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Abstract: This article presents a test bench with variable temperature control of the individual cells
connected in parallel. This allows to reconstruct arising temperature gradients in a battery module and
to investigate their effects on the current distribution. The influence of additional contact resistances
induced by the test bench is determined and minimized. The contact resistances are reduced from
RTab+ = 81.18 µΩ to RTab+ = 55.15 µΩ at the positive respectively from RTab− = 35.59 µΩ to
RTab− = 28.2 µΩ at the negative tab by mechanical and chemical treating. An increase of the contact
resistance at the positive tab is prevented by air seal of the contact. The resistance of the load cable
must not be arbitrarily small, as the cable is used as a shunt for current measurement. In order to
investigate their impacts, measurements with two parallel-connected cells and different load cables
with a resistance of RCab+ = 0.3 mΩ, RCab+ = 1.6 mΩ and RCab+ = 4.35 mΩ are conducted. A shift
to lower current differences with decreasing cable resistance but qualitatively the same dynamic of
the current distribution is found. An extended dual polarization model is introduced, considering
the current distribution within the cells as well as the additional resistances induced by the test bench.
The model shows a high correspondence to measurements with two parallel-connected cells, with a
Root Mean Square Deviation (RMSD) of ξRMSD = 0.083 A.

Keywords: lithium-ion battery; parallel-connected cells; measuring test bench; current distribution;
tab contact resistance

1. Introduction

Large-scale battery applications like electric vehicles (EV) have to meet high power and energy
demands, which is mostly realized by the parallel-connection of lithium-ion cells, e.g., Tesla Model S
(74p96s (The abbreviation xpys corresponds to a cell configuration with x cells in parallel and y cells in
serial connection)), Tesla Model 3 (46p96s), VW eGolf (3p88s), Nissan Leaf (2p96s), BAIC EU260 (3p90s),
Renault Zoe (2p96s) and Audi etron (4p108s) [1,2]. Caused by production-induced distributions
of cell resistances and capacities [3,4], inhomogeneous cell currents arise within these parallel cell
configurations [5], further leading to State of Charge (SoC) [6,7], Open Circuit Voltage (OCV) [8,9]
and temperature gaps [6,10] within the parallel cells. Since the cell currents must be maintained in
their corresponding operating window and cannot be measured for space and cost considerations,
correlations of the current distribution to cell parameters and cell states are essential for an optimal
and safe battery operation.
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There is a variety of articles focusing on modeling [11–15], aging [16–18], safety [19–21],
state estimation [22,23] and measurement [24–26] of parallel-connected cells. Mostly qualitative
effects like OCV [27], SoC [13], temperature [13,26,28,29] and current differences [13] are demonstrated
but quantitative relationships are missing, especially with regard to the thermal connection of the cells
to neighboring cells and cooling. The cell temperature, as well as the temperature difference between
parallel cells, can have a high influence on the current distribution both due to the high sensitivity of
the cell resistance to the temperature [30,31] and due to the correlation of heat dissipation to the cell
current [32].

Therefore, in Section 2, a test bench with a flexibly adjustable thermal connection of the individual
cells to their neighboring cells and cooling is presented. Thus, both the formation of temperature
gradients due to the current distribution and the impacts of design-induced temperature gradients
in a battery module on the current distribution can be investigated. In Section 3, an extended
dual polarization Equivalent Circuit Model (ECM) is introduced and compared to measurements.
This simulation model takes into account the influences of the test bench on the current distribution
and the parallel-connected cell layers within the cells. In Section 4, the influence of temperature
gradients induced by inhomogeneous thermal connections of the cells to neighboring cells and cooling
on the current distribution of two parallel-connected cells are investigated. At the end, a conclusion
is given.

2. The Test Bench

In this section, the test bench is discussed. First, the interactions and functions of all subsystems
are explained and afterwards the temperature control system is presented in more detail. Finally,
the possible impacts of the test bench on the current distribution are demonstrated.

2.1. Interactions and Communication of the Subsystems

Figure 1 shows the test bench for one cell with view-optimized modifications (a), a schematic
view of the temperature control system (b), a detailed view of the position and orientation of the
temperature sensors (c), as well as a detailed view of the electrical connection of the cells to the cell
tester highlighting the voltage and current measurement of each cell (d).

The test bench for each cell (10) consists of two Peltier Elements (11), two aluminum plates (3),
two CPU coolers (1), two speed controllers (2), a measurement device (4), one micro-controller (6)
and a power supply unit (7). The housing is electrically grounded and consists of aluminum profiles
(5). The cell tabs are connected to the load cable via a screwed aluminum union joint (13). The cell
temperature is captured by two Pt100 sensors (12) of each cell side, TCell,Center and TCell,Top see Figure 1c.
The temperature of the adjacent aluminum plates is measured with one Pt100 sensor TPlate. The cell
voltage Ucell is measured at the cell tabs, the cell current ICell is calculated via the voltage drop at the
load cable (14) of each cell, see Figure 1d. The load cables of the cells are connected to a cell tester.
This setup enables one to investigate any cell topology; the number of parallel-connected cells is only
limited by the size of the climate chamber. The communication and interaction of these subsystems are
presented in Figure 2.

The measurements are conducted in a temperature controlled climate chamber and the battery
load is controlled by a cell tester. The temperatures of the lithium-ion cells are regulated by Peltier
Elements. One side of the Peltier Elements is thermally coupled to the CPU coolers to keep the
temperature of this side constant at ambient temperature. In order to ensure temperature homogeneity
at the cells, the Peltier Elements are embedded in aluminum plates. In addition, the plates and the
cells are isolated by Polystyrene (9). The assembly of these subsystems is presented in Figure 1b.
The voltages of the Peltier Elements are adjusted by speed controllers, which in turn are controlled by
micro-controllers. These are regulated by a PI controller implemented in Matlab.
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Figure 1. Setup of the test bench. View-optimized modifications of the test bench with removed
cooling tubes, cables and one aluminum profile (a). Schematic view of the temperature control system
including the positions of the Pt100 sensors (12) (b). Detailed view of the position and orientation of the
temperature sensors (c) and a detailed view of the electrical connection of the cells to the cell tester (d).

Measurement data, including six Pt100 temperature sensors (12), three for each cell side, as well
as two voltage signals, are recorded with a frequency of f = 100 Hz. The signals are transferred by
an interface via CAN to a PC and real time processed in Matlab. The power for the speed controllers,
the measurement device and CPU coolers is provided by a power supply unit.

In addition, the pressure on the cells is kept constant by a spring construction and the mobility
of one aluminum plate. A fluctuation of the pressure due to the correlations of the cell’s thickness to
SoC [33,34] and temperature [35] as well as the continuous increase of the cell thickness caused
by lithium plating and gassing [36] could otherwise have a negative effect on cell aging [37].
The manufacturers and the corresponding types of the individual components are summarized in
Table 1.

The functionality of the temperature control system, temperature homogeneity of the aluminum
plates and the heating rate are explained in more detail in Section 2.2.
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Figure 2. Schematic view of the communication and interactions of all subsystems.

Table 1. Manufacturers and corresponding types of the used components.

Designation Manufacturer Type

Lithium-ion cell Kokam SLPB776495
Peltier element Quick Cool QC-127-2.0-15.0M
CPU cooler be quiet! SL 240
Speed controller EPH-Elektronik DLR 24/20
Measurement device imc CANSAS L-HCI8
Micro-controller Arduino Mega 2560
Power supply unit Thermaltake TR2 S700
Aluminum profiles ITEM Profiltyp 5
CAN interface Vector Vn1640 A
Climate chamber Vötsch VC3 4100/S
Cell tester BasyTec HPC

2.2. Temperature Control System

The control of the cell temperature as well as the temperature homogeneity at the cells were
decisive tasks for the test bench in order to fulfill reliable and trustful measurements. In order to
validate these requirements, nine temperature sensors were fixed on the cell adjacent subarea of the
aluminum plate, Figure 3a, and an exemplary regulation from T = 10 ◦C to T = 30 ◦C and further to
T = 40 ◦C, Figure 3b, was conducted.

Figure 3f–h demonstrates the temperature homogeneity of the aluminum plate. The temperature
distribution on the plate was determined by weighting each temperature sensor depending on their
distance to the respective point. In the stationary state, the maximum temperature difference within
the plate was about ∆T = 0.71 ◦C. The differences can be caused, on the one hand, by the smaller
area of the Peltier Element compared to the aluminum plate and, on the other hand, by the energy
exchange with the environment.
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Figure 3. Investigation of the temperature homogeneity and the heating rate of the aluminum plate
with the position of the Pt100 sensors and the PE (gray box) in (a), the time curve of the Pt100 sensors
with an exemplary regulation from T = 10 ◦C to T = 30 ◦C and further to T = 40 ◦C (b), the heating
rate of the aluminum plate (c–e) and the temperature homogeneity of the aluminum plate (f–h).

Another important requirement of the temperature control system is to realize a higher heating
rate of the aluminum plates ṪPlate compared to the maximum heating rate of the cells ṪCell caused by
dissipation Q̇Diss,max, which can be estimated by

ṪCell =
1

mCellcp
· Q̇Diss,max, (1)

Q̇Diss, max = RCell,max · I2
Cell, (2)

with the maximum cell resistance RCell,max, the cell current ICell, the cell’s heat capacity cp,Cell and
the cell mass mCell. The cell’s resistance was determined by pulse tests as described in Section 3.2
and ranges between RCell = 21.3 mΩ and RCell = 99.44 mΩ, depending on the SoC, temperature and
time. With a maximum cell current of ICell = 2C, the required heating rate can be calculated with
Equation (2) from ṪCell = 23.4 mK·s−1 to ṪCell = 114 mK·s−1. However, as the maximum currents
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of ICell = 2C are only permitted at cell temperatures above TCell = 10 ◦C and the voltage limits are
reached at about SoC = 8% for these high currents, the practical limit can be set to ṪCell = 74.8 mK·s−1.

The heating rate of the aluminum plate is approximately limited to ṪPlate = 250 mK·s−1, as shown
in Figure 3c–e. This enables a precise temperature adjustment of the cells and the reconstruction of
temperature gradients within a battery module due to varying thermal connections of the cells to
neighboring cells and cooling.

2.3. Impacts of the Test Bench on the Current Distribution

The ratios of the resistances and capacities of the parallel-connected cells have one of the main
influences on the current distribution. This was shown qualitatively by measurements and simulations
in [1], the quantitative influences of these parameters were mathematically proven in previous work [8,9].

For this reason, additional resistors induced by the test bench can significantly influence the
current distribution. Due to the electrical connection of the cell tester and the lithium-ion cells,
additional resistances arise in series with the cells, which are demonstrated in Figure 4.

RCab+,2 RTab+,2 RCell,2 RCab-,2RTab-,2

RCab+,1 RTab+,1 RCell,1 RCab-,1RTab-,1

RCab+,p RTab+,p RCell,p RCab-,pRTab-,p

UCab+,1

UCab+,2

UTab+,1

UTab+,2

UCell,1

UCell,2

UCab-,1

UCab-,2

UTab-,1

UTab-,2

UCab+,p UTab+,p UCell,p UCab-,pUTab-,p

Cell tester

Load

Cell 1

Cell 2

Cell p

Figure 4. Possible induced resistances by the test bench influencing the current distribution of p
parallel-connected cells, with the contact resistances at the positive RTab+ and negative tab RTab−,
the positive RCab+ and negative cable resistances RCab- as well as the cell resistance RCell.

The contact resistances at the cell tabs as well as the cable resistances must on the one hand
be well-known and on the other hand be kept low, at least their difference. As a result of the first
Kirchhoff’s law the following is valid

UCab+,i + UTab+,i + UCell,i + UTab-,i + UCab-,i

=UCab+,i+1 + UTab+,i+1 + UCell,i+1 + UTab-,i+1 + UCab-,i+1

=UCab+,p + UTab+,p + UCell,p + UTab-,p + UCab-,p,

(3)

with the cell voltage UCell,i, the positive UTab+,i and negative tab voltages UTab-,i as well as the voltages
of the positive UCab+,i and negative load cable UCab-,i of cell i. In order to keep these disturbing values
of the test bench on the current distribution low, the following conditions must be fulfilled



Batteries 2020, 6, 2 7 of 16

UCell,1 ≈ UCell,2 ≈ UCell,p, (4)

UCab-,i + UTab-,i + UCab+,i + UTab+,i << UCell,i. (5)

The contact resistance at the tabs were examined and the cable resistances were varied in order to
validate their impacts on the current distribution.

2.3.1. Contact Resistance at the Tabs

In order to keep the contact resistance at the cell tabs low, different influences on these resistances
were investigated. The contact resistances were calculated by a four terminal measurement using a
micro ohmmeter (MPK, 2000e). The influences of surface cleaning, torque and air insulation were
researched. Therefore the tabs were treated with a non-woven abrasive cloth and then cleaned with
an oxide-dissolving spray (CRC-Kontaktchemie, Kontakt 60). In addition, tests with varied contact
pressure and conductive epoxy resin were conducted in order to isolate the tabs. For the investigation
of the contact pressure, the resistances of twelve cathode and anode tabs were examined. To research
the impacts of air seal, six of the cathode tabs were treated with conductive epoxy resin. The other six
cathode tabs and the twelve anode tabs were not sealed with epoxy resin. The results are presented in
Figure 5, whereby for each point the mean, minimum and maximum value is shown.

The influences of surface cleaning and contact pressure, as presented in Figure 5a,b, have already
been investigated in [38,39] with the same findings. Figure 5c shows the influence of the air seal.
While the contact resistances at the cathode tabs with air seal remained almost constant over the
test period of 51 days, the resistances without air seal increased 2.5 times from RTab,+ = 57.4 µΩ to
RTab,+ = 133.6 µΩ. It is assumed that oxidation on the tabs will lead to this increase. A relaxation
of the surface pressure during the test period could additionally have led to an increasing contact
resistance. However, since the resistances at the anode tabs remained unchanged, this effect should be
not that significant. The anode tabs do not require an air seal due to their nickel coating, which shows
up in an unchanged resistance over the test period. Furthermore, the contact resistances at the tabs
and therefore the corresponding disturbing voltage drops UTab+ and UTab− are low compared to the
cell resistance with

max
(

RTab
RCell

)
< 1%, (6)

which should lead to no significant impacts on the current distribution.

2.3.2. Cable Resistance

In addition to the requirement of low resistance, the load cables were also used as a shunt to
determine the cell currents, which were calculated via the voltage drop at the cables. Since this
drop correlates to the cable resistance, a trade off between the measurement accuracy and the
influence on the current distribution arise. Therefore different cable resistances and their impacts
on the current distribution were investigated by measurements with two parallel-connected cells.
The cable resistances were examined by four terminal measurements using a multimeter (Keithley,
DMM7510) and are given in Table 2.

Table 2. Investigated cable resistances.

Cell RCab,Type1/mΩ RCab,Type2/mΩ RCab,Type3/mΩ

1 0.28 1.48 4.20
2 0.3 1.59 4.52
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Figure 5. Impacts of tab treatment, with the influences of surface cleaning and pressure (a,b) as well as
the effects of air sealing (c) on the contact resistance at the cathode (aluminum) and anode (nickel-plated
copper) tab.

In relation to the cell resistance, the cable resistances of the first type RCab,Type1 range from 1.3%
to 0.2% depending on the SoC and cell temperature and should have no significant influence on the
current distribution. Type 3 RCab,Type3 uses the complete measuring range of the measuring device,
which should lead to the highest measurement accuracy. Type 2 RCab,Type2 offers a trade off.

The current distribution of two parallel-connected cells with the discussed cables are presented in
Figure 6. The temperature of the aluminum plates were kept constant at TPlate = 30 ◦C. The cells were
discharged with a current load of I = −10.6 A, which corresponds to a C-rate of 1C. The discharge
started with a SoC = 0.95 and lasted until the cell voltage reaches the voltage limit of UCell < 2.8 V.
After a break of 30 min, the cells were charged with a C-rate of 1C until the cell voltage reached the
voltage limit of UCell = 4.2 V. Thereafter the cells were relaxed for 30 min.

The current distribution is qualitatively the same for the three different cables with a shift to
higher current differences within the parallel-connected cells with increasing cable resistance. However,
this may also be due to the higher difference between the cable resistances. The differences are most
obvious at the current rest and at the end of the discharge phase. This can be caused by the correlation
of the time constant to the cell’s resistance, as mathematically shown in previous work [8,9].



Batteries 2020, 6, 2 9 of 16

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

C
-r
a
te
/
h
−
1 Discharge(a) Rest 1 Charge Rest 2

0 0.5 1 1.5 2 2.5

30

31

32

Time/h

T
em

p
er
a
tu
re
/
◦ C

TPlate

TCell,Center,1

TCell,Center,2

(b)

0 0.2 0.4 0.6 0.8

−8

−6

−4

−2

C
u
rr
en
t/
A

(c)Discharge

0 0.2 0.4
−4

−2

0

2

4

I1,type1 I2,type1
I1,type2 I2,type2
I1,type3 I2,type3

(d)Rest 1

0 0.2 0.4 0.6

4

5

6

7

Time/h

C
u
rr
en
t/
A

(e)Charge

0 0.2 0.4

−1

0

1

Time/h

(f)Rest 2

Figure 6. Influence of the cable resistances on the current distribution of two parallel-connected cells.
With the current load (a), the cell and plate temperature (b) and the separated phases: Discharging
(c), the first rest (d), charging (e) and the second rest (f). The relations of the cable resistances are
RCab,type3 ≈ 3 · RCab,type2 ≈ 15 · RCab,type1, with the exact values in Table 2.

3. Simulation

In this section the used ECM is presented and the parametrization of the cells is discussed. At the
end simulations are compared to measurements of two parallel-connected cells.

3.1. Equivalent Circuit Model

In Figure 7 the implemented dual polarization model is demonstrated. The model considers the
mentioned resistances due to the connection of the cells to the cell tester and the parallel-connection of
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L cell layers within the lithium-ion cell. ECMs with RC-pairs are widely used for the simulation of the
current distribution within parallel-connected cells [1,2,40–43].

This ECM was connected in parallel and solved as described in previous work [8,9].

OCV1

Rser1

Cpol1 Cdiff1

Rpol1 Rdiff1

Upol1 Udiff1

OCV2

Rser2

Cpol2 Cdiff2

Rpol2 Rdiff2

Upol2 Udiff2

OCVL

RserL

CpolL CdiffL

RpolL RdiffL

UpolL UdiffL

Lithium-ion cell

RTab+ RTab-RCab+ RCab-

Impact of the

test bench

Impact of the

test bench

Figure 7. Extended dual polarization model—Resolution of the cell layers within the cell and
consideration of the contact resistance of the tabs and cable resistances due to the connection of
the cell to the cell tester.

3.2. Parametrization

The model was parameterized by Constant-Current Constant-Voltage (CCCV) measurements
to estimate the cell’s capacity. With a constant current of 1C until UCell = 4.2 V for charging,
respectively UCell = 2.8 V for discharging. The voltage was kept constant until the cell current
reached ICell < 1/20C. The serial resistor and the parameters of the RC-pairs were determined by 2C
charge and discharge current pulses at 34 different SoCs. The cells were relaxed one hour after each
pulse to estimate the OCV and guarantee same start conditions for each pulse. The measurements
were repeated at different cell temperatures (The current pulses were reduced to ICell = 0.2C at cell
temperatures TCell < 10 ◦C in order to keep the cells in their operating window.) T = 0, 5, 10, 20, 30
and 40 ◦C. The parametrization process as well as the results of the ECM parameters are presented in
more detail in previous work [2].

3.3. Validation

In order to validate the discussed ECM, simulations are compared to measurements in Figure 8.
Each of the used cells consists of 40 cell layers, whose resistances and capacities were randomly
drawn from Gauss distributions. With the related standard deviations of the cell’s resistance and the
cell’s capacity

σR
µR

= ωR ·
√

L, (7)

σC
µC

= ωC ·
√

L, (8)

with the standard deviation of the cell’s resistance σR and the cell’s capacity σC, the mean value of
the cell’s resistance µR and the cell’s capacity µC as well as the number of parallel-connected cell
layers L. The standard deviations of the parameters were multiplied by the square root of L to



Batteries 2020, 6, 2 11 of 16

consider the statistical averaging due to the parallel cell layers. The related standard deviations ωR
and ωC were set to ωR = 1% and ωC = 0.5%, which are typical parameter distributions caused by
manufacturing tolerances as found in [3,4]. The expected values µR and µC were adjusted according
to the parametrization results of each cell. The load cable resistances RCab were set according to the
values of Table 2. For the tab resistances RTab, the average values of the measurements in Figure 5c
were used.

The results of the simulation in Figure 8 agree well with those of the measurement with an RMSD
of ξRMSD = 0.083 A. The highest differences appeared at the end of discharge and at the first current
rest. The simulated layer currents, Figure 8a, within the cells show a similar distribution with an shift
depending on the cell parameters.
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Figure 8. Comparison of measurement and simulation, with the simulated cell layer currents Ii,1

and Ii,2, iε{1, . . . , 40} within cell one and two in (a) and the simulated cell currents as well as the
measurement results of cable type 1 in (b).

4. Impacts of the Module Design

Due to the cell packaging, inhomogeneities in terms of cooling and thermal connection of the cells
to their neighbor cells arise within a battery module. The influence of the ambient temperature depends
on the cell position in the module, whereby the cells at the edge of the module are mainly affected.
This leads to inhomogeneous cell cooling resulting in temperature gradients. Existing tension mats,
which thermally isolate the cells, can further intensify arising temperature gradients. Possible scenarios
are presented in Figure 9.

In order to investigate the influence of the cell position and thermal connection of cells,
the tension mats were modeled as heat impermeable and the module housing was assumed to
be isotherm with a constant temperature at ambient temperature. For each scenario, which considers
the effects of the border cell, two measurements were conducted to switch the border position of
the two parallel-connected cells. The reference represents conditions at a constant cell temperature,
which rather corresponds to most publications.

The current and temperature distribution of these scenarios for two parallel-connected cells are
displayed in Figure 10. The cells were fully discharged with IBatt = 1C until the cell pack reached the
lower voltage limit of UBatt = 2.8 V. Thereafter, the cells were further discharged at constant voltage
of UBatt = 2.8 V until the battery current decreased to IBatt = 1/20. After a relaxation of TBreak = 1 h,
the parallel-connected cells were charged with IBatt = 1C until the upper voltage limit of UBatt = 4.2 V
was reached. The ambient temperature and the initial temperature of the aluminum plates were set to
T = 20 ◦C.

The scenarios show significant differences of the current and temperature distribution of the
parallel-connected cells. In the following the scenarios will be separately discussed.
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Figure 9. Impacts of the cell position and isolating tension mats on temperature gradients within a
battery module (a). Considered scenarios: Reference (b), thermal-coupled border cell (c) and isolated
border cell (d).
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distribution (c) at discharge with IBatt = 1C as well as the current (b) and temperature distribution (d)
at charge with IBatt = 1C.
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Cell 2—Border Cell

With cell two as border cell, temperature gaps of ∆T = 3.8 ◦C for the thermal-coupled and of
∆T = 15.8 ◦C for the thermal isolated cells raised at discharge. This caused higher current differences
and delayed crossing points of the cell currents and resulted in increasing SoC gaps within the parallel
cells. For discharging this significantly influenced the current distribution after the crossing point.
The OCV bending at low SoC led to a rapid voltage drop of cell one, which resulted in a current peak
of cell two. This effect is more distinct with increasing SoC difference, which shows up in an increasing
current gap from I2 = 0.73 · IBatt to I2 = 0.81 · IBatt comparing the thermal-coupled and the isolated
scenario. For charging similar effects can be seen. As the current load starts at the point of the highest
OCV bending and therefore no distinct SoC gaps have been raised, the rapid current decrease is not
seen for charging.

Cell 1—Border Cell

In this scenario the temperature difference showed the same affects on the current distribution,
but considering the current of cell one in opposite direction. The temperature difference led to a
lower current of cell one and an earlier starting of the crossing point, even compared to the reference
measurement. The temperature gap in the thermal-coupled scenario affect more balanced cell currents
compared to the reference. This led also to a lower SoC gap, which in turn reduced the current peak of
cell two to I2 = 0.61 · IBatt. The isolation further decreases the current of cell one I1, which caused a
higher discharge and charge rate of cell two compared to cell one.

5. Conclusions

In this article a test bench was presented, which enables the individual temperature control of each
cell connected in parallel. This allows to reconstruct arising temperature gradients in a battery module
due and to investigate their impacts on the dynamic of the current distribution. The aluminum plates
adjacent to the cells can be heated and cooled with a rate of about ṪPlate = 250 mK·s−1, which exceeds
the maximum heating rate of the cells due to dissipation with ṪCell = 114 mK·s−1. The influence
of the test bench on the current distribution caused by induced additional resistors was determined
and minimized. The contact resistance at the cathode tab was reduced from RTab+ = 81.18 µΩ to
RTab+ = 55.15 µΩ by treating with a non-woven abrasive cloth, cleaning with an oxide-dissolving
spray and increasing the pressure from p = 27 N ·mm−2 to p = 93 N ·mm−2. In addition, an increase
of the contact resistance during the test period is prevented by air seal of the contact. Without air
sealing, the resistance increased from RTab+ = 57.54 µΩ to RTab+ = 133.57 µΩ within 51 days at
room temperature. The contact resistance at the anode tab was reduced by the same treatments from
RTab− = 35.59 µΩ to RTab− = 28.2 µΩ. Due to their nickel coating an air seal was not necessary.

Measurements of two parallel-connected cells with load cable resistances of RCab+ = 0.3 mΩ,
RCab+ = 1.6 mΩ and RCab+ = 4.35 mΩ showed qualitatively the same dynamic of the current
distribution with decreasing current differences within the parallel-connected cells with decreasing
cable resistance. An ECM considering the current distribution within the cells as well as the
impacts of the induced resistances by the test bench was introduced, parameterized and compared
to measurements. The model fitted well to measurements with an RMSD of ξRMSD = 0.083 A.
Measurements simulating different cell positions in a battery and thermal connections of cells to their
neighbor cells were conducted. The consideration of a cell at the module edge showed increasing
temperature differences of ∆T = 3.8 ◦C for thermal-coupled cells and of ∆T = 15.8 for thermal isolated
cells. This temperature difference further increased the initial cell parameter difference and led to
higher current and SoC gaps within the parallel-connected cells. The crossing point of the cell current
was delayed with increasing ∆T, which in turn caused an increasing current peak of cell two from
I2 = 0.73 · IBatt to I2 = 0.81 · IBatt comparing the thermal-coupled and isolated scenarios.
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