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The well-established sliding filament and cross-bridge theory explain the major

biophysical mechanism responsible for a skeletal muscle’s active behavior on a

cellular level. However, the biomechanical function of skeletal muscles on the tissue

scale, which is caused by the complex interplay of muscle fibers and extracellular

connective tissue, is much less understood. Mathematical models provide one possibility

to investigate physiological hypotheses. Continuum-mechanical models have hereby

proven themselves to be very suitable to study the biomechanical behavior of whole

muscles or entire limbs. Existing continuum-mechanical skeletal muscle models use

either an active-stress or an active-strain approach to phenomenologically describe the

mechanical behavior of active contractions. While any macroscopic constitutive model

can be judged by it’s ability to accurately replicate experimental data, the evaluation of

muscle-specificmaterial descriptions is difficult as suitable data is, unfortunately, currently

not available. Thus, the discussions become more philosophical rather than following

rigid methodological criteria. Within this work, we provide a extensive discussion on

the underlying modeling assumptions of both the active-stress and the active-strain

approach in the context of existing hypotheses of skeletal muscle physiology. We

conclude that the active-stress approach resolves an idealized tissue transmitting active

stresses through an independent pathway. In contrast, the active-strain approach

reflects an idealized tissue employing an indirect, coupled pathway for active stress

transmission. Finally the physiological hypothesis that skeletal muscles exhibit redundant

pathways of intramuscular stress transmission represents the basis for considering a

mixed-active-stress-active-strain constitutive framework.
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1. INTRODUCTION

Unlike many biological tissues, skeletal muscles have the ability
to actively contract and generate mechanical stress through a
complex interplay of cellular processes. Skeletal muscle tissue
is a hierarchical structure mainly consisting of muscle fibers,
i.e., the muscle cells, and extracellular connective tissue (cf.
Figure 1). The muscle fibers itself are made up of thousands of
sarcomeres (the basic contractile units), which essentially consist
of a periodic lattice of thin actin and thick myosin filaments
that can slide relatively to each other without changing their
own length. Skeletal muscle’s active behavior is closely related to
its microstructure and can be explained by the sliding filament
(Huxley and Hanson, 1954; Huxley and Niedergerke, 1954) and
the cross-bridge (Huxley, 1957) theory. In summary, in the
presence of calcium ions, which serve as a second messenger,

the catalytic domain of the myosin heads (the so-called S1-
segment) can bind to specialized binding sites on the thin
filament. The resulting bound, which consists of a myosin
head and an actin binding site, is denoted as cross-bridge.
The conformational change, which myosin heads can undergo,

represent the molecular motor’s working stroke. Depending on
the boundary conditions, the working stroke yields a relative
motion between the thin and the thick filaments or an elongation
of the myosin heads’ molecular spring. After completing the

working stroke, the cross-bridge can detach from the thin
filament and returns to its initial state. The repeated process of
attachment, working stroke and detachment is known as cross-
bridge cycle. Thus, through cross-bridge cycling, the molecular
motor converts chemically stored energy into mechanical work.
While the classical two filament model captures many important
features of active force generation (on the sarcomere-scale),
it should be noted that further cellular proteins/structures
are mechanically important for the physiological function of
muscle tissue. For example, the identification of an additional
myofilament named titin (Maruyama, 1976; Maruyama et al.,
1977;Wang et al., 1979) within the sarcomeres of skeletal muscles
refined the physiological knowledge on muscle contraction
(Herzog, 2018), i.e., providing further insights how cell integrity
can be ensured and enabling novel mechanistic explanations for
phenomena such as force-enhancement or force depression (cf.,
e.g., Abbott and Aubert, 1952; Edman et al., 1982; Noble, 1992;
Herzog and Leonard, 2002).

Besides principles of cellular force generation, a further
important aspect of muscle physiology is how microscopically
generated active stresses are balanced / transmitted through the
tissue. This is important, as it is expected that intramuscular
stress transmission is closely related to tissue remodeling and
injury. While there is little doubt that (active) stress transmission
occurs via the cytoskeleton of the muscle fibers, i.e., actin and
myosin filaments, also the extracellular connective tissue plays a
crucial role in efficiently transmitting locally generated stresses
(Patel and Lieber, 1997; Huijing, 1999; Monti et al., 1999), for
example, via activation induced along-the-fiber shear strains
(Trotter et al., 1995; Purslow, 2002).

Although the physiology of skeletal muscles has been
extensively studied in the past (cf. e.g., MacIntosh et al., 2006;

Enoka, 2008), the current knowledge on both physiological
and pathological conditions remains incomplete. Besides
experimental studies, mathematical models have been established
early on as valuable method to study the mechanical/physical
behavior of skeletal muscles using differentmodeling approaches,
addressing different research questions, and employing different
modeling assumptions. For example, the class of microstructural
motivated cross-bridge dynamics models introduced by
Huxley (1957) has been used extensively to study physiological
hypotheses on force production, both comprehensively and
quantitatively (cf. e.g., Julian, 1969; Huxley and Simmons,
1971; Hill, 1974; Eisenberg et al., 1980; Smith, 1990; Piazzesi
and Lombardi, 1995). Even before an elaborate physiological
knowledge on muscle contraction had been established, Hill
(1938) proposed a rheological muscle model, consisting of an
elastic spring with an force generating active element in parallel.
This relatively simple modeling approach can relate muscle
stress, contraction velocity and energy dissipation (cf. e.g., Hill,
1938; Winters and Stark, 1987; Zajac, 1989) and thus can assist
the interpretation experimental data or is frequently used to
simulate motions of whole systems within multi-body modeling
approaches (cf. e.g., Zajac, 1993; Anderson and Pandy, 2001;
Lloyd and Besier, 2003; Delp et al., 2007). The biggest drawback
of these models, however, is the fact that the model parameters
cannot be attributed to specific structural elements and all spatial
muscle properties are lumped.

More details on muscle function on the tissue scale can
be obtained by employing three-dimensional, continuum-
mechanical skeletal muscle models (based on the theory of finite
elasticity), as it is possible to resolve the anatomical structure of
tissues and spatial heterogeneities. Such continuum-mechanical
models have, for example, been used to study intramuscular force
transmission (Huijing, 1999; Yucesoy et al., 2003), the influence
of the muscle fiber architecture and geometry on force output
and tissue deformations (Huijing and Slawnych, 2000; Blemker
and Delp, 2005; Fiorentino and Blemker, 2014; Seydewitz et al.,
2019; Cankaya et al., 2021), the influence of motor unit activity
and distribution (Röhrle et al., 2012; Schmid et al., 2019), or
the interplay between different tissues/structures (Röhrle et al.,
2017; Ramasamy et al., 2018; Pamuk et al., 2020). Further,
employing the concept of classical field theories, continuum-
mechanical muscle models offer great flexibility within multi-
physics modeling frameworks and thus represent an important
component to realize the vision of in silico laboratories (cf. e.g.,
Klotz et al., 2019; Röhrle et al., 2019; Schmid et al., 2019).
While there exist numerous applications that could benefit from
continuum-mechanical muscle models, the usage is still limited,
for example, due to high computational cost, representation of
the complex tissue geometry, mesh generation and identification
of its baseline mechanical state frommedical imaging data.While
the latter one is of particular importance for musculoskeletal
system modeling, the biggest issue for continuum-mechanical
muscle modeling is the mathematical formulation of the material
behavior, which is essential to obtain accurate predictions of both
tissue deformations and the muscle’s stress response.

To model the mechanical behavior of skeletal muscle
tissues (just like for cardiac or smooth muscles) within a
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FIGURE 1 | (A) Schematic drawing of the cross-sectional area of skeletal muscle tissue (macro-scale) consisting of muscle fibers (gray), which are aligned in parallel

with the extracellular connective tissue (black). Note that the intracellular and the extracellular space are separated by the muscle fiber membrane (sarcolemma).

Further note that the muscle fibers, the sarcolemma and the extracellular connective tissue are mechanically interconnected through protein complexes like

dystrophin. (B) The muscle fibers are constructed by a periodic filament lattice (micro-scale) consisting of the thick myosin filaments (thick black lines) and the thin

actin filaments (thin black lines). The individual sarcomeres are separated by the Z-disks (illustrated by the vertical black lines). Further, the Z-disks are connected to

the thick myosin filaments via the protein titin (gray lines). (C) Illustration of a cross section of the hexagonal filament lattice (micro-scale) in the overlap region of the

A-Band. The thick myosin filaments are represented by big circles, the small black dots represent the thin actin filaments. The muscle fibers are orthogonal to the

page. (D) Schematic drawing of a single cross-bridge (nano-scale) consisting of a catalytic domain (S1-head) and the S2 segment. The S1 head can perform a

conformational change (illustrated by the dashed gray line) by the cost of ATP-hydrolysis, leading either to an extension of the S1 segment, i.e., generating stress, or

leading to muscle contraction.

continuum-mechanical framework, there exists mainly two
different approaches: the active-stress approach (also known as
additive split) and the active-strain approach (also known as
multiplicative split). While the active-stress approach derives
the overall stress tensor from the linear superposition of the
passive and active-stress contributions (cf. e.g., McCulloch et al.,
1992; Martins et al., 1998; Nash and Hunter, 2000; Blemker
et al., 2005; Röhrle et al., 2008; Heidlauf et al., 2016; Schmid
et al., 2019), the active-strain approach employs a multiplicative
decomposition of the deformation gradient tensor (cf. e.g.,
Kondaurov and Nikitin, 1987; Taber and Perucchio, 2000;
Nardinocchi and Teresi, 2007; Ambrosi et al., 2011a; Ehret
et al., 2011; Stålhand et al., 2011; Hernández-Gascón et al.,
2013; Giantesio and Musesti, 2017; Seydewitz et al., 2019)
to incorporate the muscles’ active behavior. Any continuum-
mechanical formulation, however, is (almost) worthless without
appropriate experimental data that characterize the mechanical
behavior of the material itself and which is essential for accurately
calibrating a specific constitutive model. Thereby note that
muscle tissue is highly diverse and suitable calibration data even
for an individual muscle is just partially available—data might,
for example, only consider uniaxial deformations (e.g., Zajac,
1989; Hawkins and Bey, 1994) or the passive state of the tissue
(e.g., van Loocke et al., 2006; Böl et al., 2012; Takaza et al., 2013).
Thus, active discussions about which approach is more suitable to
incorporate active behavior seems to be more philosophical than
based on rigorous validation. Rather methodological approaches
are given by Ambrosi and Pezzuto (2012) and Rossi et al.

(2012). They compared the additive split and the multiplicative
split by focusing on mathematical aspects and concluded that
the active-strain approach might be beneficial, as it is then
straightforward to ensure convexity. This, in turn, guarantees the
existence of a unique solution—a highly beneficial mathematical
feature. Further, Giantesio et al. (2019) compared the active-
stress and the active-strain approach for generic active materials
and pointed out clearly that the two approaches are mechanically
distinct and only coincide when rather restrictive constraints
are applied. However, those studies do not provide any insights
about the appropriateness of the respective model to capture the
mechanical behavior of skeletal muscle tissue.

Within this work, we address this shortcoming by providing
a discussion on existing constitutive modeling frameworks,
i.e., the active-stress and the active-strain approach, in the
context of physiological hypothesis of skeletal muscle function.
To illustrate the major ideas within this work, we utilize
distinct rheological models as well as specific examples for
each modeling approach. We conclude that with respect to
intramuscular stress transmission both the additive and the
multiplicative split represent extreme scenarios. That is, while
the active-stress approach follows the assumption that active
and passive muscle stresses are independent and thus must
be balanced within separate structural components, the active-
strain approach assumes that activation yields a microscopic
configuration change within the tissue and thus reflects a strong
coupling of the active and the passive behavior. As current
physiological hypothesis suspect a complex interplay of both
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pathways, it seems to be natural to consider a mixed-active-
stress-active-strain formalism.

2. METHODS

2.1. Continuum-Mechanical Modeling of
Muscle Tissue
The fundamental governing equation of continuum mechanics
can be derived from classical mechanics, where Newton’s laws
imply the conservation of linear momentum. In a continuum-
mechanical approach, a local linear momentum balance is
formulated at each material point, parametrized by a referential
vector X ∈ �, in the continuum body �. It reads

ρ0ẍ = Div(P) + ρ0b , in � , (1)

where ρ0 is the mass density in the undeformed reference
configuration, x is the position of a material point in the actual
configuration, P is the first Piola-Kirchhoff (nominal) stress
tensor, b is a vector of body forces, and Div(·) is the referential
divergence operator. Moreover, we introduce the deformation
gradient tensor F = Grad(x) to describe the motion of the
continuum body from the reference to the actual configuration,
whereby Grad(·) denotes the referntial gradient operator. Now,
the key is to determine the stress tensor P such that it
properly reflects the mechanical behavior of the respective tissue.
Otherwise, the predictive power of the continuum-mechanical
model is minimal.

The starting point for any constitutive model describing
the overall mechanical material behavior of skeletal muscle
tissue is the mathematical description of the passive material
properties. Since the physiological working range of muscles
includes large deformations, the framework of finite elasticity is
chosen. The dominant passive material properties originate from
the complex interplay betweenmuscle fibers and the extracellular
connective tissue, whereby viscous effects are small and are
therefore neglected within this work. Thus, we proceed with the
framework of finite hyperelasticity and outline the fundamentals
in the following. Within the concept of hyperelasticity, the
material behavior is fully characterized by a volume-specific
strain-energy function W(F). An indispensable requirement of
constitutive material modeling is the frame indifference of the
strain energy, i.e.,

W(F) = W(QF) ∀Q ∈ SO(3), (2)

whereby Q is an arbitrary orthogonal rotation matrix and SO(3)
is the special orthogonal group of dimension 3. For the sake of
generality, we consider arbitrary anisotropic material properties,
described by the material symmetry group MG, and require

W(F) = W(FQT) ∀Q ∈ MG ⊆ O(3), (3)

where O(3) is the full orthogonal group. Material symmetry is
usually accounted for by enriching the argument list of W by an
appropriate number of structural tensors Mi such that W(F) =
W(F,Mi), cf. Boehler (1977). Note that due to the distinct

arrangement of muscle fibers, skeletal muscle tissue is often
assumed to be transversely isotropic. For this specific case, the
material symmetry group MG contains matrices associated with
arbitrary rotations around themuscle fiber axis and the structural
tensors have to be invariant with respect to such transformations.

The first Piola-Kirchhoff stress tensor is straightforwardly
derived from the hyperelastic potentialW by applying the Doyle-
Ericksen theorem (Simo and Marsden, 1984), yielding

P(F) =
∂W(F)

∂F
. (4)

As muscle tissue is usually modeled as incompressible material,
an additional constraint J = det(F) = 1 enters the stress
tensor P via a Lagrange multiplier p (which can be interpreted
as a hydrostatic pressure). Subsequently, the first Piola-Kirchhoff
stress tensor for incompressible materials is given by

P(F) =
∂W(F)

∂F
− pJF−T , (5)

where F−T is the transposed inverse of F. As the material
properties of muscle tissue can strongly vary even within the
same muscle type and the same subject, the appropriate choice
of strain-energy function for a specific muscle remains a big
challenge. This difficulty is also reflected by the myriad of
hyperelastic strain-energy functions published for soft biological
tissues and muscle tissues, see e.g., Chagnon et al. (2015).

Furthermore, we note that the rheology of the passive
material behavior presented so far can be described by an
elastic spring. A schematic representation of this model is
shown in Figure 2A. If, besides to the passive behavior of the
muscle, the active behavior is also to be described, different
methods can be used. Two existing approaches are introduced
in the following, namely the active-stress approach in section
2.2 and the active-strain approach section 2.3. Further, both
approaches are combined in section 2.4 to obtain a mixed-active-
stress-active-strain approach. We will show that those methods
correspond to distinct rheological models, in which the active
behavior is described by an active element (in addition to the
elastic spring for the passive behavior) and each rheological
component can be associated with specific physical phenomena.

2.2. The Active-Stress Approach
In a continuum-mechanical framework, the most common way
to model the active properties of skeletal muscle tissue is
known as the active-stress approach (cf. e.g., Martins et al.,
1998; Johansson et al., 2000; Blemker et al., 2005; Röhrle et al.,
2008; Heidlauf et al., 2016; Schmid et al., 2019). The active-
stress approach can be considered as a generalization of the
pioneering muscle model of Hill (1938). Thereby, the passive
material behavior is described in terms of a hyperelastic strain-
energy function W = W(F,Mi). The active material behavior is
modeled by adding to the passive stress that is derived from (5) a
stress tensor Pa, which summarizes the microscopically generated
active stresses of the muscle fibers. The overall stress tensor is
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FIGURE 2 | Rheological models for (A) passive hyperelastic behavior, (B) the active-stress approach, (C) the active-strain approach, whereby an addition of a parallel

elastic element (illustrated in gray) yields a generalized active-strain approach, and (D) the mixed-active-stress-active-strain approach.

then obtained as

P(F,Mi, y) = Pp(F,Mi) + Pa(F,Mi, y) − pJF−T ,

where Pp(F,Mi) =
∂W(F,Mi)

∂F
. (6)

Therein, the last term accounts for the incompressibility of
the muscle tissue, cf. Equation (5), and a variable number
of structural tensors Mi accounts for general anisotropy of
the passive and active parts. Further, y denotes a vector of
state variables and describes the muscle’s active properties. It
can depend on mechanical quantities such as the macroscopic
deformation F and the rate of deformation Ḟ. Depending on
the level of systemic detail captured by the model, the vector y
can, for example, contain a set of phenomenological parameters
(cf. section 2.2.2) or a set of microscopic, physically meaningful
parameters that describe, e. g., the state of a population of cross-
bridges (cf. section 2.2.3). Note that independent of the specific
parametrization, it is assumed that the active state vector y can be
externally controlled by an experimentalist and thus reflects an
observable variable.

In a rheological model, the active-stress approach is described
by the parallel arrangement of an elastic element and a newly
introduced active element, see Figure 2B. This is necessary as
the active-stress-generating property of skeletal muscles cannot
be classified in terms of basic rheological elements. It should be
noted that the active element, which depends on the active state
vector y, could have very complex constitutive properties: for
example, it exhibits properties of elastic springs (e.g., reflecting
short range stiffness Rack and Westbury, 1974) as well as
dissipative dampers (e.g., reflecting the force-velocity relation
Hill, 1938; Heidlauf et al., 2017). For a better understanding, a
physiological interpretation of the active-stress approach based
onmicrostructural considerations and some illustrative examples
of specific active-stress tensors are provided in the following.

2.2.1. The Active-Stress Approach in the Context of

Muscle Physiology
Recalling the basic ideas of the sliding filament theory and
the cross-bridge theory, the microstructural arrangement of the
sarcomeres (cf. Figure 1B) allows the actin and the myosin
filaments to slide in passive muscle tissue relative to each other
without undergoing deformation. Assuming that both the actin
and the myosin filaments are relatively stiff (note that in various
microstructural models actin and myosin, are assumed to be
rigid, e.g., Huxley, 1957), the overall sarcomere stress can be
obtained by adding up the stress contributions of both cross-
bridges and titin. Those assumptions yield an additive split of

a muscle fiber stress tensor. Further, following the assumption
that there is no elastic coupling between muscle fibers and the
extracellular matrix, the linear superposition of the stress tensor
is also justified for a tissue sample.

2.2.2. Example 1: A Phenomenological Description of

the Active-Stress Tensor
Assuming that the active muscle stresses only act along the fiber
direction, which is indicated by a referential unit vector af0, a
corresponding active-stress tensor Pa can be introduced as

Pa(F, a
f
0, y) = Pa

(

y
)

F
[

af0 ⊗ af0

]

, (7)

where Pa(y) reflects a scalar active-stress value. Note that the
dyadic product, af0 ⊗ af0, of the unit vector af0 describes an
appropriate structural tensor for the case of transverse isotropy
and thereby replaces the general argument Mi. Macroscopic
experiments indicate that the active muscle stress response
depends on the applied stimulus, the applied stretch (Gordon
et al., 1966) and the speed of the contraction (Hill, 1938). Those
observations can, for example, be summarized by the following
phenomenological definition of the active-stress value Pa, i.e.,

Pa
(

y
)

= Pmax fl(λf)fv(λ̇f)α(t). (8)

Therein the active state of the muscle is fully characterized by
an ensemble of four scalar parameters / functions, i.e., y =
[Pmax, fl(λf), fv(λ̇f),α(t)]

T , where Pmax is the maximum isometric
tension and α(t) ∈ [0, 1] is a lumped activation parameter
depending on the time t. The function fl(λ) denotes the force-
length relation, i.e., depending on fiber stretch λf, which is related
to the deformation gradient tensor F and the referential fiber
direction vector, af0, by

λ2f = Faf0 · Faf0. (9)

Further, fv(λ̇f) denotes the force-velocity relation depending on
the muscle’s contraction velocity λ̇f. It is important to note that,
from a microstructural point of view, the force-length relation
indicates the overlap of the actin and the myosin filaments, which
is linearly proportional to the number of available cross-bridges
for force generation, and therefore should not be interpreted as a
hyperelastic stress-stretch relation. Thus, the active-stress tensor
is only weakly coupled to the applied deformation field. Further
note that a multi-axial active-stress tensor can be obtained
straightforwardly by linear superposition of a set of active-stress
tensors given by Equation (7), whereby one has to consider
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appropriate structural tensors as it is done to model, for example,
the complex fiber architecture of the tongue, see, e.g., Wang et al.
(2013).

2.2.3. Example 2: A Microstructurally Based

Description of the Active-Stress Tensor
Based on the ideas of the sliding filament theory and taking
into account a skeletal muscle’s microstructure, one can derive
an active-stress tensor by homogenizing the microscopic cross-
bridge stresses. To do so, we consider a population of Nxb

cross-bridges, whereby each cross-bridge is characterized by its
molecular spring’s elongation xi. When assuming that both the
actin and the myosin filament are (nearly) rigid, the overall
stress tensor can be calculated, summing up the stresses of
parallel arranged cross-bridges (cf. Huxley, 1957). Further one
needs to take into account the periodic, microstructural geometry
of skeletal muscles (cf. Figure 1). Assuming that cross-bridges
behave linear elastic, the mechanical energy stored in all cross-
bridges within a given reference volume Vref reads

Wxb
active =

Nxb
∑

i=1

1

2
kxbx

2
i , (10)

where kxb is the cross-bridge stiffness. The (scalar-valued) force
produced by a single cross-bridge Fxbi can now be derived from
a partial derivative of the cross-bridge energy with respect to the
cross-bridge elongation xi, i.e.,

Fxbi = kxbxi. (11)

Note that the cross-bridge elongations are microscopic quantities
and are not directly related to the macroscopic strains. To obtain
a continuum description of the active-stress tensor, the discrete
cross-bridge forces need to be homogenized. When assuming
that cross-bridges do not transmit bending moments or shear
forces, the mechanical problem is purely geometric (Schoenberg,
1980a) and thus only the three-dimensional structure of the
sarcomere needs be taken into account. Due to the periodic
structure of the filament lattice (cf. Figure 1), a single half-
sarcomere can be considered as representative unit cell. Using the
assumption that for the considered population all cross-bridges
act in parallel, the active stress in muscle fiber direction can be
calculated by Schoenberg (1980b).

Pf
a(F, a0, y) =

cos(ϕ)

A
ref
f

Nxb
∑

i=1

kxbxi F
[

af0 ⊗ af0

]

. (12)

Therein A
ref
f

is the cross-sectional area of the reference volume
and ϕ is the angle of force transmission (cf. Figure 1D).
Due to the filament arrangement (cf. Figure 1C), the cross-
fiber stresses act in hexagonal plane, i.e., which describes
the filament lattice unit cell consisting of six actin filaments
with one myosin filament in the center, normal to the
muscle fiber direction. Thereby it is assumed that all cross-
bridges are equally distributed between the thin filaments, i.e.,
Nn
actin/N

max
xb

= 1/6 (n = 1, 2, ..., 6). Hence, for each subset

of cross-bridges pointing toward the same actin filament an
individual stress tensor can be derived (cf. Heidlauf et al.,
2016), i.e.,

Pxf,n
a (F, af0, y) =

1

6

sin(ϕ)

A
ref
xf

Nxb
∑

i=1

kxbxi F [tn ⊗ tn] ,

n = 1, 2, ..., 6, (13)

where A
ref
xf

is one sixth of the mantle surface of the reference
volume and the unit vectors tn are defined by

tn = cos
(

φ + [n− 1]
π

3

)

e2

+ sin
(

φ + [n− 1]
π

3

)

e3, n = 1, 2, ..., 6 . (14)

Therein, the orthonormal basis vectors ei (i = 1, 2, 3) denote a
laboratory frame of reference that is–without loss of generality–
defined such that e1 = af0. Further, the angle φ ∈ [0, 2π) is
introduced to account for the non-uniqueness of the basis vectors
e2 and e3. The overall cross-fiber stress tensor, P

xf
a , is derived by

adding up all the individual stresses, Pxf,n
a , and utilizing the fact

that
∑

n tn⊗tn = 3 (I−(af0⊗af0)), (cf. Usyk et al., 2000; Heidlauf
et al., 2016), yielding

Pxf
a (F, af0, y) =

6
∑

n=1

Pxf,n
a =

1

2

sin(ϕ)

A
ref
xf

Nxb
∑

i=1

kxbxi F
[

I −
[

af0 ⊗ af0

]]

. (15)

Finally, the overall active-stress tensor Pa is given by

Pa(F, a
f
0, y) = Pf

a(F, a
f
0, y) + Pxf

a (F, af0, y), (16)

where the active state vector is summarized by y =
[kxb,A

ref
f
,Aref

xf
, x1, ..., xNxb

]T . Employing a set of experimentally
derived parameters (cf. Appendix), yields at optimal muscle
length and full activation a nominal active stress in fiber
direction of approximately 25N cm−2. This coincides well with
experimental findings for skeletal muscle tissue (Bodine et al.,
1987). Further, the model predicts active stresses in the cross-
fiber direction of approximately 5–10% of the active stress in
fiber direction.

2.3. The Active-Strain Approach
Instead of employing the active-stress approach for modeling a
skeletal muscle’s active behavior, an active-strain approach has
been used (e.g., Ehret et al., 2011; Hernández-Gascón et al.,
2013; Giantesio and Musesti, 2017; Seydewitz et al., 2019). For
the active-strain approach, one assumes that the deformation
gradient tensor F can be multiplicatively split into an active part
Fa and an elastic contribution Fe, i.e.,

F = Fe Fa. (17)
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Although this multiplicative decomposition was originally
proposed for elastoplastic materials (Lee, 1969), it has also been
applied to model a variety of other internal (inelastic) processes.
In the field of biomechanics, for example, the concept was
also employed to model tissue growth (Rodriguez et al., 1994;
Ambrosi et al., 2011b). The basic idea of the multiplicative split is
that the active deformation gradient tensor Fa depicts a mapping
from the reference configuration to an incompatible, stress-
free intermediate configuration. In turn, the elastic deformation
gradient tensor Fe reflects a mapping from the intermediate
configuration to the actual configuration. This means that the
elastic deformation is given by Fe = FF−1

a and depends on the
“visible” deformation and the active contribution. Subsequently,
the mechanical behavior of the tissue is then described by a
potential W = W(Fe,Mi) as a function of the elastic part of the
deformation. The resulting first Piola-Kirchhoff stress tensor is
given by

P(F,Mi, y) = Pe(F,Mi, y) − pJF−T ,

where Pe =
∂W

∂Fe
F−T
a . (18)

Therein, (·) F−T
a denotes a pull-back transformation that is

required since the derivative ∂W/∂Fe yields a two-point
tensor relating forces in the actual configuration and area
elements in the intermediate configuration, whereas the nominal
stress P is a two-point tensor between actual and referential
coordinates. Within a rheological setup, the active-strain
approach corresponds to a serial arrangement of an elastic spring
and an active element, see Figure 2C. Thereby, the deformation
tensor Fe corresponds to the deformation of the spring and
the tensor Fa describes the deformation of the active element.
This serial characteristic is clearly different if compared to the
setup of the active-stress approach in section 2.2. Note, in the
active-strain approach one exploits the fact that the mechanical
state of the material is fully characterized by the potential
energy of the serial elastic element. Further, for skeletal muscles,
it is common to additively split up the energy function and
then apply the multiplicative split only to parts of the energy
(Ehret et al., 2011; Hernández-Gascón et al., 2013). Such an
approach can be considered as generalized active-strain approach
(reminiscent to the generalized Maxwell model in viscoelasticity)
and is illustrated in Figure 2C by the gray elastic spring. The key
challenge remains the constitutive definition of an appropriate
active deformation gradient tensor Fa, which is generically
introduced to be parameterized by the potential W, the active
state vector y and a sufficient number of structural tensorsMi that
describe the material symmetry of the internal active contraction,
i.e., Fa(W,Mi, y). It should be noted that while it is possible for the
active-stress approach to derive the active-stress tensor directly
from macroscopic observations (cf. section 2.2.2), i.e., a set of
physical observable variables (cf. section 2.2.3), this is no longer
true for the active-strain approach, as the active deformation
gradient tensor Fa represents an internal and thus non-observable
variable. Further, due to the strong coupling between the elastic
spring and the active element the chosen constitutive relation
requires consideration of the assumed elastic potential. Finally

note that in the case of zero activation, i.e., Fa = I (whereby I

is the second-order identity tensor), one obtains the previously
defined purely passive muscle stresses (cf. Equation 5). In analogy
to the investigations of the active-stress approach, the active-
strain approach is discussed with respect to muscle physiology
in section 2.3.1 and specific constitutive equations are exemplary
provided in sections 2.3.2, 2.3.3.

2.3.1. The Active-Strain Approach in the Context of

Muscle Physiology
Given the serial arrangement of an elastic spring and an active
element as shown in Figure 2C, the active-strain approach
implies that there exists a strong coupling between elastic element
and the active element. Muscle physiology teaches that muscle
fibers not only generate active stress, but also actively change their
shape. Further, fibermotion is constrained by the interaction with
the surrounding extracellular connective tissue. Accordingly,
any kinematic rearrangement in the microstructure (i.e., the
muscle fibers) will yield a change in the elastic potential of a
tissue sample. Thus, while the active-stress approach implied
that active stresses are transmitted through the actin-myosin
skeleton of the muscle fibers (cf. section 2.3.1), the active-
strain approach describes a fundamentally different, indirect
mechanism of active stress transmission. Considering current
physiological hypotheses, the most likely candidate to indirectly
transmit the active stresses is the extracellular connective tissue
(e.g., Trotter et al., 1995; Patel and Lieber, 1997; Huijing,
1999; Monti et al., 1999; Purslow, 2002). Note that from a
purely macroscopic perspective, it is impossible to observe
such microscopic rearrangements [they will strongly depend on
the microscopic architecture and boundary conditions, cf., e.g.,
Sharafi and Blemker (2011), and, thus, are barely possible to
predict a priori]. Therefore, macroscopic modeling frameworks
require a non-observble internal variable to incoporate this
behavior. In this sense, it is important to stress that the
active deformation gradient tensor has no unique physiological
meaning. However, as illustrated by the two examples below,
strongly simplified virtual tissue arrangements help to illustrate
the general concept of the multiplicative decomposition of the
deformation gradient tensor.

2.3.2. Example 3: A Volume Preserving Active

Contraction Along the Fiber Direction
As a first example, we assume a virtual tissue sample consisting of
a muscle fiber that is (serially) arrange with elastic extracellular
connective tissue (cf. Figure 3A). This is similar to the
experiment of Shaw et al. (2013), where a cardiac myocite is
embedded within an elastic gel. Therefore, it is assumed that
in response to activation the muscle fiber contracts along the
fiber direction af0 while preserving its volume, i.e., requiring
det(Fa) = 1. This is reflected by the active element in Figure 2C.
In order to ensure compatibility with the actual configuration
the serially arranged connective tissue, i.e., corresponding to the
serial spring in Figure 2C, is stretched. This stretch is described
by the elastic deformation gradient tensor Fe. A corresponding
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FIGURE 3 | Schematic drawings for (A) Example 3, considering a muscle fiber (red) which is serially arranged with extracellular connective tissue (bright color) and (B)

Example 4 considering a non-spanning muscle fiber (red) embedded in (thin) sheets of extracellular connective tissue (bright color). For both examples, the structural

rearrangement caused by the activation of the muscle fibers are illustrated.

active deformation gradient tensor can be formulated to read

Fa(W, af0, y) = λa

[

af0 ⊗ af0

]

+
1

√
λa

[

I −
[

af0 ⊗ af0

]]

. (19)

Therein λa can be interpreted as a measure for the internal
active stretch and reflects the internal motion/contraction of the
muscle fiber. It requires an additional constitutive relation, i.e.,
λa = λa(W, y). Note, the active stretch λa also depends on the
elastic tissue properties and therefore has to contain the potential
functionalW as argument.

2.3.3. Example 4: Activation Induced Shear Strains
In this example, we assume a microstructural configuration
consisting of a non-spanning muscle fiber embedded in
extracellular connective tissue, which is much thinner then the
diameter of the muscle fibers (cf. Figure 3B). The activation of
the muscle fiber will force the fiber to contract and thus yields
a relative motion between the muscle fiber and the connective
tissue (note that a similar behavior is expected if active stresses are
heterogeneously distributed along the length of muscle fibers).
The microscopic change of the muscle fibers configurations
will cause shear deformations along the fiber axis within the
extracellular connective tissue. Thus, a corresponding active
deformation gradient tensor can be defined to read

Fa(W, af0, y) = I + γa

[

af0 ⊗ ei

]

. (20)

Therein, γa = γa(W, y) is the internal active shear along
the fiber axis and ei denotes an arbitrary unit vector which is
orthogonal with respect to the fiber direction. Note that while
the scenario described in Example 3 (i.e., section 2.3.2) requires
large internal motions of the muscle fibers to yield a significant
stress response, for the scenario described within this section
rather small changes of the muscle fiber configurations are
sufficient to yield considerable change of the elastic deformation
gradient tensor. This is due to the difference in the tissue

components thickness, i.e., the muscle fibers are much thicker
than the sheets of extracellular connective tissue separating
them. Consequently, small (internal) rearrangements of the
microstructure are sufficient to induce large shear deformations
within the extracellular connective tissue and thus represent a
very efficient pathway for active-stress transmission (cf. Trotter
et al., 1995; Purslow, 2002; Sharafi and Blemker, 2011).

2.4. A Mixed-Active-Strain-Active-Stress
Constitutive Modeling Approach
Considering stress transmission on the tissue scale, the previous
sections conclude that both the active-stress and the active-strain
approach physiologically represent extreme scenarios: the active-
stress approach assumes a decoupled pathway for active-stress
transmission (cf. section 2.2.1), while the active-strain approach
is based on the assumption that the active stresses are transmitted
by the coupling with an elastic matrix material (cf. section 2.3.1).
Thus, for a tissue employing redundant pathways of active-stress
transmission, as it is expected for skeletal muscle tissue, it seems
to be natural to formulate a mixed-active-stress-active-strain
constitutive modeling framework. A corresponding rheological
model is illustrated in Figure 2D. Based on the constitutive
equations introduced in the previous sections, cf. Equations (6),
(18), we define the first Piola-Kirchhoff stress tensor as

P(F,Mi, y) =
∂W1(F,Mi)

∂F
+

∂W2(F,Mi, y)

∂Fe
F−T
a

+ Pa(F,Mi, y) − pJF−T .

(21)

Therein, the energy W is additively split into contributions that
depend on the overall deformation F and the partial deformation
Fe. In this sense, the energy contribution that depends on F

describes the parallel spring in Figure 2D, whereas the part that
depends on Fe desribes the spring that is arranged in series to the
active elements (in the middle). Note that all stress components
require constitutive equations, whereby one can employ the same
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concepts as presented in sections 2.1–2.3. Within the following
section we will discuss the presented macroscopic constitutive
modeling frameworks in the context of physiological hypotheses
of skeletal muscle function (i.e., experimental observations) and
macroscopic data from material testing, and discuss practical
considerations for formulating specific constitutive models.

3. RESULTS AND DISCUSSION

3.1. Active Constitutive Modeling
Frameworks and Muscle Physiology
Considering the anatomical structure of skeletal muscles, there
is little doubt that the active stresses induced by cross-bridge
strains on the nano-scale can be transmitted efficiently through
the muscle fiber’s filament skeleton. Within a continuum-
mechanical framework this aspect of active muscle behavior can
be adequately modeled by introducing an active-stress tensor
(cf. section 2.2). Experimental evidence for such a behavior has
been derived indirectly from the observation that the maximum
isometric tension and the fraction of activated muscle fibers are
linearly proportional (Powell et al., 1984).

However, the existence of non-spanningmuscle fibers (Huber,
1916; Lindhard, 1931; Loeb et al., 1987; Ounjian et al., 1991),
i.e., muscle fibers that are not attached to a tendon on both
sides and thus end in the middle of a muscle belly, clearly
indicates that alternative pathways for active-stress transmission
on the tissue scale must exist. Early evidence that active-stress
transmission can occur via the extracellular connective tissue was
provided by Ramsey and Street (1940) and Street and Ramsey
(1965) showing that a preparation of an isolated muscle fiber
surrounded by extracellular connective tissue is still capable of
producing nearly its maximum isometric force after the filament
skeleton was removed from one half of the sample. Although
these experiments do not cover physiological conditions, the
current view is that muscles employ redundant pathways for
stress transmission (Street, 1983; Patel and Lieber, 1997; Huijing,
1999; Monti et al., 1999). Beside the obvious involvement of the
muscle fiber’s filament skeleton, particularly activation induced
shear deformations of the extracellular connective tissue are
believed to contribute to active-stress transmission (Trotter
et al., 1995; Purslow, 2002). The efficiency of active-stress
transmission via shear strains was emphasized by Purslow (2002)
and Sharafi and Blemker (2011), pointing out that due to the
small thickness of the extracellular connective tissue, modest
(relative) fiber motions are sufficient to induce large shear strains;
fiber motions, however, are not so uncommon. Even during
isometric contractions, local sarcomere length changes, i.e., on
the micro-scale, have been observed within isolated muscle fibers
(Julian and Morgan, 1979) and whole muscles (Moo and Herzog,
2018). These observations on active muscle behavior can be
phenomenologically captured within a macroscopic, continuum-
mechanical framework by employing an active-strain approach
with an internal variable (cf. section 2.3).

In conclusion, while both the active-stress and the active-
strain approach seem to cover a single very specific aspect

of muscle’s active behavior, a more complete reflection of
muscle physiology can be expected when appealing to a mixed
active-stress-active-strain approach. In this connection, it
can be seen that both the active-stress and the active-strain
approach represent special cases of the mixed active-
stress-active-strain approach, with opposing weightings for
the active stress transmitted through the corresponding
rheological elements.

3.2. Macroscopic Data and Limitations
All three approaches require a choice for specific constitutive
equations. Although phenomenological constitutive equations
are, unlike the governing equations of the overall system,
i.e., modeling approaches, designed with the underlying
material behavior and physiology in mind, they remain
mathematical constructs. In this regard, constitutive parameters
can not necessarily be associated with physical properties.
The values of a constitutive law’s “material parameters”
are consequences of fitting the mathematical construct to
experimentally observed data from macroscopic material
experiments, i.e., from experiments that aim to relate stresses,
deformations and activation. Depending on the choice of
the objective function of the optimization procedure and
the quality and richness of the experimental data, multiple
mathematical constructs, e.g. number and exponential-,
fractional-, polynomial-, or logarithmic-like terms, lead to
very similar results and only a “goodness of fit” parameter,
i.e., choosing an adequate norm, provides at the end a
measure that favors one or the other constitutive law, cf.
Schmid et al. (2007) for myocardial parameter estimation.
This also applies in this setting, i.e., it is theoretically possible
to replicate excellent experimental data with any of the
considered constitutive frameworks; this is particularly true
as the active element can capture various different mechanical
properties and thus offers great flexibility. Moreover, the
choice of norm to compare the different constitutive results
with each other might influence the results in such a way
that it is cumbersome to carry out fitting procedures for the
three individual cases and compare them. This is particular
true if one discusses the underlying modeling frameworks
rather than the form, i.e., the individual terms, of a particular
constitutive law. As the additional benefit of employing
material fitting optimization procedures is marginal, we
omitted within this work any material fitting procedures, and
entirely focus on the advantages and disadvantages of the
individual modeling approaches—in particular with respect to
the underlying physiology.

Finally it must be noted that it is impossible to reconstruct
the internal behavior of the tissue from purely macroscopic
data. Thus, choosing the ratio between the active-stress and
the active-strain contribution remains a modeler’s assumption.
Recalling the physiological basis of the active-stress and active-
strain contributions, however, might allow an educated guess.
More sophisticated choices might be possible by augmenting
experimental data with data originating from multi-scale
simulations, for example, by combining microstructural imaging
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and micro-mechanical homogenization models (e.g., Sharafi
and Blemker, 2011; Bleiler et al., 2019, 2021). That is, micro-
mechanical models can be used to predict microstructural
tissue rearrangements and which are represented by the
active deformation gradient tensor Fa in a macroscopic
modeling framework.

3.3. Conclusion
We want to conclude this discussion on continuum-mechanical
constitutive frameworks to model muscle’s active behavior
by a set of practical considerations to formulate specific
constitutive equations:

(i) For any classical continuum-mechanical boundary value
problem that is relating external forces and internal
deformation fields, the choice of a specific constitutive
framework is rather a philosophical decision. The only
limiting factor for the predictive power of an in silico
model is the goodness of the employed macroscopic
calibration data, which always can be replicated by any of
the constitutive frameworks. Note, while it has been shown
that the active-strain and the active-stress approach can differ
for conditions that where not included in the calibration
data (Giantesio et al., 2019), assessing the goodness of a
predictions for such conditions is beyond the scope of any
phenomenological model.

(ii) The choice of a weighting between active-stress and
active-strain components is of particular importance
when employing a continuum model to investigate tissue
remodeling or injuries. This is emphasized by the observation
that both phenomena are determined by elastic stresses
(Lieber and Friden, 1993). Thereby, one should keep in mind
that various neuromuscular diseases potentially affect the

elastic coupling between muscle fibers and the extracellular
connective tissue.
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APPENDIX – EXAMPLE 2: A
MICROSTRUCTURALLY BASED
DESCRIPTION OF THE ACTIVE-STRESS
TENSOR

Predicting the active-stress tensor given in Equation (16) based
on a set of physical meaningful variables, requires identification
of additional model parameters related to the material behavior
and the geometry of the microstructure. Therefore, a hexagonal
lattice structure, i.e., where a thick (myosin) filament is
surrounded by six thin (actin) filaments, is assumed (Millman,
1998). For skeletal muscle tissue the lattice spacing parameter d10
(cf. Figure 1C) is, depending on the different muscle types and
species, between 35 and 45 nm (cf. Millman, 1998). Assuming
d10 = 36 nm and neglecting the diameter of the filaments results
in a distance of ram = 24 nm between a thick and a thin filament.
Further, we assume a half-sarcomere length of lref

hs
= 1 µm in the

reference configuration. From the given geometrical parameters,
the volume of a half-sarcomere can be calculated by

Vref
sarco = A

ref
f · lrefhs =

3

2

√
3 · r2am · lrefhs = 1.4965× 106nm3. (S1)

Further, assuming that the length of the myosin filament in a
half-sarcomere measures around 850 nm and exhibits a distance
of about 43 nm between two myosin heads (cf. Daniel et al.,

1998), then there are ∼20 myosin-head complexes along one
thick filament, pointing toward one thin filament. Note that one
myosin-head complex consist of two head units competing for
the same actin binding site. Such effects are however beyond
the scope of this work and therefore neglected. Recalling the
hexagonal structure, there are 6 such lines and thus themaximum
number of available cross-bridges per half-sarcomere can be
calculated by Nxb

max = 20 · 6 = 120. During an isometric
contraction and full activation ∼20 to 40% of the cross-bridges
are in a force producing state (Gordon et al., 2000; Brunello
et al., 2014). For an exemplary calculation, we assume that
for a tetanic contraction 30% of the cross-bridges are in a
force producing state. Further, an average isometric power-stroke
elongation of xiso = 6 nm (cf. Barclay, 1998; Brunello et al.,
2014) is assumed. As far as the stiffness of the actin-myosin cross-
bridges is concerned, there exists some discussion on its value.
Depending on different experimental methods and theoretical
assumptions, reported stiffness values range from 0.5 to 3.5 pN
nm−1 (Barclay, 1998; Mansson et al., 2015). For the exemplary
calculation presented in Section 2.2.3, we choose the stiffness
of the actin-myosin cross-bridges as kxb = 2.0 pN nm−1.
Finally, assuming that the angle of force transmission can be
approximated by the length of the S2 segment lS2 = 40 nm
(MacIntosh, 2003) and the distance between actin filament and
the myosin filament, ram, the angle of force transmission is ϕ ≈
0.17π .
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