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Efficient numerical simulations of fluid flow on the pore scale allow for the numerical estimation of effective material prop-
erties of porous media, e.g. intrinsic permeability or tortuosity. These parameters are essential for various applications where
hydro-mechanical properties on larger scales have to be known. Numerical tools based intrinsically on pore scale simulations
are known e.g. as Digital Rock Physics in geosciences and have even more and more replaced physical experiments. For
these reasons, the validation of numerical methods as well as the establishment of clear limits regarding the application areas
play an important role. Here, we compute single-phase flow through a porous matrix, e.g. irregular sphere packings, sand-
stones, artificially created thin porous media, on the pore scale. Therefore we implement on the one hand a Smoothed Particle
Hydrodynamics algorithm for solving the Navier-Stokes equations and on the other hand a Finite Difference solver for the
Stokes equations. Both methods work directly and seamlessly on voxel data of porous materials which are generated by
µXRCT-scans or by microfluidic experiments that have undergone segmentation and binarization. We compare both solvers
from a parallel performance point of view as well as their results for flows in the Darcy regime. In addition, we investigate the
limitations of the solvers using the example of a porous material whose pore geometry changes over time and precipitation
affects the flow conditions.
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1 Introduction

Numerical Simulations are important tools to better predict and understand the effective physical processes within different
kind of porous materials. Application of characteristic parameters determined by simulations can be found in various fields
such as mechanics, material science, earth and environmental sciences, and in almost all branches of engineering. With
different simulation methods we aim at determining properties which are related to the fluid flow throughout the materials
pores, e.g. intrinsic permeability or tortuosity.

Solving flow problems in large geometries requires not only a mathematically accurate model but also computational
resources that depend on the size of the problem as well as the computational method. Accordingly, all methods must meet
quality criteria in terms of performance. Both aspects are discussed in the following chapters and subsequently applied to
application examples for numerically and mechanically challenging flow conditions in time-varying porous materials.

2 Mathematical models to solve single-phase flow

Fluid mechanical problems in porous materials are complex and for their solution it is therefore necessary to make assumptions
adapted to the problem and computational method, which simplify the equations describing the flow or reduce the number of
unknown quantities. We presuppose negligible deformation of the solid phase, isothermal processes, constant fluid viscosity
µf, and no-slip no-penetration boundary conditions on all fluid-solid interfaces.

2.1 Governing equations for single-phase fluid flow

The governing equations are derived by a balance equation for the conservation of mass

∂ϱf

∂t
+ div(ϱf vf) = 0 (1)

and the local form of the balance of linear momentum

ϱf v̇f − divTf − ϱf b = 0 , (2)

where vf, Tf, b denote the velocity of the fluid, the Cauchy stress tensor and a body force vector, respectively. Introducing
a constitutive material law for the fluid, Tf can be split into the deviatoric part Tf

neq , that brings in a viscosity term, and a
volumetric stress Tf

eq by which the pore fluid pressure is introduced

Tf = Tf
neq +Tf

eq = 2µf dev(Df)− p I . (3)
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By inserting the symmetric part of the velocity gradient Df = 1
2 (gradvf +gradTvf) and applying the divergence operator to

the total stresses Tf, we finally obtain the Navier-Stokes equations

ϱf v̇f + grad pf = µf div (gradvf) + ϱf b . (4)

Neglecting the convective term and assuming steady state flow leads to the Stokes equations

grad pf = µf div (gradvf) + ϱf b . (5)

2.2 Finite Difference scheme for Stokes equations

Solving Eq. (1) and Eq. (5) with the Finite Difference method is known to cause problems due to the special role of pressure
in these equations. We supplement the equations accordingly with an artificial compressibility and use a so-called pseudo-
unsteady method [11]. This violates the prior made assumption, however, it can be shown that the solution for t → ∞
approximates the correct solution in steady state [4, 5, 11]. The dimensionless, weakly compressible Stokes equations, in
which the body force is already neglected can be obtained from the linearized Eqs. (1), (4) and an additional linear equation
of state for the fluid pressure. Dimensionless quantities for velocity, pressure are written without any index (f) in order to
distinguish them from the physical quantities in the previous equations. We obtain

∂v

∂t
= −gradp+

1

Re
∆v and

∂p

∂t
= −c2divv (6)

where Re := (ρrefvrefL
ref)/µf is the dimensionless Reynolds-Number, which must be chosen small according to the creep-

ing flow conditions. Consistent with the dimensionless equations, we introduce the (dimensionless) velocity c = vref ρ
ref/Kf

which could be interpreted as the relation of the characteristic flow velocity to the speed of sound of the fluid (with compress-
ibility Kf). Using a Taylor approximation and applied to a MAC grid (see Fig. 1), the following component-wise equations
are obtained.
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(7) Fig. 1: Fluid-solid boundary on a MAC grid.

Discretized fluid and solid domains, e.g. of the pore space of a porous material, are denoted by Ωf and Ωs, respectively,
and the artificial speed of sound is chosen to be c = 1.5 · 106 according to [3]. Note that the dimension c ≈ 106 fits well to
the physical ratio of the speed of sound in water to the assumed characteristic velocity of creeping flow conditions.

2.3 Smoothed Particle Hydrodynamics for Navier-Stokes equations

Smoothed Particle Hydrodynamics (SPH) is a fully mesh-free Lagrangian method that is well established for different types
of flow problems [9]. SPH computes field functions based on weighted contributions of neighboring particles rather than
by solving linear systems of equations. The concept of SPH is based on an approximation of a field function f(x) more
specifically the identity

f(x) =

∫

Ω

f(x′)δ(x− x′)dx′ → f(x) ≈
∫

Ω

f(x′)W (x− x′, h)dx′ (8)

including the Dirac delta function δ(x − x′) that is substituted by means of a smoothing kernel W (x − x′, h). Therein x
and x′ are position vectors of the SPH particles and h is the so-called smoothing length of the compact-support kernel that
determines a sphere of influence of a single particle and the number of neighbors. The convolution integral is numerically
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evaluated using Trapezoidal rule introducing discrete entities of the continuum with volume Vi. Particle wise field functions
fi are approximated only at collocation points

f(x) ≈
∫

Ω

f(x′)W (x− x′, h)dx′ → fi =

N∑

j

fjW (xi − xj , h)Vj . (9)

N denotes the number of neighboring particles. With the help of this discretization method and the derivation of the kernel
function, divergence and gradient operators can likewise be discretized. We obtain

grad f(x) =
N∑

j

f(xj) gradW (x− x′, h)Vj aswell as div f(x) =
N∑

j

f(xj) · gradW (x− x′, h)Vj (10)

and see directly that the gradients of field functions do not have to be computed but merely the gradients of the kernel, which
is an intrinsic advantage of the SPH method. By application of Eq. (9) and Eq. (10) to Eq. (1) and Eq. (4) one receives the
discrete Navier-Stokes equations, here in non-dimensionless form

vi = −
N∑

j

mj

( pi
ρi2

+
pj
ρj2

)xij

rij

∂Wij

∂rij
+

N∑

j

mj(µi − µj)(vi − vj)

ρiρj

( 1

rij

∂Wij

∂rij

)
+ b (11)

with the discrete version of the mass balance

ρ̇i =

N∑

j

mj(vi − vj) ·
xij

rij

∂Wij

∂rij
, with rij = ||xi − xj || , (12)

whereby the continuous field functions are transformed into particle and inter-particle forces.

2.4 Computing intrinsic permeability kI

The intrinsic 2nd order permeability tensor kI = kIij ei ⊗ ej is a material specific geometrical measure which takes into
account viscous momentum loss through flow in the pores of the the porous medium. Intrinsic permeability is derived by
rearranging Darcy’s Law

kI = − µf vf

grad p
with [kIij ] = m2. (13)

The method of its computation must be adjusted according to the two methods FD and SPH. Scalar values are computed,
based on the porosity ϕ, e.g. for the component

FD : kI11 =
v1ϕ

Re
SPH : kI11 =

µfϕ

ρfg

1

Nf

Nf∑

i

vi,1 . (14)

3 Computational aspects and implementation

3.1 MPI parallelized Finite Difference implementation

Since the 3-dimensional input data sets for the simulations are already voxel-based, an MPI implementation using Cartesian
communicators can be adopted particularly well [8].

Result: p, v-fields in porous material
MPI-Initialization, Domain

Decomposition;
Input raw file;
while divv > ε do

Impose boundary conditions;
Compute pi,j,k,vi,j,k ;
Communicate p,v between ranks;

end
Write output;

Algorithm 1: Stokes Solver Algorithm.
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Fig. 2: Strong Scaling FD-Solver.
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Fig. 3: Weak Scaling FD-Solver.
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We implement the solver for Eqs.(7) in C++ with parallelized direct Input-Output routines for µXRCT data sets. The
domain can be decomposed in all three spatial directions and distributed over an arbitrary number of computational ranks. In
primary flow direction (e1) a pressure gradient is defined as pressure boundary condition and periodic boundary conditions for
the velocity components. At all fluid-solid interfaces no-slip no-penetration boundary conditions are applied and at domain
boundaries in e2- and e3-direction periodic or no-slip boundary conditions can be specified depending on the problem. The
main structure of the code is given in Algorithm 1. We evaluate scalability for simple body-centered-cubic (bcc) and face-
centered-cubic (fcc) spherepacking domains with 2003 voxels. For smaller domain sizes on the individual ranks, the code
scales much worse, since the routines for computing the velocity field and pressure field are comparatively fast and thus the
communication generates overhead as the number of ranks increases, see Fig. 2. The study of weak scaling, Fig. 3, on the
other hand, which is more relevant for our problems with large voxel numbers > 109, shows satisfactory, though not perfect,
results.

3.2 SPH implementation in HOOMD-Blue

Comparing both methods, SPH is by far the one requiring more memory and computational resources. Consequently, the
focus here lies in particular on the efficient implementation of a massive parallelization. The Molecular Dynamics Toolbox
HOOMD-Blue [2, 6] provides the basis for our CPU as well as GPU implementations of the SPH algorithm. HOOMD-Blue
comprises an efficient nearest neighbor search algorithm, lean particle data structures, heuristic load balancing, a spatial
domain decomposition and MPI based interface minimization to reduce communication.

Fig. 4: SPH work-flow. Blue highlighted boxes indicate our own implementation.

Fig. 4 illustrates the program flow of the SPH code. Boundary Value Problems (BVP) are initialized with python scripts
while the code is mainly written in C++. CPU and GPU implementations are written in C++ and CUDA, respectively. Boundary
conditions are implemented according to Adami [1] and we employ a Velocity Verlet time integration method [13]. For more
information about the implementation and especially about the strong and weak scalability on CPU and GPU clusters for
different geometries we refer to recent publications of the authors, cf. Schirwon [12] and Osorno et al. [10].

4 Benchmarks

Benchmarking our codes pursues three parallel strategies.
First, we test both codes with respect to simple benchmarks with
existing analytic solutions, such as Poiseuille tubes. In a second
step, regular sphere packings are investigated, for which ana-
lytic solutions also exist. In Fig. 5, a sweep across the porosity
ϕ is presented and the normalized permeabilities plotted for two
differently structured sphere packings (BCC - Body-Centered
Cubic; FCC - Face-Centered Cubic). We compare the SPH and
FD codes with the Kozeny-Carman equation [7]

kKC
1 =

D2

180

ϕ3

(1− ϕ)2
(15)

results for porosities 0.1 ≤ ϕ ≤ 0.9. All simulations were per-
formed with the same discretization (1003 voxels).
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Fig. 5: Normalized permeability for different regular
sphere packings in terms of a broad range of porosi-
ties.

Since no-slip boundary conditions cannot be accurately represented in the FD code, the permeability in areas of low porosity
is significantly overestimated. However, it can be shown that for higher resolutions the solution of the problem tends to the
analytic solution. The SPH code shows very good results for both sphere packings over all porosities. In a third step, our
codes are compared with other simulation approaches for regular porous materials as used in microfluidic experiments. Our
results are in good agreement with a wide variety of methods, such as

FD : 2.06 , SPH : 1.63 , LBM : 1.69 , Homogenization : 1.73 , FEM : 1.71 [·10−10m2] (16)
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More details on permeability determination for thin, structured porous materials can be found in Wagner et al. [14].

5 Application to clogging porous materials

Understanding and accurately predicting clogging processes at the pore scale is particularly challenging in heterogeneous
porous materials. These processes may be unintended, and if unavoidable one would like to control them, for example when
clogging filters. But they may also be desired, for example to block subsurface cracks. We investigate for the following use
case a domain in which a chemically induced precipitation process clogs the pore space over time. Experimental data that are
available online [16] is used and acquisition and experimental setup is described in [15].

5.1 Porosity-Permeability relationship

With the Finite Difference method, large geometries can be computed in its entirety. We use this to determine permeabilities
of the initial configuration of the domain. In contrast to the experiment, the permeability in e1-direction (direction of the
pressure gradient in the experiment) can be determined as well as the permeability in e2-direction (direction perpendicular to
the pressure gradient in the experiment). Permeabilities of the domain for different time steps of the experiment are computed
and normalized values are plotted over the normalized porosity. In direction of the experimentally applied pressure gradient,
the decrease in permeability is less steep. In particular, after three computed snapshots (t > 17400s), no permeability can be
determined perpendicular to the direction of the experimentally applied pressure gradient. This is due to the fact that no flow
paths are open in this direction. In the pressure gradient direction, this is only the case at 4 snapshots later (t > 32400s).
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Fig. 6: Velocity component vf,1 at t = 0s.
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Fig. 7: Normalized porosity-permeability relationship in two
main flow directions.

One simulation with 42212340 voxels requires approximately 4 hours with 64 MPI ranks on one CPU. Computing time
required for SPH simulations cannot be justified for such domain sizes.

5.2 Formation of preferential flow paths

To illustrate the challenge of simulations at the pore scale, we consider a subdomain that includes a so-called preferential
flow path. Over time (see Fig. 8 – Fig. 11), the flow-through region of the porous material narrows to a pore whose diameter
is further reduced by a precipitate. The velocity component in the pressure gradient direction vf,1 is given on the right side
of each figure. The evolution of the pore space on the left, where gray represents the artificial porous material, white the
fluid-filled pore space and black the precipitate.
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Fig. 8: Snapshot at t = 0s.
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Fig. 9: Snapshot at t = 17400s.
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Fig. 10: Snapshot at t = 25200s.
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Fig. 11: Snapshot at t = 32400s.

The decreasing porosity and the associated reduction of the permeable area does not only cause numerical problems. Under
certain circumstances, the resolution has to be adapted in order to guarantee the necessary amount of voxels even in narrow
pore diameters. A fundamental question is whether, or how long, it can be justified to model this domain with the Stokes
equations. For these investigations, the solution of the Navier-Stokes equation with SPH is required and these are currently in
progress.

6 Conclusion and Outlook

In this paper, two fundamentally different simulation methods for flows of fluids through porous materials have been presented.
Besides deriving both methods from fundamental conservation laws, their discretization and implementation are described.
The implementations can correctly represent flow through different types of porous materials and are also adequately imple-
mented from a high performance computing perspective. By definition, the methods differ due to their complexity in terms of
wall time for identical problems (the FD/SPH ratio is approximately 1 : 10). This demonstrates the fact that the problem size
massively limits the usability of SPH, while the FD solver can also handle larger geometries in a reasonable time, see Fig. 6.
With SPH we can only consider some smaller subdomains in which the interesting physical phenomena take place.

By means of an example it could be illustrated how both methods can contribute their advantages and disadvantages to
a solidified understanding of the flow conditions and complement each other well. We follow this approach further and
investigate in a next approach subdomains with relevant pore constrictions at later times of the experiment to quantify the
influence/part of viscous momentum diffusion. This will then allow additional conclusions to be drawn about the limitations
of the FD method.
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