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Figure 1: With data collected on realistically looking synthesised desktop images, we uncover the factors that impact no-
ticeability of notifications. For a concrete desktop image and user attention focus, we build noticeability maps. These maps
visualise the locations at which a notification is likely to be missed (red) or likely to be seen (blue).

ABSTRACT
Desktop notifications should be noticeable but are also subject to
a number of design choices, e.g. concerning their size, placement,
or opacity. It is currently unknown, however, how these choices
interact with the desktop background and their influence on no-
ticeability. To address this limitation, we introduce a software tool
to automatically synthesize realistically looking desktop images
for major operating systems and applications. Using these images,
we present a user study (N=34) to investigate the noticeability of
notifications during a primary task. We are first to show that visual
importance of the background at the notification location signifi-
cantly impacts whether users detect notifications. We analyse the
utility of visual importance to compensate for suboptimal design
choices with respect to noticeability, e.g. small notification size.
Finally, we introduce noticeability maps - 2D maps encoding the
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predicted noticeability across the desktop and inform designers
how to trade-off notification design and noticeability.
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1 INTRODUCTION
Desktop notifications are widely used to notify users about incom-
ing emails, upcoming calendar entries, or other relevant events.
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To ensure that important information is actually noticed, notifi-
cations need to effectively attract and divert the users’ attention
from a primary task to a secondary task [44]. At the same time,
notifications are part of the visual design of the user interface (UI)
and are subject to aesthetic considerations. For example, designers
may customise a notification’s appearance in terms of size, place-
ment, or opacity [46]. However, such design decisions can severely
impair the user’s ability to perceive notifications [24]. To create
notifications that are not only in line with a designer’s vision but
also functional and noticeable, it is imperative for UI designers to
understand the factors that impact noticeability.

Prior work studying the noticeability of desktop notifications has
investigated factors including notification size, shape, color, move-
ment, or opacity [16, 24, 28]. While this research has decomposed
influences on noticeability in a highly controlled manner, it has two
main limitations. First, these studies lack realism and have mainly
used simplified or only few, carefully-selected desktop images as
well as highly abstract visual representations of notifications [24, 28].
As a result, it remains unclear whether findings obtained in such
artificial settings generalise to realistically-looking notifications
placed on realistic desktop images. Second, prior work has not
studied the impact of the desktop’s visual appearance (i.e. desktop
background, icons and any applications) on noticeability. It is well
known that visual stimuli from the environment guide people’s
attention. To replicate these guidance effects, so-called saliency
and visual importance models have been proposed [4, 11, 21]. It
is therefore conceivable that the visual appearance of the desktop
background also has a significant impact on noticeability and mod-
els of visual importance can be used to uncover these effects. One
major obstacle that has so far prevented these studies is the lack of
a dataset containing diverse and realistic desktop images.

Our work makes two original contributions to address these
limitations. To study noticeability of desktop notifications in more
diverse desktop environments, we introduce a software tool to effi-
ciently synthesise a large number of realistic desktop images and
notifications from three major operating systems. The synthesised
desktop images contain realistic icons, task bars, diverse wallpa-
pers, as well as variable arrangements of application windows. Our
implementation of the software tool is publicly available1. Using
these images, we conducted a 34-participant controlled user study
in which participants were asked to detect notifications while per-
forming the primary task of following a moving dot via the mouse
pointer. While this primary task directed participants’ attention to
desktop locations across the entire screen, notifications appeared
at random locations on the desktop interface and in different sizes,
opacities, and aspect ratios. Using a state-of-the-art method to pre-
dict visual importance of desktop images [11], we show for the first
time that the visual appearance of the background at the location
of the notification has a significant impact on noticeability.

We analyse how visual importance interacts with major notifica-
tion design factors investigated in previous work [24, 46], including
opacity and size of notifications as well as the distance of the noti-
fication to the current attention focus of the user (i.e. the primary
task location). This allows us to suggest how saliency-optimised
display of notifications could be used to allow UI designers a larger

1https://github.com/sanderstaal/screenshot-synthesize

degree of freedom for choices on these design factors that are sub-
optimal with respect to noticeability. For example, a designer might
want to display a notification with a low opacity value in order to
integrate it aesthetically into the UI. While this is, in general, detri-
mental to noticeability, the notification can still be detected with
high probability by taking visual importance into account when
choosing the location at which the notification will be displayed.

We finally introduce noticeability maps - 2Dmaps that encode the
expected noticeability at all locations on the desktop (see Figure 1).
In contrast to current visual importance maps, our proposed no-
ticeability maps are estimated from our study data and encode the
interaction between visual importance and the users’ current focus
of attention (see Figure 2). These visualisations of noticeability val-
ues for different desktop regions provide an intuitive tool that can
help designers to maximise noticeability of notifications, thereby
increasing the degrees of freedom for aesthetic design decisions
without sacrificing noticeability.

2 RELATEDWORK
Our research is related to prior work on (1) understanding and
optimising user interface notifications as well as (2) computational
modelling of visual attention and visual importance in images.

2.1 Understanding and Optimising
Notifications

Given the ever-increasing number of digital interfaces that generate
an even larger number of notifications everyday [33], research on
understanding and optimising notifications has surged in recent
years. Early work has shown that while notifications are often per-
ceived as a source of disruption [19] and distraction [17], a lack of
notifications may lead to additional task switching [20]. It is well
established, however, that excessive notifications and alerts have
negative consequences and lead to inattention [25]. Consequently,
significant research efforts have been spent on optimising when
and how notifications are presented across a wide range of devices,
from desktop computers [18], to mobile phones [29, 31, 33, 38],
smartwatches [41], and even smart TVs [46] or virtual reality head-
sets [14]. Others explored multi-device settings – Weber et al. [47]
studied how to best distribute notifications across multiple devices
while Voit et al. [45] investigated how notifications were perceived
in such scenarios.

Notifications on mobile devices have been studied extensively,
especially concerning interruptibility of the user [1, 30, 32, 35], per-
ceptibility of notifications [3, 9], as well as attentiveness [34] to
notifications. Focusing on interruptibility, i.e. finding the oppor-
tune moment in time to interrupt users and deliver notifications,
Poppinga et al. [35] developed a method using device-integrated
sensors to predict when to display notifications. In addition to the
device’s context and sensors, Mehrotra et al. [30] proposed an ap-
proach that included the content of a notification for the same
task. Further research investigated what factors influence percep-
tibility of notifications. For example, inserting visual elements or
issuing notifications at specific times of the day leads to higher click
rates [3]. Exler et al. [9] studied perceptibility of different notifica-
tion types (e.g. ringtone, vibration, or LEDs) in different locations
such as the user’s pocket or on a table. Mehrotra et al. [31] studied
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Figure 2: Realistic desktop image created with our tool (A), along with the corresponding visual importance map (B) and our
proposed noticeabilitymap (C). In contrast to visual importancemaps that generally encode bottomup attention distributions,
noticeabilitymaps encode the likelihood of a notification to be detected while considering both bottom up (visual importance)
and top down (the users’ current focus of attention – white circle) features as well as the appearance and design of a notifi-
cation. Visual importance map (B): Blue represents low visual importance, yellow and red represents high visual importance.
Noticeability map (C): Blue is used for areas in which notifications will be highly noticeable and yellow to red is used for areas
where a notification is expected to not be noticed (and thus should not be placed). Separate noticeabilitymaps can be computed
for different notification properties like opacity and scale.

different notification factors (e.g. sender-recipient relationship or
alert modality) and their impact on response time and the users’
ability to perceive notifications. A complementary task to predict-
ing interruptibility is to predict attentiveness [34], which defines
the level of attention paid towards a notification or message. Pielot
et al. [34] used the smartphone sensors to build a random forest
model to predict high or low attentiveness to notifications. While
all the different facets of mobile notifications have been thoroughly
explored over the years, desktop notifications and what makes them
noticeable remains under explored.

In contrast to mobile devices – where optimising notifications is
(mostly) about when and how to notify users, desktop environments
are more complex and enable additional design considerations such
as notification placement or different visual features. While the
impact of notifications on users’ interaction has been studied pre-
viously [18], the characteristics that make them (in)effective has
only recently attracted research interest. Klauck et al. [24] pro-
vided first evidence of how different design properties, such as size,
opacity, movement speed, or blink frequency, influence a notifica-
tion’s noticeability and distractivness. For example, their findings
showed that a notification’s size provides flexible control of no-
ticeability relative to the gaze distance, while reducing the opacity
can make notifications more subtle. Jones et al. [22] investigated
shape-changing circuits as a way to provide notifications in the
periphery. Mairena et al. [28] also investigated peripheral notifica-
tions, however, in their work, they studied the effect of different
feature combinations (e.g. shape, color, or motion) and task inter-
ference. Another work analysed the effects of emphasis on simple
scatter plots or visualisation [27].

While the above works provide a deeper understanding of some
of the features that make visual desktop notifications more effective,
themain limitation of prior works is the lack of realism and diversity
in the appearance of notifications and the backgrounds on which
notifications were presented. Visual stimuli in the environment
and in complex UIs are known to guide user attention [4, 11, 21],
however, prior works did not investigate this effect and its impact
on noticeability. In our work, we rely on computational models of

visual attention to study the impact of the desktop’s appearance on
notifications and their noticeability.

2.2 Computational Modelling of Visual
Attention in HCI

Visual attention modelling (saliency modelling) is a core research
area in computer vision [4] that aims to predict saliency maps that
topographically encode the probability of visual attention over an
image. Bottom-up models [13, 21] extract visual features only from
the image while top-down models aim to incorporate task-related
influences [36, 51].

Early work to use such models in HCI focused on web pages.
Still et al. showed that bottom-up saliency maps correlated well
with fixations during free-viewing of web pages [42]. Buscher et
al. [6] proposed a method that leveraged both eye tracking data
collected from 361 web pages and features from HTML to predict
saliency of different page elements. A similar approach was taken
by Shen and Zhao [40] who presented a computational saliency
model that integrated both multi-scale low-level features and priors
calculated from eye tracking data during web page viewing. They
later improved their method to also include higher-level semantic
feature representations, e.g., from object detections [39], Zheng
et al. [52] presented a learning-based framework for predicting task-
driven visual saliency on web pages whereas Li et al. [26] showed
how an SVM trained onmanually selected bottom-up and top-down
factors could predict human visual attention while viewing web
content. Bulling et al. used a visual saliency model in the context
of gaze-based authentication to mask out salient image regions
that would attract users’ visual attention to improve the security
of graphical passwords [5].

Methods that model attention on graphical user interfaces have
only recently started to being investigated. Xu et al. proposed a
spatio-temporal approach that used bottom-up user interface fea-
tures as well as top-down information in the form of users’ mouse
and keyboard actions [50]. Gupta et al. developed a deep learning
model based on an autoencoder to predict the saliency of mobile
interfaces [15]. Another line of work introduced a learning-based
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method to predict “visual importance” for data visualisations [7],
which encodes the relative importance of different visualisation or
design elements. While ground truth saliency is typically collected
from gaze data or approximated using mouse clicks and interfaces
such as BubbleView [23], visual importance annotations require
manual labelling of the visualisation elements that the annotators
consider to be important (e.g. the title). As such, according to Bylin-
skii et al. [7], the importance scores are more uniformly distributed
on the visualisation elements. This is beneficial for applications
where the information from the visual stimuli is more structured
such as in data visualisations or desktop images.

In our work, we used the recent UnifiedModel of Saliency and Im-
portance (UMSI) [11] to understand and predict visual importance
on desktop images. UMSI is especially suited four our application,
as it is both able to predict visual importance on UI elements as well
as slaiency on natural images, which are often part of the desktop
background. As such, our work is the first to consider the context
in which a notification is embedded (i.e. the desktop background
including any applications) and its effect on noticeability.

3 SYNTHESISING REALISTIC DESKTOP
INTERFACES

To systematically study noticeability of desktop notifications in
realistic desktop environments, we needed a large and diverse col-
lection of desktop images. However, to the best of our knowledge,
there is no other work that provides such a dataset nor could we find
publicly-available, high-resolution desktop screenshots, likely due
to privacy concerns. For this reason, we decided to use an approach
to automatically generate realistic desktop images. There exists
only few prior work on this topic. For example, in SUPPLE [12],
user interface rendering is modelled as a computational optimi-
sation problem to generate UIs that meet the device’s constraints
while minimising user effort. Another tool is SpiderEyes [8], which
is a system for designing attention- and proximity-aware collab-
orative interfaces for wall-sized displays. Based on the location
and head position of up to four users, it automatically adapts the
UI to support collaborative scenarios. Todi et al. [43] presented a
tool that leveraged the user’s browsing history to adapt a website’s
layout in a way such that the design looks familiar to each user.
However, none of these works can be used to create realistically-
looking desktop environments or notifications. To fill this gap, we
developed a software tool to efficiently synthesise any number of
realistic desktop images and notifications from three major oper-
ating systems: Microsoft Windows, macOS, and Ubuntu. Figure 3
shows a few examples generated using our tool. We describe the
components of the synthesis tool below:

• Desktop background. We collected 67 different wallpapers
for each operating system covering diverse motifs, styles, or
colours. When generating a new image, the tool randomly
samples a wallpaper and then places a random number of
shortcut icons on it. Icons can be placed either in a grid
pattern or randomly, similar to what most operating systems
provide. If icons are placed in a grid alignment, they will
be placed in blocks, close to one another to mimic realistic
desktop setups. Our tool contains 100 common application
icons collected from the Internet.

• Menu and task bar. The graphical interfaces of each operating
system typically contain menu or task bars such as the top
bar and the dock in macOS. Our tool synthesises these bars
and populates them with items. Each text in these bars is
substituted with random words and the number of items
per section is varied, meaning that the tool can create both
densely and sparsely-filled task bars. For cases where the real-
world counterparts contain icons, the tool samples random
icons from the same collection used to generate desktop
shortcuts. Each of the three operating systems supported by
our tool have a menu bar where frequently used applications
and tasks are displayed (like the dock in macOS). As an
additional customisation, our tool randomly selects some of
these items and adds a ’highlighted’ effect to them, which is
used by the system to indicate currently open applications.

• Applications. Once the tool generated the desktop background
and all required menu and task bars, the desktop image is
randomly populated with a number of open application win-
dows. It can also happen that no open window is added to
the image. We collected 150 screenshots from 100 commonly
used websites, some of which inspired by prior work [40].
We captured each screenshot twice, once in a maximised,
widescreen browser window (3831 x 1933 px) and once in
a restricted-sized browser window (1500x1500 px). This al-
lowed us to capture different responsive designs of a website
and hence obtain more diverse visual appearances. When
generating new application windows, the tool randomly
selects either a maximised, full screen window or restricted-
sized windows that only cover parts of the background. Each
website screenshot is enclosed in a proper browser appli-
cation window: MS Edge for Windows, Safari for macOS,
and Firefox for Ubuntu. A random string is generated to dis-
play the URL within the browser window. In addition to the
website collection, we added screenshots of other common
applications, such as Minesweeper or File Explorer, for each
operating system (46 for Windows, 6 for macOS, and 24 for
Ubuntu). Similarly to website screenshots, the tool gener-
ates a window which encloses the application screenshot
in the same design as used by the OS. Due to the lack of di-
verse and natural high-resolution screenshots of websites or
applications available on the Internet, all screenshots were
manually captured by an experimental assistant.

• Notifications. Besides desktop images, the tool can be used
to generate random but realistically-looking notifications
in the same style of the corresponding operating system.
For increased diversity, we also covered notifications that
differed from official style guides2. Our tool first randomly
samples one out of six (4:15, 3:4, 25:16, 35:14, 38:9, and 42:7)
possible aspect ratios for the notification, where 35:14 is clos-
est to the actual ratio used by these operating systems. All
notifications contain a randomly generated text of variable
length. In addition, the notification body may also contain
an icon (from the desktop shortcuts collection) or an action
button (only for Window and macOS).

2E.g. macOS Notifications https://developer.apple.com/design/human-interface-
guidelines/macos/system-capabilities/notifications/
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Figure 3: Using our proposed software tool, we are able to synthesise realistically-looking desktop images (left) and notifica-
tions (right). The tool can generate desktop images for three different operating systems that contain realistic icons, task bars,
diverse wallpapers, and different application windows.

The final desktop image is realised by merging all of the individ-
ual components, i.e., the desktop background, menu, task bar, and
applications. The outcome is a realistically-looking desktop image
of 1920x1080 px. For further realism, we used the default font from
each operating system and randomly placed a mouse icon on the
image. This image formed the basis on which notifications were
shown during the user study.

4 USER STUDY
We used our tool to synthesise 300 different desktop images and
notifications, 100 for each supported operating system. Using these
desktop images, we conducted a controlled user study in which
participants had two tasks. Similarly to previous work [24], we
employed a primary task in which participants had to follow a
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Figure 4: Example image participants saw during the user study. As a primary task, participants were instructed to follow a
moving green dot with their mouse pointer. The dot moved along a random zig-zag path. If the mouse pointer was outside of
the moving dot, its colour was shown in red (A). As a secondary task, participants were asked to detect notifications appearing
on the screen. Figure (B) shows a notification with medium opacity in the upper left corner. Participants were instructed to
press the space bar whenever they detected a notification.

moving dot with the mouse pointer in order to manipulate partici-
pants’ focus of attention. While concentrating on the primary task,
the secondary task involved detecting notifications appearing at
random locations. Combining these two tasks results in a diverse
set of configurations of user attention and notification locations.

4.1 Apparatus
The user studywas conducted remotely and online in aweb browser,
and all participants could use their own personal computer for it.
We restricted the study to participants using either a monitor or a
laptop screen (no mobile or tablet devices allowed). The study was
performed in a full screen browser window and participants were
asked to not close this window during the experiment. In case the
generated desktop image (1920 x 1080 px) did not fit the resolution
or aspect ratio of a participant’s screen, the imagewas automatically
resized and padded with black borders where necessary. The largest
resolution used by our participants was 2560 x 1440 px (used by five
participants) and the smallest resolution was 1228 x 691 px. Most of
our participants (18) used our default resolution of 1920 x 1080 px.

4.2 Experimental Procedure
In line with previous work [24] on noticeability of notifications,
we employed a dual-task design. As in [24], participants followed a
moving dot with the mouse pointer (primary task) and confirmed
the appearance of notifications by pressing the space bar (secondary
task). Each participant performed several sessions of this task. In
detail, for each session a random desktop image from a random op-
erating system (Linux, Mac or Windows) was sampled and served
as the background on which a small coloured dot moved along
a random zig-zag path. The path was generated by successively
connecting random on-screen locations. For the primary task, par-
ticipants were instructed to follow the moving dot with the mouse
pointer as well as they could. If the mouse pointer was outside the
moving target, the colour of the dot changed from green to red (see
Figure 4A). We chose this task as users are required to focus their

attention on the moving dot and the location can be used as a proxy
to the users’ focus of attention. The path followed a zig-zag pattern
to (a) make sure participants could not predict the path and were
required to continuously concentrate on the task and (b) to sample
maximally diverse attention points from the screen.

As a secondary task, participants were asked to detect notifi-
cations appearing on the screen by pressing the space bar (see
Figure 4B). Notifications were randomly displayed in time and lo-
cation on the screen with varying opacity (between 20% and 100%),
sizes, and aspect ratios. All these parameters were chosen randomly
to collect a diverse set of configurations and prevent bias effects in
participants’ response behaviour. We especially did not include a
separate condition with notifications placed in the upper right or
lower right corner of the screen (as is default in major operating
systems). Any difference between such a condition and randomly
placed notifications might be due to bias effects resulting from
the participants being able to clearly distinguish this as a special
condition. Each notification was displayed for 2.5 seconds, where
during the first and last 0.5 seconds a fade-in (or fade-out) effect
was used. If a participant confirms a notification, the notification
immediately vanished from the screen. No matter whether the par-
ticipant confirmed a notification or not, the application showed the
next notification after a random time of 2 to 5 seconds.

Every session lasted two minutes. Upon completion of a ses-
sion, participants were awarded a score reflecting how well they
performed in the two tasks. Their score was displayed on a global
(anonymised) leader board, where they could compare their per-
formance with other participants from the study. We used this
leader board as a motivation, to encourage participants to repeat
and perform multiple such sessions in our study. At the beginning
of the user study, we asked each participant to play a least six such
sessions. We measured that the time needed for a participant to
complete six sessions is approximately 20 minutes. Participants
were free to take breaks between these sessions, where they could
also close and re-open the full screen window. Any data collected
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Figure 5: Example of visual importance extraction. Given an
input image A we extract a visual importance map (B) using
the method proposed by Fosco et al. [11]. This visual impor-
tance map is subsequently normalised by the average visual
importance screenshots from the particular operating sys-
tem (C) to produce the final importance map (D).

during the study was completely anonymised and could not be
linked to any participant.

4.3 Participants
We recruited 42 participants via local university mailing lists that
recorded 248 sessions in total. Out of those, 14 sessions were in-
valid because participants quit the full screen mode during a data
collection session. Out of the 42 participants, 34 (20 male, 13 female,
one unspecified) finished at least six sessions. Based on a demo-
graphics survey, the ages of the participants ranged from 18 to 52
(M=26.09, SD=6.15). 24 participants used a desktop monitor, while
the remaining 13 participants were using a laptop screen. Four
participants reported suffering from visual impairments that were
fully corrected by glasses or contact lenses. None of the participants
reported deficiencies in color perception. 25 participants considered
themselves as having a good technical expertise. 25 participants
used a Windows operating system on their private computer, 5 par-
ticipants used macOS, and 4 participants used a Linux distribution.
The operating system installed on the computer did not influence
which synthesised desktop image was shown to the participants.

5 RESULTS
Of the 34 participants in our study, one participant had to be re-
moved from further analyses because of detecting less than half of
the presented notifications (indicating that the participant did not
focus on the task adequately), resulting in 33 remaining participants.
In the following, we first describe how we extracted visual impor-
tance at notification locations from desktop images. Subsequently,
we present analyses on the connections between noticeability and
notification design factors. Finally, we introduce noticeability maps
that encode the expected likelihood of detection for notifications
presented at different locations. For statistical analysis, we use non-
parametric tests due to violated normality assumptions in some
cases and report median `1/2, mean `, and standard deviation �̂� .

VI Distance Size AR Opacity

Detected
Median 0.94 0.32 0.0125 2.79 160.3
Mean 0.93 0.32 0.0125 2.84 160.3
SD 0.09 0.02 0.0006 0.28 8.576

Missed
Median 1.24 0.41 0.0108 2.93 125.0
Mean 1.31 0.40 0.0107 2.99 121.9
SD 0.45 0.05 0.0010 0.84 16.43

Wilcoxon
T 16 17 12 242 0
p < 0.001 < 0.001 < 0.001 0.49 < 0.001

Table 1: Median, mean, and standard deviation of notifica-
tion design factors for detected as well as missed notifica-
tions. The design factors are the visual importance of the
background at the notification location (VI), the distance of
the notification from the current locus of attention, the noti-
fications’ size, its aspect ratio (AR), and its opacity. Addition-
ally, we report results of two-sided Wilcoxon signed-rank
tests comparing detected and missed notifications for each
factor (n=33). With Bonferroni correction, p-values smaller
than 0.01 can be considered statistically significant.

5.1 Extracting Visual Importance on Desktop
Images

To extract visual importance on the generated desktop images we
use the recent state-of-the-art method for visual importance predic-
tion across graphic design types by Fosco et al. [11]. The advantage
of this method over other approaches is its ability to predict visual
importance on natural images as well as on graphical designs and
mobile user interfaces. This fits our purpose, as the desktop inter-
actions we study contain images along with graphical designs and
user interface elements. In order to better capture which regions
in the desktop image stand out relative to the expected visual im-
portance distribution on desktop images, we subtract the average
visual importance computed over all desktop images generated
for a given operating system from each single visual importance
map for the corresponding operating system (see Figure 5 for an
example). To compute the visual importance of a desktop image
at the location where a notification is placed, we take the average
visual importance score of the area covered by the notification.

5.2 Effects of Visual Importance on
Noticeability

To check whether visual importance at the location of a notification
is connected to the probability of the notification being detected,
we conducted aWilcoxon signed-rank test on the visual importance
at the notification location with the two conditions “notification
detected” (`1/2 = 0.94; see Table 1 for more information) and “noti-
fication not detected” (`1/2 = 1.24). This test reached significance
(T=16; p<0.001; n=33). For a more detailed picture on how visual
importance is connected to the noticeability of notifications, we
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Figure 6: Influence of different factors on the probability for a user to detect (i.e. notice) a notification. Error bars indicate
95% confidence intervals. From top left, in clockwise order, the individual factors are: The visual importance of the desktop
image at the location where the notification is placed, the distance of the notification to the current focus of user attention,
the relative size of the notification on the screen, the opacity of the notification ranging from 0 (fully transparent) to 255 (fully
opaque), and the aspect ratio of the notification expressed as width divided by height.

binned visual importance values into ten equally sized percentiles
(10%,20%,...,100%) and plot the probability of notifications being
detected for each visual importance bin (see top left of Figure 6).
The figure shows a clear decrease in the detection probability with
higher visual importance scores with a high plateau for low visual
importance scores at around 0.9 detection probability and a low
plateau between 0.65 and 0.7 for high visual importance scores.

We did not include a condition with standard notification lo-
cations (upper right for Mac/Linux, lower right for Windows) in
our study design because such a “special” condition could easily
bias participants’ responses. In contrast to randomly placing no-
tifications, sessions with fixed notification locations could easily
be identified by participants as being different. Hence, participants
could anticipate where a notification will show up and thus always
notice it. Nevertheless, it is still possible that notifications placed
in standard locations have different noticeability. To test this hy-
pothesis, we analysed the detection probabilities of notifications
that were placed (by chance) in standard locations. We defined a
notification to be in a standard location for macOS and Linux if it
was placed in the top right corner of the screen. More specifically,
we checked whether the top right corner of the notification was
both within the uppermost and the rightmost 20% of the screen.
For Windows, due to a different standard location for notifications,
we checked for the lower right corner of the screen. In total, the
study had 117 notifications presented in standard locations. For
these notifications, the median detection probability across all 33
participants was 0.83 (` = 0.75; �̂� = 0.29). For notifications pre-
sented in any other location, the median detection probability was

0.78 (` = 0.79; �̂� = 0.09). A two-sided Wilcoxon signed-rank test
for detection probability as dependent variable was not significant
(T=235; p=0.42; n=33). Therefore, our analysis does not indicate
that whether a notification is presented in a standard location in-
fluences detection performance. Another hypothesis was that prior
experience in using a specific OS can influence what participants
perceived as the usual, standard location of a notification. To in-
vestigate this possibility, we focused on Windows users, which
constituted the largest group in our participants. For these users, a
total of 85 notifications were placed in the lower right corner of the
screen, which is the default for Windows. The median detection
probability for these notifications was 0.80 (` = 0.74, �̂� = 0.28),
whereas outside this area, we observed a median detection probabil-
ity of 0.81 (` = 0.80, �̂� = 0.10). A two-sided Wilcoxon signed-rank
test comparing these conditions was not significant (T=112; p=0.45;
n=23). Given the few notifications placed by chance in such default
locations, it is difficult to draw any general conclusions. Results
tend to indicate that placing notifications in standard locations did
not have a strong influence on detection performance.

5.3 Influence of other Factors
We conducted Wilcoxon signed-rank tests to check whether the
detection of a notification is connected to the additional design
factors investigated in our study (see Table 1). These tests revealed
that detected notifications are significantly closer to the current
focus of attention, that they are significantly larger, and that their
opacity is significantly higher. For a more detailed picture on how
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Figure 7: Interplay of the effects of visual importance of the background on the detection probability of notifications with
other factors. From left to right: distance of the notification to the current focus of user attention; size of the notification;
opacity of the notification; aspect ratio of the notification.

noticeability is related to these design factors, we binned the fac-
tors in the same way as we did for visual importance (see Figure 6)
and computed detection probability for each bin. Only aspect ra-
tio is an exception as due to the study design six distinct aspect
ratios exist. Several factors have a clear, and generally monoto-
nous, impact on noticeability. The distance of the notification to
the current focus of attention (i.e. the distance to the moving dot) is
inversely related with the detection probability. When notifications
are placed very close to the current attention focus, the detection
probability is above 0.9, but it decreases to below 0.7 for notifica-
tions appearing far away on the screen. A further important factor
influencing users’ ability to detect notifications is opacity, where
low-opacity notifications only reach a detection probability of 0.5
while high opacity notifications are detected with more than 0.9
probability. The proportion of the screen covered by a notification
is also positively connected to its noticeability, ranging from 0.7
detection probability for small notifications to almost 0.9 for large
notifications. The relation between aspect ratio (notification width
divided by notification height) and noticeability is less obvious. The
medium aspect ratios appear to be most noticeable, with a peak at
an aspect ratio of 35:14. This could indicate a preference for aspect
ratios that are close to what users typically are confronted with in
their daily interactions.

While our study was not designed to investigate the impact of
the type of operating system on the noticeability of notifications, we
can still make use of our data in an exploratory numerical analysis.
The operating system was sampled randomly at the beginning of
each session. As a result, the number of users being exposed to
at least one session of a given operating system differs (𝑛𝐿𝑖𝑛𝑢𝑥 =

30, 𝑛𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 26, 𝑛𝑀𝑎𝑐 = 25). The detection probability for
notifications in the Mac OS (`1/2 = 0.71; ` = 0.71; �̂� = 0.13) was
lower than in Linux (`1/2 = 0.88; ` = 0.84; �̂� = 0.12) or Windows
(`1/2 = 0.84; ` = 0.81; �̂� = 0.11). The lower noticeability of Mac
notifications might be a result of their bright colour which creates
less contrast on many backgrounds.

5.4 Interplay of Visual Importance with other
Factors

We analyse how visual importance of the desktop image at the no-
tification location interacts with the other factors (Figure 7). Each
plot shows the dependence between visual importance and detec-
tion probability for high, medium, or low values on the respective
other factor. We partitioned the data into high, medium, and low
for each of these factors by using the highest third, middle third,
and lowest third of the data. In contrast to the aspect ratio of the
notification, we can observe a clear interaction effect with visual
importance for opacity of the notification, distance of the notifica-
tion to the attention focus, and notification size. This interaction is
similar for all three factors. In general, if the other factor challenges
noticeability (e.g. low opacity, or large distance), the effect of visual
importance on noticeability is especially strong. If the other factor
makes detection easy, the effect of noticeability is less pronounced.
For example, the range of probability scores resulting from different
visual importance values is below 0.15 for notifications displayed
at a small distance to the current focus of attention, but close larger
than 0.4 for notifications displayed at a large distance from the
current focus of attention.

These results indicate that visual importance could effectively
be used to offset the detrimental effects on noticeability resulting
from a small notification size, a notification with low opacity, or a
notification that is far away from the current focus of attention.

5.5 Noticeability Maps
In order to present the effects of different factors on noticeability
in an intuitive way, we propose the concept of noticeability maps
(see Figure 8). These noticeability maps encode the expected like-
lihood of detection for notifications when presented at different
locations on the desktop. To construct these maps, we first com-
pute the detection probability for different combinations of visual
importance scores and distances of the notification to the attention
task based on the data observed in our study. To strike a balance
between accuracy and robustness, we bin visual importance scores
and distances in six bins each and compute the detection probability
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for each of the resulting 36 combinations. Using linear interpolation
between bins, we obtain a function 𝑓 mapping from visual impor-
tance and distance to the attention focus to a detection probability.
To create a noticeability map for a given desktop image and atten-
tion focus, we compute for each pixel its visual importance and its
distance to the attention focus. Using 𝑓 we obtain an estimate of
the detection probability at this pixel.

Figure 8 B and C show noticeability maps for the same desktop
image but for different locations of the attention focus (indicated
by the white circle). Regions of the desktop that are assigned a
high estimated noticeability are at the blue end of the color spec-
trum. Regions with low estimated noticeability are at the red end
of the color spectrum, effectively warning designers that notifi-
cations placed in these regions are unlikely to be noticed. Apart
from distance and visual importance, the noticeability maps also
encode the interaction between these two factors. This is visible
when comparing Figure 8 B and C. Regions in the upper left show
large differences in noticeability when they are far away from the
attention focus (see Figure 8 B). In contrast, when these regions
are close to the focus of attention, in addition to a generally higher
noticeability, smaller differences are present (see Figure 8 C).

Finally, Figure 8 E and F shows the noticeability for high and low
opacity notifications, respectively. Here, we restrict the data used in
the computation of the noticeability map to the 50% of notifications
highest or lowest in opacity. While it is much more challenging
to place noticeable notification with low opacity, the noticeability
map reveals several locations at which even a notification with low
opacity is likely to be detected. A similar pattern can be observed
when contrasting notifications of large size with those having a
small size (not shown in the Figure).

6 DISCUSSION
6.1 On the Synthesis Tool
In this paper, we introduced a tool for the synthesis of realistic
desktop images that we will make available as an open-source im-
plementation upon acceptance. Our tool allowed us to conduct the
first study on the noticeability of notifications displayed on realistic
desktop images. This is a significant step over prior work that has
focused on simplified or carefully-selected desktop images as well
as highly abstract visual representations of notifications [24, 28].
With our tool, we could not only solve the problem of a missing
dataset containing realistic desktop images, but it also provides
additional benefits. In contrast to a dataset of images, our tool al-
lows full control over the synthesis process, allowing researchers to
experimentally vary the created images. This enables psychologists
to e.g. study how findings obtained with simple shape- and colour
stimuli [10, 48] translate to realistically looking desktop environ-
ments. Furthermore, due to the generative approach, a semantic
segmentation of the images is directly available. Work on natural
images suggests that this feature can be highly useful when con-
ducting research on human attention prediction [49]. Our tool can
be easily adapted to the needs of researchers by adding their own
applications, icons, or desktop images. In the future, we plan to
extend this tool to incorporate additional characteristics of user
interactions. While desktop images are largely static, some dynamic
elements exists, e.g. website banners or embedded videos. To study

such interaction scenarios, we plan to extend our tool with dynamic
elements. Furthermore, we also plan to adapt our tool to synthesise
realistic mobile user interfaces.

6.2 On the Impact of Background on
Noticeability

Further, we are first to show that visual importance of the location
at which a desktop notification will be presented is a strong prior
for the probability that the notification will be detected by the user.
Our results show that this connection between visual importance
and noticeability is inverse – higher visual importance of the back-
ground at the notification location results in lower noticeability.
Uncovering the precise mechanism behind this connection is sub-
ject to future research. At this point, we can only speculate on
possible explanations. A low-level explanation of this effect could
be that the visual importance measure we used is correlated with
visual clutter [37]. This is plausible as high visual importance is
usually assigned to regions in the images containing a large degree
of clutter. A large degree of visual clutter, in turn, could make it
more challenging for notifications to “stand out” from their sur-
rounding. A possible higher-level explanation could be that users do
not expect notifications to appear at locations that already contain
UI elements like application windows or opened websites. Such UI
elements often get assigned a high visual importance, leading to the
inverse connection between visual importance and noticeability.

While we analysed the interactions of visual importance with
several other factors of notification design (e.g. size, opacity, or as-
pect ratio), our study was not designed to investigate the influence
of personal characteristics. Relevant characteristics to address in
future work include users commonly used operating systems, their
age, and their profession. Another interesting direction for future
work will be to investigate the impact of different primary tasks. Es-
pecially if tasks are associated with specific UI elements, this might
impact the noticeability of notifications beyond a task-agnostic
notion of visual importance.

6.3 On the Relevance for UI Designers
Our work suggests that by taking visual importance into consid-
eration, UI designers can optimize placement of notifications for
maximum noticeability. Visual importance can even serve to offset
the effects of choices for other factors that are sub-optimal from a
noticeability perspective. For example, Figure 7 shows the effects
of visual importance on noticeability for different opacity values.
Noticeability is considerably worse for low opacity notifications
compared to high opacity notifications. However, when placing the
notification at a location with low visual importance, a detection
probability of 0.8 can be achieved. This is comparable to the detec-
tion probability of high opacity notifications placed at locations
with high visual importance. Visual importance can be used in a
similar fashion to offset effects of distance between the current
focus of attention and notification location, as well as notification
size. Thus, taking visual importance into account, designers have
more possibilities to create notifications that integrate into the user
interface aesthetically without sacrificing noticeability.

Using visual importance to guide notification placement requires
the appearance of the desktop to be known. This is the case in two
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Figure 8: Examples of noticeability maps. Red indicates low-noticeability regions, blue indicates high-noticeability regions.
The left column shows the effect of different locations of user attention on noticeability. A: Input image. B: Noticeability map
for attention focus on the upper left of the desktop (white circle). C: Noticeability map for attention focus on the lower right
of the desktop (white circle). The right column shows the effect of different opacity values on noticeability. D: Input image. E:
Noticeability map for high opacity notifications and attention focus on the lower right of the desktop. F: Noticeability map
for low opacity notifications and attention focus on the lower right of the desktop.

main scenarios. First, if the appearance of an application is mainly
static, visual importance can guide designers in choosing where
notifications should be commonly displayed in this application.
Second, when the actual screen content is known at runtime, vi-
sual importance could be used to optimise notification placement
dynamically. Future operating systems could either automatically
place notifications of different applications, or offer access through
an API to noticeability maps, giving application developers and
designers fine-grained control over noticeability. Our analysis on
the interaction between visual importance and the distance to the
current focus of user attention indicates that by taking the users’
attention into account, the quality of the proposed placement op-
tions can be increased. Users’ focus of attention can be estimated
either through dedicated eye tracking equipment or computational
methods that e.g. analyse interactive behaviour [2, 50].

As an intuitive visualisation of the impact of different factors on
noticeability for a concrete desktop image, we proposed noticeabil-
ity maps (see Figure 8). These noticeability maps can be used by
designers to better understand how different notification parame-
ters play out in a concrete user interface. Designers can additionally
simulate users’ focus of attention in order to understand which
notification placements lead to sufficient noticeability for the likely
locations of user attention (e.g. a text entry field). While already
useful for manual optimisation of notifications, the noticeability
maps also point the way towards automatic means of optimising
notifications that we are planning to explore in future work.

7 CONCLUSION
In this work we presented a novel tool to synthesize realistically
looking and diverse desktop screenshots and notifications. We used

these images to conduct the first study on the noticeability of desk-
top notifications displayed on realistically looking desktop images.
We found that visual importance of the desktop at the location
where a notification is placed is inversely related to its noticeabil-
ity. We analysed how this effect interacts with other influences
on noticeability including notification size, opacity, and distance
to users’ attention focus. We discuss how optimising notification
placement with respect to visual importance can allow for a larger
degree of freedom for design choices on other factors while still
maintaining high noticeability. Finally, we introduce the concept
of noticeability maps that can be used to visualise the effects of
different factors on noticeability of notifications in a concrete desk-
top interface and thereby act as a guideline for designers. Taken
together, our synthesis tool and findings open up an exciting new
avenue in notification research and represent an important step
towards future smart notifications that are automatically optimized
for noticeability.
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