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In the context of a more sustainable economy, bio-surfactants become
increasingly important, due to their independence of petrol-based chemistry,
their usually mild synthesis conditions, and in certain cases their pharmacological
activity. We have recently discussed self-assembly studies in binary systems of
bio-surfactants of microbial origin, or saponins extracted from plants (Hellweg
et al., Frontiers in Soft Matter, 2023, 2). In the present review, we focus on the
formation of microemulsions based on these molecules. We review the formation
and structure of microemulsion systems formed by oil, water, and biosurfactants,
with a particular focus on Quillaja saponins and rhamnolipids.
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1 Introduction

Since microemulsions are thermodynamically stable, they are spontaneously formed
upon mixing water, oil, surfactant and in some cases a co-surfactant (Hoar and Schulman,
1943; Strey et al., 1994). Microemulsions are clear, isotropic, and homogeneous liquids
exhibiting a nanostructure of polar (water) and nonpolar (oil) domains separated by a
surfactant layer. The formation of such nanostructures is governed by the combination of
constraints of available surface to be covered by surfactant, the volume of each phase, and the
interfacial curvature. Resulting nanostructures range from oil-in-water droplets to inverse
water-in-oil droplets. The continuous path between both passes through bicontinuous
microemulsions and is called the Shinoda cut in the phase diagram (Shinoda and
Kunieda, 1973; Olsson et al., 1986). Applications of microemulsions are in particular
related to the solubilization of hydrophobic molecules (detergency, drug delivery, . . . )
(Schwuger et al., 1995; Solans and Kunieda, 1997).

At present most microemulsions are made by using synthetic surfactants based on
petrolchemistry. Biosurfactants, i.e., surfactants from natural resources, represent an
attractive alternative, in particular in the context of sustainability. These molecules
possess a high degree of chemical diversity, and many different classes exist according
the presence of chemical groups, like phospholipids, glycolipids (in particular rhamnolipids
discussed here), or lipopeptides (Bezerra et al., 2018). These molecules are usually produced
under mild synthesis conditions in bioreactors for microbial biosurfactants (yeast or
bacteria) or by extraction for plant biosurfactants (plant saponins). Other advantages of
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biosurfactants are their (often) lower toxicity and increased
biocompatibility, and sometimes their pharmacological activity,
which may be antiviral (Bailly and Vergoten, 2020; Bailly and
Vergoten, 2020; Bailly and Vergoten, 2020) or antimicrobial,
leading to growing interest in their large-scale production
(Kitamoto et al., 2002; Kitamoto et al. 2002; Kitamoto et al. 2002).

Surface activity is the main characteristic of surfactant
molecules, which leads to a decrease of the air-water interfacial
tension. For example, the high surface activity of microbial surfactin
has been known since the 1960s (Fracchia et al., 2012; Lewinska
et al., 2022). On the other hand, the self-assembly properties of
biosurfactants lead to the formation of supramolecular aggregates in
selective solvents. The self-assembly of such molecules has been
reviewed by us (Hellweg et al., 2023), and here we wish to extend this
review to the formation of microemulsions with biosurfactants. The
size and shape of the structures formed on the nanoscale depend
mainly on the surfactants molecular architecture: In particular, the
spontaneous curvature of the hydrophilic-hydrophobic interface is
the result of opposing forces acting on each moiety: the attractive
hydrophobic effect for the tails, and the head group repulsion for the
hydrophilic head groups. Ideally, molecules adopt an amphiphilic
film curvature corresponding to these interactions, but other
constraints like the available surfaces or volumes of each phase
may then not be met, and energetic compromises need to be
adopted. There is a cost for deviations from the spontaneous
curvature, called the bending energy, and the most successful
model has been proposed by Helfrich exactly 50 years ago
(Helfrich, 1973). Available shapes of the oil or water domains in
microemulsions are thus subjected to these free energy
contributions.

In this short review we address the formation of microemulsions
of saponins and microbial surfactants, in particular rhamnolipids.
To tune the curvature of biosurfactant-containing amphiphilic films,
synthetic surfactants or hydrophobic alcohols were often added. We
also briefly discuss emulsions stabilized by biosurfactants, as they
could be a useful application of the more readily degradable
biosurfactants, given the limited shelf life of most industrial
products. Saponin-based microemulsions are exemplarily
discussed in Section 2 for Quillaja saponins, while we have
focused on rhamnolipids in the third section. In Section 4, some
microemulsions stabilized by other biosurfactants are discussed.

2 Ternary oil-water microemulsions
based on Quillaja saponins

Saponins are biosurfactants which can be extracted from plants,
like, e.g., horse chestnuts (used to produce aescin), licorice
(glycyrrhizin), soapbark tree Quillaja Saponaria, common
foxglove (digitonin), oleander (oleandrin), or Saponaria Oficinalis
(gypsogenin). These molecules participate in the defense against
invasion by fungi and bacteria. Due to their molecular
amphiphilicity based on hydrophobic parts having a triterpenic
or steroidic structure with attached sugar moieties, they possess
foaming and emulsifying properties. This is for example, the case of
Quillaja bark saponins which have been used for washing processes,
and their general properties and specifically their interfacial
behaviour have been described, see for example, (Nord and

Kenne, 1999; Wojciechowski, 2013; Wojciechowski et al., 2014;
Góral and Wojciechowski, 2020). These saponins have a large
structural variety, which impacts their surface activity (Kezwon
and Wojciechowski, 2014). In water, they form micelles above a
certain concentration, the critical micelle concentration (CMC)
(Dargel et al., 2019; Geisler et al., 2019). Nowadays, they are
targeted as molecules with potential cosmetic or pharmacological
activity (Herzog et al., 2020; Wojciechowski et al., 2021). Regarding
the separation and purification of surface-active saponins from
multicomponent plant extracts, Obasi et al., (2017) reported an
approach reminiscent of the three-phase extraction procedure
proposed for the purification of nonionic alkyl polyglycol ethers,
in which water- and oil-soluble impurities were extracted into the
water and oil excess phases of a Winsor III system (Schubert et al.,
1990). Similarly, saponins from the defatted root extract of
Securidaca longipedunculata were first dispersed in water to self-
assemble into micelles. They report that the addition of ethyl ether
initially swells these micelles, and upon further addition causes a
phase inversion to a Winsor II type system. The purified saponin
was then extracted from the upper ethyl ether-rich phase via three
additional purification cycles, while polar impurities were separated
in the lower aqueous phase.

Applications of Quillaja saponin-based microemulsions have
been proposed in the literature. These mixtures, however, do not
always form thermodynamically stable microemulsions. Often, a
strong energy input like high pressure homogenization is necessary
to form emulsions with relatively unstable droplets in the micro to
millimeter range. And sometimes more stable nanoemulsions are
formed, where stability before coalescence lasts longer due to the
small nanometric droplet size. In spite of the lack of thermodynamic
stability, we discuss three articles here which pave the way to “all
natural” microemulsions for food and drug incorporation. Schober
et al. studied the efficiency of Quillaja saponins to emulsify limonene
and alkanes by determining the droplet diameters of mostly bimodal
emulsions with a particle sizer (Schober et al., 2017). These studies
showed that Quillaja saponins have a significantly higher
emulsifying power than various conventional Tween surfactants
under the same conditions. The headgroup area of 1.37 nm2 was
found to be slightly larger than that determined by Wojciechowski
(Wojciechowski, 2013) and suggests a lay-on configuration of
Quillaja saponins in the internal interface of oil-in-water
emulsions, where the hydrophobic triterpenoid rings of a saponin
molecule reside in the interface and the hydrophilic glucoside tails
protrude into the water. Another example is the incorporation of
vitamin E, which refers to a fat-soluble group of molecules which
have anti-oxydant properties. The transport in a drug carrier is also
thought to increase the bioavailability on the intestinal sites. In the
form of the more stable vitamin E acetate, which can then be broken
down to vitamin E during digestion, the uptake of this lipophilic
molecule into nano-emulsion droplets (nonequilibrium emulsion)
containing food-grade oils (triglyceride) and surfactants, among
which “(marketing) label friendly” saponins, has been studied by
Yang and McClements (Yang and McClements, 2013). The
formation of nano-emulsion droplets has been shown to be less
efficient with saponins in comparison to different Tweens, in the
sense that they remain rather macroscopic, with a strong impact on
both stability and optical appearance (Mayer et al., 2013). In contrast
to this, below the formation of a vitamin E-containing
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microemulsion stable over at least a month obtained with microbial
biosurfactant will be discussed.

3 Ternary systems of microbial
surfactants: rhamnolipids-oil-water
microemulsions

3.1 Fundamentals of rhamnolipid
microemulsions

Apart from the different production mode, microbial
biosurfactants have similar properties as saponins. Their
hydrophobic moiety contains one or several branched fatty acid
chains, and depending on the hydrophilic head group, they are
categorized as phospholipids, lipopeptides, or glycolipids. The latter
include threhalolipids, sophorolipids, mannosylerythritol lipids
(Kim et al., 2002), or rhamnolipids which are produced by the
bacterium Pseudomonas aeruginosa (Rodrigues, 2015; Jahan et al.,
2020). Rhamnolipids have a strong surface activity, as they lower the
surface tension of the water/air interface by more than a factor of
two (Rodrigues, 2015), form micelles above a critical micelle
concentration (CMC) and also favor the formation of bacterial
biofilms. The potential of rhamnolipids as biodegradable and
low-toxicity alternatives to synthetic surfactants for stabilizing
microemulsions has been investigated since the beginning of the
new millennium. Especially in the deprotonated form, rhamnolipids
are quite hydrophilic, resulting in amphiphilic films that are strongly
curved around the oil (o/w structures, Winsor I type emulsions). An
efficient approach to form microemulsions with hydrophilic
surfactants or even drive the system through the phase inversion
is to add hydrophobic co-surfactants (Penders and Strey, 1995;
Sottmann et al., 2002). In 2005, Ye et al. were among the first to
systematically study the influence of alcohol chain length on the
phase behavior of a mixture of water/NaOH, n-heptane,
rhamnolipid and n-alcohols as co-surfactants (Xie et al., 2005).
They used a 50/50 mixture by weight of mono-rhamnolipid and di-
rhamnolipids and added sodium hydroxide to adjust a pH of
9 ensuring that the rhamnolipid was completely deprotonated
and thus an anionic surfactant. The isothermally recorded Gibbs
triangles (25°C) in which the rhamnolipid/n-alcohol mixture is
considered as a pseudo-component show that the phase diagrams
become more complex as the chain length of the n-alcohol is
increased. From n-pentanol, liquid crystalline phases such as
lamellar and hexagonal phases appeared, due to the increasing
bending rigidity of the mixed amphiphilic film. In a follow-up
paper (Xie et al., 2007), the influence of the water concentration
on the microstructure was studied in a mixture of 25% n-heptane
and 75% of a one-to-one mixture of n-butanol and rhamnolipid.
Electrical conductivity showed that the structure reverses from a
water-in-oil to an oil-in-water microemulsion upon increasing water
concentration. Freeze-fracture electron microscopy (FFEM) images
might show percolating w/o-droplets at 30 wt% water, while o/
w-droplets might be imaged at 90% water. DLS studies performed
with a zetasizer gave hydrodynamic radii of 6.2 and 19.3 nm,
respectively.

Sabatini et al. studied the phase behavior and oil/water-
interfacial tension of an alcohol-free symmetric microemulsion

made of water/NaCl (brine), oil and the same 50/50 mixture of
mono- and di-rhamnolipids at 23°C (Nguyen et al., 2008). For
toluene as oil, they showed very nicely that at neutral pH the
system undergoes a phase inversion from Winsor I to Winsor II
when the NaCl concentration is increased and even passes a Winsor
III region–where the microemulsion phase coexists with excess
water and oil phases–at intermediate salt concentrations. Here,
i.e., at the optimum salt concentration, the oil/water interfacial
tension passes through a pronounced minimum of 10–5 Nm-1, as
is the case for classical microemulsions (Salager et al., 1979;
Sottmann and Strey, 1996). Fish-shaped phase boundaries, as
known, e.g., from microemulsion systems with non-ionic
surfactants (Kahlweit and Strey, 1985), are found when the
surfactant concentration is plotted logarithmically against the salt
concentration (Figure 1). With the aim of solubilizing hydrophobic
oils such as limonene and diesel, they used mixtures of rhamnolipid
and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in a follow-up
work and investigated the phase behavior and oil/water interfacial
tension of symmetric microemulsions (Nguyen and Sabatini, 2008).
When using an equimolar mixture of the two surfactants, the oil/
water interfacial tension was likewise found to pass through a
pronounced minimum in the Winsor III region with increasing
NaCl concentration. The addition of oleyl alcohol (referred to as a
lipophilic linker) to the surfactant mixture resulted in a further
decrease in the minimum. As a measure of the tendency to form o/
w- or w/o-microemulsions, the characteristic curvature Cc (Acosta
et al., 2008) of the rhamnolipid mixture used was determined to be
Cc = −1.41. When compared to the Cc of AOT (Cc(AOT) = -0.92),
this means that the rhamnolipid blend is slightly more hydrophilic
than AOT. A year later, in order to formulate microemulsions
without the synthetic surfactants, Sabatini et al. studied a
combination of the more hydrophobic biosurfactant sophorolipid
(in its nonionic lactone form) and soybean lecithin to compensate

FIGURE 1
The phase boundaries feature the “fish shape” well-known for
classical microemulsion systems (rotated by 90° due to the choice of
axes), with the phase inversion fromWinsor I toWinsor II induced by an
increase in the NaCl concentration. Figure adapted from ref.
(Nguyen et al., 2008) with permission from Elsevier.
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for the hydrophilicity of the rhamnolipid (Nguyen et al., 2010). The
characteristic phase behavior of microemulsions, reflected in fish-
shaped phase boundaries, was obtained when the rhamnolipid to soy
lecithin + sophorolipid ratio is used to tune the curvature of the
mixed amphiphilic film. In microemulsions with the hydrophobic
isopropyl myristate (IPM), the optimal microemulsion (Winsor III
and IV), was achieved by a small amount of rhamnolipid, whereas
the optimal solubilization of the more hydrophilic limonene
required more than twice the amount of rhamnolipid. In 2011,
Nguyen and Sabatini provided an overview of microemulsions
formulated with rhamnolipids and/or sophorolipids and
discussed the use of such microemulsions in various applications
(Nguyen and Sabatini, 2011).

Guo et al. investigated the effect of styrene added to an aqueous
rhamnolipid solution consisting of an equimolar ratio of mono- and
di-rhamnolipid on aggregate morphology using SANS adjusting two
contrasts (deuterated and hydrogenated styrene) (Guo et al., 2011).
Analysis of the data recorded for the aqueous rhamnolipid solution
showed that the cylindrical micelles formed at low concentration
changed into a mixture of the latter with vesicles as the
concentration increased. They rationalized this transition by the
fact that the H+-ions released from the carboxyl group of the
rhamnolipid lead to a decreasing pH at which they had observed
the formation of unilamellar vesicles in a previous SANS study
(Dahrazma et al., 2008). Similar transitions have been observed by
SANS and electron microscopy in synthetic surfactant systems
(Oberdisse et al., 1998).

3.2 Applications of rhamnolipid
microemulsions

Biosurfactant based microemulsions are found in a variety of
different applications ranging from Diesel fuel via the use as
reaction medium to food products. One example for making Diesel
fuel from natural oils like, e.g., castor oil is discussed by Zhu et al. (Zhu
et al., 2014). In this work rhamnolipid based microemulsions are used
to obtain systems with lower viscosity compared to the original oil
leading to less coking in the engine. Moreover, bio-based oil made by
liquefaction of biomass is a promising alternative for petrol derived
diesel fuel. However, these are usually very complex mixtures
containing water and other rather polar compounds. The fuel
properties can be improved by microemulsion-formation achieved
by simple addition of surfactant. Leng has studied this
microemulsification process using a rhamnolipid as micro-emulsifier
(Leng, 2018). Unfortunately, the exact composition of the used
rhamnolipid is not given. The same group has studied the influence
ofmaking biodiesel basedmicroemulsions with small amounts of water
and rhamnolipid on the so-called ignition delay (Leng et al., 2022).
Biodiesel/rhamnolipid/water microemulsion are found to have a
positive effect on the ignition delay and moreover are found to
reduce NOx emissions. Hence, such rhamnolipid based biodiesel
microemulsions are a more sustainable alternative for conventional
Diesel fuel. Besides for Diesel fuel, rhamnolipids can also be used to
treat crude oil (Hajimohammadi & Johari-ahar 2017). However, the
shown images in this publication indicated that only a crude oil
emulsion was made and not a microemulsion, implying that the
mixture is not at thermal equilibrium and would sooner or later demix.

Rhamnolipids exhibit structural similarities to AOT and are
therefore rather well suited for the stabilization of oil-continuous
microemulsions (see above). Moya-Ramirez and co-workers have
produced rhamnolipid-based oil continuous microemulsions
(Moya-Ramirez et al., 2017). These microemulsions are used as
reaction media for the enzyme catalyzed conversion of used frying
oil. The water-in-oil microemulsion system under study contained
lipase as catalyst. Compared to the AOT based systems the degree of
hydrolysis was 35% higher, which the authors explain by a better
compatibility of the lipase and the rhamnolipid in comparison to the
synthetic surfactant. Another example for the use of an oil-
continuous rhamnolipid-based microemulsion as reaction
medium has been given by Palanisamy and Raichur (Palanisamy
and Raichur, 2009). These authors made NiO nanoparticles in a
n-heptane/rhamnolipid/water microemulsion. However, as in most
studies using oil-continuous microemulsions, no real templating
effect of the microemulsion could be proven. The resulting
nanoparticles are rather polydisperse and large (micron range).
Unfortunately, the authors have not studied the microemulsion
droplet sizes. An application of microemulsions in food industry has
been described in 2017 by Amiri-Rigi and Abbasi (Amiri-Rigi and
Abbasi, 2017). In this work 4 synthetic and 4 bio-surfactants were
used to make microemulsions for the extraction of lycopene from
tomato processing residuals. The used biosurfactants are lecithin,
rhamnolipid, saponin, and sucrose monopalmitate. Lycopene is an
interesting compound with strong anti-oxidant activity which can,
e.g., be used in skin care products. It is fat soluble and therefore,
microemulsions are an interesting extraction medium for it. In the
work by Amiri-Rigi and Abbasi only droplet sizes measured by using
a zetasizer are presented. No deeper characterization of the
structures has been done and therefore the structures obtained by
using rhamnolipid and saponin might be vesicles and not
microemulsion droplets. However, the extraction process is found
to be rather efficient and the lycopene is stabilized by all used
surfactants. In this case, e.g., small angle scattering techniques might
yield more information about the resulting structures.

4 Some microemulsions formed with
other biosurfactants

Besides saponins and glycolipid biosurfactants such as
rhamnolipids and sophorolipids, also mannosylerythritolipids
(MELs), which are abundantly produced by yeast strains of the
genus Pseudozyma from renewable resources, were successfully used
to stabilize microemulsions. Worakitkanchanakul et al. found that
the diacetylated MEL-A on its own is capable of forming water-in-
n-decane microemulsions (Worakitkanchanakul et al., 2008). Using
DLS, they showed that the diameter of the microemulsion droplets
increases from 20 to 60 nm when the ratio of water to surfactant is
increased (Figure 2left), as anticipated. This increase in droplet
diameter has also been imaged using freeze-fracture electron
microscopy (FFEM) (Figure 2, right). Note, however, that the
diameters obtained are large for microemulsions, especially given
the rather small w0 ratios (Foster et al., 2008). Note that in the DLS
analysis the sample viscosity is used instead of n-decane and that
FFEM is prone to artifacts. Much more suitable methods to assess
the size and shape of the formed structures would be SAXS and
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SANS. In a follow-up paper, the same group studied the phase
behavior of ternary microemulsions consisting of water, n-decane
and MEL-A and the monacetylated MEL-B, respectively
(Worakitkanchanakul et al., 2009). The Gibbs phase triangles
recorded by polarized optical microscopy and SAXS at 25°C show
that at high biosurfactant concentrations the phase diagram of the
MEL-A system is dominated by a water-in-n-decane microemulsion,
while a lamellar phase is formed in the MEL-B system. These results
agree with the phase diagrams of the respective aqueous binary systems
summarized by Kitamoto et al. (Kitamoto et al., 2009). While the
spontaneous curvature of MEL-A was found to be slightly negative,
leading to bilayers forming sponge (L3) and inverted bicontinuous cubic
(V2) phases, the spontaneous curvature of MEL-B is almost zero,
resulting in the formation of vesicles and/or the lamellar (Lα) phase.

Coming back to the incorporation of vitamin E for patients
having intake problems, a possible solution is the use of vitamin E
microemulsions. In recent work by Kouchi and co-workers such a
microemulsion is made by using a crude biosurfactant from
Yarrowia lipolytica (Kouchi et al., 2022). The authors present
data with droplet sizes below 100 nm, and stability of at least a
month. The “crude” biosurfactant mix of microbial origin appears to
be better suited than saponins for this purpose, but it is unclear if this
is the result of chemical variety, or the precise molecular structure.

5 Summary and outlook

We have reviewed recent progress in the formation of
biosurfactant-water-oil microemulsions. One conclusion of our
previous mini-review was that the study of biosurfactants from a
physical-chemical point of view is still in a rather early stage
(Hellweg et al., 2023). This is even more true in the case of
biosurfactant-based microemulsions. There is considerable interest in
applications, but a lack of systematic and quantitative studies on their
properties and especially on the microstructures formed by the
amphiphilic biosurfactant film. We therefore recommend a strong
focus on structural studies, especially using scattering techniques.
The latter are often missing in the literature, although they provide

robust results even in complex mixtures. In-house DLS and SAXS are
suitable and easily accessible scattering techniques. However, the
contrast in electron density, and thus the SAXS intensity, is often
limited because typical microemulsion components, as well as the
biosurfactants, are composed of H, C, N, and O. Most promising
for elucidating complex aggregate morphologies stabilized by mixtures
of co-surfactants and biosurfactants is SANS and, in particular, contrast
variation SANS using deuteration as demonstrated, for example, for
microemulsions stabilized by alcohol/surfactant or amphiphilic diblock
copolymer/surfactant mixtures (Endo et al., 2001; Bumajdad et al.,
2003). Further complementary diffusion NMR and electrical
conductivity measurements that probe the continuity of a structure
and the study of the dynamic behavior by neutron spin echo will help to
elucidate the properties of these promising newmicroemulsion systems
(Hellweg et al., 2001; Reimer et al., 2003). As far as systems are
concerned, the “royal path” would be to work with highly purified
biosurfactants in order to connect nanostructures to molecular
features–probably slowing down progress in an exaggerated manner.
We would thus recommend to work with (chemically) polydisperse
systems first, and invest energy in purifications only if promising
enough. In conclusion, we anticipate biosurfactants to be of growing
importance in progressive replacement and improvement of synthetic
surfactants by sustainable and biodegradable molecules in many
applications, from pharmacology via fuels to detergency.
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