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Hyperbolic equations admit discontinuities in the solution and thus adequate and physically sound numerical schemes are
necessary for their discretization. Second-order finite volume schemes are a popular choice for the discretization of hyperbolic
problems due to their simplicity. Despite the numerous advantages of higher-order schemes in smooth regions, they fail at
strong discontinuities. Crucial for the accurate and stable simulation of flow problems with discontinuities is the adequate
and reliable limiting of the reconstructed slopes. Numerous limiters have been developed to handle this task. However,
they are too dissipative in smooth regions or require empirical parameters which are globally defined and test case specific.
Therefore, this paper aims to develop a new slope limiter based on deep learning and reinforcement learning techniques.
For this, the proposed limiter is based on several admissibility constraints: positivity of the solution and a relaxed discrete
maximum principle. This approach enables a slope limiter which is independent of a manually specified global parameter
while providing an optimal slope with respect to the defined admissibility constraints. The new limiter is applied to several
well-known shock tube problems, which illustrates its broad applicability and the potential of reinforcement learning in
numerics.
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1 Introduction

Non-linear hyperbolic conservation laws are widely used in science and engineering for the modeling of physical processes
[1]. An intrinsic feature of such partial differential equations is the breakdown of classical solutions and the occurrence of
discontinuities, even if the initial data were smooth [1]. In the case of the Euler equations, these discontinuities may be
identified as contact discontinuities or shocks, which are of linear or non-linear nature, respectively.

If one is interested in the solution of such systems, first-order finite volume (FV) schemes combined with a monotone
numerical flux function turned out to be well suited for this task [2]. These schemes are per construction consistent with the
conservation property of the underlying governing equations and provide a stable as well as entropy compliant approximation.
However, in practical applications, the major part of the solution may have a smooth multiscale character, and only at some
points discontinuities are part of the solution. Thus, first-order schemes require a massive grid resolution to be accurate.
Especially for two- and three-dimensional problems, high-order methods are favorable in general.

Much effort has been spent in the development of higher-order schemes over the last decades [3–8]. However, high-
order methods, e.g. finite-difference, finite-element, and discontinuous Galerkin schemes, are prone to oscillations at strong
discontinuities. These oscillations are often called Gibbs phenomenon. Therefore, a widely used ansatz for such schemes
is the (local) addition of artificial viscosity. This may be achieved via local filtering of the solution [9], a (local) diffusion
operator [10], flux correction [11] or a locally h-refined low-order solution [12], only to mention some possibilities.

In the context of FV schemes, Godunov [13] proved that a linear monotone scheme can be at most of first-order. Hence,
a non-linear reconstruction or limiting procedure is required if schemes of higher-order shall be constructed. Therefore, non-
linear methods based on TVD limiting strategies [14, 15] or essentially non-oscillatory reconstruction schemes of (W)ENO-
type [6, 16] have been proposed. The aforementioned, second-order TVD schemes of MUSCL-type [5, 17] are popular in
academia and industry due to their algorithmic simplicity, robustness and superiority over first-order FV methods in terms
of their convergence properties. However, a major drawback of these schemes is the optimal choice of the limiter function
with respect to stability and accuracy. While the minmod limiter provides a robust scheme even for strong shocks, it is too
dissipative in smooth regions of the solution. Other simple limiters, such as the superbee limiter, may perform well in smooth
regions of the solution but fail at strong discontinuities and even induce unphysical numerical artifacts at local extrema. To
resolve this issue, more sophisticated limiters have been proposed that allow the limiter to be tuned to the particular test case
and, in general, to strike a balance between robustness and accuracy of the results [14, 15]. However, these tuning parameters
are strongly test case dependent and a priori unknown. Furthermore, the developed limiters are generally based on schemes
for linear hyperbolic equations or on even simpler constraints which do not account for the physical behavior of the considered
partial differential equation system. Hence, they cannot guarantee that the TVD property is actually fulfilled when applied
to non-linear hyperbolic equations. An alternative approach to the discussed a priori limiters is the MOOD limiter [8, 18],
where the validity of the solution is examined in an a posteriori fashion based on some predefined admissibility criteria. If any
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of the defined criteria is violated, the solution of the corresponding elements has to be recomputed with a lower order, more
dissipative, or in general more robust scheme. This procedure guarantees high-order solutions where possible and a nearly
oscillation-free treatment of discontinuities. However, depending on the actual implementation, the prediction of a high-order
solution at the next time level and the subsequent a posteriori corrector step may require several iterations until an admissible
solution at the next time level is achieved. Thus, this procedure can get computationally expensive. Therefore, the present
work aims to design an a priori limiter for second-order MUSCL-Hancock schemes [17] which has the MOOD properties of
an a posteriori limiter. For this task, data-driven methods from machine learning may be employed.

Several researchers have proposed data-driven shock detection [19–21] or capturing methods [22, 23]. However, all of
them have in common that they were trained in a supervised learning (SL) manner, i.e. during the training, none of the models
actually took the response of the numerical scheme on their prediction into account. Thus, in the approaches available, either
known shock capturing schemes were replaced by a data-driven model [22, 23], or models were trained to classify between a
numerically sound and a troubled solution [19–21]. The latter ansatz is quite intricate as the user has to classify the training
samples a priori. However, without considering the behavior of the numerical scheme at hand, it is impossible to infer from
the state at a time level tn whether or not the resulting solution will be admissible at the next time level tn+1, or will guarantee
an admissible transition to the time level tn+2, even if at tn+1 a monotone first-order scheme is used. Hence, the task is to
provide a training set which guarantees that for any forthcoming solution an admissible solution at the next time level can
be reached, while keeping the high-order properties of the numerical scheme in the smooth parts of the solution. For this
purpose, in the data-driven shock detection methods presented so far in the literature, an extensive amount of fitted analytical
functions was used to mimic possibly occurring numerical solutions [21]. This approach, however, is quite complicated as
a lot of testing is required to provide the necessary analytical functions and their optimal balance in the training data and is
hard to transfer if the numerical scheme or the governing equations are changed. Thus, in the present work, methods from
reinforcement learning (RL) are applied to train a data-driven a priori shock-capturing scheme.

Early successes of reinforcement learning have been achieved in the construction of artificial intelligences capable of
playing complex games [24] such as chess or Go [25], and in contrast to SL, the training process is carried out by allowing
the trained model itself, called the agent, to interact with an environment. Besides games, the approach is well suited for
many types of control processes: for example, in this paper, the environment is a second-order MUSCL-Hancock scheme
and the agent is a feedforward neural network. In computational fluid dynamics, RL has been applied successfully to control
tasks [26] and in turbulence modeling [27]. Based on these encouraging results, it is the aim of the present work to develop a
deep RL framework which can be used to train any kind of a priori shock capturing method, e.g. slope limiters, flux limiters
or artificial viscosity, and has the properties of an a posteriori MOOD limiter. The inputs of the used neural network are the
integral mean values of the primitive variables, density and pressure, of the three point stencil generally employed for second-
order reconstruction schemes. Moreover, the training should be easily applicable if the discretization method or the underlying
governing equations are changed. As a particular example, the framework is applied in combination with a MUSCL-Hancock
scheme to train a slope limiter for the Euler equations with an ideal gas equation of state.

The remainder of the paper is structured as follows. First, in section 2, we give a brief introduction to the applied RL algo-
rithm. The major contribution of this work, the framework developed for the training of a data-driven a priori shock capturing
method with the properties of an a posteriori MOOD limiter is presented in section 3. Turning to numerical experiments, the
applicability and predictive performance of the developed limiter on different well-known standard test cases is discussed in
section 4. We conclude the paper with a short summary and an outlook in section 5.

2 Reinforcement Learning

Since the slope limiter presented in this work is trained via reinforcement learning, we give here a brief introduction of the
applied RL algorithm. In contrast to SL, the general idea of RL is to learn a time-dependent problem through an agent which
interacts with a given environment and receives feedback for its actions in this environment. For this, the problem is modeled
as a Markov decision process (MDP), i.e. the agent is equipped with all necessary information to transit to the next state. In
detail, at each discrete time level tn ∈ R+ with n ∈ N, the agent draws an action a ∈ A based on the policy π and its state
sn ∈ S, obtains a reward r : A×S → R for its decision and transits to the next state sn+1. The transition from sn to sn+1 is
stored in the so-called transition tuple T = (sn, a, r, sn+1). Here,A and S denote the set of all possible actions (action space)
and states (state space) in the environment, respectively. In this work, a deterministic policy is chosen, i.e. π : S → A. With
this in mind, it is the task of RL algorithms to find the optimal policy πϕ(s

n) = π(sn;ϕ), with parameters ϕ ∈ Rk, k ∈ N>0,
which maximizes the accumulated reward over time, denoted as the return R =

∑∞
i=tn γi−tnr(si, ai). The discount factor

0 < γ < 1 ensures that future returns are weighted less than the more immediate ones [24]. To maximize the return, in the
present work, we employ policy gradient methods which update the parameters of the policy with respect to the gradient of the
performance objective J(θ) = E[R|π], e.g. via gradient ascent, where E[·] denotes the expectation operator. This objective
can be computed by the deterministic policy gradient theorem [28], given as

∇ϕJ(ϕ) = Esn∼ρπ [∇aQ
π(sn, a)|a=πϕ(s)∇ϕπϕ(s

n)], (1)
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where Esn∼ρπ [·] is the expected value as defined by [28] and Qπ(sn, a) the action-value function, i.e. the expected return
obtained in the state sn for performing an action a = πϕ(s

n). In order to evaluate eq. (1), Qπ(sn, a) has to be known. One
approach is to use a policy evaluation algorithm, e.g. temporal difference (TD) learning [28], where the true Qπ(sn, a) is
estimated by Qθ(s

n, a) = Q(sn, a;θ) ≈ Qπ(sn, a) with the parameters θ ∈ Rk, k ∈ N>0. TD learning is based on the
Bellman equation, see e.g. [29], which is given as Qθ(s

n, a) = r + γ Qθ(s
n+1, πϕ(s

n+1)).
A widely adopted family of policy gradient methods based on eq. (1) and TD learning is that of actor-critic algorithms

[24, 28]. An actor-critic method is composed of two elements: An actor which updates the parameters of a deterministic
policy and a critic to estimate the action-value function Qθ(s

n, a), e.g. via TD learning. Actor-critic algorithms can be further
classified in on-policy and off-policy algorithms, depending on the way in which the target policy differs from the behavior
policy. The (deterministic) target policy, πϕ = π(sn;ϕ) is the policy used to compute the target of both the actor and the
critic, while the action during training is drawn from a (stochastic) behavior policy π̃ϕ = π(sn, a;ϕ). The target policy and
the behavior policy are different from each other for off-policy algorithms, while they are identical for on-policy algorithms.
The advantage of off-policy compared to on-policy algorithms is that the update of both actor and critic can be decoupled from
the sampling of transitions, which can be stored in an experience replay buffer, see e.g. [29]. In order to deal with continuous
state and action spaces, neural networks are employed for the function approximation of both the actor and the critic.

In this work, a state of the art off-policy RL algorithm, twin delayed deep deterministic policy gradients (TD3) [29], is
utilized. The idea of TD3 is to use a clipped variant of the original double Q-learning [30] to reduce the overestimation of the
bias by the use of target networks with parameters θ′ and ϕ′ for both the actor and the critic. In addition, two critic networks
are employed and the minimum of both is used to yield the target of the critic

y = r + γ mini=1,2 Qθ′
i
(sn+1, πϕ′(sn+1) + ϵ), ϵ ∼ clip(N (0, σ̃),−c, c), (2)

where N (µ, σ) denotes the normal Gaussian distribution with variance σ and mean µ, γ = 0.99, c = 0.5 and σ̃ = 0.2, as
suggested in [29]. To reduce the error per update, the update of the actor is delayed to the critic, e.g. every d̃ iterations. For
more details on the algorithm and an evaluation of its performance, see [29].

3 The RLIndi-Framework

In the following, we briefly present the methodology developed to train a reinforcement learning based slope limiter. The
structure of the algorithm is depicted in algorithm 1.

The algorithm begins with the initialization of the networks and a replay buffer B ∈ RnRB of size nRB = 5 · 104. At this
stage, the number of training epochs nepoch = 1000 is also set. The actor and both critics, as well as their targets, are multilayer
perceptrons with two hidden layers, each composed of 300 nodes, and the SiLU function [31] is applied between both layers.
After the output of the actor, a tanh function is applied. In each training epoch, arbitrary initialized shock tube problems are
computed until a predefined end time tend = 0.1 is reached. The initial conditions are given as vl = (ρl, ul, pl)

T for x < 0.5
and vr = (ρr, ur, pr)

T for x ≥ 0.5, and vice versa, with density ρl ∼ U [0.01, 1], ρr ∼ U [0.9, 4], velocity ur, ul ∼ U [−2, 2],
pressure pl ∼ U [0.01, 1], pr ∼ U [1, 10] and x ∈ [0, 1]. The operator U [a, b] denotes a uniform distribution in the interval
I = [a, b]. The training is performed with a representative discretization of N = 200, CFL = 0.99, and supersonic outflow
conditions are imposed at the boundaries.

In each epoch, the procedure starts with the initialization of the test case and the calculation of the time step dt. After that,
the slope δq is calculated as, see e.g. [15],

δq = 0.5 [(1− ai)(qi+1 − qi) + (1 + ai)(qi − qi−1)] , ai ∈ [−1, 1] (3)

by the use of the action predicted by the actor network ai = clip(πϕ(s̃
n
i ) + ϵ, alow = −1, aup = 1) to which an exploration

noise ϵ drawn from N (0, σ), σ ∈ R>0 is added, here σ = 0.1, as suggested in [29]. The input s̃ni to the actor is a three-point
stencil composed of the normalized solution at the current time level tn in cell i and its direct neighbors, i.e. the left (i − 1)
and right (i+ 1) cells. For this, the physical state sni = (V n

i−1, V
n
i , V n

i+1)
T , i = 1, . . . , N with Vi = sign(min(ρi, pi))ρipi is

normalized by a min-max normalization NORMALIZE(si) : si ∈ R3 7→ s̃i ∈ [0, 1], generally defined as

NORMALIZE(si) =

{
si−min(si)

max(si)−min(si)
: max(si)−min(si) > ϵ1max(|si|),

1 : otherwise, i = 1, . . . , N,

where the time level is omitted as the normalization has to be applied to the current state sn and the next state sn+1. For states
which are nearly constant sc,i = (max(si)−min(si) ≤ ϵ1max(si)) the action is set to ai = 1 for cell i. This can be interpreted
as a restrictive oscillation indicator [18], here ϵ1 = 10−5. With the calculated slope, the solution qn can be updated in time
using the MUSCL-Hancock scheme, yielding qn+1 at tn+1 = tn + dt; as a Riemann solver, the HLL method [32] is adopted.
Since RL algorithms are based on MDP, for each discrete timestep dt, transition tuples T = (s̃n,a, r, s̃n+1,S) are stored in
the replay buffer B. For snc , the slope is known and the corresponding transition tuple is not written to B. A transition tuple is
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composed of the normalized state at tn, s̃n, the normalized state at the next, now current, time level tn+1, s̃n+1, the action a,
the reward r = REWARD(sn+1, sn,a) and the positivity status of the new state S =SANITY(sn+1), defined as

SANITY(sn+1
i ) =

{
1 : min(sn+1

i ) < ϵ2, ϵ2 = 10−6,

0 : otherwise, i = 1, . . . , N.

Hence, all states with a nearly zero density and/or pressure are marked as an invalid solution. The choice of ϵ2 has to be based
on the considered physical model. The definition of the reward is crucial for the success of the training. A suitable reward is
derived under the following considerations. First, samples for which the positivity of the solution is not ensured have to be
penalized by a negative reward. Second, the action predicted by the actor has to be optimal in the sense that the maximum
permissible slope guarantees that oscillations are bounded over time. With these considerations in mind, the reward r, which
of course depends strongly on the discretization scheme considered, is defined as

REWARD(sn+1
i , sni , ai) =





c1 : Si = 1,

|ai| : Mi = 1 ∧ ((ai < −1 + ϵ3 : |r̂| > 1) ∨ (ai > 1− ϵ3 : |r̂| < 1)),

c2|ai| : Mi = 1 ∧ ¬((ai < −1 + ϵ3 : |r̂| > 1) ∨ (ai > 1− ϵ3 : |r̂| < 1)),

ai : Mi = 0 ∧ |r̂| > 1,

−ai : Mi = 0 ∧ |r̂| < 1, i = 1, . . . , N.

(4)

In eq. (4), the ratio r̂ is defined as r̂ = f(sni ) =
ρi−ρi−1

ρi+1−ρi
with the tuning parameters c1 = −50, c2 = −5, ϵ3 = 10−2, which

may depend on the considered S and an oscillation indicator (relaxed discrete maximum principle) [18] is used, given as

M = f(sni , s
n+1
i ) =

{
1 : (V n+1

i < min(sni )(1− ϵ4)) ∨ (V n+1
i > max(sni )(1 + ϵ4)), ϵ4 = 10−4,

0 : otherwise, i = 1, . . . , N,

where the sensitivity of the indicator can be tuned by ϵ4, a common value in the literature is ϵ4 = 10−3 [18]. The first case
in eq. (4) accounts for invalid states. The other conditions are the following: First, states with Mi = 1 (oscillating solution)
require their action to be changed in order to obtain a less oscillatory representation and the reward is thus negative, scaled
by the taken action (third case). However, it is important to ensure that these states are not penalized if their actions result
in the lowest permissible slope (second case), i.e. the slope predicted by the minmod limiter. Second, for states with a less
oscillatory or non-oscillating solution, the optimal action in terms of the maximum allowed slope depends on the size of r̂.
For r̂ > 1, the optimal action is a∗ → 1, otherwise a∗ → −1, see [14]. Hence, for r̂ > 1 (fourth case) or r̂ < 1 (fifth case),
an action with a negative or positive sign, respectively, results in a negative reward and forces the actor to converge to a∗. The
condition r̂ = 1 is never true as no constant samples are saved in B.

After that, mini-batches of size m = 100 are randomly drawn from B. The parameters of both critic networks and the ones
of the actor and the target networks are optimized via the Adam algorithm [33] and a learning rate of η = 10−3. The actor
and the target networks are updated every d̃ = 2 epoch [29]. For the first 100 epochs, the action is randomly drawn from
a ∼ U [−1, 1] to ensure that the actor-critic networks have enough exploration and in turn are able to find the optimal action
according to the above definition.

Algorithm 1 RLIndi-Framework

Initialize critic Qθ1 , Qθ2 and actor πϕ networks with random parameters θ1,θ2,ϕ ∼ N (0, 1) and target networks, see [29]
Initialize replay buffer B
for iepoch = 1 to nepoch do

Initialize test case, tn = t0
while t < tend and ∀j ∈ S : j = 0 do

Compute dt and state vector sni = (V n
i−1, V

n
i , V n

i+1)
T , i = 1, . . . , N and s̃n = NORMALIZE(sn)

Select action a = clip(πϕ(s̃
n) + ϵ,−1, 1), ϵ ∼ N (0, σ) and compute slope δq = f(sn,a) according to eq. (3)

Update solution to tn+1 = tn + dt
Compute state vector sn+1

i = (V n+1
i−1 , V n+1

i , V n+1
i+1 )T , i = 1, . . . , N and s̃n+1 = NORMALIZE(sn+1)

Check positivity S = SANITY(sn+1) and compute r = REWARD(sn+1, sn,a)
Store transition tuples (s̃n,a, r, s̃n+1,S) in B

end while
Sample mini-batches of m transitions from B, update critics θ1,2 ← ηm−1

∑
m(y −Qθ1,2(s̃

n,a))2, y from eq. (2)
if iepoch mod d̃ then

Update the actor according to eq. (1) and update the target networks, see [29]
end if

end for
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4 Numerical Results

For the validation of the methodology, a trained network is applied to several well-known shock tube problems. In this
work, the Sod shock tube, the Toro 1 test case [15] (a modified version of the Sod problem, featuring a sonic point inside a
rarefaction) and the Shu-Osher oscillatory shock tube [34], scaled to x ∈ [0, 1], are discussed. The initial conditions are given
in the same order by

vl =





(1, 0, 1)T : x < 0.5,

(1, 0.75, 1)T : x < 0.3,

(3.857143, 2.629369, 10.33333)T : x < 1/8,

, vr =





(0.125, 0, 0.1)T : x ≥ 0.5,

(0.125, 0, 0.1)T : x ≥ 0.3,

(1 + 0.2sin(16πx), 0, 1)T : x ≥ 1/8

(5)

with simulation end times of tend = {0.25, 0.2, 0.178} and discretizations of N = {200, 200, 500}. The resolution increase to
N = 500 for the Shu-Osher test is intended to adequately represent the oscillatory part of the solution.

The results are illustrated in fig. 1. The RLIndi is able to guarantee a stable simulation for all considered test cases, i.e.
the solution is bounded over time. For the Sod shock tube, minor under-/overshoots at the edges of the contact discontinuity
and the rarefaction wave are visible. The same holds for the Toro 1 test case, however, the oscillations are more pronounced.
Although oscillating solutions such as the ones in the Shu-Osher shock tube are not considered during training, the RLIndi is
capable of resolving these regions adequately. Moreover, the interaction of the oscillatory structure with the strong shock
is well captured. The actions predicted by the RLIndi during the simulation are illustrated in fig. 2. The states between the
waves are not always flagged as constant states due to numerical fluctuations. Hence, the ratio r̂ is oscillating around r̂ = 1
and this in turn changes the optimal action due to the reward given in eq. (4) (case 4 and 5). Thus, the actions predicted by
the RLIndi for these states are oscillating in the interval a ∈ [−1, 1]. In addition, the actions a follow the definition of r̂, i.e.
a = −1 for a convex (r̂ < 1) and a = 1 for a concave density profile (r̂ > 1). Following the definition above, the action is set
to 1 for r̂ = 1. Discontinuities are captured by a left-sided action of aL = 1 and a right-sided action of aR = −1.

5 Conclusion and Outlook

In this work, we proposed a reinforcement learning based slope limiter embedded in a second-order FV solver. Admissibility
constraints based on the positivity of the solution and a relaxed discrete maximum principle were used to define a reward
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Fig. 1: Density of the Sod shock tube at t = 0.25 (left), the Toro 1 test case t = 0.2 (mid) and the Shu-Osher shock tube t = 0.178 (right).
The reference solution (red) is computed on a grid of N = 5000 elements with the minmod limiter.

Fig. 2: Action, denoted as k, plotted in a x − t diagram for the Sod shock tube up to t = 0.25 (left), the Toro 1 test case t = 0.2 (mid)
and the Shu-Osher shock tube t = 0.178 (right). With actions of k = 1, k = 0 and k = −1, eq. (3) results in a left-sided, a central, and a
right-sided slope, respectively.
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function in an a posteriori fashion. Therefore, the long-term stability properties of the proposed a priori limiter converge
towards those of the a posteriori limiter. The training was performed on arbitrarily initialized shock tube problems to enable
a wide applicability. Furthermore, the efficiency of the framework is achieved by the use of an off-policy TD3 algorithm,
which allows to store transitions in a replay buffer to guarantee a balanced training set with respect to the different reward
classes. In addition, the replay buffer enables to store transitions which violate the positivity constraints. This ensures that
the training process remains stable in its latter stages, where such cells are less often encountered. The limiter has been
successfully applied to several well-known shock tube problems, which illustrates the potential of the proposed framework.
Furthermore, it is very important to remark that training on simple two-state shock tubes was sufficient to generalize towards
more complex flow phenomena not explicitly included in the training process, such as smooth oscillations occurring in the
Shu-Osher problem.

In future works, arbitrary resolutions will be considered during training to improve the generalization capabilities of the
limiter and the framework will be extended to two space dimensions to allow the simulation of complex flows. For this,
convolutional neural networks are favorable with respect to efficiency. Further improvements with special emphasis on the
composition of the training set and the speedup of convergence in general have to be tackled in the future. Moreover, ongo-
ing research investigates the applicability of the framework to other discretization schemes such as discontinuous Galerkin
methods and the limits of this data-driven approach.
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