 on the existence of a partition up to a null set CD = {CκD}κ∈N, which
itself satisfies the local finiteness Assumption 4.5.

▶ Let the family
{
XsT
}
s∈N of domain parts satisfy the local finiteness Assumption 4.10.

▶ Let Assumption 4.34 on the boundedness of Kružkov entropy sequences k ∈ ℓ∞(R) be satisfied.

▶ Let the flux function f satisfy the compound-flux-discontinuity Assumption 4.14, the genuine non-
linearity Assumption 4.18 and the measurability Assumption 4.27 as well as the zero-mass-creation
Assumption 3.51.

▶ Let {Gκ}κ∈N be a family of L1D germs satisfying the joint measurability Assumption 4.17.
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▶ Let {Rκ
G}κ∈N be a family of remainder functions associated to the germs {Gκ}κ∈N satisfying the

measurability Assumption 4.23 and the integrability Assumption 4.35.

▶ Let the pathwise existence and uniqueness Assumption 4.37 of a separably-valued G-entropy solution
u be satisfied.

Then, at almost every time t ∈ T, the random G-entropy solution u admits stochastic moments up to order
1 ≤ q <∞. In particular, the estimation

∥u(ω, t,x)∥Lq(Ω;L1(X;R)) ≤ ∥u0∥Lq(Ω;L1(X;R))

is satisfied for almost every time t ∈ T.

The above theorem shows that random G-entropy solutions inherit the existence of moments from the

underlying random initial condition. Since the result and argumentation are completely analogous to

the sole flux discontinuity setting of Chapter 3, we also obtain special results for the case of the initial

condition being deterministic and the compound flux discontinuities being stationary. In the latter case,

the random G-entropy solution u has a representative in the function space C
(
T;L1

loc(X;R)
)
. Due

to the similarity of the argumentation, we omit the proofs for the subsequent special results for the

existence of stochastic moments, which also conclude this chapter on compound flux discontinuities.

Corollary 4.40 (Existence of moments for deterministic initial conditions):
Let u0 ∈ L1(X) be a deterministic initial condition to Problem (4.1). Furthermore, as in Theorem 4.39, let
the following conditions be satisfied:

▶ Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies the measurability Assump-
tion 4.3 and Assumption 4.4 on the existence of a partition up to a null set CD = {CκD}κ∈N, which
itself satisfies the local finiteness Assumption 4.5.

▶ Let the family
{
XsT
}
s∈N of space-time parts satisfy the local finiteness Assumption 4.10.

▶ Let Assumption 4.34 on the boundedness of Kružkov entropy sequences k ∈ ℓ∞(R) be satisfied.

▶ Let the flux function f satisfy the compound-flux-discontinuity Assumption 4.14, the genuine non-
linearity Assumption 4.18 and the measurability Assumption 4.27 as well as the zero-mass-creation
Assumption 3.51.

▶ Let {Gκ}κ∈N be a family of L1D germs, which satisfies the joint measurability Assumption 4.17.

▶ Let {Rκ
G}κ∈N be a family of remainder functions associated to the germs {Gκ}κ∈N satisfying the

measurability Assumption 4.23 and the integrability Assumption 4.35.

▶ Let the pathwise existence and uniqueness Assumption 4.37 of a separably-valued G-entropy solution
u be satisfied.

Then, at almost every time t ∈ T, the random G-entropy solution u admits all stochastic moments of order
1 ≤ q <∞.

Theorem 4.41 (Existence of moments for stationary flux discontinuities):
Letu0 ∈ Lq

(
Ω;L1(X)

)
, with 1 ≤ q <∞, be a stochastic initial condition to the random scalar conservation

law given by Equation (4.1). Furthermore, as in Theorem 4.39, let the following requirements be satisfied:
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130 4 Random conservation laws with a compound flux discontinuity

▶ Let D : Ω ⇒ XT be a random compound flux discontinuity that satisfies the measurability Assump-
tion 4.3 and Assumption 4.4 on the existence of a partition up to a null set CD = {CκD}κ∈N, which
itself satisfies the local finiteness Assumption 4.5.

▶ Let the family
{
XsT
}
s∈N of domain parts satisfy the local finiteness Assumption 4.10.

▶ Let Assumption 4.34 on the boundedness of Kružkov entropy sequences k ∈ ℓ∞(R) be satisfied.

▶ Let the flux function f satisfy the compound-flux-discontinuity Assumption 4.14, the genuine non-
linearity Assumption 4.18 and the measurability Assumption 4.27 as well as the zero-mass-creation
Assumption 3.51.

▶ Let {Gκ}κ∈N be a family of L1D germs, which satisfies the joint measurability Assumption 4.17.

▶ Let {Rκ
G}κ∈N be a family of remainder functions associated to the germs {Gκ}κ∈N satisfying the

measurability Assumption 4.23 and the integrability Assumption 4.35.

▶ Let the pathwise existence and uniqueness Assumption 4.37 of a separably-valued G-entropy solution
u be satisfied.

Furthermore, let the compound flux discontinuity D be stationary for every stochastic parameter ω ∈ Ω,
i.e., D : Ω ⇒ X. Then, the estimation

∥u(ω, t,x)∥Lq(Ω;C(T;L1(X))) ≤ ∥u0∥Lq(Ω;L1(X;R))

holds and in particular, the random G-entropy solution u admits all stochastic moments up to order
1 ≤ q <∞.
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Numerical simulation of
random conservation laws
with a locally finite number
of flux discontinuities 5

Throughout this chapter, a problem setting is investigated, which is motivated by two-phase flow in a

heterogeneous porous medium. Considering two phases, for example oil and water, we are interested in

simulating the time evolution of the oil saturation of the porous medium. To precisely formulate the

problem, let T = [0, T ] ⊂ R≥0 be a time interval and write X ⊂ Rd for the considered spatial domain.

Denoting the unknown saturation by u := u(ω, t,x) ∈ [0, 1], this problem can be modeled by the scalar

conservation law

∂tu+ divx f(ω,x, u) = 0 in Ω× T× X ,

u(ω, 0,x) = u0(ω,x) on Ω× {0} × X .
(5.1)

Here, the initial condition u0 describes the (possibly random) saturation at the beginning of the con-

sidered time interval (at time t = 0). By construction, the initial condition u0 satisfies u0(x) ∈ [0, 1]

for every spatial point x ∈ X. Additionally, we assume that the random initial saturation satisfies

u0 ∈ Lq
(
Ω;Lp(X;R)

)
with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞. As the saturation problem occurrs in a

heterogeneous medium, the flux function f should depend discontinuously on the spatial variable x ∈ X
and is given by

f(ω,x, u) =
ko(u)

ko(u) + kw(u)

(
1− a(ω,x)kw(u)

)
. (5.2)

Here, the random jump-advection coefficient a models the absolute permeability of the porous medium

and the functionsko andkw correspond to the relative permeabilities of the two phases (phase mobilities).

As a simple model, these relative permeabilities are given as

ko(u) = u2 and kw(u) = (1− u)2 .

The considered porous medium is typically heterogeneous and consists of various layers of homogeneous

materials. Additionally, the medium may contain fractures or inclusions of other media. Therefore, the

coefficient a is modeled as a discontinuous random field. The formulated Problem (5.1), (5.2) is inspired

by the Buckley-Leverett equation [9, 44, 154], which models the displacement of two immiscible fluids

in porous media. This type of equation is employed for simulating two-phase flow problems, such as in

reservoir engineering [123, 140].
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132 5 Simulation of cons. laws with locally finite flux discontinuities

As a first step, in Section 5.1 we establish that the given problem setting corresponds to the theory

discussed in the previous chapters. Afterwards, in Section 5.2, we investigate the pathwise convergence

of entropy solutions to Problem (5.1), (5.2) to illustrate the influence of the random jump coefficient a

on the strong convergence rate.

Note that we do not investigate approximations of stochastic moments of the entropy solution u in this

chapter due to multiple reasons: The strategy for approximating the moments by means of (multilevel)

Monte Carlo methods has already been applied to scalar discontinuous-flux conservation laws in a

variety of problem settings. In particular, we want to emphasize the works of Müller et al. [214],

which discusses the multilevel Monte Carlo method for a two-phase flow in random heterogeneous

media for the Buckley-Leverett transport problem. Additionally, we want to highlight the recent work

of Badwaik et al. [22], where the one-dimensional saturation Problem (5.1), (5.2) is discussed. Since

the ideas of the multilevel Monte Carlo method remain valid for extending the one-dimensional setting

to two spatial dimensions, we omit the numerical investigation at this point.

However, we refer to Chapter 8, where we apply the MLMC method to a discontinuous-flux Burgers’

equation. There, we demonstrate the ability of pathwise discretization schemes to improve the conver-

gence behavior of the sample-based multilevel Monte Carlo method. Since the convergence is influenced

via the accuracy of pathwise approximations, Section 5.2 indicates how the MLMC method performs for

the discussed two-phase flow saturation problem.

5.1 Two-phase flow in heterogeneous porous medium

The purpose of this section is to verify the theoretical well-posedness of the considered problem. In

particular, for a specific type of random jump coefficient a, we verify the assumptions that lead to

existence and uniqueness of a G-entropy solution as well as to its stochastic measurability. Throughout

this section and the remainder of this chapter, vanishing viscosity solutions are considered, which

correspond to a random family of vanishing viscosity germs as defined in Definition 3.35. Let us briefly

motivate this choice: To a certain extent, every material in nature has viscous effects and conducts heat.

These properties correspond to viscosity terms in a considered equation and, e.g., may be caused by

capillary effects. We refer to [9] for a derivation of the vanishing viscosity approach resulting from

(vanishing) capillary pressure. In various applications, heat conductivity or viscous behavior may be

negligible, even though it is not completely absent. For a more detailed motivation for vanishing viscosity

solutions, we refer to [80, Section 4.6].

To verify the theoretical well-posedness of the two-phase flow in heterogeneous media, we first ensure

the pathwise existence and uniqueness in Section 5.1.1. Afterwards, in Section 5.1.2, it is argued that

the considered problem satisfies all assumptions leading to strong measurability of vanishing viscosity

solutions.

Before we start with the verification, some properties of the considered problem need to be specified. For

the numerical investigations, we restrict ourselves to the two-dimensional problem setting. The partition

of the spatial domain X = R2
resulting from the random jump coefficient is constructed via a random

number of affine functions. More precisely, let ND : Ω → N be a random variable describing the number

of affine functions contained in the compound flux discontinuity D. The random partition T of the jump

coefficient a is constructed via random affine functions, each determined via a uniformly distributed

x2-axis interception y ∼ U(R) and a slope described via a random angle a ∼ U
(
[0, 2π] \ {π/2, 3π/2}

)
to
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5.1 Two-phase flow in heterogeneous porous medium 133

the x1-axis
29

. The random compound flux discontinuity D is than given as the union of the graphs of

these affine function. Based on the resulting partition T of the spatial domain, the jump coefficient is

constructed by assigning a uniformly distributed random variable ai ∼ U
(
[0.1, 0.9]

)
to the associated

partition element Ti.

5.1.1 Pathwise existence and uniqueness of vanishing viscosity solutions

Based on the previously introduced constructions of the random jump coefficienta and the corresponding

discontinuity interfaces, we can now investigate the pathwise existence and uniqueness of vanishing

viscosity solutions to the two-phase flow Problem (5.1) in a heterogeneous medium. With this goal

in mind, the purpose of this section is to verify the assumptions leading to pathwise existence and

uniqueness of these solutions. The corresponding result is presented in the subsequent theorem.

Theorem 5.1 (Pathwise existence of unique solution to two-phase flow problem):
For the considered random two-phase flow in heterogeneous media, there exists a unique pathwise vanishing
viscosity solution u(ω, ·, ·) ∈ L∞(T× X;R).

Proof. The statement follows from applying the pathwise existence and uniqueness Theorems 4.29

and 4.31. To do this, the following requirements need to be guaranteed:

(i) For the random compound flux discontinuity D : Ω ⇒ XT, the family

{
XsT
}
s∈N of space-time

domain parts needs to be locally finite.

(ii) Additionally, the compound flux discontinuity D fulfills the regularity Assumption 4.30 and

Assumption 4.4 on the existence of a partition up to a null set is satisfied.

(iii) The flux function f needs to satisfy the compound-flux-discontinuity Assumption 4.14 and the

genuine nonlinearity Assumption 4.18.

(iv) Each germ in the family {Gκ}κ∈N of admissibility germs is definite.

We justify each of the above requirements separately.

Condition (i). By construction of the random jump coefficient a, the discontinuity hypersurface

D is given as the finite union of affine functions, for each stochastic parameter ω ∈ Ω. Since affine

functions are sole discontinuity hypersurfaces in the sense of Definition 3.1, the jump interface D is a

random compound discontinuity. As the number of intersection points of finitely many affine functions

is also finite, the compound discontinuity divides the domain into finitely many connected space-time

parts. Consequently, Condition (i) is satisfied.

Condition (ii). The regularity Assumption 4.30 is automatically satisfied by considering a compound

discontinuity consisting of finitely many affine functions, since each affine function is twice continuously

differentiable. As already established, the number of intersection points in the compound discontinuity is

finite. However, this immediately yields the existence of a partition up to a null set of the jump interface

D by restricting the affine functions to the subintervals between the intersection points. Therefore, we

have established Condition (ii).

29

Due to the construction of sole discontinuity hypersurfaces in Definition 3.1, we need to exclude the possibility of disconti-

nuities given by straight lines parallel to the x1-axis. However, if one needs to consider this particular case, a rotation of the

domain and problem is sufficient to admit this special setting.
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Condition (iii). To verify Condition (iii), we need to ensure that the compound-flux-discontinuity

Assumption 4.14 and the genuine nonlinearity Assumption 4.18 are satisfied. For the first one, note

that Assumption (C-1) is trivially satisfied by the definition of the flux function in Equation (5.2) in

combination with the piecewise constant construction of the random jump coefficient a. Additionally,

by the choice of the functions ko and kw , the flux function f is locally Lipschitz continuous in u ∈ [0, 1].

Finally, since the jump coefficient a is piecewise constant by constrution, the flux functions fs are

obviously globally Lipschitz continuous. Thus, we have established the compound-flux-discontinuity

Assumption 4.14. To conclude the justification of Condition (iii), note that the choice of ko and kw also

imply that the flux f is genuinely nonlinear.

Condition (iv). Due to the existence of a partition up to a null set CD, we can identify a random

family of vanishing viscosity germs. However, since each of these admissibility germs corresponds

to the standard notion of a vanishing viscosity germ in the sole discontinuity case (see Definition

3.35 and Section 3.3.1), the definiteness of Gκ was already established in the fundamental works of

Andreianov et al. [12, 13]. ■

5.1.2 Stochastic measurability of vanishing viscosity solutions

To conclude the justification that Problem (5.1) modeling two-phase flow in heterogeneous medium is

well-posed, it remains to verify that the random vanishing viscosity solutions are strongly measurable.

Therefore, the various assumptions regarding measurability need to be established, which is formalized

by the following theorem.

Theorem 5.2 (Strong measurability of solution to two-phase flow problem):
The vanishing viscosity solution u to the two-phase flow in heterogeneous porous media Problem (5.1) is
strongly measurable as a mapping u : Ω → S , where S ⊂ L∞(T × X;R) is a separable subspace of
L∞(T× X;R).

Proof. The strong measurability of the vanishing viscosity solution u is established by Theorem

4.38. To be able to apply this theorem, we need to verify the following requirements:

(i) The initial condition u0 needs to satisfy u0 ∈ Lq
(
Ω;Lp(X;R)

)
, with 1 ≤ q <∞ and 1 ≤ p ≤ ∞.

(ii) The random compound flux discontinuity D : Ω ⇒ XT has to fulfill the measurability Assump-

tion 4.3, Assumption 4.4 on the existence of a partition up to a null set and the local finiteness

Assumption 4.5. Additionally, the resulting space-time domain parts have to satisfy the local

finiteness Assumption 4.10.

(iii) The Kružkov entropy sequence needs to satisfy the boundedness Assumption 4.34.

(iv) The discontinuous flux function should fulfill the compound-flux-discontinuity Assumption 4.14,

the genuine nonlinearity Assumption 4.18 and the stochastic measurability Assumption 4.27.

(v) The family {Gκ}κ∈N of L1
D germs needs to satisfy the joint measurability Assumption 4.17.

(vi) The family of remainder functions {Rκ
G}κ∈N satisfies the joint measurability Assumption 4.23

as well as the integrability Assumption 4.35.

(vii) The random solution u(ω, ·, ·) needs to take values in a separable subspace S ⊂ L∞(T× X;R).
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Note, since the jump coefficient a does not depend on the time variable, the compound flux discontinuity

D is stationary. As a result, the random entropy solution u(ω, ·, ·) only takes values in the space

S = L∞(XT;R) ∩ C
(
T;L1

loc(X;R)
)
, which is separable by the argumentation in Example 3.49 (ii).

Therefore, Condition (vii) is satisfied. The remaining conditions are argued separately:

Condition (i). The first requirement states that the random initial saturation u0 should satisfy

u0 ∈ Lq
(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞. However, this is precisely the assumption

that we imposed on the initial condition u0 in the description of the two-phase flow problem through

heterogeneous media.

Condition (ii). The random compound flux discontinuity D is constructed via a finite (random)

number of affine functions. The existence of a partition up to a null set and its local finiteness were

already argued in the proof of Theorem 5.1. Here, also the local finiteness of the resulting space-time

domain parts was established. Therefore, it remains to show the stochastic measurability of the random

compound flux discontinuity D. First, note that the jump interface is constructed via random affine

functions, which are defined via a uniformly distributed interception point of the x2-axis and a random

angle to the x1-axis, which is also uniformly distributed. Thus, each random affine function is measurable

and consequently the random compound discontinuity is also measurable as the finite intersection of

measurable functions. As a result, Condition (ii) is satisfied.

Condition (iii). Due to the problem formulation, the solution is confined to the interval U = [0, 1],

analogously to the confinement Assumption 3.38. As a result, it is sufficient to restrict the entropy values

to this interval U = [0, 1], which is bounded. Therefore, Condition (iii) is satisfied.

Condition (iv). To establish Condition (iv), it is only necessary to show the measurability of the flux

function f, since the other requirements were already argued in Theorem 5.1. However, this immediately

follows from the measurability of the compound flux discontinuity D, as the random jump coefficient of

the flux function is constructed to be piecewise constant.

Condition (v). To verify the joint measurability Condition (v) on the family of admissibility germs

{Gκ}κ∈N, we heavily rely on the discussion of the random vanishing viscosity germs in Section 3.4.2. For

each fixed κ ∈ N, we can identify the admissibility germ Gκ with an admissibility germ corresponding to

a sole flux discontinuity. However, Theorem 3.60 states that the random families of vanishing viscosity

germs GVV is jointly measurable. Since the two-phase flow Problem (5.1) satisfies all the requirements

of Theorem 3.60, the joint measurability requirement on the family of admissibility germs is satisfied.

Condition (vi). Before we start with the verification of Condition (vi), let us stress that the flux

function f of the two-phase flow Problem (5.1) given by Equation (5.2) satisfies all requirements to

employ the remainder function Rdist
G based on the Euclidean distance. For the details on this remainder

function, we refer to Section 3.4.3. However, since by Condition (v) the random vanishing viscosity germs

are jointly measurable, we immediately obtain the joint measurability of this remainder function by

Proposition 3.62. Furthermore, the integrability Assumption 4.35 follows immediately from Proposition

3.63, since the result carries over to the compound discontinuity setting in a straightforward manner.

As a result of the previous investigations, we have verified all requirements of Theorem 4.38. Conse-

quently, the vanishing viscosity solution to the two-phase flow through heterogeneous medium Problem

(5.1) is strongly measurable. ■
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5.2 Pathwise convergence study

In this section, the pathwise convergence behavior of finite volume approximations to the entropy

solution of the two-dimensional saturation Problem (5.1), (5.2) is investigated. Before we discuss two

different approaches for creating meshes of the spatial domain X, we precise the considered simulation

setting.

Throughout this section, we consider the spatial domain X = [0, 2]× [0, 1/2] ⊂ R2
and the time interval

T = [0, 2]. On the upper and lower boundary, i.e., on ∂X = [0, 2]× {0} and ∂X = [0, 2]× {1/2}, we

impose perfect slip boundary conditions. While this means that no flux can move through the boundary,

it also idealizes that the flux velocity is not affected by the boundary, since friction forces are neglected.

On the left boundary, an inflow boundary condition is imposed, which is set to u(ω, t,x) ≡ 1 for

x ∈ {0} × [0, 1/2]. Finally, we assume an outflow boundary condition on x ∈ {2} × [0, 1/2]. An

illustration of this simulation setup is given in Figure 5.1.

F in F out

Perfect slip boundary condition

Perfect slip boundary condition

Figure 5.1: Illustration of the problem setting for two-phase flow simulations in heterogeneous porous

media.

Due to the presented simulation setting, the situation is simplified to a quasi one-dimensional prob-

lem. Instead of considering the flux function given by Equation (5.2), it is sufficient to employ a flux

function f(ω,x, u) = (f1(ω,x, u), 0)
⊤

. Here, the scalar flux function f1(ω,x, u) corresponds to the

one-dimensional version of Equation (5.2), i.e.,

f1(ω,x, u) :=
ko(u)

ko(u) + kw(u)

(
1− a(ω,x)kw(u)

)
.

Note, instead of employing a vector-valued jump coefficient a, a scalar discontinuous random field a

is used. In the subsequent pathwise convergence study, two different choices for this discontinuous

jump-advection coefficient a are considered.

Prior to this convergence investigation, the employed discretization schemes have to be discussed. In

particular, we want to focus on the spatial meshing algorithm employed. Here, we distinguish two

strategies: First, we employ a standard triangulation algorithm, which creates a mesh of the spatial

domain X satisfying some maximum step size restriction ∆i
x ≤ ∆l

x,max, where ∆l
x,max denotes the

maximum allowed spatial step size measured by the largest edge length of the triangulation.

Conservation Laws with Random Discontinuous Flux Functions



5.2 Pathwise convergence study 137

Throughout this section, we compare this standard meshing algorithm with the alternative approach of

creating sample-adapted grids for the pathwise discretization. In this approach, for each ω ∈ Ω, the

triangulation is adapted to the discontinuities of the jump advection coefficient a. Consequently, the

resulting triangulation is random. The particular algorithm, how such a sample-adapted triangulation

may be obtained depends on the geometrical structure of the coefficient a and is discussed in each

section individually. For propagating the solution through the time interval T, we employ a forward

Euler time discretization scheme. To ensure the stability of this time marching algorithm, the time step

size is chosen such that it suffices the CFL condition given by Inequality (2.7).

To compute a solution to Problem (5.1), (5.2), the entropy solution u is approximated with a finite

volume scheme based on a hierarchy of grids. For each discretization level of the spatial grid, a step

size restriction ∆l
x,max = ∆0

x,max · 0.65l is imposed, where the initial spatial step size ∆0
x,max is chosen

as ∆0
x,max = 1/2. While a refinement parameter of 0.5 would be the usual choice, it is set to 0.65 in

the presented experiments to reduce the computational complexity of simulations with fine spatial

resolutions. Throughout this section, we consider the strong error E of the finite volume approximation

u∆, which is given by

E(ω) :=
∥∥∥uref∆ (ω, ·, T )− u∆(ω, ·, T )

∥∥∥
L⋆(X;R)

,

where L⋆(X;R) is either L1(X;R), L2(X;R) or L∞(X;R). Here, uref∆ denotes a reference solution

which is computed by the jump-adapted finite volume discretization with maximum spatial step size

∆ref
x,max = ∆7

x,max = ∆0
x,max · 0.657. For the numerical flux of the approximation scheme, we always

employ the Godunov scheme (2.9).

The implementation of the simulation utilizes the Distributed and Unified Numerics Environment (DUNE)

software framework [39, 252]. Additionally, for creating the (jump-adapted) meshes, the DUNE-ALUGrid

module by Alkämper et al. [6] has been used.

5.2.1 Piecewise homogeneous media

In this first experiment, the random jump coefficient a is chosen as a Lévy-type random field as defined

in Definition 2.28. As the focus of the numerical investigation is on the jump discontinuities of a, we

omit the Gaussian random field included in Equation (2.3). More precisely, we consider a random jump

coefficient a, which is given as

a : Ω× X → R>0 (ω,x) 7→
τ∑
i=1

1Ti(x)pi(ω) .

Here, the partition T : Ω → B(X) of the spatial domain X is generated by random lines through

the domain. In particular, the porous medium is modeled as a composite material consisting of four

homogeneous media resulting from one vertical and one horizontal line through the domain. To construct

these lines, we sample four independent, uniformly distributed random variables d1,2 ∼ U([0.15, 0.35])
and d3,4 ∼ U([0.15, 1.85]). Here, the first two random variables d1,2 represent the start and end point

of the horizontal line, given by (0, d1) and (2, d2), respectively. Analogously, the random variables d3,4
yield the start and end point of the vertical line, given by (d3, 0) and (d4, 1/2). Consequently, we obtain

a partition of the spatial domain X consisting of four subdomains. As a last step of constructing the

random jump coefficient a, we associated a jump height pi to each of the subdomains Ti. Here, every

jump height pi of the sequence (pi, i ∈ N) is independent and identically distributed with a uniform
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138 5 Simulation of cons. laws with locally finite flux discontinuities

U([0.1, 0.9]) distribution. Since the jump coefficient a is constant on every partition element of the

spatial domain X, we call this discontinuous random field a piecewise homogeneous medium.

Creating a sample-adapted triangulation for these piecewise homogeneous medium coefficients is rather

simple. Meshing each element of the partition T individually leads to a spatial grid that fulfills the

adaptivity constraint. For the subsequent experiments, we also impose a restriction of conformitivity of

the resulting mesh. This is obtained by requiring that adjacent subdomain grids share the same nodes

on the lines of discontinuity of the random jump coefficient a.

Before we turn to the strong convergence investigation, let us illustrate the resulting piecewise homo-

geneous medium jump coefficients and how they affect the entropy solution u of the two-phase flow

saturation Problem (5.1), (5.2). The effect of the random jump-advection coefficient a on the random

entropy solution u at the final time T = 2 is depicted in Figure 5.2.

(a) Jump coefficient a with a wide range of values and

visible influence of the discontinuities on the entropy

solution u.

(b) Vertical jump appears closer to the left boundary

resulting in a reduced effect on the solution u.

(c) Reduced range of jump heights pi still leading to a

significant (horizontal) discontinuity in the entropy

solution u.

(d) Similar jump heights pi in the top and bottom part

of the domain resulting in a visible (horizontal) dis-

continuity in the solution u.

Figure 5.2: Illustration of random entropy solutions u (top) at the final time T = 2 with underlying

random jump coefficients a, which are modeled as piecewise homogeneous media (bottom).

As one can see in the second row of Figure 5.2a, the piecewise homogeneous medium consists of

four subdomains on which the random field a is constant. The corresponding entropy solution has

a high saturation at the left boundary of the domain and decreases towards the right boundary. One

immediately notices that the discontinuities in the coefficient lead to jumps in the solutions. Turning to

Figure 5.2b, the vertical interface in the absolute permeability shifts towards the left domain boundary.

However, this does not change the characteristics of the random entropy solution, which still shows a

decreasing saturation over the domain. Nevertheless, the height of the jump-advection coefficient a

affects how fast the saturation propagates. In Figure 5.2c the values of the absolute permeability a are

Conservation Laws with Random Discontinuous Flux Functions



5.2 Pathwise convergence study 139

contained in a reduced range. Thus, the jump sizes (jumping from a high jump height pi to a low one or

the other way around) are lower and result in smaller discontinuities in the entropy solution u. Finally,

Figure 5.2d demonstrates that neighboring jump heights pi may be similar to each other and are not

ordered in any way. As a consequence, the vertical discontinuity barely has any effect on the entropy

solution u, while the horizontal jump is still noticable since it has a greater impact on the temporal

behavior of the solution. A similar phenomenon can also be observed in the left part of the domain in

Figure 5.2c, where the horizontal discontinuity is barely visible.

To conclude the above observations, it appears that horizontal discontinuities in the piecewise homoge-

neous medium lead to more profound jump discontinuities in the entropy solution u. This behavior

can be explained in a straightforward manner: The jump coefficient a affects the velocity at which the

saturation spreads. While a vertical discontinuity influences this speed, once the saturation reaches

the jump, a horizontal discontinuity affects the velocity of the fluids throughout the entire simulation.

Consequently, the effects on the solution are greater for horizontal jump discontinuities in the piecewise

homogeneous medium.

Based on this qualititive behavior of the solution, we can now turn to the pathwise convergence investi-

gation. Therefore, Figure 5.3 depicts the strong L1
-, L2

- and L∞
-error of finite volume approximations

u∆ of the solution u. Note, while the notation of the L∞
-error is oftentimes used to denote the error in

L∞(T;L1(X)
)
, we consider the L∞(X)-error.

As the jump coefficient a is random, so are these strong errors (and in case of jump-adapted triangulations

also the spatial mesh). Therefore, the pathwise error is estimated by a Monte Carlo estimator using 50

samples, which is sufficient as the 95% confidence intervals in Figure 5.3 show.
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(a) Pathwise L1
-error.
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(b) Pathwise L2
-error.
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(c) Pathwise L∞
-error.

Figure 5.3: Pathwise L1
-, L2

- and L∞
-error of finite volume (FV) approximations of the random entropy

solution u for a piecewise homogeneous medium. Each error is estimated via a Monte Carlo

estimator using 50 samples.

As one can see in Figures 5.3a and 5.3b, the pathwise L1
- and L2

-error converge at almost the same

rate. While the standard non-adapted triangulation leads to a convergence rate of approximately 1/2,

the jump-adapted meshing converges at a faster rate of approximately 0.7. Let us also stress the kink

in the error plot of the non-adapted discretizations. This behavior is caused by the evaluation of the

jump coefficient in the cells close to the discontinuities. Since we cannot ensure a constant evaluation

on the correct side of the discontinuity, the varying values at the jump interfaces lead to an increased
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140 5 Simulation of cons. laws with locally finite flux discontinuities

approximation error. While the 95% confidence interval of the error can barely be detected for the strong

L1
- and L2

-error, it is significantly wider for the pathwise L∞
-error, especially for the non-adapted

grid. This is by far not surprising: The effect of inaccurately approximating the jump coefficient a at

the discontinuity interfaces has a more intense affect in this L∞
-error norm. In fact, this behavior also

influences the convergence rate of the finite volume approximations. The approximated solutions based

on jump-adapted discretizations converge at a rate of 0.6 and thus are not significantly affected by this

error measure. However, with an experimental convergence rate of merely 0.3, the approximations

based on a standard triangulation converge only half as fast as in the L1
- and L2

-error norm.

5.2.2 Heterogeneous media

In this second experiment, we consider a similar jump coefficient a as in the previous section. Due to an

increased number of jumps, the considered coefficient can be interpreted as modeling a heterogeneous
medium. This higher number of jump discontinuities contained in the random advection coefficient a is

the main difference compared to the piecewise homogeneous medium of the previous section. Instead

of considering one vertical and one horizontal jump interface, the number of discontinuity lines in the

heterogeneous medium is stochastic. In particular, the number of lines partitioning the spatial domain

X is given via two independent Poisson-distributed random variables τhor ∼ Poi(2) and τvert ∼ Poi(4).

Here, τhor denotes the random number of horizontal lines and τvert defines the amount of vertical

discontinuities. Here, the distribution τhor ∼ Poi(2) leads to an expected value of 2 horizontal jumps,

where the value 2 is chosen arbitrarily to consider more than one horizontal jumps. Analogously, the

distribution τvert ∼ Poi(4) leads to an average number of 4 vertical jumps. Also, the expected number

of vertical jumps is higher than the average amount of horizontal jumps to account for the different

dimensions of the spatial domain X. For the heterogeneous medium random field, the designations

horizontal and vertical for describing the discontinuity lines are completely artificial.

Each line of discontinuity in the jump-advection coefficient a consists of a starting point lying on the

boundary ∂X of the spatial domain. Additionally, an angle is associated to each line, defining the angle

at which the line is moving into the spatial domain. More precisely, for a random number τhor ∼ Poi(2)

of horizontal lines, we sample τhor points on the left boundary, i.e., d1, . . . , dτhor ∼ U
(
{0} × [0, 1/2]

)
.

Each spatial point dj ∈ {0} × [0, 1/2] defines a starting point of a jump interface on the left domain

boundary. Furthermore, for each line, we sample a random angle ahorj ∈ U
(
[0, π]

)
. Connecting each

starting point dj with the corresponding point at which the line exits the domain, provides a horizontal
random partition on the spatial domain X. Note, contrary to the previous piecewise homogeneous

random field, this exit point does not necessarily lie on the opposite domain boundary.

To obtain a vertical random partition of the spatial domain X, we proceed similarly. For the random

number τvert ∼ Poi(4) of vertical flux interfaces, we sample τvert points on the bottom boundary, i.e.,

dτhor+1, . . . , dτhor+τvert ∼ U
(
[0, 2]×{0}

)
. For each such starting point on the bottom boundary, we sam-

ple a random angle avertj ∼ U
(
[π/2, 3π/2]

)
. Connecting again each starting point dτhor+1, . . . , dτhor+τvert

with the corresponding domain exit point provides a vertical random partitioning of the spatial domain

X. Let us stress that the discontinuity lines of the heterogeneous medium random field a may inter-

sect. Additionally, we do not ensure any distance of the starting or exit points to the corners of the

domain. Both of these properties may affect the meshing algorithm in the sense that the jump-adapted

triangulations may cause stability problems for the simulation.
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With such a random partitioning of the spatial domain X at hand, it remains to discuss the jump heights

pi. Here, as in the previous section, every jump height pi of the sequence (pi, i ∈ N) is independent

and identically distributed with a uniform U
(
[0.1, 0.9]

)
distribution. Therefore, the jump coefficient is

again piecewise constant on each part of the resulting partitioning.

Creating a sample-adapted triangulation for these heterogeneous medium random fields can be achieved

by the same procedure as for the piecewise homogeneous medium of the previous section. That is,

meshing each element of the partition T individually is sufficient to obtain a jump-adapted grid. As in

the last experiment, we additionally require the resulting mesh to be conforming, which can be ensured

by requiring that neighboring subdomain grids share the same nodes on the discontinuity lines of the

random field a.

With this construction in mind, we can investigate the resulting samples of the heterogeneous medium

coefficient a and its influence on the random entropy solution u. To do so, Figure 5.4 depicts four samples

of the random field a and the corresponding entropy solutions.

(a) Jump-advection coefficient a having very small par-

tition elements and the corresponding solution u.

(b) Jump-advection coefficient a with a diagonal discon-

tinuity line and the corresponding solution u.

Figure 5.4: Illustration of entropy solutions u (top) with underlying random jump coefficients a (bottom)

modeled as a heterogeneous medium.

As a first observation, note that the heterogeneous medium coefficient a may contain very small

partition elements, which is particularly well visible in Figure 5.4a. Additionally, Figure 5.4b illustrates

that diagonal discontinuity lines can appear in the partition. To see this, we point to the diagonal line

from approximately (0.3, 0) to (2, 1/4). Apparently, the discontinuities in the random jump-advection

coefficient a lead to jumps in the entropy solution u, which is analogously to the piecewise homogeneous

medium setting of the previous section.

Based on these observations and the significantly higher number of domain partitions, one expects

lower convergence rates for the finite volume approximations u∆. The strong (pathwise) error of these

approximations is presented in Figure 5.5 for the L1
-, L2

- and L∞
-error. As in the previous section, the

strong error depends on the stochastic parameter ω ∈ Ω and consequently needs to be approximated

by a Monte Carlo estimator. Here, we used again 50 realizations of the random entropy solution for

the corresponding estimation and the 95% confidence intervals in Figure 5.5 show that this number is

sufficient to yield an accurate approximation.

As one can see for the L1
- and L2

-error, the convergence rate of the standard triangulation is roughly

1/2, whereas the convergence of the jump-adapted discretization is approximately 2/3. This result is

rather ambivalent: On the one hand, it is by far not surprising that the sample-adapted discretization
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(a) Pathwise L1
-error.
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(b) Pathwise L2
-error.
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(c) Pathwise L∞
-error.

Figure 5.5: Pathwise L1
-, L2

- and L∞
-error of finite volume (FV) approximations of the random entropy

solution u for a heterogeneous medium. Each error is estimated via a Monte Carlo estimator

using 50 samples.

approach leads to a better convergence rate. On the other hand, it is rather irritating that the non-

adapted triangulation yields a similar order of convergence as for the piecewise homogeneous medium,

whereas the convergence rate of the jump-adapted discretization is slightly reduced. Considering the

L∞
-error, the situation is slightly different. Here, the jump-adapted meshing is able to achieve the

same convergence rate of approximately 0.6 and the standard triangulation leads to a reduced order of

convergence of roughly 1/4. Focussing on the variance of the random pathwise error, the qualitative

behavior of the approximations is similar as for the piecewise homogeneous medium of the previous

section. Only for the L∞
-error with the standard triangulation can one notice the 95% confidence

interval. For all other approximations, the variation in the error is too low to be noticable.
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In the previous part of this thesis, a well-posedness theory to scalar conservation laws with a random

discontinuous flux function was discussed in the unifying framework based on admissibility germs.

A major restriction of the presented theory are the assumptions that lead to uniform L∞
-bounds on

entropy solutions, such as the confinement Assumption 3.38. Two examples of important conservation

laws, which generally do not satisfy such an assumption, are given by the classical linear transport
equation or the Burgers-Hopf’s equation. In both cases the spatial discontinuities may be incorporated

via a discontinuous advection coefficient.

In this chapter, we introduce a well-posedness theory for scalar conservation laws with random discontin-

uous flux functions, which does not require such a confinement assumption. The ideas of the presented

approach were originally introduced by Baiti and Jenssen [23] in 1997 and later formalized by

Audusse and Perthame [18] in 2005.

To the best of the author’s knowledge, the general well-posedness theory of scalar conservation laws

presented in [18] is only available for one spatial dimension. Therefore, as in the previous chapters,

let (Ω,Σ,P) be a complete probability space. Furthermore, for some final time 0 < T <∞, let a time

interval T := [0, T ] and a spatial domain X := R be given. Then, for unknown u := u(ω, t, x), the

following random scalar conservation law is considered:

∂tu+ divx f(ω, x, u) = 0 in Ω× T× X ,

u(ω, 0, x) = u0(ω, x) on Ω× {0} × X .
(6.1)

Here, u0 ∈ Lq
(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, is a random initial condition.

Furthermore, the flux f is assumed to depend discontinuously on x ∈ X. Let us stress that — contrary to

the previous part — the flux function does not depend on the time t ∈ T.

Recall that the classical approach to well-posedness is based on the Kružkov entropy Condition (1.2),

which selects a unique weak solution to Problem (6.1) in a physically meaningful way. However, for

flux functions that involve spatial discontinuities, the Condition (1.2) is not properly defined anymore.

The idea of Baiti and Jenssen [23] and Audusse and Perthame [18] is to adapt this entropy

condition in such a way that the troublesome third term in Inequality (1.2) vanishes. In particular, the

Kružkov entropy values k ∈ R are replaced by the solution of the steady-state equation corresponding

to parameter α ∈ R.

145



146 6 One-dimensional cons. laws with infinitely many discontinuities

Since this approach does not involve interface conditions at the flux discontinuities, we do not need to

formulate admissibility germs. Furthermore, the existence of strong one-sided traces of the solution does

not have to be ensured at the flux discontinuities. These weaker restrictions enable the flux function

to have infinitely many points of discontinuity, which may even have accumulation points, since the

discontinuity points do not have to be distinguished separately. Nevertheless, the Audusse-Perthame

adapted entropy condition for admissible solutions can be formulated via a corresponding admissibility

germ, if the additional assumptions of the previous part are satisfied. For a extensive discussion of the

Audusse-Perthame selection criterion via the approach of admissibility germs, the reader is reffered to

[13, Section 4.6].

This chapter starts in Section 6.1 with a discussion of Audusse-Perthame flux functions and solutions

to the random steady-state equation of Problem (6.1). Afterwards, in Section 6.2 we introduce the

notion of adapted entropy solutions and the corresponding admissibility criterion based on an adapted

Kružkov entropy condition. Additionally, we introduce in Section 6.2 the notion of random adapted

entropy functionals and discuss their properties. These functionals and their properties are important

for showing the strong measurability of adapted entropy solutions in Section 6.3, which discusses the

well-posedness framework of Audusse-Perthame for random conservation laws with discontinuous

flux functions. This includes a pathwise existence and uniqueness investigation and a discussion of the

existence of moments of random adapted entropy solutions.

6.1 Audusse-Perthame flux functions & random steady-state solutions

In this section, we discuss the randomization of flux functions f in the Audusse-Perthame framework. In

particular, these discontinuous fluxes satisfy conditions that ensure the existence of solutions to the

steady-state problem of the scalar conservation law. After the discussion of the flux functions in Section

6.1.1, we discuss the steady-state solutions and their properties in Section 6.1.2.

6.1.1 Audusse-Perthame flux functions

We start by introducing random discontinuous flux function that correspond to the Audusse-Perthame

framework. As already mention in the introduction of this chapter, the flux functions are allowed

have infinitely many points of discontinuity, which may have accumulation points. However, these

discontinuities must form a closed set of H1
-measure zero. Furthermore, the flux functions need to

satisfy some assumptions that guarantee the pathwise existence of random steady-state solutions. We

precise these pathwise conditions on the flux function in the proceeding assumption.

Assumption 6.1 (Audusse-Perthame flux function):
For every stochastic parameter ω ∈ Ω, the random discontinuous flux function f satisfies the following
conditions:

(A-1) The flux function f(ω, ·, ·) is continuous at all points of
(
R \D(ω)

)
× R, where the set D(ω) ⊂ R

is a closed set of H1-measure zero that contains the spatial discontinuity points of the flux function
f(ω, ·, ρ) for some scalar value ρ ∈ R.
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(A-2) There exist two continuous functions f−(ω, ·), f+(ω, ·) ∈ C(R;R) such that for all spatial points
x ∈ R and all scalar values ρ ∈ R the condition f−(ω, ρ) ≤

∣∣f(ω, x, ρ)∣∣ ≤ f+(ω, ρ) holds, where
f−(ω, ·) is a first decreasing then increasing function that satisfies:

(i) The function f−(ω, ·) is nonnegative in the sense that it satisfies f−(ω, ρ) ≥ 0 for any scalar
value ρ ∈ R.

(ii) The function f−(ω, ·) is unbounded, i.e., it satisfies limρ→±∞ |f−(ω, ρ)| = +∞.

(A-3) There exists a function um(ω, x) : Ω× R → R and a constant m0 ∈ R such that for any spatial
point x ∈ R \ D(ω), the flux function f(ω, x, ·) is locally Lipschitz continuous and one-to-one
from

(
−∞, um(ω, x)

]
and

[
um(ω, x),+∞

)
to [m0,+∞) (or (−∞,m0]). Furthermore, the flux

function f satisfies f
(
ω, x, um(ω, x)

)
= m0 with a common Lipschitz constant LI for all spatial

points x ∈ R \D(ω) and all scalar values ρ ∈ I , where I ⊂ R is any bounded interval.

Alternatively, instead of Assumption (A-3), we may consider the assumption

(A-3’) For all spatial points x ∈ R \D(ω), the flux function f(ω, x, ·) is locally Lipschitz continuous and
one-to-one from R to R with a common Lipschitz constant LI for all points x ∈ R \D(ω) and all
values ρ ∈ I , where I ⊂ R is any bounded interval.

At a first sight, these assumptions may look rather complicated. The following example demonstrates

an important type of random discontinuous flux functions, and discusses conditions for the Audusse-

Perthame flux Assumption 6.1 to be satisfied in a more specific way. Furthermore, the example also

illustrates that the linear transport equation and the Burgers’ equation are covered by this theory.

Example 6.2 (Multiplicative flux function): An important type of random discontinuous flux functions
are those functions, which admit a multiplicative formulation in the sense that their (random) spatial
dependence can be separated from the part depending on the solution. More specifically, those flux functions
f are given by

f(ω, x, ξ) = a(ω, x)f(ξ) .

Here, a is a random jump coefficient. Based on this form of the flux function, we now discuss conditions
such that the Audusse-Perthame flux Assumption 6.1 is satisfied:

▶ To satisfy Assumption (A-1), the random jump discontinuities of a(ω, ·) need to form a set D(ω),
which might depend on the stochastic parameter ω ∈ Ω. Furthermore, this set of discontinuities has
to be a closed set of H1-measure zero.

▶ For Assumption (A-2) to hold, it is sufficient that the flux function f is unbounded in the sense that it
satisfies limρ→±∞|f(ρ)| = +∞ and the random jump coefficient a has positive spatially bounded
paths in the sense that it satisfies

0 < a−(ω) ≤ a(ω, x) ≤ a+(ω) <∞ .

Here, a− and a+ denote some constants that might depend on ω ∈ Ω.

▶ For Assumption (A-3’) to hold, it is sufficient that the flux function f is locally Lipschitz continuous
and strictly monotone. One example for this case is the linear transport equation, in which case the
flux function f satisfies f(ξ) = ξ.
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▶ For Assumption (A-3) to hold, the flux f should be locally Lipschitz and either convex or concave with
f(um) = 0 for some value um. The latter also implies m0 = 0. One example for this is the Burgers’
equation, in which the flux f is given as f(ξ) = ξ2/2.

The Audusse-Perthame flux Assumption 6.1 on the flux function f immediately provides us with additional

information regarding the discontinuous-flux Problem (6.1). A particular consequence is the pathwise

boundedness result on the random flux function f for some given bounded data ν ∈ L∞(T×X;R). We

formalize this result in the following corollary.

Corollary 6.3 (Pathwise boundedness of flux function):
Let a stochastic parameter ω ∈ Ω be fixed and let the flux function f satisfy the Audusse-Perthame flux
Assumption 6.1. Furthermore, let a function ν ∈ L∞(T × X;R) be given and denote by W the interval
W :=

[
− ∥ν∥L∞(T×X;R), ∥ν∥L∞(T×X;R)

]
⊂ R. Then, the flux function f admits a pathwise upper bound

in the sense that the estimate∣∣∣f(ω, x, ν(t, x))∣∣∣ ≤ max
υ∈W

f+(ω, υ) =: Mf(ω) <∞ (6.2)

holds for H1-almost every spatial point x ∈ R and H1-almost every time t ∈ T.

Proof. Let a stochastic parameter ω ∈ Ω and a function ν ∈ L∞(T×X;R) be fixed. By Assumption

(A-2), there exists a continuous function f+(ω, ·) ∈ C(R;R) such that∣∣∣f(ω, x, ν(t, x))∣∣∣ ≤ f+
(
ω, ν(t, x)

)
holds for H1

-almost every x ∈ R and H1
-almost every t ∈ T. This can further be estimated as∣∣∣f(ω, x, ν(t, x))∣∣∣ ≤ f+

(
ω, ν(t, x)

)
≤ sup

υ∈W
f+(ω, υ) , (6.3)

where the interval W is given by W :=
[
−∥ν∥L∞(T×X;R), ∥ν∥L∞(T×X;R)

]
⊂ R. Obviously, the function

ν ∈ L∞(T×X;R) satisfies ν(t,x) ∈ W for H1
-almost every spatial point x and H1

-almost every time

t ∈ T, which justifies the Estimation (6.3).

By construction, the interval W ⊂ R is compact. Since continuous real-valued functions attain a

maximum on compact intervals, the supremum is equivalent to this maximum. Denoting this pathwise

maximum of f+(ω, ·) over the interval W by Mf(ω), the same argumentation justifies Mf(ω) < ∞.

This proves the assertion. ■

The idea of Audusse and Perthame is to replace the Kružkov entropy values k ∈ R in Inequality (1.2) by

the solutions to the steady-state problem corresponding to Equation (6.1). The following result on the

inverse flux function is crucial to ensure the existence of such steady-state solutions. As for the previous

corollary, this result is an immediate consequence of the Audusse-Perthame flux Assumption 6.1.

Corollary 6.4 (Existence of inverse flux function):
Let a stochastic parameter ω ∈ Ω be fixed and let the flux function f satisfy the Audusse-Perthame flux
Assumption 6.1. Then, for every spatial point x ∈ R \D(ω), the flux function f(ω, x, ·) admits an inverse
function f−1

± (ω, x, ·), which is continuous.
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Proof. Let a stochastic parameter ω ∈ Ω be fixed and let the flux function f satisfy the Audusse-

Perthame flux Assumption 6.1. We distinguish the two cases of Assumption (A-3) and (A-3’) separately:

(i) Assumption (A-3’) : We start with the situation that the flux function f satisfies Assumption (A-3’),

which guarantees that for every spatial point x ∈ R \ D(ω), the function f(ω, x, ·) is locally

Lipschitz continuous and one-to-one from R to R. Thereby, the flux function f(ω, x, ·) is strictly

monotone. This allows us to apply the inverse function theorem for strictly monotone functions

[132, Theorem 37.1] to obtain that the flux f(ω, x, ·) admits an inverse function f−1(ω, x, ·)
mapping from R to R. Furthermore, the inverse flux function f−1(ω, x, ·) is strictly monotone

and continuous.

(ii) Assumption (A-3) : In case the flux function f satisfies Assumption (A-3), for any spatial point

x ∈ R \D(ω), the flux function f(ω, x, ·) is locally Lipschitz continuous and one-to-one from(
−∞, um(ω, x)

]
and

[
um(ω, x),+∞

)
to [m0,+∞) (or (−∞,m0]). This implies that the flux

function f(ω, x, ·) is strictly monotone mapping from

(
−∞, um(ω, x)

]
and

[
um(ω, x),+∞

)
to [m0,+∞) (or (−∞,m0]). Therefore, the inverse function theorem for strictly monotone

functions [132, Theorem 37.1] guarantees the existence of a strictly monotone and continuous

inverse function f−1
− (ω, x, ·) mapping from

(
−∞, um(ω, x)

]
to [m0,+∞) (or (−∞,m0]).

An analogous argumentation yields the existence of a strictly monotone and continuous inverse

function f−1
+ (ω, x, ·) mapping from

[
um(ω, x),+∞

)
to [m0,+∞) (or (−∞,m0]).

To unify the notation for those different cases, we denote the inverse function of the flux f(ω, x, ·) by

generically writing f−1
± (ω, x, ·), unless we want to emphasize the particular instance of f−1

+ , f−1
− or f−1

.

Therefore, we have proven the assertion on the existence of a strictly monotone and continuous inverse

flux function f−1
± (ω, x, ·). ■

To ensure the well-posedness of adapted entropy solutions to the discontinuous-flux conservation law

of Equation (6.1), we need to establish existence of a unique solution as well as its strong measurability.

However, to obtain such a strong measurability result, we need to guarantee that the flux function f is

itself measurable (but not necessarily strongly measurable). Thus, we impose the following measurability

assumption on Audusse-Perthame flux functions.

Assumption 6.5 (Measurability of Audusse-Perthame flux function):
Let f be a flux function that satisfies the Audusse-Perthame flux Assumption 6.1. Additionally, we assume
that the flux function f satisfies the following stochastic measurability assumptions:

(A-4) ForH1-almost every spatial point x ∈ R and every scalar value υ, the flux function f is stochastically
measurable in the sense that the mapping ω 7→ f(ω, x, υ) is measurable.

(A-5) For almost every point x ∈ R and every value υ, the inverse flux function f−1
± is stochastically

measurable in the sense that the mapping ω 7→ f−1
± (ω, x, υ) is measurable.

(A-6) For every ω ∈ Ω, the spatial paths of the inverse flux function f−1
± are bounded in the sense that there

exists a function w(ω, ·) ∈ C(R;R) such that the condition
∣∣f−1
± (ω, x, ρ)

∣∣ ≤ w(ω, ρ) is satisfied
for all scalar values ρ ∈ R.

To conclude the discussion of Audusse-Perthame flux functions, we demonstrate this measurability

assumption with the subsequent example. Therefore, we revise the multiplicative flux functions already

discussed in Example 6.2.
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Example 6.6 (Measurability of multiplicative flux function): Recall the construction of multiplicative
flux functions in Example 6.2. For a random jump coefficient a, these were given by

f(ω, x, ξ) = a(ω, x)f(ξ) .

As a result, the measurability Assumption 6.5 transforms to the following conditions:

▶ To satisfy Assumption (A-4), for almost every spatial point x ∈ R, the random jump coefficient a is
measurable as a mapping ω 7→ a(ω, x).

▶ To ensure the conditions implied by Assumption (A-5), note that the inverse flux function is given by

f−1
± (ω, x, ξ) =

1

a(ω, x)
f−1(ξ) .

Since the function f−1 is continuous by Corollary 6.4, it is in particular measurable. Thus, the
flux function f is measurable as the composition of two measurable functions. Consequently, for
multiplicative flux functions f satisfying the Audusse-Perthame flux Assumption 6.1 and Assumption
(A-4), the Assumption (A-5) is automatically satisfied.

▶ Finally, recall that the random jump coefficient a has spatially bounded paths in the sense that the
estimation 0 < a−(ω) ≤ a(ω, x) ≤ a+(ω) <∞ holds for every ω ∈ Ω. Therefore, we can define a
function w as w(ω, ρ) := 1/a−(ω)f−1(ρ) to satisfy the spatial boundedness Assumption (A-6) on the
inverse flux function.

6.1.2 Random steady-state solutions

As already indicated in the introduction of this chapter, the idea of the Audusse-Perthame admissibility

criterion is to replace the Kružkov entropy values k ∈ R in the Condition (1.2) by the solutions

of the steady-state problem corresponding to the initial value Problem (6.1). With the preliminary

investigations of the flux functions satisfying the Audusse-Perthame flux Assumption 6.1, we are now

ready to investigate these steady-state solutions and their properties. Therefore, let the following

steady-state equation be given:

f
(
ω, x, kα(ω, x)

)
= α for H1

-almost every x ∈ R . (6.4)

By the existence result of Corollary 6.4, we already know that the flux function f(ω, x, ·) admits a

continuous and strictly monotone inverse. Thereby, we obtain the existence of a steady-state solution

kα or two steady-state solutions k±
α , depending on whether Assumption (A-3’) or Assumption (A-3) is

satisfied. As for the inverse flux function, we will always use the superscript ± to unify the notation and

presentation. For the details we refer to the proof of Corollary 6.4. With these steady-state solutions at

hand, we can now investigate their properties. First, let us stress that Assumption (A-2) implies that

for each parameter α ∈ R, the corresponding steady-state solution satisfies k±
α ∈ L∞(X;R). In case

Assumption (A-3) is satisfied, the domain of the steady-state parameter α is either [m0,∞) or (−∞,m0],

depending on the flux function f. In the sequel, we will always consider this case. Furthermore, the next

proposition shows that steady-state solutions k±
α depend continuously on the parameter α.

Proposition 6.7 (Continuous dependence of steady-state solutions):
Let ω ∈ Ω be fixed. Furthermore, let the function f satisfy the Audusse-Perthame flux Assumption 6.1. Then,
for every point x ∈ R \D(ω), the solutions k±

α (ω, x) of the random steady-state Equation (6.4) depend
continuously on the parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]).
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Proof. Let ω ∈ Ω be fixed. Furthermore, let two parameters α, β ∈ [m0,∞) (or α, β ∈ (−∞,m0])

be given and consider the two corresponding random steady-state equations

f
(
ω, x, k±

α (ω, x)
)
= α for H1

-almost every x ∈ R , (6.5a)

f
(
ω, x, k±

β (ω, x)
)
= β for H1

-almost every x ∈ R . (6.5b)

By Corollary 6.4, for every stochastic parameter ω ∈ Ω and every spatial point x ∈ R \ D(ω), the

flux function f admits an inverse function f−1
± (ω, x, ·). This implies the existence of the two steady-

state solutions k±
α , k

±
β to the steady-state Equations (6.5a) and (6.5b), respectively. Furthermore, these

steady-state solutions are given by

k±
α (ω, x) = f−1

± (ω, x, α) for H1
-almost every x ∈ R ,

k±
β (ω, x) = f−1

± (ω, x, β) for H1
-almost every x ∈ R .

(6.6)

However, Corollary 6.4 also states that the inverse flux function f−1
± (ω, x, ·) is continuous. Therefore,

the construction of the steady-state solutions in Equation (6.6) immediately leads to the continuous

dependence of k±
α (ω, x) on α ∈ [m0,∞) (or α ∈ (−∞,m0]), which proves the assertion. ■

Another important property of the random steady-state solutions k±
α is their stochastic measurability.

This property is directly inherited from the measurability Assumption 6.5 on the flux function. The

corresponding result is justified in the subsequent Proposition, which also concludes this section on

Audusse-Perthame flux functions and random steady-state solutions.

Proposition 6.8 (Measurability of steady-state solutions):
Let the flux function f satisfy the Audusse-Perthame flux Assumption 6.1 as well as the measurability
Assumption 6.5. Then, for any steady-state parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]), the solutions k±

α

to the random steady-state Equation (6.4) are stochastically measurable in the sense that, for H1-almost
every spatial point x ∈ R, the mapping ω 7→ k±

α (ω, x) is measurable.

Proof. Since the flux function f satisfies the Audusse-Perthame flux Assumption 6.1, we can apply

Corollary 6.4 to obtain the existence of the steady-state solutions k±
α . Furthermore, these steady-state

solutions are given by

k±
α (ω, x) = f−1

± (ω, x, α) for H1
-almost every x ∈ R . (6.7)

However, Assumption (A-5) implies that for almost every point x ∈ R, the inverse flux function f−1
± is

measurable in the sense that the mapping ω 7→ f−1
± (ω, x, υ) is measurable. Thus, the assertion follows

via the construction of the steady-state solutions k±
α in Equation (6.7). ■

6.2 Random adapted entropy solutions and functionals

With the random steady-state solutions of the previous section at hand, we can now turn to defining the

notion of an adapted entropy solution. Closely related to the adapted entropy condition selecting the

admissible solution to Problem (6.1) is the notion of an adapted entropy functional. These functionals

provide a tool for describing the admissibility of functions ν ∈ L∞(T× X;R) for fixed ingredients of

the adapted entropy condition.
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6.2.1 Notion of random adapted entropy solutions and functionals

We start our discussion of random adapted entropy solutions and random adapted entropy functionals

by introducing the main definitions. To simplify the presentation, we start by formally defining the

adapted entropy flux in the following definition.

Definition 6.9 (Adapted entropy flux):
Let the flux function f satisfy the Audusse-Perthame flux Assumption 6.1. Then, we define the adapted

Kružkov entropy flux as the mapping q : Ω× X× R× R → X given by

q(ω, x, υ, υ̃) := sign(υ − υ̃)
(
f(ω, x, υ)− f(ω, x, υ̃)

)
, (6.8)

for some scalar values υ, υ̃ ∈ R.

With this adapted entropy flux and the investigation of the previous section at hand, we are now able to

define the notion of random adapted entropy solutions. Here, the crucial idea for admissibility is the usage

of the steady-state solutions k±
α as adapted Kružkov entropies in the entropy inequality. We formalize

this in the next definition.

Definition 6.10 (Adapted entropy solution):
Let the stochastic parameter ω ∈ Ω be fixed and let the flux function f satisfy the Audusse-Perthame flux
Assumption 6.1. A function u(ω, ·, ·) ∈ L∞(T× R;R) ∩ C

(
T;L1

loc(R;R)
)

is called an adapted entropy

solution to the scalar discontinuous-flux conservation law given by Equation (6.1) on T× R, provided that
for each steady-state parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]) and the corresponding two steady-state
solutions k±

α of Equation (6.4), the adapted entropy inequality∫
T

∫
X

∣∣u(ω, t, x)− k±
α (ω, x)

∣∣∂tψ(t, x) dx dt

+

∫
T

∫
X
q
(
ω, x, u(ω, t, x), k±

α (ω, x)
)
∂xψ(t, x) dx dt

+

∫
X

∣∣u0(ω, x)− k±
α (ω, x)

∣∣ψ(0, x) dx ≥ 0

(6.9)

holds for every nonnegative test function ψ ∈ D(T× X;R).

The adapted entropy Inequality (6.9) is also the main ingredient for defining adapted entropy functionals.
These functionals evaluate for fixed parameters of Condition (6.9), whether a function ν ∈ L∞(T×X;R)
is admissible for this particular parameter configuration. Furthermore, these functionals are of major

importance for showing strong measurability of random adapted entropy solutions in Section 6.3. The

following definition specifies this construction.

Definition 6.11 (Adapted entropy functional):
Let the flux function f satisfy the Audusse-Perthame flux Assumption 6.1. Furthermore, let a steady-state
parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]) and a nonnegative test function ψ ∈ D(T× X;R) be fixed.
Then, we define the random adapted entropy functional Jαψ associated to Problem (6.1) as the mapping
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Jαψ : Ω× L∞(T× X;R) → R given by

(ω, ν) 7→
∫
T

∫
X

∣∣ν(t, x)− k±
α (ω, x)

∣∣∂tψ(t, x) dx dt (6.10a)

+

∫
T

∫
X
q
(
ω, x, ν(t, x), k±

α (ω, x)
)
∂xψ(t, x) dx dt (6.10b)

+

∫
X

∣∣u0(ω, x)− k±
α (ω, x)

∣∣ψ(0, x) dx . (6.10c)

Here, k±
α denotes the two steady-state solutions of Equation (6.4) corresponding to the steady-state parameter

α ∈ [m0,∞) (or α ∈ (−∞,m0]).

6.2.2 Random adapted entropy functionals are Carathéodory

We continue our discussion on random adapted entropy functionals by investigating their properties.

This subsection is devoted to showing that the functional Jαψ is Carathéodory, which means that it is

measurable in ω ∈ Ω and continuous ν ∈ L∞(T×X;R). The corresponding continuity result is proven

in the succeeding proposition.

Proposition 6.12 (Continuous dependence of adapted entropy functional):
Let u0 ∈ Lq

(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, be a random initial condition to Problem

(6.1). Furthermore, let the flux function f satisfy the Audusse-Perthame flux Assumption 6.1 and let a
steady-state parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]) and a nonnegative test function ψ ∈ D(T×X;R)
be fixed. Then, for fixed stochastic parameter ω ∈ Ω, the random adapted entropy functional Jαψ depends
continuously on the function ν ∈ L∞(T× X;R).

Proof. Let ω ∈ Ω and a steady-state parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]) be fixed. Further-

more, let a nonnegative test function ψ ∈ D(T× X;R) be fixed. To show the continuous dependence

of the random adapted entropy functional Jαψ on the function ν ∈ L∞(T×X;R), we consider the three

integrals of mapping (6.10) separately:

The continuous dependence of Integral (6.10c) is rather obvious, since it is independent of the function

ν ∈ L∞(T × X;R). Turning to Integral (6.10a), one can observe that the term

∣∣ν(t, x) − k±
α (ω, x)

∣∣
satisfies

∣∣ν(t, ·)−k±
α (ω, ·)

∣∣ ∈ L∞(X;R), since both ν and k±
α (ω, ·) are essentially bounded. Furthermore,

the test function ψ and its time derivative ∂tψ are compactly supported and smooth by hypothesis.

This implies that the integral is finite. The continuous dependence of Integral (6.10a) follows via the

dominated convergence theorem. We refer to [98, Theorem 5.6] for details on this argumentation.

It remains to show the continuous dependence of Integral (6.10b). Therefore, let two essentially bounded

functions u, ν ∈ L∞(T× X;R) be given. The idea of the proof is to establish the estimation∣∣∣ ∫
T

∫
X
q
(
ω, x, u(t, x), k±

α (ω, x)
)
∂xψ(t, x) dx dt

−
∫
T

∫
X
q
(
ω, x, ν(t, x), k±

α (ω, x)
)
∂xψ(t, x) dx dt

∣∣∣ ≤ CJ∥u− ν∥L∞(T×X;R) .

Recall that the adapted Kružkov entropy flux q : Ω× X× R× R → X depends on the discontinuous
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flux function f and was introduced in Definition 6.9 as the mapping

q(ω, x, υ, υ̃) := sign(υ − υ̃)
(
f(ω, x, υ)− f(ω, x, υ̃)

)
,

for some scalar values υ, υ̃ ∈ R. To facilitate the computations involving the sign function, we introduce

four random sets D(·)(ω) ⊂ T× X, which depend on the values of the terms sign
(
u(t, x)− k±

α (ω, x)
)

and sign
(
ν(t, x)− k±

α (ω, x)
)
. Specifically, for every stochastic parameter ω ∈ Ω, we define

D=(ω) :=
{
(t, x) ∈ T× X | sign

(
u(t, x)− k±

α (ω, x)
)
= sign

(
ν(t, x)− k±

α (ω, x)
)}
,

D±(ω) :=
{
(t, x) ∈ T× X | sign

(
u(t, x)− k±

α (ω, x)
)
= − sign

(
ν(t, x)− k±

α (ω, x)
)}
,

Duk(ω) :=
{
(t, x) ∈ T× X | u(t, x) = k±

α (ω, x)
}
,

Dνk(ω) :=
{
(t, x) ∈ T× X | ν(t, x) = k±

α (ω, x)
}
.

By the construction of these sets, for every stochastic parameter ω ∈ Ω, their union corresponds to

D=(ω) ∪ D±(ω) ∪ Duk(ω) ∪ Dνk(ω) = T× X. However, these random sets are not necessarily disjoint.

Nevertheless, for any stochastic parameter ω ∈ Ω, the intersection is given by the set

D=(ω) ∩ D±(ω) ∩ Duk(ω) ∩ Dνk(ω) =
{
(t, x) ∈ T× X | u(t, x) = k±

α (ω, x) = ν(t, x)
}
.

Thus, the adapted entropy flux q vanishes on this intersection. Therefore, we can split the integral

over T × X into the sum of the integrals over these four random sets by the linearity of integration.

Additionally applying the triangle inequality, we obtain

∣∣∣ ∫
T

∫
X

q
(
ω, x, u(t, x),k±

α (ω, x)
)
∂xψ(t, x) dx dt−

∫
T

∫
X

q
(
ω, x, ν(t, x), k±

α (ω, x)
)
∂xψ(t, x) dx dt

∣∣∣
≤
∣∣∣ ∫
D=(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣ (6.11a)

+
∣∣∣ ∫
D±(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣ (6.11b)

+
∣∣∣ ∫
Duk(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣ (6.11c)

+
∣∣∣ ∫
Dνk(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣ . (6.11d)

Here, to simplify the readability, we introduce the function Qk
ω,x, which describes the difference of the

two adapted Kružkov entropy flux functions and is given as

Qk±
α
ω,x(υ, υ̃) = q

(
ω, x, υ, k±

α (ω, x)
)
− q
(
ω, x, υ̃, k±

α (ω, x)
)
.

To proceed with proving continuous dependence of Term (6.10b), we consider each integral in the above

Inequality (6.11) separately:
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Continuous dependence of Integral (6.11a). For the Integral (6.11a), we start estimating∣∣∣ ∫
D=(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣ ≤ ∫
D=(ω)

∣∣∣Qk±
α
ω,x

(
u(t, x), ν(t, x)

)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt .

With the definitions of the function Qk±
α
ω,x and the entropy flux q, we can exploit the construction of the

random set D=(ω) to obtain∣∣∣ ∫
D=(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤

∫
D=(ω)

∣∣∣f(ω, x, u(t, x))− f
(
ω, x, ν(t, x)

)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt .

Recall now, that the flux function f(ω, x, ·) is locally Lipschitz continuous by Assumption (A-3) or

Assumption (A-3’). Furthermore, by hypothesis there exists an interval I ⊂ R, such that u(t, x) and

ν(t, x) are contained in I for all (t, x) ∈ T× X, since the functions u, ν satisfy u, ν ∈ L∞(T× X;R).
Consequently, we can continue the estimation via∣∣∣ ∫

D=(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣ ≤ ∫
D=(ω)

LI
∣∣u(t, x)− ν(t, x)

∣∣∣∣∂xψ(t, x)∣∣ dx dt

≤ Cψ∥u− ν∥L∞(T×X;R) .

Here, the last estimation is possible, because the test function ψ is smooth and compactly supported,

which implies that also its spatial derivative ∂xψ is smooth with compact support. This implies that

the derivative is bounded and the integral finite, which concludes the proof of showing the continuous

dependence of Integral (6.11a).

Continuous dependence of Integral (6.11b). For Integral (6.11b), we start by estimating∣∣∣ ∫
D±(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣ ≤ ∫
D±(ω)

∣∣∣Qk±
α
ω,x

(
u(t, x), ν(t, x)

)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt .

Now, the definitions of the function Qk±
α
ω,x and the entropy flux q admit leveraging the construction of

the random set D±(ω), which yields∣∣∣ ∫
D±(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤

∫
D±(ω)

∣∣∣q(ω, x, u(t, x), k±
α (ω, x)

)
− q
(
ω, x, ν(t, x), k±

α (ω, x)
)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt

≤
∫

D±(ω)

∣∣∣f(ω, x, u(t, x))+ f
(
ω, x, ν(t, x)

)
− 2f

(
ω, x, k±

α (ω, x)
)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt .

Recall that the flux f(ω, x, ·) is locally Lipschitz continuous by Assumption (A-3) or Assumption (A-3’).

By hypothesis there exists an interval I ⊂ R, such that u(t, x) and ν(t, x) are contained in I for all

(t, x) ∈ T × X, since the functions u, ν satisfy u, ν ∈ L∞(T × X;R). Additionally, for each ω ∈ Ω

and each parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]), Assumption (A-2) ensures that the steady-state
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solutions k±
α satisfy k±

α ∈ L∞(T× X;R). Therefore, by applying the triangle inequality and the local

Lipschitz continuity afterwards, we obtain∣∣∣ ∫
D±(ω)

Qk±
α
ω,x

(
u(t, x),ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤ LI

∫
D±(ω)

(∣∣u(t, x)− k±
α (ω, x)

∣∣+ ∣∣ν(t, x)− k±
α (ω, x)

∣∣)∣∣∂xψ(t, x)∣∣ dx dt .

So far, we do not explicitly know that the above integrals are well defined. However, their existence

follows via the dominated convergence theorem from the subsequent estimation. For any two values

ξ1, ξ2 ∈ R, the identity |ξ1 − ξ2| = sign(ξ1 − ξ2)(ξ1 − ξ2) holds. Combining this identity with the

construction of the random set D±(ω) allows us to further estimate∣∣∣ ∫
D±(ω)

Qk±
α
ω,x

(
u(t, x),ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤ LI

∫
D±(ω)

sign
(
u(t, x)− k±

α (ω, x)
)(
u(t, x)− ν(t, x)

)∣∣∂xψ(t, x)∣∣ dx dt

≤ LI

∫
D±(ω)

∣∣u(t, x)− ν(t, x)
∣∣∣∣∂xψ(t, x)∣∣ dx dt .

Since the test function ψ is smooth and compactly supported, its spatial derivative ∂xψ is bounded.

Therefore, we obtain the estimate∣∣∣ ∫
D±(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣ ≤ LICψ∥u− ν∥L∞(T×X;R) ,

which shows that the Integral (6.11b) depends continuously on ν ∈ L∞(T× X;R).

Continuous dependence of Integral (6.11c). To show the continuous dependence of Integral

(6.11c), we start with the estimation∣∣∣ ∫
Duk(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣ ≤ ∫
Duk(ω)

∣∣∣Qk±
α
ω,x

(
u(t, x), ν(t, x)

)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt .

With the definition of the function Qk±
α
ω,x and the entropy flux q, leveraging the construction of the

random set Duk(ω) leads to the estimation∣∣∣ ∫
Duk(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤

∫
Duk(ω)

∣∣∣ sign (ν(t, x)− k±
α (ω, x)

)(
f
(
ω, x, ν(t, x)

)
− α

)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt ,

where we have used the steady-state Equation (6.4) to write α = f
(
ω, x, k±

α (ω, x)
)
. By definition of

the sign function, we have that

∣∣ sign (ν(t, x)− k±
α (ω, x)

)∣∣ ≤ 1. Furthermore, by construction of the

random set Duk(ω) it holds that

α = f
(
ω, x, k±

α (ω, x)
)
= f
(
ω, x, u(t, x)

)
for x ∈ Duk(ω) .
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Exploiting these results, we can conclude the continuous dependence of Integral (6.11c) via∣∣∣ ∫
Duk(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤

∫
Duk(ω)

∣∣∣f(ω, x, ν(t, x))− f
(
ω, x, u(t, x)

)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt

≤ CψLI∥ν − u∥L∞(T×X;R) .

Here, we first used the local Lipschitz continuity of the flux function f, which is guaranteed by Assumption

(A-3) or Assumption (A-3’) for an interval I ⊂ R containing both functions u, ν ∈ L∞(T× X;R) for

every (t, x) ∈ T×X. Finally, we applied the boundedness of the spatial gradient ∂xψ of the test function

ψ and its compact support to conclude the above continuous dependence estimate on Integral (6.11c).

Continuous dependence of Integral (6.11d). It remains to argue the continuous dependence of

the Integral (6.11d). However, the argumentation is completely analogous to the preceeding continuous

dependence proof of Integral (6.11c). Consequently, we end up with∣∣∣ ∫
Dνk(ω)

Qk±
α
ω,x

(
u(t, x), ν(t, x)

)
∂xψ(t, x) dx dt

∣∣∣ ≤ CψLI∥u− ν∥L∞(T×X;R) .

This shows the continuous dependence of Integral (6.11d) on ν ∈ L∞(T× X;R).

Combining the continuous dependence results of the Integrals (6.11a), (6.11b), (6.11c) and (6.11d) we can

conclude that the Integral (6.10b) of the adapted entropy functional Jαψ depends continuously on the

function ν ∈ L∞(T×X;R). This concludes the proof of showing continuous dependence of the adapted

entropy functional Jαψ . ■

With the last proposition, we have argued that the random adapted entropy functional Jαψ depends

continuously on the function ν ∈ L∞(T × X;R). Since we aim at showing that the functional Jαψ is

Carathéodory, it remains to show that it is measurable with respect to the stochastic parameter ω ∈ Ω.

The corresponding result is proven in the following proposition.

Proposition 6.13 (Stochastic measurability of adapted entropy functional):
Let u0 ∈ Lq

(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, be a random initial condition to Problem

(6.1). Furthermore, let the flux function f satisfy the Audusse-Perthame flux Assumption 6.1 as well as the
measurability Assumption 6.5. Moreover, let a steady-state parameter α ∈ [m0,∞) (or α ∈ (−∞,m0])
and a nonnegative test function ψ ∈ D(T× X;R) be fixed. Then, for a fixed function ν ∈ L∞(T× X;R),
the random adapted entropy functional Jαψ is stochastically measurable in the sense that the mapping
ω 7→ Jαψ(ω, ν) is measurable.

Proof. Let a parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]) be fixed and let k±
α denote the solutions

to the corresponding steady-state Equation (6.4). Furthermore, let a function ν ∈ L∞(T× X;R) and

a nonnegative test function ψ ∈ D(T × X;R) be fixed. We prove the stochastic measurability of

the random adapted entropy functional Jαψ in two steps: First, we establish the measurability of the

integrands of the entropy functional Mapping (6.10) with respect to ω ∈ Ω. Afterwards, we exploit that

information to deduce that the entropy functional itself is stochastically measurable, i.e., measurable

with respect to ω ∈ Ω.
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Measurability of integrands. The integrand of Integral (6.10a) is stochastically measurable as

soon as the steady-state solutions k±
α are measurable, since the other ingredients are independent of

ω ∈ Ω. However, this is exactly the statement of Proposition 6.8.

Using Proposition 6.8 to obtain the stochastic measurability of the steady-state solutions k±
α again, it

remains to argue that the initial condition u0 is measurable to obtain measurability of the integrand

of Integral (6.10c). Anyway, the random initial condition u0 satisfies u0 ∈ Lq
(
Ω;Lp(X;R)

)
, with

1 ≤ q <∞ and 1 ≤ p ≤ ∞, by hypothesis, which implies its measurability with respect to ω ∈ Ω.

It remains to argue the measurability of the integrand of Integral (6.10b). Here, we need to establish the

measurability of the term q
(
ω, x, ν(t, x), k±

α (ω, x)
)

with respect to ω ∈ Ω, since the test function ψ is

independent of it. Using the definition of the entropy flux q and the fact that the steady-state solutions

satisfy Equation (6.4), we can rewrite this term as

q
(
ω, x, ν(t, x), k±

α (ω, x)
)
= sign

(
ν(t, x)− k±

α (ω, x)
)(

f
(
ω, x, ν(t, x)

)
− f
(
ω, x, k±

α (ω, x)
))

= sign
(
ν(t, x)− k±

α (ω, x)
)(

f
(
ω, x, ν(t, x)

)
− α

)
.

From this formulation, we can readily deduce the stochastic measurability of the integrand of Integral

(6.10b): First, the steady-state solutions k±
α are measurable by Proposition 6.8 and the composition of

two Borel measurable functions is again measurable, which implies measurability of the sign term.

Secondly, the flux function f
(
ω, x, ν(t, x)

)
is measurable by Assumption (A-4) and α ∈ [m0,∞) (or

α ∈ (−∞,m0]) is independent of ω ∈ Ω. Noting that the pointwise product of measurable functions is

again measurable, we have shown the stochastic measurability of the integrand of Integral (6.10b).

Measurability of integrals. We now argue that measurability of the integrands implies that the

entropy functional Jαψ is stochastically measurable. Therefore, note that the test function ψ satisfies

ψ ∈ D(T × X;R) by hypothesis. This implies that ψ has a compact support and we can rewrite the

entropy functional Jαψ as the mapping

(ω, ν) 7→
∫

suppψ

∣∣ν(t, x)− k±
α (ω, x)

∣∣∂tψ(t, x) dx dt

+

∫
suppψ

q
(
ω, x, ν(t, x), k±

α (ω, x)
)
∂xψ(t, x) dx dt

+

∫
suppψ0

∣∣u0(ω, x)− k±
α (ω, x)

∣∣ψ(0, x) dx .
(6.12)

Here, we introduced the function ψ0 := ψ(0, ·). Since the support of the test function ψ (and also of ψ0)

is compact, taking the integral over suppψ and suppψ0 is a bounded linear operator. This means that

the integration is a continuous operation, because linear operators are bounded if and only if they are

continuous. Moreover, each integral in the mapping (6.12) is the composition of a continuous operator

with a measurable function, which implies measurability by [5, Lemma 4.22]. Consequently, we have

shown that the random adapted entropy functional Jαψ is stochastically measurable, which concludes

the proof. ■

With the preceeding two propositions, we have established that the random adapted entropy functional

Jαψ is Carathéodory, i.e., it is measurable in the stochastic parameter ω ∈ Ω and continuous in the

function ν ∈ L∞(T×X;R). We summarize this result in the following theorem, whose proof is omitted

to avoid redundancy to the previous propositions.
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Theorem 6.14 (Adapted entropy functional is Carathéodory):
Let u0 ∈ Lq

(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, be a random initial condition to Problem

(6.1). Furthermore, let the flux function f satisfy the Audusse-Perthame flux Assumption 6.1 as well as the
measurability Assumption 6.5. Moreover, let a steady-state parameter α ∈ [m0,∞) (or α ∈ (−∞,m0])
and a nonnegative test function ψ ∈ D(T× X;R) be fixed. Then, the random adapted entropy functional
Jαψ is Carathéodory, i.e., it is measurable in the stochastic parameter ω ∈ Ω and continuous with respect to
the function ν ∈ L∞(T× X;R).

6.2.3 Continuous dependence of entropy functional on steady-state parameter

In this subsection, we want to establish another continuous dependence result on the random adapted

entropy functional Jαψ . Specifically, we aim at showing that Jαψ depends continuously on the steady-state

parameter α. This continuity property is important for arguing strong measurability of random adapted

entropy solutions in the proceeding section, which discusses the well-posedness of solutions. The sought

continuous dependence result on the functional Jαψ is justified in the next theorem.

Theorem 6.15 (Continuous dependence of functional on steady-state parameter):
Let u0 ∈ Lq

(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, be a random initial condition to Problem

(6.1). Furthermore, let the flux function f satisfy the Audusse-Perthame flux Assumption 6.1 and let a
nonnegative test function ψ ∈ D(T× X;R) be fixed. Then, for a fixed stochastic parameter ω ∈ Ω and a
fixed function ν ∈ L∞(T×X;R), the random adapted entropy functional Jαψ depends continuously on the
steady-state parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]).

Proof. Let the stochastic parameter ω ∈ Ω, a nonnegative test function ψ ∈ D(T × X;R) and a

function ν ∈ L∞(T× X;R) be fixed. To prove the continuous dependence of the functional Jαψ on the

steady-state parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]), we consider each integral of mapping (6.10)

separately:

By Proposition 6.7, the solutions k±
α of the steady-state Equation (6.4) depend continuously on the steady-

state parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]). This readily implies that the integrands of Integral

(6.10a) and Integral (6.10c) depend continuously on the steady-state parameter α. Furthermore, the test

function ψ ∈ D(T × X;R) and its temporal derivative ∂tψ are compactly supported by hypothesis.

Thereby, both Integrals (6.10a) and (6.10c) are finite and the continuous dependence can be deduced via

dominated convergence. For details on this argument, we refer to [98, Theorem 5.6].

It remains to show the continuous dependence of Integral (6.10b) on the steady-state parameter α.

Therefore, let two parameters α, β ∈ [m0,∞) (or α, β ∈ (−∞,m0]) be given. Analogously to the

proof of Proposition 6.12, we have to deal with the varying values of the sign terms in the adapted

entropy flux q. Therefore, for any stochastic parameter ω ∈ Ω, we define the following four random

sets D(·)(ω) ⊂ T× X:

D=(ω) :=
{
(t, x) ∈ T× X | sign

(
ν(t, x)− k±

α (ω, x)
)
= sign

(
ν(t, x)− k±

β (ω, x)
)}
,

D±(ω) :=
{
(t, x) ∈ T× X | sign

(
ν(t, x)− k±

α (ω, x)
)
= − sign

(
ν(t, x)− k±

β (ω, x)
)}
,
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Dνα(ω) :=
{
(t, x) ∈ T× X | ν(t, x) = k±

α (ω, x)
}
,

Dνβ(ω) :=
{
(t, x) ∈ T× X | ν(t, x) = k±

β (ω, x)
}
.

Note, the union of these sets always results in the whole space-time domain T × X. However, the

random sets D(·)(ω) are not necessarily disjoint, but the entropy flux vanishes on the intersection by

construction. Therefore, we can exploit these sets to split up the integration. With the triangle inequality,

we obtain the estimation∣∣∣ ∫
T

∫
X

q
(
ω, x, ν(t, x),k±

α (ω, x)
)
∂xψ(t, x) dx dt−

∫
T

∫
X

q
(
ω, x, ν(t, x), k±

β (ω, x)
)
∂xψ(t, x) dx dt

∣∣∣
≤
∣∣∣ ∫
D=(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣ (6.13a)

+
∣∣∣ ∫
D±(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣ (6.13b)

+
∣∣∣ ∫
Dνα(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣ (6.13c)

+
∣∣∣ ∫
Dνβ(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣ . (6.13d)

Here, the function Qν
ω,x denotes the difference of two adapted entropy fluxes in the sense that

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
:= q

(
ω, x, ν(t, x), k±

α (ω, x)
)
− q
(
ω, x, ν(t, x), k±

β (ω, x)
)
.

With these sets at hand, we can proceed with the estimation by considering each integral in the above

Inequality (6.13) separately:

Continuous dependence on Integral (6.13a). We start by estimating∣∣∣ ∫
D=(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣ ≤ ∫
D=(ω)

∣∣∣Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt .

Inserting the definitions of the function Qν
ω,x and of the entropy flux q, we can leverage the construction

of the random set D=(ω) to further estimate∣∣∣ ∫
D=(ω)

Qν
ω,x

(
k±
α (ω, x),k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤

∫
D=(ω)

∣∣∣f(ω, x, k±
β (ω, x)

)
− f
(
ω, x, k±

α (ω, x)
)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt .

Now, the functions k±
α and k±

β satisfy the steady-state Equation (6.4) by construction. Furthermore,

the test function ψ is smooth and compactly supported by hypothesis, which implies that its spatial

derivative is bounded. This leads to the estimate∣∣∣ ∫
D=(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣ ≤ Cψ
∣∣β − α

∣∣ ,
which proves the continuous dependence of Integral (6.13a) on the parameters α, β ∈ [m0,∞) (or

α, β ∈ (−∞,m0]).
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Continuous dependence on Integral (6.13b). For the continuous dependence proof of Integral

(6.13b), we start again by estimating∣∣∣ ∫
D±(ω)

Qν
ω,x

(
k±
α (ω, x),k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤

∫
D±(ω)

∣∣∣Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt .

With the definition of the function Qν
ω,x and the entropy flux q, exploiting the construction of the

random integral set D±(ω) allows us to further estimate∣∣∣ ∫
D±(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤

∫
D±(ω)

∣∣∣2f(ω, x, ν(t, x))− f
(
ω, x, k±

β (ω, x)
)
− f
(
ω, x, k±

α (ω, x)
)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt .

To continue with the estimation, we employ the triangle inequality and use the fact that the sign function

is bounded from above by 1. Furthermore, the functions ν, k±
α , k

±
β satisfy ν ∈ L∞(T × X;R) and

k±
α (ω, ·), k±

β (ω, ·) ∈ L∞(X;R), respectively. Therefore, by the local Lipschitz continuity Assumption

(A-3) (or Assumption (A-3’)), there exists an interval I ⊂ R, which contains ν, k±
α and k±

β . On this

interval, the flux function is Lipschitz continuous, which leads to the estimation∣∣∣ ∫
D±(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤ LI

∫
D±(ω)

(∣∣ν(t, x)− k±
α (ω, x)

∣∣+ ∣∣ν(t, x)− k±
β (ω, x)

∣∣)∣∣∂xψ(t, x)∣∣ dx dt .

Recall that, for any two scalar values ξ1, ξ2 ∈ R, the identity |ξ1 − ξ2| = sign(ξ1 − ξ2)(ξ1 − ξ2) holds.

Inserting this identity into the above inequality yields∣∣∣ ∫
D±(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤ LI

∫
D±(ω)

(
sign

(
ν(t, x)− k±

α (ω, x)
)(
ν(t, x)− k±

α (ω, x)
)

+ sign
(
ν(t, x)− k±

β (ω, x)
)(
ν(t, x)− k±

β (ω, x)
))∣∣∂xψ(t, x)∣∣ dx dt .

With this estimation, we can leverage the construction of the random set D±(ω) again. Also using the

fact that the sign function is bounded by 1 from above, we obtain the estimate∣∣∣ ∫
D±(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤ LI

∫
D±(ω)

sign
(
ν(t, x)− k±

α (ω, x)
)(

k±
β (ω, x)− k±

α (ω, x)
)∣∣∂xψ(t, x)∣∣ dx dt

≤ LI

∫
D±(ω)

(
k±
β (ω, x)− k±

α (ω, x)
)∣∣∂xψ(t, x)∣∣ dx dt .
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Since the steady-state solutions k±
α , k

±
β are implicitly defined via the steady-state Equation (6.4), it

follows that they are given as the functions

k±
α (ω, x) = f−1

± (ω, x, α) for H1
-almost every x ∈ R ,

k±
β (ω, x) = f−1

± (ω, x, β) for H1
-almost every x ∈ R .

Here, the function f−1
± (ω, x, ·) denotes the inverse of the flux function f(ω, x, ·), which exists by Corollary

6.4. Furthermore, by the boundedness Assumption (A-6) on the inverse flux function, using the linearity

of the integral leads to the estimation∣∣∣ ∫
D±(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤ LI

∫
D±(ω)

w(ω, β)
∣∣∂xψ(t, x)∣∣ dx dt+ LI

∫
D±(ω)

w(ω, α)
∣∣∂xψ(t, x)∣∣ dx dt .

By hypothesis, the test function ψ is smooth and compactly supported, which implies that its spatial

derivative is bounded. Therefore, we can further estimate∣∣∣ ∫
D±(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣ ≤ LICψw(ω, β) + LICψw(ω, α) .

Here, the function w(ω, ·) is continuous by Assumption (A-6), which proves the continuous dependence

of Integral (6.13b).

Continuous dependence on Integral (6.13c). We start with the estimation∣∣∣ ∫
Dνα(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣ ≤ ∫
Dνα(ω)

∣∣∣Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt .
Exploiting the construction of the random set Duk(ω) after inserting the definitions of the function Qν

ω,x

and the entropy flux q yields∣∣∣ ∫
Dνα(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤

∫
Dνα(ω)

∣∣∣q(ω, x, ν(t, x), k±
α (ω, x)

)
− q
(
ω, x, ν(t, x), k±

β (ω, x)
)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt

≤
∫

Dνα(ω)

∣∣∣ sign (ν(t, x)− k±
β (ω, x)

)
·
(
f
(
ω, x, ν(t, x)

)
− f(ω, x, k±

β (ω, x)
))∣∣∣∣∣∂xψ(t, x)∣∣ dx dt .

Since the sign function is bounded by 1 from above, we can leverage the construction of the random set

Duk(ω) again to obtain∣∣∣ ∫
Dνα(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣
≤

∫
Dνα(ω)

∣∣∣f(ω, x, k±
α (ω, x)

)
− f(ω, x, k±

β (ω, x)
)∣∣∣∣∣∂xψ(t, x)∣∣ dx dt .

By their construction, the functions k±
α , k

±
β satisfy the steady-state Equation (6.4). This already concludes
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the continuous dependence estimate for Integral (6.13c), as we can estimate∣∣∣ ∫
Dνα(ω)

Qν
ω,x

(
k±
α (ω, x), k

±
β (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣ ≤ Cψ
∣∣α− β

∣∣ .
Here, the constant Cψ > 0 results from the integral being finite, since the spatial derivative of the test

function is bounded and compactly supported by hypothesis ψ ∈ D(T× X;R).

Continuous dependence on Integral (6.13d). Proving the continuous dependence of Integral

(6.13d) on the steady-state parameters α, β is completely analogous to arguing that Integral (6.13c)

depends continuously on these parameters. As a result, we obtain the estimation∣∣∣ ∫
Dνβ(ω)

Qν
ω,x

(
k±
β (ω, x), k

±
α (ω, x)

)
∂xψ(t, x) dx dt

∣∣∣ ≤ Cψ
∣∣α− β

∣∣ ,
which concludes this step of the proof.

Combining the continuous dependence results of the Integrals (6.13a), (6.13b), (6.13c) and (6.13d) concludes

the proof of showing that Integral (6.13) depends continuously on the steady-state parameter. Therefore,

we have shown the assertion stating that the random adapted entropy functional Jαψ depends continuously

on the steady-state parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]). ■

6.3 Well-posedness of random adapted entropy solutions

In this section, we investigate the well-posedness of random adapted entropy solutions to the scalar

discontinuous-flux conservation law given by Problem (6.1). Since the conservation law is random, this

well-posedness does not only include (pathwise) existence and uniqueness of a solution, but also its

strong measurability with respect to the stochastic parameter ω ∈ Ω. This strong measurability allows

us to interpret the adapted entropy solution u as a L∞(T× X;R)-valued, Bochner-integrable random

variable u : Ω → L∞(T×X;R). Furthermore, such an interpretation admits investigating the moments

of the random adapted entropy solution to describe its statistical properties.

To investigate the well-posedness of random adapted entropy solutions, we first discuss the pathwise

existence and uniqueness of such solutions in Section 6.3.1. Afterwards, in Section 6.3.2, we establish

the strong measurability of these solutions. We conclude this section by investigating the existence of

stochastic moments of adapted entropy solutions in Section 6.3.3.

6.3.1 Pathwise existence and uniqueness of random entropy solutions

We start the well-posedness analysis by discussing the pathwise existence and uniqueness of random

adapted entropy solutions. Therefore, let us stress that our formulation of the Audusse-Perthame flux

Assumption 6.1 reduces to the deterministic framework, once ω ∈ Ω is fixed. Consequently, the pathwise

existence and uniqueness is argued similar as the deterministic results, where the first was justified in

[61] and the latter was established in [18]. Due to this similarity, only the main ideas for proving the

following theorem are given.
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Theorem 6.16 (Pathwise existence & uniqueness of adapted entropy solutions):
Let u0 ∈ Lq

(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, be a random initial condition to

Problem (6.1). Furthermore, let the flux function f satisfy the Audusse-Perthame flux Assumption 6.1.
Then, for every stochastic parameter ω ∈ Ω, there exists a unique pathwise adapted entropy solution
u(ω, ·, ·) ∈ L∞(T× X;R) ∩ C

(
T;L1

loc(R)
)

of the initial value Problem (6.1). Furthermore, two pathwise
adapted entropy solutions u(ω, ·, ·), ũ(ω, ·, ·) corresponding to initial conditions u0, ũ0 satisfy for almost
every time t ∈ T:

b∫
a

|u(ω, t, x)− ũ(ω, t, x)| dx ≤
b+Mf(ω)t∫
a−Mf(ω)t

|u0(ω, x)− ũ0(ω, x)| dx . (6.14)

Here, the random number Mf(ω) is the pathwise bound of the flux function resulting from Corollary 6.3,
cf. Equation (6.2). Furthermore, the values a, b ∈ R are arbitrary with a < b.

Proof (main ideas). Let the stochastic parameter ω ∈ Ω be fixed. The existence of a pathwise

adapted entropy solution is proved similarly as for the deterministic case and the corresponding result

was established in [61]. The proof is based on the reduction of measure-valued solutions to adapted

entropy solutions in L∞
and the consideration of a mollified version of the problem.

For the uniqueness argument, which was shown in [18], the use of adapted Kružkov entropies allows the

argumentation via the doubling of variables procedure of Kružkov [173]. Then, the L1
-contraction

principle (6.14) is an immediate consequence of the uniqueness result. ■

6.3.2 Strong measurability of random adapted entropy solutions

To complete the well-posedness investigation, this section establishes strong measurability of random

adapted entropy solutions u : Ω → L∞(T× X;R). Recall that strong measurability requires that the

image of u(Ω) is separable. While the function space L∞(T× X;R) is not separable, we can leverage

the stationarity of the flux function f. Recall that Panov [228] has shown that each entropy solution

u(ω, ·, ·) ∈ L∞(T× X;R) has a representative in the function space C
(
T;L1

loc(X;R)
)
. Consequently,

the solution only takes values in the space

S := L∞(T× X;R) ∩ C
(
T;L1

loc(X;R)
)
,

which is separable, since the space L1(X;R) of integrable functions is separable and a dense subset

of L1
loc(X;R). Then, the separability follows from the time interval T = [0, T ] being compact. For

the details, we refer to Example 3.49 (ii). Using this separable space S containing the random adapted

entropy solution, we have now all ingredients necessary to prove the strong measurability of these

solutions.

Theorem 6.17 (Measurability of adapted entropy solutions):
Let u0 ∈ Lq

(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, be a random initial condition to Problem

(6.1). Furthermore, let f be a flux function that satisfies the Audusse-Perthame flux Assumption 6.1 and the
measurability Assumption 6.5. Then, the random adapted entropy solution u is strongly measurable in the
sense that the mapping u : Ω → S with ω 7→ u(ω, ·, ·) is strongly measurable.
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Proof. The proof is divided into three steps: First, we construct a modified entropy functional

that inherits the properties of being Carathéodory and continuously depending on the steady-state

parameters from the standard adapted entropy functional. Afterwards, we prove that this modified

entropy functional can represent the adapted entropy Condition (6.9) and that a corresponding set-valued

map is measurable. In the third step, we connect the constructed set-valued map to the random adapted

entropy solution to Problem (6.1) to show its measurability. A technical justification of an argument in

step three is postponed for readability purposes. This result is argued directly after this proof.

Step 1: Random modified entropy functional. For N ∈ N, define a sequence of function spaces

consisting of smooth nonnegative functions with compact support via

DN :=
{
ψ ∈ C∞(T× X;R≥0) | supp(ψ) ⊆

{
(t, x) ∈ T× X | t ∈ [0, N ] and x ∈ BN (0)

}}
.

Here, BN (x) denotes the closed ball with radius N around x. Each trunctated space DN is a subspace

of C∞(T× X;R≥0) by construction. Thereby, since C∞
has a countable basis, DN also has a countable

basis. Consequently, for every nonnegative test function ψ ∈ D(T × X;R) = C∞
c (T × X;R), there

exists a constant Rψ ∈ N, such that ψ ∈ DRψ .

Now, fix a number N ∈ N and let (ψiN , i ∈ N) ⊂ DN be a basis of the space DN . Then, for a fixed

steady-state parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]) and a fixed number i ∈ N, we define the

random modified entropy functional Jαi,N : Ω× S → R via the mapping

(ω, ν) 7→
∫
T

∫
X

∣∣ν(t, x)− k±
α (ω, x)

∣∣∂tψiN (t, x) dx dt

+

∫
T

∫
X
q
(
ω, x; ν(t, x), k±

α (ω, x)
)
∂xψ

i
N (t, x) dx dt

−
∫
X

∣∣u0(ω, x)− k±
α (ω, x)

∣∣ψiN (0, x) dx .
Here, the functions k±

α are the solutions to the steady-state Equation (6.4) with steady-state parameter

α and q is the Kružkov entropy flux defined via Equation (6.8). Note, we can apply Theorem 6.14 to

obtain that the random modified entropy functional Jαi,N is Carathéodory.

Step 2: Measurable set-valued map. For the parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]) and

i,N ∈ N still being fixed, we define the set-valued mapping

Ξαi,N : Ω ⇒ S ω 7→
{
ν ∈ S | Jαi,N (ω, ν) ≥ 0

}
.

This multifunction selects all functions ν ∈ S satisfying the adapted entropy Condition (6.9) for a fixed

steady-state parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]) and a fixed test function ψiN ∈ DN . Since the

function space S = L∞(R× T) ∩ C
(
T;L1

loc(R)
)

is separable, we can apply Lemma 2.9 to obtain that

the set-valued map Ξαi,N is measurable.

Step 3: Singleton containing solution. To omit functions ν ∈ S that only satisfy the adapted

entropy Condition (6.9) for some fixed test function ψiN , we define the set-valued map

Ξα : Ω ⇒ S Ξα(ω) :=
⋂
i∈N

⋂
N∈N

Ξαi,N (ω) for ω ∈ Ω .

This correspondence is measurable, since the countable intersection of measurable maps is again

measurable. Furthermore, Ξα now contains all the functions ν ∈ S that satisfy the adapted entropy
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condition for fixed steady-state parameter α ∈ [m0,∞) (or α ∈ (−∞,m0]) and i,N ∈ N, but for all

test functions ψ ∈ D. Now, we can define the set-valued mapping

Ξ : Ω ⇒ S Ξ(ω) :=
⋂

α∈A∩Q
Ξα(ω) for ω ∈ Ω .

Here, the set A corresponds to R in the case of Assumption (A-3’) or to either the set [m0,∞) (or

(−∞,m0]) in case of Assumption (A-3). Again, this set-valued map Ξ is measurable via the countable

intersection of measurable maps. Furthermore, the measurable mapping Ξ now contains all those

functions ν ∈ S satisfying the random adapted entropy condition (without any restrictions due to

fixed variables or functions). While the adapted entropy condition (6.9) is formulated to hold for every

parameter α ∈ A, it is sufficient to only consider α ∈ A ∩Q. For readability purposes, the verification

of this claim is postponed until after this proof.

To conclude the proof, we note that by Theorem 6.16 there exists a unique random adapted entropy

solution for every stochastic parameter ω ∈ Ω. Therefore, the correspondence Ξ only contains this

pathwise adapted entropy solution of Problem (6.1), which is measurable as a map u : Ω → S due to the

measurability of Ξ. Since the function space S is separable by construction, this proves the assertion. ■

Sufficiency of intersecting over rationals. It remains to justify that it is sufficient to intersect

over the values α ∈ A ∩Q to select functions that satisfy the random adapted entropy Condition (6.9)

for every steady-state parameter α ∈ A. We show this via a contradiction:

Assume that intersecting over A ∩Q is not sufficient to select the adapted entropy solution, which is

unique by Theorem 6.16. Then, for α ∈ A ∩Q, the set Ξ(ω) does contain the random adapted entropy

solution u and another function ν. By construction, both functions satisfy the adapted entropy Condition

(6.9) for the steady-state parameter α ∈ A ∩Q. However, due to the uniqueness result of Theorem 6.16,

for β ∈ A \Q, the image of Ξ(ω) only contains the adapted entropy solution u. By Definition 6.11 of

the random adapted entropy functional, this means that there exist indices j,M ∈ N such that

Jαi,N (ω, ν) ≥ 0 for all i,N ∈ N Jβj,M (ω, ν) < 0 for j,M ∈ N .

Due to Theorem 6.15 the random adapted entropy functional Jβj,M is continuous with respect to the

steady-state parameter β ∈ A. Thus, for ε > 0, there exists an ε-neighborhood Bε around the value

Jβj,M (ω, ν) such that for every ξ ∈ Bε it holds that ξ < 0. Again using the continuous dependence

of Jβj,M in β and noting that Q is a dense subset of R, there exists a δ > 0 and β′ ∈ A ∩ Q such that

|β − β′| < δ and Jβ
′

j,M (ω, ν) ∈ Bε.

The fact that Jβ
′

j,M (ω, ν) ∈ Bε implies Jβ
′

j,M (ω, ν) < 0, which is a contradiction to Jαi,N (ω, ν) ≥ 0 for all

i,N ∈ N and all parameters α ∈ A ∩Q. Consequently, it is sufficient to intersect over A ∩Q instead of

A to select the unique adapted entropy solution. ■

6.3.3 Existence of moments of random adapted entropy solutions

We conclude this section on the well-posedness of random adapted entropy solutions by investigating

the existence of stochastic moments of the solution. These moments are a tool to describe the random

solution via its statistical properties. The main ingredient in discussing the existence of moments is the
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L1
-contraction Property (6.14) of the pathwise adapted entropy solutions. To employ this property, we

assume that the initial condition u0 is integrable. Furthermore, we have to ensure that a zero initial

condition u0 ≡ 0 leads to the zero adapted entropy solution u ≡ 0. Therefore, we impose the following

technical assumption on the Audusse-Perthame flux function.

Assumption 6.18 (Zero mass creation):
We assume that the Audusse-Perthame flux function f is chosen such that the zero initial condition u0 ≡ 0

leads to the vanishing G-entropy solution u ≡ 0.

Note, the family of multiplicative flux functions from Example 6.2 automatically satisfy the above

assumption. The subsequent theorem states a general existence result of moments of the adapted

entropy solution for arbitrary random integrable initial conditions.

Theorem 6.19 (Existence of moments of adapted entropy solutions):
Let u0 ∈ Lq

(
Ω;L1(X;R)

)
, with 1 ≤ q <∞, be a random initial condition to Problem (6.1). Furthermore,

let f be a flux function that satisfies the Audusse-Perthame flux Assumption 6.1 and the measurability
Assumption 6.5 as well as the zero-mass-creation Assumption 6.18. Then, at almost every time t ∈ T,
the random adapted entropy solution u admits moments up to order q. In particular, the adapted entropy
solution satisfies

∥u(ω, t, x)∥Lq(Ω;L1(X;R)) ≤ ∥u0(ω, x)∥Lq(Ω;L1(X;R)) (6.15)

for almost every time t ∈ T.

Proof. Once the estimation (6.15) is established, the existence of moments up to order q ∈ [1,∞)

follows directly from the hypothesis that the initial condition u0 satisfies u0 ∈ Lq
(
Ω;L1(X;R)

)
. For

every stochastic parameter ω ∈ Ω, a pathwise adapted entropy solution u(ω, ·, ·) exists and is unique

due to Theorem 6.16. Furthermore, this adapted entropy solution u(ω, ·, ·) is strongly measurable by

Theorem 6.17. Thus, for any 1 ≤ q <∞, we can compute∥∥∥u(ω, t, x)∥∥∥q
Lq(Ω;L1(X;R))

=

∫
Ω

∥∥∥u(ω, t, x)∥∥∥q
L1(X;R)

dP ≤
∫
Ω

∥∥∥u0(ω, x)∥∥∥q
L1(X;R)

dP .

Here, we used the pathwise L1
-contraction property (6.14) of the random adapted entropy solution

and chose ũ0 ≡ 0. Due to the zero-mass-creation Assumption 6.18, this implies that ũ vanishes in the

pathwise L1
-contraction property (6.14). Based on this estimation, the assertion follows by taking the

q-th root and noting that these integrals exist due to the presumption u0 ∈ Lq
(
Ω;L1(X;R)

)
on the

initial condition. ■

Roughly speaking, the above result states that the random adapted entropy solution inherits the existence

of moments from the underlying (random) initial condition u0. Therefore, as an immediate consequence,

we obtain the existence of all moments of order 1 ≤ q <∞, if the initial condition is deterministic. We

precise this statement in the following corollary, which also concludes the investigation of stochastic

moments of the adapted entropy solution u.

Corollary 6.20 (Existence of moments for deterministic initial conditions):
Let u0 ∈ L1(X;R) be a deterministic initial condition to the scalar discontinuous-flux conservation law
given by Equation (6.1). Furthermore, let f be a flux function that satisfies the Audusse-Perthame flux
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Assumption 6.1 and the measurability Assumption 6.5 as well as the zero-mass-creation Assumption 6.18.
Then, for almost every time t ∈ T, the random adapted entropy solution u admits all moments of order
1 ≤ q <∞.

Proof. For every stochastic parameter ω ∈ Ω, a pathwise adapted entropy solution u(ω, ·, ·) exists

and is unique due to Theorem 6.16. Furthermore, this random adapted entropy solution u(ω, ·, ·) is

strongly measurable by Theorem 6.17. Utilizing the result of Theorem 6.19 on the existence of moments

of random adapted entropy solutions, we obtain the estimation

∥u(ω, t, x)∥Lq(Ω;L1(X;R)) ≤
∫
Ω
∥u0(x)∥qL1(X;R) dP = ∥u0(x)∥qL1(X;R)

for almost every time t ∈ T. Thus, the assertion follows by taking the q-th root, since the initial condition

u0 satisfies u0 ∈ L1(X;R) by hypothesis. ■
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In the previous chapter, we established a well-posedness theory for random scalar discontinuous-flux

conservation laws in one spatial dimension. This well-posedness theory avoids the rather restrictive

assumption that ensure uniform L∞
-bounds on the entropy solution, which was required in Part

I. Additionally, the presented framework allows the flux function to have infinitely many spatial

discontinuities that may have an accumulation point. However, the restriction to one spatial dimension

is another restraining limitation for real-world applications.

In this chapter, we extend the framework of Chapter 6 to multiple space dimensions. Since such an

extension is not straightforward, generalizing the theory of random scalar discontinuous-flux conser-

vation laws to mutliple space dimensions requires some restrictions on the considered type of flux

functions. The presented extension is based on the deterministic work of Panov [230], who developed

a well-posedness theory for so-called Panov-type flux functions.

As in the previous chapters, let (Ω,Σ,P) be a complete probability space. Furthermore, let a time

interval T := [0, T ] with a final time 0 < T < ∞ and a spatial domain X := Rd be given. Then, for

unknown u := u(ω, t,x), the random scalar conservation law reads

∂tu+ divx f(ω,x, u) = 0 in Ω× T× X ,

u(ω, 0,x) = u0(ω,x) on Ω× {0} × X .
(7.1)

Here, u0 ∈ Lq
(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, is a random initial condition. As in

chapter 6, the flux function f is assumed to depend discontinuously on the spatial coordinate x ∈ X and

does not depend on the time t ∈ T. Additionally, we assume the flux function f to be a Panov-type flux
function, which means that it has the form

f(ω,x, υ) = g
(
ω,Z(ω,x, υ)

)
. (7.2)

Here, the random function g(ω, ·) is assumed to be continuous and the random function Z(ω, ·, ·) is

assumed to be Carathéodory for each stochastic parameter ω ∈ Ω. A more detailed discussion of this

type of flux functions and the corresponding steady-state equation is presented in Section 7.1. Afterwards,

in Section 7.2, the notion of random entropy solutions is introduced and the corresponding entropy
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functionals are discussed, including their properties. These entropy functionals are exploited in Section

7.3 to argue the strong measurability of random entropy solutions as part of the well-posedness discussion,

which includes pathwise existence and uniqueness. The Chapter is concluded by an investigation of the

existence of moments of random entropy solutions at the end of Section 7.3.

7.1 Panov-type flux functions and steady-state solutions

In this section, we discuss random Panov-type flux functions, which are given by Equation (7.2). Similar

to the idea of Audusse-Perthame flux functions in Chapter 6, these fluxes ensure the existence of solutions

to the corresponding steady-state problem of the conservation law. Starting with a general discussion of

Panov-type flux functions in Section 7.1.1, the corresponding random steady-state solutions and their

properties are discussed in Section 7.1.2.

7.1.1 Panov-type flux functions

We start the discussion by introducing a randomized version of Panov-type flux functions, which are

given by Equation (7.2). While this particular form is a potential restriction, it allows to generalize the

Audusse-Perthame setting to mutliple space dimensions. In particular, we may have infinitely many flux

discontinuities and the entropy solutions need not satisfy any a-priori L∞
-bound assumption. To precise

the conditions on the flux function, we impose the following pathwise assumption on the randomized

Panov-type flux function.

Assumption 7.1 (Pathwise assumption for random Panov-type fluxes):
For every stochastic parameter ω ∈ Ω we assume that the random Panov-type flux function f given by
Equation (7.2) satisfies the following assumptions:

(P-1) The function g(ω, ·) is continuous as a function g(ω, ·) ∈ C(R;Rd).

(P-2) The function Z(ω, ·, ·) is Carathéodory in the sense that the mapping x 7→ Z(ω,x, υ) is measurable
and the mapping υ 7→ Z(ω,x, υ) is continuous.

(P-3) The function Z(ω,x, ·) is strictly increasing.

(P-4) There exist two continuous functions f−(ω, ·), f+(ω, ·) ∈ C(R;R) such that the function Z is
bounded in the sense

f−(ω, υ) ≤ |Z(ω,x, υ)| ≤ f+(ω, υ) for all x ∈ Rd

and the function f−(ω, ·) satisfies limυ→∞ f−(ω, υ) → ∞.

(P-5) The flux function f(ω,x, ·) is locally Lipschitz continuous with a Lipschitz constant that is indepen-
dent of the spatial position x ∈ Rd.

At a first glance, the local Lipschitz Assumption (P-5) on the flux may seem rather arbitrary. Indeed, an

assumption on the character of continuity of the flux function would be sufficient as the subsequent

remark specifies.
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Remark 7.2 (Mitigating the local Lipschitz assumption): The local Lipschitz continuity Assumption
(P-5) on the Panov-type flux function f(ω,x, ·) can be mitigated to an assumption on the character of
continuity of the flux. The simplest of such an assumption is to assume the existence of a modulus of
continuity for the flux function. For the details on this mitigation, we refer the reader to [230, Section §3] or
[171, 172] for details.

This weaker assumption is always satisfied for one-dimensional scalar conservation laws and for locally

Lipschitz continuous flux functions. We restrict ourselves to the case of local Lipschitz continuity,

since it simplifies the subsequent discussion. Additionally, the more general character of continuity

assumption would increase the technical complexity of some of the presented proofs without generating

any additional insight. Before we conclude this discussion of random flux function of Panov type, we

impose the following assumption on the stochastic measurability of the flux. Here, again the form

induced by Equation (7.2) is exploited.

Assumption 7.3 (Stochastic measurability of flux function):
Let f be a flux function that satisfies the Panov-type flux Assumption 7.1. Additionally, we assume that the
flux f given by Equation (7.2) satisfies the following stochastic measurability assumptions:

(P-6) For every value υ ∈ R, the mapping ω 7→ g(ω, υ) is measurable.

(P-7) For every value υ ∈ R and Hd-almost every spatial point x ∈ Rd, the mapping ω 7→ Z(ω,x, υ) is
measurable.

7.1.2 Random steady-state solutions

The idea of Panov [230] is inspired by the works of Baiti and Jenssen [23] and Audusse

and Perthame [18] and relies on replacing the Kružkov entropy constant by the solutions to the

steady-state problem. With the definitions of the previous Section, this random steady-state problem is

given as

Z
(
ω,x, kα(ω,x)

)
= α for Hd − almost every x ∈ X . (7.3)

By the Panov-type flux Assumption 7.1, the function Z(ω,x, ·) is continuous and strictly monotone

(increasing). Therefore, it admits an inverse, which is also continuous and strictly monotone increasing.

This allows us to formulate the following pathwise existence result for random steady-state solutions.

Since the argumentation is completely analogous to the discussion of Corollary 6.4 and Section 6.1.2, we

omit the proof of the subsequent corollary.

Corollary 7.4 (Existence of steady-state solutions):
Let the Panov-type flux function f, defined by Equation (7.2), satisfy the pathwise flux Assumption 7.1.
Then, for every stochastic parameter ω ∈ Ω and every value α ∈ R, there exists a unique solution kα to the
random steady-state Problem (7.3).

The Assumption 7.1 on Panov-type flux functions allows us to immediately deduce some important

properties of the random steady-state solutions kα. Since the justification is analogous to the determin-

istic setting, which can be found in the introduction of [230], we again omit the proof of the following

proposition.
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Proposition 7.5 (Properties of steady-state solutions):
For every stochastic parameter ω ∈ Ω, the random steady-state solution k(ω, ·, α) := kα(ω, ·) possesses
the following properties:

(i) The steady-state solution k(ω, ·, ·) is Carathéodory in the sense that k(ω,x, α) is measurable with
respect to the spatial coordinate x ∈ Rd and continuous in α ∈ R.

(ii) For a fixed point x ∈ Rd, the steady-state solution k(ω,x, ·) is strictly increasing.

(iii) For every scalar value Rk > 0, the steady-state solution k(ω, ·, ·) is essentially bounded in the sense
that the function

MRk (ω,x) := max
|α|≤Rk

∣∣k(ω,x, α)∣∣
satisfies MRk (ω, ·) ∈ L∞(R;R).

Even though we can ensure the measurability of the Panov-type flux function f via Assumption 7.3, this

knowledge is not sufficient to argue the stochastic measurability of the random steady-state solutions.

Therefore, we impose the following assumption that guarantees that the random steady-state solutions

kα are measurable with respect to the stochastic parameter ω ∈ Ω.

Assumption 7.6 (Stochastic measurability of steady-state solutions):
Let a steady-state parameter α ∈ R be fixed. We assume that, for almost every spatial coordinate x ∈ Rd,
the corresponding steady-state solution kα is stochastically measurable in the sense that the mapping
ω 7→ kα(ω,x) is measurable.

7.2 Random entropy solutions and functionals

The next step towards discussing the well-posedness of random scalar conservation laws with discon-

tinuous flux functions of Panov-type is to introduce the underlying notion of random entropy solutions.

These solutions are defined via an entropy condition, which can also be formulated via a corresponding

entropy functional. In Section 7.2.1, we introduce the entropy inequality to select solutions in the Panov-

type flux function setting. Additionally, we exploit this entropy condition to define the corresponding

random entropy functionals. Afterwards, Sections 7.2.2 and 7.2.3 are devoted to establish that this

random entropy functional is Carathéodory and depends continuously on the steady-state parameter

α ∈ R, respectively.

7.2.1 Notion of random entropy solutions and functionals

We start the discussion of random entropy solutions and random entropy functionals by defining the

notion of a pathwise entropy solution for random scalar conservation laws with a Panov-type flux

function. Here, the crucial idea for admissibility of solutions is to replace the entropy constant k ∈ R of

the Kružkov entropy Condition (1.2) by the random steady-state solutions kα for steady-state parameters

α ∈ R. This leads to the following definition.

Conservation Laws with Random Discontinuous Flux Functions



7.2 Random entropy solutions and functionals 173

Definition 7.7 (Entropy solution for Panov-type flux functions):
Let a ω ∈ Ω be fixed and let the flux function f satisfy the Panov-type flux Assumption 7.1. A function
u(ω, ·, ·) ∈ L∞(T × X;R) ∩ C

(
T;L1

loc(X;R)
)

is called an entropy solution to the scalar conservation
law given by Equation (7.1) on T × X, provided that for each parameter α ∈ R and the corresponding
steady-state solution kα of Equation (7.3), the entropy inequality∫

T

∫
X

∣∣u(ω, t,x)− kα(ω,x)
∣∣∂tψ(t,x) dx dt

+

∫
T

∫
X
q
(
ω,x, u(ω, t,x), kα(ω,x)

)
· ∇x ψ(t,x) dx dt

+

∫
X

∣∣u0(ω,x)− kα(ω,x)
∣∣ψ(0,x) dx ≥ 0

(7.4)

is satisfied for every nonnegative test function ψ ∈ D(T× X;R). Here, the function

q(ω,x, υ, υ̃) := sign(υ − υ̃)
(
f(ω,x, υ)− f(ω,x, υ̃)

)
denotes the Kružkov entropy flux for two scalar values υ, υ̃ ∈ R.

Based on the random entropy Inequality (7.4), we can define random entropy functionals. These are

a major tool for arguing strong measurability of random entropy solutions in Section 7.3, since they

allow us to evaluate the Condition (7.4) for fixed parameters α ∈ R and ψ ∈ D(T × X;R), but for

arbitrary functions ν ∈ L∞(T× X;R). The subsequent definition formalizes the construction of these

functionals.

Definition 7.8 (Entropy functional for Panov-type flux functions):
Let the flux f satisfy the Panov-type flux Assumption 7.1. Furthermore, let a parameter α ∈ R and a
nonnegative test function ψ ∈ D(T× X;R) be fixed. Then, we define the random entropy functional Jαψ
associated to Problem (7.1) as a mapping Jαψ : Ω× L∞(T× X;R) → R given by

(ω, ν) 7→
∫
T

∫
X

∣∣ν(t,x)− kα(ω,x)
∣∣∂tψ(t,x) dx dt (7.5a)

+

∫
T

∫
X
q
(
ω,x, ν(t,x), kα(ω,x)

)
· ∇x ψ(t,x) dx dt (7.5b)

+

∫
X

∣∣u0(ω,x)− kα(ω,x)
∣∣ψ(0,x) dx . (7.5c)

Here, kα denotes the steady-state solution to Equation (7.3) corresponding to α ∈ R.

7.2.2 Entropy functional is Carathéodory

We continue our discussion of random entropy solutions and functionals by discussing properties of the

random entropy functional. Therefore, this subsection establishes that the functional Jαψ is Carathéodory

in the sense that it is measurable in the stochastic parameter ω ∈ Ω and continuous in the function

ν ∈ L∞(T× X;R). The following proposition shows the corresponding continuity result.
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Proposition 7.9 (Continuous dependence of entropy functional):
Let u0 ∈ Lq

(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, be a random initial condition to Problem

(7.1). Furthermore, let the flux function f satisfy the Panov-type flux Assumption 7.1 and let a steady-
state parameter α ∈ R and a nonnegative test function ψ ∈ D(T × X;R) be fixed. Then, for fixed
stochastic parameter ω ∈ Ω, the random entropy functional Jαψ depends continuously on the function
ν ∈ L∞(T× X;R).

Proof. Let a stochastic parameter ω ∈ Ω, a parameter α ∈ R and a non-negative test function

ψ ∈ D(T× X;R) be fixed. Showing the continuous dependence of the entropy functional Jαψ on the

function ν ∈ L∞(T× X;R) is similar to the proof of Proposition 6.12.

The continuous dependence of the Integrals (7.5a) and (7.5c) is completely analogous to the argumen-

tation in the proof of Proposition 6.12 and follows via independence and dominated convergence,

respectively. For the continuous dependence of Integral (7.5b), the argumentation is based on splitting

up the integral domain into sets depending on the value of the term sign
(
ν(t,x)− kα(ω,x)

)
, which

appears in the Kružkov entropy flux q. This approach, as well as the estimation that follows thereafter,

is completely analogous to the discussion of Proposition 6.12. However, while the setting of Chapter 6 is

one-dimensional, we need to adapt for the multi-dimensional setting. Here, the only difference in the

estimations is the usage of the norm ∥·∥d instead of the absolute value |·|. ■

Now that we have established continuous dependence of the entropy functional Jαψ on the function

ν ∈ L∞(T× X;R), it remains to show that it is stochastically measurable. This result is justified in the

subsequent proposition.

Proposition 7.10 (Stochastic measurability of entropy functional):
Letu0 ∈ Lq

(
Ω;Lp(X;R)

)
, with 1 ≤ q <∞ and 1 ≤ p ≤ ∞, be a random initial condition to Problem (7.1).

Furthermore, let the flux function f satisfy the Panov-type flux Assumption 7.1 as well as the measurability
Assumption 7.3. Moreover, let a nonnegative test function ψ ∈ D(T× X;R) and a parameter α ∈ R be
fixed and let the corresponding steady-state solution kα satisfy the measurability Assumption 7.6. Then, for
a fixed function ν ∈ L∞(T×X;R), the random adapted entropy functional Jαψ is stochastically measurable
in the sense that the mapping ω 7→ Jαψ(ω, ν) is measurable.

Proof. Let a steady-state parameter α ∈ R be fixed and let kα denote the (random) solution to

the corresponding steady-state Equation (7.3). Furthermore, let a function ν ∈ L∞(T × X;R) and

a nonnegative test function ψ ∈ D(T × X;R) be fixed. The proof consists of two steps: First, the

stochastic measurability of the integrands of the random entropy functional mapping (7.5) is established.

Afterwards, we leverage this information to conclude the measurability of the random entropy functional

Jαψ with respect to the stochastic parameter ω ∈ Ω.

Measurability of integrands. First, for Hd
-almost every spatial point x ∈ Rd, the steady-

state solutions are measurable as a mapping ω 7→ kα(ω,x) by the measurability Assumption 7.6.

This immediately implies the stochastic measurability of the integrand of Integral (7.5a), since the

function ν ∈ L∞(T× X;R) is independent of ω ∈ Ω. By hypothesis, the initial condition u0 satisfies

u0 ∈ Lq
(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞. Therefore, it is in particular measurable in

ω ∈ Ω. Combining the with the measurability of kα by Assumption 7.6, we obtain that the integrand of

Integral (7.5c) is stochastically measurable.
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It remains to argue the measurability of the integrand of Integral (7.5b). By definition, the Kružkov entropy

flux is given by

q
(
ω,x, ν(t,x), kα(ω,x)

)
:= sign

(
ν(t,x)− kα(ω,x)

)(
f
(
ω,x, ν(t,x)

)
− f
(
ω,x, kα(ω,x)

))
.

The sign term is measurable in ω ∈ Ω due to the steady-state solution kα being measurable and the

fact that the composition of two Borel-measurable functions is again measurable. The flux function f is

stochastically measurable by the measurability Assumption 7.3. This follows directly from its definition

in Equation (7.2) as f(ω,x, υ) := g
(
ω,Z(ω,x, υ)

)
. By Assumption 7.3, the function Z is measurable for

fixed value υ and for Hd
-almost every spatial point x ∈ Rd. Since the function g is Carathéodory, it is

in particular jointly measurable (see [5, Lemma 4.51]), which implies the stochastic measurability of the

flux function f. This establishes the measurability of the term f
(
ω,x, ν(t,x)

)
. For the measurability of

the term f
(
ω,x, kα(ω,x)

)
note that we can rewrite this term as

f
(
ω,x, kα(ω,x)

)
≡ α ,

which gives us the measurability of this term. Now, the difference of two measurable functions is

measurable and the pointwise product of measurable functions is again measurable. Therefore, we have

established stochastic measurability of the integrand of Integral (7.5b).

Measurability of integrals. Concluding the stochastic measurability of the integrals in the

Mapping (7.5) is similar to the reasoning in the proof of Proposition 6.13: Since the test function is

compactly supported, taking the integral is a bounded linear operator. Therefore, integration is a

continuous operation and stochastic measurability of each integral in the Mapping (7.5) follows as the

composition of a continuous operator with a measurable function (cf., [5, Lemma 4.22]). ■

With the two preceeding propositions, we have argued that the random entropy functional Jαψ is

Carathéodory, since it is measurable with respect to the stochastic parameter ω ∈ Ω by Proposition 7.10

and depends continuously on the function ν ∈ L∞(T× X;R) by Proposition 7.9. We summarize this

result in the following theorem, which also concludes this section.

Theorem 7.11 (Entropy functional is Carathéodory):
Letu0 ∈ Lq

(
Ω;Lp(X;R)

)
, with 1 ≤ q <∞ and 1 ≤ p ≤ ∞, be a random initial condition to Problem (7.1).

Furthermore, let the flux function f satisfy the Panov-type flux Assumption 7.1 as well as the measurability
Assumption 7.3. Moreover, let a nonnegative test function ψ ∈ D(T× X;R) and a parameter α ∈ R be
fixed and let the corresponding steady-state solution kα satisfy the measurability Assumption 7.6. Then, the
random entropy functional Jαψ is Carathéodory in the sense that it is measurable in ω ∈ Ω and continuous
in ν ∈ L∞(T× X;R).

7.2.3 Continuous dependence of entropy functional

To establish a last property of the random entropy functional, this section is devoted to showing that Jαψ
depends continuously on the steady-state parameter α ∈ R. This continuity property will turn out to

be crucial for showing that the random entropy solution u is strongly measurable in Section 7.3. The

sought continuous dependence result is justified in the next theorem.
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Theorem 7.12 (Continuous dependence of functional on steady-state parameter):
Letu0 ∈ Lq

(
Ω;Lp(X;R)

)
, with 1 ≤ q <∞ and 1 ≤ p ≤ ∞, be a random initial condition to Problem (7.1).

Furthermore, let the flux function f satisfy the Panov-type flux Assumption 7.1 as well as the measurability
Assumption 7.3. Moreover, let a nonnegative test function ψ ∈ D(T × X;R) be fixed. Then, for a fixed
ω ∈ Ω and fixed ν ∈ L∞(T × X;R), the random entropy functional Jαψ depends continuously on the
steady-state parameter α ∈ R.

Proof. Let a stochastic parameter ω ∈ Ω, a nonnegative test function ψ ∈ D(T × X;R) and a

function ν ∈ L∞(T×X;R) be fixed. The continuous dependence proof is similar to the argumentation

of Theorem 6.15:

By Proposition 7.5, the steady-state solution kα to the corresponding steady-state Equation (7.3) depends

continuously on the parameter α ∈ R. This immediately implies that the integands of the integrals

(7.5a) and (7.5c) depend continuously on the parameter α ∈ R. Furthermore, since the time derivative

∂tψ of the test function is compactly supported by hypothesis, the continuous dependence follows via

dominated convergence. For details we refer to the proof of Proposition 6.15 and to [98, Theorem 5.6].

The argumentation of Integral (7.5b) depending continuously on the parameter α ∈ R is based on

splitting up the integral domain depending on the value of the term sign
(
ν(t,x)− kα(ω,x)

)
, which

appears in the Kružkov entropy flux q. The main difference to the proof of Theorem 6.15 is that the

norm ∥·∥d has to be used instead of the absolute value |·|, since we consider the multi-dimensional case.

Then, continuous dependence is concluded by a case-by-case study of the resulting integrals. ■

7.3 Well-posedness of random entropy solutions

With the notion of random entropy solutions and functionals at hand, we are now ready to investigate

the well-posedness of these solutions to the random scalar conservation law given by Problem (7.1). This

well-posedness consists of (pathwise) existence and uniqueness as well as strong measurability of the

solution with respect to the stochastic parameter ω ∈ Ω. The latter allows us to interpret the solution

u as a L∞(T× X;R)-valued, Bochner-integrable random variable u : Ω → L∞(T× X;R). Thus, the

statistical properties of the solution u can be described via the existence of moments.

The well-posedness investigation begins with a discussion of pathwise existence and uniqueness in

Section 7.3.1. Afterwards, in Section 7.3.2, the strong measurability of these unique entropy solutions is

established. To conclude this chapter, Section 7.3.3 discusses the existence of stochastic moments of

random entropy solutions.

7.3.1 Pathwise existence and uniqueness of random entropy solutions

In this section, we discuss the pathwise existence and uniqueness of entropy solutions to the random

scalar discontinuous-flux conservation law (7.1). For fixed stochastic parameter ω ∈ Ω, the problem

reduces to the deterministic setting, which allows us to exploit the findings of Panov [230]. Therefore,

the subsequent theorem states the pathwise existence and uniqueness result of [230]. Due to the

similarity of the proof to the deterministic framework, we only summarize the main ideas of the proof.

For the precise argumentation we refer the reader to [230, Theorem 3] for the uniqueness result and to

[230, Theorem 4] for the existence of entropy solutions.
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Theorem 7.13 (Pathwise existence & uniqueness of entropy solutions):
Let ω ∈ Ω be fixed and let the flux function f satisfy the Panov-type flux Assumption 7.1. Furthermore, let
u0 ∈ Lq

(
Ω;Lp(X;R)

)
, with 1 ≤ q <∞ and 1 ≤ p ≤ ∞, be a random initial condition to Problem (7.1).

Then, there exists a unique entropy solution u(ω, ·, ·) ∈ L∞(T×X;R) ∩ C
(
T;L1

loc(X;R)
)

to the random
scalar conservation law given by Equation (7.1).

Proof (main ideas). For both results, the notion of process entropy solutions30
is leveraged. For

these, a rather evolved version of the Kružkov doubling of variables method can be established to

argue uniqueness of solutions. Additionally, this argumentation can be adapted in a similar way as

the one-dimensional uniqueness shown in [18], if one wants to establish a more general comparison

principle for process entropy sub- and supersolutions to the discontinuous-flux conservation law given

by Problem (7.1).

The existence proof is based on the construction of an approximate sequence of process entropy solutions.

For this sequence, weak-⋆ convergence in L∞(T× X;R) is shown. The idea for constructing such a

sequence is to consider a convoluted truncation of the flux function, which satisfies the assumptions of

Kružkov [173]. Thereby, the existence of Kružkov entropy solutions to the approximated conservation

law is ensured. Now, since the corresponding steady-state solutions to this approximated equation are

uniformly bounded in L∞(X;R), a subsequence converges to the unique process entropy solution.

Panov [230] shows that process entropy solutions reduce to entropy solutions in the sense of Definition

7.7. Therefore, the (pathwise) existence and uniqueness of entropy solutions to the random discontinuous-

flux conservation law given by Equation (7.1) is established. ■

7.3.2 Strong measurability of entropy solutions

With the pathwise existence and uniqueness result of Theorem 7.13 at hand, we are ready to complete

the well-posedness analysis by establishing strong measurability of solutions. While, in general, the

random entropy solution u is a random function u : Ω → L∞(T×X;R), strong measurability requires

the image u(Ω) to be separable. Even though the space L∞(T× X;R) is not separable, the following

remark gives us separability of the image u(Ω).

Remark 7.14 (Separability of solution space): By Theorem 7.13, the pathwise entropy solution u(ω, ·, ·)
takes values in the function space

S := L∞(T× X;R) ∩ C
(
T;L1

loc(X;R)
)
.

Recall that this space is separable, since the space L1(X;R) of integrable functions is separable and a dense
subset of L1

loc(X;R). Thus, the separability of S follows from the time interval T = [0, T ] being compact.
For details on this argumentation, we refer to Example 3.49 (ii).

Leveraging this separability of the image u(Ω) as a subset of the separable space S , we have every

ingredient available that we need to establish the strong measurability of random entropy solutions u.

The corresponding result is proved in the next theorem.

30

This type of solution was introduced by Panov [230] to shorten the definition of measure-valued solutions (or a bounded
measurable process). However, there exsists a one-to-one correspondence between processes and measure-valued solutions.
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Theorem 7.15 (Strong measurability of entropy solutions):
Let u0 ∈ Lq

(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, be a random initial condition to Problem

(7.1). Furthermore, let the flux f satisfy the Panov-type flux Assumption 7.1 as well as the measurability
Assumption 7.3 and let the steady-state solution kα corresponding to α ∈ R satisfy the measurability
Assumption 7.6. Then, the random entropy solution u is strongly measurable in the sense that the mapping
u : Ω → S , with ω 7→ u(ω, ·, ·) is strongly measurable.

Proof. The proof is similar to the corresponing one-dimensional strong measurability result of

Theorem 6.17. We start with the definition of a separable function space containing nonnegative

compactly supported functions. For N ∈ N, define

DN :=
{
ψ ∈ C∞(T× X;R≥0) | supp(ψ) ⊆

{
(t,x) ∈ T× X | t ∈ [0, N ] and x ∈ BN (0d)

}}
.

Here, BN (x) denotes the closed ball with radius N around x ∈ Rd and 0d is the d-dimensional zero

vector. Now, for a fixed number N ∈ N, let (ψiN , i ∈ N) ⊂ DN be a basis of the space DN . Then, for

a fixed parameter α ∈ R and a fixed index i ∈ N, we define the random modified entropy functional

Jαi,N : Ω× S → R. This modified functional is identical to the random entropy functional Jαψ , except

that the test function ψ is replaced by the basis function ψiN of the space DN . By construction, this

functional is Carathéodory by Theorem 7.11.

With the steady-state parameter α ∈ R still being fixed as well as the numbers i,N ∈ N, we can define

the set-valued mapping

Ξαi,N : Ω ⇒ S ω 7→
{
ν ∈ S | Jαi,N (ω, ν) ≥ 0

}
.

By Lemma 2.9, this multifunction is measurable, since the space S is separable. Furthermore, the

set-valued mapping Ξαi,N contains all functions ν ∈ S that satisfy the entropy Condition (7.4) for a fixed

steady-state parameter α ∈ R and fixed test function ψiN ∈ DN .

To exclude functions ν ∈ S that only satisfy the entropy Condition (7.4) for some fixed test function

ψiN , we define the multifunction

Ξα : Ω ⇒ S Ξα(ω) :=
⋂
i∈N

⋂
N∈N

Ξαi,N (ω) for ω ∈ Ω .

The measurability of this correspondence follows as the countable intersection of measurable maps is

again measurable. Further defining the set-valued map

Ξ : Ω ⇒ S Ξ(ω) :=
⋂
α∈Q

Ξα(ω) for ω ∈ Ω ,

the correspondence Ξ contains all functions ν ∈ S that satisfy the entropy Condition (7.4). Again, this

correspondence Ξ is measurable as the countable intersection of measurable maps.

Now, by Theorem 7.13 there exists a unique random entropy solution for every stochastic parameter

ω ∈ Ω. Therefore, this correspondence Ξ is a singleton containing only the pathwise unique entropy

solution u. This implies the measurability of the solution u as a mapping u : Ω → S , which implies

strong measurability due to the separability of S . The proof is concluded by noting that it is sufficient to

intersect over the rational numbers Q instead of the real numbers R. This argument was discussed in

detail at the end of the proof of Theorem 6.17 and thus is omitted here. ■
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7.3.3 Existence of moments of random entropy solutions

With the previous investigations of this section, we have established the well-posedness of random

entropy solutions. In particular, we can interpret the solution u as an S-valued, Bochner-integrable

random variable, whose statistical properties can be described via the existence of its stochastic mo-

ments. This investigation is the purpose of this section, which concludes the chapter on random scalar

conservation laws with Panov-type flux functions. As in the previous chapters, the main ingredients for

the existence of stochastic moments is the L1
-contraction property resulting from the uniqueness proof

combined with integrability of the random initial condition u0. Additionally, we need to restrict the

possible choices of flux functions according to the following assumption. Afterwards, the main result of

this section is presented, which states the existence of moments of random entropy solutions.

Assumption 7.16 (Zero mass creation via flux function):
We assume that the Panov-type flux function f is chosen such that the zero initial condition u0 ≡ 0 leads
to the vanishing entropy solution u ≡ 0.

Theorem 7.17 (Existence of moments of random entropy solutions):
Let u0 ∈ Lq

(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, be a random initial condition to

Problem (7.1). Furthermore, let the flux function f satisfy the Panov-type flux Assumption 7.1 as well as the
measurability Assumption 7.3 and let the steady-state solution kα corresponding to a parameter α ∈ R
satisfy the measurability Assumption 7.6. Additionally, let the flux function satisfy the zero-mass-creation
Assumption 7.16. Then, at almost every time t ∈ T, the random entropy solution u admits moments up to
order q. In particular, the entropy solution satisfies

∥u(ω, t, x)∥Lq(Ω;L1(X;R)) ≤ ∥u0(ω, x)∥Lq(Ω;L1(X;R))

for almost every time t ∈ T.

Proof. For every stochastic parameter ω ∈ Ω, a pathwise unique entropy solution u(ω, ·, ·) exists

due to the result of Theorem 7.13 and additionally Theorem 7.15 yields its strong measurability. Therefore,

for any value 1 ≤ q <∞, we can estimate∥∥∥u(ω, t, x)∥∥∥q
Lq(Ω;L1(X;R))

=

∫
Ω

∥∥∥u(ω, t, x)∥∥∥q
L1(X;R)

dP ≤
∫
Ω

∥∥∥u0(ω, x)∥∥∥q
L1(X;R)

dP .

Here, the estimation follows from the pathwise L1
-contraction property of the random entropy solution

u(ω, ·, ·), which follows from the uniqueness proof of Panov [230]. Let us stress the usage of Assump-

tion 7.16 in this step, which is required to obtain an estimate solely for the entropy solution u rather

than estimating the difference of two entropy solutions u and ũ. The assertion follows by taking the

q-th root and noting that the integrals exist due to the initial condition satisfying u0 ∈ Lq
(
Ω;L1(X;R)

)
by hypothesis. ■

As a special consequence of the preceeding theorem, we obtain the existence of all moments of order

1 ≤ q <∞, as soon as the initial condition is deterministic. We formalize this result in the following

corollary, which also concludes this chapter. Since the statement is similar to Corollary 6.20, we omit its

proof.

Lukas Brencher University of Stuttgart



180 7 Multi-dimensional cons. laws with infinitely many discontinuities

Corollary 7.18 (Existence of moments for deterministic initial conditions):
Let u0 ∈ Lq

(
Ω;Lp(X;R)

)
be a deterministic initial condition to Problem (7.1). Furthermore, let the flux

function f satisfy the Panov-type flux Assumption 7.1 as well as the measurability Assumption 7.3 and let
the steady-state solution kα corresponding to a parameter α ∈ R satisfy the measurability Assumption 7.6.
Then, at almost every t ∈ T, the random entropy solution u admits all moments of order 1 ≤ q <∞.
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Numerical simulation of
one-dimensional random
conservation laws 8

In this chapter, we discuss how random entropy solutions to discontinuous-flux conservation laws can

be approximated. Recall that flux functions of Panov-type correspond to a straightforward extension of

one-dimensional flux functions to multiple space dimensions. Therefore, throughout this chapter, we

restrict ourselves to simulating scalar conservation laws in one spatial dimension. For details on the

numerical approximation of multi-dimensional scalar conservation laws with Panov-type flux functions,

we refer to [116, Section 5].

For the numerical experiments in this chapter, we consider the space-time domain T × X = (0, 1)2,

unless stated otherwise. Then, for an unknown u := u(ω, t, x), the random discontinuous-flux Burgers’
equation is defined as

∂tu+ divx

(
a(ω, x)

u2

2

)
= 0 in Ω× T× X ,

u(ω, 0, x) = u0(ω, x) on Ω× {0} × X .

(8.1)

Here, u0 ∈ Lq
(
Ω;Lp(X;R)

)
, with 1 ≤ q < ∞ and 1 ≤ p ≤ ∞, is a random initial condition and

a(ω, ·) ∈ L∞(X;R) is a random jump-advection coefficient. The Burgers’ equation poses a convenient

prototype for numerical investigations due to several reasons: First, it serves as a simple model in many

applications, such as fluid flow or traffic simulations (see, e.g., [40, 218, 219]). Additionally, the behavior

of its solutions is similar to the nonlinear part of the Navier-Sokes equation, which is important for

modeling and applications [40, 226]. Another advantage of the Burgers’ equation is the fact that it is

the simplest nonlinear conservation law, in which shock-waves may appear and thus provides many

interesting (numerical) challenges.

Let us stress that the flux function of the random discontinuous-flux Burgers’ Equation (8.1) has a

multiplicative form as discussed in Examples 6.2 and 6.6. Unless stated otherwise, we equip this initial

value problem with periodic boundary conditions, which means that we enforce

a(ω, 0)
u(ω, t, 0)2

2
= a(ω, 1)

u(ω, t, 1)2

2
.

To the best of the author’s knowledge, writing a general numerical approximation scheme to simulate

the (random) adapted entropy solution in the sense of Audusse-Perthame is still an open problem. While

there exist several schemes that enable the computation of such entropy solutions, they all require some
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182 8 Numerical simulation of one-dimensional random cons. laws

additional assumption. In 2020, Towers [272] proved convergence of a finite difference scheme to the

adapted entropy solution of Audusse-Perthame type for the special class of conservation laws, whose

flux functions have bounded variation (BV). Recently, Ghoshal et al. [114] showed convergence of a

Godunov scheme to the Audusse-Perthame adapted entropy solution for the same case of BV fluxes. The

method of [114] might be suitable to approximate the proposed random discontinuous-flux conservation

law for a broad class of stochastic jump-advection coefficients. However, for general Lévy-type random

fields we cannot guarantee the flux function to have bounded variation without restricting the possible

choice of the covariance operator Q. Nevertheless, Godunov-type methods have been successfully

applied to hyperbolic conservation laws with discontinuous flux functions for many other notions of

solutions. We refer to [4] for so-called solutions of type (A,B) or to [268, 270] for entropy solutions

that satisfy an interface condition at the discontinuities in the flux function. Therefore, throughout this

chapter, we also employ a Godunov-type finite volume scheme for the approximation of the random

adapted entropy solution.

We start this chapter on the numerical simulation of discontinuous-flux conservation laws by discussing

the construction of the considered random jump-advection coefficient a in Section 8.1. This coefficient is

a particular instance of a Lévy-type random field as introduced in Section 2.4. Afterwards, in Section 8.2,

we introduce two samplewise discretization techniques that take the flux discontinuities into account.

Thereafter, we investigate the parameter dependency of finite volume approximations of the random

entropy solution in Section 8.3. In particular, these results show that the pathwise convergence rate is

stochastic and depends on various characteristics of the underlying random jump-advection coefficient.

In Section 8.4, we discuss these pathwise convergence rates for particular random fields addressing

these characteristics. Via these experiments, we also demonstrate how the samplewise discretization

techniques have the ability to significantly improve the convergence behavior of approximations. We

conclude this chapter on the numerical simulation of conservation laws by numerically approximating

the stochastic moments of random entropy solutions in Section 8.5.

8.1 Random jump-advection coefficient

In this section, we discuss the construction of a Lévy-type random field a that we employ in the stochastic

discontinuous-flux Burgers’ Equation (8.1). While the jump coefficient a is inspired by the construction

of Lévy-type random fields in Definition 2.28, we need to guarantee that the Assumptions 6.1 and 6.5 are

satisfied, such that the well-posedness theory of Chapter 6 is applicable. Recall that, by the discussion

and construction of Section 2.4, a Lévy-type random field a for one spatial dimension is defined as a

mapping

a : Ω× R → R>0 , (ω, x) 7→ a(x) + Φ
(
G(ω, x)

)
+P(ω, x) , (8.2)

where the jump field P is defined as a piecewise function that depends on a random partition T of

the domain R, where T consists of τ : Ω → N elements. Furthermore, a is a deterministic, uniformly

bounded mean function and Φ is a continuously differentiable, positive mapping that is applied to the

Gaussian random field G associated to a covariance operator Q.

Unfortunately, a random coefficient a as defined in Equation (8.2), does not necessarily satisfy the

Audusse-Perthame flux Assumption 6.1, since the term Φ
(
G(ω,x)

)
is not pathwise bounded. Thus,

it may violate Assumption (A-2). Before we introduce pathwise bounded Lévy-type random fields to

overcome this obstacle, we need the notion of bounded Gauss-type random fields.
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Definition 8.1 (Gauss-type random field):
Let (Ω,Σ,P) be a complete probability space and let XG ⊂ R be a compact subset of the spatial domain R.
Then, a bounded Gauss-type random field G is defined as a function

G : Ω× R → R>0 , (ω, x) 7→ Φ
(
G(ω, x)

)
,

where Φ ∈ C1(R;R>0) is a continuously differentiable, positive mapping. Let GR ∈ L2
(
Ω;L2(R;R)

)
be a

zero-mean Gaussian random field associated to a nonnegative, symmetric trace-class (covariance) operator
Q : L2(R;R) → L2(R;R) let one of the following two conditions be satisfied:

▶ G ∈ L2
(
Ω;L2(R;R)

)
is a truncated Gaussian random field, defined as

G(ω, x) =

{
GR(ω, x), x ∈ XG ,

min
(
GR(ω, x), supx∈XG GR(ω, x)

)
, x ∈ R \ XG .

▶ The functional Φ is bounded and the function G satisfies G = GR.

With these Gauss-type random fields, we have all ingredients at hand to introduce pathwise bounded
Lévy-type random fields. Here, the subsequent definition is inspired by the Definition 2.28 of Lévy-type

random fields.

Definition 8.2 (Pathwise bounded Lévy-type random fields):
Let (Ω,Σ,P) be a complete probability space and let XG ⊂ R be a compact subset of the spatial domain R.
Then, a pathwise bounded Lévy-type random field (LTRF) a is defined as a function

a : Ω× R → R>0 , (ω, x) 7→ a(x) + G(ω, x) +P(ω, x) , (8.3)

where

▶ a ∈ C(R;R≥0) is a deterministic, uniformly bounded mean function.

▶ G is a Gauss-type random field as introduced in Definition 8.1.

▶ T : Ω → B(XG), ω 7→ {T1, . . . ,Tτ} is a random partition of XG in the sense that {Ti}τi=1 is a
family of disjoint open subsets of X satisfying X = ∪τi=1cl

(
Ti
)
. The number of elements in T is

given by an integrable random variable τ : Ω → N on the probability space (Ω,Σ,P). Furthermore,
for Xl and Xr being the left and right boundary of X, respectively, we define the partition elements
T0 := (−∞,Xl) and Tτ+1 := (Xr,+∞).

▶ A measure Λ on the measurable space
(
X,B(X)

)
is associated to the partition T and controls the

positions of the random elements Ti.

▶ Let (pi, i ∈ N0) be a sequence of random variables on the probability space (Ω,Σ,P) with arbitrary
positive distribution(s) satisfying pi <∞ for every stochastic parameter ω ∈ Ω. Then, we define the
jump field P as

P : Ω× R → R>0, (ω, x) 7→
τ+1∑
i=0

1Ti(x)pi(ω) , (8.4)

where the sequence (pi, i ∈ N0) is independent of the number τ of elements in the partition T, but
not necessarily pairwise independent and identically distributed.
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184 8 Numerical simulation of one-dimensional random cons. laws

Let us stress that we do not require the Gauss-type random fieldG and the jump fieldP to be stochastically

independent. Furthermore, recall that by Remark 2.29, the measure Λ associated to the partition T does

not only affect the average number of partition elements E (τ), but also the size of the elements Ti.

We are now ready to show that the random discontinuous-flux Burgers’ Equation (8.1) involving pathwise

bounded Lévy-type random fields satisfies the Audusse-Perthame flux Assumptions 6.1 and 6.5. The

corresponding result is proven in the subsequent corollary.

Corollary 8.3 (Burgers’ equation with pathwise bounded LTRF satisfies flux assumptions):
Let the discontinuous flux function f be given as f(ω, x, u) = a(ω, x)u2/2, where a is a pathwise bounded
Lévy-type random field. Then, the flux f satisfies the Audusse-Perthame flux Assumptions 6.1 and 6.5.

Proof. Let the discontinuous flux function f be given as f(ω, x, u) = a(ω, x)u2/2 with a pathwise

bounded Lévy-type random field a. We show each of the Assumptions 6.1 and 6.5 separately. First,

note that the flux function is multiplicative. This special type of flux function was already discussed in

Example 6.2 and 6.6, which simplifies the argumentation.

▶ Discontinuity set is closed with measure zero (Assumption (A-1)): Note that the deterministic mean

function a is continuous by hypothesis. Furthermore, we can always consider a continuous

modification of the Gauss-type random field G. Now, for every stochastic parameter ω ∈ Ω, the

number of elements τ in the partition T is finite and the jump field P(ω, ·) is a piecewise constant

function by its construction in Equation (8.4). Thus, P has only finitely many discontinuities.

Since the domain X is compact, the set D(ω) is closed and of measure zero.

▶ Positive spatially bounded paths (Assumption (A-2)): By construction of the jump field P, the

jump heights pi satisfy pi > 0 for every index i ∈ N0. Thus, there exists an a−(ω) > 0 such

that the jump field P satisfies P(ω, x) ≥ a− > 0 for every spatial point x ∈ R. Furthermore,

the mean function a is nonnegative by construction and the functional Φ of the Gauss-type

random field G is positive. Therefore, we can conclude a(ω, x) ≥ a−(ω) > 0. Additionally, by

construction of the jump field P, there exists a pathwise upper bound P+ < +∞ satisfying

P(ω, x) ≤ max0≤i≤τ(ω)+1 pi(ω) =: P+(ω), since the number τ of partition elements is finite in

the sense that τ(ω) < ∞ for every stochastic parameter ω ∈ Ω. Furthermore, the Gauss-type

random field G(ω, ·) is continuous because both the functional Φ and the random field G are

continuous. Thus, there exists an upper bound G+ < ∞ such that G(ω, x) ≤ G+. Finally, the

mean function a is uniformly bounded by construction.

▶ Local Lipschitz continuity and monotonicity (Assumption (A-3) or (A-3’)): The random discontinuous-

flux Burgers’ Equation (8.1) satisfies Assumption (A-3), which was argued in Example 6.2.

▶ Measurability of flux and inverse flux (Assumptions (A-4) and (A-5)): The stochastic measurability

of the random jump-advection coefficient a follows directly from its construction in Definition

8.2. Thus, by the discussion of Example 6.6, also the inverse flux function is measurable.

▶ Bounded spatial paths of inverse flux function (Assumption (A-6)): We have already established that

the jump-advection coefficient has bounded spatial paths. Thus, Assumption (A-6) follows with

the discussion of Example 6.6.

Combining all the above arguments, we have argued that the random discontinuous-flux Burgers’

Equation (8.1) involving a pathwise bounded Lévy-type random field satisfies the Audusse-Perthame

flux Assumption 6.1 and 6.5. ■
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8.2 Pathwise discretization techniques

In this section, we introduce sample-adapted discretization techniques for the discontinuous-flux con-

servation law (8.1). Here, sample-adaptivity should not be confused with classical adaptive finite volume

methods. These adaptive finite volume methods are based on a-posteriori error estimates and refine

the underlying mesh various times for each sample. In contrast to that, the proposed sample-adaptive

discretization methods are adapted to the discontinuities of the random jump-advection coefficient a.

Here, adaptivity means that the mesh is aligned a-priori to these flux discontinuities. Consequently, the

stochasticity of the coefficient leads to a random discretization in the sense that the mesh changes for

every ω ∈ Ω.

While the framework of Audusse-Perthame solutions allows the flux f to have infinitely many disconti-

nuities, this is not the case for the subsequent numerical experiments. By construction, the partition

T consists of τ elements, where τ : Ω → N is an integrable random variable. Thus, it makes sense to

include the jump discontinuities in the spatial discretization.

8.2.1 Samplewise jump-adapted meshing

Let X ⊂ R be the considered simulation domain. For a fixed stochastic parameter ω ∈ Ω, let D(ω) ⊂ X
denote the set of discontinuity points of the random jump-advection coefficient a(ω, ·) in X. Furthermore,

let X∆ ⊂ X denote the set of all discretization points of the domain X. The main idea of samplewise

adapted meshing is the restriction that any admissible spatial mesh X∆ should satisfy D(ω) ⊂ X∆.

Consequently, any samplewise jump-adapted mesh X∆ contains all discontinuity points D(ω) of the

random jump-advection coefficient a(ω, ·).

For a given discontinuous random field a(ω, ·), the simplest method for creating a samplewise jump-

adapted mesh is the following: Let ∆x,bound > 0 be a maximum step size restriction for the sought

discretization. To create a samplewise jump-adapted mesh, we start by initializing a discretization

as X∆ = D(ω). Thereby, the jump-adaptivity restriction on the spatial mesh is already satisfied by

initialization and it remains to guarantee that the discretization complies with the step size constraint.

To achieve this, let dj ∈ D(ω) denote the j-th discontinuity point of the jump coefficient a(ω, ·). Now,

each interval [dj−1, dj ] can be considered individually. If this interval violates step size constraint, i.e.,

|dj − dj−1| > ∆x,bound, equidistant points can be inserted until the condition is fulfilled. The resulting

mesh is a piecewise equidistant mesh satisfying both the jump-adaptivity and the step size constraint.

8.2.2 Samplewise jump-adapted wave-cell meshing

The samplewise jump-adapted meshing strategy accounts for the discontinuities in the jump-advection

coefficient a(ω, ·). Thus, these meshes already leverage information on the underlying problem. Recall

that the randomized Burgers’ equation (8.1) is the simplest conservation law in which shock-waves may

appear. Combined with the Audusse-Perthame admissibility condition (6.9), this leads to standing-wave

profiles in the adapted entropy solution, which appear at the stationary flux discontinuities. If the step

size restriction ∆x,bound > 0 allows for large cells in the spatial mesh, these standing-wave profiles

might not be approximated sufficiently, if one of the adjoining cells is large. Therefore, the samplewise
jump-adapted wave-cell meshing aims at overcoming this obstacle for coarse discretizations X∆ or those

containing very small and large cells at the same time.
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Let a stochastic parameter ω ∈ Ω be fixed and let ∆x,bound > 0 be a given step size restriction for

the discretization. As in the samplewise jump-adapted meshing, we start by initializing the grid with

the discontinuity points of the random coefficient a(ω, ·), i.e., X∆ = D(ω). Similar to the samplewise

jump-adapted meshing, let now dj ∈ D(ω) denote the j-th discontinuity point of the jump coefficient

a(ω, ·). Before we refine the mesh X∆, such that it satisfies the step size constraint, so-called wave-cells
are inserted into the grid. Therefore, let ∆w denote the size of these wave-cells, which is given by

∆w := min
i

∆i
x ,

where ∆i
x denotes the size of the i-th cell size of X∆ = D(ω), i.e., ∆i

x := [di−1, di]. We can now create

the wave-cells in an iterative manner. For each index i, we compute the left and right wave-cell points

wl,r
i = di ∓∆w. If the wave-cell point wl

i satisfies

wl
i ∈ X and [di−1,w

l
i] > ∆w ,

we add this point wl
i to the current mesh X∆. Analogously, the wave-cell point wr

i is inserted into the

discretization X∆, if it satisfies

wr
i ∈ X and [di,w

r
i ] > ∆w

In this way, we refine the cells ∆i
x, which are adjacent to the flux discontinuities. Additionally, via the

conditions [di−1,w
l
i] > ∆w and [di,w

r
i ] > ∆w, we ensure that the CFL condition is not affected, since

we do not change the minimal step size of the discretization.

As we will see in the subsequent numerical experiments, especially in the pathwise convergence

study in Section 8.4, this samplewise jump-adapted wave-cell meshing can significantly improve the

approximation of standing-wave profiles occurring in the solution. In particular, this novel meshing

approach reduces the samplewise variance of approximations, especially if the coefficient admits small

distances between jumps. Let us stress that we do not expect this samplewise jump-adapted wave-cell

discretization to converge at a better rate, but rather we aim at reducing the error constant of the

convergence estimate.

8.3 Parameter dependency of approximations

The purpose of this section is to investigate the influence of various parameters of a Lévy-type random

field a on the entropy solution u to the random Burgers’ Equation (8.1). Here, we are interested in

how the inspected parameters affect the convergence rate of pathwise approximations. Therefore, we

consider the strong error, which is given by

E(ω) :=
∥∥∥uref∆ (ω, ·, T )− u∆(ω, ·, T )

∥∥∥
L⋆(X;R)

, (8.5)

where L⋆(X;R) denotes either L1(X;R) or L∞(X;R). Let us stress that the L∞
-error should not be

confused with the error in the Chebyshev norm
31 L∞(T;L1(X)

)
. Instead, we consider the (spatial)

L∞(X)-error. Furthermore, u∆ is the computed finite volume approximation of the solution u and uref∆

31

The Chebyshev norm is also known as the “infinity norm” or “supremum norm”.
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is a reference solution, which is simulated using a jump-adapted discretization with maximum step

size ∆x,bound set to one fourth of the smallest step size bound considered for the approximations u∆.

Throughout this section, we only consider an equidistant meshing and the samplewise jump-adapted

discretization technique, which was presented in Section 8.2.1. Since we focus on the effect of parameters

on the convergence rate, this is sufficient because the pathwise jump-adapted wave-cell discretization

aims at reducing the samplewise variance of approximations, which does not affect the convergence

rate. Let us stress that the qualitative findings of this parameter study remain true, when we consider

the L2
-error instead, even though the particular results are not shown for this error norm.

In Section 8.3.1, we start the parameter study by investigating parameters of the jump field P, such as the

number of jumps or how close occurring jumps are located to each other. Afterwards, in Section 8.3.2,

two experiments examine the performance of an explicit and implicit Euler time integration scheme for

various simulation settings. To conclude this section, the influence of parameters of a Gaussian random

field is investigated in Section 8.3.3.

8.3.1 Jump field parameters

We start the parameter study by investigating the influence of discontinuities in the jump-advection

coefficient on the approximated solution u∆ and the convergence rate. Therefore, we employ rather

artificial, deterministic jump coefficients a(ω, x) = P(x) to illustrate the effect of various parameters.

Before we start, however, Figure 8.1 depicts two solutions at the final time T = 1, for which the random

field contains an upwards and downwards jump, respectively.
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(a) Approximated entropy solution u with a jump-

advection coefficient jumping up.
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(b) Approximated entropy solution u with a jump-

advection coefficient jumping down.

Figure 8.1: Illustration of the influence of a discontinuity in the jump-advection coefficient on the

computed entropy solution.

Here, the initial condition u0 was chosen as u0 = 0.3 sin(πx) and the jump-advection coefficient was

set to a(ω, x) = 2(1− x) +Pup(x) and a(ω, x) = 2x+Pdown(x), respectively. Here, the jump fields

Pup and Pdown are given by

Pup(x) :=

{
1
2 for 0 ≤ x ≤ 2π

10 ,
5
2 for

2π
10 ≤ x ≤ 1 ,

Pdown(x) :=

{
5
2 for 0 ≤ x ≤ 2π

10 ,
1
2 for

2π
10 ≤ x ≤ 1 .
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188 8 Numerical simulation of one-dimensional random cons. laws

Due to this construction, the discontinuous random field contains a jump of height 2 facing upwards

and downwards, respectively. One immediately observes that the jump up leads to a downward-facing

discontinuity in the solution and the jump down yields a discontinuity at which the solution increases.

Around the point x ≈ 0.2 in Figure 8.1a and x ≈ 0.25 in Figure 8.1b the solution contains a shock-wave,

which appears due to the chosen initial condition u0. In contrast to the standing-wave profiles at the

discontinuities of the jump-advection coefficient a, these shock-waves move through the spatial domain.

Distance between jumps

The first investigated parameter is the distance between two jumps that occur in the discontinuous

jump-advection coefficient. As the illustration in Figure 8.1 shows, the impact of a discontinuity may vary

depending on whether it decreases or increases the value of the jump-advection coefficient. Therefore,

we define the two jump coefficients

Pup(x) =

{
1
2 for x ∈ X \ Hh ,
3
2h for x ∈ Hh ,

Pdown(x) =

{
3
2 for x ∈ X \ Hh ,

h for x ∈ Hh .

Here, Hh
denotes the area on which the coefficient differs from its constant value (due to a jump

discontinuity at the beginning and end of Hh
). To be more specific, we define the considered jump area

as Hh :=
(
Hh
c − h/2,Hh

c + h/2
)
⊂ X, where Hh

c = 1− π/10 is the midpoint of Hh
and h > 0 denotes its

width. Note, by this construction of the random jump coefficients, we have ensured that the total mass

of the coefficient remains constant when varying the width h of the jump areas Hh
. In Figure 8.2 the

approximation error of the finite volume method for varying widths h is presented. Here, the solution u

was computed with an equidistant meshing and an jump-adapted discretization for the jump-advection

coefficient being set to Pup
.

Considering the L1
-error of the finite volume discretizations (Figures 8.2a – 8.2c), one can observe similar

convergence rates of the equidistant and the jump-adapted finite volume approximation. However,

with decreasing jump area width h, one detects an enlarging kink in the error data of the equidistant

discretization. This kink is caused by the resulting mesh not resolving the jump area of the underlying

coefficient at all. Consequently, the error increases, once the discretization resolves the jump. Such

a behavior cannot be observed for the jump-adapted meshing, which results in a much more reliable

convergence behavior. The influence of the jump area width h is even more lucid if one considers

the L∞
-error of finite volume approximations. In this case, the jump-adapted discretization is able to

improve the convergence rate of finite volume approximations compared to equidistant meshing. A

different behavior of the approximation error can be observed for the jump-advection coefficient being

set to Pdown
, which is visualized in Figure 8.3.

One immediately notices various differences in the convergence behavior. For the L1
-error of finite

volume approximations, we observe a pre-asymptotic error decay for coarse spatial discretizations. This

behavior is significantly stronger for the equidistant discretization than it is for the jump-adapted one.

As in the previous experiment, changing the error measure to L∞
magnifies the observings. In addition

to this pre-asymptotic behavior, the equidistant meshing shows kinks in the error data, which we already

observed in the previous investigation.
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Figure 8.2: L1
- and L∞

-error of finite volume (FV) approximations of the entropy solution based on

equidistant and jump-adapted discretizations. Here, the width h of the jump area Hh
in the

underlying random coefficient Pup
is varied.

Number of jumps

We continue the parameter study by investigating, how the number of discontinuities in the jump-

advection coefficient affects the convergence rate of finite volume approximations with equidistant or

jump-adapted discretizations. Therefore, we consider an alternating jump field, whose construction is

inspired by Equation (8.4) and given by

P : X → R>0 , x 7→
τ+1∑
j=1

1Ti(x)pi , pi =

{
1
2 for i odd ,
3
2 for i even .

Here, τ ∈ N denotes the number of jumps and T denotes the partition of the spatial domain X = (0, 1)

resulting from the discontinuities dj of the jump fieldP. In particular, we assume that these discontinuity

points dj are distributed equidistantly across the domain X, such that each element Ti of the partition

T has equal width. For this setting, Figure 8.4 indicates the convergence rates of the finite volume

approximations for various values of τ describing the number of jumps.
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Figure 8.3: L1
- and L∞

-errors of finite volume (FV) approximations of the entropy solution based on

equidistant and jump-adapted discretizations. Here, the width h of the jump area Hh
in the

underlying random coefficient Pdown
is varied.

Considering the L1
-error of finite volume approximations (Figures 8.4a – 8.4c) one immediately observes

that an increasing number of jumps leads to a lower convergence rate. This consequence is independent

on the chosen discretization technique, but jump-adaptivity in the meshing may lead to a better error

constant, as can be seen in Figure 8.4c. For the L∞
-error, we note that the equidistant finite volume

approximation leads to kinks in the convergence behavior, which is similar to the previous experiments.

Additionally, in the L∞
-norm, the experiment indicates that the jump-adapted discretization technique

may result in a higher convergence rate than the equidistant meshing. Finally, for this error measure,

the constant of the convergence behavior with jump-adapted meshing seems to be significantly lower

than the constant for an equidistant discretization.

8.3.2 Explicit vs. implicit time integration

The previous investigations on the jump field parameters have shown that it might be advantageous for

the approximation error to employ an jump-adapted discretization. By construction, the jump-adapted

meshing strategies may lead to discretizations with a large discrepancy between the maximum and
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-error for τ = 16 number of

jumps.
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(c) L1
-error for τ = 64 number of

jumps.
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Figure 8.4: L1
- and L∞

-errors of finite volume (FV) approximations of the entropy solution u based on

equidistant and jump-adapted discretizations. Here, the number of jumps τ in the underlying

jump-advection coefficient P is varied.

minimum cell size. While this property directly influences the performance of an explicit Euler time

integration scheme via the necessary CFL stability condition, it may also require using a globalized

optimizer (e.g., Newton-Raphson algorithm with step size control) in an implicit Euler time propagator.

As a consequence, this section investigates how the two mentioned time integrators perform in various

settings. Therefore, let the jump-advection coefficient a consist only of a deterministic jump field in the

sense that a(ω, x) = P(x). In particular, we discuss, how the ratio of maximum and minimum step size

influence the performance. Additionally, we investigate the affect of the estimated shock-wave speed in

the solution on the preformance of these time integrators.

Ratio of maximum step size to minimum step size

We start the performance investigation of the explicit and implicit Euler time integration scheme by

discussing the influence of the step size ration max(∆x)/min(∆x). For this investigation, we consider the
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following jump coefficient, which is inspired by the jump field Pup
of Section 8.3.1:

P(x) =

{
1
2 for x ∈ X \ Hh ,
3
2h for x ∈ Hh .

Here, Hh
denotes the area of size h > 0 on which the coefficient differs from its constant value. In

particular, this area is given as Hh :=
(
Hh
c − h/2,Hh

c + h/2
)
⊂ X, where Hh

c = π/5 denotes the center

point of Hh
. Since we consider a jump-adapted finite volume discretization, the size h of the jump area

Hh
imposes a restriction on the minimum step size min(∆x). In Figure 8.5, we present the time-to-error

data of the finite volume simulations for both explicit and implicit Euler time integration.
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(c) Jump area size h = 10−4
.

Figure 8.5: Time-to-error data of the explicit and implicit Euler time propagator for computing a jump-

adapted finite volume approximation of the entropy solution u. Here, the strong L1
-error is

compared to the required simulation time for different jump area sizes h > 0.

Here, the error values are computed for multiple restrictions on the maximum spatial step size ∆x,bound.

The time-to-error data of Figure 8.5 shows the result one would expect: The computational time needed

by the implicit Euler time propagation increases with decreasing error. This is by far not surprising, since

the nonlinear system, which needs to be solved at every time step, increases. However, one can also

observe that the overall simulation time does not increase as the minimal step size gets finer. Contrary

to this behavior is the explicit Euler time propagation. The amount of time, which is needed to evolve

the solution over time, depends highly on the allowed maximum time step size. This behavior is again,

what one would expect, since the CFL condition is directly influence by the area size h, which represents

the minimal spatial cell size. Nevertheless, the required simulation time of the explicit Euler scheme

does not increase for finer discretizations, if the minimal cell size remains constant.

Let us note that this result is barely influenced by different error norms. On the one hand, the error

values would change when using a different error measure. On the other hand, the error is evaluated

after computing the approximation and thus does not affect the simulation time. Consequently, the

qualitative findings of this experiment remain true for different norms.
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Estimated wave speed

Another property that might affect the performance of the temporal propagators is the estimated speed of

appearing shock-waves, since it affects the CFL condition. Since this estimated wave speed is depending

in the jump-advection coefficient as well as on the absolute value of current (approximated) solution, we

consider an initial condition u0(x) = c sin(πx) for some positive scalar value c ∈ R>0. Additionally,

we adapted the jump coefficient P to have the form

P(x) =

P1 for x ∈ X \ Hh ,

P2 for x ∈ Hh ,

for variable jump heights P1,2 ∈ R>0. Furthermore, the jump area Hh
is fixed in this experiment to

Hh =
(
Hh
c − 1/20,Hh

c + 1/20
)
⊂ X with center point Hh

c = π/5. The time-to-error plots for the two time

integrators are given in Figure 8.6.
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(a) Jump coefficient P with values

P1 = 10.5 and P2 = 20 and an

initial condition scaling parame-

ter c = 0.3.
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(b) Jump coefficient P with values

P1 = 1 and P2 = 50 and an ini-

tial condition scaling parameter

c = 0.3.
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Figure 8.6: Time-to-error data of the explicit and implicit Euler time propagator for computing a jump-

adapted finite volume approximation of the entropy solution u. The L1
-error is compared to

the required simulation time for various values P1,P2 of the jump field and various scaling

parameters c of the initial condition, which result in different estimated wave speeds.

The results demonstrate that the implicit Euler scheme is outperforming the explicit Euler time propa-

gation in only one occasion: In case a coarse spatial discretization is combined with a high maximum

value of the jump coefficient, as is shown in Figure 8.6c. As soon as the mesh is refined, the performance

of the explicit Euler scheme is rapidly improving compared to the performance of the implicit Euler.

This is caused by the increasing size of the nonlinear system, which the implicit Euler scheme has to

solve at every time step. Due to these performance and convergence results of the explicit and implicit

Euler time integration scheme, the proceeding numerical experiments are all conducted with an explicit

Euler time propagation.
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8.3.3 Parameters of Gaussian random field

The purpose of this section is to investigate the characterizing parameters of the Gauss-type random field

G(ω, x) = Φ
(
G(ω, x)

)
as introduced in Definition 8.1. Here, we set the functional Φ to Φ(ξ) = exp(ξ),

for some value ξ ∈ R, such that the considered random field is log-Gaussian. To uniquely characterize

the underlying Gaussian random field G, we employ a Matérn covariance operator, which is given by

QM : L2(X;R) → L2(X;R) defined via

[QM ψ](y) :=

∫
X
σ2

21−ν

Γ(ν)

(√
2ν

|x− y|
ρ

)ν
Kν

(√
2ν

|x− y|
ρ

)
ψ(x) dx ,

for all functions ψ ∈ L2(X;R). Here, the parameter ν > 0 controls the smoothness of the Matérn

covariance operator, σ2 > 0 denotes its variance and ρ > 0 is the correlation length ofQM. Additionally,

Γ denotes the Gamma function and Kν is the modified Bessel function of second kind with ν degrees

of freedom. The Gaussian random field G is approximated via a truncated Karhunen-Loéve expansion

introduced in Theorem 2.30. For this expansion, the spectral basis of QM is itself approximated via

Nyström’s method [286]. In the subsequent experiments, we focus on the influence of the smoothness

parameter ν and the correlation length ρ of the covariance operator and their effects on the resulting

Gaussian random field.

Matérn smoothness parameter

To investigate the Matérn smoothness parameter ν and its effect on the approximations and convergence

rates, let the variance σ2 be fixed at σ2 = 0.1 and let the correlation length ρ be fixed at ρ = 0.1. We

start by visualizing solutions to the random Burgers’ Equation (8.1) for two underlying log-Gaussian

random fields with varying smoothness parameters in Figure 8.7.
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(a) Smoothness parameter ν = 1/2.
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(b) Smoothness parameter ν → ∞.

Figure 8.7: Solutions to the randomized Burgers’ equation at the final time T = 1 with an underlying

log-Gaussian random field (GRF), which is characterized by a Matérn covariance operator

with varying smoothness parameter ν.
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In Figure 8.7b the log-Gaussian random field is characterized by a Matérn covariance operator with

smoothness parameter ν → ∞. Apparently, this smoothness is inherited by the solution. Here, the

piles in the solution appear due to the initial condition u0 = 0.3 sin(πx). Additionally, at approximately

x ≈ 0.8, a shock-wave appears that is moving through the domain. Contrary to Figure 8.7b, the Matérn

covariance operator in Figure 8.7a has a smoothness of ν = 1/2. This low smoothness is again enherited

to the solution. While we would still expect a shock to appear, such a wave is not identifiable due to the

low regularity of the solution.

Recall that the Gaussian random field is stochastic and thus requires an estimation of the random

convergence rates. Therefore, we employ a Monte Carlo estimator with 20 samples. The corresponding

results are visualized in Figure 8.8.
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(a) L1
-error for ν = 1/2.
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(b) L1
-error for ν = 1.
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(c) L1
-error for ν → ∞.
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(d) L∞
-error for ν = 1/2.
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(e) L∞
-error for ν = 1.
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(f) L∞
-error for ν → ∞.

Figure 8.8: Convergence of (equidistant) finite volume (FV) approximations of the entropy solution

u with an underlying log-Gaussian random field, which is charactierized by the Matérn

covariance operator for varying smoothness parameters ν. Each error estimation is based on

a Monte Carlo estimator with 20 samples.

As one can see in Figures 8.8a – 8.8c, the convergence rate for the L1
-error of the finite volume

approximation decreases as the smoothness parameter ν gets lower. We also observe that 20 samples

are already sufficient to obtain a rather narrow confidence interval. This behavior is different, when
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we consider the L∞
-error of the finite volume approximations. Here, the confidence interval is rather

broad. Additionally, for this case the convergence rate of the L∞
-error does not seem to be affected by

the smoothness parameter ν of the Matérn covariance operator.

Correlation length

For investigating the correlation length ρ of the Matérn covariance operator QM, the variance σ2 was

fixed at σ2 = 0.1. Additionally, for this experiment, we fixed the smoothness parameter ν to satisfy

ν → ∞. As in the previous experiment, we start by illustrating the effect of the correlation length ρ on

the random entropy solution u. Therefore, Figure 8.9 depicts these solutions for two different values of

the correlation length.
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(a) Correlation length ρ = 1/100.
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(b) Correlation length ρ = 1/10.

Figure 8.9: Solution to the randomized Burgers’ equation at the final time T = 1 with an underlying

log-Gaussian random field (GRF), which is characterized by a Matérn covariance operator

with varying correlation length ρ.

As we can observe in Figure 8.9, roughly speaking, a smaller correlation length leads to a higher spatial

variation of the coefficient. Here, Figure 8.9b shows the solution corresponidng to a log-Gaussian

random field with correlation length ρ = 1/10. The rather small spatial variation leads to the impression

that the solution also does not change significantly due to changes in the coefficient. Contrary to this,

Figure 8.9a depicts the solution corresponding to a correlation length ρ = 1/100, which has much more

spatial variation. In this case, the solution inherits the varying behavior of the coefficient.

As the effect of the correlation length ρ has a significant influence on the behavior of the solution,

it appears most natural that this parameter also affects the pathwise convergence of approximations.

Therefore, the strong error E of approximated solutions is investigated, which is defined by Equation

(8.5). To estimate the random convergence rates of the finite volume method, we again employ a Monte

Carlo estimator with 20 samples. The results given in Figure 8.10 demonstrate that the effect of the

correlation length ρ on the convergence rates depends on the considered error measure.

Considering the L1
-error in Figures 8.10a – 8.10c we observe that a decreasing correlation length leads

to lower convergence rates. This behavior is similar to the one discovered by investigating the Matérn

smoothness parameter. In contrast to this, the convergence rate for the L∞
-error seems not to be
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(a) L1
-error for ρ = 1/100.

inv. avg. max. step size
es
ti
m
at
ed

st
ro
n
g
er
ro
r
E

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

FV approximation error
supp. line with slope 0.6
95% conf. interval

(b) L1
-error for ρ = 1/20.
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(c) L1
-error for ρ = 1/10.
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(d) L∞
-error for ρ = 1/100.
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(e) L∞
-error for ρ = 1/20.
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(f) L∞
-error for ρ = 1/10.

Figure 8.10: Convergence of (equidistant) finite volume (FV) approximations to the entopy solution

u with an underlying log-Gaussian random field, which is characterized by the Matérn

covariance operator for varying correlation lengths ρ. Each error estimation is based on a

Monte Carlo estimator with 20 samples.

affected by the correlation length of the correlation length of the Matérn covariance operator. However,

while 20 samples were sufficient for the L1
-error to yield a narrow confidence interval, this is broader

for the L∞
-error. Moreover, with increasing correlation length, the confidence interval seems to become

broader for this error measure.

8.4 Pathwise convergence study

In this section, we investigate the pathwise convergence of the samplewise jump-adapted meshing

and samplewise jump-adapted wave-cell meshing compared to a standard equidistant discretization.

Therefore, we simulate the stochastic discontinuous-flux Burgers’ Equation (8.1) equipped with various

Lévy-type random fields, which have different qualitative properties. In all of the presented experiments,

we consider the strong error, which is given by

E(ω) :=
∥∥∥uref∆ (ω, ·, T )− u∆(ω, ·, T )

∥∥∥
L⋆(X;R)

,
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where L⋆(X;R) is either L1(X;R),L2(X;R) or L∞(X;R). Furthermore, u∆ denotes the approximated

solution computed with the finite volume method and uref∆ is a reference solution. As in the previous

sections, let us stress that the L∞
-error should not be confused with the error in the Chebyshev norm

L∞(T;L1(X)
)
. Instead, we consider the (spatial) L∞(X)-error. Throughout all experiments in this

section, we set a random initial condition u0 to Equation (8.1), which is given by u0(x) = 0.3 sin(πx).

Additionally, for all experiments in this section, the reference solution uref∆ is simulated via the jump-

adapted wave-cell finite volume method with a maximum step size bound ∆x,bound set to one fourth of

the smallest step size bound considered in the numerical experiment at hand. Since the pathwise error E
depends on the stochastic parameterω ∈ Ω, it is approximated via a Monte Carlo estimation. Additionally,

the relevant quantity for the error computation is the maximum spatial step size ∆x,max := maxi∆
i
x.

Its average over the computed samples is denoted by ∆x,max.

For the pathwise convergence study, we consider three different Lévy-type random fields in the sub-

sequent sections: First, in Section 8.4.1, we consider a Poisson jump field with a squared-exponential

Gaussian random field. Here, the Gaussian part is smooth and the jump heights are not bounded a-priori.

Afterwards, in Section 8.4.2, we investigate a rough Gaussian part with jump heights that satisfy a-priori

bounds. We conclude this pathwise convergence study by discussing a random field that has small

inclusions in Section 8.4.3.

8.4.1 Poisson field with squared-exponential Gaussian random field

We start the pathwise convergence study by considering a Poisson jump field with squared-exponential
Gaussian random field, which is a particular type of pathwise bounded Lévy-type random field given

by Equation (8.3). The deterministic mean function a is set to a ≡ 0 and the functional Φ is chosen

as Φ(ξ) = exp(ξ) for some scalar value ξ ∈ R. Thus, according to the Definition 8.1 of Gauss-type

random fields, the Gauss-type random field G has the form Φ
(
G(ω, x)

)
for some truncated Gaussian

random field G. Since on the spatial domain X, no truncation is necessary, we consider G to be a

Gaussian random field, which is characterized by the squared-exponential covariance operator QSE. This

covariance operator is defined as a mapping QSE : L2(XG ;R) → L2(XG ;R) given by

[QSE ψ](y) :=

∫
X
σ2 exp

(
|x− y|
2ρ2

)
ψ(x) dx for all ψ ∈ L2(XG ;R) .

Here, the variance σ2 was set to σ2 = 0.1 and the correlation length ρ was chosen as ρ = 0.1. The

Gaussian random field G is approximated via a truncated Karhunen-Loéve expansion (compare Theorem

2.30) based on the spectral basis of the covariance operatorQSE. This spectral basis is itself approximated

via Nyström’s method [286].

It remains to specify the Poisson jump field of the random field a. Therefore, let the number of jumps τ be

a Poisson-distributed random variable with τ ∼ Poi(5)+1, which guarantees that a has at least one jump.

The corresponding jump positions are uniformly distributed across the domain X, i.e., dj ∼ U(X). As

the name of the random field already suggests, the jump heights pi are Poisson-distributed. In particular,

we set pi ∼ Poi(5) + 1, which ensures the positivity of the jump heights. Note, the constructed jump

field does not admit any global bound that is satisfied for all samples, since the Poisson distribution is

unbounded. We can only find a samplewise bound by evaluating the maximum jump height.
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In Figure 8.11, we illustrate the constructed jump-advection coefficient a by visualizing two samples. As

one can see, the squared-exponential covariance operator leads to a very smooth Gaussian random field.

Also, the absolute values of the jump coefficient a vary strongly across the spatial domain.
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Figure 8.11: Two samples of a Lévy-type random field with a Poisson jump field and a squared-exponential

Gaussian random field.

Let us now demonstrate, how a solution to the stochastic Burgers’ Equation (8.1) is influenced by the

underlying discontinuous random field. Therefore, the first examplary jump-advection coefficient in

Figure 8.11 is employed and the corresponding solution is depicted in Figure 8.12 at two different times.
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(a) Solution u(ω, x, t) at time t ≈ 0.09 with the under-

lying random field.
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(b) Solution u(ω, x, T ) at the final time T = 1.0 with

the underlying random field.

Figure 8.12: Solution to the stochastic discontinuous-flux Burgers’ equation for a Lévy-type random

field with a Poisson jump field and a squared-exponential Gaussian random field.

Due to the spatial jumps in the flux function, multiple discontinuities appear in the solution, which

can be seen at both times t ≈ 0.09 and t = T = 1. Here, let us stress that there exist two different

types of discontinuities in the solution: Standing contact discontinuities at the jump discontinuities and

moving shock-waves. In Figure 8.12a, these moving shock-waves are located at x ≈ 0.1 and x ≈ 0.9. At

the later time t = T = 1, there exists only one such shock-wave, which is located at x ≈ 0.75. This is

shown in Figure 8.12b. Also, note that the smoothness of the Gaussian random field seems to be passed

over to the solution.

With this impression on the qualitative behavior of the solution, we can now turn to the main inves-

tigation of this section, which discusses the pathise convergence of approximations for the various

discretization techniques discussed in Section 8.2. For this purpose, Figure 8.13 shows the pathwise L1
-

and L2
-error averaged for 50 samples of the random entropy solution to Equation (8.1). One immediately
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(a) Pathwise L1
-error.
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(b) Pathwise L2
-error.
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Figure 8.13: Pathwise L1
-, L2

- and L∞
-error of finite volume (FV) approximations for a Poisson jump

field with a squared-exponential Gaussian random field. Each error is estimated via a Monte

Carlo estimator using 50 samples.

notices that the chosen discretization scheme barely influences the order of convergence. Even the

absolute error values do not seem to differ significantly. This behavior is by far not surprising: For the

chosen random field, the jump discontinuities are widely scattered across the domain. Therefore, even

coarse discretizations are able to resolve these discontinuities. The only exception to this behavior is the

convergence of the L∞
-error of finite volume approximations. Here, the jump-adapted discretization

techniques lead to a (slightly) improved error constant. Additionally, for coarse discretizations, this

constant is lower for the jump-adapted wave-cell meshing than for the normal discretization with

jump-adaptivity. Finally, let us note that 50 Monte Carlo samples lead to a narrow confidence interval

for the L1
- and L2

-error. However, for the L∞
-error, the confidence interval for the approximation

error is quiet large.

8.4.2 Alternating jump field with exponential Gaussian random field

We continue our pathwise convergence study by considering a different Lévy-type random field, an

alternating jump field with exponential Gaussian random field. As in the previous case, we set the

deterministic mean function a to a ≡ 0 and the functional Φ is chosen as Φ(ξ) = exp(ξ) for some scalar

value ξ ∈ R. Therefore, the Gauss-type random field G is of the form G(ω, x) = Φ
(
G(ω, x)

)
. Here, G is

a (truncated) Gaussian random field characterized by the exponential covariance operator QE, which

corresponds to the Matérn covariance operator QM with smoothness parameter ν = 1/2. Thus, the

resulting Gaussian random field has rather rough paths. The variance σ2 is set to σ2 = 0.1 and the

correlation length ρ is chosen as ρ = 0.1. The resulting Gaussian random field G is approximated via

the truncated Karhunen-Loéve expansion (Theorem 2.30). For this, the spectral basis of the exponential

covariance operator QE is approximated via Nyström’s method [286].

We continue by specifying the alternating (random) jump field of the jump-advection coefficient a. The

structure of this jump field is very similar to the one of the previous section: The number of jumps τ is a

Poisson-distributed random variable with τ ∼ Poi(5) + 1, such that we have at least one discontinuity.

The corresponding jump positions are uniformly distributed across the domain X, i.e., dj ∼ U(X). The
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main difference to the Poisson-distributed jump field of the previous section are the jump heights pi.

These are defined as

pi =

{
U
(
[14 ,

3
4 ]
)

for i odd ,

U
(
[54 ,

7
4 ]
)

for i even .

By the above construction, the alternating jump field admits global bounds on the coefficient that hold for

all samples (instead of only samplewise bounds for the Poisson jump field). To illustrate the constructed

jump-advection coefficient, we visualize two samples of the random field in Figure 8.14.
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Figure 8.14: Two samples of a Lévy-type random field consisting of an alternating jump field and an

exponential Gaussian random field.

One immediately observes the roughness of the Gaussian random field due to the exponential covariance

operator. This is just what one expects, due to the results of Section 8.3.3, where the influence of

the Matérn smoothness parameter was investigated. Also, due to the structure of the coefficient, the

Gaussian part of the random field varies more and jump discontinuities are not necessarily the main

cause for spatial variation. In Figure 8.15, we demonstrate how the entropy solution to the stochastic

Burgers’ Equation (8.1) is affected by the underlying jump-advection coefficient. Here, the first exemplary

random field sample of Figure 8.14 is employed and the corresponding solution is shown at two different

time steps.
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(a) Solution u(ω, x, t) at time t ≈ 0.09 with the under-

lying random field.
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(b) Solution u(ω, x, T ) at the final time T = 1.0 with

the underlying random field.

Figure 8.15: Pathwise solution to the random discontinuous-flux Burgers’ equation for a Lévy-type

random field with an alternating jump field and an exponential Gaussian random field.
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As in the previous setting, the spatial jumps in the flux function lead to multiple discontinuities in the

solution. This behavior can be observed at both time steps t ≈ 0.09 (Figure 8.15a) and t = T = 1 (Figure

8.15b). While the contact discontinuities that appear at the jumps of the flux function are easily detected,

the occurring moving shock-waves are less apparent due to the low regularity of the solution. However,

in the solution at time t = 1 depicted in Figure 8.15b such a shock-wave appears at approximately

x ≈ 0.6.

To conclude the investigation of this kind of Lévy-type random field, we now discuss the pathwise

convergence of approximations of solutions. Therefore, finite volume simulations with underlying

equidistant, jump-adapted and jump-adapted wave-cell discretizations are evaluated. Since the approxi-

mation error is random, Figure 8.16 depicts the pathwise L1
-, L2

- and L∞
-error averaged over 50 Monte

Carlo samples of the random entroy solution.
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(a) Pathwise L1
-error.
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(b) Pathwise L2
-error.
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Figure 8.16: Pathwise L1
-, L2

- andL∞
-error of finite volume (FV) approximations of the random entropy

solution u for an alternating jump field with an exponential Gaussian random field. Each

error is estimated via a Monte Carlo estimator using 50 samples.

Even though we have changed some of the characteristics of the random field, such as the smoothness of

the log-Gaussian random field, the convergence results are very similar to those of the previous section.

All three discretization methods lead to similar convergence rates. While it is not surprising, let us note

that the order of convergence is highest for the L1
-error and lowest for the L∞

-error. Again, 50 Monte

Carlo samples of the random approximation error are sufficient for a small confidence interval in the

L1
- and L2

-convergence. For the L∞
-error, the confidence of the error estimation is much lower. As a

last comment, let us mention that the jump-adaptivity is able to slightly improve the error for coarse

grids and the jump-adapted wave-cell discretization marginally improves this effect. This behavior can

best be seen for the L∞
-error of the finite volume approximations.

8.4.3 Jump field with random inclusions

For the last coefficient in this pathwise convergence study, we consider a jump field with random inclusions.
For this particular random field, let the number of inclusion τ be given as τ ∼ Poi(10) + 1, which

guarantees that at least one inclusion is contained in the coefficient. The positions of the inclusions
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are uniformly distributed over the spatial domain X, i.e., xi ∼ U(X). Each inclusion has a random size,

which is given by li ∼ U
(
[10−5, 10−3]

)
. Let now X ⊂ X denote the union of all inclusions. With this

set,the jump-advection coefficient is defined via

a(ω, x) :=

{
hk for x ∈ X ,

1 otherwise ,
with hk ∼

{
Poi(30) for k = 0 ,
1
ξ , ξ ∼ Poi(30) for k = 1 .

Here, k ∼ Ber(1, 1/2) is a Bernoulli-1/2-distributed random variable, defining whether the random

inclusion height is distributed as h0 or as h1. As for the previous coefficients, we provide two samples

of the constructed jump field with random inclusions to illustrate the behavior of this jump-advection

coefficient in Figure 8.17.
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Figure 8.17: Two samples of a jump-advection coefficient with random Poisson-distributed inclusions.

To improve visibility of the random inclusions, they are highlighted by a surrounding circle. By

construction, the inclusions have a very small size, but one also observes that the number of inclusions

varies quiet strongly and that two inclusions can appear very close to each other. Note that the character

of the random field is very different to the two coefficients of the preceeding discussion.

In Figure 8.18, we demonstrate the impact of the jump-advection coefficient on the random entropy

solution. Therefore, Figure 8.18a shows the solution at time t ≈ 0.09, while Figure 8.18b depicts the

solution at the final computation time t = T = 1.
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(a) Solution u(ω, x, t) at time t ≈ 0.09 with the under-

lying random field.
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(b) Solution u(ω, x, T ) at the final time T = 1.0 with

the underlying random field.

Figure 8.18: Solution to the stochastic discontinuous-flux Burgers’ equation for a constant jump field

with random Poisson-distributed inclusions.
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Here, the inclusions are again marked with a surrounding circle to improve visibility. As one immediately

observes, the small inclusions lead to significant peaks, which point up- or downwards depending on

the inclusion height. Additionally, the random inclusions lead to multiple moving shock-waves, which

can be seen in Figure 8.18a at approximately x ≈ 0.65 and x ≈ 0.8. At the final time t = 1, there is only

one moving shock-wave, which is located at approximately x ≈ 0.4. Another interesting observation is

the temporal development of the peaks: While the peaks on the left side of the domain (x ≈ 0.05) are

very small for the earlier time t ≈ 0.09, they are significantly higher at the final time t ≈ 1. On the

other hand, the eruption of the peaks around x ≈ 0.6 are very tall in the beginning of the simulation

and their height is decreasing over time. Also, discontinuities leading to an inclusion with lower value

of the advection coefficient have a much stronger impact on peaks in the solution than inclusions on

which the coefficient value increases.

Due to the small inclusions and the resulting peaks, this random field is very promising to demonstrate

the qualitative differences of the proposed discretization techniques. Therefore, in Figure 8.19, the

estimated pathwise L1
-, L2

- and L∞
-error are visualized.
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(a) Pathwise L1
-error.
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(b) Pathwise L2
-error.
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(c) Pathwise L∞
-error.

Figure 8.19: Pathwise L1
-, L2

- andL∞
-error of finite volume (FV) approximations of the random entropy

solution u for a constant jump field with random Poisson-distributed inclusions. Each error

is estimated via a Monte Carlo estimator using 100 samples.

Here, the pathwise error estimation is based on a Monte Carlo estimator with 100 samples. Independent

of the considered norm, the jump-adapted discretizations are converging at a similar rate. However, the

standard equidistant finite volume approximation does not seem to converge at all or at a very low rate.

This is by far not surprising: The equidistant discretization is not able to resolve the small inclusions.

Thus, the standard finite volume method needs a much finer resolution of the grid to resolve the flux

discontinuities than the jump-adapted discretization techniques require. Nevertheless, asymptotically,

we expect all three discretizations to converge at the same convergence rate.

Furthermore, let us stress that the jump-adapted wave-cell discretization leads to a much better error

constant compared to the jump-adapted finite volume method. This behavior can be explained by the

better approximation of the standing-wave profiles resulting from the discontinuities of the flux function.

However, in all three error norms, the jump-adapted wave-cell discretization appears to result in a lower

confidence of the error estimation.
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8.5 Estimation of stochastic moments

To conclude the chapter on numerical simulations of one-dimensional random scalar conservation laws,

this section investigates the estimation of stochastic moments of the adapted entropy solution u. In

particular, the convergence behavior of the multilevel Monte Carlo (MLMC) estimator introduced in

Definition 2.35 is studied. For the investigation, we simulate the stochastic discontinuous-flux Burgers’

Equation (8.1), where the jump-advection coefficient is given as a Lévy-type random field. As the

convergence behavior of the MLMC method is influenced by the pathwise convergence behavior, the

same Lévy-type random fields as in Section 8.4 are employed. However, since the pathwise convergence

in Section 8.4 was similar for the Poisson jump field with squared-exponential Gaussian random field and

for the alternating jump field with exponential Gaussian random field, we restrict ourselves to the latter

one. The corresponding convergence behavior of the multilevel Monte Carlo estimator is compared to

the estimation for a jump field with random inclusions. Throughout this section, we consider the weak
error of the moment estimation, which is given by

Ew(ω) := E
(∥∥ELref

(
u∆(ω, ·, T )

)
− EL

(
u∆(ω, ·, T )

)∥∥
L⋆(X;R)

)
,

where L⋆(X;R) is either L1(X;R),L2(X;R) or L∞(X;R). Furthermore, u∆ denotes the finite volume

approximation of the adapted entropy solution u and EL denotes the MLMC estimator based on L ∈ N
levels. For all experiments, the reference estimation ELref

(
u∆(ω, ·, T )

)
is computed by an MLMC

estimator using Lref = 7 levels. The finite volume approximation u∆ for this reference estimation was

computed with an underlying jump-adapted wave-cell meshing. The spatial step size for the coarsest level

was set to ∆0
x,max := 1/2 and the level-dependent spatial step sizes are given by ∆l

x,max = 2−l∆0
x,max

for l = 1, . . . , L.

Before we turn to the convergence study, the impact of the random jump-advection coefficients on

the multilevel Monte Carlo estimators is demonstrated. Therefore, Figure 8.20 depicts the reference

estimator ELref
(
u∆(ω, ·, T )

)
for both types of underlying Lévy-type random fields.

One immediately notices that the estimated solutions appear to be steadier than the underlying pathwise

solutions. While the roughness of the exponential Gaussian random field is still visible in Figure 8.20a,

one barely notices the peaks contained in pathwise solutions of the jump field with random inclusions

in Figure 8.20b. This is clear, since in both cases the (multilevel) Monte Carlo estimator approximates

the expectation as an average of computed samples. Consequently, the estimators appear rather smooth

in the sense that they seem related to pathwise solutions based on continuous flux functions. In this

case, a traveling shock-wave appears, which can be seen in Figure 8.20a at approximately x ≈ 0.1 and

close to the right boundary of the spatial domain X in Figure 8.20b.

With these qualitative characterizations of the multilevel Monte Carlo estimators in mind, the weak

approximation error and its convergence behavior can be investigated. At this point, let us stress that the

multilevel Monte Carlo scheme considered in the subsequent experiments is not optimized with respect

to the underlying meshing method. In particular, the number of samples computed on each discretization

level is not optimal, since they are not fitted towards the decay of the variance of the correction term

in the multilevel Monte Carlo estimation (2.6). As a result, we cannot expect the approximation to

converge out-of-the-box. The presented experiments should rather be seen as an investigation on
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(a) Alternating jump field with exponential Gaussian

random field.
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(b) Jump field with random inclusions.

Figure 8.20: Multilevel Monte Carlo (MLMC) estimates of the adapted entropy solution u to the ran-

domized discontinuous-flux Burgers’ equation with different underlying Lévy-type random

fields a.

which meshing scheme is suitable to enable the multilevel Monte Carlo method without the necessity

of changing the algorithm to obtain convergence. To approximate the expectation in the weak error,

a Monte Carlo estimation is employed, for which the number of simulations was set to M = 20. The

error estimation for the multilevel Monte Carlo estimates with underlying alternating jump field and

exponential Gaussian random field is visualized in Figure 8.21.
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Figure 8.21: Convergence of multilevel Monte Carlo estimates of finite volume (FV) approximations of

the random adapted entropy solution u to the randomized Burgers’ equation with underlying

alternating jump field with exponential Gaussian random field for different number of levels.

Each error is estimated via a Monte Carlo estimator using 20 samples.

Figure 8.21 clearly shows that the jump-adapted meshing algorithms lead to better finite volume approx-

imations than the classical equidistant discretization. This is not suprising, since the discontinuities in

the coefficient are better resolved in the jump-adapted meshing. On coarse discretizations, this leads to
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a finer initial grid, which explains the better error constant. As for the pathwise convergence study,

the jump-adapted wave-cell meshing does not seem to significantly improve the error approximation.

Nevertheless, in the shown numerical experiment, the equidistant meshing converges at a faster rate.

This is caused by the same argumentation: As coarse level have a finer resolution, increasing the number

of levels (and thus the spatial refinement) has a reduced effect on the quality of the approximation. If we

would further increase the number of levels L, we expect the convergence rates of the three methods to

become similar. One should also note the decreased convergence rates for the weak L∞
-error, which is

analogous to the pathwise convergence results.

As a last investigation of this section, the weak convergence behavior of the multilevel Monte Carlo

estimator is analyzed for the case of an underlying jump field with random inclusions. The expected

value in the weak error is estimated by a Monte Carlo estimation using M = 10 samples. This reduced

number of Monte Carlo samples is caused by higher run times of the simulations for the jump field with

random inclusions. The corresponding results are depicted in Figure 8.22.
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Figure 8.22: Convergence of multilevel Monte Carlo estimators of finite volume (FV) approximations

of the random adapted entropy solution u to the randomized Burgers’ equation with an

underlying jump field having random inclusions for different number of levels. Each weak

error is estimated via a Monte Carlo estimator based on 10 samples.

At first glance the findings may seem partly unintuitive, since the multilevel Monte Carlo estimation

based on jump-adapted finite volume grids does not seem to converge at all. However, with an in-

depth look, this behavior appears completely reasonable: For MLMC estimators with L = 1 or L = 2

levels, the expectation of the solution is better approximated than with equidistant discretizations, since

the flux discontinuities are better resolved. Unfortunately, the extremly high-amplitude peaks in the

pathwise solutions caused by the jump field with random inclusions badly affect the computation of

the correction term in the multilevel Monte Carlo estimator given by Equation (2.6). Computing the

difference of two approximations with differing discretizations is classically done by interpolating the

coarse approximation onto the finer grid and evaluating the difference on this fine discretization. Now,

for the jump-adapted finite volume method, the cells next to the peaks in the solution can be very broad,

which induces a significant interpolation error into the computation. Since this effect is most significant

for coarse step size bounds, the MLMC estimation based on jump-adapted finite volume approximations

does not converge for the jump field with random inclusions. Since this problem of computing the
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correction terms with an induced interpolation error affects the overall approximation, this behavior

can be observed in all three considered error norms. Recall, the multilevel Monte Carlo method was

not optimized regarding the underlying discretization scheme. Thus, to obtain convergence of the

estimation, adapting the approximation algorithm would be necessary. This could include a different

definition of the considered discretization levels as well as changing the number of samples computed

at each level. However, such an adaptation would reduce the efficiency of the multilevel Monte Carlo

method compared to employing a different discretization scheme.

Due to the construction of jump-adapted wave-cell discretizations, the (interpolation) problems described

above vanish and the MLMC estimation converges as one expects. Clearly, introducing small cells

next to the standing-wave peaks in the pathwise solution overcomes the problems for computing the

correction terms. As a result, the multilevel Monte Carlo estimations based on jump-adapted wave-cell

discretizations converge as expected. Analogously to previous experiments, the convergence rate is

highest for the weak L1
-error and decreases to the lowest convergence rate for the weak L∞

-error.

This effect is similar for the convergence of MLMC estimators based on an equidistant finite volume

approximation. Since the peaks in the solution are not resolved with these equidistant grids, the

correction term can be computed easily without the problems caused by jump-adaptivity. Therefore, the

equidistant multilevel Monte Carlo estimators converge at a similar rate as those based on jump-adapted

wave-cell discretizations. Here, one can also notice that the jump-adaptation of the grid significantly

improves the error constant of the approximations.

Summarizing the above argumentation, the MLMC estimators based on jump-adapted finite volume grids

do not converge, since the variance of the difference between two resolutions, i.e., V (ul − ul−1), does

not decrease. A similar argument holds for the equidistant discretization, whose approximation error is

measured in the L∞
-norm. To verify this argument, we investigate the decay of the term V (ul − ul−1)

in the multilevel Monte Carlo estimator (2.6). Since we cannot compute the variance V (U) of a random

variable U directly, it is estimated via the sample variance of a set U =
{
U (i)

}M
i=1

consisting of M i.i.d.

samples of the random variable U . Based on such a set, the sample variance is defined es

V (U) =
∑M

i=1(U
(i) − Ū)2

M − 1
,

where Ū = EM (U) = 1/M
∑M

i=1 U
(i)

is the sample mean of the set U. For the subsequent numerical

experiment, the variance V (ul − ul−1) is estimated via the empirical variance of a set of 1000 samples

of the term (ul − ul−1), with l = 1, . . . , 5. The estimated variance V (ul − ul−1) of these samples is

depicted in Figure 8.23.

One immediately notices that the variance based on jump-adapted wave-cell finite volume approxi-

mations decreases in all error norms. Contrary to this, the variance based on standard jump-adapted

discretizations does not decrease in any of the considered norms. In fact, it even increases for the

L∞
-norm. For the equidistant approximations, the variance decreases in the L1

- and L2
-error norm.

However, the variance increases in the L∞
-norm. Consequently, the investigation of the variance

completely supports our findings on the convergence behavior of the multilevel Monte Carlo estimators

in Figure 8.22: The estimators based on jump-adapted wave-cell discretizations converge in all three

considered error norms, since the variance decreases. For the equidistant grids, the multilevel Monte

Carlo estimators converge in the L1
- and L2

-norm due to the variance decay. However, in the L∞
-norm,
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Figure 8.23: Variance of the correction terms in the multilevel Monte Carlo estimators of finite volume

(FV) approximations of the random adapted entropy solution u to the randomized Burgers’

equation. The underlying jump field has random inclusions and the variance of the correc-

tion terms is shown for various discretization levels. Each variance is estimated using 1000
samples of the correction term.

the MLMC estimator does not converge as the variance increases. This is also the reason, why the

estimators based on standard jump-adapted meshes do not converge in any error norm. Overall, these

results demonstrate the ability of the jump-adapted wave-cell meshing for accurately computing random

solutions and approximating their stochastic moments.
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Conclusion and
future research 9

This dissertation has adopted the approach of uncertainty quantification with Lévy-type random fields

of [262] to the modeling, analysis and numerical simulation of hyperbolic conservation laws. As a main

contribution, the presented research extends the theoretical frameworks of scalar conservation laws

with discontinuous flux functions to allow for random spatial jumps in the flux functions. In particular,

the novel theoretical frameworks are pioneering works by not requiring strong measurability of the flux

function while ensuring well-posedness of random entropy solutions.

From a modeling perspective, the main contribution of this thesis is the development of random (families

of) admissibility germs. As describing the behavior of an entropy solution across flux discontinuities is

part of the modeling process, extending the unifying framework of admissibility germs enables such

modeling in the presence of uncertainties. While this framework requires the existence of strong traces,

the presented investigation of random adapted entropy solutions in the Audusse-Perthame setting

and for the case of Panov-type flux functions appears complementary to the theory of admissibility

germs. These types of admissibility conditions are particularly relevant for applications in which a

confinement assumption on the entropy solution appears to be unnatural. In all the presented theoretical

well-posedness frameworks, strong measurability of the random entropy solution is established without

leveraging standard results, as these are not available for general discontinuous flux functions. To

overcome these challenges, an innovative (proof) strategy utilizing set-valued mappings and the novel

notion of entropy functionals is employed. At this point, let us stress that the presented research also

extends the presentation of admissibility germs for the case of compound flux discontinuities. While

this extension is straightforward in the deterministic case, in the randomized setting various technical

issues appear, which were addressed and resolved in this thesis.

The numerical simulation of random scalar conservation laws is addressed through the invention of

a meshing strategy, which accounts for the standing-wave profiles that result from stationary flux

discontinuities in the adapted entropy framework of Audusse-Perthame. This new approach for creating

(finite volume) meshes demonstrates its potential to outperform standard techniques, especially in the

case of flux functions, whose advection coefficient contains small inclusions or has jumps concentrated

in clusters. In particular, the novel meshing strategy can lead to a significant reduction in the samplewise

variance of the computed solution.
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Future research directions

Coming back to the holistic idea of addressing the modeling, analysis and the numerical simulation

of random scalar conservation laws with discontinuous flux functions, open questions and various

topics for future research directions arise quiet naturally. From a modeling perspective, integrating

(experimental) data into the Lévy-type random field poses an interesting question. While there are

standard methods such as Gaussian processes [286] to achieve this in continuous random fields, we are

not aware of approaches for including data into discontinuous coefficients. Additionally, extending the

presented frameworks to temporal discontinuities or allowing for a discontinuous dependence of the

flux function of the solution variable appears natural.

Turning to the theoretical analysis, the required joint measurability for random families of admissibility

germs can be difficult to verify. Reducing this assumption to separate measurability is an interesting

open question. However, such an extension is not straightforward and many technical challenges

arise. Analogously, a further generalization of the presented frameworks to flux functions of bounded

variation as well as to merely L∞
-valued solutions appears as an interesting problem. Unfortunately,

this generalization poses delicate technical issues of measurability, which require novel proof strategies.

For multi-dimensional conservation laws, we required rather unnatural assumptions such as additional

regularity of the flux discontinuity interface. Avoiding these assumptions to allow for generalized

geometries, such as merging lines, would enable more realistic applications. A promising approach

in this direction was introduced in the deterministic setting of [8] by the development of singular

Kružkov admissibility conditions.

While this dissertation focused on scalar conservation laws, future investigations could address hyper-

bolic systems of conservation laws with flux discontinuities. In this setting, a particularly interesting

question is given by the case, in which more than one term can have discontinuities.

The consideration of systems of conservation laws with discontinuous flux functions also raise interesting

challenges for the numerical simulation of solutions. Restricting ourselves to multi-dimensional scalar

conservation laws again, an interesting question is given by possible extensions of the jump-adapted

wave-cell meshing strategy to the multi-dimensional setting. To account for standing wave-fronts an

extension may be rather straightforward. However, as also travelling wave-fronts may appear at flux

discontinuities, tracking these fronts may require a pathwise discretization with moving meshes [144,

258]. Comparing the performance of the presented finite volume methods with Discontinuous Galerkin

or Front tracking approaches may lead to new insights and improved pathwise approximation schemes.

Conducting numerical analysis of the presented methods is an important, yet challenging task. Especially

the random convergence rates of finite volume approximations are fundamental for a variety of research

questions. Adapting multilevel Monte Carlo methods to such random convergence rates is only one

of them. In particular, leveraging knowledge about the structure of the solution in combination with

convergence rates estimates may enable (more) efficient methods to quantify the uncertainty of random

scalar conservation laws with discontinous flux functions.

Finally, we want to address potential future research questions that are related to the recent advances

and successes of Machine Learning, in particular with a focus on deep neural networks (DNN). Sampling

Lévy-type random fields may be computationally expensive, especially if Fourier inversion needs to be

applied. Here, the approach of [56] seems promising, where DNNs have been used for the reconstruction

of heterogeneous materials, such as porous rocks. In the sampling process of Lévy-type random fields

Conservation Laws with Random Discontinuous Flux Functions



213

such neural networks may be able to omit the approximation of the eigenbasis in a Karhunen-Loéve

expansion or other bottlenecks of current techniques. Also, approximating the random entropy solution

of nonlinear scalar conservation laws via deep neural networks is an interesting question. However,

the lack of regularity of solutions poses many challenges as its characteristic curves are not necessarily

smooth (see, e.g., the discussion of [175]).
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Examples of (random)
remainder functions A

In this appendix, various examples of (random) remainder functions are presented and discussed. Let us

stress that all of the occurring remainder terms are inspired by the choices introduced by Andreianov

et al. in [13]. For each presented choice of the remainder function, the two imposed assumptions of

joint measurability as well as integrability are verified (compare Assumptions 3.27 and 3.46 for the sole

discontinuity setting of Assumptions 4.23 and 4.35 for the case of a compound flux discontinuity). For

the ease of presentation, we restrict ourselves to the sole flux discontinuity setting. However, extending

the subsequent results to the compound flux discontinuity case is straightforward up to heavy notational

technicalities.

A.1 Remainder function via flux oscillation

While the remainder function Rdist
G is a simple choice, which is easy to handle in proofs, it requires

global Lipschitz continuity of the flux functions. A more sophisticated choice, that does only requires

local instead of global Lipschitz continuity, is the remainder function ROsc
G based on the oscillation of

the flux functions fl,r(ω, x, ·). Subsequently, we properly define this remainder function.

Definition A.1 (Remainder function via flux oscillation):
Let D : Ω ⇒ XT be a random sole flux discontinuity. Additionally, let G : Ω× XT ⇒ R2 be a random
family of L1-dissipative admissibility germs and let the flux functions fl,r(ω, x, ·) be locally Lipschitz
continuous. Furthermore, let Osc : C(R;R)× R× R → R≥0 defined via

Osc(g; k, u) := max
{
|g(r)− g(s)|

∣∣∣min{k, u} ≤ r ≤ s ≤ max{k, u}
}
,

be the oscillation of a continuous function g ∈ C(R;R) between the values k, u ∈ R. Then, the function
ROsc

G : Ω× XT × R2 → R≥0 given by

ROsc
G (ω, x; (kl, kr)) := 2 inf

(ul,ur)∈G(ω;x)

(
Osc

(
fl(ω, ·); kl, ul

)
+Osc

(
fr(ω, ·); kr, ur

))
,

is called the remainder function via the flux oscillation.
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As in the previous section, we start our discussion by showing that the remainder function based on the

flux oscillation is jointly measurable as soon as the underlying admissibility germs G : Ω× XT ⇒ R2

are jointly measurable.

Proposition A.2 (Joint measurability of remainder function via flux oscillation):
Let D : Ω ⇒ XT be a random sole discontinuity hypersurface and let the flux functions fl,r(ω, x, ·) be
locally Lipschitz continuous. Furthermore, let G : Ω × XT ⇒ R2 be a random family of L1-dissipative
admissibility germs that satisfies the joint measurability Assumption 3.16. Then, the remainder function
ROsc

G : Ω× XT × R2 → R≥0 associated to G is jointly measurable.

Proof. Recall that by the stochastic measurability Assumption 3.41, the flux functions fl,r are

measurable with respect to the stochastic parameter ω ∈ Ω. This implies that the oscillation functions

of fl,r are measurable. Based on the discussion of [246, Chapter 4], set convergence does not distinguish

open and closed sets. Therefore, we can identify the germ G with its closure cl
(
G
)
. However, by a result

analogous to Lemma 2.15, the infimum over a closed set A is continuous with respect to this closed set

A ∈ CS(R2).

Consequently, the remainder function ROsc
G is jointly measurable in (ω, x) ∈ Ω× XT and continuous

with respect to the couple of entropy values (kl, kr) ∈ R2
. Thus, the remainder function ROsc

G is

Carathéodory and by [5, Lemma 4.51] jointly measurable. ■

The investigation of the remainder function ROsc
G based on the flux oscillation is concluded with the

next proposition, which shows that the function ROsc
G admits a locally Lebesgue integrable majorant

and, therefore, is also locally Lebesgue integrable.

Proposition A.3 (Integrability of remainder function via flux oscillation):
Let G : Ω × XT ⇒ R2 be a random family of L1-dissipative admissibility germs such that for every
stochastic parameter ω ∈ Ω there exists a solution u(ω, ·, ·) ∈ L∞(X×T;R). Then, the remainder function
ROsc

G is locally integrable in the sense of Assumption 3.46, meaning that for each compact set K ⊂ R2 and
fixed stochastic parameter ω ∈ Ω, the function

MR
K(ω, x) := sup

k∈K

∣∣ROsc
G (ω, x,k)

∣∣
is locally Lebesgue integrable, i.e., MR

K(ω, ·) ∈ L1
loc(XT;R).

Proof. First, note that for every stochastic parameter ω ∈ Ω, there exists a G-entropy solution

u(ω, ·, ·) ∈ L∞(X × T;R). Therefore, there also exists a (possibly random) interval U(ω) ⊂ R such

that the solution u satisfies u(ω, ·, ·) ∈ U(ω) for almost every (x, t) ∈ X × T. However, this implies

that G(ω, x) ∩ U(ω)2 ̸= ∅ for almost every spatio-temporal coordinate x ∈ XT. Otherwise, this would

be a contradiction to the existence of a G-entropy solution.

Since the flux functions fl,r are locally Lipschitz continuous by Assumption (F-2), for a fixed continuous

function g ∈ C(R;R), the oscillation function Osc(g; ·, ·) is continuous in both arguments. Now, let

K ⊂ R2
be a compact set. Then, by exploiting the boundedness of the oscillation function over this

compact set, the remainder function ROsc
G can be bounded by

ROsc
G

(
ω, x; (kl, kr)

)
≤ 4Cf ,
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where the constant Cf > 0 depends on the compact set K , the flux functions fl,r and the admissibility

germ G. However, this upper bound implies that MR
K(ω, ·) ∈ L∞(XT;R≥0), which concludes the proof

due to the inclusion L∞(XT;R≥0) ⊂ L1
loc(XT;R). ■

A.2 Remainder function via modulus of continuity

In this section, we discuss the remainder function Rm
G , which is based on the modulus of continuity of

the flux functions fl,r(ω, x, ·). We start by providing the following definition.

Definition A.4 (Remainder function via modulus of continuity):
Let D : Ω ⇒ XT be a random sole discontinuity hypersurface and let the flux functions fl,r(ω, x, ·) be
locally Lipschitz continuous. Additionally, let G : Ω × XT ⇒ R2 be a random family of L1-dissipative
admissibility germs. Furthermore, for any continuous function g ∈ C(R;R) let m(g; ·) : [0,∞] → [0,∞]

denote the associated modulus of continuity defined as

m(g; δ) := max
{
|g(r)− g(s)|

∣∣∣ min{k, u} ≤ r ≤ s ≤ max{k, u}, |r − s| ≤ δ
}
.

Then, the function Rm
G : Ω× XT → R≥0 given by

Rm
G (ω, x; (kl, kr)) := 2 inf

(ul,ur)∈G(ω;x)

(
m
(
fl(ω, ·);

∣∣∣kl − ul
∣∣∣)+ m

(
fr(ω, ·); |kr − ur|

))
,

is called the remainder function via the modulus of continuity.

With this definition available, we can start by verifying the joint measurability Assumption 3.27 and

the integrability Assumption 3.46. To do this, the subsequent proposition shows that the remainder

function Rm
G based on the modulus of continuity of the flux functions fl,r(ω, x, ·) is jointly measurable

as soon as the underlying family of admissibility germs G : Ω× XT ⇒ R2
is jointly measurable.

Proposition A.5 (Joint measurability of remainder function via modulus of continuity):
LetD : Ω ⇒ XT be a random sole flux discontinuity and let the flux functions fl,r(ω, x, ·) be locally Lipschitz
continuous. Additionally, let G : Ω× XT ⇒ R2 be a random family of L1-dissipative admissibility germs
that satisfies the joint measurability Assumption 3.16. Then, the remainder function Rm

G associated to G is
jointly measurable.

Proof. By the stochastic measurability Assumption 3.41, the flux functions fl,r are measurable with

respect to the stochastic parameter ω ∈ Ω. Therefore, by its construction, the modulus of continuity m
of the functions fl,r is also measurable.

Since set convergence (and the metric on the hyperspace of closed subsets) does not distinguish open

and closed sets, we can identify each admissibility germ G(ω, x) by its closure cl
(
G(ω, x)

)
. Thereby, a

result analogous to Lemma 2.15 yields that the infimum over a closed set A ∈ CS(R2) is continuous

with respect to the set A.

As a result, the remainder function Rm
G based on the modulus of continuity is jointly measurable in

(ω, x) ∈ Ω× XT due to the joint measurability of the admissibility germ G. Additionally, the function

Rm
G is continuous with respect to the pair of entropy values (kl, kr) ∈ R2

. Consequently, [5, Lemma

4.51] implies that the remainder term Rm
G is jointly measurable as a Carathéodory function. ■

Lukas Brencher University of Stuttgart



220 A Examples of (random) remainder functions

As a last property of the remainder function Rm
G based on the modulus of continuity, we show that the

function Rm
G satisfies the local Lebesgue integrability Assumption 3.46. The corresponding result is

argued in the following Proposition, which concludes the discussion of the remainder function Rm
G .

Proposition A.6 (Integrability of remainder function via modulus of continuity):
LetD : Ω ⇒ XT be a random sole flux discontinuity and let the flux functions fl,r(ω, x, ·) be locally Lipschitz
continuous. Furthermore, let G : Ω× XT ⇒ R2 be a random family of L1-dissipative admissibility germs
such that for every stochastic parameter ω ∈ Ω there exists a solution u(ω, ·, ·) ∈ L∞(X× T;R). Then,
the remainder function Rm

G is locally integrable in the sense of Assumption 3.46, meaning that for each
compact set K ⊂ R2 and fixed stochastic parameter ω ∈ Ω, the function

MR
K(ω, x) := sup

k∈K
|Rm

G (ω, x,k)|

is locally Lebesgue integrable, i.e., MR
K(ω, ·) ∈ L1

loc(XT;R).

Proof. By hypothesis, for any stochastic parameter ω ∈ Ω, there exists a G-entropy solution

u(ω, ·, ·) ∈ L∞(X × T;R). Thus, there exists a (possibly random) interval U(ω) ⊂ R such that for

almost every (x, t) ∈ X × T the solution u is contained in U(ω). Consequently, for almost every

spatio-temporal point x ∈ XT, the condition G(ω, x) ∩ U(ω)2 ̸= ∅ is fulfilled. Otherwise, this would be

a contradiction to the existence hypothesis of a G-entropy solution u.

Since the flux functions fl,r are locally Lipschitz continuous by Assumption (F-2), there exists a constant

Cf ∈ R>0 such that m
(
fl,r(ω, ·);d∞

(
K,U(ω)2

))
≤ Cf is satisfied. Here, K ⊂ R2

is some arbitrary

compact set of R2
. Note that the constant Cf may depend on the stochastic parameter ω ∈ Ω. However,

this estimation allows us to bound the remainder function via

Rm
G

(
ω, x; (kl, kr)

)
≤ 4Cf .

Thereby, we also obtain that the function MR
K satisfies MR

K(ω, ·) ∈ L∞(XT;R≥0). Since every

essentially bounded function is also locally integrable, this concludes the proof. ■

A.3 Remainder function via flux variation

As a last remainder function in this appendix, we discuss the remainder function RVar
G , which is defined

via the variation of the flux functions fl,r(ω, x, ·). Similarly to the first remainder function Rdist
G , which

required global Lipschitz continuity of the flux functions, we need to impose an additional requirement

on the fluxes fl,r(ω, x, ·) to be able to employ this remainder function. In particular, the flux functions

fl,r(ω, x, ·) need to be of bounded variation, i.e., fl,r(ω, x, ·) ∈ BVloc(R;R). The precise definition is

given subsequently.

Definition A.7 (Remainder function via flux variation):
Let D : Ω ⇒ XT be a random sole flux discontinuity and let G : Ω× XT ⇒ R2 be a random family of
L1-dissipative admissibility germs. Then, if the flux functions fl,r(ω, x, ·) are of bounded variation, i.e.,
fl,r(ω, x, ·) ∈ BVloc(R;R), we can define the remainder function via the flux variation as the function
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RVar
G : Ω× XT → R≥0 given by

RVar
G (ω, x; (kl, kr)) := 2 inf

(ul,ur)∈G(ω;x)

(
Vul

kl

(
fl(ω, ·)

)
+ Vur

kr
(
fr(ω, ·)

))
.

Here, for any function g that is of locally bounded variation, the function Vsr (g) defined as

Vsr (g) :=
∣∣∣∣∫ s

r

∣∣g′(τ)∣∣ dτ ∣∣∣∣
denotes the variation of g between r and s.

As soon as the random family of admissibility germs G : Ω × XT ⇒ R2
is jointly measurable, we

can show that the remainder function RVar
G based on the flux variation is jointly measurable. The

corresponding result is proven in the subsequent proposition.

Proposition A.8 (Joint measurability of remainder function via flux variation):
Let D : Ω ⇒ XT be a random sole flux discontinuity and let the flux functions fl,r(ω, x, ·) be of locally
bounded variation. Furthermore, let G : Ω× XT ⇒ R2 be a random family of L1-dissipative admissibility
germs that satisfies the joint measurability Assumption 3.16. Then, the remainder function RVar

G associated
to G is jointly measurable.

Proof. By Assumption 3.41, the flux functions fl,r are measurable with respect to the stochastic

parameter ω ∈ Ω. Additionally, since the functions fl,r have locally bounded variation, the Fubini and

Tonelli Theorems [106, Theorems 2.37 and 2.39] imply that the variation Vsr
(
fl,r(ω, ·)

)
is also measurable.

Here, r, s ∈ R are two arbitrary values defining the compact interval for evaluating the variation.

By the discussion in [246, Chapter 4], set convergence does not distinguish between open and closed sets.

Therefore, we can identify each admissibility germ G(ω, x) by its closure cl
(
G(ω, x)

)
. An analogous

result to Lemma 2.15 yields that the infimum over a closed set A ∈ CS(R2) is continuous with respect

to the closed set A. This implies that the remainder function RVar
G based on the flux variation is jointly

measurable in (ω, x) ∈ Ω × XT due to the joint measurability of the underlying admissibility germ

G. Additionally, by its construction, the remainder function RVar
G is continuous in the pair of entropy

values (kl, kr) ∈ R2
. This concludes the proof, since the remainder term RVar

G is Carathéodory and

thereby jointly measurable due to [5, Lemma 4.51]. ■

To conclude this appendix on (random) remainder functions, it remains to argue that the function RVar
G

satisfies the local Lebesgue integrability Assumption 3.46. This statement is proven in the following

proposition, which also concludes the discussion of RVar
G .

Proposition A.9 (Integrability of remainder function via flux variation):
Let D : Ω ⇒ XT be a random sole discontinuity hypersurface and let the flux functions fl,r(ω, x, ·) be
of locally bounded variation. Additionally, let G : Ω× XT ⇒ R2 be a random family of L1-dissipative
admissibility germs such that for every ω ∈ Ω there exists a solution u(ω, ·, ·) ∈ L∞(X × T;R). Then,
the remainder function RVar

G is locally integrable in the sense of Assumption 3.46, meaning that for each
compact set K ⊂ R2 and fixed stochastic parameter ω ∈ Ω, the function

MR
K(ω, x) := sup

k∈K

∣∣RVar
G (ω, x,k)

∣∣
is locally Lebesgue integrable, i.e., MR

K(ω, ·) ∈ L1
loc(XT;R).
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Proof. By construction, choosing the remainder function RVar
G based on the variation of the flux

functions fl,r is only possible if these satisfy fl,r(ω, ·) ∈ BVloc(R;R). Furthermore, by the hypothesis

on the existence of a G-entropy solution u(ω, ·, ·) ∈ L∞(X× T;R), there exists a (possibly random)

interval U(ω) ⊂ R that contains the solution u(ω, ·, ·) for almost every (x, t) ∈ X× T. Additionally,

let K ⊂ R2
be a compact set. Then, there exists another (possibly random) closed and bounded set

M(ω) := Ml ×Mr ⊂ R2
that contains K ∩ U2(ω). Here, the two sets Ml,r := [M l,r,M l,r] ⊂ R are

compact intervals.

Based on this construction of the compact set M and the locally bounded variation hypothesis on the

flux functions fl,r , there exist constants 0 < Vl,r <∞, which might depend on the stochastic parameter

ω ∈ Ω, such that VM l,r

M l,r

(
fl,r(ω, ·)

)
≤ Vl,r <∞. However, based on this estimation, we can bound the

remainder function via the expression

RVar
G (ω, x; (kl, kr)) ≤ 2(Vl + Vr) .

This implies that the function MR
K is essentially bounded, i.e., MR

K(ω, ·) ∈ L∞(X;R≥0). Consequently,

we have shown the assertion, since every essentially bounded function is also locally integrable due to

the inclusion L∞(XT;R) ⊂ L1
loc(XT;R). ■

Conservation Laws with Random Discontinuous Flux Functions



L∞-valued flux functions are not
strongly measurable B

In this appendix, we provide a counterexample that shows the lack of strong measurability for general

flux functions having random spatial discontinuities. For simplicity, we restrict ourselves to the one-

dimensional case and let the flux function f have a multiplicative form. Consequently, we can write the

flux function f as

f(ω, x, υ) := a(ω, x)f(υ) ,

where a is a random jump coefficient and f is a continuous function
32

that depends solely on the value

υ ∈ R. Due to this continuity, the strong measurability of f only depends on the strong measurability of

the jump coefficient a. Since all of the admissibility criteria considered in this thesis require the spatial

dependency of the flux function to be bounded, the most general form for this coefficient is as a function

a : Ω → L∞(X;R). Here, the spatial domain X is defined as X = R.

The main idea of the counterexample is to construct a random jump coefficient a, such that the coefficient

satisfies the conditions to be employed in the scalar discontinuous-flux conservation law, but a is not

strongly measurable. Therefore, define a partition T ofX = R as R := cl
(
T0(ω)

)
∪cl
(
T1(ω)

)
, where the

partition partsT0,1(ω) are given asT0(ω) :=
(
−∞,x(ω)

)
andT1(ω) :=

(
x(ω),∞

)
withx ∼ U

(
(0, 1)

)
.

Here, cl
(
E
)

denotes the closure of a set E and U
(
(0, 1)

)
is the uniform distribution over the interval

(0, 1). Based on this partition, we can define the random jump coefficient

a : Ω× X → {0, 1} (ω, x) 7→ 1T0(ω)(x) = 1(−∞,x(ω))(x) .

Obviously, this jump coefficient is bounded and can be written as a function-valued random variable

a : Ω → L∞(R;R). Considering the image of this random variable, we obtain

a{Ω} :=
{
a(ω, ·) | ω ∈ Ω

}
=
{
1(−∞,x(ω))(·) | x ∈ (0, 1)

}
⊂ L∞(R;R) .

This immediately implies that a{Ω} is an uncountable set. Additionally, for two functions α, β ∈ a{Ω}
we have that ∥α− β∥L∞(R;R) = 1 as soon as α ̸= β.

32

The particular form and/or additional assumptions on the function f depend on the underlying admissibility criterion. Since

this counterexample intends to be general, we do not specify such a condition in this section.
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-valued flux functions are not strongly measurable

With this set a{Ω} at hand, we can now conclude via a contradiction argument that a is not strongly

measurable. Therefore, assume that the set a{Ω} is separable. This implies that there exists a countable

set C ⊂ L∞(R;R) such that for any function α ∈ a{Ω} there is a sequence (αn, n ∈ N) ⊂ C satisfying

lim
n→∞

∥α− αn∥L∞(R;R) = 0 .

Let now two points ν, o ∈ (0, 1) be given that satisfy ν ̸= o. For these two distinct points, the relation∥∥1(−∞,ν) − 1(−∞,o)

∥∥
L∞(R;R) = 1 holds. Furthermore, for any scalar value ε > 0, there exist two

functions βν , βo ∈ C that satisfy∥∥1(−∞,ν) − βν
∥∥
L∞(R;R) < ε and

∥∥1(−∞,o) − βo
∥∥
L∞(R;R) < ε ,

respectively. However, for a fixed value ε < 1/2, the backward triangle inequality yields∥∥1(−∞,ν) − βo
∥∥
L∞(R;R) ≥

∥∥1(−∞,ν) − 1(−∞,o)

∥∥
L∞(R;R) −

∥∥1(−∞,o) − βo
∥∥
L∞(R;R)

> 1− ε > ε .

On the other hand, this means that for any pair of distinct points (ν, o) ∈ (0, 1)2 with ν ̸= o and for fixed

value ε ∈ (0, 1/2), the approximating functions βν , βo ∈ C have to be distinct, i.e., βν ̸= βo. However,

this implies that we can define a set

U :=
⋃

ν∈(0,1)

βν ,

which is uncountable. But this is a contradiction to C being countable, because by construction it holds

that U ⊂ C. Consequently, the function-valued random variable a : Ω → L∞(R;R) cannot be strongly

measurable.
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Nomenclature

Random scalar conservation laws

Ω Stochastic sample space

Σ σ-algebra over the sample space Ω

P Probability measure

ω Stochastic variable

X Spatial domain

T Time interval

XT Space-time domain

T End time of the problem

d Dimension of the domain X = Rd

t Temporal variable

x Spatial variable

x Space-time variable

xk:n Vector containing the k-th to n-th entry of

the vector x

u Solution / unknown of the (random) scalar

conservation law

u0 Initial condition of the random scalar conser-

vation law

q Stochastic regularity of the random initial

condition

p Spatial regularity of the random initial con-

dition

f Discontinuous flux function of the random

scalar conservation law

f Separated (random) flux function only de-

pending on the solution value

Lf (Local) Lipschitz constant for flux function

(with respect to the solution variable)

g Continuous function of Panov-type flux

Z Carathéodory function of Panov-type flux

(Random) Sole flux discontinuities

D Sole discontinuity hypersurface of the flux

function f

d Space-time point of the discontinuity hyper-

surface D

ΦD
Function, whose graph describes the discon-

tinuity hypersurface

ΨD
Function whose zero-level set describes the

discontinuity manifold

nD Normal unit vector of the discontinuity hy-

persurface D

n̂D Extension of the normal vector field to whole

space-time domain

y Spatial Variable of lower-dimensional space,

used in/for parametrizations

y Space-time variable of lower-dimensional

space, used in/for parametrizations

PD Parametrization of the flux discontinuity

manifold

•l,r Specification for • being restricted to the

left/right part of the sole discontinuity

Compound flux discontinuity description

D Compound flux discontinuity

Di i-th sole discontinuity contained in compund

discontinuity D

ND Number of sole discontinuities in the com-

pound flux discontinuity D

NXT Number of space-time domain parts resulting

from a compound flux discontinuity D
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242 Nomenclature

ID (Possibly random) index set for sole disconti-

nuities contained in a compound flux discon-

tinuity

ID Set of intersection points in the compound

flux discontinuity D

IoD Subset having measure zero of the set ID of

intersection points in the compound flux dis-

continuity

CD (Random) Partition up to a null set of the com-

pound flux discontinuity

CκD κ-th part of the partition CD

P Cκ
D

Parametrization of κ-th partition part CκD
sω Selection of sole discontinuity containing a

given partition part

nCκ
D

Normal unit vector field of the partition part

CκD

n̂Cκ
D

Extension of the normal vector field nCκ
D

to

the whole space-time domain

nDsω
Normal vector of the sole discontinuity con-

taining a given partition part

n̂Dsω
Extension of the normal vector field nDsω

to

the whole space-time domain

Cl,ri Left- and right space-time domain parts of the

i-th sole discontinuity of the compound flux

discontinuity D

F Random function for showing measurability

of domain parts resulting from compound flux

discontinuity

G Random function for showing measurability

of domain parts resulting from compound flux

discontinuity

(Random) Admissibility germs and remainder functions

G Admissibility germ

G∗
Dual germ of G

Ĝ extension of germ G

GRH Rankine-Hugoniot germ

GVV Vanishing viscosity germ

RG Remainder function corresponding to admis-

sibility germ G

Rdist
G Remainder function associated to germ G

based on Euclidean distance

ROsc
G Remainder function based on oscillation

RVar
G Remainder function associated to germ G

based on locally bounded variation

Rm
G Remainder function associated to germ G

based on modulus of continuity

Cf Constant for remainder function based on Eu-

clidean distance

Π Function for describing condition of germ as

set-valued mapping

s l,rf Selection function for the left and right fluxes

for some part CκD of the compound flux dis-

continuity’s partition CD

(ul, ur) Scalar tuple of admissibility germ

(ûl, ûr) Tuple of scalar values of dual germ

ΠRH Function for describing condition of Rankine-

Hugoniot germ

Θ·
VV Correspondence describing conditions of van-

ishing viscosity germ

ξ Space-time ratio ξ := x/t for defining self-

similar solutions

λ Function for describing correspondence over-

lapping

l, r Correspondences describing flux conditions

of vanishing viscosity germ GVV

Λ· Correspondence for describing flux condi-

tions of vanishing viscosity germ as a level-set

H ·
Function for describing condition on flux in

vanishing viscosity germ

O Function for describing overlapping sets

Random (adapted) entropy inequalities

k Constant in Kružkov entropy condition

k Adapted Kružkov entropy for sole/compound

flux discontinuities

q (Random) entropy flux

kl,r Left/right value of entropy pair k

k Pair of entropy constants (kl, kr) in the sole

flux discontinuity setting

k Sequence of Kružkov entropy values for com-

pound flux discontinuity setting

ki i-th value of the Kružkov entropy sequence k
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ki:∞ Subsequence of Kružkov entropy sequence k
starting at the i-th element

Km Set of fixed entropy sequence having an arbi-

trary value km ∈ Q at index m ∈ N

sk Selection function for selecting the entropy

value corresponding to a domain part result-

ing from a compound flux discontinuity

IR Abbreviation symbol for integrand of remain-

der function in integral over (sole) disconti-

nuity hypersurface

Audusse-Perthame and Panov frameworks

α Steady-state parameter for adapted entropy

frameworks

kα Function describing the adapted entropy in

the sense of Audusse-Perthame for steady-

state parameter α

k±
α Stochastic steady-state solution(s) for param-

eter α in Audusse-Perthame setting

kα Solution of steady-state equation for value α
with Panov-type flux function

k Function that describes the steady-state solu-

tion kα by taking the steady-state parameter

α as an additional argument

pu Borel function for singular Kružkov entropy

condition

D Set of measure zero containing discontinuities

in Audusse-Perthame formulation

d Jump interface of flux in one-dimensional

problems

um Function describing the modality point of an

Audusse-Perthame flux function

m0 Point splitting a convex or concave Audusse-

Perthame flux function into monotone parts

f− Lower (pathwise) bound of flux function in

Audusse-Perthame framework

f+ Upper (pathwise) bound of flux function in

Audusse-Perthame framework

f−1
± inverse function of u-dependency of one-

dimensional flux function in multiplicative

Audusse-Perthame flux

w Bound on inverse flux function f−1
± of

Audusse-Perthame fluxes

I Real-valued interval for local Lipschitz conti-

nuity of Audusse-Perthame flux functions

Mf Pathwise bound on Audusse-Perthame flux

function

Rk Constant for describing the majorant of

steady-state solutions with Panov-type flux

functions

MRk Majorant of the steady-state function k for

all steady-state parameters in the interval

[−Rk , Rk ]

Pathwise existence and uniqueness

U Bounded interval containing the values of the

entropy solution u

u Lower bound of confinement interval

u Upper bound of confinement interval

ũ Second solution variable for Kato inequality

ũ0 Second initial condition for Kato inequality

ψ Test function for variational formulations

h Truncation variable for test function trunca-

tion (for showing equivalency of definitions)

ψh Truncated test function for showing equiv-

alency of definitions via admissibility germs

and entropy inequalities as well as proving

Kato inequality

η Viscosity parameter for vanishing viscosity

approach

uη Solution of vanishing viscosity problem

uη0 Initial condition of the vanishing viscosity

problem

s Shock speed

W Interval, which boundaries correspond to the

positive and negative L∞
-norm of the solu-

tion, respectively

Q
k±
α
ω,x Abbreviation for the difference of two entropy

fluxes in the Audusse-Perthame setting

a Lower bound of interval of L1
contraction in

Audusse-Perthame setting

b Upper bound of interval of L1
contraction in

Audusse-Perthame setting

Lukas Brencher University of Stuttgart



244 Nomenclature

Strong measurability of entropy solutions

Jkψ Entropy functional for entropy pair k with ψ
as the test function

Jki,N Modified entropy functional for entropy pair

k and, i-th basis function of DN
Ξ Multifunction mapping onto the set of the

entropy solutions in measurability proof

Ξk
Correspondence containing all entropy solu-

tions for a fixed entropy k

Ξk
i,N Set-valued mapping onto set of functions sat-

isfying the modified entropy condition

Qk
ω,x Abbreviation for the difference of two entropy

fluxes in the sole discontinuity setting

sQν
ω,x Function describing the difference of two en-

tropy flux functions having compound dis-

continuities

SD Support of the test function overlapping with

discontinuity hypersurface

J(·) Determinant of transformation

D(·)
(Random) integral domain depending on the

sign value of the entropy flux q

sD(·)
(·) Integral domain depending on sign value of

entropy flux q with compound discontinuity

ψi i-th basis function of the truncated test func-

tion space DN
MR

K Majorant of the remainder function corre-

sponding to the compact set K

A Set containing the steady-state parameter de-

pending on specific assumption

CJ Constant for continuous dependence results

Cψ Constant resulting from boundedness of test

function

Rψ Constant for specific test function, such that

function is contained in truncated test func-

tion space (see proof of measurability)

N Value describing the interval [−N,N ] which

contains the truncated test function support

in measurability proofs

Lévy-type random fields

a Stochastic jump coefficient of random flux

function

a− Lower bound of random jump coefficient

a+ Upper bound of random jump coefficient

a Mean field of Lévy-type random field

Φ Functional applied to Gaussian random field

for Lévy-type random fields

G Gaussian random field for construction of

Lévy-type random fields

G Bounded Gaussian term in the Lévy-type ran-

dom field

G+ Upper bound on the Gauss-type random field

G
P Jump field in construction of Lévy-type ran-

dom field

Pj j-th value of jump field P

P+ Upper bound on the jump field P

Pup,down
Jump field for investigation of distance be-

tween jumps for jumping up/down

T Partition of the domain for construction the

jump field P

τ Number of jumps in jump fieldP of Lévy-type

random field

Λ Jump measure corresponding to the partition

T of the jump field P

pi i-th entry of jump height sequence for jump

field

X Set of all inclusions of a random inclusion

field

xi Position of the i-th inclusion of a random in-

clusion field

li Size of the i-th inclusion of a random inclu-

sion field

hi Random variable describing the i-th jump

height in a jump-advection coefficient a hav-

ing random inclusions

QM Matérn covariance operator

QSE Squared-exponential covariance operator

QE Exponential covariance operator

σ2
Variance for Matérn covariance kernel defi-

nition

ρ Correlation length for Matérn covariance ker-

nel definition

ν Smoothness parameter of Matérn covariance

kernel definition

Kν Modified Bessel function of second kind with

ν degrees of freedem
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XG Domain of interest for defining a Gauss-type

random field

a Slope angle of the fracture in the piecewise

homogeneous medium

ai Angle of the i-th fracture in the heteroge-

neous medium for two-phase flow saturation

problem

y Interception point for fracture in piecewise

homogeneous medium

NKL Truncation index of Karhunen-Loéve expan-

sion

Ber(·) Bernoulli distribution

U(·) Uniform distribution

Poi(·) Poisson distribution

Numerical methods and experiments

O (·) Order of convergence

E Strong error

ERMS Root-mean-squared-error

Ew Weak error

uref∆ Numerical reference solution based on finer

discretization

u∆ Numerical approximation of the solution

UmX Numerical approximation of the solution at

time step m on cell X
T∆ Time discretization of T
tm m-th time point of the time discretization

∆m
t Time step size of m-th time step

CmCFL Constant for CFL condition in time step m

X∆ Spatial mesh of the domain X
Xi i-th cell of the spatial mesh X∆

Y Alternative cell for finite volume description

ΓX Boundary of the cell X
Xc Midpoint of cell X
∆X Diameter of cell X
|X| Volume of cell X
nX Normal vector of the cell X
N(X) Set of cells sharing an edge with cell X
GmX,Y Numerical flux from cell X to cell Y at time

tm

GGod
X,Y Godunov flux from cell X to Y

θ Parameter for minimization and maximiza-

tion in Godunov flux

∆i
x Spatial step size of the i-th cell

∆x,bound Upper bound on spatial step size for dis-

cretization

∆x,max Maximum space step size of the discretization

∆x,max Maximum space step size of averaged over

multiple discretizations

∆l
x,max Maximum step size restriction of discretiza-

tion on level l of a discretization hierarchy

dj j-th jump interface in the flux of a one-

dimensional scalar conservation law

wil,r Left and right wave-cells of the i-th grid cell

of one-dimensional problem

∆w Size of the wave-cells

Lref Number of levels in the reference MLMC es-

timation

ELref
Reference MLMC estimation

ko Permeability of medium, e.g., oil for two-

phase flow saturation problem

kw Alternative permeability of medium, e.g., wa-

ter for two-phase flow saturation problem

F in Inflow flux for two-phase flow saturation

problem

F out Outflow flux for two-phase flow saturation

problem

c Scaling of the initial condition for investiga-

tion of explicit/implicit time integration

h Size of jump area Hh
for jump field parameter

dependency investigation

Hh
Area, whose boundaries define jumps for pa-

rameter sudy on distance between jumps

Hh
c Midpoint of the jump area Hh
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Stochastics and (multilevel) Monte Carlo methods

X Random variable for random variable defini-

tion

E (X) Expectation of a random variable X

V (X) Variance of a random variable X

Cov (X) Covariance of the random variable X

Mk (X) k-th moment of X

L Set of strongly measurable functions with fi-

nite moments

N Null set for defining Lebesgue-Bochner spaces

x′ Element of the dual space of X

x Expected value for a weakly measurable ran-

dom variable X

x′′ Dunford integral of a weakly measurable ran-

dom variable X

EP (X) Pettis expectation of random variable X

Q Covariance operator

λ Eigenvalues of the covariance operator in KL

expansion

v Eigenfunctions of the covariance operator

Z Standard normally distributed random vari-

able in KL expansion

M Number of samples in MC estimator

EM (X) Monte Carlo estimator of X

L Number of levels in the MLMC estimation

Ml Number of MLMC samples on level l

EL(X) MLMC estimator with L levels

∆l
x,max Step size for MLMC estimation on level l

CMLMC Constant of RSME estimation of MLMC

Preliminaries and appendices

Ξ Correspondence for discussion preliminaries

on set-valued mappings

ρ Parameter for pseudo-distances of sets

sg Minimal selector

1 Set-dependent indicator function

Zx Closed nonempty sets containing x

uL, uR Left / right value for defining Riemann prob-

lems

Hd d-dimensional Hausdorff measure

s Hausdorff dimension for defining Hausdorff

measure

δ Parameter for defining Hausdorff measure

Hs
δ Covering for defining Hausdorff measure

Uj j-th set of covering for definition of Hausdorff

measure

CH
d Normalization constant for equality of d-

dimensional Hausdorff and Lebesgue measure

Ld d-dimensional Lebesgue measure

I Set consisting of half-open intervals

x Position of jump field in appendix

C Countable subset of L∞
for counterexample

of strong measurability of essentially bounded

flux functions

U Uncountable subset of L∞
for counterex-

ample of strong measurability of essentially

bounded flux functions

Function spaces

N Natural numbers

Q Rational numbers

R Real numbers

C Space of continuous functions

C∞
c Space of smooth functions with compact sup-

port

Lp Space of all Lebesgue p-integrable functions

Lploc Space of all locally Lebesgue p-integrable

functions

Lpw Space of weakly measurable functions, such

that the dual pairing is Lebesgue-p-integrable

for all dual elements

S Separable subspace of L∞(XT)

D Space of all test functions

DN Subspace of D containing functions whose

support is contained in [0, N ]× BN
BV Space of functions having bounded variation

BVloc Space of functions having locally bounded

variation
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SBV Space of special functions of bounded varia-

tion

CS(A) Space of nonempty closed subsets of A

R≤N
Space of all finite and infinite real-valued se-

quences

ℓ∞ (R) Space of all bounded real-valued sequences

Math operators and symbols

∂tf Time derivative of f

∂xf One-dimensional spatial derivative of func-

tion f

divx f Divergence of f

∇x f Spatial gradient of function f

∇x f Space-time gradient of function f

∆ f Laplace of function f

D Differential of (linear) map

Gr f Graph of a function f

γl,rg Strong one-sided traces of function g

γ0g Strong initial trace of function g

dom f domain of the function f

supp f Support of function f

Osc(f) Oscillation of function f

Vba(f) Variation of function f on interval (a, b)

m(f) Modulus of continuity of a function f

f
∣∣
A

Restriction of f to the set A

lim
x↘a

f Right-sided limit of function f at point a

lim
x↗a

f Left-sided limit of function f at point a

∥f∥ Norm of function f

sign(·) Sign function

1A Indicator function of the set A

dist Euclidean distance function

[•] Equivalence class of •
Tr Trace operator

⊗ Direct product

−
∫

Integral symbol for mean integral

⟨·, ·⟩ Dual Pairing

⟨·, ·⟩ Inner product

L (H) Set of linear operators over H

L+
N (H) Set of all nonnegative, symmetric, nuclear

operators on H

{·} Set

cl
(
A
)

Closure of a set A

ch Convex hull

diam diameter of a set

d Metric on hyperspace of closed sets

Ac
Complement of set A

B Borel sigma algebra

P Power set

(µ)
ac

Absolutely continuous part of a Radon mea-

sure µ

(µ)
s

Singular part of a Radon measure µ

|ξ| Absolute value of scalar value ξ ∈ R
B′

Dual space of the Banach space B

B′′
Double dual space of the Banach space B

0Rd Zero vector in Rd

1 Constant one vector in Rd

const. Constant value

AT
Transpose of matrix A

ei t-th canonical unit vector

Br(x) Ball with radius r around x

Lukas Brencher University of Stuttgart




	Contents
	Abstract (English)
	Abstract (German)
	Introduction
	Deterministic conservation laws with discontinuous flux functions
	Flux functions discontinuous in the solution
	Flux functions with space-time discontinuities

	Stochastic conservation laws
	Conservation laws with stochastic forcing
	Conservation laws with random flux functions

	Extension to random discontinuous flux functions
	Numerical simulation of (random) conservation laws
	Numerical approximation of deterministic conservation laws
	Computational methods in uncertainty quantification
	Numerical computation of random entropy solutions

	Structure and notation

	Preliminaries and fundamental results
	Measure theory
	Set-valued mappings
	The metric hyperspace CS(Rd)
	Measurability in hyperspace terms

	Random variables
	Weakly measurable random variables
	Bochner-integrable random variables
	Covariance operators and spectral expansions

	Lévy-type random fields and their numerical approximation
	Numerical approximation techniques for random scalar conservation laws
	(Multilevel) Monte Carlo methods
	Finite volume methods


	  Random conservation laws with a locally finite number of flux discontinuities  
	Random conservation laws with a sole flux discontinuity
	Sole flux discontinuities
	Sole flux discontinuities and their parametrization
	Measurability of random sole discontinuities
	Normal vector field of random sole discontinuities
	Left and right space-time domain part

	Random admissibility conditions and random G-entropy solutions
	Admissibility germs and their properties
	G-entropy solutions via admissibility germs
	Global admissibility via adapted entropy conditions
	Equivalency of definitions and discourse of selection criteria

	Well-posedness of random entropy solutions
	Pathwise existence and uniqueness of G-entropy solutions
	Random entropy functionals
	Measurability of random entropy solutions
	Existence of moments of random entropy solutions

	Examples of (random) admissibility germs and remainder functions
	Rankine-Hugoniot admissibility germ
	Vanishing viscosity germ
	Remainder function based on Euclidean distance


	Random conservation laws with a compound flux discontinuity
	Compound flux discontinuities
	Partitioning of compound flux discontinuities
	Investigation of the resulting space-time domain parts

	Admissibility conditions and G-entropy solutions
	G-entropy solutions via admissibility germs
	G-entropy solutions via adapted entropy inequalities
	Measurability of adapted Kružkov entropy and entropy flux

	Well-posedness of random G-entropy solutions
	Pathwise existence and uniqueness of G-entropy solutions
	Random G-entropy functionals
	Measurability of random entropy solutions
	Existence of moments of random entropy solutions


	Numerical simulation of random conservation laws with a locally finite number of flux discontinuities
	Two-phase flow in heterogeneous porous medium
	Pathwise existence and uniqueness of vanishing viscosity solutions
	Stochastic measurability of vanishing viscosity solutions

	Pathwise convergence study
	Piecewise homogeneous media
	Heterogeneous media



	  Random conservation laws with infinitely many flux discontinuities  
	One-dimensional random conservation laws with infinitely many flux discontinuities
	Audusse-Perthame flux functions and random steady-state solutions
	Audusse-Perthame flux functions
	Random steady-state solutions

	Random adapted entropy solutions and functionals
	Notion of random adapted entropy solutions and functionals
	Random adapted entropy functionals are Carathéodory
	Continuous dependence of entropy functional on steady-state parameter

	Well-posedness of random adapted entropy solutions
	Pathwise existence and uniqueness of random entropy solutions
	Strong measurability of random adapted entropy solutions
	Existence of moments of random adapted entropy solutions


	Multi-dimensional random conservation laws with infinitely many flux discontinuities
	Panov-type flux functions and steady-state solutions
	Panov-type flux functions
	Random steady-state solutions

	Random entropy solutions and functionals
	Notion of random entropy solutions and functionals
	Entropy functional is Carathéodory
	Continuous dependence of entropy functional

	Well-posedness of random entropy solutions
	Pathwise existence and uniqueness of random entropy solutions
	Strong measurability of entropy solutions
	Existence of moments of random entropy solutions


	Numerical simulation of one-dimensional random conservation laws
	Random jump-advection coefficient
	Pathwise discretization techniques
	Samplewise jump-adapted meshing
	Samplewise jump-adapted wave-cell meshing

	Parameter dependency of approximations
	Jump field parameters
	Explicit vs. implicit time integration
	Parameters of Gaussian random field

	Pathwise convergence study
	Poisson field with squared-exponential Gaussian random field
	Alternating jump field with exponential Gaussian random field
	Jump field with random inclusions

	Estimation of stochastic moments


	Conclusion and future research
	  Appendices  
	Examples of (random) remainder functions
	Remainder function via flux oscillation
	Remainder function via modulus of continuity
	Remainder function via flux variation

	L∞-valued flux functions are not strongly measurable

	Bibliography
	Nomenclature

