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Patient-specific simulation of brain tumour growth and regression
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The medical relevance of brain tumours is characterised by its locally invasive and destructive growth. With a high mortal-
ity rate combined with a short remaining life expectancy, brain tumours are identified as highly malignant. A continuum-
mechanical model for the description of the governing processes of growth and regression is derived in the framework of
the Theory of Porous Media (TPM). The model is based on medical multi-modal magnetic resonance imaging (MRI) scans,
which represent the gold standard in diagnosis. The multi-phase model is described mathematically via strongly coupled
partial differential equations. This set of governing equations is transformed into their weak formulation and is solved with
the software package FEniCS. A proof-of-concept simulation based on one patient geometry and tumour pathology shows the
relevant processes of tumour growth and the results are discussed.
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1 Introduction

A tumour disease is characterised by abnormal or uncontrolled cell proliferation, that is out of sync with the organism’s
requirements for normal tissue, cf. [1]. Specifically, glioblastomas are malignant astrocytic tumours, representing the most
common brain tumours in adults. The medical relevance of brain tumours is mainly reflected by a high mortality and a low
remaining life expectancy. In addition, histologically benign tumours can also lead to an increased mortality rate, cf. [2].
From [3], respectively the publicly accessible database query [4], the case numbers of incidence and mortality of different
types of cancer are compared in Table 1. It becomes obvious that even though cancers of the central nervous system occur less
frequently than other cancers, they typically lead to death more rapidly. The median age of onset of the disease for women is
65 years (63 years men) and the median age of death for women is 69 years (67 years men). The cause of brain tumours is
still largely unknown, while the risk of contracting the disease is slightly increased in the case of radiation therapy. Genetic
inheritance is known for increasing the relative risk of a disease. A correlation between mobile phone use and brain tumours
is being discussed, as well as exposure to pesticides from agriculture.

Incidences Mortality
Category Female Male Female Male

C00 - C96 (without C44) 234 514 265 396 104 791 124 274
C70 - C72 3162 4112 2615 3441

C71 2974 3930 2575 3406

Table 1: Case numbers of incidence and mortality in Germany (2018). Split by gender for cancer diseases in total (C00 - C96), in the central
nervous system (C70 - C72) and particulary in the brain (C71). Data collected by [4].

For a non-invasive diagnosis, the widely used magnetic resonance imaging (MRI) has been established. MRI can be used
with different modalities by the well-trained clinician. A possible treatment of brain tumour diseases mainly consists of three
different approaches, while in the case of a malignant tumour, surgical removal is preferred. However, since the brain is
responsible for many important tasks, cutting out areas with a large margin is not common. Therefore, an attempt to prevent
the tumour from spreading can consist in radiation or injecting, respectively implanting, a chemotherapeutic agent.
According to [5], the foundations of neurosurgery consist primarily on a well-planned surgical strategy based on the anatomical
knowledge and the understanding of the information provided by imaging. Tumour segmentation is a supportive visualising
tool in diagnosis that helps by emphasizing the distribution of the tumour compartments. On top of that, a well-designed
model that is capable of describing the relevant processes can be of immense benefit.

2 Image-based diagnosis procedures and processing

With image-based approaches, typically two-dimensional image series along different axes are produced, that can be assem-
bled into three-dimensional objects and viewed by using tools such as freeview from freesurfer [6]. The general geometry of
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the brain, but also possible tumours, can be determined using structural MRI scans. The BRaTS challenge [7] set the gold
standard for multi-modal image recognition on four different modalities. Herein, scans with two different relaxation times T1
and T2, as well as a fluid-attenuated inversion recovery scan (FLAIR) and scans with contrast agent gandolium (T1Gd), which
visualises the separation of free to bound fluid, are included, see Figure 1.

Fig. 1: Four different structural MRI modalities from left to right: T1-weighted relaxation time, T2-weighted relaxation time, fluid-
attenuated inversion recovery (FLAIR) scan and T1Gd-weighted scan with contrast agent gandolium.

Fig. 2: Tumor segmentation [7],
necrotic core and inactive solid tu-
mour in blue, active tumour in red
and edematous tissue in orange.

Since 2012, submissions from participants of the BraTS challenge [7, 8] reflect the devel-
opments in digital imaging of multi-modal tumour segmentation. With the help of artificial
neural networks, it is thus possible to automatically localise and identify the tumour with
its sub-regions via MRI scans. Since 2017, the tumour sub-regions considered for evalu-
ation are: 1) the active solid tumour, 2) the necrotic (fluid-filled) and the non-enhancing
(solid) parts of the tumour and 3) the peritumoral edematous/invaded tissue, see Figure 2.
In 2020, a prediction of the remaining lifetime of the subject in days was brought into be-
ing. The results show the difficulties of previously known machine learning methods when
the available data set is very small. Although a simple numerical value about the prognosis
of the remaining lifetime is an important and meaningful indicator, it does not provide any
information about the further behaviour of the tumour with or without a specific treatment
method. It also does not provide any information about the course of the disease. In the
following, a data-driven continuum-mechanical model is presented, which provides a pos-
sible spatial tumour evolution with the filtered information from a pre-processing of the
multi-modal MRI scans.

3 Continuum-mechanical modelling approach

Referring to [9–11], the continuum-mechanical perspective of the problem is formulated in the framework of the Theory of
Porous Media (TPM). Herein, the brain’s microstructure is divided into separable continua and homogenised over a represen-
tative volume element dv. In particular, it is separated into constituents for the solid φS and the interstitial fluid φI , where φS

splits into healthy cells with the skeleton of the extracellular matrix (ECM) φSh and the solidificated tumour φSt. The fluid
constituent can be divided into a solute phase φIs, wherein nutrients φIn in form of glucose, mobile tumour cells φIt and
vascular endothelial growth factors (VEGF) φIv are solved, viz.:

φ =
⋃

α

φα = φS ∪ φI =
(
φSh ∪ φSt

)
∪
(
φIs ∪ φIn ∪ φIt ∪ φIv

)
. (1)

By defining the scalar structure variable, the volume fraction

nα :=
dvα

dv
with dv =

∑

α

dvα , (2)

the local composition of immiscible constituents φα (with α = {S, I}) can be quantified with its particular partial volume
dvα. In that way, the saturation of each material point is given by

∑

α

nα = 1 , (3)

which results in a natural constraining condition. The fluid is composed of miscible components φIγ with γ = {s, n, t, v}.
They can be measured analogous with the definitions of the molar concentration cIγm of a component φIγ , its constant molar
mass M Iγ

m and the respectve partial density ρIγ , with

cIγm :=
dnIγ

m

dvI
and M Iγ

m :=
dmIγ

dnIγ
m

and ρIγ := nIρIγI . (4)
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Herein, the relations of the number of moles dnIγ
m to the bulk fluid volume dvI and the mass dmIγ of a component are used.

The partial density ρIγ is related to the partial pore density ρIγI via the already introduced volume fraction nI . With that, the
partial density of the fluid ρI and its effective density ρIR can be formulated with

ρI =
∑

γ

ρIγ and ρIR =
∑

γ

ρIγI , with ρIγI = cIγmM Iγ
m . (5)

Material incompressible constituents and components are assumed with ραγR = const. and vanishingly small volume frac-
tions of solved components in the fluid in comparison to its base liquid with

nIs ≫ {nIn, , nIt, nIv} leads to ρIsR ≈ ρIR and nIs ≈ nI . (6)

Furthermore, the partial velocity
′
xIγ , the seepage velocity wIγ =

′
xIγ − ′

xS and the diffusive velocity dIγ =
′
xIγ − ′

xI of a
component φIγ , for φIs in particular, is simplified to

′
xIs≈

′
xI , wIs ≈ wI and dIs = 0 . (7)

φSt and φSh are somehow connected tissues, which is why a common movement function is assumed. Thus, the velocities of
the solid components become

′
xSt ≡ ′

xSh ≡ ′
xS . (8)

Since the phenomena are considered with no pronounced temperature changes (Θα = Θ = const.), the consideration of the
balance of energy of a constituent or component can be omitted. The quasi-static processes of tumour growth can be expressed
via neglection of the acceleration and the quadratic velocities of the aggregate and the constituents, respectively

ẍ ≡ ′′
xα ≡ 0 and

′
xα · ′

xα = 0 . (9)

Since angular momentum productions are assumed to be zero (m̂α = 0), the evaluation of the angular momentum equations
leads to symmetric partial Cauchy stresses Tα = (Tα)T. The observation of a floating brain in its skull justifies the assumption
of neglecting body forces bα = b = 0 and the governing equations are finally derived, taking into consideration Truesdell’s
metaphysical principles [12], via a combination of the balance of mass and linear momentum of each constituent, viz.:

0 = (ρα)′α + ραdiv
′
xα −ρ̂α and 0 = divTα + p̂α . (10)

The governing equations pose a set of coupled partial differential equations (PDE). The first PDE derives by adding up the
momentum equations of each constituent in Equation (11)1. A second PDE, the volume balance of the fluid constituent, which
is expressed with relative displacement of the solid body in Equation (11)2, is evaluated with the relation ρα = nαραR and the
assumption of incompressible constituent. Finally, the molar concentration balances of the solved components in the liquid
solvent in Equation (11)3 correspond to the mass balances referred to the solid displacement, viz.:

0 = divT + p̂ with
∑

α

(
p̂α + ρ̂α

′
xα

)
= 0 ,

0 = (nI)′S + div(nIwI) + nIdiv
′
xS − ρ̂I

ρIR
,

0 = nI(cIγm )′S + div(nIcIγmwIγ) + cIγm

(
div

′
xS − ρ̂S

ρS

)
− ρ̂Iγ

M Iγ
m

.

(11)

According to Coleman and Noll [13], the problem is closed in a thermodynamically consistent modelling process. Herein,
proportionality relations can be found. In this regard, a Darcy-like equation for the seepage velocity

nIwI = − KI

γIR
grad p , (12)

with the hydraulic (Darcy) permeability tensor KI , the effective fluid weight γIR and the overall pore pressure pIR, is obtained.
Analogously, a Fickean diffusion velocity for the solved components in the carrier fluid, with a particular diffusion parameter
DIγ , can be derived to

nIcIγmwIγ = −DIγ grad cIγm + nIcIγmwI . (13)

The isotropic part of the finite Neo-Hookean solid extra stress is choosen, viz.:

TS
E = 2

µS

JS
ES + λS(1− nS

0S)
2

(
1

1− nS
0S

− 1

JS − nS
0S

)
I , (14)
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Herein, λS and µS are the Lamé parameters, JS is the Jacobian, nS
0S is the initial volume fraction and ES is the Green-

Lagrangean strain measure of the solid body. Furthermore, I is the identity tensor. The individual volume fractions of the
solid constituent φSδ with δ = {h, t} are resolved implicitly via their volume balances by

nSδ = nSδ
g J−1

S and nSδ
g = nSδ

0 exp

(∫ t

t0

n̂Sδ

nSδ
dt̃
)

. (15)

Herein, n̂Sδ is the volume production. By considering the relevant proccesses for tumour growth and regression, cf. [14], the
mass-production terms build the essential driving forces in this model, viz.:

∑

α

ρ̂α = 0 with ρ̂S = ρ̂St = ρ̂St
⊕ + ρ̂St

⊖ and ρ̂I =
∑

γ

ρ̂Iγ with ρ̂Iγ = ρ̂Iγ⊕ + ρ̂Iγ⊖ . (16)

Herein, Equation (16)1 ensures a closed-system approach and Equation (16)2 shows the general split into gains and losses.
The production term of the constituent sums up the production terms of the respective components, see Equation (16)3.
The production term of the healthy cells is assumed to be zero, since the organism tries to be in homeostasis. For a more
comprehensive and detailed discussion, reference is made to [15], where the proliferation production terms follow a Monod
kinetic and the processes of metabolism and angiogenesis remain linear. In the following, a linear relation for necrosis is also
assumed.

4 Numerical investigations

In building up a test case with a real geometry and tumour pathology, subject 57 from the BraTS 2020 dataset1 is selected as
an example and provides MRI scans and a manually corrected tumour segmentation. In order to generate an initial boundary
value problem, the three-dimensional NifTi2 image data must be processed. Inspired by [16], a watertight surface mesh is
generated from the solid brain geometry by using NII2MESH3 and the resulting file is converted into a finite volume mesh
using SVMTK4 (.mesh file). Finally, it can be converted into the desired file format (.xdmf) with MESHIO5, see Figure 3.

Fig. 3: Workflow of patient-specific data (subject 57, BraTS 2020) from NifTi 3D image (left) over watertight surface mesh (center) to
processable volume mesh (right).

Fig. 4: Tumour mapping on preserved geome-
try. cItm in red, nSt in black.

The tumour segmentation is projected onto the resulting geometry, see Figure 4.
To generate a more realistic initial distribution of the tumour compartments, the
respective quantity is set to its maximal value (nSt,max, cIt,max

m ) in their respective
centre. Setting cIt,max

m generally in the domain of nSt. From here, a linear in-
terpolation is made to a minimal value at their outer edge, see Figure 5. For the
numerical implementation of the initial boundary value problem, the software
toolbox FEniCS6 is selected and the problem is solved with the well-known Fi-
nite Element Method. Therefore, the set of governing equations is backmapped

1 https://www.med.upenn.edu/cbica/brats2020/data.html
2 https://nifti.nimh.nih.gov/
3 https://github.com/neurolabusc/nii2mesh
4 https://github.com/SVMTK/SVMTK
5 https://github.com/nschloe/meshio
6 https://fenicsproject.org/
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to the reference configuration and formulated into their weak forms, viz.:

GuS
:

∫

Ω0

P · Grad δuS dV −
∫

Ω0

JS
ρ̂S

nI

KI

γIR
Grad pIR F−1

S δuS dV −
∫

∂Ω0

P ·N δuS dA = 0 ,

GpIR :

∫

Ω0

JS

[
(nI)′S − ρ̂I

ρIR

]
δpIR dV +

∫

Ω0

JS nI DS · I δpIR dV+

+

∫

Ω0

JS
KI

γIR
Grad pIR C−1

S · Grad δpIR dV −
∫

∂Ω0

JS
KI

γIR
Grad pIR C−1

S ·N δpIR dA = 0 ,

GcIγm
:

∫

Ω0

JS

[
nI(cIγm )′S − cIγm

ρ̂S

ρS
− ρ̂Iγ

M Iγ
m

]
δcIγm dV +

∫

Ω0

JS cIγm DS · I δcIγm dV+

+

∫

Ω0

JS

(
DIγ Grad cIγm + cIγm

KI

γIR
Grad pIR

)
C−1

S · Grad δcIγm dV−

−
∫

∂Ω0

JS

(
DIγ Grad cIγm + cIγm

KI

γIR
Grad pIR

)
C−1

S ·N δcIγm dA = 0 ,

(17)

with the expressions of the Piola-Kirchhoff stress P = JSTF−T
S , the symmetric deformation velocity DS = 1

2 (LS + LT
S),

the material velocity gradient LS = (FS)
′
SF

−1
S , the right Cauchy-Green tensor CS = FT

SFS , the deformation gradient
FS := ∂x

∂XS
, with its definition in mapping the actual position x to the reference position XS of a material point with respect

to the solid, the outward directed normal N and the solid constituents δ = {h, t}, respective fluid components γ = {n, t, v}.
The set of primary variables {uS , p

IR, cIγm } is discretised in space by a Taylor-Hood element formulation, with second order
ansatz functions for the displacements uS and linear ansatz functions for the remaining degrees of freedom. In time, it is
discretised with the time-step independent implicit Euler scheme of first order. The resulting mesh in this case contains over
151 000 tetrahedral elements connected by about 29 000 nodes. This results in over 200 000 degrees of freedom that must
be calculated at each time step. The calculation time for each time step is less than 140 seconds on a single Intel Core i7-
9700K with 126 GB memory at 3.60 clock speed. The three-dimensional structure is fixed in each spatial direction on the
surface of the brainstem at the bottom of the brain (uS = 0 at ∂Ω0). According to [17], the intracranial pressure is assumed
to be pIR = 1466.5N/m2. Referring to [15], the nutrient supply is assumed to be a constant Dirichlet concentration of
cInm = 1mol/m3 over the total surface area. Figure 6 shows the initial state and the calculation result after the final calculation
step of one month (30 days). The initial volume fraction of the solid tumour n̄St is estimated from the grayscale of the MRI
scan and the growth parameters are chosen according to [15] and references therein. However, no drug infusion is considered
in this contribution. The mobile cancer cells continue to spread in the domain and its molar concentration cItm increases. The
solid tumour body also grows slightly spatially and gains mass via an increasing volume fraction nSt. Angiogenesis is already
in progress in tumours of this size and the tumour is supplied via a developed vascular system for increased nutrient delivery.
Nevertheless, it can be seen in Figure 6, bottom left, that the supply is not completely sufficient and that there is a nutrient
undersupply in the centre of the tumour, which causes necrosis.

5 Conclusion

The previously discussed model from [18, 19] is applied in this contribution to a real-case geometry with a valid tumour
segmentation from clinical MRI data, with the calculation showing the expected behaviour. The model reflects all important
process sequences. Possible improvements in modelling brain tumours, such as glioblastomas, at the organ scale could be
achieved by further adjustments. In order to simplify the model, the concentration of VEGF could be omitted since the tumour
must already have been vascularised for growing beyond a circumference of 1-2 mm, cf. [20]. With an additional tumour
phase for the necrotic tumour part, the model can be adapted even more precisely to the medical data basis of the MRI scans
and more accurate results can be expected. For the investigation of larger studies, unlike the constantly growing BraTS dataset,
an automated environment is needed. Also, for older datasets or datasets with longitudinal measurement series, it is necessary
to be able to create tumour segmentations that automatically generate valid results.

A A

x

cItm

c̄Itm

Fig. 5: Left: Cross-sectional view of tumour segmentation. Right: Tumour distribution mapping over A-A. The initial tumour edema
distribution (gray, dashed) from the tumour segmentation is mapped into a partwise linear-constant distribution for the mobile cancer cells.
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tinit

tend

low
cInm

high low
cItm

high low
nSt

high

low
cInm

high low
cItm

high low
nSt

high

Fig. 6: Left: nutrient concentration cInm , Center: mobile cancer cell concentration cItm, Right: volume fraction solid tumour nSt, from initial
time step (top row) to final time step (bottom row). The Patient-specific data is taken from [7].

In addition to structural MRI scans, related techniques such as diffusion tensor imaging (DTI) or dynamic susceptibility
contrast (DSC) are emerging. Taking these modalities into account, fibre directions could be used to determine the spread
of the tumour, or perfusion data could be included to determine the spatial nutrient supply. In order to make use of that
information, particular parts of the model need to be reformulated, for example the implementation of a fiber-dependent
Darcy flow. However, an inclusion of additional data will further improve the accuracy of the model and will hopefully help
in supporting surgical intervention or chemotherapeutic treatment in the future.
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