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Zusammenfassung

Die Erzeugung von Quanten-Zufallszahlen nutzt Quantenprozesse, die den Kollaps eines
Superpositionszustands bei der Durchführung einer Messung beinhalten. Bei einem Quan-
tenprozess ist das Messergebnis grundlegend unvorhersehbar, was zu echter Zufälligkeit
in den erzeugten Zahlen führt. Wir bezeichnen diese Art von Zufallszahlengenerator als
Quanten-Zufallszahlengenerator (QRNG), da Quantenprozesse an der Erzeugung von Zu-
fallszahlen beteiligt sind.

Der häufigste QRNG ist der photonische QRNG. Bei dieser Art von QRNG gelangen Pho-
tonen aus einer Laserquelle in einen Strahlteiler. Nach dem Strahlteiler befinden sich die
Photonen in einem Superpositionszustand aus reflektiertem Pfad und übertragenem Pfad. In
jedem Pfad befindet sich ein Detektor, der als Messgerät fungiert. Bei der Durchführung
einer Messung kollabiert ein Photon zufällig in einen Detektor, was zu einem Klick im
Detektor führt. Der Klick im übertragenen Detektor wird als Rohbit 0 zugewiesen, und
der Klick im reflektierten Detektor wird als Rohbit 1 zugewiesen. Idealerweise ist jede
erzeugte Zufallszahl aus diesem QRNG eine Quanten-Zufallszahl. In der realen Welt ist
jedoch die Zufälligkeit in den erzeugten Zufallszahlen keine reine Quantenzufälligkeit, da
sie auch andere technische Ursachen als die Quantenmechanik haben kann. Zum Beispiel
können die Klickereignisse auf den beiden Detektoren von Dunkelzählungen herrühren, die
als klassisches Rauschen betrachtet werden.

Wir müssen einige Quantenphänomene nutzen, die klassisch nicht erklärt werden können,
um die Quantennatur der Rohbits zu beweisen und sicherzustellen, dass die Zufallszahlen
aus dem QRNG alle durch Quantenprozesse anstatt durch unerwartete klassische Störungen
erzeugt werden. Nachdem die Quantennatur nachgewiesen ist, können Zufälligkeitszerti-
fizierungsprotokolle basierend auf dieser Quantennatur formuliert werden, um die Entropie
der Zufälligkeit zu quantifizieren.

DasZiel dieserArbeit ist es, unsere Fortschritte bei der Entwicklung von Zertifizierungspro-
tokollen für Zufälligkeit bei QRNGs durch Nutzung verschiedener Quantenphänomene
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darzustellen, um die Quantennatur der erzeugten Zufallszahlen sicherzustellen. Zu diesen
Quantenphänomenen gehören der Einzelphotonen-Antibunching-Effekt, die Welle-Teilchen-
Dualität in einem verzögerten Wahl-Experiment, die Nichtlokalität in einem Bell-Test und
die nichtnull-dimensionale Zeugen von Quantenmessungen.

Im ersten Ansatz wird ein einzelphotonenbasiertes QRNG auf Basis eines Stickstoff-
Fehlstellen-Zentrums implementiert und drei verschiedene Zertifizierungsprotokolle für
Zufälligkeit entwickelt, um die Quantenzufälligkeit in den Rohdaten zu zertifizieren. Im
ersten Modell werden alle experimentellen Ereignisse als Rohbits zur Extraktion von Zufäl-
ligkeit verwendet, und die Geschwindigkeit der Zufallsausgabe beträgt 5, 10 × 104 Bit pro
Sekunde. Im zweiten Modell werden nur Einzelphotonenereignisse als Rohbits betrachtet,
und die Geschwindigkeit der Zufallsausgabe beträgt 4, 74× 104 Bit pro Sekunde. Im dritten
Modell werden nur Tupelerkennungsereignisse unterhalb der Einheitslinie als Rohbits betra-
chtet, und die Geschwindigkeit der Zufallsgenerierung beträgt 34, 37 Bit pro Sekunde. Von
diesen erreicht das zweite Protokoll, das den Einzelphotonenantibunching-Effekt nutzt, einen
quellenunabhängigen Zufallszahlengenerator, ohne die Geschwindigkeit der Zufallsausgabe
zu beeinträchtigen, was es zu einer idealen Wahl für einzelphotonenbasierte QRNGs macht.

Die zweite Methode konstruiert ein QRNG auf Basis eines verzögerten Wahl-Experiments
ohne die Annahme einer fairen Stichprobe. Mit Hilfe der Wellen-Teilchen-Dualität stellt das
Modell sicher, dass Photonen in überlagerten Zuständen an Detektoren ankommen und somit
die Notwendigkeit einer fairen Stichprobe entfällt. Durch Anwendung dieses Modells auf
ein verzögertes Wahl-Experiment [1] können wir 1.124 gleichmäßig verteilte Zufallsbits pro
Sekunde erzeugen.

Der dritte Ansatz zertifiziert Quantenzufälligkeit aus schlupflochfreien Bell-Testdaten
unter Verwendung von Bells Theorem [2] und dem Fernzustandsvorbereitung (RSP)-
Dimensionenzeuge [3]. DasModell desRSP-Dimensionenzeugen erhöht dieGeschwindigkeit
der Zufallsausgabe von 2, 54 Bit pro Tag auf 40, 63 Bit pro Tag und markiert einen wichtigen
Schritt in Richtung praktischer Einsatz von Bell-Tests in der Zufallsgenerierung.

Schließlich wird ein QRNG basierend auf einem Kernspinsystem in einem NV-Zentrum
untersucht, einschließlich zwei Zertifizierungsprotokollen für Zufälligkeit. Das erste Pro-
tokoll ist eine direkte Anwendung desW2-Modells aus [4], und Zufälligkeit kann mit einer
Geschwindigkeit von 0, 87 Bit pro Sekunde erzeugt werden. Im zweiten Dimensionszeu-
genmodell entwickeln wir ein Zertifizierungsprotokoll für Zufälligkeit basierend auf einem
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dreidimensionalen DimensionszeugenW3, und dessen Geschwindigkeit der Zufallsausgabe
beträgt 1, 33 Bit pro Sekunde, das ist um 53% höher als 0, 87 Bit pro Sekunde.

Durch die Nutzung dieser Quantenphänomene tragen wir zur wachsenden Notwendigkeit
sicherer, hochwertiger Zufallszahlen in verschiedenen Bereichen bei, einschließlich Kryp-
tographie, wissenschaftlicher Simulationen und Algorithmusentwicklung.
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Summary

Quantum random number generation utilizes quantum processes, which involve the collapse
of a superposition state upon performing a measurement. In a quantum process, the measure-
ment outcome is fundamentally unpredictable, resulting in true randomness in the generated
numbers. We refer to this type of random number generator as a quantum random number
generator (QRNG) since quantum processes are involved in generating random numbers.

The most common QRNG is the photonic QRNG. In this kind of QRNG, photons from a
laser source go into a beamsplitter. After the beamsplitter, the photons are in a superposition
state of reflected path and transmitted path. In each path, there is a detector acting as a
measurement device. When a measurement is performed, one photon collapses into one
detector randomly, resulting in a click in the detector. The click in the transmitted detector
is assigned as raw bit 0, and then the click in the reflected detector is assigned as raw bit
1. Ideally, from this QRNG, each random number generated is a quantum random number.
Still, in the real world, the randomness in the generated random numbers is not pure quantum
randomness since it can have other technical causes other than quantum mechanics. For
example, the click events on the two detectors can come from the dark counts, which are
considered to be classical noise.

We need to utilize some quantum phenomena, which cannot be explained classically, to
prove quantumness in the raw bits to guarantee that the random numbers from the QRNG
are all generated by quantum processes instead of some unexpected classical noises. After
the quantumness is proved, randomness certification protocols based on this quantumness
can be formulated to quantify the entropy of the randomness.

This thesis aims to present our progress in constructing randomness certification protocols
for QRNGs by leveraging different quantum phenomena to ensure the quantumness of gen-
erated random numbers. These quantum phenomena include the single-photon antibunching
effect, the wave-particle duality of a delayed-choice experiment, non-locality in a Bell test,
and nonzero dimension witness of quantum measurements.

v



Summary

In the first approach, a single-photon QRNG based on an nitrogen-vacancy (NV) center
is implemented, and three different randomness certification protocols are built to certify
quantum randomness in the rawdata. In the firstmodel, all the experimental events are used as
raw bits to extract randomness, and the randomness output speed is 5.10×104 bits per second.
In the second model, only single photon events are considered as raw bits, the randomness
output speed is 4.74 × 104 bits per second. In the third model only tuple detection events
below the unity line are considered raw bits, and the randomness generation speed is 34.37

bits per second. Among them, the second protocol, utilizing the single-photon antibunching
effect, achieves a source-independent random number generator without compromising the
randomness output speed, making it an ideal protocol for a single-photon QRNG.

The second method constructs a QRNG based on a delayed-choice experiment without the
fair sampling assumption. Using wave-particle duality, the model ensures photons arrive at
detectors in superposition states, eliminating the need for fair sampling. By applying this
model to a delayed-choice experiment [1], we can obtain 1, 124 uniformly distributed random
bits per second.

The third approach certifies quantum randomness from loophole-free Bell test data using
Bell’s theorem [2] and remote state preparation (RSP)-dimension witness [3]. The RSP-
dimension witness model significantly increases the randomness output speed from 2.54 bits
per day to 40.63 bits per day, marking an important step towards the practical use of Bell
tests in randomness generation.

Lastly, a QRNG based on a nuclear spin system inside an NV center is studied, including
two randomness certification protocols. The first protocol is a direct application of the W2

model from [4], and randomness can be generated with a speed 0.87 bits per second. In the
second dimension witness model, we develop a randomness certification protocol based on
a three-dimensional dimension witnessW3 and its randomness output speed is 1.33 bits per
second, which is 53% higher than 0.87 bits per second.

By harnessing these four different quantum phenomena, we contribute to the growing need
for secure, high-quality random numbers in different fields including cryptography, scientific
simulations, and algorithm development.
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1 Introduction

Randomness is an important topic in both academic and industrial fields. On the one hand,
research on randomness can deepen our understanding of nature [5, 6, 7]. On the other hand,
randomness is an essential resource for cryptography [8, 9, 10, 11], algorithms, and scientific
simulations. For example, theMonte Carlo method, a mathematical technique to numerically
solve difficult and complex analytical problems using random numbers, finds applications in
multiple fields, including physics, finance, biology, and chemistry. Randomness also plays
a very crucial role in securing information. From the Caesar cipher to the Rivest-Shamir-
Adleman (RSA) cryptosystem, the need for information encryption has a long history, and
randomness is one indispensable element of encryption. With the advent of the information
era, the need for information encryption is growing fast, and the demand for random numbers
increases along with this growth. In this introduction, we discuss the history of randomness,
the application of randomness, themotivation to go frompseudo-randomnumbers to quantum
random numbers, and the development of QRNGs.

1.1 The history of randomness

Randomness has a surprisingly long history despite sounding like a verymodern and scientific
term. In ancient times, the concepts of randomness were often connected with fate or destiny.
For example, around 7,000 to 8,000 years ago, religious shamans used marked objects such
as fruit pits, seashells, and bones to tell people’s future by trying to interpret the signs from
the god. The so-called “signs” were distribution patterns by throwing those objects on a table
or the ground. Each time the pattern was randomly formed and could not be repeated. The
interpretation was also quite random, heavily dependent on shamans’ personal tastes. Then
later, around 5,000 years ago, dice were invented [12]. The invention of dice gave humans the
ability to generate random numbers whenever needed–soon after its invention, randomness
found its place in gaming [13] and even gambling [14].

1
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Figure 1.1: Ancient roman die. This die is already very similar to the one used in daily life. Picture is adapted
from [15]

However, what is randomness? The Greek philosophers, including Democritus, Aristotle,
and Epicurus, discussed it in non-quantitative forms. For instance, in Aristotle’s opinion,
randomness is a genuine and widespread part of the real world and is subordinate to necessity
and order [16].

Then for centuries, the argument about randomness stayed in philosophy aspect with no
mathematical foundation. It was not until the 17th century that mathematicians developed
another fundamental concept that could quantify randomness– probability– the most im-
portant mathematical property of random numbers. In 1654, Blaise Pascal corresponded
with Pierre de Fermat, and in their exchange of letters, they established the major work for
probability theory [17]. The work of Pascal and Fermat later influenced Leibniz’s work
on infinitesimal calculus, which in turn provided further development for the mathematical
theory of probability and randomness. Later, the first textbook on probability theory was
published in 1718 [18]. And then, the mathematical study of randomness continued to grow
thereafter [19].

Probability only describes themathematical nature of specific variables in a random sequence.
When we want to quantify the randomness in the whole sequence, the term “entropy” is
always followed. Entropy, a critical concept in studying randomness, was introduced by
Rudolf Clausius in 1865 [20]. Later in 1877, Ludwig Boltzmann provided the mathematical
definition of entropy S = kBlnΩ, where kB is the Boltzmann constant, and Ω is the number
of different microstates with a given system energy. This definition interpreted entropy as a

2



1.2 The application of randomness

measure of the statistical disorder of a system. At the time entropy was defined, it had nothing
to do with randomness. Randomness itself was still considered as a lack of knowledge of
the system, since in Newton’s classical mechanics, everything is deterministic with enough
known input parameters. In other words, if all the forces acting on a system can be formulated
with sufficient accuracy, it would be possible to make predictions of the state of such a system
for an infinitely long time. This belief in the determinacy of nature was among almost all
the scientists before the birth of quantum mechanics at the beginning of the 20th century,
especially before the formulation of the Heisenberg uncertainty principle in 1927. But still,
a mathematical description of randomness was missing.

It was not until 1948 that the connection between randomness and entropy was established–
Claude Shannon’s work in information theory gave rise to the entropy view of randomness
for the first time [21]. In this perspective, randomness is considered as the opposite of deter-
minism in a stochastic process. This is because if a stochastic system is deterministic, it has
no randomness and is equivalent to saying its entropy is zero. Meanwhile, a nonzero entropy
in the stochastic system means the system contains randomness. After this mathematical
formulation of randomness, random numbers quickly found applications in various aspects
of society, both in the industry and scientific fields [22].

During that time, tables of random numbers, usually generated using an electronic roulette
wheel, were widely used in statistics and other scientific research [23]. Due to the growing
need for random numbers, it was quite natural for researchers to turn to quantum mechanics
for true randomness late 1950s [24, 25]. For example, in 1961, one of the first QRNGs
based on radioactive process [25] was invented. Since then, the study of random numbers
from the quantum process is mainly focused on the radioactive decay [26, 27]. In the 1980s,
the first photonic implementation of QRNG was proposed by Morris [28], and later it was
experimentally demonstrated. Since then, the studies on quantum random number generation
began to grow, as shown in Fig. 1.2.

1.2 The application of randomness

One primary application of randomness is in the Monte Carlo simulation. Monte Carlo
simulation finds application in multiple fields, including physics, finance, biology, and
chemistry [29]. Another important application of randomness is related to cryptography,
the art of encrypting and protecting information.

3



1 Introduction

1985 1990 1995 2000 2005 2010 2015 2020
0

20

40

60

80

Years

P
ub
lic
at
io
n
N
um
be
r

Figure 1.2: The publications about quantum random numbers. As we can see from this figure, the
research on quantum randomness has been growing fast since the 1980s. Data is obtained from
pubmed.ncbi.nlm.nih.gov

1.2.1 Randomness in scientific simulation

The importance of randomness in scientific simulation can be seen in Monte Carlo (MC)-
simulation, which is a mathematical technique to numerically solve difficult and complex
analytical problems by using random numbers [30]. In experimental particle physics, MC-
simulation is important to design detectors since it can simulate the arrival of high-energy
particles and help narrow the gap between theory and experiment. In astrophysics, especially
in the simulation of galaxy evolution, MC-simulation plays a very important role [31].

In the mathematical field, the MC-simulation utilizes random numbers to solve various
problems and observe the fraction of the numbers that obey some property or properties.
This is very useful when the analytic solution to the problem is too complicated to be
obtained. A straightforward example of using Monte Carlo methods is the approximation of
the value of π, shown in Fig. 1.3.

Another powerful application for MC-simulation is numerical optimization. The problem is
to minimize (or maximize) functions of some vectors that often have many dimensions. For
instance, MC-simulation can be used to find a heuristic solution for the traveling salesman
problem [32].

4
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Figure 1.3: Monte Carlo simulation of π. The area of the red disc is Sred = πR2, and the area covered by
the square is Ssquare = 4R2, so π = 4Sred/Ssquare.

Besides physics and mathematics, the MC-simulation method also has many applications in
computer graphics, finance, business, and even law [33].

1.2.2 Randomness in cryptography

Since the invention of the electronic computer in 1945 [34], humans have begun to enter
into the so-called information age [35]. From then on, information gains more and more
significance in all aspects of human life: from information about one’s house number to in-
formation regarding national security. Without exaggeration, in the 21st century, information
has become one of the most important resources in the world. Big companies like Google,
Amazon, and Facebook are eager to collect personal information to make more profits. In the
meantime, governments are acting to protect private information in a more andmore stringent
way [36]. In most cases, randomness is indispensable to protecting information. The study
of securing information techniques in the presence of eavesdroppers is called cryptography
(from Ancient Greek means “hidden, secret").

The protection of information means not only secretly storing information but also com-
municating information privately. In fact, the need for secret communications existed long
before the information age. For instance, the so-called Caesar cipher [37] was invented
2,000 years ago. In this cipher method, we take each letter of the message and replace
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it with the letter three positions after it in the alphabet, and the encrypted message will be
unreadable to the enemy. The Caesar cipher only uses one random number (3 in the example)
as the key to encrypt the information, and it is very easy to be hacked. Up to now, several
modern cryptographic systems use much longer random numbers as the key to guaranteeing
the encryption security of the message. For instance, in the Rivest-Shamir-Adleman (RSA)
cryptosystem [38], the key sizes are as large as 1024 or 2048 bits [39]. In the Advanced En-
cryption Standard (AES) cryptosystem, we use 256 bits key size to implement the AES-256
to encrypt the message [40].

The keys in the abovementioned cryptosystems should be distributed between the message
sender and the receiver so they can communicate smoothly. The distribution is usually
not a problem for the RSA cryptosystem since it has a private decryption key and public
encryption key. Its security is more guaranteed by the computation complexity rather than
random numbers. While key distribution is the most challenging part of the AES method,
the standard way is by using a sneakernet, courier service, or even a dead drop. Those ways
are very slow, inefficient, and bear the danger of being intercepted by adversaries. Is there
a way to do it more efficiently and securely? Quantum mechanics gives us the solution.
More especially, quantum key distribution (QKD) offers us a non-hackable way to distribute
keys [8]. There are several different QKD protocols [8, 41, 42, 43], but the basic idea behind
them is the same: by using the laws of physics, such as the no-clone theorem, the distribution
of the key between sender and receiver can be done in an unconditionally secure manner.

The crypto-systems we mentioned above, including RSA, AES, and QKD, use different ways
to distribute the key. No matter how the user wants to distribute the key, the key needs to
be created first. The key is a random sequence, which can be obtained from random number
generators. In this process, the privacy of the keys must be guaranteed for cryptographic
use. Privacy means that the keys are only known by legitimate users, such as the sender
and targeted receivers. From random number generation to creating keys with privacy for
cryptographic purposes is far from a trivial task.

1.3 Pseudo randomness versus true randomness

Anyone who considers arithmetical methods of producing random digits is, of course, in a
state of sin— John von Neumann [44]
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As mentioned above, since the advent of the information era, the applications of random
numbers, especially in cryptography, have been growing quickly. This means we need to find
ways to generate random numbers (such as keys for cryptography) fast and reliably. Since
the birth of the first programmable and digital computer–ENIAC–computer-based random
number generators have also emerged [45]. Such as the middle-square method proposed
by J. von Neumann in 1946 [45]. Later, many algorithms-based random number generators
were invented [46, 47].

Random numbers from algorithm-based random number generators are called pseudo-
random numbers since their value is fully determined by an initial value (random seed).
Correspondingly, those random number generators are called pseudo-random number gener-
ators (PRNGs).

The random numbers from PRNGs can be applied without problems in the MC-simulations,
such as approximating the value of π. Such simulations do not require the security or the
privacy of random numbers. But in the application of cryptography, there is a different story.
There are many examples of insecure random numbers that lead to severe vulnerabilities.
These include attacks on the SSL keys generated in the Netscape browser [48], attacks on
the OpenSSL protocol [49], and the theft of Bitcoin due to the flaw of PRNG in Android
phones [50]. The incentives for breaking a cryptographic system are very obvious: making
money or fetching private information. Thus, using the best possible keys to secure our
systems is an essential step in the protection of our information, not only personal but also
public.

PRNGs are still in use in most user cases, mainly because they are easy to implement [46].
Nevertheless, we must pay special attention to some of the most relevant features of PRNGs
when using them. The most important one is the seed problem. The seed fully determines
the random number sequence from a PRNG: thus, if a PRNG is generated with the same
seed, the same sequence of numbers will be produced; therefore, the security of the seed
must be guaranteed. Another crucial thing about the PRNG is the finite length problem.
The random numbers from any PRNG have a finite length, which means they will repeat
themselves after a finite length. For some simulations, such as the simulation of the value
of π, this repeat is not a problem as long as the pseudo-random strings are long enough for
the simulations. However, this intrinsic period makes pseudo-random numbers vulnerable
not only in the cryptography application, such as in the encryption of bank accounts, E-mail
accounts, and all the encrypted coins [50] but also in some scientific simulations [51].
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Even random numbers generated from coin tossing, drawing numbered balls, or using me-
chanical devices are, in principle, deterministic, as the outcomes of these physical processes
can be predicted by classical mechanics. This includes chaos, as its results are deterministic
since it is described by classical mechanics [52]. Consequently, random numbers from clas-
sical processes do not contain true randomness because all classical processes are considered
deterministic [53].

Because of the fundamental limitations of randomnumbers fromclassical processes, QRNGs,
whose randomness is guaranteed by quantummechanics, are gettingmore andmore attention.

Before we go into QRNG, there is one fundamental question: Does true randomness exist in
the universe? Randomness can be understood as a lack of complete information of a number
sequence. True randomness means that the random number cannot be predicted by anyone
with any extent of knowledge of the random number generators. From this perspective,
true randomness does not exist in the classical world, which is dominated by deterministic
Newtonian dynamics. While in quantummechanics, the situation is quite different. There are
processes such that specific outcomes have a probability. For instance, in the Stern–Gerlach
experiment [54], the electron spin will be deflected up or down randomly, and this cannot
be predicted no matter how much information we know about the system. Of course, this
could have other interpretations other than quantum mechanics, such as the many-worlds
interpretation [55] and the Superdeterminism [56]. But all these interpretations are highly
speculative. The interpretation from quantum mechanics is most preferred. Thus, in order
to generate true randomness, quantum processes must be utilized.

The Born rule guarantees the unpredictability of random numbers from quantum mechan-
ics. The Born rule describes the outcome of a quantum measurement as fundamentally
probabilistic [57]. It states

If the system is in a state Ψ ∈ H, then the probability P (a = λi | Ψ) that the
eigenvalue λi of a is found when a is measured is
P (a = λi | Ψ) = |(ei,Ψ)|2 .

In other words, if Ψ =
∑

i ciei (with
∑

i |ci|
2 = 1 ), then P (a = λi | Ψ) = |ci|2.

H is the Hilbert space of the state Ψ, a is a quantum mechanical observable (i.e., position,
momentum, polarization).
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So the randomness from the measurement of a quantum superposition state is guaranteed
by the correctness of quantum mechanics. As shown in Fig. 1.4, in a photonic QRNG,
a photon shot into a beamsplitter can either be reflected or transmitted. The photon is in
the superposition of these two paths until it has been detected (i.e., measured) by the two
detectors, and the click events in the two detectors are truly random.

Figure 1.4: The scheme of photonic QRNG. A photon is shot into the beamsplitter. After the beamsplitter,
it will be in the superposition state of the transmitted or reflected path until it hits the detectors.

1.4 Testing randomness

With so many applications of random numbers, one thing that needs to be figured out is
how to quantify the quality of the random numbers. The very first thing we need to check
is frequency. Based on the frequency stability [58], a sequence is considered random if
two conditions are satisfied. (I) Use a function f(n) to count the number of ones (or
zeros) in a sequence of length |n|, and limn→∞ f(n)/|n| = p; (II) Use a function g(m)

to count the number of ones in a subgroup sequence |m| of the original sequence, and
limm→∞ g(m)/|m| = p. The second condition helps avoid considering sequences such as
10101010101010... as random sequences.

From the frequency perspective, the National Institute of Standards and Technology (NIST)
developed the NIST Statistical Test Suite [59], which does not only the frequency test to
a given sequence but also some other tests relevant to the frequency, including the linear
complexity test, the serial test, and the random excursion test, etc.
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NIST Statistical Test Suite alone cannot guarantee the privacy of random numbers. For
example, for the number π = 3.14159265358979323846264338327950288419716939937...,
which is a mathematical constant, and its decimal representation never ends. Apparently, π
is a deterministic string, while from the perspective of the NIST test suite in Fig. 1.5, it is
a perfect random sequence. This inadequacy makes it insecure to use random sequences,
which can pass the NIST test, in cryptography [8, 60, 61, 62]. The so-called Kolmogorov
complexity can address this loophole. Kolmogorov complexity of a sequence is the length of
the shortest computer program (in a predetermined programming language) that can produce
the sequence as output [63]. For a uniform random sequence r, its Kolmogorov complexity
K(r) ≥ |r|, where |r| is the length of the random sequence. The sequence is not random
if K(r) < |r|. Now, come back to π. π has an infinite length, while the computer program
to reproduce it is quite short “a mathematical constant defined as the ratio of a circle’s
circumference to its diameter". So from the perspective of Kolmogorov complexity, π is not
a random sequence.

Figure 1.5: The NIST test suite for the first 105 digits in π. From the test results, we can conclude that the
values of π have a uniform distribution.

For all the pseudo-random numbers from computer algorithms (or PRNGs), their Kol-
mogorov complexity is smaller than the final sequence. Thus, PRNGs cannot generate true
randomness.

It seems that we can use this complexity to indicate the unpredictability of a sequence.
However, for most sequences, their Kolmogorov complexity is unknown [63], and thus it
cannot be used to prove the randomness of a sequence. This means that to describe a random
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sequence, it is insufficient to investigate the sequence alone, we must have knowledge about
its source. In other words, we also need to know how the sequence is generated. For example,
for random numbers from PRNGs, if we know how they are generated (i.e., the seeds are
known), the sequence can be predicted deterministically, and the NIST test suite cannot
guarantee their randomness. While for the random numbers from a quantum process, such
as nuclear decay events, quantum mechanics guarantees that this process is unpredictable. In
fact, quantum mechanical processes are believed to be the only known source of randomness
in nature [64, 65, 66, 23], so the generation of random numbers by a quantum mechanical
process in a QRNG is the desirable way to generate true randomness.

1.5 The development of QRNG

In the development of QRNGs, there are several kinds of QRNGs worth mentioning here.
The first kind is the photonic QRNG. This kind of QRNG usually has the scheme in Fig. 1.4

In this scheme, photons are shot into a beamsplitter. After the beamsplitter, the photons are
in a superposition state. The detectors in either path performing the measurements will break
this superposition state and resulting in a random click. The photonic QRNG output speed
relies on the single-photon detection technology, which is usually slow and expensive. For
example, single-photon detectors from a provider like Thorlabs, etc., usually have a price of
above 4,000 Euro, and the maximum count rate is often below 50MHz.

There is another category of photonic QRNG, which have a similar structure in Fig. 1.4 but
can reach a much higher generation speed. This QRNG is based on continuous variables,
for instance, vacuum fluctuations and phase noise [67, 68]. These fluctuations are detected
by homodyne detectors, which can reach Gbps speed [69, 70, 71].

Because of the relatively mature technology of lasers and detectors, the photonic or similar
QRNGs have already been commercialized for years [72]. However, for most of them, a user
has problems verifying whether the random strings are truly from a quantum process. As
shown in Fig.1.6, the photonic QRNG works normally in the left part of this figure, and we
can get quantum random numbers from it. While in the right part of this figure, one of the
detectors is misaligned and begins to receive white noise. In this case, if the count rate of
this detector does not change, we cannot guarantee that the final output sequence contains
randomness. One way to overcome this misalignment is to verify the source’s legitimacy.
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Figure 1.6: A well aligned and a misaligned QRNG. Due to the misalignment of the detector, the misaligned
QRNG cannot generate quantum randomness.

Since this will reduce the dependency on the source, we call the source verifiable QRNG
source-independent QRNG [65]. The basic idea of this type of QRNG is to use measurement
results to characterize the source. In order to verify the source, the measurement setting
needs to be switched randomly so that the source cannot predict which measurement comes
next. In order to do so, a short random seed is required for switching the measurement
settings. The advantage of this QRNG is obvious: Randomness can be generated even
if the knowledge of the source is lacking or untrusted parties provide the source. In this
scheme, the measurement devices are fully trusted and need to be well described. In
contrast to the source-independent QRNG, there is also the so-called measurement-device-
independent(MDI) QRNG. The source is well described in this kind of QRNG, while the
measurement devices are untrusted. The advantages and disadvantages of this QNRG are
just the reverses of the source-independent QRNG.

Both the source-independent and MDI-QRNG lift the dependency on the experimental de-
vice to some extent. However, they still require detailed characterization of the measurement
device or the sources. When the experimental devices deviate from the theoretical mod-
els, the randomness can be compromised since realistic devices will inevitably introduce
some unexpected classical noise that affects the purity and security of the quantum random-
ness. With the increasing security need for cryptography–which is highly based on random
numbers–the security requirement for randomness generation is getting more and more de-
manding. In this background, the self-testing QRNG scheme is gaining more and more
popularity. In the self-testing QRNG, the quantum randomness can be bounded independent
of the experimental devices.

In order to realize the self-testing scheme, physical inequalities should be utilized [66].
One of the well-known inequalities is the Clauser–Horne–Shimony–Holt (CHSH) inequal-
ity [73]. The CHSH inequality was designed for a bipartite Bell test, shown in Fig. 1.7.
The input x and y, output a and b from Alice and Bob form the CHSH inequality S =
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∑
a,b,x,y(−1)a+b+xyp(a, b | x, y) ≤ 2. In loophole-free Bell tests based QRNGs [66, 74,

75, 76, 77, 78], the random numbers can be generated without trusting any parts of the
experimental devices. This kind of QRNG is called device-independent (DI) QRNG. The
DI-QRNG has very demanding requirements on the experimental setup [61, 79, 80, 62],
such as the locality and efficiency loopholes must be closed simutaneously [81]. The first
loophole-free Bell test is realized in 2015 [61]. Because of the experimental challenge,
the randomness output speed of the loophole-free Bell test based QRNG is extremely low,
around a few bits per day [82, 62], which is far from practical use. So there is another kind of
self-testing QRNG, which lift the stringent requirements on the experimental setup and have
a relatively higher randomness generation speed. In this kind of self-testing QRNG scheme,
the principle of quantum mechanics is trusted. Besides, some other general assumptions
are made, such as the independence and memorylessness of the devices. Such a QRNG is
also called semi-device-independent (SDI) QRNG since they rely on general assumptions
about the experimental devices. The QRNGs based on dimension witness [83, 84, 4] and
Kochen-Specker (KS) theorem [85, 86] are SDI QRNGs.

Bell Test

x y

Alice Bob

a b

S

Figure 1.7: Scheme of bipartite Bell test. The two parties in a Bell test are traditionally named as Alice and
Bob.

1.6 The structure of this thesis

The development of QRNGs will continue with the increased need for random numbers in
the information era. This thesis makes its contribution to the development of QRNGs by
performing experiments and formulating mathematical models for different quantum phe-
nomena to generate quantum random numbers in a certifiable way. This thesis is structured
as follows to give the readers a comprehensive understanding of our work.
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In Chapter 2, four different quantum phenomena, including the single-photon antibunching
effect, the wave-particle duality in a delayed-choice experiment, non-locality in a Bell test,
and nonzero dimension witness of quantum measurement, are summarized. Each of these
quantum phenomena shows quantumness in its unique way. We briefly discussed how to
use them for randomness certification, and the main work in this thesis is that we build new
randomness certification protocols for each quantum phenomenon mentioned in this chapter.

In Chapter 3, standard methods and tools for building a QRNG are introduced, including how
to quantify the entropy of randomness with min-entropy, how to get a uniformly distributed
random sequence with randomness extractors, and how the NIST Statistical Test Suite test
the structure of a uniformly distributed random sequence. From Chapter 4 to Chapter 7, we
performed experiment with each quantum phenomenon mentioned in Chapter 2 to generate
quantum random numbers, and the corresponding QRNG protocols are illustrated in detail
in each chapter.

In Chapter 4, the implementation of a single-photon QRNG is discussed, and the models
to quantify the entropy in the raw bits are explained. As for single-photon sources, a large
variety of single emitters as single-photon sources has been investigated in the past. One
prominent example is the negatively charged NV center, a stable single-photon source [87].
Since few experiments were performed which utilize the single-photon emission of an NV
center for quantum randomness generation, a detailed model to quantify the randomness
from this single-photon QRNG is still missing. So we choose the NV based single-photon
source to build a QRNG and build models to quantify the entropy of the random numbers
from this QRNG.

This single-photon QRNG can be considered a source-independent random number gener-
ator, which does not require the trust of light sources. Moreover, our single-photon based
source-independent QRNG does not require a random seed to change measurement settings
to test the sources since the single-photon antibunching effect is utilized. However, it still
needs to trust the measurement devices, especially the beamsplitter, since the randomness
in this QRNG is guaranteed by the so-called fair-sampling assumption [73, 88, 89] on the
beamsplitter to get quantum randomness.

In Chapter 5, we construct a QRNG model based on a delayed-choice experiment to get
quantum random numbers without the fair sampling assumption. The fair sampling assump-
tion assumes no post-selection of experimental events in the beamsplitter. The post-selection
destroys the superposition of photon states before they reach the two detectors. We use the
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quantum phenomenon in a delayed-choice experiment to guarantee that photons arrive at
the detectors in superposition states, so the fair sampling assumption is no longer needed.
Then a mathematical model is built to quantify the entropy of randomness by utilizing the
interference visibility in the delay-choice experiment.

In Chapter 6, we show how to certify quantum randomness from a loophole-free Bell test data
by Bell’s theorem [2] and RSP-dimension witness [83, 84, 4, 3]. With the Clauser-Horne-
Shimony-Holt (CHSH) inequality [73] inBell’s theorem, themin-entropy of randomnumbers
can be bounded in a DI-way [82, 66, 74, 75, 76, 77, 78]. Also, from the KS theorem [85, 86]
and the dimension witness [83, 84, 4], SDI1 QRNGs have been experimentally demonstrated.
In all these DI and SDI QRNG approaches, the usage of fundamental physics inequalities
makes it possible to quantify the entropy in the raw experimental bits without knowing the
details of the experimental setup. In this chapter, we will apply both DI and SDI protocols
in the same loophole-free Bell test data [62, 3] and build a Bell test QRNG in two different
ways.

In Chapter 7, a QRNG based on a nuclear spin system is studied, including the corresponding
QRNG model. The nuclear spin states inside an NV center are well isolated from the
environment and can be operated at room temperature, and their state initialization and
control are relatively easy [90, 91]. Such a stable quantum system has been used in the
quantum computing area for years [92, 91, 93]. To our knowledge, the nuclear spin system
has not been used to generate quantum randomness, so we built a QRNG with this quantum
platform and quantified the entropy of randomness with two different dimension witness
protocols.

Chapter 8 is the conclusion and outlook of this thesis. This chapter summarizes the main
work in this thesis and points out the possible further development of each QRNG we
presented in this thesis.

1 For the SDI protocols mentioned in this thesis, the assumptions about the experimental devices are
general, which means they are not supposed to characterize the devices in detail, and they do not belong to
source-independent or measurement-device-independent protocols.
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2 Randomness from different quantum
phenomena

A basic scheme of QRNG is shown in Fig 2.1. From this figure, we know that, in order
to build a QRNG, some basic steps are involved. First, we need to identify which quantum
phenomenon can be used to guarantee the quantumness in the raw experimental data (raw
bits). After identifying the quantum phenomenon, one performs an experiment to generate
raw experimental data. Then, a mathematical model must be formulated to utilize the
quantumness in the experimental data to quantify the entropy of randomness. With this
mathematical model, the min-entropy 1 of randomness in the raw experimental data can be
quantified. At last, with the value of min-entropy in the generated raw bits, randomness
extractors must be used to extract uniformly distributed random sequences. The NIST
Statistical Test Suite can test the quality of extracted random sequences.

In principle, quantum randomness is all from the same source–the unpredictability of the
measurement results, which further comes from the collapse of a quantum superposition state.
However, as mentioned in Fig 1.6, the randomness is not always guaranteed to be from the
collapse of a quantum superposition state. In different quantum systems, the superposition
state exists in different forms and can be utilized differently. Quantum randomness generated
by such systems can be guaranteed or certified differently.

In this thesis, the term "certified" or "certification" refers to a process that utilizes quantum
phenomena to produce random numbers and thus guarantees (certifies) that these numbers
are genuinely random. In other words, the certified randomness comes from a purely
quantum phenomenon without classical analogue [66]. The certification procedure involves
specific protocols that can reveal certain quantum phenomena in the generated numbers,
thus confirm the numbers were indeed generated using a quantum process. This chapter
outlines four different quantum phenomena that can be utilized to achieve such a certification

1 This concept, along with randomness extractors and NIST Statistical Test Suite, will be explained in detail
in Chapter 3
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Figure 2.1: Basic scheme of a QRNG. A series of measurements are performed in a quantum system. The
quantum system will randomly collapse into its eigenstates (usually two), and each eigenstate
represents one raw bit (0 or 1). In the post-possessing stage, mathematical models are used
to quantify the quantumness by the quantum phenomenon revealed in the raw bits, and this
quantumenss can be used to bound the min-entropy in the raw bits. Then with the min-entropy
value, a randomness extractor is implemented to extract uniformaly distributed random sequences.

procedure and enhance the authenticity and quantum nature of generating quantum random
numbers.

2.1 Single-photon based QRNG

Due to the mature development of light sources such as laser and LED, most of the current
QRNGs are based on the photonic system. These photonic QRNGs use different quantum
superposition states to generate quantum randomness, including optical path [94], photon
arriving time [95, 96], photon distributions [97, 98] etc. Here we focus on the optical path
QRNG. This QRNG is very easy to understand, and the basic scheme is shown in Fig. 1.4.

This scheme is based on the behavior of single-photons at a beamsplitter. The beamsplitter
can be represented in Fig. 2.2. Suppose the beamsplitter is 50/50, then the operation of the
beamsplitter can be written as

|a〉 → 1√
2

(|c〉+ i |d〉) (2.1)
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a

b

c

d

Figure 2.2: Action of a beamsplitter on a single-photon. The single-photon at input “a” will be in a
superposition after it passes the beamsplitter.

The single-photon after the beamsplitter will be in a superposition state of |c〉 and |d〉. When
performing measurement to this state with two detectors in path c and d, the two detectors
both have a 50% chance to click. As shown in Fig 1.4, bit 1 is assigned to the reflected
path d, and bit 0 is assigned to transmitted path c. If a continuous stream of photons is
incident from port a, the click events in detectors c and dwill register a random sequence like
011000111110010010011100010110.... The min-entropy of this QRNG scheme depends
mainly on the beamsplitter ratio.

Obviously, the beamsplitter is the central part of this QRNG because photons will only be in
a superposition state after they pass the beamsplitter. Otherwise, the generated randomness
could come from classical noise, as shown in Fig 1.6. With a regular laser, as we mentioned
in the introduction, a user has difficulties verifying the legitimacy (including verifying the
correct alignment and excluding classical noise in the click events of detectors) of the devices.
The introducing of a single-photon source can overcome this problem.

2.1.1 Single-photon sources

Single-photons are nonclassical light, so classical light sources cannot simulate them. One of
the major motivations for studying single-photon sources is the advent of quantum computing
and quantum communication over the last few decades [99]. Since photons travel very fast
(299,792,458 m/s in the vacuum) and interact weakly with their environment, single-photons
are ideal photonic qubits for quantum computing. The information in quantum computing
can be encoded in a quantum state of the photon using degrees of freedom, including but not
limited to polarization and momentum energy. In quantum communication, most quantum
key distribution protocols [8, 41, 42] have the best performance with single-photons, as more
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than one photon can comprise the security by allowing eavesdroppers to gain information
about the key [100].

An ideal single-photon source can produce single-photons on-demand (a single-photon can
be emitted at any time defined by the user), with a probability of emitting a single-photon
being 100% and emitting multiple photons being 0%. However, achieving this ideal source
is highly challenging in the real world due to inevitable losses and nonzero multiple-photon
rates. There are two basic approaches to constructing single-photon sources [101]: One
approach is by some isolated quantum systems that only emit one photon at a time. The other
approach is by sources that emit photons in pairs, so the detection of one single-photon in
one arm heralds the existence of a single-photon in another arm. Such isolated systems often
include [102] color centers, quantum dots, single atoms, single ions, and single molecules.
We often call them deterministic single-photon sources since single-photons can be produced
with 100%probability in such isolated systems (in practice, the efficiency of photon collection
is always less than 100% because of technique imperfection). In contrast, another approach,
getting a single-photon by heralding, is called a probabilistic single-photon source since
the generation of photon pairs is unpredictable. Single-photon sources such as parametric
downconversion (PDC) in bulk crystals, waveguides, and four-wavemixing (FWM) in optical
fibers belong to probabilistic single-photon sources.

Although the isolated quantum systems are from different materials in deterministic single-
photon sources, their basic principle is very similar. When the user wants to generate a
single-photon, an external laser is used to excite the system into a higher energy state, which
will emit a single-photon when decaying to a lower energy state. This basic structure is
shown in Fig. 2.3.

Figure 2.3: Single-photon emitting system for deterministic sources. This emitting system usually has two
energy levels: one excited level and one ground level. The figure is adapted from [102].

For a probabilistic single-photon source, the basic structure is shown in Fig. 2.4.
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ω1

ω2

ω3

Figure 2.4: One common probabilistic single-photon source. This is a heralded single-photon source. By
pumping a photon with frequency ω1 into a nonlinear crystal, one photon pair with frequency ω2

and ω3 (ω1 = ω2 + ω3) will come out. The detection of one photon with frequency ω3 will herald
the existence of a single-photon with frequency ω2.

Both approaches have their advantages and drawbacks from the perspective of current technol-
ogy. Probabilistic sources often suffer from lower generation probability andmultiple-photon
pair generation. However, they are relatively easier to prepare and have been utilized in many
applications [101]. While a deterministic source is often experimentally challenging, and
they often suffer from lower indistinguishability [101]. However, with the development of
technologies, the distinguishability and stability of deterministic single-photon sources con-
tinue to increase, and they are leading closer to ideal [103, 104]. In this thesis, we will talk
more about one kind of deterministic source, which is based on the NV color center [87].
Before going into this, we first discuss how to qualify a single-photon source.

2.1.2 Antibunching of single-photons

Single-photon fidelity can be referred to as the absolute fidelity between the generated
single-photon and an ideal single-photon state |1〉k, where k defines the field mode of the
single-photon (including spatial mode, continuous-wave mode, and pulsed temporal mode).
In order to get this fidelity, quantum state tomography is needed. However, this procedure is
difficult, time-consuming, and often not used in practice.

Note that an ideal single-photon source would emit a single-photon each time with zero
probability of multiple-photon emission. The probability of detecting multiple-photon can
be characterized by the second-order coherence function g(2)(τ) [105, 106, 107], where τ
is the time delay of one photon followed by another. For an ideal single-photon source,
g(2)(0) = 0, and g(2)(τ) > g(2)(0), since after the emission of one photon, the emitter (as
shown in Fig: 2.3) must be excited again before a second photon can be emitted, and this takes
time (usually around few ns). Theoretically speaking, the two-level single-photon emitter
can never emit two photons simultaneously. In practice, dark counts of detectors, meta-stable
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energy levels within the two-level system, and external light contribute to g(2)(0), making it
larger than zero. So g(2)(0) can be used as a criterion to judge the quality of a single-photon
source. For comparison and completeness, from a laser source, the photons are emitted
independently, and we will get g(2)(τ)=1. While for a thermal light source, one often has
g(2)(τ) < g(2)(0). The g(2)(τ) function is usually measured by the Hanbury Brown-Twiss
(HBT) interferometer [108], which is shown in Fig. 2.5

Figure 2.5: Hanbury Brown–Twiss interferometer. The pulses from the single-photon counting detectors
D1 and D2 are fed into the start and stop inputs of an electronic counter/timer. The counter/timer
counts the number of pulses from each detector and records the time that elapses between the
pulses at the start and stop inputs. The figure is adapted from [109]

According to the value of g(2)(0), photon distributions can be categorized into three different
kinds [109]:

• Bunched light g(2)(0) > 1

• Coherent light g(2)(0) = 1

• Antibunched light g(2)(0) < 1

The illustration of these three different kinds of light is shown in Fig. 2.6.

Both bunched and coherent light have classical equivalents, which can be obtained in a
classical way [109]. Antibunched light has no classical counterpart, representing a purely
quantum phenomenon. This means that the light from a legitimate single-photon source
cannot be simulated classically.

The antibunching curve of single-photons from our experiment is shown in Fig. 2.7, In order
to get the antibunching curve, the setup shown in Fig. 2.5 is utilized. If the experimental
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2.1 Single-photon based QRNG

Figure 2.6: Comparison of different photon distributions. The distributions are from the antibunched,
coherent, and bunched light. The figure is adapted from [109]
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Figure 2.7: The single-photon antibunching curve. A small fraction of this antibunching curve is larger than
1. This is due to the extra meta-stable energy level inside the ideal two-level system, which will be
discussed shortly. The experimental data is from our home-built NV single-photon source.

data reveals the antibunching effect (with g(2)(0) < 1), this indicates that the clicks of the
two detectors contain a quantum phenomenon that cannot be explained classically.

2.1.3 NV single-photon source

The NV center has been experimentally singled out since 1997 [110]. Besides its properties
as a nanoscopic sensor and tool for spin-based quantum information processing, it represents
a stable single-photon source with up to a few million counts per second [87, 111, 112]. A
variety of single-photon based implementationswas realized in the defect centers of diamond,
for example, quantum cryptography [113], quantum computing [91] and other fundamental
experiments [1].

The structure of the NV defect is shown in Fig. 2.8. The NV center can exist in negative
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2 Randomness from different quantum phenomena

Figure 2.8: The structure of NV color center. The NV center is a point defect in the diamond lattice. It
consists of one nitrogen atom adjacent to one atomic vacancy. The figure is adapted from [114]

charge state NV− and neutrally charged state NV0. NV− and NV0 have different zero phonon
lines [115]. We use the NV− state to generate single-photons.

As discussed above, a deterministic single-photon source should be a two-level quantum
system with one ground level and one exciting level. Since the ground level’s excitation and
the excited level’s subsequent decay take a finite time, only one photon can be emitted at a
time [87]. The NV− state can be described as a two-level system plus a metastable energy
level in Fig. 2.9.

When the ground state |g〉 is pumped into the excited state |e〉, and |e〉 is decaying into |g〉,
a single-photon will be emitted. In the energy system of NV−, the excited state |e〉 is also
thermally coupled with a metastable state |s〉. The metastable |s〉 is referred as a “shelving”
state since the |e〉 to |g〉 emission ceases in this state. The existence of the shelving state
|s〉 decreases the single-photon emission rate and causes photon bunching in the emitted
single-photons. The photon bunching part can be observed in Fig. 2.7. This bunching part
does not affect the non-classicality of the single-photon source since g(2)(0) is still less than
1 in this case.

With this NV based single-photon source, we build a QRNG. This QRNG uses the anti-
bunching effect of single-photons to guarantee the source’s validity and the photon path’s
well alignment. Then, quantum random numbers will be generated with the fair-sampling
assumption on the beamsplitter and the detectors. The details are discussed in Chapter 4.
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|g>

|e>

|s>

Figure 2.9: Three-level system of NV− state. The ground state is |g〉, the excited state is |e〉, and |s〉 is a
metastable state.

2.2 Delayed-choice experiment based QRNG

The QRNG built on single-photon sources solves the problem of optical path misalignment
and the legitimacy of the source. Nevertheless, the randomness generation is still based on
the collapse of the superposition state after the beamsplitter. The fair-sampling assumption
is applied to the beamsplitter and the two detectors to guarantee that the random numbers
from this QRNG are from the collapse of superposition states. The fair-sampling assumption
means that the experimental data is not post-selected to repeat desired results [73, 88, 89].
In other words, we trust that the beamsplitter and single-photon detectors function correctly.

In a single-photon basedQRNG, the fair-sampling assumption is critical. It cannot be avoided
since the antibunching of single-photons cannot tell whether the antibunching curve from
the measurement results is post-selected. One basic fair-sampling strategy is explained in
Fig. 2.10. When we do not assume the fair-sampling for the beamsplitter, it is equivalent to
putting samplers after the two output paths of the beamsplitter. The samplers can block the
photons coming out from the beamsplitter and use some pre-programmed strings to simulate
the results. For example, suppose the detected events that come out of the beamsplitter are
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0

1

Sampler

Figure 2.10: Sampler behind a normal beamsplitter. The samplers can block the photons coming out from
the beamsplitter and use some pre-programmed strings to simulate the results.

0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0..., the sampler
has a pre-programmed series 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0. This series can post-select
the original series to match its sequence order at any time (in other words, the original series
can only reach the user’s detector when it matches with the pre-programmed series). For
example, the original antibunching curve is shown in Fig. 2.7. In Fig. 2.11, we use one
pseudo-random number sequence (for example, π) to post-select the measurement results,
and the new curve looks very similar to the original one.

No posteselection Postselection

Figure 2.11: The post-selected antibunching curve. The post-selected experimental data still show the
antibunching effect. This figure shows that the antibunching curve shows no statistical difference
between no post-selection and post-selection cases.

Note that the post-selection destroys the superposition states of photons before they can reach
the two detectors. In order to guarantee the quantumness in the generated random number,
the superposition of photon states before reaching the detectors must be confirmed. Next,
we illustrate how can a delayed-choice experiment give us the ability to check the status of
photon superposition states after the beamsplitter and thus lift the fair-sampling assumption.
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2.2 Delayed-choice experiment based QRNG

2.2.1 Double-slit experiment

We first introduce the double-slit experiment, which is highly relevant to the delayed-choice
experiment.

In the 17th century, there were two theories about light: one explained light as waves, with
the representative scientist being Huygens [116]; the other, from Newton, described light as
a stream of fast particles. The latter received a more general acceptance because of Newton’s
authority in natural science. However, Young’s double-slit experiment in 1801 [117] clearly
demonstrated the wave behavior of light–wave interference patterns–as shown in Fig. 2.12.
Later, with the performing of more similar experiments [118], the wave theory of light began
to gain increasing support. However, in the year of 1905, Einstein put a stop to this trend. In
his work [119], he successfully explained the photoelectric effect by assuming lights consist
of "energy quanta which move without splitting and can only be absorbed or produced as
a whole". By this time, scientists got confused about the behavior of light, and it seemed
light could be both particle and wave. Nevertheless, no one brought it up until 1924, Louis
de Broglie postulated that all particles, regardless of the mass, can behave as waves [120].
This postulation was later proven by experiments with electron and helium atoms [121, 122].
These experiments showed quantum-scale objects such as photons and electrons have wave-
particle duality, and they cannot be simply described by classical concepts “particle” or
“wave”.

Thewave-like behavior of a particle arises because, in quantummechanics, all the information
about a particle can be described by its wavefunction, and this function evolves according
to Schrödinger equation. Furthermore, the particle-like behavior of the particle is related
to measurement in quantum mechanics. The measurement performed on it will collapse its
wave function, resulting in a peaked function at some location.

Based on the wave-particle duality of particles, the double-slit experiment was successfully
performed with single-photons, electrons, atoms, and molecules [124, 125, 126]. In all the
double-slit experiments, if the which-path information of every single particle is known,
the interference pattern will not show. If the which-path information is not revealed, the
interference pattern will show. This behavior can be understood from the perspective of
quantum superposition. Take photons as an example: When photons travel through the two
slits, each photon will be split into two different paths, and then each photon will be in the
superposition state of the two paths. If which-path information is known, it means the photon
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2 Randomness from different quantum phenomena

Figure 2.12: The interference pattern from Young’s double-slit experiment. In a lecture by Young in 1802
to London’s Royal Institution, the interference pattern of his double-slit experiment was shown.
Figure is adapted from [123]

is measured before they reach the screen, and no interference pattern is shown on the screen.
In this case, it is like photons traveling through only one slit at a time, showing the photons’
particle-like character. If the photons are combined again after the two slits, the amplitude
of the two superposition paths will interfere with each other, and the density distribution of
the photons with different phase shifts will be shown on the screen, which is the wave-like
character of the photons.

To give a more quantitative picture of this, we consider an equivalent experimental setup of
the double-slit experiment–Mach-Zehnder interferometer (MZI), which was first proposed
by Zehnder in 1891 [127] and was refined by Mach in 1892 [128].

2.2.2 Mach-Zehnder interferometer

The Mach-Zehnder interferometer is a device that is used to determine the relative phase
shift of two paths. Both detectors can observe interference patterns with continuous phase
shifts in one of the arms. In Fig. 2.13, a photon enters into the BSinput, and it will be in the
superposition of path 1 and path 2. The superposition state of path 1 and path 2 will interfere
at BSoutput, and the detection probability in each detector will depend on the phase shift ϕ.
Next, we derive the relationship between the detection probability of each detector and the
phase shift ϕ.
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Figure 2.13: A schematic Mach-Zehnder interferometer.

In Fig. 2.13, port (b) is the vacuum state. Suppose the BSinput is a 50/50 beamsplitter, and
then photon incident via port (a) and have equal probability of being in port (c) or (d). This
can be written as [129]

|a〉
BSinput−−−−→ 1√

2
(|c〉+ i |d〉) (2.2)

Then photon beams in port (c) and (d) travel long path 1 and path 2, and they will be
superposed again after the BSoutput, their quantum state evolves in the following way

|c〉 BSoutput−−−−−→ 1√
2

(|e〉+ i |f〉)

|d〉 ϕ−→ eiϕ |d〉 BSoutput−−−−−→ eiϕ√
2

(i |e〉+ |f〉)
(2.3)

Considering |c〉 and |d〉 are in superposition state after BSinput, then we have

|a〉
BSinput−−−−→ 1√

2
(|c〉+ i |d〉) ϕ−→ 1√

2
(|c〉+ ieiϕ |d〉) BSoutput−−−−−→ ieiϕ/2

[
− sin

ϕ

2
|e〉+ cos

ϕ

2
|f〉
]

(2.4)
From this, we can easily calculate the probability of finding photons in ports (e) and (f)

pe = sin2 ϕ

2
=

1

2
(1− cosϕ)

pf = cos2 ϕ

2
=

1

2
(1 + cosϕ)

(2.5)

With the change of phase-shift ϕ, the detection probability will vary in ports (e) and (f), and
correspondingly this will change the count rate of each detector. In Fig: 2.14, we can see that
the interference pattern is very similar to the interference pattern in a Young-type double-slit
experiment.
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The above derivation of detection probabilities with different phase-shift ϕ is based on
normal beamsplitters, but the results are similar for polarizing beamsplitters, see appendix
for the details.

Figure 2.14: Interference pattern from a MZI setup. The interference pattern is similar to the one in a
Young-type double-slit experiment. The figure is adapted from [1]

2.2.3 Wheeler’s delayed-choice experiment

One important variant of the MZI experiment is Wheeler’s delayed-choice experiment,
which was one famous thought experiment in quantum physics. The original experiment
was proposed in 1978 [130]. The scheme of this experiment is shown in Fig. 2.15. This
experiment contains a MZI and a single-photon wave packet as input. This delayed-choice
experiment was brought up to highlight the inherently nonclassical principle behind wave-
particle duality.

In the top figure of Fig. 2.15, one single-photon wave packet is shot into a half-silvered
mirror (labeled as 1

2
S in the figure, the function is similar to a beamsplitter) from the left

side. After the 1
2
S, there are two different possible paths 2a and 2b. The single-photon can

either go exclusively along one path (particle-like nature) or exist simultaneously in both
paths (wave-like nature), depending on the status of the second 1

2
S. If the second 1

2
S is

removed from the setup, with perfect mirrors and detectors, one photon will trigger one click
in one of the two detectors. After a while, one finds both detectors fire with equal probability,
and their fire order is completely random. In this case, each photon has traveled only in one
route, as pointed out by Wheeler, "[. . . ] one counter goes off, or the other. Thus the photon
has traveled only one route” [131], and the photon shows its particle nature. In the other
case, if the second 1

2
S is placed in the position as shown in the top figure, with identical path

length (i.e., no phase-shift), only one detector (the bottom right one) will fire, the other one
will never fire. In this case, the photon wave packet traveled in both routes and interfered in
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2.2 Delayed-choice experiment based QRNG

Figure 2.15: Wheeler’s delayed-choice gedanken experiment with a single-photon in a Mach-Zehnder
interferometer. Top: The half-silvered mirror(12S) of the interferometer can be placed or
removed. Bottom left: When the half-silvered mirror is removed, the photon path will be
revealed by the click in the detectors. Bottom right: When the half-silvered mirror is placed in
the interferometer, the detection probability of each detector depends on the length difference
between the two arms. The mirrorsA andB have 100% reflectivity, and the detectors have 100%
detection efficiency. The figure is adapted from [131]

the second 1
2
S, causing constructive interference in one detector and destructive interference

in another. This demonstrates the wave-like nature of the photon. In Wheeler’s words, this
is "...evidence that each arriving light quantum has arrived from both routes” [131].

From the perspective of quantum mechanics, wave-like nature means the photon is in the
superposition state of both paths, and particle-like nature indicates that the photon is being
detected before it can interfere with itself. In other words, the second 1

2
S only decides

whether the superposition state of photon paths interferes or not and does not determine
which path the photon goes. With or without it, the photon always travels in two paths to
reach two detectors. In order to prove the validity of the quantum mechanic explanation,
Wheeler proposed a "delayed-choice" version of the experiment in Fig. 2.15, where the choice
of removing the second 1

2
S is made after the photon has passed the first 1

2
S. To illustrate how

this will cause a counter-intuitive phenomenon, Wheeler proposed a most dramatic version
of it: "delayed-choice gedanken experiment at the cosmological scale” [131]. The basic
scheme is shown in Fig. 2.16

Considering the distance between the quasar and the receptor on Earth, the choice of remov-
ing or placing the second beamsplitter is made long after the photon enters into the cosmic
interferometer (i.e., emission by the quasar). The exciting part of this delayed-choice exper-
iment is that it rules out any causal influence from the emission of a photon to the decision,
which might instruct the photon to behave as a particle or as a wave. In other words, the
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Figure 2.16: Wheeler’s delayed-choice gedanken experiment at cosmological scale. In this experiment,
Wheeler discussed what would happen if photons emitted by a quasar, which is millions of light-
years away from Earth, pass a gravitational lens (G − 1). In a classical picture, when photons
pass by the gravitational lens, each photon would have to "decide" whether to go one way around
the lensing galaxy (behave as a particle) or go both ways around the lensing galaxy (behave as a
wave). Then the photon arrives at the telescopes on Earth. Because of the gravitational lensing,
the observers will see two pictures of the same quasar from two different paths. The two paths are
observed separately in the upper right figure, and the photons behave as particles when arriving
at the gravitational lens. Then if we direct the output of the two telescopes into a beamsplitter,
one output will be very bright (indicating constructive interference), and the other output will be
essentially zero, indicating that the incoming photons are behaving as waves. This means that
photons retroactively decided to travel as waves when approaching the lens millions of years ago.
The figure is adapted from [131]

spacelike separation in the cosmological scale excludes unknown communication from this
decision to the choice of the receiver on Earth.

Because of the complexity of such an experiment at the cosmological level, the first loophole-
free version of Wheeler’s delayed choice experiment was realized in a "normal" scale by
Jacques et al. [1]. In this experiment, they used the NV color center as the single-photon
source, and the entry of the polarization interferometer and a fast (electrical optical modu-
lator) EOM were separated by a 48-m-long fiber path. Their experiment was performed in
2007, and the experiment scheme is shown in Fig. 2.17.

The importance of this experiment is that it realized Wheeler’s delayed choice experiment
with a single particle quantum state (single-photon) and relativistic spacelike separation
between the choice of interferometer configuration and the entry of the photon into the first
beamsplitter of the interferometer. The space-time diagram of this experiment is shown in
Fig. 2.18. The sequence for the measurement applied to the nth photon contains three steps.
The first step ismade by theQRNG (shown in blue), which creates a binary randomnumber (0
or 1) to determine the configuration of the interferometer. Simultaneously, when the random
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(a)

(b) (c)

Figure 2.17: Experimental realization of Wheeler’s delayed-choice experiment. Single-photons emitted
by a single NV color center are sent through a 48-m polarization interferometer, equivalent to a
time of flight of about 160 ns. A binary random number 0 or 1, generated by the QRNG, drives
the EOM voltage between V = 0 and V = Vπ within 40 ns after an electronic delay of 80 ns. The
BSoutput here comprises a half-wave plate, a BS′, an EOM, and a WP. The BS′ here is used to
introduce phase shifts in the two paths. The voltage on the EOM controls the path information:
Either no voltage is applied to the EOM, or its half-wave voltage Vπ is applied. In the first case,
the situation corresponds to the removal of the second BS (BSoutput). In the second situation, the
EOM is equivalent to a half-wave plate that rotates the input polarization by 45◦, and this means
inserting the BSoutput in the path. Figure (b) shows the interference patterns of the two detectors
when applying Vπ to the EOM, and (c) is the count rate of the two detectors when applying no
voltage to the EOM. Figures are adapted from [1].

number is created, nth photon enters the interferometer. Second step, the binary random
number generated in the first step drives the EOM voltage to V =0 or V = Vπ according to
different bit values within rise time 40 ns and electronic delay 80 ns. In this figure, bit values
for n − 1th, nth, and n + 1th photons are 1, 0, and 1. In the third step, the single-photon
was recorded by detectors D1 and D2 after its flight time τintef in the interferometer. The
detection was done during a gate of duration τd = 40 ns. The blue shaded center zone in
Fig. 2.18 represents the future light cone of the choice made by bit values. One can see that
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the photon entering the interferometer is clearly out of the future light cone associated with
the random choice between the open and closed configurations.

Figure 2.18: Timing of the delayed-choice experiment in [1]. This figure shows that the choice of whether to
open or close the interferometer was spacelike-separated from the time when the photon entered
into the interferometer. Figures are adapted from [1].

The realization of Wheeler’s delayed-choice experiment demonstrates that nature behaves in
agreement with the explanations of quantum mechanics.

2.2.4 Interference visibility

In the above delayed-choice experiment, the quantumness of the experimental data is re-
lated to the interference visibility of the interference pattern [132]. Similar to the fringe
visibility [133], the interference visibility is defined as

v =
Imax − Imin

Imax + Imin

, (2.6)
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where Imax and Imin are the maximum and minimum intensity in the interference pattern.
In a Mach-Zehnder interferometer, Imax corresponds to maximum count rate rmax in the
detectors, and Imin is the minimum count rate rmin of the detectors. so

v =
rmax − rmin

rmax + rmin

. (2.7)

The interference visibility v is related to the count rate change of the detectors, and this change
can only be caused by the interference of a quantum superposition state in the delayed choice
experiment. So nonzero interference visibility means the photon is in a superposition state
when the detectors detect it, and the knowledge of its path information is unknown [132].
When v = 1, it means photons are in pure quantum state (|path1〉+ |path2〉)/

√
2 after they

pass BSoutput. When 0 < v < 1, it means the click in the detectors are not only from the
collapse of state (|path1〉 + |path2〉)/

√
2, but also from some other sources including dark

counts and external light sources. When v = 0, it means that the photons deterministically
exist in path 1 and path 2 before they reach the detectors, and no interference happens.

2.2.5 From delayed-choice experiment to QRNG

The delayed-choice experiment can be easily turned into a QRNG. The delayed-choice
QRNG, in principle, is a randomness expansion system where a private random seed is
expanded into a long private random string. The private random seed is used to control the
removal or insertion of the second beamsplitter in Fig. 2.13. The random seed is either bit
0 or 1. When it is bit 1, the second beamsplitter is inserted, the superposition state of the
two paths will interfere, and an interference pattern will be observed in the two detectors.
When the seed is 0, the second beamsplitter is removed, and the superposition state of the
two paths will collapse into two detectors randomly and generate random numbers. The first
beamsplitter creates the superposition state, but we do not need to trust it. Suppose there are
samplers (shown in Fig. 2.10) after the first beamsplitter. In that case, the superposition state
will be destroyed before it reaches the second beamsplitter to interfere, and the interference
pattern will not be observed. So the visibility of the interference pattern is an indicator of the
quality of the superposition of the two paths after the first beamsplitter. In our work, we use
this interference visibility to quantify the quantumness of the experimental data. We connect
this quantumness to the entropy of the generated raw bits by our randomness certification
protocol in Chapter 5.
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2.3 Bell test based QRNG

The Bell test was designed to test the statement of Bell’s theorem, which is manifested
as Bell’s inequalities. The Bell test based QRNG is a device-independent QRNG. The
advantage of this QRNG is obvious: true randomness can be generated without trusting the
experimental devices since the quantum nature of the randomness in the experimental data
is guaranteed by the violation of Bell’s inequalities. This is a big difference compared to
previous QRNG schemes: the single-photon QRNG requires the trust on beamsplitter and
measurement devices, such as the detectors, and the delayed-choice QRNG puts trust in the
measurement devices, including the detectors and the EOM. Before the illustration of the
QRNG scheme, we first introduce Bell’s theorem.

2.3.1 Bell’s theorem

In 1935, Einstein, Podolsky, and Rosen (EPR) proposed a theory to point at the "inconsis-
tencies" in quantum mechanics [134]. This theory was later referred to as the EPR paradox,
which states that if one requires both realism and locality in a physical theory, it would lead
to inconsistency in quantum mechanics. In such a theory, locality means that any signal,
influence, or interaction propagates no faster than light. Realism means that one can assign
properties to quantum systems before a measurement. The EPR theory opened the possi-
bility of complementing quantum mechanics with local hidden variables (LHVs) to achieve
realism. In the EPR theory, a bipartite entangled state is prepared. In this entangled state,
if the position (or some other properties like polarization and spin directions) of the first
particle was measured, then the result of measuring the position of the second particle can
be predicted. Namely, EPR theory indicates that the properties of the entangled state are
predetermined before the measurement.

In 1964, John Bell proved that quantum physics is incompatible with LHV theories [2].
Take two entangled photons as an example, and their polarization directions are entangled.
In LHV theories, pre-existing values are the only local way to explain the perfect anti-
correlations in the outcomes of polarization measurements along identical directions. But
the pre-existing values are inconsistent with the predictions of quantum theory when the
possibility of polarization measurements along different directions is allowed.
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According to quantum theory, when polarization measurements along different directions are
performed on the pair of particles in the entangled photons, the two opposite results (one “up”
and one “down”) are not determined. Bell showed that the prediction of quantum mechanics
for specific measurement scenarios differs from the predictions of all LHV theories [2]. Then
Bell used inequalities (later referred to as Bell inequalities) to evaluate the validity of the
EPR claims and any other local hidden variable theories. If Bell inequalities are violated,
the quantum mechanic theory is correct; otherwise, the "inconsistencies" exist in quantum
mechanics.

The requirements to do an experiment to violate Bell inequalities (such an experiment is
called a Bell test) are very stringent. There are two loopholes [81] that need to be closed, the
locality loophole [135] and the detection loophole [136]. Both loopholes in a Bell test were
only closed simultaneously in less than a decade [61, 79, 80, 62].

2.3.2 CHSH inequality

The original Bell’s theorem did not clearly define the correlation function between different
measurement settings and experimental results. In 1969, Clauser et al. proposed a dif-
ferent version of inequality with a well-defined correlation function between measurement
settings and experimental results [73]. This equality is now called CHSH inequality. Sev-
eral loophole-free Bell tests [61, 62] were based on the CHSH inequality because of its
straightforward experimental scheme. The CHSH inequality was designed to guarantee that
correlation between the two particles cannot be simulated classically as long as the inequality
is violated.

In each round of the CHSH scenario Bell test, each party receives one particle from the
entangled state and performs a local measurement on it using one out of two measurement
settings. The measurements produce a binary output a for Alice and b for Bob. The choice
of the local measurement settings depends on the randomly chosen binary input x for Alice
and y for Bob.

The correlation value S of the CHSH inequality is

S =
∑
x,y

(−1)xy [P (a = b|xy)− P (a 6= b|xy)] ,
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where P (a = b|xy)) (or P (a 6= b|xy)) is the probability that output a = b (or a 6= b) when
the measurement settings (x, y) are chosen. The above correlation equation can also be
written as:

S = E(0, 0) + E(0, 1) + E(1, 0)− E(1, 1) (2.8)

where E(x, y) = P (a = b|xy) − P (a 6= b|xy). x, y have the same meaning as above. The
upper bound of this correlation function in LHV theories is 2. Let the value of the “hidden
variable” be λ, and it has a density function ρ(λ). The integral of this density function over
the entire hidden variable space is 1. With this hidden variable, we have:

E(x, y) =

∫
a(x, λ)b(y, λ)ρ(λ)dλ (2.9)

where a(x, λ) and b(y, λ) are the measurement outcomes.

Then with four different measurement settings x, x′, y, y′,the following equations can be
derived:

E(x, y)− E (x, y′)

=

∫
[a(x, λ)b(y, λ)− a(x, λ)b (y′, λ)] ρ(λ)dλ

=

∫
[a(x, λ)b(y, λ)− a(x, λ)b (y′, λ)± a(x, λ)b(y, λ)a (x′, λ) b (y′, λ)∓

a(x, λ)b(y, λ)a (x′, λ) b (y′, λ)]ρ(λ)dλ

=

∫
a(x, λ)b(y, λ) [1± a (x′, λ) b (y′, λ)] ρ(λ)dλ−∫
a(x, λ)b (y′, λ) [1± a (x′, λ) b(y, λ)] ρ(λ)dλ

By applying the triangle inequality, we have:

|E(x, y)− E (x, y′)|

≤
∣∣∣∣∫ a(x, λ)b(y, λ) [1± a (x′, λ) b (y′, λ)] ρ(λ)dλ

∣∣∣∣+∣∣∣∣∫ a(x, λ)b (y′, λ) [1± a (x′, λ) b(y, λ)] ρ(λ)dλ

∣∣∣∣
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2.3 Bell test based QRNG

Since both [1± a (x′, λ) b (y′, λ)] ρ(λ) and [1± a (x′, λ) b(y, λ)] ρ(λ) are non-negative, so
the left side equals to∫

|a(x, λ)b(y, λ)| |[1± a (x′, λ) b (y′, λ)] ρ(λ)dλ|+∫
|a(x, λ)b (y′, λ)| |[1± a (x′, λ) b(y, λ)] ρ(λ)dλ| ,

which, when considering the fact that in the CHSH inequality, the outcomes are in binary
format (in other words, |a| ≤ 1, |b| ≤ 1), is less than∫

[1± a (x′, λ) b (y′, λ)] ρ(λ)dλ+

∫
[1± a (x′, λ) b(y, λ)] ρ(λ)dλ

Considering that the integral of ρ(λ) over the complete hidden variable space is 1, that is∫
ρ(λ)dλ = 1, we will have:

|E(x, y)− E (x, y′)|

≤ 2±
[∫

a (x′, λ) b (y′, λ) ρ(λ)dλ+

∫
a (x′, λ) b(y, λ)ρ(λ)dλ

]
= 2± [E (x′, y′) + E (x′, y)]

which means
|E(x, y)− E (x, y′)| ≤ 2 + [E (x′, y′) + E (x′, y)]

|E(x, y)− E (x, y′)| ≤ 2− [E (x′, y′) + E (x′, y)]

From this, it is straightforward to get

|S| = |E(x, y)− E (x, y′) + E (x′, y′) + E (x′, y)|

≤ |E(x, y)− E (x, y′)|+ |E (x′, y′) + E (x′, y)| ≤ 2

So from the above proof, we can see that within LHV theories, the upper bound of |S| is 2,
and the CHSH inequality is:

|S| ≤ 2. (2.10)

In contrast, quantum mechanics allows the value of S to be as large as 2
√

2, known as
Tsirelson’s bound [73, 137]. Take one Bell state

|ψ〉 =
|01〉 − |10〉√

2
(2.11)
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2 Randomness from different quantum phenomena

as an example, this entangled state is composed of a pair of qubits. Alice has the first qubit,
and Bob has the second one. Alice’s two measurement observables are Pauli matrices σz
and σx, the corresponding measurement setting are x = 0 and x = 1. Similarly for Bob, for
two measurement settings y = 0 and y = 1, their observables are −σ1+σ3√

2
and σ1−σ3√

2
. From

the Born rule [57], the expectation values E(x, y) for all four different combinations have
the following values:

E(0, 0) = 〈σ3 ⊗−
σ1 + σ3√

2
〉 =

1√
2
, E(0, 1) = 〈σ3 ⊗

σ1 − σ3√
2
〉 =

1√
2
,

E(1, 0) = 〈σ1 ⊗−
σ1 + σ3√

2
〉 =

1√
2
, E(1, 1) = 〈σ1 ⊗

σ1 − σ3√
2
〉 = − 1√

2
.

Then according to Eqn. 2.8, we have |S| = 2
√

2, which violates the CHSH inequality in
Eqn. 2.10. Note that, for certain states andmeasurement settings combinations, a permutation
of the values of a and b might be necessary to allow for a violation of the CHSH inequality

The experimental scheme of the first loophole-free Bell test is shown in Fig. 2.19, and the
correlation value S of this Bell test violated the CHSH inequality, showing that nature is
behaving in a quantum mechanic way.

Figure 2.19: First loophole-free Bell test scheme. a, The bipartite Bell test scheme, two parties, Alice and
Bob, accept binary input (x, y) to do corresponding measurements and produce binary outputs
(a, b). This is done in an event-ready scenario, where an additional box between Alice and Bob
gives a binary output signaling that the photons from Alice and Bob are successfully entangled.
b, Experimental realization. The photons from Alice and Bob are generated from the NV center
in diamond. A QRNG is used to provide the input (x, y). The electronic spin state in the NV is
read out on a basis that depends on the input binary value, and the resultant signal provides the
output. A box at location C records the arrival of single-photons that were emitted by Alice and
Bob, and entangled with the spins of electrons at Alice and Bob’s location. If the photons from
Alice and Bob are successfully entangled at C, it means a bipartite entangled state between the
electron spin states in Alice and Bob’s NV center is prepared. Figures are adapted from [61].
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2.4 Dimension witness based QRNG

2.3.3 QRNG scheme

The QRNG based on Bell test was first developed in 2009 [138], then a detailed randomness
certification model and experiment were introduced and performed in 2010 [82]. Later,
several loophole-free versions of this QRNG were presented [74, 75, 76, 77, 78].

The Bell test based QRNG is mainly based on the CHSH inequality. The quantum nature of
the randomness in this QRNG is guaranteed by the violation of CHSH inequality, while the
randomness itself is still from the random collapse of the superposition state. In the Bell test
QRNG, the collapse of each entangled state involves two states at different locations. Take
the Bell state (|01〉+ |10〉)/

√
2 as an example. For this entangled state, if one measurement

is performed in the first particle, the wave function of the second particle will also collapse
simultaneously.

As long as the CHSH inequality is violated, there is quantumness in the experimental data,
and this quantumness can be used to quantify the entropy of true randomness. The entropy
can be quantified from the experimental data in different ways depending on different models.
The details of the models will be discussed in Chapter 6.

2.4 Dimension witness based QRNG

A device-independent QRNG based on Bell’s theorem has the highest security guarantee of
the generated random number but is extremely challenging from the perspective of current
technologies. On the other hand, the QRNG based on dimension witness offers a weaker
form of security but can be implemented with standard technology, and it also has a relatively
higher generation speed.

Before introducing the dimension witness, we emphasize the notations used here and in the
corresponding chapters about dimension witness. x, y and z without hat “ˆ" are just labels,
similar to any other label letters a, b, and their value depends on the context. When they
have a hat (x̂, ŷ and ẑ), they represent different Bloch vectors in the corresponding axis of
a Bloch sphere. When we want to refer to different axes in a Bloch sphere, we always use
x−axis, y−axis, z−axis in this thesis. The Pauli matrices are represented as σ1, σ2, and σ3 in
this thesis. Using this notation system, our notations in this thesis are consistent with the
ones in [83] and [4].
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2 Randomness from different quantum phenomena

2.4.1 Dimension witness

The dimension witness is designed to distinguish the quantumness in the quantum systems,
especially between classical and quantum systems. In quantum mechanics, experimental
observations are associated with their Hilbert space. The dimension of Hilbert space can
be decided by experimental data [139, 83]. This means we do not need to characterize all
the experimental devices. A general formalism was developed to estimate the dimension of
the classical and quantum system in a prepare-and-measure scenario. For the experiment
scheme shown in Fig. 2.20, the dimension of the system is 2.

Figure 2.20: Prepare-and-measure scenario. The box on the left is the state source, it sends out state ρx to
the box on the right side, which is the measurement device, and it performs measurement to the
received state according to measurement setting y. The figure is adapted from [83]

The left device prepares a state ρx, and then the right device performs a measurement on
the state. The observer tests the devices by choosing a preparation x and a measurement b,
then receiving measurement outcome b. After multiple runs of this process, the observer
obtains a probability distribution p(b|x, y). The goal of the dimension witness is to provide
a lower bound of the dimension of the states {ρx} from the distribution p(b|x, y) alone. The
dimension witness here is nonlinear, and it is based on the determinant of a matrix [83].
Considering the simplest case, where x = {0, 1, 2, 3}, y = {0, 1} and b = {0, 1}. This is a
2-dimension system, and the dimension witness for this system can be constructed as :

W2 =

∣∣∣∣∣∣ p(0, 0)− p(1, 0) p(2, 0)− p(3, 0)

p(0, 1)− p(1, 1) p(2, 1)− p(3, 1)

∣∣∣∣∣∣ (2.12)

where |.|means the determinant of this matrix, and p(x, y) in the equation is p(b = 0 | x, y).
In general p(b|x, y) can be described as:

p(b | x, y) = ρxMb|y, (2.13)
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2.4 Dimension witness based QRNG

whereMb|y represents the measurement operators. Next, we show how large canW2 be in a
classical and a quantum system.

First, consider the situation of classical systems of dimension 2. According to the choice
of preparation x, the left device sends out a classical message m = 0, 1. However, the left
device has an internal source of randomness (this internal source can be anything unknown
to the sender, including but not limited to the misalignment of the device and the shot noise.),
which is λ1, can affect the value ofm. Thus the messagem depends on both x and λ1. The
measurement device on the right side delivers an outcome b after receiving message m and
measurement y from the observer. Similarly, the imperfection of the measurement device
acts as an internal randomness source λ2, which can affect the outcome b. So in the classical
system, the probability distribution p(b|x, y) is given by

p(b | x, y) =

∫
dλ1dλ2ρ (λ1, λ2)

1∑
m=0

p (m | x, λ1) p (b | m, y, λ2) . (2.14)

Suppose the state preparation device and measurement device are independent of each other,
in other words, ρ (λ1, λ2) = ρ1 (λ1) ρ2 (λ2). Then Eqn. 2.14 can be written as:

p(b | x, y) =

∫
dλ1dλ2ρ (λ1, λ2)

1∑
m=0

p (m | x, λ1) p (b | m, y, λ2)

=
1∑

m=0

∫
dλ1ρ1 (λ1) p (m | x, λ1)

∫
dλ2ρ2 (λ2) p (b | m, y, λ2)

=
1∑

m=0

s(m | x)t(b | m, y),

(2.15)

where s(m | x) =
∫
dλ1ρ1 (λ1) p (m | x, λ1), means the distribution of possible messages

m for each state preparation x, and t(b | m, y) =
∫
dλ2ρ2 (λ2) p (b | m, y, λ2) represents the

distribution of outcomes b for measurement y when receiving message m. When choosing
b = 0 as in Eqn. 2.12, p(b | x, y) in Eqn. 2.15 can be written as p(0 | x, y) = s(0 |
x)[t(0 | 0, y)− t(0 | 1, y)] + t(0 | 1, y). Furthermore, the term p(0|x, y)− p(0|x′, y) can be
represented as

p(0|x, y)− p(0|x′, y) = Sxx′Ty (2.16)
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2 Randomness from different quantum phenomena

where Sxx′ = s(0 | x)− s(0 | x′), Ty = t(0 | 0, y)− t(0 | 1, y), and then we have

W2 =

∣∣∣∣∣∣ S01T0 S23T0

S01T1 S23T1

∣∣∣∣∣∣ = 0. (2.17)

This suggests that for any strategy involving a classical bit, the determinant of W2 is zero,
which means the dimension witness value is 0.

Next, we discuss the performance of quantum strategies for the 2-dimension system in
Fig. 2.20. This time, the source on the left side will send out state ρx = (I2 + ~sx · ~σ) /2,
and the measurement device will choose measurement operatorsM0|y =

(
cyI2 + ~Ty · ~σ

)
/2,

where ~sx and ~Ty are Bloch vectors, and |cy| ≤ 1. Then we have

p(x, y)− p (x′, y) = Tr
[
(ρx − ρx′)M0|y

]
= (~sx − ~sx′) /2 · ~Ty. (2.18)

Set (~sx − ~sx′) /2 = ~Sxx′ , then we get

W2 =

∣∣∣∣∣∣
~S01 · ~T0

~S23 · ~T0

~S01 · ~T1
~S23 · ~T1

∣∣∣∣∣∣ =
(
~S01 × ~S23

)
·
(
~T0 × ~T1

)
≤ 1. (2.19)

The final inequality results from
∣∣∣~S01 × ~S23

∣∣∣ ≤ 1 and
∣∣∣~T0 × ~T1

∣∣∣ ≤ 1. This bound for qubit
strategies is tight and can be reached. For example the four preparation states can be chosen
from ~s0 = −~s1 = ẑ, ~s2 = −~s3 = x̂, where ~x and ~z are the unit Bloch vector. The Bloch
vectors for the twomeasurement settings can be ~T0 = cos θẑ+sin θx̂ and ~T1 = sin θẑ−cos θx̂,
where θ can be any value because of the rotational invariance of the cross product in the
plane.

The above proof shows that only the qubit strategy can achieve |W2| > 0. So, when we
get |W2| > 0, it suggests that the data involves the quantum measurement of a qubit. The
definition of dimension witness in Eqn. 2.12 is also robust against noise. When there
are effects of technical imperfections, including background noise and limited detection
efficiency, a qubit strategy given by the data pQ(x, y) will achieve |W2| = Q > 0. Suppose
an error occurs with probability 1− η, for instance, one event is not detected, or some noise
pN(x, y) = pN(y)2 being detected, then we have p(x, y) = ηpQ(x, y) + (1 − η)pN(y), and
the observed dimension witness isW2 = η2Q, which is always positive when Q > 0. That

2 The noise is independent of the choice of preparation x.
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2.4 Dimension witness based QRNG

is to say, for an arbitrary amount of background noise or low detection efficiency, a qubit
strategy will outperform any classical bit strategy.

In conclusion, the dimension witness defined in Eqn. 2.12 can demonstrate the advantages of
using qubits in experimental systems, regardless of the imperfections of the devices. Since
for any quantum strategies, we can achieve |W2| > 0. For classical bits, only W2 = 0 can
be obtained. Note that there are two important preconditions of this dimension witness.
The first is the independence between the state preparation device and the measurement
device. Since if they are correlated with the classical bit strategy, one can reachW2 = 1. For
example, considering the equal mixture of the following deterministic strategies: s(0|x) = 1

iff x = 0, 3, and t(0|m, y) = m + y mod 2, (ii) s(0|x) = 1 iff x = 0, 2, and t(0|m, y) = m.
It is easy to verify that with this strategy,W2 = 1 can be achieved. The second precondition
is the limitation of the dimension. TheW2 is only valid for two dimension system. In higher
dimension, with one classical trit,W2 = 1 is also obtainable [83].

2.4.2 Randomness certified by dimension witness

The dimension witness introduced above can be used to certify quantum randomness since
it can distinguish between classical and quantum systems. The randomness certified by
dimension witness does not rely on a detailed model of the experimental devices, and this
is relevant to real-world implementations. For example, it is well adapted to a scenario of
trusted but error-prone device providers, i.e., a random number generator that is not actively
designed to fool the user but where the implementation may be imperfect. The basic idea of
this QRNG is to utilize the value of dimensionwitnesses, such asW2 defined above [4]. When
the value of W2 is larger than zero, it means there is incompatible quantum measurement
involved in the experiment results, and by Born’s rule, this means true quantum randomness
is generated. This true randomness can be directly quantified by the value of W2 with a
proper protocol, which is robust against other source of randomness, such as fluctuations
from technical imperfections.

In Chapter 6 and 7, we discuss how to use the dimension witness defined by Eqn. 2.12 in
different experimental schemes to certify true randomness. Especially in Chapter 6, we
applied the dimension witness QRNG scheme for the first time to the Bell test data. We
defined a remote state preparation dimension witness protocol that can certify randomness
from Bell test data even when the CHSH inequality is not violated.
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The previous chapter explains the quantum phenomena used to generate random numbers
in this thesis. When the raw random bits are generated, an important aspect to consider
is how to quantify the entropy of randomness in the data. In this chapter, we illustrate
how to quantify the entropy of randomness with min-entropy and how to extract uniformly
distributed random sequences with the help of randomness extractors. After this, different
test units in the NIST Statistical Test Suite are briefly introduced to show how this test suite
qualifies for the structure of random sequences.

3.1 Min-entropy

Because of the deterministic nature of PRNGs, the PRNGs can be designed so that the
random numbers from PRNGs are in a uniform distribution, and they can be put into use
directly after their generation. In contrast, the random numbers from quantum processes
cannot be guaranteed to be uniformly distributed because the true randomness contained
in them cannot be easily tuned. For example, for the random numbers from radioactive
decay, the random sequence is not uniform [27], and for photonic QRNGs built with biased
beamsplitters. Besides, the randomness generated from quantum processes usually suffers
from classical noises, including dark counts, thermal effects, and misalignments of the setup.
All those classical noises do not contribute to quantum randomness. Thus, it is challenging to
generate pure, uniformly distributed quantum randomness from a QRNG in practice. More
often, the raw bits for a QRNG will be like

11101101010010001111111011111011010110100011010111

10011011110111110011111110011111110111100111011101
(3.1)

This sequence has more ones than zeros. However, a uniformly distributed sequence is
usually preferred in the application of random sequences. A randomness extractor is needed
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3 Methods and tools

to convert a biased random sequence to a uniformly distributed string. Randomness extractors
are functions that can extract almost-uniform bits from raw and biased bits. The general
structure of randomness extractors is shown in Fig. 3.1.

Figure 3.1: The structure of a seeded randomness extractor. Together with a short, uniformly distributed
seed, the randomness extractor canmake a weak, biased random source into a uniformly distributed
strong random sequence. For strong randomness extractors, the initial seed is independent of the
output and can be re-used, as shown in the figure. The figure is adapted from [140]

Mathematically, randomness extractor is defined as [141]

Ext : {0, 1}n → {0, 1}m, (3.2)

where {0, 1}n is the raw binary random bits with length n, and {0, 1}m is a uniformly
distributed binary random string. The extractors are originally designed to simulate random
algorithmswithweak classical sources. In recent years, extractors have hadmore applications
in quantum cryptography and quantum randomness. More details of the randomness extractor
are discussed in the next section.

In order to use randomness extractors, we need to know the entropy contains in the raw
random bits from the experimental process. As mentioned in previous sections, entropy was
first introduced by Shannon into information theory [21], where the entropy of a random
variable is defined as the average unknown information inherent to the variable’s possible
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3.1 Min-entropy

outcomes. Shannon defined the entropy H (Greek letter eta) of a discrete random variable
X with possible values {x1, · · · , xn} as:

H(X) = −
n∑
i=1

pi log2 pi (3.3)

where pi is the probability of xi appearing in the random variable X .

In quantum random numbers, another entropy term–min-entropy–is often used instead of
Shannon entropy. Min-entropy and Shannon entropy both belong to a general term called
Rényi entropy. Rényi entropy is defined as [142]:

Hα(X) =
1

1− α
log

(
n∑
i=1

pαi

)
(3.4)

where α ≥ 0 and α 6= 1 is the order of the entropy. It is easy to verify that when α → 1,
Eqn. 3.4 converges into Eqn. 3.3, which is exactly the definition of Shannon entropy. In the
limit α→∞, Eqn. 3.4 converges to the definition of min-entropy H∞ (or Hmin):

H∞ = − log2 max pi. (3.5)

Comparedwith Shannon entropy, themin-entropy ismore conservative. As shown in Fig. 3.2.
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Figure 3.2: The comparison of Shannon entropy and min-entropy. The min-entropy is always not greater
than the Shannon entropy

This figure shows that for a randomsequence, itsmin-entropy is never greater than its Shannon
entropy. The name “min”-entropy comes from the fact that it is the most conservative way
to measure the information content of a discrete random variable in the family of Rényi
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entropies. For the biased sequence in Eqn. 3.1, it has 100 bits and its min-entropy per bit is
0.53 bits, so the total min-entropy of this sequence is about 53 bits, which means it contains
the same amount of randomness as the following uniformly distributed 53 bits sequence

01100011111001001001110001011010110101100000001111010

The min-entropy of the sequence in Eqn. 3.1 is calculated directly from the sequence: The
value max pi = p1 = 0.69 because it has 69 ones. While for the raw bits from a QRNG,
the max pi should not be obtained from the raw bits, it must be estimated from quantumness
in the raw bits to guarantee the generation of true randomness. The quantumness can be
quantified differently in different quantum phenomena, which is discussed in Chapter 2.

The max pi in a QRNG is also known as guessing probability pguess, which represents the
probability of correctly guessing the most probable value in one experiment run. The larger
pguess, the less random the source is, and the less min-entropy is there. In a QRNG, min-
entropy is usually called conditional min-entropy. The word “conditional” comes from the
fact that the pguess is derived by conditioned on all the prior knowledge that someone has
over the experimental device. This someone is often called an eavesdropper. The prior
knowledge includes all the physical signals that can interact with the trust process. LetX be
the random value from trusted physical processes and E be the prior knowledge known by
the eavesdropper, and the conditional min-entropy can be defined as:

H∞(X|E) = − log2 max p(X|E) (3.6)

where max p(X|E) = pguess, which represents, with prior knowledge, the best chance the
eavesdropper can correctly guess the next outcome value of the QRNG.

One of the main tasks in quantum random number generation is to build a model to estimate
the conditional min-entropy for the corresponding QRNGs. The construction of the model
depends on the level of trust of the QRNG device. Different trust levels assume different prior
knowledge about the experimental devices. With a given level of trust, the QRNG model
aims to maximize the conditional min-entropy in the generation process of the QRNG.

When the model is built and justified, the quantum randomness contained in the raw experi-
mental data can be extracted with the help of randomness extractors.
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3.2 Randomness extractor

3.2 Randomness extractor

There are different kinds of extractors [143, 144], and we now briefly introduce them. The
first one is called deterministic extractors (assuming the distribution of the source is known).
It is defined as

Definition 1 Let C be a class of sources on {0, 1}n. An ∆-extractor for C is a function Ext :
{0, 1}n → {0, 1}m such that for every X ∈ C,Ext(X) is " ∆-close" to Um,

where {0, 1}n can be treated as the raw bits with length n, andm is the length of the extracted
random sequence. ∆ can be understood as the error of the extractors, which represent the
statistical distance between the output sequence {0, 1}m and a perfectly uniformly distributed
sequence Um. Mathematically, statistical distance ∆ is defined as

Definition 2 For random variablesX and Y from U , their statistical difference (also known
as variation distance) is ∆(X, Y ) = maxT⊂U |Pr[X ∈ T ] − Pr[Y ∈ T ]|. We say that X
and Y are ∆-close if ∆(X, Y ) ≤ ∆.

The deterministic extractors defined above are not applicable for unpredictable random
sources, such as the raw bits from QRNGs, since the distribution of the raw bits is unknown.
Even if the distribution of the raw bits is known, it will not be the same when the QRNG
generates another sequence of raw bits. Thus, it is very inefficient if a randomness extractor
has to be built for each run of the QRNG. For QRNGs, we need seeded extractors which can
be used for indeterministic random sources. The definition of a seed randomness extractor
is as follows:

Definition 3 A function Ext: {0, 1}n× {0, 1}d → {0, 1}m is a (k,∆)-extractor if for every
k-source X on {0, 1}n, Ext (X,Ud) is ∆-close to Um.

{0, 1}d is a uniformly distributed random sequence with length d. It serves as the seed in the
seeded extractors. The k-source X is defined as

Definition 4 A random variable X is a k-source if H∞(X) ≥ k, i.e., if Pr[X = x] ≤ 2−k.
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It is evident that the value k here is the min-entropy of the random variable (or random
sequence) X , and k ≥ m. This means the length of extracted bits m is smaller than the
min-entropy k of the raw bits, and their difference is decided by the hashing error ∆ of the
extractors. The upper bound of ∆ can be calculated by k andm [145]:

∆ ≤ 1

2

√
2m−k. (3.7)

This equation means that the distance between {0, 1}m and Um is at most 1
2

√
2m−k.

There is one kind of seeded extractor called strong extractor. It is defined as

Definition 5 Extractor Ext: {0, 1}n× {0, 1}d → {0, 1}m is a strong (k,∆)-extractor if
for every k-source X on {0, 1}n, (Ud,Ext (X,Ud)) is ∆-close to (Ud, Um). Equivalently,
Ext′(x, y) = (y,Ext(x, y)) is a standard (k,∆)-extractor.

From this definition, we know that the random seed Ud in this extractor can also be used
in the final uniformly distributed random sequence, which is shown in Fig. 3.1. Also, the
extracted random sequence can be used as seeds for further randomness extraction for a strong
randomness extractor. In this thesis, the extractors we used later are all strong extractors.

3.2.1 Toeplitz-hashing extractor

Two important strong randomness extractors can be used to extract a uniformly distributed
random sequence from the experimental raw bits. These two extractors are Trevisan’s
extractor [146] and Toeplitz-hashing extractor [145, 147]. Trevisan’s extractor has many
theoretical advantages, including being secure against quantum adversaries and the seed
length being polylogarithmic in the length of the input raw bits. However, the implementation
of this extractor is more complex, and the output speed is much lower compared to Toeplitz-
hashing extractor [147].

The Toeplitz-hashing extractor is specially designed universal hashing function — the
Toeplitz hashing function, which is based on Toeplitz matrices [148]. There are two kinds
of Toeplitz matrices: square and non-square. Let the square Toeplitz matrix be Tn, and the
non-square one be Tn,m, then their definition is
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Definition 6 A square Toeplitz matrix Tn = [tk,j; k, j = 0, 1, . . . , n− 1] where tk,j = tk−j ,
i.e., a matrix of the form

Tn =



t0 t−1 t−2 · · · t−(n−1)

t1 t0 t−1

t2 t1 t0
...

... . . .

tn−1 · · · t0



A non-square Toeplitz matrix Tn,m = [tk,j; k = 0, 1, . . . , n− 1; j = 0, 1, . . . ,m− 1] where
tk,j = tk−j , i.e., a matrix of the form

Tn,m =



t0 t−1 t−2 · · · t−(m−1)

t1 t0 t−1

t2 t1 t0
...

... . . .

tn−1 · · · t0



The above definition of the Toeplitz matrix shows that this matrix requires only the specifica-
tion of the first row and the first column. The other elements are determined by descending
diagonally from left to right. For the randomness extraction, a Tn,m Toeplitz matrix is usually
needed. Thus, the construction of the Toeplitz matrix needs a seed with n+m− 1 random
bits, where n is decided by the length of the input raw bits andm is the total extractable en-
tropy of randomness in the raw bits. The value ofm can be calculated by a min-entropy value
k in the corresponding QRNG model and a given error bound ∆ (usually ∆ = 0.001) for the
Toeplitz-hashing extractor. According to Eqn. 3.7, when we choose m = k − 2 log2

1
2∆

, the
distance between {0, 1}m and Um is at most ∆.

In general, with a given hashing error ∆, the implementation procedure of the Toeplitz
hashing extractor is as follows:

• Suppose the size of the raw bits is n, the min-entropy of these raw bits is k and set the
length of the output sequencem as k − 2 log2

1
2∆

.
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3 Methods and tools

• Prepare a random seed with n + m− 1 bits, and use it to construct the Tn,m Toeplitz
matrix.

• Multiply the raw bits (1 × n) by the Toeplitz matrix (n × m) to obtain a uniformly
distributed random sequence ofm bits, {0, 1}m, which has a distance of at most ∆ to
Um.

3.3 NIST Statistical Test Suite

Here we briefly introduce each test in the NIST [149] Statistical Test Suite. For the details of
each test standard, please refer to [59, 149]. The NIST test suite is developed by NIST [150]
to look at various aspects of a long random sequence. This test suite is a very important tool
for understanding the structure of randomness. It has documented 15 statistical tests, and
each statistical test is formulated to test a specific null hypothesis. The null hypothesis under
each test is that the sequence being tested is random. The counterpart of this null hypothesis
is called the alternative hypothesis, which states that the sequence is not random. For each
applied test, a decision or conclusion is made to either accept or reject the null hypothesis.

For each statistical test included in the Test Suite, an appropriate randomness statistic must
be selected and used to determine the acceptance or rejection of the null hypothesis. As-
suming randomness, such a statistic has a distribution of possible values. Corresponding
mathematical methods determine a theoretical reference distribution of this statistic under
the null hypothesis. From this reference distribution, a critical value is derived. During a
test, a test statistic value is calculated on the sequence being tested. This test statistic value
is then compared to the critical value. If the test statistic value exceeds the critical value, the
null hypothesis for randomness is rejected. Otherwise, the null hypothesis is not rejected. A
P -value is usually used to summarize the strength of the evidence against the null hypothesis.

For all tests included in the NIST test suite, each P -value is the probability that a perfect
random number generator produces a random sequence that is less random than the tested
sequence. In other words, the larger theP -value, themore randomness in the tested sequence.
To get a threshold to judge whether the test sequence is random or not under each test, a
significance level α is usually chosen. If P -value≥ α, the null hypothesis is accepted (the
tested sequence is random). Otherwise, the null hypothesis is rejected. The value of α is
usually 0.01, which indicates that one would expect one sequence in 100 sequences to be
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3.3 NIST Statistical Test Suite

rejected. A P -value≥ 0.01 suggests that the sequence would be considered random with a
confidence level of 99%, while a P -value< 0.01 means that the conclusion that the sequence
is non-random has a confidence level of 99%.

The NIST Statistical Test Suite has 15 tests that were developed to test the distribution of
given binary sequences. These 15 tests are:

(1) The Frequency (Mono-bit) Test,

(2) Frequency Test within a Block,

(3) The Runs Test,

(4) Tests for the Longest-Run-of-Ones in a Block,

(5) The Binary Matrix Rank Test,

(6) The Discrete Fourier Transform (Spectral) Test,

(7) The Non-overlapping Template Matching Test,

(8) The Overlapping Template Matching Test,

(9) Maurer’s “Universal Statistica” Test,

(10) The Linear Complexity Test,

(11) The Serial Test,

(12) The Approximate Entropy Test,

(13) The Cumulative Sums (Cusums) Test,

(14) The Random Excursions Test,

(15) The Random Excursions Variant Test.

Frombroad theoretical considerations, the 15 tests above can be classified into four categories,
namely Frequency Tests of ones and zeros (tests: 1 – 4), Tests for Repetitive Patterns (tests:
5 and 6), Tests for Pattern Matching (tests: 7 – 12) and Tests based on Random Walk (tests
13 – 15). Next, a high-level description of each particular test is presented.
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3 Methods and tools

(1) Mono-bit Frequency Test. This frequency test aims to test if the frequencies of ones
and zeros across the entire sequence are close to 1

2
. If they are not equal to each other, it is

intended to see if their difference falls in a tolerant error bound.

(2) Frequency Test within a Block. In the mono-bit frequency test alone, one can only
test whether 0 and 1 appear with the same frequency. Their distribution is not taken into
consideration. This test is intended to ensure that frequencies of 1s and 0s are evenly
distributed across the entire sequence, so sequences like 10101010...101010 would not pass
the test.

(3) Runs Test. A run is an uninterrupted sequence of identical bits. In other words, a run of
length k consists of exactly k identical bits, which are bounded by bits of opposite values.
For example, 1100111001 has five runs. This test intends to see whether the number of runs
of 1s and 0s of various lengths is as expected for a random sequence.

(4) Longest Run Test of 1s in a Block. The purpose of this test is to see if the frequencies of
the longest run of 1s (or 0s) of various lengths appearing in the sequence are consistent with
the length of the longest run of 1s that would be expected in a random sequence.

(5) Binary Matrix Rank Test. This test is intended to see if the tested sequence has repetitive
patterns across its entire sequence. The tested sequence is sequentially divided into several
disjoint blocks to see the linear dependence among its fixed length sub-sequence of each
block. Each block is represented by a matrix ofM rows and Q columns. Usually, bothM
and Q are taken as 32.

(6) Discrete Fourier Transform (Spectral) Test. This test checks if the tested sequence has
periodic features across its entire sequence that indicate a deviation from the assumption of
randomness. Considering randomness, one can find a peak height threshold value (T ). If
less than 5% of the peak heights are more than T , the tested sequence can be considered
random.

(7) Non-overlapping Template Matching Test. This test aims to detect template matching in
a non-overlapping manner, i.e., it looks for occurrences of pre-specified bit-sequence and to
see if the numbers of such occurrences are within the statistical range of a sequence under
the assumption of randomness.

(8)Overlapping TemplateMatching Test. Through this test, one can detect templatematching
in an overlapping manner, i.e., it looks for occurrences of pre-specified bit-sequence and
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3.3 NIST Statistical Test Suite

to see if the number of such occurrences is against a sequence under the assumption of
randomness. Both this test and the previous non-overlapping Template Matching test using
anm-bit window to search for a specificm-bit pattern. The difference between this test and
the previous test is that: When the m-bit pattern is located, the window slides only one bit
here, while in the previous test, the window is reset to the bit after the found pattern (in other
words, the window slidesm-bit).

(9)Maurer’s “Universal Statistical” Test . This test aims to detect whether or not the tested
sequence can be significantly compressed without loss of information. A random sequence is
not compressible, and a significantly compressible sequence is considered to be a non-random
sequence.

(10) Linear Complexity Test. The linear complexity test looks for the length of the Linear
Feedback Shift Register (LFSR) and determines if the bit sequence from which the LFSR
is obtained is random or not. The Berlekamp-Massey Algorithm is used here to obtain the
LFSR. If the LFSR is long, the original bit sequence is considered random.

(11) Serial Test. If a sequence is random, then everym-bit pattern has the same probability
of appearing as every otherm-bit pattern. The serial test counts the frequency of all possible
overlapping m-bit patterns across the entire sequence. One can see if the sequence can be
termed as random or not based on the deviations of each of all the counts together,

(12) Approximate Entropy Test. This test is a test of randomness based on repeating patterns.
The larger the entropy, the more randomness in the tested sequence. For the tested sequence,
the approximate entropy is measured by comparing the frequency of overlapping patterns of
all possible m-bit patterns with that of m + 1-bit patterns. If the approximated entropy is
smaller than a threshold value, the tested sequence is considered non-random.

(13) Cumulative Sums Test. In this test, the bits (bi) in the tested sequence are converted
to Xi (−1 or +1) using Xi = 2bi − 1, and the cumulative sum Si is a series of sum of the
converted values Xi: S1 = X1, S2 = X1 + X2, ..., Sn =

∑i=n
i=1 Xi. This test determines

whether the cumulative sum of the partial sequences Si in the tested sequence deviates from
the expected behavior of such a cumulative sum for random sequences. This cumulative
sum can be considered a random walk. For uniformly distributed random sequences, the
excursions of the random walk are near zero.
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(14) Random Excursions Test. The Random Excursions Test checks whether the num-
ber of cycles with exactly k visits to a given state in a cumulative sum random walk
deviates from what is expected in a random sequence. For example, for a cumulative
sum S = {0,−1, 0, 1, 0, 1, 2, 1, 2, 1, 1, 0}, there are three cycles:{0,−1, 0}, {0, 1, 0}, and
{0, 1, 2, 1, 2, 1, 1, 0}. This test examines if the number of visits k(= 0, 1, ..., 5) to a partic-
ular state in one cycle deviates from the visit in a random sequence. The state here means
the value in each cycle, like −1 in the cycle {0,−1, 0}. Continuing with the example, when
k = 0 (means no visit), the “no visits” to state −1 among all three cycles is 2 since −1 does
not appear in two cycles. Similarly, when k = 1 (means visit only once), the “one visit” to
state −1 is 1 since −1 only appears once in all three cycles.

(15) Random Excursions Variant Test. This test looks for the total amount of visits to a
particular state in cumulative sums of a random walk across the entire bit sequence. It
detects the deviations from the expected number of visits in the random walk of a random
sequence. The difference between this test and the previous test is that the number of visits
in this test is directly counted in the given cumulative sum without considering the cycles.
Take the same cumulative sum S = {0,−1, 0, 1, 0, 1, 2, 1, 2, 1, 1, 0} as an example, the total
number of visits to state −1 is 1, to state 1 is 5, and to state 2 is 2.
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4 Randomness from a single-photon source
based on NV center

A variety of QRNGs have been implemented at the beginning of this century based on
the measurement of photonic qubits [151, 94]. Later, with the increasing demand for
speed and the implementation of coherent states, several generators have been implemented
using light sources other than single-photons. These generators often measure the vacuum
fluctuations [152, 153, 154] or phase noise [155, 156]. Here we propose a photonic QRNG
based on aNV single-photon source and use the antibunching characteristic of single-photons
to strengthen the randomness in the experimental data. The basic principle is discussed in
Chapter 2. This chapter focuses on the experimental setup, model construction, and data
analysis of our proposed photonic QRNG. More details of this work can be found in our
publication [157].

4.1 Experimental setup

The basic scheme of the experiment is shown in Fig. 4.1(a). A fiber guides a stream of
single-photons toward a beamsplitter. This beamsplitter’s second input arm is blocked,
commonly described as a vacuum state (|0〉). Therefore, the single-photons are distributed
on the beamsplitter according to the beamsplitter ratio. The photons are detected on the
detector A (transmitted photons) and detector B (reflected photons). This setup has been
operated for seven days in continuous operation.

In the experiment, the NV-based single-photon source is optically excited by a continuous
wave laser, and the resulting fluorescence is detected by confocal microscopy (as shown in
Fig. 4.1a). The experiment is operated under an ambient condition and spans less than 1 m2

of an optical table.
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Figure 4.1: Experimental Configuration. a, The scheme of the single-photon random number generator.
A confocal microscope is used to locate a single NV center. A single-photon is measured with
two avalanche photodiodes (APDs). DC: Dichroic Mirror; F: Long-pass Filter. b, Fluorescence
counts of a lateral scan over the diamond sample. Peak intensity is about 100 kcps (kilo counts
per second). c, Measurement of antibunching and a theoretical fit (dashed line in the figure), the
timing resolution here is 0.5 ns. d, A long time recording of the raw bits, the exact time is 608125
seconds. e, The raw data is biased due to the unbalanced beamsplitter in the setup. The figures are
adapted from our publication [157].

The laser ( with wavelength λ=532 nm), which is used to excite the single emitter inside
the NV center, is operated in a continuous wave mode. To avoid laser power fluctuations,
the intensity is stabilized by a commercial PID controller (Stanford Research, SIM960).
For this, the laser power is measured shortly before the diamond single-photon source. An
acoustic-optical modulator regulates the laser power at the laser output.

After the laser beam is reflected off a dichroic mirror, it is guided to a galvanometric
mirror system, and then the laser beam is steered into a 4f -scanning microscope. The
focus is realized by a 100× oil objective (Olympus Plan FL N, NA=1.35). In the confocal
configuration, the emitted single-photons are captured by the same microscope objective,
guided backward, and transmits through the dichroic mirror toward the detection system.
To suppress the stray light, the detected light is then focused (f=100 mm) onto a pinhole
(∅=50 µm) and filtered by a 640 nm long pass filter. The detected light is then transferred by
2f -2f imaging through a symmetric non-polarizing beamsplitter towards two single-photon
detectors (Count, Laser Components). This configuration reduces the avalanche photodiode
(APD) cross-talk significantly.
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4.1 Experimental setup

The sample is a mm-sized diamond that hosts nitrogen-vacancy centers at natural abundance.
For high excitation and collection efficiency of the NV center, a solid-immersion lens was
fabricated around an earlier confocally localized center [112]. The NV centers and the solid-
immersion lenses are identified by confocal beam scanning. The scanning beamwas used not
only to locate the NV centers but is repeatedly (∆t=8 min.) medially and laterally scanned
across a certain area during the experiment. After which, the NV center is re-centered, and
the measurement is continued. This compensates for the sample’s drift during the experiment
run. One of the lateral images is shown in Fig. 4.1b.

All detection events in the two APDs are recorded on an FPGA-based time tagger (Swabian
Instruments, Timetagger 20). The time resolution of the time-tagger is 100 ps. Each click
event is recorded in a 128 Bit binary format (64-bit, which detector has clicked, and 64-
bit with the time in ps). In the 7 days experimental time (608125 seconds, including the
refocusing periods), we recorded 832 GiB raw bits, and the average count rate is about
91.7 kcps. The experimental time without refocusing is approximately 558,000 s, and the
average count rate, in this case, is around 100 kcps. The total 832 GiB raw bits set are split
into 179 files, which are analyzed below.

To prove the single-photon nature of the emitted photon stream, the antibunching effect of
the photons is analyzed with a HBT configuration in Fig. 4.1a (see also Fig. 2.5). This is
performed by correlating the recorded time stamps of the two APDs in a start-multiple-stop
fashion [158]. The corresponding antibunching curve is shown in Fig. 4.1e. It shows an
antibunching “dip” below the value of g(2)(0)=0.5, which proves the single-photon nature
of the source. The timing resolution τrs for the start-stop event is 500 ps. The bunching
behavior in the curve is due to the NV centers’ typical meta-stable state between the two
level states, as shown in Fig. 2.9.

During the experiment run, the whole setup was covered with blackout material without
human interaction. A measurement of the count rates is shown in Fig. 4.1d. In the course
of the raw bits recording, some fluctuations are observed. These are caused mainly by the
thermal drift of the table, which affects the position of the pinhole and both APDs.
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4 Randomness from a single-photon source based on NV center

4.2 Bound the entropy in the raw bits

The outcomes from two discrete single-photon detectors in different output modes of a
beamsplitter are interpreted as single raw bits. These bits then go into the randomness
extraction process. To extract randomness, we first need models to quantify the entropy
in the raw bits. We introduce three models to quantify the entropy in the raw bits from
single-photons.

4.2.1 Randomness generation from raw bits

In the first model, we simply consider all click events in the APDs as raw random bits.
The probability of the individual outcome and the transition probabilities are relevant. Our
interpretation here in the first model is not limited to using a single-photon input state.

The probability of whether a photon is reflected or transmitted in a beamspliter is linked
to the vacuum state at the second input port of the beamsplitter. Further, the probability
also depends on a variety of experimental factors. Most importantly, the beamsplitter ratio
R is a function of the reflection (R) and transmission (T ) coefficient. Our model assumes
a loss-less beamsplitter, i.e., T + R = 1. Although a biased beamsplitter introduces an
imbalance in the raw bits, it does not introduce any memory in the experimental setup.

Another crucial parameter is the detector efficiency of the utilized detectors, η{A,B}. This
value describes how many incident photons lead to an electrical pulse that can then be
recorded. The detector efficiency of each detector is closely linked to the beamsplitter ratio
in a given experimental implementation. An electrical pulse from a single-photon detector
has a finite length, so it can be recorded with normal detection hardware. After one electrical
pulse is generated from the detector, a second detection event is usually suppressed. This
suppression time is called the “dead-time”, τdead, of the detector. In the common Geiger
mode photodetector modules, the time when no second photon is detected usually exceeds
the length of the electrical pulse.

The technicality of the detector’s dead times also introduces another problem for generating
raw random bits: two subsequent clicks from two detectors can be correlated since one of
the detectors is in its dead time, and only the second detector is capable of detecting another
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4.2 Bound the entropy in the raw bits

incoming photon. This is not the focus of our work; for a detailed study of this situation,
please refer to [158].

With given beamsplitter ratio and detector dead time, the total count rate of the two detectors
is rtotal = rA + rB. It amounts to the following expression,

rA = ηATIin −
(ηATIin)2

∫ τA
dead

0
g(2)(τ)dτ

4
,

rB = ηBRIin −
(ηBRIin)2

∫ τB
dead

0
g(2)(τ)dτ

4
,

(4.1)

where ηA,BTIin is the click rate of the detector when there is no dead-time and g(2)(τ) is the
antibunching curve [159] of the utilized single-photon source.

This equation represents the click rates of the two detectors independently of the input source.
At the same incident photon flux, a single-photon source has a higher probability of a later
detection event than a laser with the same brightness since a laser source obeys an exponential
decaying probability distribution in the subsequent detection of a photon. This is related to
the detector’s dead time and the count rates, as outlined in more detail in [158].

The detection rates for the two detectors have been determined by considering the beamsplitter
ratio, the detection efficiency, and the dead time. The probabilities for calculating the min-
entropy below can be experimentally determined straightforwardly by the ratio of the detector
events:

pA =
rA

rA + rB

(4.2)

The details of pA and rA can be found in the appendix. The conditional probabilities are
calculated as follows. As an example, we only show the derivation for the case of the
conditional detection of p(A|A):

p(A|A) =
(
1−

∫ τA
dead

0

g(2)(τ)dτ
)
ηAT (4.3)

This conditional probability is affected by the combination of the detector efficiencies and
the beamsplitter ratio.
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4 Randomness from a single-photon source based on NV center

In this model, the entropy in the raw bits relates to the bias and other technical considerations,
such as the detector efficiency and the dead time of the detectors. The calculated and
conditional probabilities are utilized to calculate the conditional min-entropy.

The conditional min-entropy is used in post-processing the raw random bits. The definition
of the conditional min-entropy, H∞ is given as [160]1:

H∞(X|Y ) = −log2

(∑
y

p(y) max
x
{p(x|y)}

)
, (4.4)

wherex and y are two subsequent events in the raw randombits. In our case, {X, Y } ∈ {0, 1},
subsequently the conditional min-entropy is

H∞(X|Y ) = − log2

(∑
y

p(y) max
x
{p(x|y)}

)
= − log2(p(0) max{p(0|0), p(1|0)}+ p(1) max{p(0|1), p(1|1)})

(4.5)

After the min-entropy of the raw bits is quantified, uniformly distributed random sequences
can be extracted by randomness extractors. More specifically, the value ofH∞(X|Y ) can be
quantified using the relevant probabilities derived from the experimental parameters; see the
appendix for details. Suppose H∞(X|Y ) = k, since the generation speed of the raw bits is
rtotal, then the generation speed of the uniformly distributed random bits amounts to krtotal.

4.2.2 Randomness generation from single-photon events

The above model can also be applied to a random number generator with a simple laser
or even a light-emitting diode (LED) input source. However, using a laser has drawbacks:
When a coherent state |α〉 is present, the user has no clue if the device really detects the
incoming (laser) mode. As shown in Fig. 1.6, the two beams imping from a laser via the
beamsplitter onto the detectors are unrelated in several ways. They cannot tell if two different
laser sources (or two independent laser modes) are observed with different detectors. In

1 Note that the definition of conditional min-entropy here is equivalent to the definition in Eqn. 3.6. In
this case, we suppose the previous event y is known (belongs to the knowledge of E), then we derive the
guessing probability of the current event x
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the worst case, an eavesdropper can remotely control the detector clicks, and due to their
uncorrelated origin, the device owner has no proof of their origin or integrity.

A single-photon source is advantageous at this point and can enhance the trust in the random
bit generation scheme. An auto-correlation function can be recorded to prove the existence
of a single-photon emitter. For a single-photon source, this shows the typical single-photon
antibunching, which allows us to characterize the non-classicality of the source, and it also
gives an upper bound on the amount of (uncorrelated) counts, which an eavesdropper might
control. The advantage of a true single-photon source is that it allows a user to exclude
several attack scenarios and to guarantee the independence of an external adversary of the
device to a certain extent.

Antibunching is commonly described by the auto-correlation function g(2)(τ), and it cannot
be interpreted by classical theory [159]. All the spurious background contributions intro-
duced are uncorrelated events that can be known to an external adversary, and they will
change the antibunching curve of a single-photon emitter and increase the value of g(2)(0).

The term true single-photons denotes all the photons detected by the detectors and stem
from the device-internal single-photon source. Usually, the non-ideal measurement devices
reduce this fraction from 100%. This fraction can be determined by the g(2)(0) value as√

1− g(2)(0) [111]. This allows us to estimate the “quantumness” of the single-photon
stream.

When g(2)(0) ≥ 1, all the raw experimental data will be discarded. In this case, the source
for the random number generator is no longer based on the device’s internal single-photon
source [159, 161]. The random number generation process is likely to be externally affected
and, in the worst case, completely controlled by an eavesdropper. When 0 ≤ g(2)(0) < 1,
there is “quantumness” involved in the click events, and we can bind this “quantumness” to
the amount of randomness generation (under fair-sampling assumption).

In order to quantify the entropy in the raw bits, the calculation of the guessing probabilities
is needed. For this, we refer to the discussion above. Considering background events
implies that a few raw bits are known to an eavesdropper. Therefore it is not clear if the
genuine device generated them or if they were intentionally introduced in an uncorrelated
manner. This fraction is accounted for by introducing a probability pe, which means that the
eavesdropper knows the value of the raw bits in this fraction.
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4 Randomness from a single-photon source based on NV center

We now calculate the min-entropy of the stream with the unwanted background fraction.
This requires that our model be extended with a third possible outcome associated with an
eavesdropper or classical background light. The click events are represented as A, B, and
the events known to an eavesdropper are represented as E. The fraction pe of E reduces
the overall amount of entropy of the random number generator. The fraction of pure single-
photon events is

√
1− g(2)

fit (0). Then pe can be calculated as: pe = 1−
√

1− g(2)
fit (0).

Now, the min-entropy can be calculated with the following equation:

H∞(X|Y )

= −log2

(
pe + (1− pe)

(∑
y

p(y) max
x
{p(x|y)}

))
.

(4.6)

Compared to the above Eqn. (4.5), the extractable entropy given by the Eqn. (4.6) is reduced.
However, this equation can quantify the random bits generated by single-photon events,
meaning they originate from the generator’s genuine source. SupposeH∞(X|Y ) = kq, then
with an n bits long raw random bits, kqn true random bits can be generated. The generation
speed of true randomness corresponds to kqrtotal.

4.2.3 Conditioned tuple detection of detector clicks

In the above model, we assume that the recording of the antibunching curve describes the
whole data stream, even if a single-photon was detected with no further closely neighboring
detection events. This means that the photons not contributing to the small time window
of the antibunching dip (approx. 1-30 ns, corresponding to the T1-time of the system) are
considered to be single-photons from a legitimate source. Ideally, a normalized antibunching
curve is below unity, but in practice, because of the thermal fluctuations and some other
imperfections of the experimental devices, the antibunching exceeds the value of unity. To
further guarantee the quantumness in the random bits, we now only consider the clicks in
a time window below the line of unity in the antibunching curve. This implies a time-wise
selection of events with a “partner-photon” temporally close by. In other words, only the
tuples of photon detection events are considered. In the area below the antibunching curve,
we take the tuple event “AB” as one random bit and “BA” as the other random bit (we are
dealing with binary random bits, so we only have two random bits: 0 or 1.).
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Tuple events are often described as “start-stop events” on two single-photon detectors behind
a beamsplitter. In principle, tuple events “AB” and “BA” are balanced since their detection
probabilities are equal p(AB) = p(BA), as long as the experimental parameters do not
change in the course of the experiment. By considering the tuple events only, the detection
rate of the raw randomness events reduces drastically since only start-stop events in a limited
time range are valid. These events are anti-correlated but are still above the background noise
level in the g(2)(τ)-recording.

Ideally, a normalized antibunching curve of an ideal two-level system single-photon source
exists only below unity. This implies that the raw events all fulfill the non-classical nature of
g(2)(τ) < 1. In a real-world experiment, some parameters of the experimental devices may
have fluctuations. These may be introduced as shot noise. To guarantee the quantum nature
of the utilized single-photon source, in this situation, we consider the data below unity with
a given standard deviation, for example, 11.5σ, which significantly limits the probability of
an outlier.

An external adversary now has limited options to influence the device based on the strategy
of tuple detection: Any uncorrelated event that is controlled by an external eavesdropper will
lead to an increased background fraction. Therefore, an external eavesdropper would have
to implement more sophisticated strategies to launch clicks in the generator. For example,
when the primary process launches a click, i.e., an emitted photon from the single-photon
source, the eavesdropper has to launch a click onto the other detector of the generator within
the dead time of the first detector. This requires a stringent timing of the clicks launched
by the eavesdropper. First, the eavesdropper has to detect that there has been a click in the
generator, and then she has to introduce another click into the generator within a very short
legitimate time. This requires that the eavesdropper be very close to the generator due to the
signal traveling time. In this sense, based on short time differences (ns) in subsequent clicks
in the generator, the generated bits are “fresh” and guaranteed to be unaltered for a short
time.

Another, more sophisticated attack version from the eavesdropper can be to fake the clicks
on both detectors as if this eavesdropper had another single-photon source at her location.
Then, the number of clicks outside the small nanosecond range of the primary source is
large. Depending on the relative brightness compared to the primary source, this will lead
to a certain amount of background clicks again. The eavesdropper’s only option is to fully
suppress the primary emission of the single-photon source and replay an equivalent detector
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4 Randomness from a single-photon source based on NV center

control scheme which would introduce a comparable antibunching signal. But a simple
control of the primary photon source can reveal that an external adversary is active.

To calculate the probabilities to bound the min-entropy, the tuple event probabilities p(AB)

and p(BA) are considered. Furthermore, the conditional probabilities (e.g. p(AB|AB)) have
to be described. For a full derivation, see the appendix.

In this model, only paired events and the area below unit line (i.e. g(2)
fit (τ) <= 1) are

considered. This area is shown as green in Fig. 4.2. This unit line is the classical limit [159,
161, 109]. This area determines the fraction of single-photon quantum randomness from
the raw data in a very conservative way. To estimate this fraction, the click rates of the raw
events are required. For the convenience of description, this area is named the “quantum
area” in the following.

-40 20 0 20 40
0.0

0.2

0.4

0.6

0.8

1.0

1.2

± 21.1 ns

Random
bits

Background

time delay (ns)

au
to

-c
or

re
la

tio
n 

/ g
(2

) (τ
)

0.11

Figure 4.2: Antibunching as a measure for quantumness. The antibunching effect of single-photons is
only observed in a small time window. In our third randomness extraction model, the area of the
generated bits between the classical bound of g(2)(τ) ≤ 1.0 and above the background level are
considered. This reduces the number of raw input bits for the generator dramatically. The figures
are from our publication [157].

The quantum randomness fraction can be derived by considering the tuple events for a given
timing resolution τrs. The tuple event rate rstsp of the two detectors and uncorrelated events
(e.g. laser emission) is given for a certain time resolution τrs as:

rstsp = rA × rB × τrs .
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4.2 Bound the entropy in the raw bits

In the “quantum area”, at different delay times, the tuple events within a given timing
resolution τrs correspond to different g(2)(τ) values. This means they obey different proba-
bilities [109]. The experimental antibunching curve is represented as g(2)

fit (τ). Then, the total
photon tuple event rate in this quantum area is given by

rA × rB ×
τ=t∑
τ=−t

τrsg
(2)
fit (τ) ≈ rA × rB ×

∫ t

−t
g

(2)
fit (τ)dτ ,

where t satisfies g(2)
fit (t) = 1, which means that the whole range is considered until the events

are not anti-correlated anymore. g(2)
fit (τ) is the antibunching curve with background noise,

which means the above equation also contains the start-stop events caused (partially) by
uncorrelated background noise. We use the fraction

√
1− g(2)

fit (0) to discard the background
noise in the clicks of each detector. Then the tuple events originating from single-photon
events can be calculated as

rstsp = (1− g(2)
fit (0))× rA × rB ×

∫ t

−t
g

(2)
fit (τ)dτ . (4.7)

The count rate in this area is the generation speed of single-photon events, which are short-
time related. Therefore, the generation speed of the true randomness in this part is linked
to the tuple events as rrand = rstsp. Increasing the excitation laser power will increase the
single photon generation speed, but it does not always lead to a higher randomness output
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Figure 4.3: Randomness output speed with different laser powers. a) Saturation curve of the utilized NV
center. Note that the non-trivial behavior at higher laser powers indicates that the NV center can not
be considered a simple three-level system; it hasmore complex energy levels. Themaximumoutput
speed of the randomness generation (from the third model) is green. This curve forms because the
antibunching curve gets narrower with increasing laser power. This implies that although more
raw bits are generated per second, the overall area below the curve is reduced. The cross × in
the green curve is the input laser power of our experimental data. b) The antibunching curve at
the maximum output randomness output speed of the randomness generator. The bottom at τ=0
amounts to g(2)(0) = 0.15. The figures are adapted from our publication [157].
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4 Randomness from a single-photon source based on NV center

speed. The reason is that the green area will reduce due to the antibunching curve getting
narrower with higher laser power. The relationship between the randomness output speed
and laser power is shown in Fig. 4.3.

The above equation can determine the fraction of extractable quantumness per raw bit.

Note that the quantum random bits generated in this area are supposed to be well-balanced,
and the fraction of true randomness per raw bit is rrand/rtotal. This fraction is affected by
the shape of the antibunching curve and g(2)

fit (0). An extreme case is when there are no
single-photon events, such as when g(2)

fit (0) is unity. In this case, no quantum randomness is
generated.

Since the fraction of true randomness per raw bit is rrand/rtotal, the remaining 1−rrand/rtotal

bits are considered as classical noise, which is known by Eve. Correspondingly, pc =

1 − rrand/rtotal, is the fraction of classical noise in per raw random bit. The conditional
min-entropy can then be written as:

H∞(X|Y) = −log2

(
pc + (1− pc)

(∑
y

p(y) max
x
{p(x|y)}

))
. (4.8)

4.3 Experiment results analysis

In 7-day experimental run, we acquired 832 GiB data, corresponding to 55,796,707,904 raw
bits. Then the number of zeros is 21,753,096,536 bits, and the number of ones is
34,043,611,368 bits. The integrated imbalance of the beamsplitter ratio amounts to probabil-
ity p(1)=0.6101, p(0)=0.3899, which are indicated in Fig. 4.1e. This bias in the beamsplitter
will largely decrease the usability of the generated random bits. We must post-process the
raw randomness bits to get a uniformly distributed random sequence. As mentioned in
Chapter 3, conditional min-entropy and randomness extractors are needed for this process.

In our first model, the conditional min-entropyH∞(X|Y ) is calculated by Eqn. (4.5), which
gives us a conservative bound of the true randomness per raw bit. When considering the 11.5σ
error bound, H∞(X|Y ) is 0.5559 bits, which means 0.5559 bits secured random number
can be extracted per raw bit. With Toeplitz hashing extractor mentioned in Chapter 3, a
uniformly distributed random sequence with 3.10 × 1010 bits can be extracted. Taking the
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4.3 Experiment results analysis

refocusing periods into account, the output speed of pure quantum random bits is 5.10× 104

bits per second.

By limiting the generated raw random data to single-photon events in the second model, we
can guarantee independence of the random data from an uncorrelated background. Using
Eqn. (4.6), with 11.5σ error bound, the extractable quantum randomness per raw bit amounts
to 0.5168 bits. The total quantum random bits are 2.88 × 1010 bits for the whole raw bits.
The random number output speed amounts to 4.74× 104 bits per second when including the
refocusing periods.

The difference between these two models indicates that some classical noise backgrounds
might have been considered random events in the first model.

Next, we calculate the amount of quantum random bits from the third model.

The excitation power affects the fluorescence counts and the shape of antibunching curves.
Subsequently, Rrand depends on the excitation power of the single quantum emitter. As
shown in Fig. 4.3a, the green curve is the quantum randomness output speed; it depends on
different excitation powers. The curve has an optimal excitation power. This is because, with
increased excitation power, the count rate of different detectors increases while the shape of
the antibunching curves becomes narrower. Thus the green part in Fig. 4.2 would become
smaller. At the given excitation intensity of 26µW, the green part covers a time range of
t =21.1 ns. When the excitation power changes, the start-stop event count rate will increase
and decrease later. Thus, the quantum random bits output speed has an optimal operating
point. This rate matches the single-photon emitter’s saturation point for a simple three-level
system.

Following Eqn. (4.8), with a very strict 11.5σ error bound, we compute the certifiable
quantum randomness per raw bit as 3.746 × 10−4. With this value for the Toeplitz hashing
extractor, about 2.09×107 bits uniformly distributed random sequence can be extracted, and
the random number generation speed is about 34.37 bits per second.

The NIST Statistical Test Suite results of all three models are shown in Fig. 4.4. The figure
shows that the randomness quantified by different models all pass the test with a given
significance level α = 0.01. But their security is different from the above description.
Although NIST test results cannot determine the privacy of the random sequence, they still
provide a good measure of the extracted random sequence’s mathematical structure. If the
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4 Randomness from a single-photon source based on NV center

randomness sequence from the randomness extractor passes the NIST test, then the sequence
is ready to use.

Figure 4.4: The NIST test results for raw bits and extracted bits with three models mentioned above.
In all sub-figures, p values less than 0.001 are omitted. Figure a shows the NIST test results for
one raw bits file (out of 179 files). The total bit length is about 298 Gbits. The raw bits clearly
cannot pass the NIST test, even if it contains quantum randomness. Figure b to d shows the
NIST test results for the extracted random bits based on three different models mentioned in this
chapter. Although they all pass the test, they have different security levels, which depend on how
the randomness is quantified in the corresponding models.

4.4 Conclusion

In conclusion, we have theoretically described and experimentally demonstrated a random
bit generator based on a single-photon source. The single-photon source is based on a single
defect NV center in a diamond. The generator is operated continuously over one week, and
all detector events are recorded as time tags to be conveniently post-processed.

In the first model, the detection of raw random bits, which are associated with the two
output ports of the beamsplitter, resulted in a raw-bit stream, and an entropy analysis for
the raw random bitstream was presented. However, this model has some subtleties since
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4.4 Conclusion

the single-photon detection process is prone to technical effects such as the beamsplitter
ratio, electrical dead times, and jitter. In a further analysis, the second model estimates the
amount of unwanted and potentially untrusted background events by the antibunching effect
of single-photons. In the third method, only tuple detection events are considered raw bits.
The limitation is further reduced to auto-correlation values below unity and excluded from
the uncorrelated background to guarantee the quantum nature of the source.

In the second and third models, the quantum input state only certifies the “quantumness”
of the utilized light source. While the “decision”, the experimental outcome is still based
on the fair-sampling assumption of the beamsplitter. This fair-sampling assumption can be
lifted in multiple ways, shown in the subsequent chapters.
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5 Randomness from a delayed-choice
experiment

The antibunching effect of single-photons can be used to guarantee the authenticity of the
light source and detect misalignment. However, the randomness still comes from the so-
called fair-sampling assumption of the beamsplitter. In Chapter 2, we introduced the delayed
choice experiment to eliminate the fair-sampling assumption. In this chapter, we illustrate
our QRNGmodel to show how quantum randomness can be certified by wave-particle duality
from the raw experimental data in the delayed-choice experiment performed by Jacques et
al. [1].

5.1 Randomness certification protocol

For simplicity, the equivalent experiment scheme of the delayed-choice experiment in [1] is
shown in Fig. 5.1.
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M
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Figure 5.1: Simplified experimental scheme for the delayed choice experiment in [1]. The Piezo in the
upper path is a discrete piezoelectric stack that can introduce a phase change for the two paths.
FC: fiber coupler; M: mirror. The Piezo and PBS2 are acting as the BS′ in Fig. 2.17.

In order to quantify the entropy of quantum randomness in the raw data from this delayed-
choice QRNG, the “quantumness” in the data must be quantified first. As mentioned in
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5 Randomness from a delayed-choice experiment

Chapter 2, the quantumness in the raw bits can be quantified by the interference visibilities
of the interference patterns in the two detectors. This is because the interference only happens
when the photon is in a superposition state of the two paths after it comes out from PBS1.

The entropy of the randomness per raw bit is defined again by the conditional min-entropy
H∞(X|E), whereX means the value of the raw bits, and E represents all the knowledge of
the device known by the eavesdropper. H∞(X|E) is defined as

H∞(X|E) = − log2 pguess (5.1)

where pguess is the maximum guessing probability of the events. Next, we need to establish
the connection between pguess and the interference visibility.

There are two detectors, D1 and D2, in our delayed-choice QRNG. The interference visibility
of the two detectors is the same if the count rates in the two detectors are equal to each other.
We consider a more general situation where the count rates of the two detectors are not equal.
This situation is shown in Fig. 5.2. In this figure, the blue and green lines represent the count
rates of the two detectors when no voltage is applied to the EOM. They are n1 and n2, and we
assume n1 ≥ n2. When the voltage is applied to the EOM, the interference patterns in each
detector will be shown as dashed lines. From optical interference theory [162], we know that

Cdiff = nmax
1 − nmin

1 = nmax
2 − nmin

2 ,

n1 = (nmax
1 + nmin

1 )/2,

n2 = (nmax
2 + nmin

2 )/2

(5.2)

According to Eqn. 2.7, the interference visibility for D1 is v1 = Cdiff

2n1
, and for D2 is

v2 = Cdiff

2n2
. Both v1 and v2 are important in our protocol. Next, we show how to get the

guessing probability of the raw bits with the given interference visibility v1 and v2.

Similar to previous chapters, we use the worst-case scenario to estimate the guessing proba-
bility. Suppose the density matrix of the state from the source is ρ,

ρ = z |ψ〉 〈ψ|+ (1− z)I2

2
, (5.3)

where |ψ〉 = α |H〉 + β |V 〉, and I2, which represents a mix state, is a unity matrix in a
2-dimensional Hilbert space. When the photon passes the PBS1, it has probability αα∗ to be
transmitted and ββ∗ to be reflected. The mixed state part I2 represents all the untrustworthy
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Figure 5.2: Different count rates of the two detectors in a MZI. When the photons from two paths are
interfering, the count rates in the two detectors changes and the interference patterns are shown.
Although the count rates of the two detectors are not the same, they can still interfere, and the relative
count rates differences of the two detectors are the same, whichmeansnmax

1 −nmin
1 = nmax

2 −nmin
2 .

parts of the detector events, including but not limited to the dark counts, the external sources,
and the misalignment of the devices. The guessing probability of |ψ〉 in which path is αα∗

(assuming |α| ≥ |β| ), and of mixed state I2 is 1. Combining the two parts, the total guessing
probability is

pguess = zαα∗ + (1− z) (5.4)

Whether the count rates in the two detectors are equal or not, each detector can get the
incoming photons from two possible sources. One source is from the collapse of the
pure state |ψ〉, and the other source is the mixed state I2. Among all the possible source
combinations, the following situation can maximize the guessing probability with given
interference visibilities v1 and v2: All photon events in D1 are the transmitted photons from
state |ψ〉, and all the I2 and reflected photons of |ψ〉 only click at D2. Then, we have the
following equations

zαα∗ =
n1

n1 + n2

zββ∗ + (1− z) =
n2

n1 + n2

(5.5)
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Considering αα∗ + ββ∗ = 1, v1 = Cdiff

2n1
, and v2 = Cdiff

2n2
, we get the solution

α =
1√

1 + v1

,

β =
v1√

1 + v1

,

z =
v2(1 + v2

1)

v1 + v2

(5.6)

Then with Eqn. 5.4, the guessing probability is derived as

pguess = 1− v1v2

v1 + v2

v1 (5.7)

The lower bound of this guessing probability is 0.5. This bound can only be reached when
the photons after the PBS1 can be described by a pure quantum state (|H〉+ |V 〉)/

√
2, which

results in v1 = v2 = 1. In this case, with the absence of voltage on the EOM, photons will hit
the two detectors randomly, and random numbers with guessing probability 0.5 are generated.
When 0 < v1,2 < 1, the photons are not in the pure state (|H〉+ |V 〉)/

√
2, and quantumness

is partially involved in the measurement. In one extreme case, the visibility v1 and v2 can be
0. This means that after the photons pass the PBS1, they are not in superposition states, so
the interference is not happening. And the guessing probability is 1 in this situation, which
means no quantum randomness is generated since the click events in the two detectors are
potentially controlled by the eavesdroppers.

According to Eqn. 5.1 and Eqn. 5.7, the relationship between the two interference visibilities
and the min-entropy per raw bit is shown in Fig. 5.3.

If there is a sampler behind PBS1, the photons will hit the sampler, the superposition state
will collapse, and there will be no interference pattern in D1 and D2 when voltage is applied
to the EOM. In other words, if the interference pattern is detected, it means the photon arrives
at detectors D1 and D2 as a superposition state, and it interferes with itself. In the delayed-
choice QRNG, the decision of applying or no-applying voltage to the EOM is unknown by
PBS1, which means if the interference pattern is observed in this QRNG, the randomness
generation is free from fair-sampling assumption.
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Figure 5.3: The relationship between v1,2 and the min-entropy per raw bit. We assume v1 ≤ v2 here. As
v1 and v2 increase, the entropy per raw bit also rises.

5.2 Confidence level analysis

As a standard process, the relationship between the confidence level of the model and the
interference visibility should be analyzed due to the finite size of experimental data. From
the Eqn. 5.1 and Eqn. 5.7, we have

H∞(X|E) = f(vt). (5.8)

where

f(v1, v2) = − log2 pguess

= − log2(1− v1v2

v1 + v2

v1)

= − log2(1− vt)

(5.9)

where vt = v1v2

v1+v2
v1.

Define the confidence level as 1− δ, and the error bound of vt as εt. Then the min-entropy
per raw bit with confidence level 1− δ is

H∞(X|E) = f(vt − εt). (5.10)
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When considering all the events n, the total min-entropy of the experimental data is
H∞(R|E) = nH∞(X|E) = nf(vt − εt). Next, we derive the relationship between 1 − δ
and εt. Similar to previous chapters, their relationship can be derived from Hoeffding’s
inequality [163]. For single event, vt can be defined as vti

vti =
v1iv2i

v1i + v2i

v1i (5.11)

Since the interference visibility of each event is only decided by the superposition status of
the incoming photon, vti can be treated as independent of each other. Since 0 ≤ v1, v2 ≤ 1,
so 0 ≤ vti ≤ 0.5. Then according to Hoeffding’s inequality [163], we have

δ = exp
(
−8nε2t

)
≥ Pr [|vt − vtr | ≥ εt] (5.12)

where vtr means the expected value from the experimental setup. This equation means that
the vtr can be lower than vt up to error εt with small probability δ. Then the entropy of
randomness can be quantified with confidence level 1− δ.

5.3 Result analysis

In this section, we apply our delayed-choice QRNG model to the delayed-choice experiment
performed by Jacques et al. [1] to show how randomness can be bounded in this experiment.

The interference visibility of detector D1 and D2 in the experiment is reported as v1 = v2 =

0.94. Then we have vt = 0.4418. This vt value is obtained from n = 2, 600 photons.
With 99% confidence level, we have vtr = 0.4269. According to Eqn. 5.9, the min-entropy
of per raw bit is H∞(X|E) = 0.8031. When no voltage Vπ is applied to the EOM, the
setup generates quantum randomness. The total photon count rate is about 1,400 counts per
second, so the randomness output speed is around 1,124 bits per second.

5.4 Conclusion

In this chapter, we connect the counter-intuitive phenomenon of a delayed-choice experi-
ment with quantum randomness generation. We demonstrate how to build a QRNG from
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the delayed-choice experiment, and a QRNG protocol based on interference visibility is
introduced to certify quantum randomness from the raw bits.

Compared with the single-photon QRNG mentioned in Chapter 4, the entropy of the ran-
domness can not only be quantified without classical noise but also without fair-sampling
assumption in the beamsplitter. We then apply our model to the delayed-choice experiment
in [1]. The interference visibility reported in this paper is 0.94, and with a 99% confidence
level, the min-entropy per raw bit is 0.8031, and the random number output speed is 1124
bits per second.
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6 Randomness from a loophole-free Bell
test

In this chapter, we show how to build a quantum random number generator from a loophole-
free Bell test [62], in both DI and SDI approaches. For the DI approach, we use the earlier
analysis from [82] to quantify the entropy in the data. We introduce a RSP dimension witness
for the SDI approach. This allows us to get a higher bound of min-entropy per event. The
two schemes are compared in Fig 6.1.

Bell Test

Input bitx y

Alice Bob

Output bita b

S
Event:

{x,y,a,b}

Randomness Extraction
Device Independent

Semi-Device Independent

• Bell's theorem
• minimal assumptions
• ideal certification

• RSP-dimension witness
• extended assumptions
• more randomness

Figure 6.1: Two different ways to bound the quantum randomness in a Bell test. A Bell test involves two
physically separated experimental systems, with two given input bits x, y, to generate two binary
outcomes a, b. The Bell correlation value S allows a DI scenario to bound the min-entropy of
the randomness; another SDI scenario is to extract randomness when RSP-dimension witness is
utilized. The figure is adapted from [3]

The QRNG based on the Bell test is a collaboration work between the group of Prof. Harald
Weinfurter (LudwigMaximilian University ofMunich) and Prof. JörgWrachtrup (University
of Stuttgart). The Ludwig Maximilian University of Munich performed the Bell test, and
their work is summarized in [62]. The University of Stuttgart analyzed the experimental
data and built models to quantify the entropy of randomness in the raw data, and this work
is summarized in [3].
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6.1 Experimental setup

The bipartite loophole-free Bell test performed here [62] is to test Bell’s theorem in the form
of the CHSH inequality [73]. The detailed description of their experimental setup can be
found at [62], but for the sake of consistency and clarity within this chapter, we rephrase it
in this section.

In this experiment, Alice and Bob each operate an atom trap for a single rubidium atom. The
two traps, separated by 398 m, are independently operated, comprising their laser system
and control electronics. The atomic qubits are encoded in the mF = ±1 Zeeman sub-level
of the 5S 1

2
, F = 1 ground state, with |↑〉z corresponding tomF = +1, |↓〉z corresponding to

mF = −1.

To create the entangled atom-photon pairs, each atom is excited to the 5P 3
2
, F ′ = 0,mF = 0

state via a short laser pulse. The subsequent spontaneous emission yields a photon whose
polarization is entangled with the atomic qubit state. Both photons are then coupled into
single-mode fibers and guided to a Bell state measurement (BSM) setup. Two-photon inter-
ference on a fiber BS and photon polarization analysis is employed to project the photons on
two of the four Bell states. The photonic measurement heralds the creation of one of the en-
tangled atom state |Ψ±〉 = 1/

√
2 (|↑〉x |↓〉x ± |↓〉x |↑〉x), where |↑〉x = (1/

√
2) (|↑〉z + |↓〉z)

and |↓〉x = (i/
√

2) (|↑〉z − |↓〉z).

After an entangled pair is created between the two sides (Alice and Bob), they start a fast
atomic state measurement process based on state-selective ionization and subsequent detec-
tion of the ionization fragments. The measurement setting is determined by the polarization
of a laser pulse exciting the atom before ionization. Each party employs a QRNG outputting
freshly generated random bits on demand to decide the choice of the setting. The total time
needed from the generation of the input pair x or y to receiving the output pair a or b is less
than 1.1 µs, together with a separation of the atom traps of 398 m. This enables space-like
separation of the measurements [81]. In total, 55,568 rounds were recorded, 27,885 with the
|Ψ+〉 prepared and 27683 with the |Ψ−〉. The experimental setup is shown in Fig. 6.2

The Bell state measurement is performed on two photons from Alice’s and Bob’s sides,
and high visibility of the two-photon interference of the photons is necessary. This is
ensured by precise adjustment and synchronization of the excitation laser pulse and other
experimental parameters. The combined photon collection and detection efficiency for
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(a)

(b)

(c)

χro

Figure 6.2: Experimental scheme of our loophole-free Bell test. (a) Simplified scheme of atom-photon
entanglement generation: rubidium atoms in the 5S 1

2
, F = 1,mF = 0 state are optically excited

to 5P 3
2
, F ′ = 0,mF = 0. The subsequent spontaneous decay results in the entangled atom-photon

state |ΨAP 〉 = 1√
2

(|L〉 |↓〉z + |R〉 |↑〉z). (b) State selective ionization scheme: depending on the
polarization χro of the read-out laser pulse a selected superposition of the mF = ±1, Zeeman
ground states is excited to the 5P 1

2
, F ′ = 1 a level that is ionized by a second laser pulse. During

this process, the excited state can decay to the F = 1 and F = 2 ground levels before ionization
(gray arrows). The population in F = 2 is excited by a third laser pulse to 5P 3

2
, F ′ = 3 from

which it is ionized, while the decay to F = 1 reduces the fidelity of the measurement process. (c)
Sketch of the experimental setup: The two devices, A and B, independent apparatuses for trapping
single atoms, are separated by 398m. Entanglement between the two single atoms is created by
first entangling each atom with a photon that is then coupled into single-mode fiber and guided
to a photonic BSM setup. There, the two photons are overlapped on a fiber beam splitter, and
subsequent polarization analysis of the photons projects the atoms in an entangled state. The two-
photon detection is analyzed with a field programmable gate array (FPGA) that sends a heralding
signal to each device in case of a successful entanglement generation. This signal triggers quantum
random number generators to generate input bits, determining polarization of the read-out laser
pulse χro in the atomic state measurement. The measurement results, registered by the channel
electron multipliers, are recorded together with the input bits in local storage devices. The figure
is adapted from [62].

device A is ηA ≈ 1.6 · 10−3 and for device B is ηB ≈ 0.8 · 10−3. These two efficiencies lead
to a total success probability 6.4 · 10−7 to create atom-atom entanglement. With an effective
excitation repetition rate of≈ 50 kHz, an average rate of 1 to 2 of entangled atom-atom pairs
per minute is achieved during the experiment [62].

In case of the successful creation of entanglement, a signal is sent to each device, triggering the
measurements on the atomic qubits. These measurements are based on fast state-selective
ionization and subsequent detection of the ionization fragments. A read-out laser pulse
excites, depending on its polarization χro, a certain superposition of the qubit states |B〉 to
the 5P 1

2
level, which is ionized with a second laser pulse (Fig. (6.2) (b)). The ionization

fragments are detected with two-channel electron multipliers[164], yielding the results +1
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6 Randomness from a loophole-free Bell test

(detection of at least one fragment) or -1 (no detection). This fast and highly efficient atomic
state measurement yields a result within 1.1µs, including the choice of the measurement
setting with fidelity of 0.97 [62]. To ensure the independence of the measurement settings,
the read-out polarizations are chosen locally by quantum random number generators. This,
in combination with the fast atomic state measurement and a distance of 398m between the
devices, allows for space-like separation of the measurements and thus ensures independence
of the local measurements.

6.2 DI randomness

The quantum randomness generation can be connected to the violation of Bell inequali-
ties [165, 82]. The violation of Bell inequalities guarantees that the measurement results
are not pre-determined and must be from the entangled system, which possesses intrinsic
randomness. For the loophole-free best test, the Bell inequalities are violated in a DI manner,
which means the experimental device is not trusted, and the violation is only calculated by
the measurement results. This implies that the randomness generated from loophole-free
bell tests is also DI randomness.

Although the randomness certified by Bell’s theorem can be device independent, some
additional assumptions are still needed to bound the randomness in this model [82]: (1)
the remote parties perform local, and independent measurements on their ideally space-like
separated (=perfectly shielded) devices; (2) themeasurement settings (x,y) are not determined
beforehand and are unpredictably chosen; (3) the measurement process is described by
quantum mechanics. In a loophole-free Bell test, assumption (1), which is required for a
loophole-free Bell test, is fulfilled. Assumption (2) means that the i− th input xi and yi are
revealed to the experimental devices until the i− th run of the experiment.

In [82], the marginal guessing probability maxax p(a | x) had been linked to the correlation
value S of the CHSH inequality.

max
ax

p(a | x) ≤ 1

2

(
1 +

√
2− S2

4

)
(6.1)

This equation allows us to bound the entropy of the output data to 1 bit per event when
S = 2

√
2 by min-entropy H∞ = − log2 maxax p(a | x). From Eqn. 6.1, we know that
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6.3 SDI randomness

for the certification of the true randomness from Bell test data, Bell inequalities must be
violated. Unfortunately, the loophole-free Bell experiments [61, 80, 79, 62] did not reach
the maximally allowed values for quantum mechanics. This means only a small amount of
randomness per event can be bounded in the DI manner. Sometimes no randomness can be
certified by Bell’s theorem 1. However, this situation changes when additional assumptions
are introduced to leave the DI scenario. In order to build the experimental devices, it is
necessary to have some knowledge about how they function, e.g., the devices are error-prone
but not maliciously built. This knowledge about the experimental devices allows for a higher
min-entropy bound of the quantum randomness per event for the same experimental data.

6.3 SDI randomness

In order to build an SDI protocol, a dimension witness can be used. The concept of dimension
witness was first introduced in [166]. After this paper, many studies have been performed
on this concept [139, 167, 168, 169, 83].

6.3.1 2-Dimensional quantum representation proof for our system

Before applying the dimensionwitness to the Bell test scenario, especially the CHSH scenario
of our experiment [62], we first show that the experiment admits a 2-dimensional quantum
representation [166, 139, 83].

In our loophole-free Bell test, there are two binary inputs x, y and two binary outputs a, b.
When Alice perform her measurement, the entangled state on Bob’s side will randomly
collapse into a specific state. Since Alice has two different measurement settings, and each
one has two different measurement results, Bob’s side will get four quantum states when she
does her two measurements randomly multiple times. These four quantum states on Bob’s
side can be represented as x′, and p(b|x′, y) = p(ab|xy)/p(a|x, y).

Notice that, p(ab|xy) = p(a|xy)p(b|x, a, y), therefore p(b|x′, y) = p(b|x, a, y). So we can
treat Alice’s outputs as the input parameter [169]. This means that Alice’s input x and result
a together can be treated as the state labels x′ for Bob. Next, we need to prove that p(b|x′, y)

1 This may be caused by (i) the finite amount of experimental events or (ii) Bell inequality is not violated
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can be re-written as p(b|x′, y) = Tr
(
ρa|xM

B
b|y

)
, where ρa|x is the state prepared on Bob’s

side when Alice performs her measurement x and gets a result a. MB
b|y is the measurement

operator on Bob’s side.

In the quantum formalism, the state shared by the two parties ρAB is defined on HA ⊗HB,
and the measurement performed by Alice MA

a|x acts on HA and the one performed by Bob
MB

b|y acts on HB. The binary input and output in the CHSH scenario allow us to describe
the output probabilities p(ab|xy) with 2-dimensional HA and HB (isomorphic to C2, a
2-dimensional complex coordinate space). With this, the probability for a measurement
outcome b at Bob’s side depending on the input y as well as Alice’s measurement x and result
a is

p(b|x′, y) =
p(ab|xy)

p(a|x, y)

=
Tr
[
ρAB

(
MA

a|x ⊗MB
b|y

)]
Tr
[
ρABMA

a|x ⊗ 1
] ,

(6.2)

where 1 is an identity operator. This can be interpreted as Alice preparing a state at Bob’s
side with her measurement:

Tr
[
ρAB

(
MA

a|x ⊗MB
b|y
)]

=Tr

(ρAB(MA
a|x ⊗ 1)

)︸ ︷︷ ︸
Alice

⊗
(
ρa|xM

B
b|y
)︸ ︷︷ ︸

Bob

 .
(6.3)

The left part represents the measurement on Alice’s side, and in the right part, ρa|x is the
state prepared on Bob’s side after Alice’s measurement. Inserting this in Eqn (6.2) directly
leads to

p(b|x′, y) = Tr
[
ρa|xM

B
b|y
]
. (6.4)

Since ρa|x andMB
b|y are acting on C2. Subsequently, p(b|x′, y) admits a 2-dimensional quan-

tum representation. This shows that we can use the two-dimensional dimension witness [83]
to quantify the quantumness in our experiment.
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6.3 SDI randomness

6.3.2 Applying dimension witness to CHSH scenario

Different dimension witnesses can be used in a 2-dimensional quantum representation. The
dimension witness we used here is introduced in Chapter 2. We chose this dimension
witness because this nonlinear dimension witness can be used for non-convex sets and is
robust to technical imperfections. Most importantly, it can be used to certify quantum
randomness [83]. It is defined as

W =

∣∣∣∣∣∣p(1|0, 0)− p(1|1, 0) p(1|2, 0)− p(1|3, 0)

p(1|0, 1)− p(1|1, 1) p(1|2, 1)− p(1|3, 1)

∣∣∣∣∣∣ , (6.5)

where p(b|x′, y) is defined in Eqn. (6.4), and the result b is chosen as “1” in the above
definition. The definition of the dimension witness here is the same as in [83], but the state x′

differs. Here, the state x′ is on Bob’s side, but the projectivemeasurement performed byAlice
on the entangled state completes its preparation, so the statex′ is remotely prepared [170, 171].
In order to emphasize this difference, we name it as RSP-dimension witness.

RSP is a special case of quantum teleportation [172, 170]. In such a scheme, two parties,
Alice and Bob, share an entangled state (ρAB). If Alice now wants to prepare a certain state
at Bob’s side, Alice measures her part of the entangled state. Depending on the measurement
outcome, Bob’s part collapses into a certain state. Since a quantum process generates Alice’s
measurement result, Bob’s state will randomly collapse to a certain state. If a deterministic
state preparation is desired, applying a unitary transformation, which depends on Alice’s
outcome, to Bob’s state is necessary. However, it is not necessary for our protocol.

Briefly speaking, in RSP-dimension witness, Alice performs, depending on the input x, one
of two projective measurements,MA

a|x on the entangled state ρAB, and one of four different
states ρa|x is prepared on Bob’s side. Then with Bob’s measurements y and measurement
results b, the RSP-dimension witnessWB for Bob’s side can be constructed. Similarly,WA

can be constructed for Alice’s side.

In a Bell test, the two parties, Alice and Bob, share an entangled state. This entangled state is
symmetric betweenAlice andBob in general. Thismeans that changingAlice andBob’s roles
will not affect the analysis results. This indicates that Wrsp = WA = WB, but Alice’s and
Bob’s experimental devices are not exactly the same. They are affected by different classical
noises, which result in the difference betweenWA andWB. To get a more conservative bound
of quantumness in the measurement result, we defineWrsp = min{WA,WB}. Then we use

89



6 Randomness from a loophole-free Bell test

Wrsp as the RSP-dimension witness in the following model. The RSP-dimension witness
captures the quantumness of the state preparation and measurements in our Bell test. If the
preparations are classical, one hasWrsp = 0, while a quantum preparation and measurement
leads to 0 < Wrsp ≤ 1.

Although S andWrsp are based on the same experimental data, they are not directly affected
by each other: S cannot be used to calculate the value ofWrsp, it only affects the lower bound
of theWrsp. For example, when S = 2,Wrsp ∈ [0, 1], and when S = 2

√
2,Wrsp = 1.

Before using the RSP-dimension witness to bound the min-entropy of the randomness gen-
erated in the experiment, we discuss the required assumptions. The above (DI-) assumptions
(1, 2, 3) still hold. Besides, there are some extra assumptions [4]: (4) the information in the
measurement results of each side is contained in a two-dimensional quantum subspace; (5)
the system is memoryless, and subsequent outcomes are not directly correlated.

In the RSP-dimension witness model, the state preparation and measurement must be inde-
pendent of each other. This means forWB, the states x′ on Bob’s side are remotely prepared
by Alice’s quantummeasurements on the entangled states, which cannot be affected by Bob’s
device or measurement, so the states x′ are independent of Bob’s device and measurement
setting y. This independence requirement is naturally fulfilled by our loophole-free Bell
test [62]. The prepared states x′ might be affected by Alice’s experimental device, but that
is not a concern in our model. Because if x′ is affected by the device on Alice’s side, it
will not be properly prepared on Bob’s side, and the value of the RSP-dimension witness
will be decreased. Therefore, the independence of x′ is quantified by the value of the RSP-
dimension witness. Assumption (1) also implies that the experimental devices do not have
any pre-established correlations among each other; this also indicates that the devices used
to generate the input strings x, y are not correlated with the measurement devices. Subse-
quently, x, y can be pseudo-random numbers as long as they are independent of each other
and the measurement apparatus.

Assumption (4) means that the information contained in the measurement result when
measuring x′ does not exceed 1 bit. A possible violation would be that the information
about x′ is duplicated by or correlated with extra qubits. An entangled state shared between
Alice and Bob has two different measurement results on each side with one measurement
setting–a qubit can describe it. This does not mean the entangled state shared between Alice
and Bob has to be confined in a two-dimensional Hilbert space. It only means that with the

90



6.3 SDI randomness

measurement performed by Alice or Bob on it, the results information can be fully described
by a qubit.

For our loophole-free Bell test, the state preparation in the RSP-dimension witness is inde-
pendently accomplished by two sides: one side performs the measurement, and the other
side gets the prepared state simultaneously. Under space-like separation, the measurement
performed on one side is outside the light cone of state preparation on the other side. Thus,
the state preparation devices cannot send extra qubits of the prepared states to the mea-
surement devices without lowering the values of Wrsp

2. As long as Wrsp > 0, the remote
measurements exceed a classical correlation.

In the experiment, Alice and Bob perform measurements independently to their shared
entangled state. Alice performs measurement according to x and Bob according to y, then
Alice gets result a and Bob b. The measurement series x is prepared by Alice, and the result a
is generated by a quantum process. Both x and a are independent of the experimental device,
otherwise, when Alice applies the SDI model, the dimension witness Wrsp will decrease,
and less randomness can be extracted.

With the assumption being settled, the guessing probability can now be derived. Since the
two binary inputs, x and y, are independent of each other, and in the experiment, different
choices of measurement settings are uniformly random sequences. Thus each combination
of x and y occurs with probability 1/4 [4]. Then, the guessing probability pguess of p(ab|xy)

is (more intermediate steps are shown in Appendix)

pguess(ab|xy)

=
1

4

∑
x,y

max
a,b

p(ab|xy)

≤ max
x,a

p(a|x)
1

2

∑
y

max
x,a,b

p(b|(x, a), y)

≤

(
1 +

√
1−W 2

rsp

2

)
1

2

1 +

√
1 +

√
1−W 2

rsp

2

 .

(6.6)

2 This means the extra qubits sent out by the state preparation devices can be treated as classical noise in
this situation.
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6 Randomness from a loophole-free Bell test

The equation of guessing probability pguess(ab|xy) from Wrsp is not the same as the one
from [4]. The difference is caused by maxx,a p(a|x), which represents the quantum mea-
surement from the state preparation process.

The conditionalmin-entropyH∞(AB|XY ) in this situation isH∞(AB|XY ) = −log2pguess(ab|xy).
This equation allows us to bound the min-entropy of the randomness in the Bell test data
in an SDI manner. The randomness per event from our RSP-dimension witness model
is depicted in Fig. (6.3). Compared to [4], the introduction of quantum measurements in
the state preparation process gives us a significant increase in bounding randomness in our
experimental data. For instance, the maximum min-entropy of the quantum randomness in
our model is 1.23 bits per event, which is much larger than the previous dimension witness
model [4].
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Figure 6.3: Output randomness utilizing the dimension witness. The nonzero RSP-dimension witness
Wrsp gives us a new perspective to bound the min-entropy of randomness in the experimental
data. In this figure, the blue curve displays the randomness bounded by theWrsp, while the dashed
purple curve represents the randomness bounded by the previously defined dimension witness [83].
Clearly, the combination of remote state preparation and the dimension witness increases the bound
of randomness per event compared to a normal dimension witness QRNGmodel in [4]. The figure
is adapted from [3]

The above RSP-dimension witness model can bound more quantum randomness in the Bell
test from a different perspective, and only a few additional general assumptions are required
for this. Moreover, when S is below the classicality bound 2, theWrsp can still be larger than
0. See the example below.

The Bell inequality might not be violated in a practical Bell test because of the imperfect
measurements or entangled states. In such a case, no randomness can be quantified by earlier
models [82, 173, 174, 75, 74]. With the RSP-dimension witness model, randomness in the
experimental data can be bounded without using Bell’s theorem. For example, suppose Alice
and Bob share one Bell state, then they measure it with two identical measurement settings
x̂ and ẑ at each side (which corresponds to the BBM92 quantum key distribution scheme
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6.4 Randomness extraction

[42]). Bell inequalities will not be violated in this case, but the min-entropy of quantum
randomness is 1.23 bits per event data fromWrsp.

This example shows that by rotating Alice and Bob’s measurement bases in the same plane
of a Bloch-sphere, the RSP-dimension witness is not changed, and it also demonstrates the
robustness of our SDI protocol. This shows us that quantum randomness in the Bell test data
can be quantified without using Bell’s theorem.

We further consider an example with a 2-qubit Werner state (6.7),

ρz = z|Ψ+〉〈Ψ+|+ 1− z
4

I , (6.7)

where 0 ≤ z ≤ 1, is the noise parameter. The relationship between Wrsp and S can be
derived for this state. On the one hand, the relationship between z and S is S = 2

√
2z. On

the other hand, following [83], the relationship between z and the RSP-dimension witness
is derived asWrsp = z2. Subsequently, the relationship betweenWrsp and S is calculated as
Wrsp = S2/8. From this relationship, we can also see thatWrsp is nonzero when 0 < S ≤ 2.
This shows again that randomness in the Bell test data can be certified without using Bell’s
theorem.

Our SDI model based on dimension witness and the DI model in [82] both utilize quantum
correlations to bound the min-entropy of quantum randomness. The DI model uses the cor-
relation between the measurement results and the measurements to form a CHSH inequality,
the violation of CHSH inequality guarantees that the quantum randomness can be certified.
In the SDI model, the correlation between Alice and Bob’s measurement results is not quan-
tified by Bell’s theorem but by our RSP-dimension witness. This RSP-dimension witness
can quantify the quantum correlation, which cannot be quantified by the CHSH inequality,
such as the case in BBM92 scenario and 2-qubit Werner state.

6.4 Randomness extraction

In the randomness extraction process, the confidence level of the model and the error
of hashing functions are introduced because of the finite data size. For the DI model,
the confidence level analysis is in the supplementary of [82]. Here we only describe the
confidence level details of our RSP-dimension witness model.
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6 Randomness from a loophole-free Bell test

6.4.1 Confidence level of SDI randomness protocols

The SDI randomness in per event data is quantified by the RSP-dimension witness Wrsp

H∞(AB|XY ) ≥ f(Wrsp). Wrsp has error εw, and the confidence level is 1− δ, this means

H∞(AB|XY ) ≥ f(Wrsp − εw), (6.8)

then all the SDI randomnessH∞(R|Wrsp) in the n events experimental data can be calculated
as

H∞(R|Wrsp) ≥ nf(Wrsp − εw). (6.9)

Hoeffding’s inequality can derive the relationship between εw and δ. In order to apply
Hoeffding’s inequality [163], we need to define Wrspi for a single event. Considering the
definition ofWrsp

Wrsp =

∣∣∣∣∣∣p(1|0, 0)− p(1|1, 0) p(1|2, 0)− p(1|3, 0)

p(1|0, 1)− p(1|1, 1) p(1|2, 1)− p(1|3, 1)

∣∣∣∣∣∣ . (6.10)

The relationship betweenWrsp andWrspi should be

Wrsp =
1

n

∑
i

Wrspi . (6.11)

Wrspi could be defined as

Wrspi =

∣∣∣∣∣∣pi(1|0, 0)− pi(1|1, 0) pi(1|2, 0)− pi(1|3, 0)

pi(1|0, 1)− pi(1|1, 1) pi(1|2, 1)− pi(1|3, 1),

∣∣∣∣∣∣ (6.12)

where pi(1|x, y) is the expected probability distribution for single event. Since the devices
have no memory, the expected dimension witness Wrspi of each experimental run is inde-
pendent of each other. For each Wrspi , we have |Wrspi | ≤ 1. According to Hoeffding’s
inequality [163], the relationship between confidence level 1− δ and the error bound εw is

δ = exp

(
−nε2w

2

)
. (6.13)

From this equation, the error bound εw can be calculated with a given confidence level.
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H∞(R|Wrsp) in Eqn. 6.9 is the bound of quantum randomness in the experimental data. To
get a uniformly distributed bit string from the experimental data, randomness extractors need
to be used.

6.4.2 Randomness extractors

The extractor we choose is the Toeplitz hashing extractor. For the details of this extractor,
see Chapter 3.

The raw random bits in our model are from two sides, Alice and Bob. The randomness
from the two sides could exceed 1 bit per event data. Thus, extracting the bounded quantum
randomness using a standard construction of extractors, which takes the form {0, 1}n ×
{0, 1}d → {0, 1}m, is not possible. We need to use two extractors to extract the randomness
in the raw random bits with our model.

For the joint outcome experimental events, the SDI randomness per experimental run is

H∞(AB|XY ) = −log2 max p(ab|xy). (6.14)

Note that
max p(ab|xy) ≤ max p(a|x) max p(b|x, a, y), (6.15)

which means
H∞(AB|XY ) ≥ H∞(A|X) +H∞(B|XAY ). (6.16)

Therefore, we can bound the random strings from each side and combine them as the total ran-
dom strings for the whole experimental data. Let nH∞(A|X) = k1 and nH∞(B|XAY ) =

k2, from the definition of block-wise source [175], the output A and B form a block-wise
source. Thus we can use two extractors to extract the randomness in A and B. First, we
use one Toeplitz hashing matrix to extract the k2 bits randomness from Bob’s side, and then
we construct another Toeplitz hashing matrix to extract the k1 bits randomness from Alice’s
side. Then the final output string is n(k1 + k2) bits.

Since we use two extractors to get the final output stringm, Eqn. 3.7 is altered to

∆i =
1

2

√
2mi−ki , (6.17)
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where i ∈ {1, 2}, and k1 is the total min-entropy of SDI randomness in Alice’s experimental
data, and k2 is the left independent SDI randomness in Bob’s side. With two extractors, the
distance between m and a uniform random distribution is ∆ = ∆1 + ∆2 [175]. And m is
written as

m = m1 +m2

= bk1 + log2 (2∆1)2c+ bk2 + log2(2∆2)2c

= bk1 − 2log2

1

2∆1

c+ bk2 − 2log2

1

2∆2

c,

(6.18)

The total SDI randomness in Eqn. 6.16 can be quantified by the RSP-dimension witness
model. From the formula in [4], the SDI randomness k2 on Bob’s side can be calculated,
then the SDI randomness k1 can be derived directly. With the SDI randomness from both
sides, we can extract them by two Toeplitz hashing matrices.

From Eqn. 6.17,m1 andm2 can be represented as

mi = ki − 2 log2

1

2∆i

(6.19)

where i ∈ {1, 2}, and usually we choose ∆1 = ∆2 = ∆. Then withm1 andm2 derived, for
Alice’s side, we use n + m1 − 1 bits to construct a n×m1 Toeplitz matrix (where n is the
length of input raw random strings), and next use the original output string a of Alice, which
is 1 × n, afterward, we get a m1 bits long almost uniformly distributed random sequence
with at most ∆ deviation from a uniformly distributed random sequence. Similarly, the total
min-entropy m2 in Bob’s raw output string can be extracted. Combining m1 and m2, the
final SDI randomness of the joint outcome events can be obtained.

6.4.3 Experimental data analysis

Using the analytical model in [82] and taking the confidence level as 0.99 [82, 4], the min-
entropy in our Bell test data can be quantified. For the |Ψ+〉 state, the data resulted in
S = 2.085, and with a total amount of events n = 27, 885, considering the 99% confidence
level, no DI randomness can be quantified for this entangled state. Performing the same task
for the 27,683 events from the |Ψ−〉 state, the value of S is 2.177. The min-entropy of the DI
randomness is 531 bits, much smaller than our SDI randomness, as shown in the following
text.
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Next, we apply the SDI model to bound the min-entropy of the randomness produced in
the Bell test [62] and then extract the randomness with hashing functions. The confidence
level is taken as 99%, and the hashing error is chosen as 0.001. We use the Toeplitz-hashing
extractors mentioned in Chapter 3 to extract the bounded randomness. Considering the |Ψ+〉
state, the Bell test data resulted in S = 2.085, with a total number of events n = 27, 885.
We calculate the RSP-dimension witness value for this entangled state as Wrsp = 0.542.
Using the Toeplitz matrices twice, as suggested in the above subsection, the SDI randomness
extracted in all events amounts to 3, 821 bits, which is a significant improvement compared
to the 0 bits in the DI model of [82].

Performing the same task for the 27, 683 events from the |Ψ−〉 state, the value of S is 2.177,
and the RSP-dimension witness value is Wrsp = 0.591. The extracted SDI randomness
amounts to 4, 660 bits, which is much larger than 531 bits DI randomness 3.

The NIST Statistical Test Suite results for the extracted bits of |Ψ−〉 state are shown in
Fig (6.4). Although this extracted random sequence does not pass all the tests, it still passes
13 out of 16 tests. The failure of the three tests is due to the insufficient length of the random
sequence.

Figure 6.4: NIST Statistical Test Suite results. The test is done for the SDI randomness for |Ψ−〉 state. The
final random string does not pass all the tests due to its insufficient length.

We also draw the binary image in Fig 6.5 of the extracted random bits, and no predictable
patterns are shown in this figure.

3 The 531 bits randomness is the bounded randomness from the DI model, not considering the hashing error.
If we consider a 0.001 hashing error, this value will decrease to 495 bits.
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6 Randomness from a loophole-free Bell test

Figure 6.5: Binary image of the extracted random bits from |Ψ−〉. In this binary image, no obvious patterns
can be seen.

6.5 Conclusion

This chapter presents two methods to bound the min-entropy of the quantum randomness in
our Bell test data. The DI model from [82] is based on Bell’s theorem, and its applicability
holds especially for the CHSH-variant of the test [73]. For all the 55, 568 events, the min-
entropy of the DI randomness is 531 bits, which amounts to 0.956 × 10−2 bits per event.
An extended RSP-dimension witness model is newly designed for the same Bell test. For
all 55, 568 events data, the total min-entropy of the extracted SDI randomness is 8, 481 bits,
corresponding to 0.153 bits per event, which is significantly higher than 0.956 × 10−2 bits
per event data.

Our RSP-dimension witness model tremendously improves the bound of the randomness
from the Bell test data without using Bell’s theorem. This model can still certify quan-
tum randomness when the Bell inequality is not violated. Although the SDI model offers
relatively weaker security guarantees for randomness than the DI model, it still provides
certified randomness. Additionally, the SDI model’s requirements can be met using standard
technologies, which are much less complex than those required for a loophole-free Bell test.
This is one important step towards the practical use of the Bell test in randomness generation.
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7 Randomness from a nuclear spin system

The previous chapter showed how to turn the Bell test into a prepare-and-measure experiment
scheme. Furthermore, within this prepare-and-measure scheme, we can use the dimension
witness model [83] to quantify the entropy of randomness in the raw experimental data. In
this chapter, we continue the discussion of QRNG based on dimension witness. Here we
present a proof-of-concept random number generator based on a nuclear spin state system
instead of a photonic system discussed in [4]. Compared with the original dimension witness
protocol in [4], our work extends the dimension witness protocol from dimension 2 to
dimension 3, and our QRNG is based on a nuclear spin system instead of a photonic system.

Before the discussion of our protocols, we first introduce the nuclear spin state in the NV
center.

7.1 Nuclear spin state in NV color center

The nuclear spin state in our experiment belongs to the nucleus of the nitrogen atom of a
single NV defect in a diamond. The NV defect, also known as the NV color center, is a very
important physical system for quantum technologies, including quantum sensing, information
processing, and communications. The nuclear spin system inside the NV color center is well
isolated from the environment and can be operated at room temperature. Their creation and
control are relatively easy [90, 176, 91]. This stable quantum system has been used in the
quantum computing area for years [92, 91, 93]. In the previous chapter, we showed how to
use the NV color center as a single-photon source to generate quantum randomness. This
chapter demonstrates how to employ the nuclear spin state within the NV center to generate
quantum randomness.

The schematic structure of the NV center is shown in Fig. 7.1. In the NV center, a single NV
defect in diamond is coupled to a single nuclear spin of 13C and 14N. The defect consists of a
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7 Randomness from a nuclear spin system

nitrogen impurity next to a vacancy in the diamond lattice. The method to prepare such a NV

Figure 7.1: Schematic structure of the NV center. The figure is adapted from [114]

center includes chemical vapor deposition (CVD) diamond synthesis process [177], radiation
damage and annealing [115], ion implantation and annealing in bulk and nanocrystalline
diamond [178]. There are two different charge states in an NV center, including the negative
charge state (NV−) and neutral charge state (NV0). The optical zero photon lines (ZPLs) of
NV− and NV0 are shown in Fig. 7.2.

Figure 7.2: Normalised emission spectra of NV− and NV0. These spectra are obtained at low tempera-
ture(10K) for different excitation powers. The figure is adapted from [115]

In this thesis, we focus on the negative charge state NV− due to its increased stability at room
temperature and its success in various applications [179, 180, 181, 182].

For NV−, an additional electron is trapped in the vacancy. The nuclear spin states of nearby
atoms like 13C [90] and 14N [183] are coupled with the electron spin. The electron spin
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7.1 Nuclear spin state in NV color center

coherently couples with the nuclear spins. By tuning the external magnetic field, the NV
center can be coupled with a desired nearby nucleus, for example, coupling with 14N. The
electron-nuclear spin system can be effectively controlled with a specific microwave pulse.
With single-shot readout [184, 183], repetitive optical readout of the electron spin will reveal
its coupled nuclear spin state due to the coupling between the electron and nuclear spin
systems.

The basic idea of single-shot readout is shown in Fig. 7.3. The coupling scheme of the
electron-nuclear spin state is shown in Fig. 7.3A, where Ψn represents the spin state of the
nucleus(14N here). This figure shows that the electron-nuclear system is equivalent to a
controlled not (CNOT) system, which is possible because of the long coherence time of
the NV center. Fig. 7.3B shows the real-time dynamics of a single nuclear spin, and we
can see the abrupt, discontinuous evolution of the nuclear spin state. The fluorescence
intensity in Fig. 7.3B is obtained through single-shot readout. In this process, the electron
spin is optically pumped into one sublevel |0e〉(corresponds to mS = 0) of its triplet ground
state(S = 1), meanwhile, the nuclear spin of 14N is in an incoherent mixture of the its
eigenstates |−1I〉, |0I〉, and |+1I〉 (mI = −1, 0,+1). Then the application of a narrowband,
nuclear-spin state-selective microwave (MV) π pulse will flip the electron spin into |−1e〉
conditioned on the state of the nuclear spin state.

Because the fluorescence intensity between electron spin states |0e〉 and |−1e〉 differs by
roughly a factor of 2, the two spin states can be distinguished by shining a short laser pulse,
whichwill destroy the electron spin state but leave the corresponding nuclear spin state almost
undisturbed under the experimental conditions. So, repeated measurement of electron spin
states allows a nondestructive accumulation of the fluorescence signal, which will optically
determine the nuclear spin state.

The nuclear spin state can be initialized into the superposition of two states (for example,
|0I〉 and |−1I〉 ), this will formulate a qubit state. The nuclear spin state system can be
projected into one of the two eigenstates without demolishing it by using the single-shot
readout method mentioned above. The projection will be random from the perspective of
quantum mechanics. Since single-shot readout is a quantum nondemolition measurement,
the same nuclear spin state can be prepared and measured consecutively, and a random
sequence can be generated by detecting different eigenstates.
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7 Randomness from a nuclear spin system

Figure 7.3: quantum jumps of a single nuclear spin in real-time. Single-shot readout reveals quantum
jumps of a single nuclear spin in real time. Figure is adapted from [183]

Next, the experimental setup and the generation of raw bits are described. The experiment
was mainly performed by my colleagues Minsik Kwon and Dr. Vadim Vorobyov. This work
is also summarized in our manuscript, which is currently in preparation.

7.2 Experimental setup and generation of raw bits

Our QRNG protocol is based on dimension witness, where the prepare-and-measure (P&M)
scenario is important. The P&Mscheme is already explained inChapter. 2. In our experiment
here, the prepared states ρx now have six possible states: |0〉, |1〉, |+〉, |−〉, |0〉+i|1〉√

2
, |0〉−i|1〉√

2
and

the measurement y now has three different measurements σ1, σ2, σ3. The P&M scenario is
slightly altered in this experiment: Alice and Bob are in the same location, so Bob measures
the states immediately after Alice prepares them.

As mentioned above, the nuclear spin states used in our protocol are from the nucleus of a
nitrogen atom [14N] of a negatively charged NV center. The energy level of the NV− and a
sketch of our experimental setup is shown in Fig. 7.4.

First, we use a pulse of a 520 nm green laser to initialize the NV center into the negative
charge state NV−, and the electron spin state into |0e〉 (corresponds to mS = 0). In the
meantime, the nuclear spin state is in an incoherent mixture of the its eigenstates |−1I〉, |0I〉,
and |+1I〉 (mI = −1, 0,+1). Then we apply a series of microwave (MW) π pulses and radio-
frequency (RF) π pulses to initialize the nuclear spin states from |0I〉, |+1I〉 into |−1I〉. The
charge state preparation fidelity and the nuclear spin state initialization fidelity can be probed
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Figure 7.4: Experimental scheme to prepare and measure nuclear spin states. (a)Energy level of electron
spin state and nuclear spin state of the NV− state, where ES means excited state and GS means
ground state. ms is the electron spin state, andmI is the nuclear spin state. We choose the nuclear
spin state |0I〉 and |+1I〉 to prepare our states, which is shown in a Bloch-sphere in the right. (b)
The sketch of our experimental setup. In the figure M represents the permanent magnet, RF:
radio-frequency pulse,MW: microwave pulse, OBJ: objective, FC: fiber coupler, AWG: arbitrary
waveform generator, DP: dichroic polarizer, BS: beam-splitter, LPF: long pass filter, L: lens, P:
pinhole, APD: avalanche photodiode, and Counter here is a time tagger. We use a 532 nm laser
(632 nm laser) for charge state NV0 (NV−) readout.

with single-shot readout. Their single-shot readout results are shown in the photon counting
histograms of Fig. 7.5(b). In the left sub-figure, different distinguishable peaks corresponding
to different NV charge states are shown. Similarly, in the middle sub-figure, different nuclear
spin states correspond to different peaks of this histogram. By setting the green threshold
as shown in the figure, the nuclear spin state |−1I〉 (fluorescence below threshold) can be
distinguished from the other nuclear spin states (fluorescence above threshold). The fidelity
of charge state NV−1 is F1 = 1− ε1 = 98.16± 0.36%, and the fidelity of nuclear spin state
initialization is F2 = 1− ε2 = 95.17± 0.40%, where ε1,2 are the corresponding errors when
distinguishing the states in the two histograms with the given thresholds in Fig. 7.5(b) (left
and middle).

After the initialization stage, the nuclear spin state is known, and it is in state |−1I〉. With
this known nuclear spin state, we can start our P&M protocol. In this protocol, six possible
states need to be prepared, and they can be represented in a Bloch sphere as shown in Fig. 7.4.
Thus, these six states can be prepared within a qubit system. In this experiment here, we
choose nuclear spin state |0I〉 and |+1I〉 to form the two-level qubit system.
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7 Randomness from a nuclear spin system

States RF operations Nuclear spin state
|0〉 R−1,0

yaxis
(π) |0I〉

|1〉 R−1,0
yaxis

(π)+R0,+1
yaxis

(π) |1I〉
|+〉 R−1,0

yaxis
(π)+R0,+1

yaxis
(π/2) |0I〉+|1I〉

2

|−〉 R−1,0
yaxis

(π)+R0,+1
yaxis

(−π/2) |0I〉−|1I〉
2

|0〉+i|1〉√
2

R−1,0
yaxis

(π)+R0,+1
xaxis

(−π/2) |0I〉+i|1I〉
2

|0〉−i|1〉√
2

R−1,0
yaxis

(π)+R0,+1
xaxis

(π/2) |0I〉−i|1I〉
2

Table 7.1: State preparation stage, how to prepare different states with different RF operations from the same
initialized nuclear spin state |−1I〉.

Since the nuclear spin state is initialized into |−1I〉 state, in order to prepare the six states
within state |0I〉 and |+1I〉, a series of RF pulses need to be applied to flip the nuclear spin
state from |−1I〉 into the qubit system. For example, to prepare state |0〉, we need to apply a
RF π pulse between |−1I〉 and |0I〉 (R−1,0

yaxis
(π)) to flip the spin state from |−1I〉 into |0I〉, which

corresponds to state |0〉. If we want to prepare another state, additional RF pulse R0,+1
i (θ)

along the axis i (i ∈ {xaxis, yaxis, zaxis}) can be applied. Table. 7.1 shows the states and their
corresponding RF pulse operations. For instance, by applying a RF pulse π/2 along the y
axis (R0,+1

yaxis
(π/2)), the nuclear spin will be in state (|0I〉 + |1I〉)/

√
2, which corresponds to

state |+〉.

Following the state preparation, we measure the prepared nuclear spin state. Take state |+〉 as
an example, it is a superposition state of |0I〉 and |+1I〉, whenwemeasure it in basis ẑ, the state
|+〉 will collapse into state |0I〉 and |+1I〉 randomly. The single-shot readout results of the
collapsed nuclear spin states are shown in Fig. 7.5(b) (right subfigure), and we assign the left
peak as random bit “1," and the right peak as “0". The distribution of raw bits is not perfectly
separated from each other. A small fraction of them is still overlapped. In order to distinguish
the results unambiguously, as shown in Fig. 7.6, a threshold is set to identify them explicitly.
The distinguish fidelity corresponds to this threshold is F3 = 1 − εl+εr

2
= 98.55 ± 0.46%,

where εl,r are the errors in each histogram when applying the green dashed line as the
threshold to distinguish bits “1" and “0" in Fig. 7.6.

In Fig. 7.6 (a), the threshold is fixed for the measurement results of all 18 different P&M
pairs (six preparations and three measurements, in total, there are 18 different P&M pairs) in
the whole experimental data. With the threshold being settled, the probability distribution
of each P&M combination and their corresponding error bars are shown in Fig. 7.6(b).
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Figure 7.5: The P&M scenario and the data post-processing. All the histograms in this figure are fitted
by Gaussian distributions (solid lines). (a) Quantum circuit representation of our P&M scenario.
First, we pump the NV color center into NV− and initialize the nuclear spin state of 14N into
|−1I〉. Then in the state preparation step, we apply a π pulse to this nuclear spin state and rotate
it into |mI = 0〉, which corresponds to the state |0〉. With further π or π/2 pulses, the other
five states |1〉 , |+〉 , |−〉 , |0〉+i|1〉√

2
, and |0〉−i|1〉√

2
can be prepared. This is represented as R0,+1

i (θ)

(θ = {π, π/2}) in the figure. In the measurement step, we apply a π/2 pulse (R0,+1
j (π/2)) along

the x̂, ŷ or ẑ axis to perform a corresponding measurement, then single-shot readout is used to
get the state of the nuclear spin system. (b) In the post-processing process, we set thresholds for
the charged state and nuclear spin state initialization distribution histograms. For the charge state
single-shot readout histogram, the threshold is set as 56, and for the photon counts from NV− state
is larger than this value. In the initialization histogram, the threshold is set as 55, and the spin state
|−1I〉 corresponds to the photon count results, which are no larger than this value. ε1 and ε2 are
the corresponding errors of choosing the given thresholds in the histograms. In the valid raw bits
histogram, the threshold is 153, we assign the left peak as raw bits “1" and the right peak as “0".

After fixing the thresholds for charge state decision, nuclear spin state initialization, and the
raw bits, the total fidelity of each P&M pair can be calculated by the following equation

Ftotal = F1 · F2 · F3 = 92.06± 0.67% (7.1)

With the raw bits from our experimental setup, next, we develop two dimension witness [83]
protocols to quantify the entropy in the raw bits.
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Figure 7.6: Experimental results analysis. Photon-counting distribution of 18 different P&M pairs. The
vertical axis of all 18 sub-figures is the number of events for different photon counts, and the
horizontal axis is the number of photon counts. The dashed green line is the threshold line that is
used to differentiate the raw bits “1" and “0". The photon counts value of the green dashed line
here is 153, and in the appendix, we show how to get this threshold in detail. In the right big circle
of this sub-figure, the photon counts distribution of one specific P&M (S5 − x̂) is shown. The
probability of getting “1" is calculated by the photon counts, which are smaller than the threshold
line, and “0" is the photon counts, which are larger than the threshold line. εl,r are the measurement
errors of each peak when applying the green dashed line as the threshold.

7.3 Randomness certification protocols

Beforewe proceedwith the dimensionwitness protocols, we describe the assumptions needed
for our two protocols. The assumptions mentioned here are similar to the assumptions
in [4, 3], but for the self-consistence of this chapter, we rephrase them here. Our two
protocols are based on the same experimental device, and they require the same assumptions:
(1) the state preparation and measurement settings (x, y) are independently chosen; (2) the
preparation and measurement devices are independent of each other; (3) the information in
the measurement results of each side is contained in a two-dimensional quantum subspace;
(4) the system is memoryless, and subsequent outcomes are not directly correlated.

Assumptions (1) and (2) require that the state preparation and measurement devices are
independent of each other. Assumption (1) also implies that the devices that are used to
generate the input strings x, y are not correlatedwith themeasurement devices. Subsequently,
x, y can be pseudo-random numbers as long as they are independent of each other and the
measurement apparatus. These two assumptions can be easily realized if the experimental
devices are not manufactured by malicious producers. In our case, the state preparation and
measurement devices are error-prone. However, we assume their errors are independent of
each other, and there are no pre-established correlations between the twodevices. Assumption
(3) means that a qubit can describe the measurement results of each measurement setting.
About assumption (4), it requires the previous measurement result of the device does not
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7.3 Randomness certification protocols

affect the measurement results of the following measurements. The experimentally relevant
afterpulsing effect can likely weaken this assumption. But still, randomness can be bounded
in the presence of certain memory effects since the memory effect of the device can be
explained by shot noise.

In order to analyze the memory effect of our experimental setup, we calculate the differences
in conditional probabilities of the adjacent P&Mruns. There are four conditional probabilities
p(1|0), p(1|1), p(0|0), p(0|1). Among them, p(1|0) means the probability of getting results
“1" in the current P&M run, with result “0" from the previous run. The other three conditional
probabilities have equivalent definitions. Ideally, all these conditional probabilities should be
0.5, meaning the previous measurement result does not affect the next measurement result.
In other words, p(1|0)−p(1|1) = p(0|1)−p(0|0) = 0. So we can use the difference between
p(1|0) and p(1|1) or p(0|1) and p(0|0) to indicate the memory effect of our experimental
setup. Since p(1|0) − p(1|1) = p(0|1) − p(0|0) holds true in general1, we only use the
difference p(1|0)− p(1|1) in the following calculation. Considering the i-th and the (i+ 1)-
th P&M run, there will be a joint event {bi, xi, yi, bi+1, xi+1, yi+1}. We want to show that for
any {xi, yi}, the result bi does not affect the distribution of bi+1. This can be represented as the
differences between the conditional probabilities p(1i+1|0i) and p(1i+1|1i). In Fig. 7.7, such
differences from each i-th P&M pair are shown. As expected, all the conditional probability
differences can be explained by the 3σ shot noise, which indicates that the memory effect of
our experimental device is limited, and we can use dimension witness to quantify the entropy
of randomness in our nuclear spin state quantum randomness generation system.
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Figure 7.7: Conditional probability differences of different P&M pairs. This figure shows that the condi-
tional probability differences are not zero, but they can all be explained by the 3σ shot noise. In
other words, our experimental setup can be considered memoryless.

1 This is straightforward considering the fact that p(1|0) + p(0|0) = p(0|1) + p(1|1) = 1.
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7 Randomness from a nuclear spin system

7.3.1 W2 Model description

In the model of [4], the P&M scenario is done in a two-dimensional Hilbert space (i.e.,
a plane in a Bloch sphere). Here we extend this original model into a three-dimensional
Hilbert space, more specifically, three mutually orthogonal planes. The state ρx, which is
prepared by Alice, is randomly chosen from six possible preparations : ~S0 = −~S1 = ẑ,
~S2 = −~S3 = x̂ and ~S4 = −~S5 = ŷ. After the preparation, Bob measures the states in
measurements : ~T0 = ẑ, ~T1 = x̂ and ~T2 = ŷ, and get a binary result b.

In the experimental scheme above, the state preparations and measurements can be catego-
rized into three planes, and a two-dimensional dimension witness W2 in Eqn. 2.12 can be
constructed in each plane. For instance, in the Bloch sphere of Fig. 7.4(a), within x̂ẑ−plane,
the states |0〉 , |1〉 , |+〉 , |−〉, measurement bases x̂, ẑ, and the measurement results can be
used to construct a 2-dimensional dimension witness Wx̂ẑ. The dimension witness Wx̂ŷ in
the x̂ŷ−plane and the dimension witnessWŷẑ in the ŷẑ−plane can be constructed in a similar
fashion.

Since three 2-dimensional dimension witnesses can be constructed in different planes, we use
the dimension witness formula in [4] three times. In an ideal condition, with the preparations
andmeasurements mentioned above, in each use of the formula, the maximal value ofW2 can
be reached, and we can bound randomness with min-entropy Hmin = 0.2284. Considering
we only utilize 4

9
raw bits data 2 in each application of the protocol, so the total output entropy

is 3× 4
9
× 0.2284 = 0.3045 bits per event in an ideal case.

The limitation of this protocol is obvious. It is a repeated usage of theW2 protocol in [4]. It
means that the protocol can only be applied to the specific states and measurements which
are distributed on the intersection lines of three different planes in a Bloch sphere so theW2

dimension witness can be constructed in each plane. In our experiment scheme, the states
and measurements are on the intersection lines of x̂ŷ−, x̂ẑ−, and ŷẑ− planes. If the six
preparations Sx and three measurements Ty do not form three different planes, this protocol
will be inapplicable. For example, consider rotating |0〉 and |1〉 by an angle 0 < θ < π/2 in
the x̂ẑ−plane of the Bloch sphere. After the rotation, dimension witnessesWx̂ẑ andWx̂ŷ can
still be constructed, butWŷẑ cannot be calculated, since the ŷẑ−plane does not contain four

2 We have six states in the state preparation stage and three different measurement settings. As we choose
states and measurements randomly, in total, there will be 18 different combinations appearing with the
same probability. In each construction of the W2, we choose four states and two measurements, which
have eight different combinations. So, on average, in one event, we have 4

9 fraction of data.
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states anymore as shown in Fig. 7.8. Next, we develop a more robust protocol that utilizes a
three-dimension dimension witness to quantify the min-entropy of the randomness.

|0

|1

z

x
y

S0

S1

θ

Figure 7.8: One failure scenario of the W2 model. By rotating |0〉 and |1〉 by an angel 0 < θ < π/2
in the x̂ẑ−plane, they will be outside the ŷẑ−plane, and the dimension witness Wŷẑ cannot be
constructed.

7.3.2 W3 Model description

There is another way to bound more randomness from the same data. The first protocol is
based on theW2 protocol [4], and in an ideal case, the entropy in the output randomness is
0.3045 bits per raw bit. In our second protocol, which is our main work in this chapter, we
utilize a 3-dimensional dimension witnessW3 (defined below) to quantify the entropy of the
randomness, and the entropy increases to 0.3425 bits per raw bit.

In order to construct W3, we need 6 preparation states and 3 measurement bases as proved
in [83]. The six states in preparation need to be in a dimension d which is no smaller than
d
√

3e, so we can get a nonzero W3 and then we can quantify the quantumness involved in
the measurement process byW3.

Our experiment has six input states ρx and three measurement bases. The Hilbert space of
each state has a dimension d = 2, which is equal to d

√
3e. Therefore, a three-dimensional
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7 Randomness from a nuclear spin system

dimension witnessW3 can be constructed for our experimental scheme. ThisW3 is defined
as

W3 =

∣∣∣∣∣∣∣∣∣
p(0, 0)− p(1, 0) p(2, 0)− p(3, 0) p(4, 0)− p(5, 0)

p(0, 1)− p(1, 1) p(2, 1)− p(3, 1) p(4, 1)− p(5, 1)

p(0, 2)− p(1, 2) p(2, 2)− p(3, 2) p(4, 2)− p(5, 2)

∣∣∣∣∣∣∣∣∣ (7.2)

where p(x, y) in the equation is p(b = 0 | x, y). When 0 < W3 ≤ 1, quantumness is
involved in the measurement data. This quantumness means the measurement results are not
deterministic; thus, we can get quantum randomness from the measurement results.

The entropy of the randomness per raw bit is quantified by the conditional min-entropy
H∞(B|XY ) (where B,X, Y represent the sets of random variables b, x, y). It is defined as
H∞(B|XY ) = −log2pguess. Assuming uniformly distributed input x and y, the guessing
probability pguess is derived as

pguess =
1

18

∑
a,b

max
m

p(m|a, b)

≤ 1

3
max
a

∑
b

max
m

p(m|a, b)

≤ 1

3

(
3 +
√

3
√

1 + 2 cos θ

2

)

θ = cos−1
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1

2

√
3 + 2

√
1 + 8W 2
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(
1

3

(
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(
1− 20W 2

3 − 8W 2
3 , 8W3

√
(1−W 2

3 )
3

))))
(7.3)

Suppose the preparation states and measurement settings are the same as the previous model.
Then in each round of the protocol, we choose settings among the six possible preparations
x = {0, 1, 2, 3, 4, 5}, and three measurement bases y = {0, 1, 2}, resulting in a binary
outcome b = {0, 1}. The distribution of preparations a andmeasurements b are uniform, then
W3 = 1 can be reached. In this case, the min-entropy is H∞(B|XY ) = −log2pguess = 0.34

bits per raw bit. When the system is in a non-ideal situation, such as misalignment, we will
get 0 < W3 < 1. However, the guessing probability in Eqn. 7.3 is still larger than 0.5, and
quantum randomness can be certified.
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7.4 Results analysis

BothW2 andW3 models are based on the dimension witness [83], and their confidence level
analysis is similar to the one in chapter 6.

7.4 Results analysis

The same QRNG scheme was performed three times in our nuclear spin system. Only the
data set from the first implementation is analyzed here. The analysis for the remaining data
sets is similar, and their results are presented in the appendix.

The experimental running time is about 7 hours, and the data set contains 418,666 raw bits.
In theW2 model, with a confidence level of 99% and hashing error 0.001 [145], the entropy
of randomness per raw bit is 0.0541 bits. The total extractable randomness is 23,525 bits,
and the randomness generation speed is about 0.87 bits per second. While in ourW3 model,
with the same confidence level and hashing error, the entropy of randomness per raw bit is
0.0825 bits. The total extractable random bits is 35,632 bits, and the randomness generation
speed is about 1.33 bits per second.

In Fig. 7.9, the theoretical curves of our W3 and W2 models are shown. From the above
analysis, we can see that in our experimental data, compared with theW2 model in [4], 53%
more random bits can be certified by ourW3 model.
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Figure 7.9: Output randomness per raw bit by utilizing different dimension witness protocols. The blue
curve (the upper curve) is the theoretical curve of the W3 model, and the red curve (the lower
curve) represents the theoretical curve of theW2 model. The crosses in blue and red curves are the
experimental realization of our two different protocols.

We use the Toeplitz hashing function to do randomness extraction for our W3 model. We
have n = 418, 666 raw bits, and with a confidence level of 99% and hashing error∆ = 0.001,
the length of the extractable random bits is m = 35, 632 from our W3 model. The NIST
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7 Randomness from a nuclear spin system

Statistical Test Suite results are shown in Fig (7.10). We also present the binary image of the

Figure 7.10: NIST Statistical Test Suite results of the extracted random sequence from W3 model. The
extracted random sequence passes all the tests.

extracted random bits by theW3 model in Fig 7.11.

Figure 7.11: Binary image of the extracted random bits from the raw bits. In this binary image from the
extracted randomness inW3 model, no obvious patterns can be seen.

112



7.5 Conclusion

7.5 Conclusion

We generate quantum randomness from the nuclear spin system in a negatively charged single
NV center at room temperature and quantify the entropy in the randomness with two different
models. Both models are based on the dimension witness [83], which requires no detailed
models to describe the experimental devices but only general assumptions, such as the limited
dimensionality and the independence of the experimental devices. The first model directly
applies the protocol in [4]. In our second dimension witness model, we develop a QRNG
protocol based on a three-dimensional dimension witness W3. We demonstrated how to
quantify randomness from our experimental data using the two models.

The first model’s application is relatively limited to a particular case where state preparation
and measurements are distributed in the intersection lines of three planes. In our case,
these three planes are the x̂ẑ−plane, x̂ŷ−plane, and ŷẑ−plane in a Bloch sphere. The
second model is based on a 3-dimensional witness W3, and it can be applied to any P&M
scenario with six input states, three measurement bases, and binary results. Also, from our
experimental data, the model based on W3 can quantify 53% more random bits than the
W2 model. Thus the construction of the W3 model in our work can certify more quantum
randomness in the same experimental data compared with theW2 model from [4].
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8 Conclusion and outlook

8.1 Conclusion

Since the beginning of human civilization, randomness (or random numbers) has been a crit-
ical element in various aspects of society, encompassing scientific simulations, information
security, and the entertainment industry. True random numbers can only be produced through
a quantummechanical process. However, proving that randomness is derived from a quantum
mechanical process rather than classical noise is far from straightforward. In this thesis, we
have demonstrated our progress in utilizing the unique characteristics of various quantum
phenomena to confirm the presence of quantumness in the generated raw random bits. In
essence, we have explored how to certify quantum randomness from raw experimental data,
which may contain classical noise.

We introduced standard methods for constructing a QRNG whose randomness can be certi-
fied. These methods involve: identifying the quantum phenomenon that can be employed to
certify quantum randomness, performing experiments and analyzing the experimental data
to reveal quantumness through the identified quantum phenomenon, quantifying the min-
entropy of randomness using the quantumness in the data, applying a randomness extractor
to obtain a uniformly distributed random sequence, and finally, utilizing the NIST Statistical
Test to verify the uniformity of the extracted random sequence.

The four quantum phenomena explored in this thesis are:

• the single-photon antibunching effect,

• wave-particle duality in a delayed-choice experiment,

• non-locality in a loophole-free Bell test, and

• nonzero dimension witness of quantum measurements.
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8 Conclusion and outlook

From Chapter 4 to Chapter 7, the QRNG based on each quantum phenomenon is discussed
in depth. In each QRNG, the corresponding protocols are constructed by leveraging the
quantum nature of the experimental results to quantify the entropy of the raw random bits.
Subsequently, Toeplitz matrices as randomness extractors are employed to obtain nearly
uniformly distributed random sequences. Finally, the NIST Statistical Test Suite is used to
assess the uniformity of the extracted random sequences. Below is a conclusion for each
QRNG.

In Chapter 4, the implementation of a single-photon QRNG based on NV center is discussed.
Three different QRNG protocols are presented. In the first model, all the raw bits are used to
extract randomness, and the randomness generation speed is 5.10× 104 bits per second. In
the second model, by utilizing single-photon antibunching effect, only single-photon events
are used to extract randomness, and the randomness output speed is 4.74 × 104 bits per
second, which is in the same magnitude as the first model. Moreover, in the second model,
the single-photon QRNG can be considered a source-independent random number generator,
which does not require the trust of light sources. In the third method, only tuple detection
events below the unity line are considered raw bits. The security level is highest in the third
model, but the randomness output speed drops to 34.37 bits per second. Taking both speed
and security into account, the second model is an ideal choice for a single-photon QRNG.

In Chapter 5, a QRNG model based on a delayed-choice experiment to get quantum random
numbers without the fair sampling assumption is constructed. We use the wave-particle
duality in a delayed-choice experiment to guarantee that photons arrive at the detectors in
superposition states, so the fair sampling assumption is no longer needed. By applying our
model to the delayed-choice experiment performed by Jacques et al. [1], 1, 124 uniformally
distributed random bits can be obtained per second.

In Chapter 6, we show how to certify quantum randomness from a loophole-free Bell
test data [62] by Bell’s theorem [2] and RSP-dimension witness [83, 84, 4, 3]. With the
CHSH inequality [73] in Bell’s theorem, the min-entropy of quantum randomness can be
quantified in a DI-way [82]. Using the RSP-dimension witness, SDI random numbers can
be extracted. Compared with the DI model in [82], our SDI model increases the randomness
from 0.956×10−2 bits per event to 0.153 bits per event, and correspondingly raise randomness
output speed from 2.54 bits per day to 40.63 bits per day, which is one important step towards
the practical use of the Bell test in randomness generation.
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8.2 Outlook

InChapter 7, aQRNGbased on a nuclear spin system inside anNVcenter is studied, including
two QRNG models. The first model directly applies the two-dimensional dimension witness
protocol in [4]. In our second dimension witness model, we develop a protocol based on a
three-dimensional dimension witnessW3. OurW3 based QRNG protocol can be applied to
any P&M scenario with six input states, three measurement bases, and binary results. Also,
from our experimental data, the model based onW3 can bound 53% more random bits than
theW2 model. The randomness output speed is 1.33 bits per second in theW3 model, which
is higher than 0.87 bits per second of theW2 model that from [4].

8.2 Outlook

Quantum random number generation has evolved into a relatively mature quantum technol-
ogy. Optical QRNGs, in particular, have achieved generation rates on the order of gigabits
per second for over a decade [185, 186, 69], and the pursuit of higher generation rates contin-
ues [187, 188, 189]. Concurrently, some optical QRNGs have transitioned from laboratory
settings to commercial products (ID Quantique, QRBG121, Quintessence Labs). However,
optical QRNGs can fail due to device malfunction or external attacks. Therefore, developing
a reliable and fast QRNG capable of self-testing is not only of academic interest but also has
practical implications. As the demand for cryptocurrencies and quantum key distribution
grows, the need for true and reliable randomness will also increase.

The four QRNGs investigated in this thesis highlight various approaches to constructing
reliable QRNGs by exploiting distinct quantum phenomena. Each QRNG can be enhanced
through future developments: As single-photon sources become more prevalent, sources
with higher emission rates and improved quality will be developed. Additionally, the de-
tection efficiency of single-photon detectors will improve. The single-photon QRNG will
benefit from these advancements, likely eliminating the need for the fair-sampling assump-
tion. In the delayed-choice QRNG, the experiment is conducted with single-photons, which
are challenging to interfere with in space-like separation using long fibers. Consequently, the
interference pattern is unstable; however, as single-photon sources and optical fibers advance,
maintaining the interference patterns of single-photons will become more manageable, bol-
stering the robustness of the delayed-choice QRNG scheme. For the Bell test QRNG, the
current technological requirements are stringent; as quantum technologies progress, these
requirements will become more achievable, bringing the DI-QRNG closer to practical use.
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8 Conclusion and outlook

The nuclear spin-based QRNG benefits from high state preparation and measurement fideli-
ties. However, these high fidelities are achieved through sophisticated experimental devices
and complex operations. To make this QRNG more practical, future developments must
focus on creating more portable setups and simplifying the operation process.

In summary, research on reliable QRNGs will persist, with advancements occurring in two
primary ways. Firstly, the development of mathematical protocols used to quantify the
entropy of generated raw random bits will advance. With more refined theoretical protocols,
greater quantum randomness will be quantified from the same experimental data compared
to existing protocols. Secondly, the evolution of quantum technologies and platforms will
contribute to generating quantum randomness more robustly and rapidly. The ongoing
progress in quantum random number generation will lead to more secure and efficient
applications across various fields, further solidifying its importance in both academia and
industry.
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Appendix

We add appendices here for each chapter.

Appendix for Chapter 4

Detection probability and conditional probability.

For the convenience of description, the detector in the transmitted arm is named detector
A (events assigned to raw bit “0”), and the detector in the reflected arm is named detector
B (events assigned to raw bit “1”). Next, we deduce all the conditional probabilities from
the experimental parameters. This does not describe the true probabilities but reflects the
frequencies of the occurring singles and tuples.

Take p(A|A) as an example. p(A|A) means the probability of a subsequent photon to be
detected in detector A when detector A has already detected a previous photon event. Let
ηA be the detection efficiency of detector A, τA

dead be the dead-time of detector A, and T
be the transmission coefficient of the beam-splitter. When detector A clicks, it is in its
dead time.

∫ τA
dead

0
g

(2)
fit (τ)dτ means the probability that the next incident photon is in the

dead-time of detector A, then the probability of this incident photon outside its dead-time is
1−

∫ τA
dead

0
g

(2)
fit (τ)dτ . When the incident photon is outside the dead-time of detector A, it has

probability T to be transmitted to detector A, and detector A has probability ηA to detect this
photon, so p(A|A) could be written as

p(A|A) =
(
1−

∫ τA
dead

0

g
(2)
fit (τ)dτ

)
ηAT . (8.1)
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8 Appendix

Similarly, the parametric equation for p(B|A) is

p(B|A) = ηBR
(
1− ηBR

∫ τB
dead
2

0

g
(2)
fit (τ)dτ

∫ τB
dead
2

0

g
(2)
fit (τ)dτ︸ ︷︷ ︸

probability that detector B is in its dead-time

)
. (8.2)

where ηB is the detection efficiency of detector B, τB
dead is the dead-time of detector B, and

R is the reflection coefficient. This gives us the equation of p(B|A), which means that when
detector A detects a photon event, the probability of detector B detecting a subsequent photon
event.

The formula in the underbrace means the probability of detector B is not in its dead-time
when a photon shoots into the beamsplitter. This probability is an estimation, which is based
on the assumption τA

dead ≈ τB
dead. Before detector A clicks, the previous photon event may be

on detector A or B. If it is on detector A, it will not affect the conditional probability p(B|A)

since when detector A clicks two times, detector B is ready to detect a photon event; if the
previous photon event is on detector B, then after detector A’s click, detector B still has a
probability to be in its dead-time when the next photon comes into the beamsplitter. Inside
the brace, the half of the dead-time of detector B is a simplified version of the above proba-

bility analysis, where ηBR
∫ τB

dead
2

0
g

(2)
fit (τ)dτ gives us the probability that the previous photon

event fires on detector B within the half of the dead-time of detector B, and
∫ τB

dead
2

0
g

(2)
fit (τ)dτ

is the probability that the next incident photon is inside the half of the dead-time of detector B.

p(B|B) and p(A|B) can be derived analogously.

The equation of p(A) is p(A) = rA/rtotal, rA is the click rate of detector A. rA is defined as
following

rA =ηATIin −
(ηATIin)

2
× (ηATIin)

2

∫ τA
dead

0

g
(2)
fit (τ)dτ︸ ︷︷ ︸

rate of two clicks within the dead-time of detector A

= ηATIin −
(ηATIin)2

∫ τA
dead

0
g

(2)
fit (τ)dτ

4
,

(8.3)
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where Iin is the rate of the incident photon, and ηATIin means the click rate when detector A
would have no dead-time. The latter part of the equation is the probability of two subsequent
events in detector A having a time distance that is smaller than the dead time of detector A.
For detector B, a similar equation of rB is derived, and we get

p(A) =
rA

rA + rB

=
ηATIin −

(ηATIin)2
∫ τA

dead
0 g

(2)
fit (τ)dτ

4

ηATIin −
(ηATIin)2

∫ τA
dead

0 g
(2)
fit (τ)dτ

4
+ ηBRIin −

(ηBRIin)2
∫ τB

dead
0 g

(2)
fit (τ)dτ

4

=
ηAT −

(ηAT )2Iin
∫ τA

dead
0 g

(2)
fit (τ)dτ

4

ηAT −
(ηAT )2Iin

∫ τA
dead

0 g
(2)
fit (τ)dτ

4
+ ηBR−

(ηBR)2Iin
∫ τB

dead
0 g

(2)
fit (τ)dτ

4

.

(8.4)

With all the above equations, the parametric expression of H∞(X|Y ) could be deduced.

The error bound of the conditional min-entropy

In this subsection, the error bound of the conditional min-entropy is given. Let us mention
some properties of the error bound. Since p(A) + p(B) = 1 is always fulfilled, we have
∆p(A) = −∆p(B). Also, for conditional probabilities p(A|A), p(B|A), p(A|B), p(B|B),
p(A|A) + p(B|A) = 1 and p(A|B) + p(B|B) = 1, this means ∆p(A|A) = −∆p(B|A) and
∆p(A|B) = −∆p(B|B). Since p(AB) = p(BA)(p(BA) = p(AB) is satisfied under the con-
dition that the experimental devices does not change over time), and ∆p(A) = −∆p(B), it is
easy to derive the relationship ∆p(A|A) = −∆p(B|A) = ∆p(A|B) = −∆p(B|B).

The conditional min-entropy in our case is defined in 4.5. Since p(BA) = p(AB),

H∞(X|Y ) = −log2

(
max{p(A)− p(AB), p(AB)}+ max{p(AB), 1− p(A)− p(AB)}

)
.

(8.5)
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There are four different conditions for H∞(X|Y )

H∞(X|Y ) =



−log2(p(A)) p(A)− p(AB) ≥ p(AB) and p(AB) ≥ 1− p(A)− p(AB) ,

−log2(p(B)) p(A)− p(AB) ≤ p(AB) and p(AB) ≤ 1− p(A)− p(AB) ,

−log2(2p(AB)) p(A)− p(AB) ≤ p(AB) and p(AB) ≥ 1− p(A)− p(AB) ,

−log2(1− 2p(AB)) p(A)− p(AB) ≥ p(AB) and p(AB) ≤ 1− p(A)− p(AB) .

(8.6)

No matter which condition H∞(X|Y ) is in, there is only one variable in it. Then a more
conservative conditional min-entropy could be written as

H∞(X|Y ) = −log2(f(p) + ∆f(p)) (8.7)

where f(p) = max{p(A), p(B), 2p(AB), 1− 2p(AB)}.

The equation of p(A) is Eqn. 8.4, p(A) is affected by the transmission coefficient T , the
rate of incident photon Iin, the detection efficiency ηA, ηB, and the dead-time τAdead, τBdead of
the two detectors. The error bound of each parameter is, δT , δηA

,δηB
, δτAdead

,δτBdead
, and δIin .

According to the error propagation, the error bound of p(A) is

∆p(A) =

(
(
∂p(A)

∂T
δT )2 + (

∂p(A)

∂ηA

δηA
)2 + (

∂p(A)

∂ηB

δηB
)2+

(
∂p(A)

∂τAdead

δτAdead
)2 + (

∂p(A)

∂τBdead

δτBdead
)2 + (

∂p(A)

∂Iin

δIin)2

) 1
2

.

(8.8)

The equation of p(AB) is p(AB) = p(A)p(B|A). From 8.2 and 8.4, we know that multiple
parameters affect p(AB), including τAdead, τBdead, ηA, ηB, T , and Iin, similarly, ∆p(AB) is

∆p(AB) =

(
(
∂p(AB)

∂T
δT )2 + (

∂p(AB)

∂ηA

δηA
)2 + (

∂p(AB)

∂ηB

δηB
)2+

(
∂p(AB)

∂τAdead

δτAdead
)2 + (

∂p(AB)

∂τBdead

δτBdead
)2 + (

∂p(AB)

∂Iin

δIin)2

) 1
2

.

(8.9)

Then from Eqn. 8.7, 8.8, 8.9, the conservative H∞(X|Y ) could be calculated.
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For the second model, there is one more parameter pe, which represents the probability
of detecting an uncorrelated background noise event. The conditional min-entropy for the
second model is

H∞(X|Y ) = −log2

(
pe + (1− pe)

(∑
y

p(y) max
x
{p(x|y)}

))
= −log2

(
pe + (1− pe)f(p)

)
.

(8.10)

where f(p) = max{p(A), p(B), 2p(AB), 1 − 2p(AB)}. A more conservative H∞(X|Y )

for this model is
H∞(X|Y ) = −log2

(
peq + ∆peq

)
(8.11)

where peq = pe + (1 − pe)f(p), then ∆peq =
√

(∂peq
∂pe

∆pe)
2 + ( ∂peq

∂f(p)
∆f(p))2, where ∆f(p) is

derived from 8.8 and 8.9, and ∆pe is shown in 8.12.

Note that the uncertainty of g(2)
fit (0) will affect the fraction of background noise, thus affect

pe. Since pe = 1− s = 1−
√

1− g(2)
fit (0), according to the propagation of uncertainty, the

uncertainty of pe is
∆pe =

1

2

√
1− g(2)

fit (0)
∆
g

(2)
fit (0)

. (8.12)

where ∆
g

(2)
fit (0)

is derived in the following subsection(see Eqn. 8.22).
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The error bound of the classical limit line

In the third model, the extractable quantum randomness in the raw data is determined by the
single photon start-stop event count rate under the classical limit line [159, 161, 109]

rrand = rA

√
1− g(2)

fit (0)× rB

√
1− g(2)

fit (0)×
∫ t

−t
g

(2)
fit (τ)dτ

= (1− g(2)
fit (0))× (ηATIin −

(ηATIin)2
∫ τA

dead

0
g

(2)
fit (τ)dτ

4
)(ηBRIin −

(ηBRIin)2
∫ τB

dead

0
g

(2)
fit (τ)dτ

4
)

×
∫ t

−t
g

(2)
fit (τ)dτ

= (1− g(2)
fit (0))× (ηAT −

(ηAT )2Iin

∫ τA
dead

0
g

(2)
fit (τ)dτ

4
)(ηBR−

(ηBR)2Iin

∫ τB
dead

0
g

(2)
fit (τ)dτ

4
)

× I2
in

∫ t

−t
g

(2)
fit (τ)dτ .

(8.13)

where t satisfies g(2)
fit (t) = 1. And the quantum fraction of the rawbits is defined as rrand/rtotal,

then pc, the classical noise probability, is pc = 1− rrand/rtotal. Under the classical limit line,
the events 0-1 is taken as random bit 0, and 1-0 is taken as 1, the conditional min-entropy in
this case is defined as

H∞(X|Y) = −log2

(
pc + (1− pc)

(
max{p(00), p(01)}+ max{p(10), p(11)}

))
= −log2

(
pc + (1− pc)f(p)

)
.

(8.14)

where f(p) = max{p(0), p(1), 2p(01), 1− 2p(01)}.

For the convenience of description, without losing generality, we associate event pair “AB"
to random bit 0, and “BA" to 1. For probabilities p(0) and p(1), there are two different
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situations. The first situation: when t is larger than the half of the dead-time of the detectors,
we have

p(0) = p(AB) = p(A)ηBR
( ∫ t

0

g
(2)
fit (τ)dτ−ηBR

∫ τB
dead
2

0

g
(2)
fit (τ)dτ×

∫ τB
dead
2

0

g
(2)
fit (τ)dτ︸ ︷︷ ︸

incident photon within τB
dead/2.

)
.

(8.15)

The probability here is very similar to 8.2, except we only consider short-time related photon
events in this situation, so we replace ‘1’ in 8.2 with

∫ t
0
g

(2)
fit (τ)dτ here, where p(A) is in 8.4.

The other situation is when t is smaller than the half of the dead-time of each detector, we
need to change the formula inside the underbrace to

∫ t
0
g

(2)
fit (τ)dτ , then

p(0) = p(AB) = p(A)ηBR

∫ t

0

g
(2)
fit (τ)dτ

(
1− ηBR

∫ τB
dead
2

0

g
(2)
fit (τ)dτ

)
. (8.16)

The equation of p(1) can be deduced in a similar way.

For the photon events under the classical limit line, the events pair 0 or 1 is are much less
correlated than previous models, they can be treated as independent events, so we have

p(00) = p(0)p(0) ,

p(01) = p(0)p(1) ,

p(10) = p(1)p(0) ,

p(11) = p(1)p(1) .

(8.17)

Next we calculate the conservative conditional min-entropy in this model, similar to the
second model, we have

H∞(X|Y) = −log2

(
pcq + ∆pcq

)
. (8.18)

where pcq = pc + (1 − pc)f(p), then ∆pcq =
√

(∂pcq
∂pc

∆pc)
2 + ( ∂pcq

∂f(p)
∆f(p))2. From pc =

1− rrand/rtotal, we get

pc = 1−
(1− g(2)

fit (0))× rA × rB ×
∫ t
−t g

(2)
fit (τ)dτ

rA + rB

. (8.19)
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and the equation for f(p) is in 8.16, 8.15 and 8.17. From the equations of pc and f(p), we
can see that they are dependent on some same parameters, including the dead-time of the
two detectors, the detection efficiencies, and the beam-splitter ratio etc. This means that they
are not independent from each other, so ∆pcq 6=

√
(∂pcq
∂pc

∆pc)
2 + ( ∂pcq

∂f(p)
∆f(p))2, ∆pcq should

be derived directly from the experimental parameters

∆pcq =

(
(
∂pc
∂T

δT )2 + (
∂pc
∂ηA

δηA
)2 + (

∂pc
∂ηB

δηB
)2 + (

∂pc
∂τAdead

δτAdead
)2+

(
∂pc
∂τBdead

δτBdead
)2 + (

∂pc
∂Iin

δIin)2 +
∂pc
∂t
δt)

2

) 1
2

.

(8.20)

where t satisfies g(2)
fit (t) = 1. Next we derive δt. In our case, δt is characterized by the

classical limit line. The classical limit line is determined by the normalization factor of the
experimental anti-bunching curve. The normalization factor Nnorm is calculated by

Nnorm = rArBτrsTtotal

where τrs is the timing resolution of the start-stop event, Ttotal is the total integration time (the
running time of the experiment). Nnorm can be determined by multiple parameters, including
the detection efficiency and dead-time of each detector, and the reflection and transmission
coefficients. According to the propagation of uncertainty, we get the uncertainty of Nnorm

∆norm =

(
(
∂Nnorm

∂R
δR)2 + (

∂Nnorm

∂ηA

δηA
)2+

(
∂Nnorm

∂ηB

δηB
)2 + (

∂Nnorm

∂Iin

δIin)2+

(
∂Nnorm

∂τA
dead

δτA
dead

)2 + (
∂Nnorm

∂τB
dead

δτB
dead

)2

) 1
2

.

Then the uncertainty of the classical limit line (i.e. g(2)
fit (τ) = 1) amounts to

∆1 = 1× ∆norm

Nnorm

. (8.21)

and the uncertainty of the background line g(2)
fit (0) is
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∆
g

(2)
fit (0)

= g
(2)
fit (0)

∆norm

Nnorm

. (8.22)

From the uncertainty of classical limit line, δt = t− t′ can be deduced, where t′ satisfies the
equation g(2)

fit (t′) = 1−∆1. Then ∆pcq can be derived.

Appendix for Chapter 5

Photon statistics at polarized beamsplitters

Here we give an analytical equation to show how photon interference happens in the Mach-
Zehnder interferometer with polarizing beamsplitters (PBSs), as shown in our experimental
scheme in Fig. 5.1. For the convenience of illustration, part of our scheme is reshown here.

Path2

Path1

PBS1

PBS2

a c

d

b

e

f

Figure 8.1: MZI with polarizing beamsplitters. In the delayed-choice experiment by Jacques et al., they use
polarizing beamsplitters PBS1 and PBS2. Path 1 and Path 2 are fibers with the same length.

Polarized beamsplitters can reflect only vertical polarized photons and transmit horizontally
polarized photons. The polarization adds an additional degree of freedom to the photon.
Suppose photon incidents from the port (a), and then after PBS1, the photon is in state

|a〉 PBS1−−−→ 1√
2

(|cH〉+ i |dV 〉) (8.23)

127



8 Appendix

where H, V represent horizontal and vertical polarization directions. Then photon travels
in path 1 and path 2 and recombines in the second PBS. State |c〉 and |d〉 evolves in the
following way

|c〉 PBS2−−−→ i |fH〉

|d〉 ϕ−→ eiϕ |d〉 PBS2−−−→ ieiϕ |eV 〉
(8.24)

Then the total process of state |a〉 is

|a〉 PBS1−−−→ 1√
2

(|cH〉+ i |dV 〉)
ϕ−→ 1√

2
(|cH〉+ ieiϕ |dV 〉

PBS2−−−→ 1√
2

(|fH〉+ ieiϕ |eV 〉) (8.25)

Apparently, after PBS2, there is no interference since photons in the two paths are distin-
guishable. Now an EOM is put after ports (e) and (f), and voltage Vπ is applied. The EOM
is behaving as a half-wave plate with a fast axis at angle 22.5◦, the state |fH〉 and |eV 〉 will
be changed to

|fH〉
EOM−−−→ 1√

2
(|fH〉+ |fV 〉)

|eV 〉
EOM−−−→ 1√

2
(|eH〉 − |eV 〉)

(8.26)

As shown in Fig. 8.2, after the EOM, beam (e) and (f) are recombined in PBS3. Then we

PBS2

eV

fH

FC

FC
PBS3

D1

D2

FC
M

EOM

gV

hH

Vπ

Figure 8.2: Beams recombine after PBS2.

have

|a〉 PBS1−−−→ 1√
2

(|cH〉+ i |dV 〉)
ϕ−→ 1√

2
(|cH〉+ ieiϕ |dV 〉

PBS2−−−→ 1√
2

(|fH〉+ ieiϕ |eV 〉)

EOM−−−→ 1

2

(
fH + fV + ieiϕeH − ieiϕeV

) PBS3−−−→ 1

2
(1 + ieiϕ)hH +

1

2
(1− ieiϕ)gV

(8.27)
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The probability of finding a photon in beam (g) and (h) is

pg =
1

2
(1 + sinϕ)

ph =
1

2
(1− sinϕ)

(8.28)

With the change of phase-shift ϕ, the interference patterns can be observed in D1 and D2.

Appendix for Chapter 6

Guessing probability of p(ab|xy) under SDI conditions.

With the assumption being settled in Chapter 6, the guessing probability can now be derived,
and then with the guessing probability, the min-entropy in the raw bits can be quantified.

Under SDI conditions, according to the assumptions, Alice’s and Bob’s measurement settings
are independent of each other, and the internal states of the experimental devices are not
affected by previous results during the experimental run. Due to the requirement that
subsequent measurements are i.i.d., their choices of measurements are uniformly random;
thus, each combination of x and y occurs with probability 1/4. Then the guessing probability
pg(ab|xy) can be defined as

pg(ab|xy) =
1

4

∑
x,y

max
a,b

p(ab|xy) (8.29)
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The right part of this equation satisfies

1

4

∑
x,y

max
a,b

p(ab|xy)

=
1

4

∑
x,y

max
a,b

p(a|x)p(b|x, a, y)

≤ 1

4

∑
x,y

max
a,b

p(a|x) max
a,b

p(b|x, a, y)

≤ 1

2

∑
x

max
a
p(a|x)

1

2

∑
y

max
x,a,b

p(b|(x, a), y)

≤ max
x,a

p(a|x)
1

2

∑
y

max
x,a,b

p(b|(x, a), y),

(8.30)

where the upper bound of 1
2

∑
y maxx,a,b p(b|(x, a), y) can be obtained from [4], and it is

1

2

∑
y

max
x,a,b

p(b|(x, a), y) ≤ 1

2

1 +

√
1 +

√
1−W 2

B

2

 . (8.31)

The next step is to find an upper bound of p(a|x) with the givenWB.

In the ideal case, with a perfect maximally entangled state and a perfect measurement pro-
cedure at Alice’s side, the probability distribution for a local measurement outcome a is
p(a|x) = 0.5. However, in reality, the experimental devices will have imperfections, and
thus, the probabilities might deviate from the perfect value of 0.5, and this deviation can be
connected toWB.

Each combination of a and x is associated with a state ρa|x (see, Eqn (6.3)). Since these are
qubit states, we write them as

ρa|x =
I2 + ~sa|x · ~σ

2
, (8.32)

where ~sa|x is a Bloch vector, ~σ = σxî+σy ĵ+σzk̂ is the Pauli vector, and I2 is a 2-dimension
unity matrix. Additionally, the measurement operator for Bob’s side is

MB
b|y =

cyI2 + ~Ty · ~σ
2

, (8.33)
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where |cy| ≤ 1, and ~Ty is a Bloch vector. Inserting the state ρa|x (Eqn. (8.32)) and the
measurement operator MB

b|y (Eqn. (8.33)) in Eqn.(2) allows to calculate the probability
p(b|a, x, y) = p(b|x′, y) for a measurement outcome b depending on a, x, and y. In the
following we only consider b = 1 and formulate this depending on a, x, and y. Define
p(b = 1|(x, a), y) = p((a|x), y), and then the matrix elements of the dimension witness
(Eqn.(3)) take the form

p((a = 0|x), y)− p((a = 1|x), y) = Tr[(ρa=0|x − ρ1|x)M
B
b=1|y] = ~Sx · ~Ty, (8.34)

where ~Sx = (~sa=0|x − ~sa=1|x)/2.

To get the upper bound of p(a|x) with the given WB, suppose the entangled state shared
between Alice and Bob is |Ψ+

θ 〉 = cos θ |01〉− sin θ |10〉. For this state, when Alice performs
her two measurements x̂ and ẑ on this state, we have max p(a|x) ≤ cos2 θ. Correspondingly,
Bob will get four states on his side. Then according to Eqn. (8.34), and Eqn.(8) in [83], we
have

WB =

∣∣∣∣∣∣
~S0 · ~T0

~S1 · ~T0

~S0 · ~T1
~S1 · ~T1

∣∣∣∣∣∣
=
(
~S0 × ~S1

)
·
(
~T0 × ~T1

)
≤
∣∣∣~S0 × ~S1

∣∣∣ · ∣∣∣~T0 × ~T1

∣∣∣ ≤ 1.

(8.35)

where
∣∣∣~S0 × ~S1

∣∣∣ = sin 2θ. Suppose the measurement settings of Bob’s side are in ideal

conditions, which means
∣∣∣~T0 × ~T1

∣∣∣ = 1. Then WB ≤ sin 2θ. Considering max p(a|x) ≤
cos2 θ, the upper bound of p(a|x) can be quantified as

max
a,x

p(a|x) ≤
1 +

√
1−W 2

B

2
(8.36)

The above derivation process leads to the maximum p(a|x) with the given WB value. Of
course, the deviation of WB from the optimal value 1 might have other causes other than
the non-maximal pure entangled state. However, compared to our analysis above, none of
them can produce a larger upper bound of p(a|x). Two more different scenarios may lead
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to a larger guessing probability with given WB. The first scenario is that we have a mixed
entangled state, which is:

ρz =
1− z

4
I︸ ︷︷ ︸

Noise

+ z |Ψ+
θ 〉 〈Ψ

+
θ |︸ ︷︷ ︸

|Ψ+
θ 〉

(8.37)

where z ∈ (0, 1) and |Ψ+
θ 〉 = cos θ |01〉 − sin θ |10〉. Suppose the dimension witness of this

system is still WB, and let the dimension witness of the |Ψ+
θ 〉 part be W ′

B. Then according
to [83], WB ≤ z2W ′

B. Since the measurement result of the noise part is determinate, the
maximal guessing probability p1(a|x) for this state is (1− z) + z cos2 θ. From our derivation
process above, the relationship betweenW ′

B and θ isW ′
B ≤ sin 2θ. From all these conditions,

the max p1(a|x) for state (8.37) is

max p1(a|x) ≤ 1− z +
z

2

(
1 +

√
1−W 2

B/z
2

)
(8.38)

Moreover, another possible scenario is that Alice and Bob share aWerner state (6.7) between
them. In this situation, the dimension witness isWB ≤ z2, the maximal guessing probability
is max p2(a|x) ≤ 1− z/2, then

max p2(a|x) ≤ 1−
√
WB

2
(8.39)

The three upper bounds in Eqn. (8.36), Eqn. (8.38) and Eqn. (8.39) is shown in Fig. (8.3).
From this figure, we can see that the guessing probability in Eqn. (8.36) is the worst-case
scenario.

Figure 8.3: The guessing probability upper bounds in three different scenarios. This figure is adapted
from supplementary of our publication [3].
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Combining Eqn. (8.31) and Eqn. (8.36), the upper bound of pg(ab|xy) under the SDI
conditions can be obtained

pg(ab|xy) ≤ max
a,x

p(a|x)
1

2

∑
y

max
x,a,b

p(b|(x, a), y)

≤

(
1 +

√
1−W 2

B

2

)
1

2

1 +

√
1 +

√
1−W 2

B

2

 (8.40)

This guessing probability is derived from WB. From WA, a similar upper bound can be
derived. Since we define Wrsp = min{WA,WB}, the larger guessing probability between
WA andWB will be chosen as pg(ab|xy), which means the upper bound of pg(ab|xy) is

pg(ab|xy) ≤

(
1 +

√
1−W 2

rsp

2

)
1

2

1 +

√
1 +

√
1−W 2

rsp

2

 (8.41)

As we can see, guessing probability pguess(ab|xy) from Wrsp is not the same as the one
from [4]. The difference is caused by maxx,a p(a|x), which represents the quantum mea-
surement from the state preparation process.

Appendix for Chapter 7

Guessing probability of p(ab|xy) in chapter 7

We show here how to get the guessing probability mentioned in the Eqn. 7.3 of chapter 7.
We define the guessing probability of the results of one specific prepare-and-measure run as

px,y,λ,µ = max
b
p(b|x, y, λ, µ) (8.42)

where λ, µ represent the internal states of state preparation and measurement devices, and
they are independent of each other. Since we are using uniformly distributed input a and b,
the guessing probability pguess of all the prepare-and-measure runs is defined as the average
of all the combination of different states and measurements:

pguess =
1

18

∑
x,y

max
b
p(b|x, y, λ, µ) (8.43)
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The coefficient 1/18 is from the fact that we have six states in preparation, a = 0, 1, 2, 3, 4, 5,
and three measurement bases b = 0, 1, 2. They have 18 different combinations, and each
combination will appear with probability 1/18. Next, we provide an upper bound for this
guessing probability. Obviously, we have

1

18

∑
x,y

max
b
p(b|x, y, λ, µ)

≤ 1

3
max
x

∑
y

max
b
p(b|x, y, λ, µ).

(8.44)

The “≤” in this equation is because we choose one state from the six preparation states, which
leads to the maximum guessing probability over the three possible measurement bases. The
upper bound of 1

3
maxx

∑
y maxb p(b|x, y, λ, µ), is

1

3
max
x

∑
y

max
b
p(b|x, y, λ, µ)

≤ 1

6
(3 +

√
3
√

1 + 2 cos θ)

(8.45)

where 0 ≤ θ ≤ π/2 is the angle among the three measurement bases as shown in Fig. 8.4

θ

T0

T1
T2

Smax

φ1

φ0

φ2

Figure 8.4: One state with three measurement settings in a Bloch sphere. The angel between T0 and T1,
T1 and T2, T0 and T2 are all θ (this scenario maximize the guessing probability and will be proved
in the following content). The state ~Smax is from the six preparation states which can maximize
the guessing probability among T0, T1 and T2. The probabilities of the outcome, say, b = 1 is
given by projections of state ~Smax onto T0,1,2. The maximum average probability of all the three

measurements can only be obtained when φ0 = φ1 = φ2 = 2 cos−1
(√√

6 cos θ+3+3√
6

)
, which

will be derived shortly.
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Next, we need to connect this upper bound with the value of dimension witness W3. Ac-
cording to Eqn.(14) in [83],W3 can be represented as:

W3 =

∣∣∣∣∣∣∣∣∣
~S01 · ~T0

~S23 · ~T0
~S45 · ~T0

~S01 · ~T1
~S23 · ~T1

~S45 · ~T1

~S01 · ~T2
~S23 · ~T2

~S45 · ~T2

∣∣∣∣∣∣∣∣∣
=~S01 · ~T0

∣∣∣(~S23 × ~S45

)
·
(
~T1 × ~T2

)∣∣∣− ~S23 · ~T0

∣∣∣(~S01 × ~S45

)
·
(
~T1 × ~T2

)∣∣∣+
~S45 · ~T0

∣∣∣(~S01 × ~S23

)
·
(
~T1 × ~T2

)∣∣∣
≤~S01 · ~T0

∣∣∣(~S23 × ~S45

)
·
(
~T1 × ~T2

)∣∣∣+ ~S23 · ~T0

∣∣∣(~S01 × ~S45

)
·
(
~T1 × ~T2

)∣∣∣+
~S45 · ~T0

∣∣∣(~S01 × ~S23

)
·
(
~T1 × ~T2

)∣∣∣
≤~S01 · ~T0

∣∣∣~S23 × ~S45

∣∣∣ · ∣∣∣~T1 × ~T2

∣∣∣+ ~S23 · ~T0

∣∣∣~S01 × ~S45

∣∣∣ · ∣∣∣~T1 × ~T2

∣∣∣+
~S45 · ~T0

∣∣∣~S01 × ~S23

∣∣∣ · ∣∣∣~T1 × ~T2

∣∣∣
=
(
~S01 ·

∣∣∣~S23 × ~S45

∣∣∣+ ~S23 ·
∣∣∣~S01 × ~S45

∣∣∣+ ~S45 ·
∣∣∣~S01 × ~S23

∣∣∣) · (~T0 ·
∣∣∣~T1 × ~T2

∣∣∣) .
(8.46)

Using the properties of scalar triple product a · (b × c) = b · (c × a) = c · (a × b) and
a×b = −(b× a) (where a, b, and c are vectors), the above equation can be further written
as

W3 ≤
∣∣∣(~S01 × ~S23

)
· ~S45

∣∣∣ · ∣∣∣(~T0 × ~T1

)
· ~T2

∣∣∣ ≤ ∣∣∣(~T0 × ~T1

)
· ~T2

∣∣∣ . (8.47)

Notice that the angle among the three Bloch vectors T0,1,2 is θ. We can represent W3 as a
function of θ:

W3 ≤ 2 sin

(
θ

2

)
sin(θ)

√
1− 1

2 cos(θ) + 2
(8.48)

Considering 8.45 and 8.48, the upper bound of pguess can be derived as Eqn. 7.3 in Chapter. 7.

During the deriving of pguess, we have assumed that the angles among three different mea-
surement bases are the same, and also the state ~Smax (see Fig. 8.5) has the same angle towards
them. In a real experiment, the angles among three different measurement bases can have
three different values, and we prove that only when these three different angles have the same
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value, the upper bound of pguess will be maximized with a given dimension witness value
W3. Suppose the angles among three measurement bases are different from each other, as
shown in Fig 8.5.

z

y

θ
siη

T1

T0

x

Φ

α

T2

Figure 8.5: Angles between different measurement bases defined in a Bloch sphere. In this figure, mea-
surement basis T0 is overlapped with ẑ axis, T1 is in the x̂ẑ plane, and T2 has an angle α towards ŷ
axis. The state ~Smax is from the six preparation states which canmaximize the guessing probability
among T0, T1 and T2

From Fig 8.5 we can see that the angle between T0 and T1 is θ, the angle between T2 and ŷ
axis is α. We assume the six preparation states have the following relationship: ~S0 = −~S1,
~S2 = −~S3, ~S4 = −~S5, and ~S0, ~S2, ~S4 are mutually perpendicular to each other (one special
case is ~S0 = −~S1 = ẑ, ~S2 = −~S3 = x̂ and ~S4 = −~S5 = ŷ). This condition guarantees that
the six preparation states are in an ideal case, and the value of W3 is only affected by the
angles among different measurement bases T0, T1, and T2. Considering the angles among
the three measurement bases and Eqn. 8.47, the dimension witness valueW3 can be derived
as

W3 ≤
∣∣∣(~T0 × ~T1

)
· ~T2

∣∣∣ = sin θ cosα. (8.49)

It can be easily verified that if we rotate T2 around ŷ, the value ofW3 will remain unchanged,
soW3 can be determined by two angles θ and α.
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The state ~Smax in the Bloch-sphere is defined by two angles η and φ. When measuring this
state with T0 the guessing probability of the result is cos2 η

2
, for T1 the guessing probability

is cos2 δ
2
, where δ is the angle between ~Smax and T1, and it is derived as

δ = cos−1(sin(η) sin(θ) cos(φ) + cos(η) cos(θ)). (8.50)

And when measuring this state with T2, the guessing probability is cos2 γ
2
, where γ is the

angle between T2 and ~Smax, γ is derived as

γ ≥
(

cos−1(sin(η) sin(φ))− α
2

)
. (8.51)

Since T2 can rotate freely around ŷ without changing the value of W3, when rotating T2 to
the position between ~Smax and ŷ, and in the same plane formed by ~Smax and ŷ, we can get
the minimum value of γ, which maximize the guessing probability cos2 γ

2
.

Next, by averaging the guessing probability among the three measurement bases, we have

pguess ≤
cos2 η

2
+ cos2 δ

2
+ cos2 γ

2

3

= f(θ, α, η, φ),

(8.52)

where f(θ, α, η, φ) means pguess is determined by four parameters θ, α, η, φ. With a givenW3

value, α can be decided by θ, so pguess can be resolved by three different parameters: θ, η
and φ. By using the method of Lagrange multipliers, we can get the maximum pguess over
these three parameters with a givenW3. When the following conditions are satisfied, pguess

can be maximized:

η = 2 cos−1

(√√
6 cos θ + 3 + 3√

6

)

φ = cos−1

tan

(
θ

2

)
cot

2 cos−1


√√

6
√

cos2(θ) + 3 + 3
√

6





(8.53)
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where θ is determined byW3

θ = sin−1


√√√√√1

4

1− 2
6

√
(8W 2

3 + 1)
3

cos

1

3

tan−1

 8W3

√
(1−W 2

3 )
3

−8W3
4 − 20W3

2 + 1

+ π




(8.54)
With the parameters given in Eqn. 8.53 and 8.54, the angles η, δ, γ in Eqn. 8.52 can be
determined byW3, and as expected, they have the same value as η in Eqn. 8.53. Also, when
η, δ, γ have the same value, the angles between three measurement bases T0, T1, T2 are the
same, and they all have angle θ between each other.

Then the maximum value of pguess is

pguess =1 +

√√√√1− 2
3

(
1−

√
1− 1

4

(
1− 2 6

√(
8W3

2 + 1
)3

cos

(
1
3

(
tan−1

(
8W3

√
(1−W 2

3 )
3

−8W3
4−20W3

2+1

)
+ π

))))
2

,

(8.55)

which is exactly the one shown as Eqn. 7.3 in the main text. The proof concludes here.

Determining the thresholds

The single-shot readout results are the number of photons detected in a cycle [190], and these
photons have a distribution. Since many photons are detected in a single measurement cycle,
it is more efficient to assign a discrete outcome based on a threshold condition [190, 191].
As shown in Fig 8.6, histogram (a1) is the charged state distribution after the laser pumping,
and (a2) is the distribution of nuclear spin states after the initialization. (a3) is the photon
counts distribution of the final nuclear spin states (which represent the measurement results).

For each histogram, we have to set a threshold to make a decision about the photon counts.
The first two thresholds th1 and th2 filter out the unnecessary NV0 state and nuclear spin
states |0I〉 , |+1I〉. The third threshold th3 determines the binary value (i.e., 0 or 1) of the
measurement results. To avoid the post-selection of the data, we choose 10% data to get the
optimized thresholds.
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We have three data sets, and the amount of preliminary events in total is 3188160 bits. We
optimize the thresholds of each data set separately. The following analysis and figures are
based on the first data set. For the other two data sets, the process is similar.

Each preliminary event contains the photon counts of the single-shot readout results of the
NV charge state, initialized nuclear spin state, and the final nuclear spin state. In other
words, each final nuclear spin state is from a specific initialized nuclear state in a specific
NV charge state. Some final nuclear spin states may come from the undesired initialized nu-
clear spin states |0I〉 , |+1I〉 orNV0 state, and these final nuclear spin statesmust be discarded.

Choose the prepare-and-measure pair |+〉-ẑ as an example. For this prepare-and-measure,
the single-shot readout results of its charged state, initialized nuclear spin states, and the
final nuclear spin states are shown in Fig 8.6. The three sub-figures in row (a) display the
unprocessed data from the experiment. In sub-figure (a1), each peak represents different NV
charged states; in (a2), each peak corresponds to different initialized nuclear spin states. (a3)
is the final nuclear spin state distribution. The three figures in row (b) explain how the data
post-processing works. In (b1), for the charged state decision measurement, the NV center is
not only negatively charged, but some of them are also neutrally charged. We only need the
negatively charged state NV −, so we need to set a threshold to get the NV− state. In (b2),
we prepare the nuclear spin into |−1I〉, but not all the nuclear spin can be initialized into
this state. Some of them can be initialized into |0I〉 or |+1I〉. So there are two peaks in the
distribution of photon counts. Each peak represents different nuclear spin states. As we only
need |−1I〉 (which is shown as green parts), we must set thresholds to discard the undesired
spin states. After setting the thresholds for the charge states and the initialized nuclear spin
states, the photon counts distribution of the final nuclear spin states will also change. With
different thresholds in the charged state and the initialized nuclear spin states distribution,
the final size of the raw bits also changes accordingly.

When high readout fidelity is preferred, we set the thresholds for the NV− state and |−1I〉
state from the peaks in the histograms. The threshold of the charged state is 66, and of the
initialized nuclear spin state is 46, which is shown as line 1 in sub-figure (b1) and (b2) of
Fig 8.6. The raw bits distribution is shown as the lower part of (b3), which is only 3.43% of
all the measurement events. The fidelities of preparing NV− and |−1I〉 with threshold 1 is
more than 99%.
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When the maximum output randomness is preferred, set both thresholds to line 2, and the
distribution of the raw bits is shown in the upper part of (b3). The fidelity of NV− is about
98%, and |−1I〉 is about 95%. The raw bits size is about 11.83% of all the measurement
events.
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Figure 8.6: The histogram distributions of charge state, nuclear spin initialization and the raw events. In
all the sub-figures, the vertical axis is the number of events, and the horizontal axis is the number
of photons. The photon counts distribution of the single-shot readout for the charged states, the
initialized nuclear spin states, and the final nuclear spin states are shown in row(a). In row(b), we
show how the thresholds of nuclear spin initialization and the charged NV states affect the size of
the raw bits. The readout error ε1 and ε2 will also change with different thresholds.

We have the raw bits when the thresholds of the charged states and the initialized nuclear
spin states are settled. The raw bits have two different peaks, corresponding to two different
nuclear spin states. We map the left peak to random bit “0” and the right peak to random bit
“1”. To fully distinguish all the raw bits, we need to set a threshold in the distribution of the
raw bits. We can either set one threshold or two different thresholds to distinguish between
“0” and “1”. Again, we use |+〉-ẑ as an example. Choose the raw bit distribution in the
lower part of (b3) in Fig 8.6, and re-show it in Fig 8.7.

In this raw bits distribution, we can set thresholds for each peak from the optimal point,
which is shown as the green and blue dashed line in Fig 8.7. In this case, the readout fidelity
for “0” and “1” are both higher than 99.999%, but almost half of the raw bits are further
discarded. To keep the size of raw bits as large as possible, we can move thresholds from
position 1 towards 2 (green dashed curve), where two thresholds are overlapped. In position
2, all the raw bits remain, and the readout fidelities of “0” and “1” are about 99%, which
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is still very high. So, for the distribution of the raw bits, we set the threshold as the green
dashed line.
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Figure 8.7: The raw bits distribution with different thresholds. When changing the thresholds from
threshold 1 (red dashed line in the left and blue dashed line in the right) to threshold 2 (green
dashed line in the middle), the average single-shot readout fidelity changes from 99.999% to 99%,
the decrease is not so significant, but the size of the raw bits is nearly doubled.

As mentioned before, different thresholds can be settled for the thresholds of the charged
states and the initialized nuclear spin states distribution. In our case, we choose the thresh-
olds which can maximize the output randomness. Now we explain it in more detail.

When the thresholds in (b1) and (b2) of Fig 8.6 are moving from position 1 to 2, the raw
bits size increases, and also the final extracted randomness reaches the maximum. If we
continue to move the thresholds from position 2 to enlarge the size of the raw bits further,
the extracted randomness will drop. This is because the total fidelity drops, and so does the
dimension witness value. Their relationship is shown in Fig. (8.8).

 F
id

e
lit

y
 (

W
3
) 

v
a
lu

e

O
u
tp

u
t 

sp
e
e
d

(b
it

s/
s)

Raw bits size(×105)

1.0

0.8

0.6

0.4

0.2

0.0

Measurement fidelity
Dimension witness W3

Certified randomness
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

0 1 2 3 4 5 6

Figure 8.8: The total fidelity versus the randomness output speed. The red curve is the total fidelity, which is
affected by the threshold settings. The red dotted curve is the value ofW3 with different preparation
fidelities. The green curve is the total randomness output speed with different dimension witness
values.
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We can see from Fig. (8.8) that the total randomness output is not only influenced by the
dimension witness value but also by the size of the raw bits. When we increase the total
fidelity of the experiment device, as expected, the value of dimension witnessW3 will also be
increased. In the meanwhile, the size of the raw bits is decreasing. The growth of dimension
witness value and the drop of raw bits size will make the final output randomness behave as
the green curve in this figure.

The drop in the total fidelity and the dimension witness value is mainly due to the threshold
settings in figures (b1) and (b2) of Fig. 8.6. When moving thresholds from position 1
towards position 2, the readout error ε1 and ε2 will increase, and the size of the raw bits
will also increase. When the thresholds reach position 2, the output randomness reaches the
maximum. If we further move the thresholds away from position 2, the size of the raw bits
will still increase, but the total fidelity (correspondingly the dimension witness value) will
drop faster, so the total extractable randomness will drop. Their relationship is shown in
Fig. (8.8).

When all the thresholds are fixed, we now investigate the memory effect of the adjacent
experimental runs. The differences between the conditional probabilities p(1|0) and p(1|1)

are shown in Fig. 8.9. From this figure, we can see that our experimental setup is memoryless.
All the differences can be explained by 3σ shot noise.

C
o
rr

e
la

ti
o
n
 v

a
lu

e

States Preparation

Z x Y

C
o
rr

e
la

ti
o
n
 v

a
lu

e

States Preparation

Z x Y

Figure 8.9: The conditional probability differences of 18 different P&M pairs with different threshold
settings. The left figure is the differences with 98% total fidelity, and the right figure is the
differences with 92% total fidelity (which corresponds to the maximum randomness output). From
the figures, we can see that the conditional probability differences do not change so much with
the changing of different thresholds. This proves that our experimental device is memoryless with
different threshold settings. The differences here are calculated the same way described in the main
text.
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From the above analysis, we choose to maximize the output randomness. To avoid post-
selection of the experimental results, we take 10% measurement events as sample data from
each data set to get the thresholds value of the charged state NV−, the nuclear spin state |−1I〉
initialization, and the raw bits distributions. This sample data for the first data set contains
105,948 measurement events. The photon counts distribution of the sample data, and test
data is shown in Fig. 8.10. This figure indicates that the sample data and the rest data have an
identical distribution. This not only shows the robustness of our experimental setup but also
means that the thresholds from the sample data can be applied to the rest data to maximize
the output randomness. After we obtain the value of three thresholds, we get the raw bits
with 0 and 1. Then we calculate the dimension witness value and apply our models to certify
quantum randomness from the raw bits.
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Figure 8.10: The comparison between the photon counts distribution of sample data and the rest valid
data. The blue part is the sample data, and the red part is the rest. The overlapping part is purple.
From left to right, we can see that the photon counts distribution of charged states, the initialized
nuclear spin states, and the final nuclear spin states are identical between the sample data and the
test data.

W2 and W3 protocols in chapter 4

In the previous analysis, all the threshold settings are optimized for theW3 model. We prove
here that the thresholds also fit theW2 model. As shown in Fig. 8.11, when the total fidelity
is dropping, the value ofW2 andW3 have similar behaviors (left figure), and also the output
speed of the randomness (right figure). So the threshold settings we optimized for the W3

model are also suitable for theW2 model.

324 prepare-and-measure pairs

Because of the complexity of the operation, we can only input one sequence with 36 different
P&M pairs each time. In this one sequence, if we input pairs randomly, it is infeasible to
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Figure 8.11: The similar behavior ofW2 andW3 model with different raw bits size. For the figure on the
left, from above to bottom, the lines are total fidelity line (which shares the same vertical axis
with the dimension witness value), 2-D dimension witness value in yz, xz, xy planes, and the
W3 value. In the right figure, the upper red dashed line is the randomness output speed of theW2

model, and the lower green dashed line is the output speed of theW3 model.

implement all 18 possible pairs. This makes it very difficult to investigate the memory effect
of each pair. To show that our setup is memoryless for any P&M pair, we specially design a
sequence with 324 pairs. During our experiment, we divide these 324 pairs into nine different
sections, and each section contains 36 pairs. All 324 pairs can be implemented in every nine
input sequences. The 324 pairs are designed in such a way that each of the 18 P&M pairs
appears with the same frequency, and after the current pair, all the 18 different pairs appear
with the same frequency in the next coming pair. For example, for the P&M pair S0-ẑ, the
next P&M pair can be any pair from all 18 pairs. In this way, we can analyze the memory
effect of S0-ẑ on all the pairs.

The specially designed P&M pairs are shown here.
{1x} {1x} {2y} {1x} {3z} {1y} {4y} {1z} {5z} {1x} {6x} {2y} {2x} {3z} {2y} {4y}
{2z} {5z} {2x} {6x} {3y} {3x} {4z} {3y} {5y} {3z} {6z} {4x} {4x} {5y} {4x} {6z}
{5y} {5y} {6z} {6z} {1z} {1x} {2x} {1y} {3x} {1z} {4y} {1y} {5z} {1z} {6x} {2x}
{2y} {3x} {2z} {4y} {2y} {5z} {2z} {6x} {3x} {3y} {4x} {3z} {5y} {3y} {6z} {4z}
{4x} {5x} {4y} {6x} {5z} {5y} {6y} {6z} {1z} {1z} {2x} {1x} {3y} {1x} {4z} {1y}
{5y} {1z} {6z} {2x} {2x} {3y} {2x} {4z} {2y} {5y} {2z} {6z} {3x} {3x} {4y} {3x}
{5z} {3y} {6y} {4z} {4z} {5x} {4x} {6y} {5x} {5z} {6y} {6y} {1y} {1z} {2z} {1x}
{3x} {1y} {4x} {1z} {5y} {1y} {6z} {2z} {2x} {3x} {2y} {4x} {2z} {5y} {2y} {6z}
{3z} {3x} {4x} {3y} {5x} {3z} {6y} {4y} {4z} {5z} {4x} {6x} {5y} {5x} {6z} {6y}
{1y} {1y} {2z} {1z} {3x} {1x} {4y} {1x} {5z} {1y} {6y} {2z} {2z} {3x} {2x} {4y}
{2x} {5z} {2y} {6y} {3z} {3z} {4x} {3x} {5y} {3x} {6z} {4y} {4y} {5z} {4z} {6x}
{5x} {5y} {6x} {6z} {1z} {1y} {2y} {1z} {3z} {1x} {4x} {1y} {5x} {1z} {6y} {2y}
{2z} {3z} {2x} {4x} {2y} {5x} {2z} {6y} {3y} {3z} {4z} {3x} {5x} {3y} {6x} {4z}
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{4y} {5y} {4z} {6z} {5x} {5x} {6y} {6x} {1x} {1z} {2y} {1y} {3z} {1z} {4x} {1x}
{5y} {1x} {6z} {2y} {2y} {3z} {2z} {4x} {2x} {5y} {2x} {6z} {3y} {3y} {4z} {3z}
{5x} {3x} {6y} {4x} {4z} {5y} {4y} {6z} {5z} {5x} {6x} {6y} {1y} {1x} {2z} {1y}
{3y} {1z} {4z} {1x} {5x} {1y} {6x} {2z} {2y} {3y} {2z} {4z} {2x} {5x} {2y} {6x}
{3z} {3y} {4y} {3z} {5z} {3x} {6x} {4y} {4x} {5z} {4y} {6y} {5z} {5z} {6x} {6x}
{1x} {1y} {2x} {1z} {3y} {1y} {4z} {1z} {5x} {1x} {6y} {2x} {2z} {3y} {2y} {4z}
{2z} {5x} {2x} {6y} {3x} {3z} {4y} {3y} {5z} {3z} {6x} {4x} {4y} {5x} {4z} {6y}
{5y} {5z} {6z} {6x}, where i = {1, 2, 3, 4, 5, 6}, which represents the preparation, and
{x, y, z} is the measurement bases. Each pair of the 18 pairs appear with frequency 18, and
after a specific pair (such as {1x}), 18 different pairs appear with the same probability.

Selected Mathematical code

Here we provide some of our Mathematica code to show how the experimental data in
Chapter 4 and Chapter 6 is post-processed.

Codes for NV based single-photon QRNG

The raw experimental data is stored as .dat files, and in one .dat file, each detection event
(one click in the detector) is recorded in a 128 Bit binary format (64-bit, which detector has
clicked, and 64-bit with the time tags in ps). The Mathematical code to read the raw data file
and plot the anti-bunching curve is shown below.
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r awda t a =B in a r yReadL i s t [ f i l e p a t h <>" a62a4f54 . d a t " , { " Un s i g n ed I n t e g e r 16 " ,
" Un s i g n ed I n t e g e r 16 " , " Un s i g n ed I n t e g e r 16 " , " Un s i g n ed I n t e g e r 16 " ,
" Un s i g n ed I n t e g e r 64 " } ] ;
(* t h e 1 2 8 b i t d a t a i s i n f o r m a t {0 ,0 ,1 ,0 ,424254276842064297} , where
t h e t h i r d n umb e r i s e i t h e r 0 o r 1 , m e a n s t h e c l i c k i n t w o d i f f e r e n t
d e t e c t o r s , a n d t h e f i f t h n um b e r i s t h e t i m e t a g i n p s *)
t imed e l a y ={} ;
b i t l o n g =Length [ r awda t a ] ;
s t a r t c o u n t s = r awda t a [ [ 1 ; ; b i t l o n g =1 , {3 , 5 } ] ] ;
e ndcoun t s = r awda t a [ [ 2 ; ; b i t l o n g , { 3 , 5 } ] ] ;
p o s i t i v e d e l a y =De l e t eCa s e s [ MapThread [ I f [#1 [ [1 ] ]==0&&#2[ [1 ] ]==
1 , # 2 [ [ 2 ] ] =#1 [ [ 2 ] ] ]& , { s t a r t c o u n t s , e ndcoun t s } ] , Nu l l ] ;
n e g a t i v e d e l a y =De l e t eCa s e s [ MapThread [ I f [#1 [ [1 ] ]==1&&#2[ [1 ] ]==
0 , # 1 [ [ 2 ] ] =#2 [ [ 2 ] ] ]& , { s t a r t c o u n t s , e ndcoun t s } ] , Nu l l ] ;
t imed e l a y = J o i n [ t imede l ay , n e g a t i v e d e l a y , p o s i t i v e d e l a y ] ;
t b i n =500; (* t h e t i m e b i n s i z e i n p s *)
d e l a y t ime =200000;(* t h e t imew i ndowo f t h e a n t i b un ch i n g cu r v e , i n p s *)
d a t a d e l a y =BinCounts [ t imede l ay ,{= de l ay t ime , de l ay t ime , t b i n } ] ;
d e l a y c o un t =MapThread [{#1 ,#2}& ,{ Range[= d e l a y t ime + t b i n / 2 ,
d e l ay t ime=t b i n / 2 , t b i n ] , d a t a d e l a y } ] ;
L i s t P l o t [ d e l ay coun t , Jo ined=>True , AxesLabel=>
{" DelayedTimeps " , " Co i n c i d e n c e c oun t s " } , P lo tRange=>Al l ]

With the antibunching curve being obtained, the randomness can be further post-processed
with the second model and third model mentioned in Chapter 4.

Codes for Bell test QRNG

For this work, we have in total 55 568 loop-hole free Bell test events. Due to the event-ready
scenario, the events from |Ψ+〉 state and |Ψ−〉 state are mixed in the raw data file. In the next
Mathematica codes, we show how the S value for the CHSH inequality is calculated from
the total 55 568 events.
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r awda t a =Drop [ Impor t [ f i l e p a t h <>" Events=Al l . c sv " ; , " Tab le " ,
" F i e l d S e p a r a t o r s " = >" ; " ] , 1 ] ;
b e l l s t a t e = d a t a [ [ Al l , 2 ] ] ; (* c o r r e s p o n d i n g B e l l s t a t e *)
c h o s e n b e l l s t a t e =De l e t eCa s e s [ MapThread [ I f [#1==" P s i +" ,#2]& ,
{ b e l l s t a t e , r awda t a } ] , Nu l l ] ;
s e t t i n g d a t a = c h o s e n b e l l s t a t e [ [ Al l , { 3 , 5 } ] ] ; (* mea s u r emen t s e t t i n g s *)
r e s u l t s d a t a = c h o s e n b e l l s t a t e [ [ Al l , { 4 , 6 } ] ] ; (* mea s u r emen t r e s u l t s *)
pab [ s e t t i n g s _ ] : = Module [ { tempdata , c oun t s } ,
t empda t a=De l e t eCa s e s [ MapThread [ I f [#1== s e t t i n g s ,#2 ]& ,
{ s e t t i n g d a t a , r e s u l t s d a t a } ] , Nu l l ] ;
c o un t s =Length [ t empda t a ] ;
pabxy =( SequenceCount [ tempdata , { {0 , 0 }} ]+
SequenceCount [ tempdata , { { 1 , 1 } } ] ) / c oun t s ]
s v a l u e =Abs [ 2 ( pab [ {0 , 0} ]+ pab [ {0 , 1} ]+ pab [{1 ,0}]= pab [ { 1 , 1 } ] ) = 2 ] / /N

In the above codes, the S value for Bell state |Ψ+〉 is calculated. For the same Bell state, the
Mathematica code to calculate the RSP-dimension witness from the raw data is shown below

(*Al ice ’ s d imens ion w i t n e s s *)
C l e a r [ rawda ta , s e t t i n g d a t a , r e s u l t s d a t a ]
s e t t i n g d a t a = r awda t a [ [ Al l , { 3 , 5 } ] ] ; (* mea s u r emen t s e t t i n g *)
s e t 0 0 =SequenceCount [ s e t t i n g d a t a , { { 0 , 0 } } ] ;
s e t 0 1 =SequenceCount [ s e t t i n g d a t a , { { 0 , 1 } } ] ;
s e t 1 0 =SequenceCount [ s e t t i n g d a t a , { { 1 , 0 } } ] ;
s e t 1 1 =SequenceCount [ s e t t i n g d a t a , { { 1 , 1 } } ] ;
r e s u l t s d a t a = r awda t a [ [ Al l , { 4 , 6 } ] ] ; (* mea s u r emen t r e s u l t *)
t empps i1=De l e t eCa s e s [ MapThread [ I f [#1==0(* B s e t t i n g *)&&#2==1(* B r e s u l t *)
&&#3==0(*As e t t i n g * ) ,#4(* Ar e s u l t *)]& ,{ s e t t i n g d a t a [ [ Al l , 2 ] ] ,
r e s u l t s d a t a [ [ Al l , 2 ] ] , s e t t i n g d a t a [ [ Al l , 1 ] ] , r e s u l t s d a t a [ [ Al l , 1 ] ] } ] , Nu l l ] ;
t empps i2=De l e t eCa s e s [ MapThread [ I f [#1==0(* B s e t t i n g *)&&#2==0(* B r e s u l t *)
&&#3==0(*As e t t i n g * ) ,#4(* Ar e s u l t *)]& ,{ s e t t i n g d a t a [ [ Al l , 2 ] ] ,
r e s u l t s d a t a [ [ Al l , 2 ] ] , s e t t i n g d a t a [ [ Al l , 1 ] ] , r e s u l t s d a t a [ [ Al l , 1 ] ] } ] , Nu l l ] ;
w00=To t a l [ t empps i1 ] / Length [ t empps i1 ]=To t a l [ t empps i2 ] / Length [ t empps i2 ] ;
(*w00=p (0 ,0)= p ( 1 , 0 )* )
(* s i m i l a r l y , w01 ( p (2 ,0)= p ( 3 , 0 ) ) , w10 ( p (0 ,1)= p ( 1 , 1 ) ) , w11 ( p (2 ,1)= p ( 3 , 1 ) )
can be c a l c u l a t e d *)
wa l i c e =Abs [ Det [ ( { {w00 , w01} ,{w10 , w11 } } ) ] ]
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2.10 Sampler behind a normal beamsplitter. The samplers can block the
photons coming out from the beamsplitter and use some pre-programmed
strings to simulate the results. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.11 The post-selected antibunching curve. The post-selected experimental
data still show the antibunching effect. This figure shows that the
antibunching curve shows no statistical difference between no post-selection
and post-selection cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.12 The interference pattern from Young’s double-slit experiment. In a
lecture by Young in 1802 to London’s Royal Institution, the interference
pattern of his double-slit experiment was shown. Figure is adapted from [123] . 28

2.13 A schematic Mach-Zehnder interferometer. . . . . . . . . . . . . . . . . . 29
2.14 Interference pattern from a MZI setup. The interference pattern is

similar to the one in a Young-type double-slit experiment. The figure is
adapted from [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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2.15 Wheeler’s delayed-choice gedanken experiment with a single-photon in
a Mach-Zehnder interferometer. Top: The half-silvered mirror(1

2
S) of

the interferometer can be placed or removed. Bottom left: When the
half-silvered mirror is removed, the photon path will be revealed by the click
in the detectors. Bottom right: When the half-silvered mirror is placed in
the interferometer, the detection probability of each detector depends on the
length difference between the two arms. The mirrors A and B have 100%
reflectivity, and the detectors have 100% detection efficiency. The figure is
adapted from [131] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.16 Wheeler’s delayed-choice gedanken experiment at cosmological scale.
In this experiment, Wheeler discussed what would happen if photons
emitted by a quasar, which is millions of light-years away from Earth, pass a
gravitational lens (G− 1). In a classical picture, when photons pass by the
gravitational lens, each photon would have to "decide" whether to go one
way around the lensing galaxy (behave as a particle) or go both ways around
the lensing galaxy (behave as a wave). Then the photon arrives at the
telescopes on Earth. Because of the gravitational lensing, the observers will
see two pictures of the same quasar from two different paths. The two paths
are observed separately in the upper right figure, and the photons behave as
particles when arriving at the gravitational lens. Then if we direct the
output of the two telescopes into a beamsplitter, one output will be very
bright (indicating constructive interference), and the other output will be
essentially zero, indicating that the incoming photons are behaving as waves.
This means that photons retroactively decided to travel as waves when
approaching the lens millions of years ago. The figure is adapted from [131] . 32

2.17 Experimental realization of Wheeler’s delayed-choice experiment.
Single-photons emitted by a single NV color center are sent through a 48-m
polarization interferometer, equivalent to a time of flight of about 160 ns. A
binary random number 0 or 1, generated by the QRNG, drives the EOM
voltage between V = 0 and V = Vπ within 40 ns after an electronic delay of
80 ns. The BSoutput here comprises a half-wave plate, a BS′, an EOM, and a
WP. The BS′ here is used to introduce phase shifts in the two paths. The
voltage on the EOM controls the path information: Either no voltage is
applied to the EOM, or its half-wave voltage Vπ is applied. In the first case,
the situation corresponds to the removal of the second BS (BSoutput). In the
second situation, the EOM is equivalent to a half-wave plate that rotates the
input polarization by 45◦, and this means inserting the BSoutput in the path.
Figure (b) shows the interference patterns of the two detectors when
applying Vπ to the EOM, and (c) is the count rate of the two detectors when
applying no voltage to the EOM. Figures are adapted from [1]. . . . . . . . . . 33
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2.18 Timing of the delayed-choice experiment in [1]. This figure shows that
the choice of whether to open or close the interferometer was
spacelike-separated from the time when the photon entered into the
interferometer. Figures are adapted from [1]. . . . . . . . . . . . . . . . . . . 34

2.19 First loophole-free Bell test scheme. a, The bipartite Bell test scheme, two
parties, Alice and Bob, accept binary input (x, y) to do corresponding
measurements and produce binary outputs (a, b). This is done in an
event-ready scenario, where an additional box between Alice and Bob gives
a binary output signaling that the photons from Alice and Bob are
successfully entangled. b, Experimental realization. The photons from
Alice and Bob are generated from the NV center in diamond. A QRNG is
used to provide the input (x, y). The electronic spin state in the NV is read
out on a basis that depends on the input binary value, and the resultant
signal provides the output. A box at location C records the arrival of
single-photons that were emitted by Alice and Bob, and entangled with the
spins of electrons at Alice and Bob’s location. If the photons from Alice
and Bob are successfully entangled at C, it means a bipartite entangled state
between the electron spin states in Alice and Bob’s NV center is prepared.
Figures are adapted from [61]. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.20 Prepare-and-measure scenario. The box on the left is the state source, it
sends out state ρx to the box on the right side, which is the measurement
device, and it performs measurement to the received state according to
measurement setting y. The figure is adapted from [83] . . . . . . . . . . . . . 42

3.1 The structure of a seeded randomness extractor. Together with a short,
uniformly distributed seed, the randomness extractor can make a weak,
biased random source into a uniformly distributed strong random sequence.
For strong randomness extractors, the initial seed is independent of the
output and can be re-used, as shown in the figure. The figure is adapted from [140] 48

3.2 The comparison of Shannon entropy and min-entropy. The min-entropy
is always not greater than the Shannon entropy . . . . . . . . . . . . . . . . . 49

4.1 Experimental Configuration. a, The scheme of the single-photon random
number generator. A confocal microscope is used to locate a single NV
center. A single-photon is measured with two avalanche photodiodes
(APDs). DC: Dichroic Mirror; F: Long-pass Filter. b, Fluorescence counts
of a lateral scan over the diamond sample. Peak intensity is about 100 kcps
(kilo counts per second). c, Measurement of antibunching and a theoretical
fit (dashed line in the figure), the timing resolution here is 0.5 ns. d, A long
time recording of the raw bits, the exact time is 608125 seconds. e, The raw
data is biased due to the unbalanced beamsplitter in the setup. The figures
are adapted from our publication [157]. . . . . . . . . . . . . . . . . . . . . . 60
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4.2 Antibunching as a measure for quantumness. The antibunching effect of
single-photons is only observed in a small time window. In our third
randomness extraction model, the area of the generated bits between the
classical bound of g(2)(τ) ≤ 1.0 and above the background level are
considered. This reduces the number of raw input bits for the generator
dramatically. The figures are from our publication [157]. . . . . . . . . . . . . 68

4.3 Randomness output speed with different laser powers. a) Saturation
curve of the utilized NV center. Note that the non-trivial behavior at higher
laser powers indicates that the NV center can not be considered a simple
three-level system; it has more complex energy levels. The maximum
output speed of the randomness generation (from the third model) is green.
This curve forms because the antibunching curve gets narrower with
increasing laser power. This implies that although more raw bits are
generated per second, the overall area below the curve is reduced. The cross
× in the green curve is the input laser power of our experimental data. b)
The antibunching curve at the maximum output randomness output speed
of the randomness generator. The bottom at τ=0 amounts to g(2)(0) = 0.15.
The figures are adapted from our publication [157]. . . . . . . . . . . . . . . . 69

4.4 The NIST test results for raw bits and extracted bits with three models
mentioned above. In all sub-figures, p values less than 0.001 are omitted.
Figure a shows the NIST test results for one raw bits file (out of 179 files).
The total bit length is about 298 Gbits. The raw bits clearly cannot pass the
NIST test, even if it contains quantum randomness. Figure b to d shows the
NIST test results for the extracted random bits based on three different
models mentioned in this chapter. Although they all pass the test, they have
different security levels, which depend on how the randomness is quantified
in the corresponding models. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Simplified experimental scheme for the delayed choice experiment
in [1]. The Piezo in the upper path is a discrete piezoelectric stack that can
introduce a phase change for the two paths. FC: fiber coupler; M: mirror.
The Piezo and PBS2 are acting as the BS′ in Fig. 2.17. . . . . . . . . . . . . . 75

5.2 Different count rates of the two detectors in a MZI.When the photons
from two paths are interfering, the count rates in the two detectors changes
and the interference patterns are shown. Although the count rates of the two
detectors are not the same, they can still interfere, and the relative count
rates differences of the two detectors are the same, which means
nmax

1 − nmin
1 = nmax

2 − nmin
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 The relationship between v1,2 and the min-entropy per raw bit. We
assume v1 ≤ v2 here. As v1 and v2 increase, the entropy per raw bit also rises. . 79
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6.1 Two different ways to bound the quantum randomness in a Bell test. A
Bell test involves two physically separated experimental systems, with two
given input bits x, y, to generate two binary outcomes a, b. The Bell
correlation value S allows a DI scenario to bound the min-entropy of the
randomness; another SDI scenario is to extract randomness when
RSP-dimension witness is utilized. The figure is adapted from [3] . . . . . . . 83

6.2 Experimental scheme of our loophole-free Bell test. (a) Simplified
scheme of atom-photon entanglement generation: rubidium atoms in the
5S 1

2
, F = 1,mF = 0 state are optically excited to 5P 3

2
, F ′ = 0,mF = 0.

The subsequent spontaneous decay results in the entangled atom-photon
state |ΨAP 〉 = 1√

2
(|L〉 |↓〉z + |R〉 |↑〉z). (b) State selective ionization

scheme: depending on the polarization χro of the read-out laser pulse a
selected superposition of themF = ±1, Zeeman ground states is excited to
the 5P 1

2
, F ′ = 1 a level that is ionized by a second laser pulse. During this

process, the excited state can decay to the F = 1 and F = 2 ground levels
before ionization (gray arrows). The population in F = 2 is excited by a
third laser pulse to 5P 3

2
, F ′ = 3 from which it is ionized, while the decay to

F = 1 reduces the fidelity of the measurement process. (c) Sketch of the
experimental setup: The two devices, A and B, independent apparatuses for
trapping single atoms, are separated by 398m. Entanglement between the
two single atoms is created by first entangling each atom with a photon that
is then coupled into single-mode fiber and guided to a photonic BSM setup.
There, the two photons are overlapped on a fiber beam splitter, and
subsequent polarization analysis of the photons projects the atoms in an
entangled state. The two-photon detection is analyzed with a field
programmable gate array (FPGA) that sends a heralding signal to each
device in case of a successful entanglement generation. This signal triggers
quantum random number generators to generate input bits, determining
polarization of the read-out laser pulse χro in the atomic state measurement.
The measurement results, registered by the channel electron multipliers, are
recorded together with the input bits in local storage devices. The figure is
adapted from [62]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Output randomness utilizing the dimension witness. The nonzero
RSP-dimension witnessWrsp gives us a new perspective to bound the
min-entropy of randomness in the experimental data. In this figure, the blue
curve displays the randomness bounded by theWrsp, while the dashed
purple curve represents the randomness bounded by the previously defined
dimension witness [83]. Clearly, the combination of remote state
preparation and the dimension witness increases the bound of randomness
per event compared to a normal dimension witness QRNG model in [4].
The figure is adapted from [3] . . . . . . . . . . . . . . . . . . . . . . . . . . 92
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6.4 NIST Statistical Test Suite results. The test is done for the SDI
randomness for |Ψ−〉 state. The final random string does not pass all the
tests due to its insufficient length. . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Binary image of the extracted random bits from |Ψ−〉. In this binary
image, no obvious patterns can be seen. . . . . . . . . . . . . . . . . . . . . . 98

7.1 Schematic structure of the NV center. The figure is adapted from [114] . . . 100
7.2 Normalised emission spectra of NV− and NV0. These spectra are

obtained at low temperature(10K) for different excitation powers. The
figure is adapted from [115] . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 quantum jumps of a single nuclear spin in real-time. Single-shot readout
reveals quantum jumps of a single nuclear spin in real time. Figure is
adapted from [183] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4 Experimental scheme to prepare and measure nuclear spin states.
(a)Energy level of electron spin state and nuclear spin state of the NV−
state, where ES means excited state and GS means ground state. ms is the
electron spin state, andmI is the nuclear spin state. We choose the nuclear
spin state |0I〉 and |+1I〉 to prepare our states, which is shown in a
Bloch-sphere in the right. (b) The sketch of our experimental setup. In the
figure M represents the permanent magnet, RF: radio-frequency pulse,
MW: microwave pulse, OBJ: objective, FC: fiber coupler, AWG: arbitrary
waveform generator, DP: dichroic polarizer, BS: beam-splitter, LPF: long
pass filter, L: lens, P: pinhole, APD: avalanche photodiode, and Counter
here is a time tagger. We use a 532 nm laser (632 nm laser) for charge state
NV0 (NV−) readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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7.5 The P&M scenario and the data post-processing. All the histograms in
this figure are fitted by Gaussian distributions (solid lines). (a) Quantum
circuit representation of our P&M scenario. First, we pump the NV color
center into NV− and initialize the nuclear spin state of 14N into |−1I〉. Then
in the state preparation step, we apply a π pulse to this nuclear spin state and
rotate it into |mI = 0〉, which corresponds to the state |0〉. With further π or
π/2 pulses, the other five states |1〉 , |+〉 , |−〉 , |0〉+i|1〉√

2
, and |0〉−i|1〉√

2
can be

prepared. This is represented as R0,+1
i (θ) (θ = {π, π/2}) in the figure. In

the measurement step, we apply a π/2 pulse (R0,+1
j (π/2)) along the x̂, ŷ or

ẑ axis to perform a corresponding measurement, then single-shot readout is
used to get the state of the nuclear spin system. (b) In the post-processing
process, we set thresholds for the charged state and nuclear spin state
initialization distribution histograms. For the charge state single-shot
readout histogram, the threshold is set as 56, and for the photon counts from
NV− state is larger than this value. In the initialization histogram, the
threshold is set as 55, and the spin state |−1I〉 corresponds to the photon
count results, which are no larger than this value. ε1 and ε2 are the
corresponding errors of choosing the given thresholds in the histograms. In
the valid raw bits histogram, the threshold is 153, we assign the left peak as
raw bits “1" and the right peak as “0". . . . . . . . . . . . . . . . . . . . . . . 105

7.6 Experimental results analysis. Photon-counting distribution of 18
different P&M pairs. The vertical axis of all 18 sub-figures is the number of
events for different photon counts, and the horizontal axis is the number of
photon counts. The dashed green line is the threshold line that is used to
differentiate the raw bits “1" and “0". The photon counts value of the green
dashed line here is 153, and in the appendix, we show how to get this
threshold in detail. In the right big circle of this sub-figure, the photon
counts distribution of one specific P&M (S5 − x̂) is shown. The probability
of getting “1" is calculated by the photon counts, which are smaller than the
threshold line, and “0" is the photon counts, which are larger than the
threshold line. εl,r are the measurement errors of each peak when applying
the green dashed line as the threshold. . . . . . . . . . . . . . . . . . . . . . . 106

7.7 Conditional probability differences of different P&M pairs. This figure
shows that the conditional probability differences are not zero, but they can
all be explained by the 3σ shot noise. In other words, our experimental
setup can be considered memoryless. . . . . . . . . . . . . . . . . . . . . . . 107

7.8 One failure scenario of theW2 model. By rotating |0〉 and |1〉 by an angel
0 < θ < π/2 in the x̂ẑ−plane, they will be outside the ŷẑ−plane, and the
dimension witnessWŷẑ cannot be constructed. . . . . . . . . . . . . . . . . . 109
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7.9 Output randomness per raw bit by utilizing different dimension
witness protocols. The blue curve (the upper curve) is the theoretical curve
of theW3 model, and the red curve (the lower curve) represents the
theoretical curve of theW2 model. The crosses in blue and red curves are
the experimental realization of our two different protocols. . . . . . . . . . . . 111

7.10 NIST Statistical Test Suite results of the extracted random sequence
fromW3 model. The extracted random sequence passes all the tests. . . . . . 112

7.11 Binary image of the extracted random bits from the raw bits. In this
binary image from the extracted randomness inW3 model, no obvious
patterns can be seen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.1 MZI with polarizing beamsplitters. In the delayed-choice experiment by
Jacques et al., they use polarizing beamsplitters PBS1 and PBS2. Path 1 and
Path 2 are fibers with the same length. . . . . . . . . . . . . . . . . . . . . . . 127

8.2 Beams recombine after PBS2. . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.3 The guessing probability upper bounds in three different scenarios.

This figure is adapted from supplementary of our publication [3]. . . . . . . . 132
8.4 One state with three measurement settings in a Bloch sphere. The angel

between T0 and T1, T1 and T2, T0 and T2 are all θ (this scenario maximize
the guessing probability and will be proved in the following content). The
state ~Smax is from the six preparation states which can maximize the
guessing probability among T0, T1 and T2. The probabilities of the outcome,
say, b = 1 is given by projections of state ~Smax onto T0,1,2. The maximum
average probability of all the three measurements can only be obtained

when φ0 = φ1 = φ2 = 2 cos−1

(√√
6 cos θ+3+3√

6

)
, which will be derived shortly. 134

8.5 Angles between different measurement bases defined in a Bloch sphere.
In this figure, measurement basis T0 is overlapped with ẑ axis, T1 is in the
x̂ẑ plane, and T2 has an angle α towards ŷ axis. The state ~Smax is from the
six preparation states which can maximize the guessing probability among
T0, T1 and T2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.6 The histogram distributions of charge state, nuclear spin initialization
and the raw events. In all the sub-figures, the vertical axis is the number of
events, and the horizontal axis is the number of photons. The photon counts
distribution of the single-shot readout for the charged states, the initialized
nuclear spin states, and the final nuclear spin states are shown in row(a). In
row(b), we show how the thresholds of nuclear spin initialization and the
charged NV states affect the size of the raw bits. The readout error ε1 and ε2
will also change with different thresholds. . . . . . . . . . . . . . . . . . . . . 140
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8.7 The raw bits distribution with different thresholds. When changing the
thresholds from threshold 1 (red dashed line in the left and blue dashed line
in the right) to threshold 2 (green dashed line in the middle), the average
single-shot readout fidelity changes from 99.999% to 99%, the decrease is
not so significant, but the size of the raw bits is nearly doubled. . . . . . . . . . 141

8.8 The total fidelity versus the randomness output speed. The red curve is
the total fidelity, which is affected by the threshold settings. The red dotted
curve is the value ofW3 with different preparation fidelities. The green
curve is the total randomness output speed with different dimension witness
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.9 The conditional probability differences of 18 different P&M pairs with
different threshold settings. The left figure is the differences with 98%
total fidelity, and the right figure is the differences with 92% total fidelity
(which corresponds to the maximum randomness output). From the figures,
we can see that the conditional probability differences do not change so
much with the changing of different thresholds. This proves that our
experimental device is memoryless with different threshold settings. The
differences here are calculated the same way described in the main text. . . . . 142

8.10 The comparison between the photon counts distribution of sample data
and the rest valid data. The blue part is the sample data, and the red part
is the rest. The overlapping part is purple. From left to right, we can see that
the photon counts distribution of charged states, the initialized nuclear spin
states, and the final nuclear spin states are identical between the sample data
and the test data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.11 The similar behavior ofW2 andW3 model with different raw bits size.
For the figure on the left, from above to bottom, the lines are total fidelity
line (which shares the same vertical axis with the dimension witness value),
2-D dimension witness value in yz, xz, xy planes, and theW3 value. In the
right figure, the upper red dashed line is the randomness output speed of the
W2 model, and the lower green dashed line is the output speed of theW3 model. 144
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