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Abstract: Within-season crop yield forecasting at national and regional levels is crucial to ensure food
security. Yet, forecasting is a challenge because of incomplete knowledge about the heterogeneity of
factors determining crop growth, above all management and cultivars. This motivates us to propose
a method for early forecasting of winter wheat yields in low-information systems regarding crop
management and cultivars, and uncertain weather condition. The study was performed in two
contrasting regions in southwest Germany, Kraichgau and Swabian Jura. We used in-season green
leaf area index (LAI) as a proxy for end-of-season grain yield. We applied PILOTE, a simple and
computationally inexpensive semi-empirical radiative transfer model to produce yield forecasts and
assimilated LAI data measured in-situ and sensed by satellites (Landsat and Sentinel-2). To assimilate
the LAI data into the PILOTE model, we used the particle filtering method. Both weather and sowing
data were treated as random variables, acknowledging principal sources of uncertainties to yield
forecasting. As such, we used the stochastic weather generator MarkSim® GCM to produce an
ensemble of uncertain meteorological boundary conditions until the end of the season. Sowing dates
were assumed normally distributed. To evaluate the performance of the data assimilation scheme,
we set up the PILOTE model without data assimilation, treating weather data and sowing dates
as random variables (baseline Monte Carlo simulation). Data assimilation increased the accuracy
and precision of LAI simulation. Increasing the number of assimilation times decreased the mean
absolute error (MAE) of LAI prediction from satellite data by ~1 to 0.2 m2/m2. Yield prediction was
improved by data assimilation as compared to the baseline Monte Carlo simulation in both regions.
Yield prediction by assimilating satellite-derived LAI showed similar statistics as assimilating the
LAI data measured in-situ. The error in yield prediction by assimilating satellite-derived LAI was 7%
in Kraichgau and 4% in Swabian Jura, whereas the yield prediction error by Monte Carlo simulation
was 10 percent in both regions. Overall, we conclude that assimilating even noisy LAI data before
anthesis substantially improves forecasting of winter wheat grain yield by reducing prediction errors
caused by uncertainties in weather data, incomplete knowledge about management, and model
calibration uncertainty.

Keywords: crop model; data assimilation; particle filtering; PILOTE; prediction uncertainty; yield
forecast

1. Introduction

Timely and accurate crop yield forecasts are important for a wide spectrum of end-
users including policy decision-makers, food security organizations, insurance companies,
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and individual farmers [1]. Stakeholders are interested in yield predictions at different
scales, and in associated uncertainties. Individual farmers focus on attainable yield in their
fields, where information about the management is good but variability and uncertainty of
weather and soil conditions may be high. Governments and international food security
organizations are interested in yield estimates at county, national or regional levels. Beyond
the uncertainty of weather and soil conditions, which generally increases with scale, the
poor knowledge of agronomic management as well as of crop cultivars grown challenge
yield prediction on larger scales [2,3]. Although heterogeneity is not necessarily a source
of uncertainty, lacking information about the heterogeneity is, e.g., in the case of soils
and forcing data. All these uncertainties propagate through the forecasting model, which
commonly leads to large bias and inaccuracy in yield predictions.

One method to reduce errors in model predictions is to use additional sources of infor-
mation such as remote sensing data. Proxies for various state variables can be estimated
and used to update the running model. This procedure is termed data assimilation (DA; [4]).
Different state variables have been assimilated into crop models in literature for example:
LAI [3,5,6], soil moisture [7], biomass [8], plant nitrogen content [9], and phenological
stages [10]. For more information, see Weiss et al. [11], Jin et al. [4], and Dorigo et al. [12].

Data assimilation methods reduce the discrepancy between observed and modelled
variables. There are two major data assimilation strategies: 1. Recalibration/re-initialization
methods: crop model parameters are recalibrated to minimize the difference between ob-
served and simulated state variables using appropriate objective functions, often in a formal
maximum-likelihood framework [2,13]. 2. Updating methods: These methods combine data
that sequentially become available, e.g., from remote sensing, with ongoing model sim-
ulations to update corresponding state variables and parameters in real-time. Thus, the
distribution of parameter values can change over time, and statistics of predicted variables
can shift. The temporal distribution of the remote sensing data, the handling of the related
uncertainties, and other decisions on modelling parameter and model uncertainties play
an important role in the predictions.

Bayesian approaches are often used for data assimilation. One is a repeated ap-
plication of Bayesian updating, whenever new data become available. Whereas many
methods and algorithms exist, they have a lot in common. The current knowledge (or
uncertainty) about relevant system quantities (state variables, parameters, possible er-
rors) is represented as a probability distribution, called prior distribution in the Bayesian
context. Whenever new data come in, these distributions are updated to so-called poste-
rior distributions that represent the new state of knowledge. Different methods differ in
how they approximate and update the distributions, in required assumptions, and hence
inaccuracy, computational efforts, and application range. The most commonly applied
data assimilation algorithms in the field of crop modelling are Ensemble Kalman Filters
(EnKF; [2,7,14,15]), Four-Dimensional Variational data assimilation (4DVAR) [16], and
Particle Filters (PF; [17–20]).

EnKF has received much attention due to its simple concept and easy implementation.
It assumes prediction and observation errors to be normally distributed. Posterior density
functions are described solely by means and co-variances. Accordingly, applying EnKFs
to (nonlinear) systems with non-Gaussian errors may yield poor results. 4DVAR requires
high computational power and is challenging to implement [21,22]. PF, also known as the
sequential Monte Carlo filter, estimates the posterior density of the state variables given the
observed variables and has been successfully applied to crop modelling [18,20,23]. It relies
on sequential Bayesian estimation and importance sampling, it is not restricted to Gaussian
errors, and can handle nonlinear changes in the system under consideration [4]. Due to the
inherent Monte Carlo sampling, PF methods approximate the whole posterior probability
distribution, not only mean and variance (as EnKF). The accuracy of the estimates depends
on the resampling method in the filtering [22,24].

The success of DA does not only depend on the assimilation algorithm. Additionally,
the quality and quantity of the observation data, information about the system under
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consideration, the statistical adequacy of assumed distributions to represent uncertainties,
and the structure of the process model play major roles in the performance of the overall
procedure. Addressing and understanding the uncertainty in each part is crucial. In the
following, we discuss three specific aspects:

1. Determining state variables of crops from remote sensing signals is not straightfor-
ward. This is mainly due to image resolution (spatial, temporal, and radiometric), the
background soil effect, signal sensitivity saturation, and atmospheric effects [14,25].
In the early growing season, the soil and soil moisture state blur the signals, while in
the mid-late growing season the signals become less sensitive to LAI because of leaf
overlapping. The latter is called the saturation phenomenon. Systematic errors in the
estimated variables will force the crop model to produce unrealistic predictions [2]. It
remains to be clarified, how accurate remote sensing data should be to improve yield
prediction. To mitigate deficiencies in the satellite signals, researchers have developed
various empirical and mechanistic models. In general, mechanistic approaches pro-
vide better results but require more input [11], which is typically unavailable on large
scale. Among the empirical remote sensing approaches, the Choudhury model [26]
converts satellite signals to LAI using a parameter related to the leaf geometry in the
canopy. Therefore, it can be adjusted to erectophile and planophile canopies. Provided
that the number of evaluated remote sensing images is high Thorp et al. [5] showed
that the Choudhury model performs as good as the mechanistic model PROSAIL.
However, fine-resolution, cloud-free data from optical sensors are not always available
at regular intervals due to unfavorable atmospheric conditions, especially in areas
with high cloud coverage during the growing season.

2. Another part of uncertainty comes from incompletely resolved system information
including explanatory variables (inputs and forcing data). Spatial differences in
agronomic practices, mainly sowing date, fertilizer application, and crop genotype,
are major contributors to input uncertainty [27]. This information is crucial for running
crop models, but it is rarely available on a large scale mainly since data acquisition is
too costly. They somehow can be estimated either directly or indirectly by satellite
observations. Jégo et al. [28] reduced the yield prediction uncertainty associated with
crop management by assimilating remote sensing LAI. Seasonal and yearly variation
in weather data that control crop phenology, water availability, and photosynthesis
have been recognized as the main sources for inter-annual yield variability [29]. Bias
and uncertainty of the weather data may be large, but this is often neglected in the
literature [30,31]. The real aim of data assimilation is real-time prediction, requiring
generated or forecasted weather data. Most research in this field, however, has used
data assimilation for hindcasting with measured or gridded deterministic weather
data [7,27].

3. The third large source of uncertainty lies in the structure of crop models and the
parameters relating the assimilated state variable to the target variable, in our case
grain yield. Data assimilation may significantly improve the prediction of the assimi-
lated variables but not necessarily the prediction of grain yield. The model structural
link between LAI and biomass, for example, is commonly strong, but this is less so
for grain yield [32]. Also, the time at which LAI information is available, relative
to harvest, has an impact. For example, soil moisture and LAI available during the
early growing season may be less important for yield forecast accuracy than data
available in the mid or late growing season. A weak correlation between assimilated
variables and yield, which may be the result of model structure or parameterization or
both, does not lead to improved yield prediction even if the uncertainties previously
mentioned are fully accounted for. In other words, the crop variable used for data
assimilation should contain information about the uncertainty of the parameters and
affect the yield [33]. Model structure is also important since the input uncertainty
propagates to yield prediction through crop model equations and parameters. Com-
plex, process-based models can explain many processes in detail and provide the
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dynamics of many state variables, provided that the required inputs are available.
However, in the absence of large-scale agronomic and soil data, simple models with
fewer parameters may be more useful, e.g., the PILOTE model [34,35], which we
will employ here, or others such as SAFY [36]. PILOTE simulates LAI as a function
of temperature and soil water balance using empirical equations. It then computes
biomass from LAI, incoming radiation, and radiation use efficiency.

Since the PILOTE model does not require soil data and full agronomic data (sowing
date is the only important data), it can be easily used on large scale when only limited data
are available.

In this study, we aim to predict the grain yield of winter wheat using a simple crop
model integrated with the PF algorithm, while addressing the sources of error mentioned
above. We employed the PILOTE crop model introduced above. PILOTE was calibrated
independently in each region using measured data to minimize the error caused by param-
eter estimation. LAI data from two sources were used to inform the PILOTE simulations:
In-situ measurements and remote sensing (Choudhury model). A weather generator was
applied to generate stochastic weather data from climate forecast models. Weather and
sowing dates were treated as random variables to account for the uncertainty of inputs in
the regional model application. As baseline, we used a Monte-Carlo simulation with the
calibrated PILOTE model, subject to the same uncertainties, but without DA. Across all
simulations, the three sources of error outlined above will be quantified and compared by
their impacts on the LAI simulations and grain yield predicted by PILOTE.

2. Materials and Methods

This section is structured in five parts. Section 2.1 briefly explains the studied regions
and data collection. The stochastic weather data and remote sensing data are explained in
Sections 2.1.2 and 2.1.3, respectively. The details of data assimilation and the PF algorithm
implementation are outlined in Sections 2.2 and 2.3. Finally, the modelling set up and
testing for yield prediction using PF is explained in Sections 2.4 and 2.5. For the sake of
brevity, the process model PILOTE and details of parameter estimation are presented in
Appendix A.

2.1. Study Location and Data
2.1.1. Study Sites

This study was conducted for two regions in southwest Germany, Kraichgau (KR)
and Swabian Jura (SJ), using data from 2010 to 2017 (Figure 1). KR is one of the warmest
regions in Germany with a mean temperature slightly above 9 ◦C. Annual precipitation
varies from 720 to 830 mm. The elevation of this region is between 100 and 400 m above
sea level. With an altitude of 700–1000 m, SJ is substantially colder. The mean temperature
is 6–7 ◦C and annual precipitation 800–1000 mm [37]. The major characteristic soil types of
the KR and SJ are Stagnic Luvisol and Leptosol, respectively [38].

Six arable fields (14.9–23.6 ha), managed by local farmers, were monitored during the
study period. The fields were named after the Eddy Covariance (EC) stations installed
in the center of each of the three fields, EC1 to 3 in KR and EC4 to 6 in SJ. Agronomic
management such as the selection of crop rotation, cultivars, fertilization, as well as the
timing of sowing and harvesting was selected by the farmers. In total, 19 site-years were
dedicated for wheat (Table 1). In EC3-2016, three cultivars were mixed by the farmer.
Although the weather and other agronomic managements were similar to other years,
the collected data was very different from the other site-years. Therefore, we excluded
EC3-2016 from the study.
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Table 1. Information on winter wheat (Triticum aestivum) cultivars (CUL), sowing dates (SD) and
harvest dates (HD) for the studied site-years. The empty cells denote periods when other crops
were grown.

Year of
Growing Season EC1 EC2 EC3 EC4 EC5 EC6

2009–2010
CUL: Cubus
SD: 22-Oct
HD: 5-Aug

CUL: Pamier
SD: 18-Sep

HD: 26-Aug

2010–2011
CUL: Akteur

SD: 19-Oct
HD: 28-Jul

CUL: Akteur
SD: 11-Oct
HD: 29-Jul

CUL: Akteur
SD: 22-Sep

HD: 20-Aug

CUL: Hermann
SD: 13-Oct

HD: 22-Aug

2011–2012
CUL: Akteur

SD: 18-Oct
HD: 1-Aug

2012–2013
CUL: Akteur

SD: 17-Oct
HD: 4-Aug

CUL: Akteur
SD: 26-Oct
HD: 5-Aug

2013–2014
CUL: JB Asano

SD: 25-Oct
HD: 4-Aug

CUL: Orcas
SD: 8-Oct

HD: 23-Aug

CUL: Pamier
SD: 9-Oct

HD: 20-Aug

2014–2015
CUL: Sokal
SD: 23-Oct
HD: 20-Jul

CUL: Akteur
SD: 28-Oct
HD: 24-Jul

CUL: Arezzo
SD: 14-Oct

HD: 12-Aug

2015–2016
CUL: Estivus,

Pamier, Ferrum
SD: 24-Oct
HD: 30-Jul

2016–2017
CUL: Patras
SD: 14-Nov
HD: 30-Jul

CUL: Sokal
SD: 12-Oct
HD: 18-Jul

CUL: Elixer
SD: 4-Oct

HD: 14-Aug
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Plant measurements were taken bi-weekly. They included plant development stage
(BBCH; [40]), plant height, total LAI (non-destructive, using LAI-2000 Plant Canopy An-
alyzer, LI-COR Biosciences Inc., Lincoln, NE, USA), and aboveground biomass (dried at
60 ◦C to constant weight). To measure grain yield, generative parts of plants were dried at
28 ◦C to constant weight. Measurements were taken at five observational plots in each field
during the growing period. The mean value of the measurements (mean of the plot means)
was used as the representative value for each field. The dataset is publicly available [41]. See
this publication also for full details about the experimental procedures. Further details are
given by Högy et al. [42], Wizemann et al. [38], Ingwersen et al. [37], Eshonkulov et al. [43],
Eshonkulov et al. [44], and Poyda et al. [45]. In this study, we exclusively used green LAI,
whereas total LAI was measured. Therefore, we used only the LAI measurements before
anthesis, assuming that LAI before senescence (LAI until anthesis) equals green LAI. Green
LAI measured in-situ is hereafter termed LAImeas (m2/m2).

2.1.2. Weather Generator

MarkSim® is a stochastic weather generator widely used in crop modelling. It down-
scales simulations of General Circulation Models (GCM) and thereby generates stochastic
daily weather data [46] from different GCM forecasts. Users can select from many different
climate models as well as climate change scenarios. The popular crop modelling system
DSSAT routinely uses the MarkSim algorithm to generate stochastic weather data and
to fill in missing weather data [46]. The ability to provide fine-resolution weather data
(30 arc-second) makes MarkSim useful for small-area applications. Using a third-order
Markov process, MarkSim predicts daily minimum and maximum air temperature, daily
precipitation, and daily solar radiation values from monthly means of these variables. In
this paper, we selected all available climate models under the RCP 4.5 climate scenario to
avoid possible biases in the generated weather data. Figure 2 measured and generated daily
temperature ensembles (with 99 replications) in KR and SJ in the 2017 growing season.
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2.1.3. Remote Sensing Data

LAI data were derived from satellite data (LAIsat). For this, level-1 images obtained
from the Landsat 7 and 8 satellites, and from Sentinel-2A and B during the winter wheat
growing seasons from 2010 to 2017, were downloaded from the USGS [47] and Copernicus
Open Access Hub [48] websites. Level-1 products are radiometrically calibrated with
systematic geometric corrections applied. We applied atmospheric correction using the
Semi-Automatic Classification plugin included in the software QGIS (v.3.12) [49].
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Cloud-free images from March, when wheat LAI starts expanding in spring, until June
used in each year and region for data assimilation (2014, 2015, and 2017) are presented in
Table 2.

Table 2. Information on the satellite images used for data assimilation in the study. Cloud-free images
from mid-March to the end of June (wheat anthesis) were selected.

Year
Kraichgau Swabian Jura

Date Satellite Date Satellite

2014
20-Mar Landsat 8 29-Mar Landsat 7
28-Mar Landsat 7 9-Jun Landsat 7
8-Jun Landsat 8

2015

4-Apr Landsat 8 4-Jun Landsat 8
24-Apr Landsat 8 12-Jun Landsat 7
18-May Landsat 7
3-Jun Landsat 7

2017

21-Apr Landsat 7 10-Apr Sentinel-2
10-May Sentinel-2 30-Apr Landsat 7
17-May Sentinel-2 10-May Sentinel-2
23-May Landsat 7 17-May Sentinel-2
16-Jun Landsat 8 19-Jun Sentinel-2

The dimensionless Normalized Difference Vegetation Index (NDVI) was calculated
using the red and near-infrared bands of the satellite data [50]. Arithmetic averages over
the area of each field were used to get a single value for each field from the corresponding
image. To avoid mixed pixels on the field borders, we excluded the pixels located on the
border of the fields. From NDVI, LAI was calculated following Choudhury et al. [26]. In a
first step, the green vegetation fraction GVF (−) was calculated from NDVI:

GVF =
NDVI − NDVImin

NDVImax − NDVImin
, (1)

where NDVImax and NDVImin are the maximum and minimum NDVI during the wheat
growing period in each pixel of wheat fields. In a second step GVF was converted to
LAI by:

LAIsat =
ln(1− GVF)

−β
, (2)

where β (-) is a parameter describing the leaf angle distribution that varies between 0.4 to
0.9 in wheat [5]. Then, we used the mean LAIsat for each field to be comparable with the
LAImeas data. We estimated parameters NDVImax, NDVImin and β by minimizing the sum
of squared differences between LAIsat and LAImeas (See Appendix A).

2.2. Data Assimilation Methodology

Dynamic systems describe how a vector of state variables evolves over time under
the influence of explanatory variables (system inputs) and corresponding parameters. In a
state-space time-discrete formulation, the generic form of a dynamic model is written as:

xj = f
(
xj−1, Θ, uj−1

)
+ ωj−1, (3)

where xj is the vector of state variables at time j, f (·) signifies the nonlinear dynamic
prediction model, Θ represents a parameter vector, and u are explanatory variables. The
prediction model represents the state variable transition from time j− 1 to j in response to
model inputs (explanatory variables), the parameter vector, and the state variable at time
j− 1 (xj−1). There is usually a discrepancy between modelled and true values of variables
even with a perfect dynamic model. The corresponding error in the model function is
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represented by ωj−1, which is the stochastic part of the equation. In this system, the current
state depends only on the system state of the previous time step. In statistics, this is referred
to as a first-order Markov process. Longer memory can be implemented by augmenting
the state vector of additional elements that store past information. Note that the parameter
vector Θ is not time-dependent. In our case, the prediction model is the crop (PILOTE)
model. The explanatory variables u in crop modelling include forcing data (weather data
time series), and agronomic management [32]. Parameters Θ and other static values and
initial conditions are specified via xj for j = 1. All of the initial conditions, explanatory
data, parameters and errors can be viewed as random variables (e.g., via stochastic weather
simulations). In that case, xj becomes a random time series of uncertain predictions.

Knowledge about a system’s state variable can be estimated by proxies, that is, a
different source of information, e.g., from field measurements or satellite data in regular or
irregular intervals (yj). The link between state xj and data yj is characterized by the noisy
observation model:

yj = h
(
xj
)
+ vj, (4)

where h(·) is the observation model, and vj is the error between the observation model
and the state variable of interest. In this context, h(·) can either be a remote sensing-based
model for estimating LAI such as the Choudhury model (Equation (2)), or a simple field
measurement with error vj. Just like ωj−1 in Equation (3), vj is treated as a random variable.

Both prediction and observation models are necessary to infer the system state by data
assimilation. The idea of data assimilation is to apply the observation model to modify the
posterior probability prediction of the prediction model [51] using Bayesian inference.

2.2.1. The Recursive Bayesian State Estimator

The goal of a Bayesian estimator is to recursively approximate the posterior probability
density function (pdf) of a variable at time j and of possible predictions at time j+ > j
conditional on all available observations until time j, that is, p

(
xj
∣∣Yj
)
, where Yj is the

short-hand notation for y1, y2 . . . , yj.
Here, p

(
xj
∣∣Yj
)

is the posterior pdf of the state variable of interest. Performing the
prediction (Equation (3)) and observation models (Equation (4)) in the Bayesian theorem,
we can write the conditional pdf of one state variable as:

p
(
xj
∣∣Yj
)
=

p(xj|Yj−1)

Observation model︷ ︸︸ ︷
p(yj

∣∣xj)

p(yj
∣∣Yj−1)

, (5)

where p(yj
∣∣xj) is the likelihood function computed by the observation model. p(xj

∣∣Yj−1) is
the prior pdf of xj given all observations until time j− 1, and p(yj

∣∣Yj−1) is the normalizing
factor. The prior can be rewritten in integral form:

p
(
xj
∣∣Yj−1

)
=
∫ Prediction model︷ ︸︸ ︷

p
(
xj
∣∣xj−1

)
p
(
xj−1

∣∣Yj−1
)

dxj−1 (6)

All pdfs on the right-hand side of Equation (6) can be computed; the transition pdf
p(xj

∣∣xj−1) is the pdf of the state variable at time j given the states of the previous time
step j− 1. It is computed with the prediction model. The pdf p(xj−1

∣∣Yj−1) is the posterior
of the previous time step. If the initial condition of the state variable p(x0) is known
(at the beginning of simulation when there is no observation), then p(xj−1

∣∣Yj−1) can be
simply computed recursively [51]. Additionally, one can make predictions into the future
at time j+ > j by recursive applications of Equation (6) without any additional data:
p
(

x+j
∣∣∣Yj−1

)
=
∫

p
(

x+j
∣∣∣xj

)
p
(

xj
∣∣Yj−1

)
dxj. In such future steps, all explanatory variables

in the prediction models will be replaced by estimates or stochastic predictions.



Remote Sens. 2022, 14, 1360 9 of 26

The normalizing factor p(yj
∣∣Yj−1) is the marginal probability of the data that resolves

the requirement for a probability distribution to integrate to 1. This can be obtained by
evaluating the integral:

p(yj|Yj−1) =
∫

p(yj|xj)p(xj|Yj−1)dxj, (7)

which is exactly the integral over the nominator in Equation (5) to ensure that the resulting
p
(

xj
∣∣Yj
)

integrates to unity so that it is a proper pdf. Equation (7) resembles the average
(over the previous distribution) goodness of fit (as expressed by the likelihood) of the
predictions in the current data assimilation step. Hence, it is often called average likelihood
and expresses the goodness of the current pair p(xj

∣∣Yj−1) against the incoming data.
All terms of Equation (5) are now available. Except in very few cases under strong

assumptions, the Bayesian estimator must be evaluated numerically [51]. To this end, we
apply the Particle Filtering (PF) method.

2.2.2. Particle Filtering Method

Particle Filtering is a stochastic nonlinear sequential Bayesian filter based on Monte
Carlo simulation. At the beginning of the simulation, we generate N realizations, which
will propagate through the system as calculated with the prediction model, here PILOTE.
These realizations, also called particles, are vectors of states that evolve in time. In fact, each
particle contains a vector of states and all the required inputs (explanatory variables) uj−1,
parameters Θ, and the corresponding noise ωj−1 (Equations (3) and (8)). Different particles
can be distinguished by the noise, the parameter vector, or the explanatory variables. Then,
particles are propagated through the system using the prediction model. The ith particle xi

j
is obtained at time j by:

xi
j = f

(
xi

j−1, Θi, uj−1

)
+ ωi

j−1 i = 1, . . . , N (8)

At the beginning of the simulation (j = 0), all xi
j equal zero. Once the first observation

is available, the likelihood for each particle (p(yj|xi
j)) is calculated using the observation

model and the state variable of the particle. The likelihood model is selected from the error
terms in the observation model (vj in Equation (4)). The error terms in the observation
model (explained in Section 2.3.2) are assumed to follow a normal distribution.

Then, we normalize the likelihoods of all i = 1, . . . , N particles, p(yj

∣∣∣xi
j) to unity and

name them qi
j by:

qi
j =

p(yj|xi
j)

∑N
i=1 p(yj|xi

j)
(9)

This normalization step represents the normalizing effect of Equation (7). These
normalized likelihoods qi

j are used to filter the particles such that particles with higher
likelihoods have a larger probability to remain, by. Sequential Importance Resampling
(SIR; [51,52]). The particles remaining after resampling are called surviving particles. The
others, which were not selected in the resampling procedure, are called killed particles.
The idea of SIR is always to replenish the ensemble size of survived particles back to N,
achieved by sampling with replacement. There are several statistical methods available
for implementing these random decisions for SIR. In the one we choose, particles with low
values of qi

j will most probably be killed. Particle with large values will probably survive
and particles with very high values will probably survive several times. Importantly,
survivors can exist several times as identical copies but will diversify again over time due
to the future noise (ω) in Equation (3). If particles differ also in parameters, the SIR also
affects the parameter distribution effectively updating the model calibration. After the
SIR step, the particles represent p(xj

∣∣Yj) , and the entire scheme is repeated in the next
assimilation step.
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2.3. Particle Filtering Implementation
2.3.1. Prediction Model and Driving Uncertainties

In this study, the PILOTE model [34,35] is used as the prediction model. PILOTE is
a crop model with a soil and a plant module (Appendix A). In principle, the soil module
calculates the water balance on daily time steps using a capacity approach [53]. The core
of the plant module is LAI, which in turn determines aboveground biomass and yield.
In order to use the PILOTE model as the prediction model (Equation (3)) for the data
assimilation, we need to modify (Equation (A2) explained in Appendix A) to the form of
Equation (3), that is, the LAI state of PILOTE at time j has to depend on the state at j− 1.
Applying Euler’s method this leads to:

LAIj+1 = LAIj +
dLAI
dTT

∣∣∣∣
j
∗ ∆TTj (10)

where the derivative dLAI
dTT

∣∣∣
j

is taken on day j (Equation (A2)). Note that ∆TTj = Tmean −
Tbase on day j. Now, the prediction model may be expressed in the form of Equation (3):

LAIj = f
(

LAIj−1, Θ, uj−1
)
+ ωj−1 with j > 1, (11)

where the statistics of ω were taken from the residuals of the prediction in model calibration.
To perturb particles in their initialization phase (j = 0), we used, in addition to the

stochastic component ω, common major sources of uncertainty for yield predictions on
the large scale. These include: sowing date, weather data (u), and parameters (Θ). Typical
sowing dates in each region (from the dataset) were used to define the bounds of the
sowing date time periods. A normal distribution with the mean of 25 October for KR and
7 October for SJ and a standard deviation of one week were used. Weather data were
stochastically generated using MarkSim (see Section 2.1.2). The two parameters TTf and
LAImax in the PILOTE model (Equation (A2)) were considered uncertain because they are
genetic parameters, meaning that their values are cultivar dependent. The corresponding
values were sampled from posterior distributions from the calibration. Finally, the particles
were generated as described above (Section 2.2.2).

2.3.2. Observation Model and Likelihood

As we are using two types of data, we need to build two different observation models
and two different likelihood functions. The first data type is LAI field data from the five
observational plots. In this case, the observation model is direct measurement corrupted
by an additive error with normal distribution, zero mean, and an adjustable variance.
We used the empirical variance from repeated measurements to select the variance for
vj (Equation (4)). The second data type is the satellite-derived LAI data. As described
above, we use the Choudhury model (Section 2.1.3) as the observation model. In order to
capture both the noise in the data and possible approximation errors of the Choudhury
model, we calibrated the Choudhury model by fitting its satellite-derived LAI values to
our own field LAI data. We then estimated the statistics of the residuals. The residuals
indicated a normal distribution, again leading us to select a normal likelihood function. To
select its variance vj, we used the residual variance after calibration. In order to include the
additional uncertainty of noise in the field-LAI data used for calibration, we increased this
value for vj by the noise variance of the field-LAI data discussed above.

Thus, overall, both data types follow a Gaussian (normal) likelihood model:

L =
1

σ
√

2π
exp

(
− (LAIobs − LAIsim)

2

2σ2

)
, (12)
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in which L is the Gaussian likelihood of the observed LAI (LAIobs) given the simulated LAI
(LAIsim). Here, σ represents the standard deviation of the observations that is taken from
the vj in the respective observation model (field or satellite).

2.4. Data Assimilation Setup

We implemented two different data assimilation approaches, one based on the LAI
measured in-situ (DAmeas) and the other one using LAI from satellite remote sensing
(DAsat). Moreover, the effect of the number of observations on PF performance was
examined by applying data assimilation in different steps. The total number of steps was
limited by the number of satellite data available during the wheat growing period that
is provided in Table 2. In the first step, only the first measurement/satellite dataset was
assimilated, and the entire remaining time was simulated up to harvest without further
assimilation. Then, in the second step, the first and second datasets were assimilated. In
the third step, three data were assimilated and so forth until the last available data. An
example of DAsat steps is given in Appendix B.

To account for the uncertainty of future weather in this analysis, measured weather
data (past and present) and stochastic weather data were combined to run the models. In
assimilation step one, measured weather data were applied to run models until the first
observation; then for the rest of the growing season, the stochastic weather generator was
used. In the second step, measured weather data were used to run the models until the
second observation; afterwards, the stochastic weather generator was used to complete
the growing season and so forth. Whenever some current part of weather is switched to
measured data the stochastic weather generator is re-run to reflect the newly available
(current) weather data as initial conditions.

2.5. Testing against Monte-Carlo Simulations

The DA setup was applied using data from nine site years from 2014 to 2017. The
PILOTE model simulations (without data assimilation) were used with the same statistical
initialization conditions as in the DA setup. We call it Monte Carlo (MC) simulations. Thus,
sowing dates, weather data and posterior distributions of the parameters TTf and LAImax
were also taken uncertain in the MC simulations. The DA results were tested against the
MC results. The flowchart of the data assimilation trajectories and Monte Carlo simulation
is shown in Figure 3. Hereafter, DA approaches using LAImeas and LAIsat and Monte Carlo
simulation are called DAmeas, DAsat and MC, respectively. To statically compare the results,
we calculated Root Mean Square Errors (RMSE), Bias and Mean Absolute Errors (MAE)
between the simulations and the mean measurements. We should note that the LAIsat
was not used for RMSE and Bias calculations. All the analyses including running the
PILOTE model, calibration, and data assimilation implementation were performed in the R
programming environment. We used the following R packages: Evapotranspiration [54],
FME [55], hydroGOF [56], raster [57], and sf [58].
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Figure 3. Yield prediction process with different methods. The two approaches on the left differ in the
filtering technique applied. LAImeas and LAIsat are measured and remotely-sensed LAI, respectively
with σobs and σsat represent the corresponding standard deviations. The symbols x, Θ, u and N
represent state variables, parameter vector, explanatory variables (initial conditions and forcing
data), and the number of particles. x̂, Θ̂ and û are the corresponding filter-updated counterparts.

∼ N
[

LAI j
meas, σ

j
obs

]
stands for the normal distribution with mean LAI j

meas/sat and standard deviation

σ
j
meas/sat. The sequential updating continues until the last observation is available. DAmeas stands for

data assimilation based on LAI data measured in-situ, DAsat for data assimilation based on LAI from
satellite observations and MC for Monte-Carlo simlations as baseline to test the performance of the
data assimilation methods.
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3. Results

PILOTE was calibrated successfully (Appendix A). Hindcasting with the calibrated
model using measured data without uncertainty was similar to the calibration, which shows
that parameter estimation was reliable. In KR, RMSEs of yield simulation for the calibration
and evaluation were lower than 600 and 910 kg/ha, respectively. These values correspond
to relative errors of ~6.5% and ~9.6%, respectively. The bias of yield simulation in KR was
lower than 300 kg/ha for calibration and evaluation. In SJ, RMSEs of yield simulation were
323 kg/ha (3.6% error) and 780 kg/ha (8% error) at calibration and evaluation, respectively.
Biases at calibration and evaluation were 209 and 291 kg/ha. It is worth noting that only
a good calibration enables an unbiased comparison between the DA and MC simulation
because only then the improvement in the DA is due to a reduction in model parameters
and input uncertainties.

3.1. Real-Time LAI Prediction

The Mean Absolute Errors (MAE) of the predicted LAI under uncertain model inputs
(sowing date and weather data) are presented in Figure 4. The points show the mean
MAE as an indicator for the prediction accuracy and the corresponding bars represent
the standard deviation of the MAE which is representative for the uncertainty (precision)
of LAI prediction. DAmeas predictions were the more accurate (smaller bias) and precise
(smaller variance). The lowest and highest MAE acquired by DAmeas were 0.15 m2/m2 and
1.10 m2/m2 in EC6_2017 and EC4_2014, respectively. The mean and standard deviation of
the MAE decreased in most site-years as the number of assimilation steps increased (except
EC2_2015). LAI prediction by DAsat was close to that of DAmeas in most cases, but due to
the irregular availability of satellite images, the step-by-step comparison is difficult. The
largest difference in LAI prediction between DAmeas and DAsat can be seen in EC6_2014
where MAE in predictions by DAsat was 0.70 m2/m2 and it was less than 0.20 m2/m2 by
DAmeas after two assimilation steps.

In contrast, LAI predictions by MC showed a lower predictive power than those
obtained by DA. The mean MAE of the predictions produced by MC varied between 0.50
and 1.40 m2/m2. This is not far from the error of LAI in the PILOTE validation result, which
means that the stochastic sowing dates and weather data do not substantially affect LAI
prediction accuracy. The lowest and highest MAEs were found in EC2_2017 and EC6_2017
(Figure 4).

The standard deviation of MAE represents the uncertainty of the predictions. As can
be seen in Figure 4, uncertainties often decline along with the assimilation step in both
DA approaches (DAmeas and DAsat), whereas MC simulations provided a highly uncertain
prediction. Recall that uncertainty of LAI predicted by DA originates from sowing date
and weather data as well as the model parameters (TTf and LAImax), in addition to the
model noise. With increasing assimilation steps, the prediction uncertainty declines because
inconsistent parameter combinations are eliminated. Assimilating LAImeas reduced the
uncertainty more than assimilating satellite observations. This is a direct consequence of
the corresponding error variance in the likelihood function (Equation (12)). The parameter
σ in the likelihood function reflects the uncertainty of observations (see Section 2.3.2) which
is commonly larger for satellites than for in-situ measurements. Therefore, unfit parameter
realizations are punished less harshly.
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Figure 4. Mean Absolute Error (MAE) of LAI predicted with data assimilation and Monte Carlo
simulation. Points and bars represent mean and standard deviation MAE of prediction ensembles.
Red, green, and blue points show MC (Monte Carlo simulation), DAmeas (data assimilation based on
data measured in-situ), and DAsat (data assimilation based on satellite observations).

3.2. Real-time Grain Yield Prediction

Figures 5 and 6 show the prediction of grain yields. Measured grain yield ranged
roughly from 6000 kg/ha to 12,000 kg/ha across all sites and years. In general, as the
number of assimilation steps increased, the predictions became more accurate (the median
of predictions approached the median of measurements). In most cases, the yield increased
with the number of assimilation steps, due to LAI assimilation (right column and middle
column in Figures 5 and 6) and the increase in the proportion of measured weather data
compared to stochastic weather data in the simulations (MC simulations). We consider
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the prediction accuracy satisfying if the median of the predictions (blue boxes) matches
the interquartile range (IQR, middle fifty percent) of the measurements (red boxes) (see
Figures 5 and 6). In this sense, DAmeas almost achieved this goal in KR except for EC2_2015
where the predictions were slightly underestimated (the distance between the median of
the prediction and the IQR lower band of the measurements was about 5 percent). In
SJ, DAmeas predictions underestimated yield in EC4_2014 and EC6_2014. We note that in
EC4_2014 measurements varied very little. In the case of EC6_2014, the low prediction
quality could be explained by the availability of only two available LAI measurements in
April and May for DAmeas. Due to the variation in LAI, only two measurements are not
enough to robustly calculate an average. We also note that increasing the number of steps
led to a decrease in the spread of whiskers of the prediction boxes, which indicates higher
precision in the predictions (Figures 5 and 6).
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assimilation based on LAI measured in-situ), middle column: DAsat (data assimilation based on 
satellite observations of LAI) and right column: MC (Monte Carlo simulation). The red boxes show 
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Figure 5. Wheat grain yield prediction with data from Kraichgau (KR). Left column: DAmeas (data
assimilation based on LAI measured in-situ), middle column: DAsat (data assimilation based on
satellite observations of LAI) and right column: MC (Monte Carlo simulation). The red boxes show
the measured yield. The dates of the blue boxes in DAmeas and MC subplots show the dates of
in-site measured LAI, and the dates of the blue boxes in DAsat subplots show the dates of remote
sensing LAI. The dates of the red boxes correspond to the harvest date. Subplots with green circles
signify that the median prediction of the last assimilation step is within the interquartile range of the
measurements, otherwise, subplots have red circles.
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the measured yield. The dates of the blue boxes in DAmeas and MC subplots show the dates of in-site 
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To give a summarizing picture of the performance of DA prediction compared to the 
baseline MC simulations, we aggregated all site-years of each region and plotted the error 
in grain yield prediction (difference between predicted and measured yield) for the main 
plant growth months leading to anthesis (Figure 7). Not unexpectedly, the predictions in 
April were worse than in June because LAI is very low at that time and has a low effect 
on the final yield. Prediction errors by DA were lower in May and June compared to MC. 
Prediction error in June dropped substantially in SJ while it remained almost flat in KR. 
DAmeas and DAsat performed similarly in both regions. In summary, DA prediction error 
in June was about 8 and 4 percent in KR and SJ, whereas MC prediction error was about 
10 percent in both regions. 

Figure 6. Wheat grain yield prediction with data from Swabian Jura (SJ). Left column: DAmeas (data
assimilation based on LAI measured in-situ), middle column: DAsat (data assimilation based on
satellite observations of LAI) and right column: MC (Monte Carlo simulation). The red boxes show
the measured yield. The dates of the blue boxes in DAmeas and MC subplots show the dates of
in-site measured LAI, and the dates of the blue boxes in DAsat subplots show the dates of remote
sensing LAI. The dates of the red boxes correspond to the harvest date. Subplots with green circles
signify that the median prediction of the last assimilation step is within the interquartile range of the
measurements, otherwise, sublopts have red circles.

DAsat performed similarly to DAmeas, both in the prediction quality and in so far
as that predictions became more accurate as the number of assimilation steps increased.
The major difference between DAsat and DAmeas can be found in EC3_2014, where the
median of the predictions was 1200 kg/ha lower than the median of measurements, and in
EC1_2017, where it was 800 kg/ha lower. The predictive power of the DA approaches is
higher than that of the baseline MC simulations. With MC, we can see underestimations
in EC3_2104, EC2_2015, EC4_2014, EC6_2104, and EC4_2105. Here, the median of MC
predictions did not fall into the IQR of the measurements. The second drawback of MC was
in the prediction uncertainty (reflecting the effect of sowing dates and stochastic weather
data on yield), particularly in SJ. There, the variation of predictions is much higher than
that of the measurements (Figure 6).

To give a summarizing picture of the performance of DA prediction compared to the
baseline MC simulations, we aggregated all site-years of each region and plotted the error
in grain yield prediction (difference between predicted and measured yield) for the main
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plant growth months leading to anthesis (Figure 7). Not unexpectedly, the predictions in
April were worse than in June because LAI is very low at that time and has a low effect
on the final yield. Prediction errors by DA were lower in May and June compared to MC.
Prediction error in June dropped substantially in SJ while it remained almost flat in KR.
DAmeas and DAsat performed similarly in both regions. In summary, DA prediction error
in June was about 8 and 4 percent in KR and SJ, whereas MC prediction error was about
10 percent in both regions.
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Figure 7. Grain yield prediction error (%) from April to June in Kraichgau and Swabian Jura. DAmeas,
DAsat and MC stand for data assimilation based on LAI measured in-situ, data assimilation based
on satellite observations of LAI, and Monte Carlo simulation, respectively. Bars show the standard
deviation. Grain was harvested in the end of July/first days of of August (Kraichgau) and in August
(Swabian Jura) (Table 1).

4. Discussion

The success of DA generally depends on the assimilation protocol, uncertainty con-
siderations [59], observation errors, time of assimilation [2], and the relationship between
assimilated variables and the target variable (here grain yield) [32]. We mainly focused on
the uncertainty (or error) in the assimilation protocol (prediction and observation models),
observation data, and inputs including sowing dates and weather data.

4.1. Error in the Assimilation Protocol and Observation Data

With the proper assimilation protocol and observation data, we expected that (1) the
model predictions of the assimilated variable would improve in comparison to simple
MC simulations; (2) there would be similar results between DAmeas and DAsat; (3) the
predictions of LAI would improve the more data were assimilated.

MAEs of predicted LAI in both DA procedures were often lower than those of the
baseline MC simulations. That is, the DA schemes were successful in generating and
retaining particles with higher probabilities to follow measurements. This can be qualified
by evaluating the denominator in Equation (9), which is proportional to the average
likelihood in Equation (7), and inversely proportional to the number of killed particles.

Although the dates and numbers of available satellite images were not the same as
the measurements, the mean MAEs in LAI predictions by DAsat were close to those by
DAmeas. This implies that the assimilation protocol was able to mitigate the errors in LAIsat
and prevent propagating them into the predictions. The major difference between LAI
predictions by DAmeas and DAsat can be seen in the uncertainty of the predicted LAI (MAE
bars in Figure 4) which is a direct consequence of the uncertainty considered in the DAsat
protocol. Although it is known that the remotely sensed LAI is limited by the saturation
effect at high LAI values, the results of our study show that the PILOTE model simulations
(DAsat) are not considerably affected by it. In fact, the model simulations are constrained
by LAIsat not only at high LAIsat values but also at low LAI values. Proper sequential
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updating of LAIsat by PF from the early growing season reduces the negative impacts of the
saturation effect that occurs in the middle of the growing season.

There were a different number and coverage of satellite images available in each of
the site-years. Therefore, it is not straightforward to quantify the effect of the number
of satellite images (quantity of data) and the coverage during the growing season on the
yield prediction quality. Practically, regular availability of satellite data during the growing
season in regions such as central Europe cannot be expected, because the sky is often
cloudy. Effects of quantity and temporal distribution of satellite images could be analyzed
with synthetic LAI observations [2]. Our study shows that yield prediction quality is
not negatively affected when at least three data points were available for a given season.
Results showed that assimilation of available data in April was more effective in KR than
in SJ. The reason is linked to the different growth dynamics because winter wheat growth
is delayed by about two weeks in the colder SJ region. This delay means that in April
the LAI of winter wheat is still very low in SJ and not yet informative enough to improve
yield prediction. It takes the mid- and late-season vegetative growth to form an LAI which
is informative enough to improve predictions of winter wheat yields. DA in May and
June (when stem elongation and anthesis occur) improved the yield predictions much
more pronouncedly. The obvious downside of the above-mentioned delay is that potential
management or policy actions as a consequence of predicted yields will also be later, too.

4.2. Uncertainty from the Model Inputs

Uncertainties in sowing dates and weather data can cause a large uncertainty and bias
in crop yield prediction [60]. It is mirrored in the variability of LAI and yield predicted by
MC (sowing date and weather data are the uncertain part of MC simulation). Prediction
uncertainty associated with input uncertainty can only be reduced if there is a correlation
between the inputs and the state of the assimilated variables. In the first DA step, the
uncertainty did not decrease, but after 2–3 steps, the uncertainty in LAI predicted by DAmeas
decreased. Our results proved that DA using LAI data compensated for the limitations in
the model inputs at coarse resolutions [61].

4.3. Impact of Model Errors

In applying data assimilation, we are not only faced with concerns about the accuracy
of satellite data, but also about the propagation of remote sensing errors into the system,
that is, how LAI simulation and the predicted yield are affected by the error in the remotely-
sensed LAI. The LAI variable is assumed to correlate with the end of season yield, which
is not a state variable directly used. In any plant growth model, correlation between the
assimilated variable and yield has to be correctly described. This can be achieved by either
model structure or parameter optimization. For data assimilation (using LAI), we need
models and parameters which describe the correlation between LAI and yield. Otherwise,
data assimilation will improve the assimilated LAI but not yield [32].

In general, whenever DA reduces the error in LAI prediction, grain yield prediction
is expected to improve but this does not happen in all cases. For instance, in EC6_2014
MAE of LAI predicted by DAmeas was lower than 0.2 m2/m2 and it underestimated yield
by about 2200 kg/ha (difference between the median of measurements and predictions). In
contrast, MAE of LAI predicted by DAsat was about 0.70 m2/m2 and the yield prediction
error was less than 800 kg/ha. Another example is EC6_2017 where LAI predicted by MC
is less accurate than that predicted by either DA procedure but the yield prediction quality
is competitive. It seems that for further improving yield prediction by PILOTE+DA one
needs to take into account the structure of the PILOTE model. The correlation between LAI
simulation and yield can be improved by modifying the PILOTE model equations. In fact,
harnessing the model by assimilating more data depends both on how much it constrains
uncertainty sources (model inputs and parameter uncertainty) and on the sensitivity of
yield to the uncertainty sources [33]. Factors not considered in the PILOTE model such as
fertilization are likely the reason for such findings. Basically, such shortcomings of models
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applied in large areas with a high degree of uncertainty is inevitable. To consider the impact
of more factors on yield, more advanced (process-based) crop models can be used, but at
the expense of requiring more input data.

5. Conclusions

We present a method for real-time prediction of winter wheat yield in low-information
environments (i.e., unknown cultivars, sowing dates, crop management, uncertain weather
data) in two study regions in southeast Germany. This low-information situation is common
at the regional level. By using the simple crop growth model PILOTE in conjunction
with data assimilation (here the particle filtering method) and uncertain model inputs,
yield predictions could be substantially improved. We conclude that satellite-derived LAI
observations, although noisy and in Germany often blurred by clouds, are a viable source
of information. Assimilation of such data into crop models without the need to measure the
LAI in the field can reduce prediction errors caused by missing management information
and uncertain weather forecasts. In our case study, we found that three satellite observations
before anthesis are sufficient to keep the LAI prediction on track. The application of
our methodology on larger scale, where additional uncertainties from crop classification
will arise, appears promising. To draw robust conclusions on the generalizability of the
proposed approach also for large scales, the methodology should be tested against a higher
number of site-years and satellite data. We further propose that interested researchers
apply the new methodology with their crop models. We ourselves plan to implement our
data assimilation algorithm into more advanced crop models than PILOTE as to investigate
the impact of model structure and changing environmental conditions on yield prediction.
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Appendix A

Appendix A.1. The PILOTE Model

The PILOTE model [34,35] is a crop model with a soil and a plant module. The soil
module calculates the water balance on daily time steps using a capacity approach [53].
The core of the plant module is LAI, which in turn determines aboveground biomass and
yield. LAI is assumed to be a function of temperature sum (TT; ◦C) and soil water stress.

TTj =
i=j

∑
i=1

(Tmeani − Tbase), (A1)
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where TTj signifies temperature sum (◦C) at day j, Tmeani is the mean temperature (◦C) at
day i and, Tbase is the base temperature (◦C), below which plant development ceases. Tbase
was set to 1 ◦C for all cultivars.

LAIj = LAImax

[(
TTj − TTe

TTf

)a2

exp

{
a2

a1

(
1−

(
TTj − TTe

TTf

)a1
)}
−
(

1− stressλ
j

)]
, (A2)

In Equation (A2), LAIj and TTj stand for the green LAI and temperature sum at day
j, TTe is the temperature sum required for emergence (◦C), TTf is the temperature sum
required to reach maximum LAI (LAImax) (◦C), a1 and a2 are unitless shape parameters. The
term stress is a stress factor and describes the plant’s sensitivity to water stress, modified
by an empirical dimensionless parameter λ. For the j’th day, stress is defined by

stressj =
∑

j
i=j−10 Tpa

i

∑
j
i=j−10 Tpm

i

, (A3)

which is the ratio between the sum of daily actual transpiration Tpa (mm) and daily maxi-
mum transpiration Tpm (mm) of the 10 days preceding day j. It varies between zero and
one. If stress is unity it means that there is no water stress and actual transpiration equals
maximum transpiration. Although it seems not intuitive that stress at unity implies well-
watered conditions, we want to be consistent with the original papers [34,35] explaining the
equation. To compute Tpa and Tpm, maximum evapotranspiration (ETmax) is first calculated
from crop evapotranspiration, which is determined from grass reference evapotranspira-
tion using Hargreaves-Samani method [62]. Soil water balance and soil evaporation are
then calculated at daily resolution using LAI and dynamic crop coefficient. Details on the
water availability calculation and crop coefficient can be found in Khaledian et al. [35] and
Allen et al. [63].

PILOTE calculates potential aboveground dry matter yield (Ypot) from the radiation
use efficiency (RUE; g/MJ) and the fraction of intercepted solar radiation I:

Ypot = RUE
m

∑
j=1

Sj Ij, (A4)

where Sj is daily solar radiation (MJ/m2), and m is the number of days from sowing to
maturity. Daily I is calculated from LAIj by:

Ij = 1− e−kLAIj , (A5)

with
k = min

(
1.0, 1.43 LAIj

−0.5
)

, (A6)

where k (−) is a dynamic extinction coefficient. Actual aboveground dry matter biomass
yield Ya is calculated as

Ya = Ypot min
(

1.0,
LAIav

LAIpot

)
(A7)

where LAIav (m2/m2) is the mean actual LAI and LAIpot (m2/m2) the mean potential
LAI (m2/m2) during a critical period. LAIpot is calculated from Equation (A2) under
non-stress conditions (stress = 1). The critical period is the number of days between
temperature thresholds, Ts1 and Ts2. Ts1 is given by Ts1 = (TTf − 100 ) ◦C whereas Ts2 is
the temperature sum (◦C) necessary for maturity. Ts2 is estimated during model calibration.
For further details about Ts2, we refer to Khaledian et al. [35].



Remote Sens. 2022, 14, 1360 21 of 26

Finally, PILOTE calculates grain yield from Ya and harvest index HI (unitless). HI is a
function of LAIav given by

HI = min
[
HIopt,

(
HIopt − ar(LAIst − LAIav)

)]
(A8)

here, HIopt is the potential harvest index, LAIst is the LAI threshold below which HI will be
affected by stress, and ar is an empirical reduction coefficient that accounts for the impact
of suboptimal LAI during grain formation (LAIav).

Appendix A.2. Model Calibration and Evaluation Method

A region-specific calibration of the PILOTE model was performed. To this end, data
from three site-years from two harvest seasons (2010, 2011) in each region were used. The
remaining site-years were used for model evaluation.

The parameters a1 and a2 define form of the LAI curve (Equation (A2)). Calibrated
values must ensure that green LAI declines to about zero at the end of the growing period
(forming the bell shape). Thus, in addition to the measurement points, one dummy LAI
with value zero was added at harvest time. Pre-analysis showed that it is better to optimize
a1 and a2 separately before the final calibration (data not shown). After this step, we
calibrated the model in three hierarchical steps. At first, λ, TTf and LAImax were estimated
from observed LAI. Then, RUE and Ts2 were estimated from biomass data. Finally, the
yield model was calibrated tuning the parameters corresponding to the harvest index
(LAIst and ar). Similar to Khaledian et al. [35], HI was limited to the higher and lower
measured values. Therefore, HIopt was set to 0.55 and the lower limit of HI was set to 0.40,
in both regions.

The parameters of the Choudhury model are NDVImax, NDVImax and β. NDVImax
and NDVImin should be calculated from the maximum and minimum vegetation status
of the canopy during growing season. It is not realistic to take these parameters directly
from satellite images when only a few images are available during the growing season.
Therefore, we included them in the calibration. Before this, in each image pixels with
the maximum and the minimum values were extracted. Then, the potential ranges of
NDVImax, NDVImin were taken to limit the possible range in the calibration. Here, we
note that we did not calibrate the Choudhury model for each region. In fact, we assume
that the Choudhury model parameters do not depend on the region.

We assumed that the parameters of the Choudhury model do not depend on region,
and therefore did not perform a region-specific calibration to estimate them. The Choud-
hury model was calibrated using in situ data from 2010 to 2013. Data from 2014 to 2017
were used for model evaluation (Figure A3).

Parameters were estimated by maximizing the likelihood to observe the corresponding
state variables. The distribution of the parameter uncertainty was approximated by Markov
Chain Monte Carlo (MCMC) sampling [64]. To this end, a uniform distribution was
assumed for each parameter, therefore, the posterior was only the proportion to likelihood.
A Markov chain random walk with Metropolis acceptance probability ratio [65] was applied
to decide whether the candidate parameter value could replace the previous value.

Appendix A.3. Model Calibration and Evaluation Result

Appendix A.3.1. PILOTE

The parameters a1 and a2, which determine the bell shape of the LAI curve, were
fixed to values a1 = 4 and a2 = 3 in KR, and to a1 = 4 and a2 = 4 in SJ. These values
ensure that LAI is zero at the end of the growing period in all site-years. The estimates
of LAImax, TTf and λ obtained by calibration were 5.5 m2/m2, 1220 ◦C and 0.45 in KR,
and 5.1 m2/m2, 1120 ◦C, and 0.3 in SJ (Table A1). LAI calibration resulted in an RMSE of
0.30 and 0.44 m2/m2 in KR and SJ, respectively (Figures A1 and A2), with corresponding
evaluation results of 0.68 and 0.84 m2/m2. The parameter RUE was estimated at 1.15 g/MJ
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in KR which was slightly higher than SJ (1.05 g/MJ). The value for Ts2 was different in each
region and estimated at 1500 and 1200 ◦C in KR and SJ, respectively.

The estimates for LAIst and ar, the two empirical parameters for harvest index, were
different in each region. In KR, LAIst and ar were estimated at 3.85 m2/m2 and −0.15,
while the estimated values in SJ were 4.80 m2/m2 and −0.80. Finally, the results for yield
calibration showed the RMSE of 593 and 323 kg/ha in KR and SJ. RMSEs of yield for the
evaluation dataset were 903 and 780 kg/ha (Figures A1 and A2).

Although a generic calibration that does not take the different cultivars into ac-
count was done for each region, the model performance with the evaluation data set
was very close to calibration for both LAI and yield. PILOTE performance on LAI in
the evaluation data set resulted in RMSE < 0.90 m2/m2 which is competitive to that in
Ingwersen et al. [37] who calibrated the mechanistic process model GECROS to the same
data finding RMSE = 0.74 m2/m2 for the LAI in the evaluation dataset. TTf is lower in SJ
than KR which is related to the lower temperature in SJ. Similar to TTf , RUE was lower in
SJ than in KR. Research has shown that RUE depends on the environment and wheat grown
in warmer regions has higher RUE [66,67]. Compared to the study by Ingwersen et al. [37],
PILOTE evaluation results showed lower RMSEs (903 kg/ha and 780 kg/ha in KR and
SJ, respectively), however, their GECROS model was calibrated to data from both regions
simultaneously.

Table A1. Estimated PILOTE and Choudhury model parameters and corresponding posterior
uncertainties.

Parameter Units
Optimized Value

Kraichgau Swabian Jura

TTf
◦C 1220 1120

LAImax m2/m2 5.50 5.10
λ - 0.45 0.30

RUE g/MJ 1.15 1.05
Ts2

◦C 1500 1200
LAIst m2/m2 3.85 4.80

ar - −0.15 −0.80
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Appendix A.3.2. Choudhury

The optimized value for the parameter β in the Choudhury model was 0.67, and
NDVImax and NDVImin were optimized at 0.91 and 0.20. The Choudhury model estimated
an almost unbiased LAI and an RMSE of 0.88 m2/m2 (Figure A3) in the calibration data
set. The accuracy of the model in the evaluation data set was close to the calibration
(RMSE = 0.84 m2/m2). The prediction, however, was biased (bias = −0.38), mostly due to
underestimation when observed LAI was higher than 4.
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Appendix B

Figure A4 depicts assimilating the remotely-sensed derived LAI into the PILOTE
model at five steps. The last LAI point is a dummy value to harness LAI to zero at the
harvest time. In each step one LAI point is added to the assimilation procedure. This figure
shows how adding more data in assimilation influence the RMSE and the uncertainty
(variation of the cyan lines) of the LAI prediction.
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