
Institute of Software Engineering
Software Quality and Architecture

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelor’s thesis

Extending a Microservice DSL for
Service Level Objectives

Pascal Schur

Course of Study: Softwaretechnik

Examiner: Prof. Dr.-Ing. Steffen Becker

Supervisor: Sandro Speth, M.Sc.

Commenced: September 1, 2022

Completed: March 1, 2023

Abstract

Context. Microservice architectures have been growing in popularity for years because they are
an effective means to develop scalable and maintainable software. One challenge in developing
a microservice architecture is to ensure that the architecture achieves the necessary quality
characteristics such as scalability and reliability. Domain-specific languages can be used to model
microservice architectures and configure different aspects of them.

Problem.Whereby the existing domain-specific languages lack support for quality attributes such as
service level objectives.

Objective.In this thesis, we present a concept of how such a domain-specific language can be
extended to support quality aspects like service level objectives.

Method.We developed a prototype using the domain-specific language MDSL, which allows the
modelling of service-level objectives. In addition, we have extended the generator for OpenAPI
specification, already contained in Microservice Domain-specific Language (MDSL), to support
our extensions as well. We validated our approach with an experiment.

Result.The results of this experiment show that our prototype has been well accepted by the
participants and is a proper tool for specifying quality attributes in microservice architectures. Our
extension allows developers to better understand and control their microservice architectures, which
improves their reliability and maintainability.

Conclusion.In summary, our work demonstrates how important it is to specify quality attributes
during the development of microservice architectures and how domain-specific languages can
support this process.

iii

Kurzfassung

Kontext. Microservice-Architekturen erfreuen sich seit Jahren zunehmender Beliebtheit, da sie ein
effektives Mittel zur Entwicklung skalierbarer und wartbarer Software sind. Eine Herausforderung
bei der Entwicklung einer Microservice-Architektur ist es, sicherzustellen, dass die Architektur die
notwendigen Qualitätsmerkmale wie Skalierbarkeit und Zuverlässigkeit erreicht. Domänenspezi-
fische Sprachen können verwendet werden, um Microservice-Architekturen zu modellieren und
verschiedene Aspekte von ihnen zu konfigurieren.

Problem. Den vorhandenen domänenspezifischen Sprachen fehlt die Unterstützung für Qual-
itätsmerkmale wie Service Level Objectives.

Ziel. In dieser Arbeit wird ein Konzept vorgestellt, wie eine solche domänenspezifische Sprache
erweitert werden kann, um Qualitätsaspekte wie Service Level Objectives zu unterstützen.

Methode. Unter zuhilfenahme der domänenspezifischen Sprache MDSL wurde ein Prototyp
entwickelt, der die Modellierung von Service-Level-Zielen ermöglicht. Darüber hinaus haben
wir den Generator für die OpenAPI Spezifikation, die bereits in MDSL enthalten ist, angepasst
um unsere Erweiterungen zu unterstützen. Wir haben unseren Ansatz mit einem Experiment
validiert.

Ergebnisse.Die Ergebisse dieses Experiments zeigen, dass unser Prototyp von den Teilnehmern gut
angenommen wurde und ein nützliches und effektives Werkzeug für die Spezifikation von Qualität-
sattributen in Microservice-Architekturen ist. Unsere Erweiterung ermöglicht es Entwicklern, ihre
Microservice-Architekturen besser zu verstehen und zu kontrollieren, was deren Zuverlässigkeit
und Wartbarkeit verbessert.

Schlussffolgerung. Zusammenfassend zeigt diese Abschlussarbeit, wie wichtig die Spezifikation
von Qualitätsattributen während der Entwicklung von Microservice-Architekturen ist und wie
domänenspezifische Sprachen diesen Prozess unterstützen können.

v

Contents

1 Introduction 1

2 Foundations and Related Work 3
2.1 Foundations . 3
2.2 Related work . 12
2.3 DSL Analysis & Selection . 15

3 Concept 17
3.1 Concept Overview . 17
3.2 SLO Integration into a DSL . 18
3.3 SLO Integration into Interface Description Language 21
3.4 SLO Generation in OpenSLO . 22
3.5 Usage of OpenSLO . 22

4 Architecture and Implementation 23
4.1 Architecture . 23
4.2 Implementation of built-in SLOs . 23
4.3 Adding OpenSLO to MDSL . 29
4.4 Document Validation . 39

5 Evaluation 41
5.1 Experiment . 41
5.2 Results . 43
5.3 Discussion . 44
5.4 Threats to Validity . 45

6 Conclusion 47
6.1 Summary . 47
6.2 Limitations . 47
6.3 Lessons Learned . 48
6.4 Future Work . 48

Bibliography 49

A Appendix 51
A.1 OpenSLO file example . 51
A.2 Experiment . 53

vii

List of Figures

3.1 Thesis concpet. 17
3.2 Service Level Objective model. 18
3.3 Service Level Indicator model. 19
3.4 Objective model. 20
3.5 Alerting model . 20

4.1 Architecture of our extension . 23
4.2 Example of an SLA in MDSL. 24
4.3 Service Level Agreement (SLA) which uses a simple measurement instead of a

landing zone. 25
4.4 Endpoint which uses our SLA. 25
4.5 Provider which uses our SLA. 26
4.6 Service Level Objective model. 30
4.7 Examle Service Level Objective (SLO) in MDSL 30
4.8 Xtext grammar of the OpenSLO template. 31
4.9 Xtext grammar of the time window object. 31
4.10 Xtext grammar of the Duration object. 32
4.11 Examle Service Level Objective with a rolling time window. 32
4.12 Xtext grammar of the Service object. 33
4.13 Service used in our example. 33
4.14 Xtext grammar of the objective object. 33
4.15 Service Level Indicator used in our example. 34
4.16 Xtext grammar of the Service Level Indicator. 34
4.17 Xtext grammar of the Ratio Metric. 35
4.18 Xtext grammar of the Metric Source . 35
4.19 Xtext grammar of the Data Source . 35
4.20 Data Source used in our example. 36
4.21 Xtext grammar of Threshold Metrics. 36
4.22 Xtext grammar of Alert Policies . 37
4.23 Alert Policy used in our example . 37
4.24 Xtext grammar of the Alert Condition . 38
4.25 Xtext grammar of the Alert Notification Target 38
4.26 Alert Notification Target used in our example 39
4.27 Error message display when entering an invalid URL 40

5.1 Average rating of Q1. 43
5.2 Average rating of Q2. 43
5.3 Average rating of Q3. 43

ix

List of Listings

2.1 An Example of an interface description taken from MDSL main website [Zim]. . 6
2.2 OpenSLO template of the SLO object showing tags and their values. Taken from

the OpenSLO specification on their GitHub repository [BMb]. 8
2.3 OpenSLO template of the service object showing tags and their values. Taken from

the OpenSLO specification on their GitHub repository [BMb]. 8
2.4 OpenSLO template of the objective object showing tags and their values. Taken

from OpenSLO specification on their GitHub repository [BMb]. 9
2.5 OpenSLO template of the Service Level Indicator (SLI) object showing tags and

their values. Taken from the OpenSLO specification on their GitHub repository
[BMb]. 9

2.6 OpenSLO template of the threshold metric object showing tags and their values.
Taken from the OpenSLO specification on their GitHub repository [BMb]. 10

2.7 OpenSLO template of the ratio metric object showing tags and their values. Taken
from the OpenSLO specification on their GitHub repository [BMb]. 10

2.8 OpenSLO template of the alert policy object showing tags and their values. Taken
from the OpenSLO specification on their GitHub repository [BMb]. 11

2.9 OpenSLO template of the alert condition object showing tags and their values.
Taken from the OpenSLO specification on their GitHub repository [BMb]. 11

2.10 OpenSLO template of the alert notification target object showing tags and their
values. Taken from OpenSLO specification on their GitHub repository [BMb]. . 12

3.1 Example of multiple YAML objects in a single document. 22
4.1 Generated OpenAPI description from Figure 4.4. 27
4.2 Generated SLA description from Figure 4.2. 28
4.3 Inlined SLA in a OpenAPI specificaiton. 29
4.4 Info object in the OpenAPI document. 39
A.1 Generated YAML document from our example part one. 51
A.2 Generated YAML document from our example part two. 52
A.3 MDSL file of the t2-inventory service provided to the study participants. 53
A.4 MDSL file of the t2-inventory service provided to the study participants. 54

xi

Acronyms

API Application Programming Interface. 1

CLI Command-line Interface. 6

DSL Domain-specific Language. 1

EMF Eclipse Modeling Framework. 3

GQM Goal Question Metric. 42

HTTP Hypertext Transfer Protocol. 3

IDE Integrated Development Environment. 5

IDL Interface Description Language. 21

MDSL Microservice Domain-specific Language. iii

SLA Service Level Agreement. ix

SLI Service Level Indicator. xi

SLO Service Level Objective. ix

URL Uniform Resource Locator. 36

WSDL Web Services Description Language. 6

xiii

1 Introduction

Microservice architectures have gained significant popularity in recent years as a solution for
building large and complex software systems that can be deployed and maintained efficiently.
Microservices are small, independent services that work together to form a larger system. One of
the key advantages of microservice architectures is their ability to provide scalable and maintainable
software systems. However, ensuring that microservice architectures meet the required quality
characteristics, such as availability and performance, remains a challenge.

Domain-specific languages have been used to model and configure various aspects of microser-
vices, including their Application Programming Interfaces (APIs), deployment. Domain-specific
Languages (DSLs) provide a powerful way of describing the architecture of a system, as well
as automating certain tasks associated with the development, deployment, and maintenance of
microservices.

However, most existing DSLs for microservices do only provide support for modelling the functional
contract of the architecture but provide no support for specifying quality characteristics like
service level objectives. To address this gap, in this thesis, we present an extension to the MDSL
domain-specific language that enables the specification of quality characteristics, like service level
objectives, for microservice architectures. MDSL is an open-source domain-specific language that
has been widely used for modelling microservices. Our extension enables developers to specify
SLOs for their microservices, as well as integrate them into the overall architecture. We also extend
the built-in OpenAPI generator to support these additional constructs.

To validate the effectiveness of our approach, we created a scenario using the extended version of
MDSL and conducted an experiment with participants from the software engineering community.
The results of our experiment show that the extended DSL is well-received by participants and
provides a valuable tool for building better microservice architectures.

In summary, the main contribution of this thesis is the extension of MDSL to include support service
level objectives. Our approach enables developers to better understand and control the behaviour
of their microservices, improving the reliability and maintainability of the system. Our work
highlights the importance of considering quality characteristics in the design and implementation of
microservices, and the value of DSLs in supporting this process.

1

1 Introduction

Thesis Structure

Here, we provide an overview of the structure of this thesis.

Chapter 2 – Foundations and Related Work: Here, we provide an overview of existing techniques
and technologies this thesis uses and builds upon. Also, related work is presented and
discussed.

Chapter 3 – Concept Here, we provide an overview of the concept of this bachelor’s thesis.

Chapter 4 – Architecture and Implementation In this chapter, we discuss the architecture, and
implementation of the extension. Describe the choices made.

Chapter 5 – Evaluation: In the last part of the thesis the evaluation the planning and conducting of
the experiment is described. Then the results of this evaluation are presented and described.
Lastly, the threats to validity are discussed.

Chapter 6 – Conclusion In the last chapter we provide a summary of the thesis, reflect on lessons
learned and provide an outlook to future work.

2

2 Foundations and Related Work

In this chapter, the foundations and related work are shown. For this purpose first, the necessary
foundations are listed and discussed in Section 2.1. Followed by the literature and research
methodology with which the related works were obtained. The related work is then listed and
discussed in Section 2.2.

2.1 Foundations

In this section, the necessary foundations to understand this thesis are listed and explained. Starting
with microservice architecture in Section 2.1.1 while model-driven software development is
explained in Section 2.1.2. Following DSLs in general are explained in Section 2.1.2. As a
framework to develop such DSLs, the Eclipse Modeling Framework (EMF) and Xtext are introduced
and discussed. To end this subsection, the DSL MDSL will be introduced. Information about SLAs,
SLOs and the OpenSLO specification can be found in Section 2.1.3.

2.1.1 Microservice Architecture

Despite the microservice architecture style becoming more popular in recent years. The design
philosophy behind the microservice architecture is heavily influenced by the UNIX philosophy.
They can be summarized into three key aspects “Make each program do one thing well”, “Programs
should be able to work together”, and “Use a universal interface” [MPT78, p. 1902] [Wol15, p. 2].

Microservice architecture is a style to develop software applications. The application consists of
individual services each fulfilling one task. Each service communicates with the others using
lightweight mechanisms like Hypertext Transfer Protocol (HTTP) resource APIs. These services
are automatically deployable and scalable and built around business capabilities. There is little
central management which can be written in different programming languages and use different
data storage technologies. [FL14]. With this style, we can modularize our application and make it
more loosely coupled [New21]. We also enable different teams to work independently of each other
on their own service. The services are not technologically dependent on each other. This enables
the different teams to use the programming languages and tools best suited to solve their respective
problem without hindering the other teams. And when we begin to combine these services together
they can fulfil a bigger task by working together. Imagine three services, one service can manage an
inventory, another can process orders and one can offer baking services. With all three of them
working together, we can build a small web shop application.

Microservice architecture also enables the scaling of agile development processes without generating
a lot of communication and coordination effort. Microservices should be ideally small. Then they
are clear and can be quickly developed further. In case of demand, they can be easily replaced

3

2 Foundations and Related Work

by a re-implementation. In large systems, you have often the problem that over time unwanted
dependencies creep in. Dependencies between microservices must be introduced via the API. This
can be complex and does not happen accidentally. Microservices can be scaled independently from
each other. Each service can be secured against the failure of other services so that the whole
system is robust. Another advantage is, if key services are identified, in case of overload non-critical
services can be scaled down or terminated, to free resources for critical services.

But this new style also brings its own set of challenges. Dependencies between microservices
are not obvious in a microservice architecture. Often it is not clear which service needs another
service and which version this other service should have. The distributed nature of the microservice
architecture generates additional complexity predominately in network latency, load balancing and
fault tolerance. Because there are more systems than in monolithic services, the probability is higher
that one component fails. The variety of services makes development and testing more complex.

To tackle the last challenge, especially the development one. We can use the model-driven
development approach and domain-specific languages to model our architecture and generate all
necessary artefacts. This ensures consistency among all artefacts, is less prone to human errors
and needs less time and saves therefore money, compared to creating each artefact by hand and is
beneficial for the developer and the company.

2.1.2 Model-Driven Software Development

Model-driven software development is a software development approach that uses models as
specifications of the software. It focuses more on modelling and model analysis and less on
programming, code generation and other development steps. These steps are automated [WB23,
p. 21]. These models are then used to generate different artefacts of the software e.g. source code
or documentation. This follows the DRY- principle. It states "don’t repeat yourself "or "Once and
Once only "[ES19, p. 2]. In software development, this means we should avoid redundancy and
code duplicates because maintaining them is time-consuming. The models are generally more
abstract than the source code for the system but this does not mean they are less precise but more
compact than the system implementation. In model-driven software development, this principle is
followed by only having one model of the architecture which contains all information. With this
model and some generators, all other necessary artefacts can be generated. This has the advantage
that all generated artefacts are consistent with each other. It saves time in the development process
because if one thing in the software changes, you only have to make the change in the model and
regenerate all artefacts. To achieve this domain-specific languages can be used.

Domain-specific Languages

Domain-specific languages are programming languages which are highly specialized to one particular
domain [Fow10]. Additional characteristics are that domain-specific languages should be designed
to be used by humans and should therefore support the user to make the task as simple as possible.
Secondly, the language should have a sense of fluency where expressiveness comes not only from
individual expressions but also from the way they can be composed. This makes the language
easy to read and supports therefore the understandability. Thirdly domain-specific languages have

4

2.1 Foundations

limited capabilities in compression to general-purpose programming languages. This means their
focus is highly specialized tasks from a particular domain. These tasks are carried out by experts
with a lot of domain knowledge.

This makes them perfect for our use case to support software architects in maintaining software
architectures and the corresponding artefacts. Because with domain-specific languages we can
realize a programming language tailored to the needs of software architects and their respective
domain knowledge. Additionally, we can support them in specialized tasks which are difficult to
automate using general-purpose programming languages.

Xtext

Xtext is a framework to develop domain-specific languages developed by the eclipse foundation
[ES]. It comes with its own grammar language which can be used to define the syntax and semantics
of your domain-specific language.

From this grammar, you can generate the full infrastructure to use your language including a lexer
parser, abstract syntax tree and an editor for the domain-specific language fully integrated into
the eclipse Integrated Development Environment (IDE). From this grammar, Xtext generates an
Ecore model, from which a code generator generates fully functional java classes. Each of these
sub-products can be used independently from Eclipse. Also, Xtext features full integration in the
Eclipse IDE and supports syntax colouring, code completion, and static analysis. All the features
are highly customizable and can be tailored to the needs of the language. The generated Java
classes make it easy to build any feature on top of it e.g. generators for different technology specify
descriptions.

Lastly, from this whole infrastructure, you can generate a plugin for the eclipse IDE to ship your
language and tools to your target audience. In this thesis, it is used because the language on top
which we build our SLO extension is based on this framework.

Eclipse Modeling Framework

The EMF is a modelling framework and code generation facility for building tools and other
applications based on a structured data model [Gro]. Xtext uses EMF to generate its Ecore model
out of the Xtext grammar from the domain-specific language and the abstract syntax tree. It also
supports the Language-server protocol which can be used to generate a Visual Studio Code plugin.

Microservice Domain-specific Language

The key foundation of this thesis is the Microservice Domain-specific Language. The Microservice
Domain-specific Language is developed by Zimmerman et al. at the Eastern Switzerland University
of Applied Sciences [Zim].

5

2 Foundations and Related Work

Microservice Domain-specific Language is an interface description language. It distinguishes itself
from other such languages by abstracting from technology-specific descriptions such as OpenAPI 1

formerly Swagger, WSDL2 or Protocol Buffers 3. It offers a language to describe the interfaces in a
technology-agnostic way and generate technology-specific descriptions with the help of built-in
generators.

Part of MDSL is an eclipse plugin which facilitates the popular eclipse editor to offer a graphical
user interface, project support, and validation of the interface descriptions and generators for the
different technology-specific formats. Some of the current, supported interface descriptions are
OpenAPI, GraphQL, and Jolie Lang Specification.

It also includes a standalone Command-line Interface (CLI) which features validation, and generation
out of the MDSL interface descriptions.

In Listing 2.1 an example description of an interface is given, with which we will give a little
introduction into MDSL.

Listing 2.1 An Example of an interface description taken from MDSL main website [Zim].

API description HelloMDSLWorld

data type SampleDTO {ID, D<string>}

endpoint type HelloWorldEndpoint

exposes

operation sayHello

expecting payload "in": D<int>;

delivering payload SampleDTO

API provider HelloWorldAPIProvider

offers HelloWorldEndpoint

at endpoint location "http://localhost:8000"

via protocol HTTP

binding resource HomeResource at "/"

operation sayHello to POST

API client HelloWorldAPIClient

consumes HelloWorldEndpoint

from HelloWorldAPIProvider

via protocol HTTP

In this example, we can see how to describe a simple API. It exposes one single endpoint with
a sayHello operation. This operation takes an integer value as input and returns a sampleDTO
Object. Note SampleDTO is specified as a data pair of ID and D. ID is an identifier and D is not
specified and describes some data. Both parameters have no names. In difference to the payload
specification of the sayHello operation here, we have a fully specified parameter with name “in”

1https://www.openapis.org/
2https://www.w3.org/TR/wsdl20/
3https://protobuf.dev/

6

2.1 Foundations

and data specified as int Additionally to the HelloWorldEndpoint, we define an API provider and an
API client. Both work with the specified contract and are both bound to a single home resource
over HTTP.

2.1.3 Service Level Objectives

Service level objectives are a contract between a service provider and its client. SLOs define the
objective that a service has to fulfil. This can be the availability or latency of the service. These
objectives are further described with service level indicators which specify how to measure and
evaluate them. Both service level objectives and service level indicators are part of a service level
agreement which often contains compensations in case the objective is not met by the provider.
They are often attached to a business contract. [Atl]. There are many languages to describe SLOs.
In this thesis, we focus on OpenSLO [BMa].

OpenSLO

OpenSLO is an open-source specification for service-level objectives. This specification is developed
by Bartholomew et al. [BMa]. We use it here because there is currently no standard model to
describe service-level objectives. OpenSLO tries to establish itself as a standard model. It is
not technology dependent like WS-Policy 4, and uses the comprehensible description language
YAML.

The specification will now be explained with examples taken from OpenSLO’s GitHub repository
[BMb].

We start with a Service Level Objective:

The specification of SLOs begins with an API version followed by the kind of document. Each
element has a metadata object which contains the name of the element also used as a reference
and an optional display name. Then follows the specification of the SLO. Starting with an optional
description string. Then we can reference a service object. The service object is a fairly simple one
it contains a name an optional display name and a description. It is used to group different SLOs
together by referencing the same service object in each SLO. The template of a service can be seen
in Listing 2.3.

Then we can reference a defined SLI by using the indicatorRef key or inline an SLI with the
indicator keyword. Then we have to specify the time window in which the SLO will be budgeted.
Here we can choose a rolling time window. Then we use the isRolling keyword and set it to true
and give a duration shorthand. A shorthand is an integer number followed by a letter indicating
the time unit. Currently, the following short hands for time units are allowed: m for minutes, h for
hours, d for days, w for weeks, M for months, Q for quarters and Y for years. Or we can choose a
fixed time window by using the calendar keyword and give a duration shorthand, a start time in the
24h format and a time zone. In this case, we can omit the isRolling keyword. Then we have to
choose the budgeting method. The budgeting method specifies how our error budget is calculated.
Here we can choose from Occurences, Timeslices and Ratiotimeslices.

4https://www.w3.org/Submission/WS-Policy/

7

2 Foundations and Related Work

Listing 2.2 OpenSLO template of the SLO object showing tags and their values. Taken from the
OpenSLO specification on their GitHub repository [BMb].
apiVersion: openslo/v1

kind: SLO

metadata:

name: string

displayName: string # optional

spec:

description: string # optional up to 1050 characters

service: string # name of the service to associate this SLO with

indicator: # see SLI below for details

indicatorRef: string # name of the SLI. Required if indicator is not given.

timeWindow:

exactly one item; one of possible: rolling or calendar-aligned time window

rolling time window

- duration: duration-shorthand # duration of the window eg 1d, 4w

isRolling: true

or

calendar–aligned time window

- duration: duration-shorthand # duration of the window eg 1M, 1Q, 1Y

calendar:

startTime: 2020-01-21 12:30:00 # date with time in 24h format, format without time zone

timeZone: America/New_York # name as in IANA Time Zone Database

isRolling: false # if omitted assumed `false` if `calendar:` is present

budgetingMethod: Occurrences | Timeslices | RatioTimeslices

objectives: # see objectives below for details

alertPolicies: # see alert policies below for details

Listing 2.3 OpenSLO template of the service object showing tags and their values. Taken from the
OpenSLO specification on their GitHub repository [BMb].
apiVersion: openslo/v1

kind: Service

metadata:

name: string

displayName: string # optional

spec:

description: string # optional up to 1050 characters

• Occurrences mean the error budget is calculated by counting good attempts e.g. successful
requests against all requests and this ratio is then compared against the target defined in the
SLO.

• Timeslices mean the error budget is calculated by measuring the good minutes of a system in
the time slice. Good minutes mean here minutes where the system operates within the defined
boundaries. Each timeslice has an additional allowance. An allowance is used to evaluate
each timeslice. It can be considered a micro-objective. And when a timeslice met the micro
objective it is considered good. And the ratio of good timeslices against all timeslices is then
compared to the SLO.

• Ratiotimeslices are similar to timeslices but here an average of all timeslices’ success ratios
is used to do the budgeting.

8

2.1 Foundations

Then we have to specify at least one objective or more. The template of an objective is shown in
Listing 2.4 this has to be inlined and is here shown for simplicity. The objective has an optional

Listing 2.4 OpenSLO template of the objective object showing tags and their values. Taken from
OpenSLO specification on their GitHub repository [BMb].
objectives:

- displayName: string # optional

op: lte | gte | lt | gt

value: numeric

target: numeric [0.0, 1.0)

targetPercent: numeric [0.0, 100)

timeSliceTarget: numeric (0.0, 1.0]

timeSliceWindow: number | duration-shorthand

display name. Then the op key is only needed if we use a threshold metric in the referenced SLI.
The same applies to the operator key here lte stands for less-than equal, gte for greater-than equal,
lt stands for less-than, gt for greater-than. Then we have to specify the target of the SLO. Here
we can choose between target and targetPercent. The difference is with target we have to give a
decimal representation of the percentage. And with targetPercent we can the percentage directly.
TimeSliceTarget is only needed if we selected timeslices as a budgeting method here we have to give
a percentage. This percentage is then used to evaluate if the timeslice was good. TimeSliceWindow
needs a number or a duration-shorthand and sets the time window in which the slice is evaluated.
If you provide only a number the unit minutes is assumed. And to complete the SLO shown in
Listing 2.2 we have to inline an Alert Policy object or provide a reference to a defined Alert Policy.
In the latter case, we have to use the alertPolicyRef keyword followed by a reference.

The second big part of the specification is the service level indicator shown in Listing 2.5

Listing 2.5 OpenSLO template of the SLI object showing tags and their values. Taken from the
OpenSLO specification on their GitHub repository [BMb].
apiVersion: openslo/v1

kind: SLI

metadata:

name: string

displayName: string

spec:

description: string

thresholdMetric: [...]

ratioMetric: [...]

An SLI starts similar to the SLO. We have the API version followed by the kind and then the
metadata object. Then we have an optional description of the SLI. Then we have to choose between
a ratio metric or a threshold-based metric. They are here and shown separately for the sake of
understandability. We start with the threshold metric shown in Listing 2.6.

A threshold metric compares raw values against the objective. The threshold metric consists of
a single query to obtain data. First, we can reference a predefined data source object using the
metrcSourceRef keyword. A data source contains information on how to access a system to obtain

9

2 Foundations and Related Work

Listing 2.6 OpenSLO template of the threshold metric object showing tags and their values. Taken
from the OpenSLO specification on their GitHub repository [BMb].
thresholdMetric:

metricSource:

metricSourceRef: string

type: string

spec:

data. We then provide a type of data source e.g. Prometheus Datalog etc. and in the spec, we can
insert any valid YAML to obtain the data this can be queries or an accesskey. MetricSourceRef
and type are optional. Then everything needed to obtain the data must be specified under the spec
keyword.

More complex is the ratio metric shown in Listing 2.7. The metric source objects are identical to

Listing 2.7 OpenSLO template of the ratio metric object showing tags and their values. Taken from
the OpenSLO specification on their GitHub repository [BMb].
ratioMetric:

counter: true | false

good:

metricSource:

metricSourceRef: string # optional

type: string # optional

spec:

bad:

metricSource:

metricSourceRef: string

type: string

spec:

total:

metricSource:

metricSourceRef: string # optional

type: string # optional

spec:

rawType: success | failure

raw:

metricSource:

metricSourceRef: string

type: string

spec:

them in the threshold metric. First, we have to indicate if our metric is monotonically increasing.
This can be done with the counter keyword. If we choose to use raw the counter keyword can be
omitted. Then the following combinations of good, bad, total and raw keywords are allowed.

• If you provide a good and a total metric object the ratio will be calculated in the following
way 𝑟𝑎𝑡𝑖𝑜 =

𝑔𝑜𝑜𝑑

𝑡𝑜𝑡𝑎𝑙
.

• If you provide bad a total metric object the ratio will be calculated in the following way
𝑟𝑎𝑡𝑖𝑜 = 𝑏𝑎𝑑

𝑡𝑜𝑡𝑎𝑙
.

10

2.1 Foundations

• If the ratio is stored directly in the system we use raw then we have to specify how the stored
ratios are calculated. We do this with the rawType success means 𝑟𝑎𝑡𝑖𝑜 =

𝑔𝑜𝑜𝑑

𝑡𝑜𝑡𝑎𝑙
and failure

means 𝑟𝑎𝑡𝑖𝑜 = 𝑏𝑎𝑑
𝑡𝑜𝑡𝑎𝑙

.

• Any other combinations are not permitted.

Now we can specify which objective we want to measure but we also want to specify what happens
when an objective is not met or when the system begins to breach one. For this, we have the Alert
Policy its template is shown in Listing 2.8. An Alert Policy has the standard header information with

Listing 2.8 OpenSLO template of the alert policy object showing tags and their values. Taken from
the OpenSLO specification on their GitHub repository [BMb].
apiVersion: openslo/v1

kind: AlertPolicy

metadata:

name: string

displayName: string

spec:

description: string

alertWhenNoData: boolean

alertWhenResolved: boolean

alertWhenBreaching: boolean

conditions:

- conditionRef:

notificationTargets:

- targetRef:

name and display name and an optional description string. Then we have to specify when the alert
will trigger. Here we can them trigger when no data arrives, when the breaching ends and when the
system begins to breach the SLO. To specify when we consider an SLO is breaching we use the
alert condition object with the conditionRef keyword or by simply inlining the condition. The same
goes for the Alert Notification Target. An alert condition specifies when the corresponding alert
policy comes into effect. The model of an alert condition is shown in Listing 2.9 The alert condition

Listing 2.9 OpenSLO template of the alert condition object showing tags and their values. Taken
from the OpenSLO specification on their GitHub repository [BMb].
apiVersion: openslo/v1

kind: AlertCondition

metadata:

name: string

displayName: string

spec:

description: string

severity: string

condition:

kind: string

op: enum

threshold: number

lookbackWindow: duration-shorthand

alertAfter: duration-shorthand

has the same header information as the alert policy and an optional description field. Then we

11

2 Foundations and Related Work

have to specify the severity of this condition and the condition. Currently, only burnrate conditions
are supported by the OpenSLO specification. A burn rate describes how quickly we consume our
error budget. The operator specifies how to compare our consumption against the set threshold.
The operator enum is the same as used in the objective object shown in Listing 2.4. A threshold
is described by an integer number. Here one means we consume our error budget according to
plan. Two means we consume our error budget twice as fast as the plan suggests it. Three means
we consume our error budget three times as fast as the plan suggests it. This pattern continues for
higher numbers. We have to specify the look-back window which determine how the threshold
is calculated. The alert after window specifies how long the condition needs to be valid before
we start alerting. The Last Object we have to specify to complete our OpenSLO specification is
the alert notification target. It describes how the alert policy can reach a certain person in case it
starts alerting. We can see the template of an Alert Notification Target in Listing 2.10. The alert

Listing 2.10 OpenSLO template of the alert notification target object showing tags and their values.
Taken from OpenSLO specification on their GitHub repository [BMb].
apiVersion: openslo/v1

kind: AlertNotificationTarget

metadata:

name: string

displayName: string

spec:

target: string

description: string

notification target starts with a target string. It specifies how we reach the person. Here we can
specify an email or push messages or anything else. And the description is optional. This concludes
the explanation about the OpenSLO specification.

2.2 Related work

In this section, the related work is discussed. Starting with the literature research methodology
in Section 2.2.1. Following with the related work in Section 2.2, which mostly consists of other
domain-specific languages.

2.2.1 Literature Research Methodology

To find related work for this thesis the search engine Google Scholar was used.5 First keywords
relevant to this thesis were collected and then entered into the search engine individually and in
suitable combinations. For all results, the first ten entries were considered. The individual entries
were checked for their relevance to this thesis in the following way. For the entries I first looked at
the title, some entries could already be excluded. From the remaining entries, the abstract was read,
and after that, some entries could be excluded again. After that, the resulting entries were analyzed

5https://scholar.google.de/

12

2.2 Related work

in detail. Also, the technique of snowballing was used to analyze the referenced sources according
to the same principle. For the results from Google, we were mostly searching for projects so the
goals of the project were considered and evaluated.

When collecting relevant keywords they were divided into different categories and in these
categories promising combinations were entered into the search engines. The first category was
about domain-specific languages in regard to microservice architecture.

• domain-specific language

• microservice

• microservice modelling dsl

• language ecosystem modelling microservice

Because the search for domain-specific languages yielded not many results. The search was extended
to the search engine Google.6 As with Google Scholar the first ten entries from Google were
considered when searching for the keywords. The keywords mentioned above were used plus these
additional keywords.

The second category was then about service level objectives and metamodels for them.

• Service Level Objective

• Service Level Objective Specification

• Service Level Objective Model

• Service Level Agreement

• Service Level Indicator

This search only yielded the OpenSLO model mentioned in Section 2.1.3.

2.2.2 Silvera

Silvera is a DSL developed by Suljkanović et al. [SMID22]. It allows the modelling of distributed
systems based on microservices. From this model, it is possible to generate code to support
technology stacks. Currently, they only support code generation to Java. Silvera offers extensibility
through registering custom code generators written in Python. They also generate documentation
for the architecture and also allow the evaluation of that architecture. There is currently no IDE
support for Silvera. They planning on implementing one and extending Silvera to support security
concepts. Silvera focuses solely on the generation of code and documentation for each service. As
our approach focuses more on the generation of technology-specific descriptions of microservice
architecture like interface description languages e.g. OpenAPI or ProtocollBuffers which then can
be taken by additional generators to generate code.

6https://www.google.com/

13

2 Foundations and Related Work

2.2.3 MicroART

MicroART is a DSL aimed to support software architects in recovering software architectures. In
the paper by Granchelli et al. [GCD+17]. They propose a whole approach to recover and refine
microservice-based architectures and for this approach, they created the MicroArt DSL to support
this approach. MicroArt is based on EMF and the Java Spring framework and offers support
for Eclipse IDE. The DSL allows modelling software architecture and mapping properties of the
architecture to specific concepts implemented in MicroArt. The model can then be displayed to
make architectural refinements to it. MicroArt focuses more on recovering and reconstructing
already designed software architectures and supporting the evolution of software architectures. They
present an approach to how this could be done using the MicroART DSL. Our work focuses more on
supporting the initial design process of microservice architectures by allowing the modelling of not
only the functional contract but also modelling quality characteristics like service level objectives
and supporting the development by enabling the generation of technology-specific descriptions to
be used by code generation to increase the implementation of such architectures.

2.2.4 Olive

Flaconi et al. developed the model-centred microservice Olive [FW21]. Olive is integrated into the
ADoxx graphical modelling environment. Its goal is to create model-aware microservices. Its aim
is to configure and manage configuration for model-dependent functionalities, and data sources for
processing mechanisms. They want to enable these mechanisms to have access to model data. They
do this through their concept of model-aware microservices they call connectors. They achieve that
by attaching a connector to each microservice and exposing the connector through a REST interface.
The connector is developed from an OSGi 7 plugin model. With this, they can control the whole
lifecycle of the microservice and the microservice gets access to model information provided in
ADoxx [FW21]. Olive focuses more on the relationship of microservices with the ADoxx platform
as we want to improve the development process of microservice architectures by allowing the
specification of quality characteristics of such architectures using domain-specific languages.

2.2.5 A language ecosystem for modelling microservice architectures

LEMMA is an acronym for the Language Ecosystem for modelling microservice architecture. The
whole framework is based on the Eclipse modelling framework EMF mentioned in Section 2.1.2 and
Xtext mentioned in Section 2.1.2. It is developed by Rademacher et al [Rad22] in his PhD thesis.
Like the name said it is an ecosystem to design, develop and deploy microservice architectures using
model-driven engineering. To accomplish this LEMMA focuses on three key aspects according to
their website [Rad],

• modelling languages to define microservices and their deployment

• model transformation the code for the microservice and the necessary configuration to deploy
the service

7https://camel.apache.org/

14

2.3 DSL Analysis & Selection

• model analysis to detect smells and faults in the software architecture before the development

For this thesis, the modelling languages are most interesting. Lemma defines each viewpoint on
architecture as a domain-specific language.

• domain data modelling language to create a domain model of the architecture

• operation modelling language to model the capabilities of different vendors on which the
microservices can operate on

• service modelling language to create a service model of the architecture

• technology modelling language to model technology information

Each of these modelling languages is written in Xtext and has therefore full editor support from
Eclipse.

2.3 DSL Analysis & Selection

In this section, we want to discuss how we selected the DSL. We will first reason why we did not
choose to extend different languages and then provide an explanation of why we choose MDSL in
the end. We start with Silvera mentioned in Chapter 2. The first and biggest problem for Silvera is
that there is currently no editor support which is essential to allow a good user experience and makes
it possible to test our extension with users mostly not familiar with Silvera and DSLs in general. The
second reason is that Silvera focuses only on the generation of application code currently Java and
not interface descriptions. This makes it hard to integrate service-level objectives and monitoring
capabilities into them. Because monitoring should be done from other servers and applications and
not by the main application itself to prevent the monitoring service from going down with the main
service, which contradicts its main purpose. The last reason is more of an organizational reason
Silvera was made public in July of 2022 and is the newest of these languages so the documentation is
not that extensive whats makes the extension really time-consuming which was a problem regarding
the time scope of this thesis.

The next language investigated was Olive. Here was the main problem the different goals of
their and our approach. Olive focuses on integrating microservice architectures in the ADDOxx
metamodeling framework. Also, it follows a low code approach. This does not fit because software
architects are domain experts who understand how to read and write code.

The third language investigated was MicroArt. Also here the focus of the project does not align
well with our concept. MicroArt wants to make microservices more recoverable by modelling them
and them making precise analyses of them. Also, MicroArt generates no interface descriptions or
other artefacts of the architecture like technology-specific descriptions.

The last investigated language was LEMMA. The reason we choose not to extend LEMMA was
primarily that is currently in development and not sufficient docs are available and the generators
for technology-specific descriptions are not built.

To close the section we will explain why we then choose to extend MDSL. First reason MDSL
is out there for more than three years. Meaning there are extensive documentation, tools and
editors to build our extension, upon. Additionally, MDSL offers many interface descriptions for the

15

2 Foundations and Related Work

microservices including OpenAPI and gRPC from which we can choose the most suitable to extend
this description for SLOs. It also is fully integrated into the eclipse editor which makes it easier to
become familiar with it. This is particularly beneficial because to validate our extension we want to
conduct an experiment with participants mostly not familiar with DSLs and then, the editor should
make the introduction into MDSL and our extension easier for them. This also allows us to conduct
feedback only on our extension and prevents the results to be overshadowed by the limitations of the
base language.

16

3 Concept

In this section, the concept of this bachelor’s thesis will be discussed. At the start, a brief overview of
the concept is given in Section 3.1. Followed by the integration of the OpenSLO model into MDSL
via the Xtext grammar in Section 3.2. We also will explain how we modelled the SLO and why
we have done this. Section 3.3 deals with the integration of SLOs into the OpenAPI specification.
Here we will explain which mechanism we used to accomplish this integration. In a similar fashion,
we will explain in Section 3.4 how we integrate the SLO into the OpenSLO specification and also
talk about the limitation of the OpenSLO specification. And lastly, in Section 3.5 of the SLO we
will explain how the extension can be used.

3.1 Concept Overview

Today most tools for designing microservice architectures only allow designing the functional
properties of software architectures like interface descriptions and not quality characteristics like
SLOs. The concept of this thesis deals with supporting software architects to develop higher-quality
software architectures and take the above-mentioned shortcoming. The approach is depicted in
Figure 3.1. The concept of this thesis is to enable the designing of microservice architectures not
only on the functional level but also to design quality attributes of the software. We use therefore
domain-specific languages. Domain-specific languages are aimed at the small domain with a very
specific use case. So they can be tailored to the user’s needs and our use case. Additionally, they
offer features like easy integration for generators to create specific artefacts for the microservice
architecture. So we extend a domain-specific language for microservice architectures to support
the modelling of quality characteristics. Additionally, we want to integrate the model of the SLO
into the model of the architecture in the DSL. Then we want also to extend the generators of this
language to also support the generation of SLOs specification and integrate them into the artefacts
of the architecture. To allow additional generators which use the artefacts created by our DSL to
use our extension. Like implementations for server stubs and monitoring systems for them.

OpenAPI
Description

designs

GeneratorMDSL Architecture
and SLO Description

OpenSLO
Description

Software
architect

Generator

Generator

Figure 3.1: Thesis concpet.

17

3 Concept

3.2 SLO Integration into a DSL

In this section, we will explain how such a DSL could be extended with the help of the UML model
of Service Level Objectives depicted in Figure 4.6. In general, the model of the DSL should be
extended with a model of the SLO. We will explain now what such a model can look like and which
parts it should include and why. Also is explained what the intentions behind the different parts of
the SLO model are.

AlertPolicy

name : EString

displayName : EString

description : EString

nodata : EBoolean = false

resolved : EBoolean = false

breaching : EBoolean = false

 conditions : AlertCondition

 notificationTarget : AlertNotificationTarget

Objective

displayName : EString

operator : EString

compValue : EDouble = 0.0

sliceTarget : EDouble = 0.0

numeric : EInt

 target : Target

 targetPer : TargetPercent

 durationBased : Duration

OSLOTemplate

name : EString

displayName : EString

description : EString

budgetingMethod : EString

Service

name : EString

displayName : EString

purpose : EString

SLI

name : EString

displayName : EString

description : EString

 tMetric : ThresholdMetric

 rMetric : RatioMetric

TimeWindow

rolling : EBoolean = false

 duration : Duration

 calendarBased : CalendarBased

[0..1] service

[0..1] builtInIndicator [0..1] externalIndicator

[0..1] timeWindow

[0..*] objectives
[0..*] builtInalertPol

[0..*] externalAlertPol

Figure 3.2: Service Level Objective model.

Here you see an extract from the model. There are the following entities. The SLO template itself
serves as the container for all parts of the SLO. It should allow the software architect to make the
SLO identifiable and distinguishable from other SLO objects. The SLO should have a name to
make it referenceable and a display name to distinguish the reference from the actual displayed
name. The SLO should also have a description to communicate its purpose. The budgeting method
should be used to indicate how the described SLO is budgeted. This allows the software architect to
make the SLO more adaptable to change and less strict in regard to its condition.

The next entity is the service entity which serves as a grouping mechanism. It consists only of its
name and a display name and a description of its purpose. It should allow the software architect to
group different SLOs together if they are applying for the same service.

The time Window entity should be used to specify the period of time or interval over which the
SLO is evaluated. This is to enable the architect to formulate precisely the timeframe over which
this SLO is evaluated.

They specify the SLO and operational the condition the SLI it used. Is depicted in more detail in
Figure 3.3.

The service level indicator is there to specify how we measure and calculate the metric to determine
the state of the microservice and compare them against our objective. The SLI has like the SLO a
name and display name for the same reasons. Then the SLI should contain metrics to measure the
state of the microservice. Ideally, there should be the possibility to model different metrics to cover
a wider variety of scenarios and give software architects the ability to describe the SLI more to the
system need. In some cases more strict in others more volatile. Each metric should then contain a
specification on how they obtain their data to calculate the metric and through which source they do
this. To address the sources a data source entity should be present to encapsulate all these details
and make the SLI in this case more readable. The metric source should encapsulate how we obtain
the data from a data source here regarding how we establish a connection and if present how we

18

3.2 SLO Integration into a DSL

authenticate ourselves to the system to obtain data. This should allow software architects to use
different tools and technologies to collect data about the microservice architecture and measure
them.

DataSource

name : EString

displayName : EString

description : EString

type : EString

url : EString

MetricSource

type : EString

spec : EString

RatioMetric

counter : EBoolean = false

rType : EString

SLI

name : EString

displayName : EString

description : EString

ThresholdMetric

[0..1] dataSource

[0..1] total

[0..1] good

[0..1] bad

[0..1] raw

[0..1] tMetric [0..1] rMetric

[0..1] metricSource

Figure 3.3: Service Level Indicator model.

In Figure 3.4 the part which addresses the objective of the SLO. The purpose of the objective is
there to specify the goal which the microservice should meet. This goal is expressed with the
description of the objective and a per cent value and an operator to specify how to compare the
objective against the metric defined in the SLI. Then the objective should specify over which period
the objective is measured. The objective also is closely related to the budgeting method and should
also specify how the objective behaves regarding the selected budgeting method if necessary. This
is done to enable software architects to model different types of SLOs.

19

3 Concept

Duration

value : EInt

unitOfMeasure : EString

Objective

displayName : EString

operator : EString

compValue : EDouble = 0.0

sliceTarget : EDouble = 0.0

numeric : EInt

Target

target : EDouble = 0.0

TargetPercent

targetPer : EDouble = 0.0

[0..1] target[0..1] targetPer

[0..1] durationBased

Figure 3.4: Objective model.

The last part of the model of the SLO is concerned with alerting.

Our SLO should also specify what happens when the defined SLO is breached or when we get no
data indicating the state of our microservice. It should also specify whom to reach in that case
and how we can do this. Concerned with this the alert policy entity in our model is depicted in
Figure 3.5.

AlertCondition

name : EString

displayName : EString

description : EString

severity : EString

AlertNotificationTarget

name : EString

displayName : EString

target : EString

description : EString

AlertPolicy

name : EString

displayName : EString

description : EString

nodata : EBoolean = false

resolved : EBoolean = false

breaching : EBoolean = false

Condition

kind : EString

operator : EString

threshold : EInt

 lookBack : Duration

 alertAfter : Duration

[0..*] conditions
[0..*] notificationTarget

[0..1] condition

Figure 3.5: Alerting model

The alert policy entity is there to describe the different cases in which alerting should happen. An
SLO can have more of such policies to cover different scenarios and enable the software architect to
describe different behaviours regarding alerting. The alert policy should have a name display name.
The name should be used to reference the corresponding alert policy in other objects. The display
name is to be used to display the alert policy name to the user it uses. Then the description should
be included to describe the purpose of this alert policy and give additional information about the
alert policy. Then it should be indicated when the alerting happens. Three cases that should be
covered are: when no data arrives to be compared against the SLO when the SLO begins to breach

20

3.3 SLO Integration into Interface Description Language

this is further specified in the condition, and lastly when the breach is resolved to indicate no further
action is necessary. They precisely specify the condition on which the alerting triggers the alert
condition and the condition entities are introduced. The alert condition entity serves as a container
for all the conditions regarding the specific alert policy. It has also a name to make it referenceable
and a display name to separate the displayed name from the reference. Then the severity should
be described to allow the software architect to indicate how high the impact breaching of this
condition is. Then a description to describe the group of conditions under this alert condition. The
condition entity describes the condition which is evaluated to determine if alerting should trigger.
The condition should first describe which kind of condition it is. This could for example be a burn
rate condition which describes how quickly we burn through our error budget. Then it should be
specified how long we look back to determine if we breach and how long our defined condition
should hold until we start alerting. This is to make the alerting more flexible and less strict and
enable the software architect to specify precise alerting behaviour.

The last part of the alerting is the alert notification target. This entity is to separate the target
description from the description of the policy and the condition. The alert notification target
describes how who we reach in the specified cases in the alert policy. The alert notification target
also has the name and display name scheme as the other entities mentioned above. The target
field should be used to specify how we reach the target. Examples could be email-address or push
messages. The description should be used to give additional information on the target. Maybe what
his role is e.g. (Site Reliability Engineer).

The above-mentioned model and its entities should be displayed in a human-readable form. It should
ideally be accessed through an editor to enable humans to describe them and get support. This is
for the sole reason that these architectures are designed by people. The target group are software
architects because they are concerned with the design and development of software architecture and
its corresponding artefacts.

3.3 SLO Integration into Interface Description Language

This section describes how the SLO should be integrated into the Interface Description Language
(IDL) which we generated with the extended DSL.

IDLs are used to enable programs to get information on how together data other programs by
consuming this description.

IDLs achieve this by communicating the different interfaces of the software with each other.

These interface descriptions consist of a description of an API provider. Its purpose is to provide
infrastructure to make the API accessible from outside the software system. The API has endpoints
with which the user can interact to get data. Each of these endpoints offers different operations to
get data, add additional data, edit existing data, or delete data.

Because the user mostly interacts with these endpoints we will integrate the SLO at the endpoint
level. So the software architect can specify for each endpoint the SLO characteristics and is not
bound to an SLO because another endpoint from the same provider uses it. We choose here to
extend such a language for service level objectives because currently, they allow only the modelling
of the functional contract of the architecture but the non-functional contract is missing.

21

3 Concept

3.4 SLO Generation in OpenSLO

In this section, we will explain how we can integrate a SLO into the OpenSLO spec.

OpenSLO offers here to possibilities. We can use each entity of the in Section 3.2 and generate
a YAML document of it. This would lead to a lot of small documents. Additionally, because
OpenSLO only requires objects to be referenced only by name there is no information on the
location of the file in which this object might be defined. This would lead to a really extensive
search if one wants to find a specific object referenced in another file. So we choose the second
approach an example of it is depicted in Listing 3.1. We can use a single YAML file in which we

Listing 3.1 Example of multiple YAML objects in a single document.
apiVersion: openslo/v1

kind: Service

metadata:

name: MonitoringService

displayName: Default Monitoring Service

spec:

description: All SLOs associated with this service are for monitoring the t2-project

application

apiVersion: openslo/v1

kind: DataSource

metadata:

name: TeaShopPrometheusServer

displayName: T2 Project Prometheus Main Server

spec:

description: Tea Shop Prometheus Main Server

type: Prometheus

connectionDetails:

url: http://www.t2-project.de/prometeus/api/v1

all write the different YAML objects and separate the different documents with a new line and
three dashes. This mechanism is documented in the YAML spec section 2.2 [Net]. This allows
grouping all necessary entities of an OpenSLO model into one file and excluding the entities which
are not used by this SLO. Resulting in one clear document with all the necessary information easily
accessible to a software architect or a developer.

3.5 Usage of OpenSLO

This section covers the last part of our concept and, therefore, closes this chapter. The generated
extended interface description and the OpenSLO specification can now be used in additional
generators to generate server implementations in different programming languages and libraries and
configurations for different monitoring tools and systems. Lastly, the configurations can link these
two and generate so a fully functional interface and the configured monitoring system which checks
the defined SLO and alerts the responsible person in case the SLO is breached. Note that the parts
described in this section are not covered by the following implementation chapter. The reason for
this is the limited scope of this thesis.

22

4 Architecture and Implementation

In this chapter the implementation of the concept and how the extension of MDSL is described. We
start with the architecture of the extension in Section 4.1. In section Section 4.2 we describe the
technical implementaion of the SLA model already present in MDSL, how we extended it, and
what the limitations of this implementation are. Following that, in Section 4.3 we describe how we
extended the model of MDSL to accommodate the SLO model of the OpenSLO specification and
discuss the implementational details. The extensions of the generators is presented in Section 4.3.2.
Additional features we implemented are discussed and shown in Section 4.4.

4.1 Architecture

The architecture is depicted in Figure 4.1.

Figure 4.1: Architecture of our extension

4.2 Implementation of built-in SLOs

In this section, we describe the SLA model that MDSL already brought in Section 4.2.1 and how
we extended the OpenAPI generator for this model in Section 4.2.2.

4.2.1 SLA model in MDSL

We started the implementation with an investigation of what MDSL already offers in terms of SLOs.
We found that MDSL has already defined a model for SLAs. The model of SLA contains also SLOs.
An example SLA model in MDSL is shown in Figure 4.2.

23

4 Architecture and Implementation

Figure 4.2: Example of an SLA in MDSL.

We begin an SLA with the two keywords SLA and template. Followed by the name of the template,
in this case, ExampleSLA. This name is used when we want to reference this template elsewhere in
the specification. This is shown later. Then comes the optional type of the SLA we can choose from
the following options. NONE, IMPLICIT, INFORMAL, QUALITATIVE, QUANTITATIVE. Then
we have to define the SLO. This is done via the objective keyword followed by the name of this
objective. To specify the objective we must use a string which describes the goal of the objective.
Followed by a measurement. The measurement provided is called landing zone. It consists of a
minimum of two measurements minimal and target. And an optional third one called optimal. Each
of these measurements consists of an integer number and a duration shorthand. The shorthand
can be if we want to measure time hours minutes, or seconds. We define here as an example the
following SLO to show the structure of our implementation. We want the service which uses this
SLA to be available at least 55 minutes of each hour. The target is 59 minutes for each hour and
optional describes the best case of 60 minutes per hour which is equivalent to availability of 100 per
cent. We can also choose to only give a simple measurement instead of a landing Zone in this case
we only provide a measurement after the quality sting. The example is depicted in Figure 4.3. Here
the SLO requires an uptime of at least 59 minutes per hour and is there stricter than the landing zone
example. We can then give a penalty if the SLO is not met. This is also done via one string which
describes the penalty. In this case a 20 percent reduction on service fees. Followed by a String
which describes whom to reach in case of breaching. We can then specify in the SLA the rate plan
which specifies how to the customer pays for the service. Here we can select from three options.
FREEMIUM, SUBSCRIPTION or USAGE_BASED. In this example we choose SUBSCRIPTION.
The last part of the SLA is a rate limit which defines how extensively we can use the service. It
starts with the keyword rate limit then we have to select how we want to define the limit. First,
we have to select the type of limit having two options MAX_CALLS and DATA_QUOTA. It is
followed by an integer number to quantify the limit and an optional shorthand to describe the unit
we want to measure. Lastly, we have to specify the time frame in which this limit applies. Here we
use the within keyword followed by a number and unit. In the example, we choose a limit of six
thousand calls every two hours.

Now that we have defined an SLA we can reference it in the MDSL description. For that, we
have two points where we can define an SLA on the provider level which offers the service or per
endpoint. An example of a provider which uses our SLA is seen in Figure 4.4 and an example of an
endpoint which uses our SLA is shown in Figure 4.5.

24

4.2 Implementation of built-in SLOs

Figure 4.3: SLA which uses a simple measurement instead of a landing zone.

Figure 4.4: Endpoint which uses our SLA.

25

4 Architecture and Implementation

Figure 4.5: Provider which uses our SLA.

In both figures, you see the same API provider. It models the Inventory Service of the T2-Project
developed by Speth et al. [SSB22]. In the last line, you can see we once specified the SLA
specifically for the generation endpoint and in the other case for the whole provider means all
endpoints of this provider must meet this SLA.

After we familiarized ourselves with the model we checked if any of the implemented generators
used this part of the model. We found out that none of the generators used this model so we choose
to extend one generator to familiarize ourselves with the capabilities of Xtext and possible extension
mechanisms.

4.2.2 Extension of the Generator for preexisting SLAs

We choose to extend the OpenAPI generator because OpenAPI offers code generators for server
stubs and other tools beneficial to developing APIs and microservice architectures.

It also offers benefits with its YAML format because:

• is Open Source and offers lots of preexisting works and tools

26

4.2 Implementation of built-in SLOs

• is human readable making editing and checking the model for software developers and
architects easy. This also makes it user-friendly to be used by version control systems like
GitHub

• YAML offers integrations in the most popular languages making it feasible to be used by
generators to get new artefacts.

It also offers an extension mechanism for SLA which we used. The mechanism is proposed by
Frendandez et al. by the isa group of the University of Seville [Fre]. To extend the OpenAPI
specification they extended the info object of the specification with a custom node called x-sla.
Note the x- is needed to indicate that it is a custom node not covered by the specification jet. This
allows tools, which use these specifications, to ignore these elements and function properly with
the extension. Under this node, they use the $ref key to reference the document in which theSLO
specification is stored. So instead of one document, we get one with the OpenAPI specification and
a reference to another document which contains the specification of the SLA.

We then extended the generator for OpenAPI and wrote a new one for the SLA model and integrated
them into the tooling. When you now generate an OpenAPI specification with MDSL and a SLA is
present the OpenAPI document with the reference and a second document will be generated in the
same location which contains the SLA specification. As a language for the SLA specification, we
also choose YAML for the benefits mentioned above and because the OpenAPI generator uses the
YAML format for the OpenAPI specification so it seems unnecessarily complicated to use another
format for the extension.

We take the examples in Figure 4.2 and Figure 4.4 and generate the OpenAPI is shown in Listing 4.1
and the refrenced SLA file is shown Listing 4.2.

Listing 4.1 Generated OpenAPI description from Figure 4.4.
openapi: 3.0.1

info:

title: t2InventoryService

version: "1.0"

x-generated-on: 2023-02-15T17:38:42.0456589

x-external-sla-file:

$ref: ./t2-inventory-service-sla.yaml

servers:

- url: http://t2-project/api

- name: InventorySerivceProvider-ProductResource

externalDocs:

description: InventoryEndpoint contract, Information Holder Resource role

url: https://microservice-api-patterns.org/patterns/responsibility/endpointRoles/InformationHolderResource.html

x-external-endpoint-slas:

- ExampleSLA

Note here depicted is only a sniped for brifety.

You can see in Listing 4.1 that we have generated a node in the info object called x-external-sla-file.
There you can see the reference to the SLA file in Listing 4.2, and for each endpoint, we have an
additional node called x-external-endpoint-sla here we reference the name of the SLA used form
the SLA file for this endpoint. Under this node, all external endpoint SLAss are listed.

27

4 Architecture and Implementation

Listing 4.2 Generated SLA description from Figure 4.2.
sla-doc-version: "1.0"

sla-templates:

- name: ExampleSLA

slas:

- type: QUALITATIVE

slos:

- name: MaxUptime

qualityGoal: Maximum uptime the service should have in one hour measured in

minutes

measurement:

value: 59

unit: minutes

penalty: 20% reduction on service fees

notification: Site reliability engineer

ratePlan: SUBSCRIPTION

rate limits:

- rateLimit: MAX_CALLS

measurement:

value: 6000

interval:

value: 2

unit: hours

If we define a provider-wide SLA each endpoint will get a reference to this endpoint under this
node. We also allow the inlining of SLAs this will then lead to that under the specific endpoint
which uses this SLA a node will be created named x-internal-enpoint-sla and under this node, the
specification of the SLA will be shown. An example of this is shown in Listing 4.3. If we inline a
provider SLA it will be inlined for each endpoint under their x-internal-endpoint-slas node.

We have seen what with this implementation is possible. we will talk now about the limitations of
the model itself.

4.2.3 Limitaitons of the SLA model

Here want to address some of the limitations of the SLA model present in MDSL. The first limitation
is that the model only allows things linge SLO and the notification to be modelled as strings. This
makes it complicated to formulate precise SLOs. It puts all the responsibility on the architect and
offers little support in designing them. Also, the current support measurements for the SLO are not
sufficient measurements like ratios are not possible at the moment. Also, we have no possibility to
specify from which source the SLO gets its to compare against a SLO. It also follows no official
standard and is only used in MDSL.

All these limitations make it hard to build further generators upon them to for example generate
configurations for monitoring systems. For this reason, we searched for a standardized model which
addressed these limitations.

28

4.3 Adding OpenSLO to MDSL

Listing 4.3 Inlined SLA in a OpenAPI specificaiton.
openapi: 3.0.1

info:

title: t2InventoryService

version: "1.0"

x-generated-on: 2023-02-15T17:32:57.727828

servers:

- url: http://t2-project/api

tags:

- name: InventorySerivceProvider-ProductResource

externalDocs:

description: InventoryEndpoint contract, Information Holder Resource role

URL: [...]

x-internal-endpoint-slas:

- type: QUALITATIVE

slos:

- name: MaxUptime

qualityGoal: Maximum uptime the service should have in one hour measured

in minutes

measurement:

value: 59

unit: minutes

penalty: 20% reduction on service fees

notification: Site reliability engineer

ratePlan: SUBSCRIPTION

rate limits:

- rateLimit: MAX_CALLS

measurement:

value: 6000

interval:

value: 2

unit: hours

- name: InventorySerivceProvider-RestockResource

- name: InventorySerivceProvider-GenerateResource

paths:

components:

4.3 Adding OpenSLO to MDSL

This section deals with the integration of the OpenSLO model into MDSL, this is covered in
Section 4.3.1, and how the OpenAPI generator was extended is explained in Section 4.3.2.

4.3.1 Extending the MDSL model for Open Srvice Level Objectives

OpenSLO offers a more extensive model than the current present in MDSL. It offers the definition of
the data source to specify where we take our data from to compare it to a SLO. It also includes metrics
that can specify more detailed service-level objectives. It also includes extension mechanisms that
future work can use to improve the model further or integrate new technologies or vendors.

29

4 Architecture and Implementation

OpenSLO

AlertPolicy

name : EString

displayName : EString

description : EString

nodata : EBoolean = false

resolved : EBoolean = false

breaching : EBoolean = false

 conditions : AlertCondition

 notificationTarget : AlertNotificationTarget

Objective

displayName : EString

operator : EString

compValue : EDouble = 0.0

sliceTarget : EDouble = 0.0

numeric : EInt

 target : Target

 targetPer : TargetPercent

 durationBased : Duration

OSLOTemplate

name : EString

displayName : EString

description : EString

budgetingMethod : EString

Service

name : EString

displayName : EString

purpose : EString

SLI

name : EString

displayName : EString

description : EString

 tMetric : ThresholdMetric

 rMetric : RatioMetric

TimeWindow

rolling : EBoolean = false

 duration : Duration

 calendarBased : CalendarBased

[0..1] service

[0..1] builtInIndicator [0..1] externalIndicator

[0..1] timeWindow

[0..*] objectives
[0..*] builtInalertPol

[0..*] externalAlertPol

Figure 4.6: Service Level Objective model.

An overview of the OpenSLO model is depicted in Figure 4.6. An OpenSLO consists of the OSLO
template. It houses all the different components of the model. The SLI defines the Service Level
Indicator which describes how to measure the system’s state and how to calculate the metric which
can then be compared against the objective. The objective describes the quality goal the SLO wants
to achieve. The time window specifies in which time frame the SLO will be evaluated. The service
is used to group different SLOs together. The Alert Policy describes what happens when the SLO
breaches and whom to alert when this happens. We will now go through each of these components
with an example to explain the model and show the excerpts from the Xtext grammar to visualise
how its implemented.

Starting with the OpenSLO Template you see an example of this depicted in Figure 4.7. In Figure 4.8
you can see the corresponding Xtext grammar which defines this object.

Figure 4.7: Examle SLO in MDSL .

30

4.3 Adding OpenSLO to MDSL

Figure 4.8: Xtext grammar of the OpenSLO template.

This is a more refined version of the SLA shown earlier the goal of both is the same to have site
reliability of 99 percent.

We start the definition of an OpenSLO template with the keyword OpenSLOTemplate indicating
that we want to reference it later in other objects like Providers or Endpoints. This mechanism is
shown later. We have then given a name for the OpenSLO template in this example BasicSLO. We
then can give an optional Name which is used to display it. Here we choose the fully written out
name "Basic Service Level Indicator". The optionality is indicated in the grammar by enclosing
the blue keywords displayed as and the displayName attribute in brackets and making this section
optional by annotating it with a ?. This can also be seen in the next attribute in the grammar we
define an optional description string. In this example, we not have provided a description. After
that, we see how we can realize references in Xtext we define an attribute in this case called service
and give him the name of an object in Xtext. In this case, we want a service object. In the example,
you can see this we provided after the part of keywords we only provide the name of a Service
object, in this case, MonitoringService. The Service object will be discussed later. The service
follows the service level indicator object. Here we have two choices we can provide a reference to
an existing object. This is shown in our example where we reference the SiteAvalabilityIndicator.
Or we can inline the object. So we can choose if we want the object only one time or else make it
referenceable and use it more times. We only allow one SLI per SLO. Then follow the time window
which describes in which time frame the SLO will be evaluated. The Xtext grammar of the time
window is shown in Figure 4.9.

Figure 4.9: Xtext grammar of the time window object.

First, we have to specify the duration of the time window. The duration can be seen in Figure 4.10.

31

4 Architecture and Implementation

Figure 4.10: Xtext grammar of the Duration object.

It consists of a number which quantifies the time window followed by a duration-shorthand.
Currently, we support the following shorthands: m for minutes, h for hours, d for days, w for
weeks, M for months, Q for quarters and Y for years. In our example, we selected 30d meaning
thirty days. We then have the choice between a rolling time window and a fixed start time. In the
example we choose the latter: then we have to give a start date and time in the following format:
YYYY-MM-DD hh:MM:ss. and a string indicating in which time zone we want to evaluate the
timestamp. In our case, the time window starts on the 5th of February 2023 and last 30 days from
then. If we want to evaluate the SLO every 30 days in the past we can choose a rolling window in
this case we set is rolling to true. In Figure 5.3 you see an excerpt of the same SLO in Figure 4.7
with such a time window.

Figure 4.11: Examle Service Level Objective with a rolling time window.

The next part of the main model of the Open SLO is the budgeting method. This determines the
method with which the error budget will be calculated. We have currently three possibilities to
specify the budgeting method: occurrences, timeslices, and ratiotimeslices. These are to make
the SLO a bit more fine-grained. In the example, you see we selected timeslices. The budgeting
methods will be explained with the objectives object because in it we specify the values for the
budgeting method. This in combination with the objective will be used to evaluate the SLO and
calculate the error budget.

The penultimate attribute of the OpenSLO model is the objective it specifies the objective to which
the data from the SLI will be measured against. The last attribute is the Alert Policy it can also be
inlined or referenced. A SLO can have more than one Alert Policy.

This completes the OpenSLO model we will now go through each of the referenced objects and
explain their purpose and implementation.

Service

The first object we referenced in the Open SLO template was a service. He is used to grouping
different SLOs together. Each SLO refreezes the service object to which it should belong. The
excerpt from the Xtext grammar in Figure 4.12 shows the structure of the service object.

32

4.3 Adding OpenSLO to MDSL

Figure 4.12: Xtext grammar of the Service object.

It consists of a name and a display name. and a short description which defines the group. The
service used in the example is shown in Figure 4.13.

Figure 4.13: Service used in our example.

In our example went to group all SLOs which are monitoring the inventory API of our application.
He should be displayed by his name John Miller.

Objective

In Figure 4.7 you can see the objective object it starts with the keywords with objectives. The Xtext
grammar for these objects can be seen in Figure 4.14.

Figure 4.14: Xtext grammar of the objective object.

The objective also has an optional display name we named it here “Site Availability” to indicate that
this is our goal with this objective. We have then to methods to specify how we want to compare
the values from the SLI against our goal. We can do this by giving a percent value then we use the
keywords target percent and give a number from 0.0 to 100 to indicate the percentage. If we want to
give the percentage as a decimal we use the keyword target and provide a number between 0.0 and
1.0. For this to work properly, we have to use a ratio metric in the SLI object. If our SLI outputs
only raw values we have to give an operator shorthand possible are: gt - for greater than, gte for
greater than equal, lt - for less than, or lte - for less than equal, followed by a number to compare
against instead of percentages In our example, we choose to measure the site reliability and set a
goal of 99 percent. Now we can explain the budgeting method mentioned earlier. There are three
possibilities occurences timeslices ratio timeslices. The functionality of these different budgeting
methods is described in Section 2.1.3 in Chapter 2. In our example, we divide the 30-day period

33

4 Architecture and Implementation

into slices of 2 hours. For each of these slices, we measure if our service has an availability of 90
percent because we specified the slice target to be 90. This can be seen as a micro service level
objective defined for each timeslice. Then 99 percent of all timeslices in this 30 days must meet this
objective to meet the whole SLO. The Ratio timeslices will build an average overall timeslice’s
success ratios and compare this against the SLO. timeslices and ratio timelines are more flexible
and allow the SLO to define a threshold. This also leads to less frequent alerting.

Service Level Indicator

The next big part of the OpenSLO model is the Service Level Indicator its purpose is to specify how
the state of the service will be measured and calculated. In Figure 4.15 you see the Service Level
indicator used in our example. The corresponding Xtext grammar for Service Level Indicators is
depicted in Figure 4.16.

Figure 4.15: Service Level Indicator used in our example.

The service level indicator has at the start a similar design to the OpenSLO template. Starting with
his name to make it referenceable. Note that this is the name we used in the OpenSLO template
object depicted in Figure 4.6. Then we used the optional display name, in this case, “Availability”.
When then also provided a little description to clarify what this SLI is about. The last part of the
SLI is a metric object. Currently, we support two types of metrics a Threshold Metric and a Ratio
Metric. This is due to the fact that OpenSLO currently supports only these two metrics. New
metrics could extend the model and this implementation by defining new rules in the grammar for
them and integrating them in this or- a condition seen in Figure 4.16.

Figure 4.16: Xtext grammar of the Service Level Indicator.

In our example, we used a ratio metric. The Xtext grammar of such a metric can be seen in
Figure 4.17

34

4.3 Adding OpenSLO to MDSL

Figure 4.17: Xtext grammar of the Ratio Metric.

In the Xtext grammar, we see the first attribute of our ratio metric is a counter. It can be set to either
true or false, indicating the metric is monotonically increasing. This is true for our case because we
measure the total incoming requests and they can not decrease in a given time frame. Then we have
to provide a combination of metric sources and objects which defines the ratio we want to measure.
All allowed combinations and their meanings are also described in Section 2.1.3 in Chapter 2. In
Figure 4.18 you see the Xtext grammar of the Metric source object. This object is used to specify
how we get the numbers for our metric.

Figure 4.18: Xtext grammar of the Metric Source

This object only consists of an optional data source object which specifies how we connect to our
resource. The type string is used to specify what kind of source it is. In our implementation, we
currently only support Prometheus servers. In the spec string, we have to give a PromQL query
to retrieve data from a Prometheus server. The server connection will be specified in the Data
Source object which will be referenced in the Metric Source. The grammar of such a data source is
depicted in Figure 4.19.

Figure 4.19: Xtext grammar of the Data Source

The data source has also a name to make it referenceable an optional display name, and a description.
Like in the Metric Source, we have here also to specify the type source as a string. Under the
connection details, like server address and keys for authentication. Also here we currently only

35

4 Architecture and Implementation

support Prometheus servers for that reason we have to provide Uniform Resource Locator (URL)
to Prometheus HTTP API. In combination with the metric source, we can then get data from the
Prometheus servers.

In Figure 4.20 you see the data source used in the SLI used in our example.

Figure 4.20: Data Source used in our example.

Here you see we defined as type Prometheus and provided a URL to a Prometheus server. This
example is also inspired by the T2 Project developed by Speth et al. [SSB22]. In the SLI Figure 4.15
you see that we then provided in both metric sources the same server. The difference between the
two metric sources is only the query in total we want to get the total HTTP requests to our service.
In the good, we want only the amount of requests which we answered with a 200 HTTP response
code. With this ratio, we calculate how available our service is for each time slice.

We also can use threshold metrics to define our SLI. The Xtext grammar of such a metric is shown
in Figure 4.21.

Figure 4.21: Xtext grammar of Threshold Metrics.

In this case, we only have to provide one metric source which defines which value we want
to compare against our threshold. This threshold is then defined in the objective object of our
SLO where we specify the threshold the operator used for comparison seen in the grammar in
Figure 4.14.

The percentage of the metric will then be calculated by taking the obtained data points from the data
source compare them against our threshold. If we meet the condition the data point will be counted
as good in the other case it will be counted bad. The ratio will then be calculated as good data
points against all data points and this ratio must meet our target percentage specified in the SLO.

Alert Policy

The last big part of our SLO model deals with alerting. What happens when we begin to breach an
SLO, how do we define breaching, and whom to contact if that happens?

This is covered in the alert policy object. The grammar defining such objects are depicted in
Figure 4.22.

36

4.3 Adding OpenSLO to MDSL

Figure 4.22: Xtext grammar of Alert Policies

The alert policy is also referenceable and has a display name and description like some of the other
objects mentioned above. Then we have to give three boolean values the keywords indicate when
we want to be alerted. We can choose to be alerted when no data arrives when the SLO breaches.
Breaching will be defined in the inlined Alert Condition. and lastly when the breach is resolved.

In the example, in Figure 4.23 you see that after the keywords we simply provided boolean values.
In this case, want to be alerted in all three cases. To further specify how we define breaching we
have to give at least one alert condition this is indicated by the grammar by the += operator after the
conditions attribute. After the condition comes at least one reference to an Alert Notification Target
Object which specifies who we want to contact and how we reach him.

Figure 4.23: Alert Policy used in our example

Starting with the objectives object you can see the grammar of this object in Figure 4.24. We have
first to provide a String which indicates what kind of condition we want to specify the alerting.
OpenSLO currently only supports burnrates as alert conditions. Burnrates describe how quickly we
burn through our error budget. An error budget is the number of errors allowed to make and still

37

4 Architecture and Implementation

meet our SLO. We have then to specify the operator for comparing the threshold. The threshold is
an integer value which describes how quickly we are allowed to burn through our budget 1 means
we burn through it according to plan. Two means we burn twice as fast through it as we should. And
so on. We then have to give the window on which we want to look back to calculate our burnrate.
Lastly, we have to provide a shorthand that indicates how long this condition must hold to start
alerting. Our example here specifies a burnrate condition and when we burn faster through our error
budget as expected for 6 hours we start alerting. This is evaluated in a 3-day time window. We must
provide at least one. We can also provide more than one so we can notify whole groups of people.

Figure 4.24: Xtext grammar of the Alert Condition

The last part of our alert policy is the alert notification target. The structure of such a model is
depicted in Figure 4.25.

Figure 4.25: Xtext grammar of the Alert Notification Target

An alert notification target starts with the three keywords alert notification target. Then we must
specify a name, under this name we can reference the alert notification target in the alert policy. We
can specify a display name. We use the text after the target keyword to describe how we can achieve
the target. In our example, we have specified that we send a push message to the target. We can add
an optional description to describe the object in more detail.

In our example in Figure 4.26 we specified we notify the responsible site reliability engineer. He
will be displayed by his name John Miller. and in the description, we explain why we contact him.

38

4.4 Document Validation

Figure 4.26: Alert Notification Target used in our example

4.3.2 Extending the OpenAPI Generator

We extend the generator with the mechanism explained in the concept chapter in Section 3.4.
For each SLO we use in our MDSL document we will create a YAML file. In this file, all used
elements by this SLO are stored as separate YAML documents separated by a new line and three
dashes. We choose this approach because having only one central document for each SLO makes it
easier to feed these specifications into other generators, compared to having more small documents.
The generated document of our example can be seen in the Appendix A.2.2. We integrated this
document into the OpenAPI document with a custom node we placed in the info object. The node
is called x-openslo under it we store a list of all used OpenSLO files. The x- indicates that this
is a custom node inserted into the specification. This is necessary to ensure that generators that
work with standard OpenAPI specifications still function properly. The info object of the generated
OpenAPI specification is seen in Listing 4.4.

Listing 4.4 Info object in the OpenAPI document.
info:

title: ExampleService

version: "1.0"

x-generated-on: 2023-02-17T20:04:25.4707732

x-openslo:

- example-service-openslo-BasicSLO.yaml

4.4 Document Validation

OpenSLO specifies for some attributes additional semantic constraints that we can’t cover with
the grammar alone. Xtext offers the possibility to define additional static validation rules for the
different objects. these are supported by the Eclipse editor. If a document violates one of these
rules, an error message is displayed and the part of the document that violates the rule is underlined
in red and thus highlighted. This works the same way as static semantics checking in popular
programming languages. We use this mechanism to implement these constraints

OpenSLO dictates that each name can be a maximum of 255 characters long and a description
should have a maximum length of 1050 characters. We implemented this check for each object
in the OpenSLO model. For the data source object, we are checking if the URL provided is a
valid HTTP or HTTPS URL. For the service level object, we check if an operator and a threshold
are provided if in the referenced service level indicator object a threshold metric is defined. This
is necessary because ratio metrics do not work with thresholds and the defined SLO would not
function properly. The last check we implemented regards the percentage values we give the SLO.

39

4 Architecture and Implementation

Figure 4.27: Error message display when entering an invalid URL

We have the option to provide this as a percentage from 0 to 100 or as a double value from 0,0 to 1,0.
Because Xtext does not allow the specification of range for attributes in the grammar we covered
this in a validation check.

In Figure 4.27 you can see what such a validation looks like. Here we entered an invalid URL in the
data source object.

40

5 Evaluation

This chapter describes the last step in this thesis the evaluation of the build extension. For the
evaluation of the thesis, an experiment was carried out. We describe the setup of the experiment in
Section 5.1. The results are presented in Section 5.2 and discussed in Section 5.3. The last part of
this chapter focuses on the threats to validity Section 5.4.

5.1 Experiment

To evaluate the extension an experiment was conducted. We designed an experiment consisting of
a scenario in which the participant had to model an SLO using our extension. We then designed
and questionnaire to gather feedback regarding our extension. We describe in Section 5.1.1 the
experimental setup and in Section 5.1.2 the design of the questionnaire.

5.1.1 Experiment design

For our experiment, we modelled the InventoryAPI of the T2-Project by Speth et al. [SSB22]
using our extended version of MDSL. The inventory service consists of an HTTP API which offers
basic functions like restocking the inventory, reserving items, or getting single items. This is
facilitated through different endpoints and HTTP verbs. The MDSL file provided can be seen in
Appendix A.2.

We also modelled an SLO for the experiment to be integrated into the description of the inventory
service. The description of the SLO can be seen Appendix A.2.2

The experiments were conducted online using Microsoft Teams. The participants were given a
standalone Eclipse IDE. With a project containing the API description of the inventory service and
a description of the SLO. We then introduced the participants to MDSL and our extension with an
example and explained the different parts of the model and their purpose. We then explained the
different parts of the provided SLO and let the participants model the SLO, and test the extension.
During that, we were there to ask questions if the participant had any. After that, we gave them a
questionnaire online via Google Forms1 and let them fill it out. The questionnaire covered questions
about the user experience with our extension and some to get some general feedback.

1https://www.google.de/intl/de/forms/about/

41

5 Evaluation

5.1.2 Goal Question Metric approach

The questions were developed using the Goal Question Metric (GQM) approach by Basili et al.
[BCR94]. The first step in the Goal Question metric approach is to define one or more goals which
characterize what this thesis wants to achieve. The goal of this thesis is to allow software architects
to model not only functional properties of microservice architecture like interface descriptions but
also quality characteristics like service level objectives. This led to the one and only goal of this
thesis.

G1: Improve the modelling capabilities of a DSL for microservices architectures to also support
quality characteristics like service level objectives for software architects and developers.

The second step of the Goal Question metric approach is to define questions to measure if the
goal was achieved and how well. A goal consists of three parts, the issue itself here is the limited
capabilities of domain-specific languages modelling microservice architectures. Secondly the
process we want to enable in this thesis, here the modelling of quality characteristics like service
level objectives with such domain-specific languages. Lastly, the person’s view from which this
goal must be fulfilled. In our case software architects and software developers. All these things
considered we came up with the following questions:

Q1: How user friendly would you rate the MDSL SLO extension? (1-5 1 Not user-friendly at all,
5 Very user-friendly)

Q2: How quickly were you able to model the given scenario? (1-5 1 Very slow, 5 Very fast)

Q3: How big would you estimate the time saving enabled by the MDSL, SLO extension? (1-5 1
Very low, 5 Very high)

Q4: What was particularly good using the MDSL SLO extension?

Q5: What was particularly bad using the MDSL SLO extension?

Q6: Where features missing you would expect?

Q7: If you have to model an SLO and generate an OpenAPI specification out of it. Would you use
MDSL instead of doing it with other tools?

The last part of the Goal Question metric approach is to identify appropriate metrics to measure
each question. In this thesis, we plan to conduct an experiment with a prototype of the extension
and let the participants provide feedback via a questionnaire. Now it needs to be analyzed if this
is an appropriate metric for each question. For Q1 and Q2 one experiment is an appropriate
metric because each of our participants has experience with developing software and understanding
problems in doing this and using code editors like eclipse and can therefore determine if our
extension is user-friendly. Not every participant has to be experienced with using domain-specific
languages since we provide an introduction into MDSL and our extension. It is also beneficial if
our participants have different experience levels using domain-specific languages and our extension
because we expect that the problems vary with different experiences. For Q3 our experiment is an
appropriate metric because getting insight into our extension its capabilities and also its limitations.
This allows them to evaluate if the prototype can be usable for them. For Q3 to Q6 the questionnaire
is an appropriate metric because we provide free text questions which allow participants to write
down their experiences. For all questions, our experiment is an appropriate metric we use this as
our only metric.

42

5.2 Results

5.2 Results

Of the six people who agreed to take part in our experiment, all were able to complete the experiment
and fill out the questionnaire. Three of them are full-time employees from the industry with
different levels of experience. The rest were from academia two with jobs as student assistants. The
companies ranged from a well know German carmaker to an energy startup, and one IT consulting
firm. All of our participants had more than three years of coding experience.

How user friendly would you rate the MDSL SLO extension ?

1 2 3 4 5

Not user
friendly at all Very user

friendly

3,833

Figure 5.1: Average rating of Q1.

How quickly were you able to solve the given scenario ?

1 2 3 4 5

Very slow
Very fast

4,5

Figure 5.2: Average rating of Q2.

How big would you estimate the time savings enable by the MDSL SLO extension ?

1 2 3 4 5

Very low
Very high

3,833

Figure 5.3: Average rating of Q3.

43

5 Evaluation

The general feedback regarding the extension was good. Q1, Q2 and Q3 were aimed to access
if our extension is usable. With an average of 4.0 between these three questions the extension is
generally used but there is room for improvement. All participants were able to model the SLO into
the scenario and use the generators to create artefacts.

The second part of the questionnaire is directed to get qualitative feedback on our extension. Q4
covers all parts which the participants liked about the extension. The parts of the extension the
participants not liked are covered by Q5. All features that are missed by the participants are covered
in Q6 The questions also serve the determine where the extension could be improved in future
work.

Question four yielded a lot of praise for the extension. The participants mentioned the excellent
integration into the Eclipse IDE. Here the jump-to-definition feature and auto-complete feature were
mentioned as great timesavers. Another well-received feature was the issue or error highlighting.
The design of the syntax of the SLO extension to be readable was also mentioned advantage of the
extension.

Question five deals with the things the participants did not like about the extension. Here one
participant mentioned that the auto-complete behaviour can not be configured. Another also
mentioned that the auto-complete feature is inconsistent and could not be applied everywhere.
One participant criticized that several keywords have to be used to describe an attribute. He also
mentioned that the terms and syntax have minor inconsistencies. One participant also mentioned
that the editor has quirks that come from the used framework Xtext.

The last question dealt with the things participants fought were missing with our extension. Here
some feature specific to the Eclipse IDE were mentioned. It was recommended that we have more
syntax highlighting. Automatic indentation was mentioned. Lastly mentioned was that we should
not focus on Eclipse with our extension and also support things like the language server protocol.

The last question asked was Q7. If they have to model a service-level objective and generate an
OpenAPI document, would they use our extended version of MDSL? All participants agreed that
they would use our prototype.

5.3 Discussion

In this section, hypotheses were created to determine if our goal G1 was achieved. G1 was achieved
if every hypothesis here can be accepted.

The following hypotheses were created:

H1: The extension is beneficial in developing microservice architectures

H2: The industry could imagine using such a tool

For the validation of H1 server validation questions were asked. Q1 stated how user friendly the
MDSL SLO extension is. With an average rating of 3.8 out of 5, we conclude the extension is
in fact usable. Q2 aims to assess if the participants were able to the scenario. This was done to
rule out that the given scenario is too complex and leads to bad usability. All participants were
able to solve the task so this can be ruled out. Q2 also was asked to find out how quickly the user

44

5.4 Threats to Validity

perceived the modelling of SLOs. Here Q2 received an average rating of 4.5 out of 5. This means
the participants were not only able to model the given scenario but also did this really fast. Q3
was asked to validate if the extension is able to solve time in the development process. Since Q3
received an average rating of 3.8 out of 5, we also conclude that our extension is able to solve time
in the development process. In addition to that Q4 also added evidence that our extension is able
to save time features implemented by our extension were described as great time savers by our
participants. One example mentioned was the auto-complete feature our extension provides for the
Eclipse IDE. In summary, all participants indicated that the MDSL SLO extension is beneficial for
developing microservice architectures and therefore H1 is accepted.

Q7 was asked to verify H2. Each participant could see themselves using our extension of MDSL to
model and SLO and generate an OpenAPI specification out of it. For this reason, H2 is accepted as
well.

All our hypotheses were accepted. So it can be concluded that our defined target G1 has been
reached.

5.4 Threats to Validity

In this section, the threats to validity are discussed according to Runeson and Höst [RH09]. Validity
consists of construct validity, internal validity, external validity and reliability.

Starting with construct validity in this regard we have a threat.

It is possible that our participants interpreted the asked questions differently than we did. This
is countered by the fact that the participants had the possibility to ask questions to clarify
misunderstandings. For this reason, this threat is minimal.

The next aspect investigated is internal validity. We have a threat here because our extension was
tested by participants and is therefore subjective. They may have personal opinions and preferences
regarding the used techniques and tools which influence their feedback. Also, external factors not
covered by this experiment could influence the participant’s responses.

Another aspect to pay attention to is external validity. Here we have a threat because of our group
size and background. Therefore some of the findings of this experiment may not be generalizable.
The sample size for this experiment was small with only six participants. Also, we took people
from industry and students from academia who all have or had an affiliation with the University
of Stuttgart and our department. So this experiment should be seen as preliminary. All six of our
participants mentioned similar things to fix in our extension. For this reason, it is likely that future
experiments with other participants yield similar results. We would advise first addressing the
issues mentioned by our participants and then repeating the experiment with a bigger sample size
consisting of people with different backgrounds.

The last aspect investigated is reliability. It describes the extent to which the data and analysis
are dependent on the specific researcher. This threat is small because we explained the setup of
our experiment in Section 5.1.1 and the used questionnaire and documents can be found in the
Appendix A.2. For the code, and plugin of our extension we still have this threat because is hosted
online and maybe not be available forever.

45

6 Conclusion

With this chapter, we conclude this thesis. We give a summary of this thesis in Section 6.1. Followed
by the limitations of this thesis in Section 6.2. We then go into what lessons we have learned while
working on this thesis in Section 6.3. Finally, in Section 6.4 we give an outlook for future work.

6.1 Summary

This thesis provides a concept of how domain-specific languages can be extended to not only
support the modelling of functional contracts but also model quality characteristics of microservice
architectures like service level objectives.

This concept was implemented using the well-established domain-specific language MDSL and the
service level objective model provided by OpenSLO. Also, the generator for OpenAPI documents
of MDSL was extended to also feature service level objectives.

The built extension was then evaluated with an experiment. The extension was well received by the
participants. Some improvement was suggested mainly regarding the integration of the extension
into the used eclipse IDE.

6.2 Limitations

This thesis looked only at service-level objects. It is not clear if the concept can be used to extend
domain-specific languages for other quality characteristics like scaling policies or service effect
specifications.

Also regarding the implementation in MDSL we only extended the OpenAPI generator but MDSL
also features generators for other interface description languages like GraphQL or Protocol Buffers.
The implemented OpenSLO model currently also only features the use of Prometheus HTTP API
as a data source for the service level indicators. Here also other monitoring service providers can
be investigated and possibly integrated. Currently, also only some static checks were done on the
model these could be extended to check the model more extensively.

In our evaluation, we only had a small group of participants. So the group may not be representative.
Results therefore may not be generalizable. Also, the feedback from the first evaluation should be
first implemented before repeating the experiment.

47

6 Conclusion

6.3 Lessons Learned

The first thing I learned during this thesis is to use model-driven software development and
domain-specific languages. Also during the development of the extension for MDSL I learned a
lot about developing domain-specific languages using the Xtext framework. Because Xtext is not
that extensive documentation available, I gained a lot of knowledge about he internal of the Xtext
framework by simply trying things out and looking into the source code. Lastly, I gained experience
in planning and executing an evaluation using the goal question metric approach and discussing
threats to validity.

6.4 Future Work

A first starting point were future work could build upon is to fully implement the concept and write
a generator which takes the extended OpenAPI specification and OpenSLO document and generates
a configuration for a Prometheus server to automatically monitor the generated server stub.

Like mentioned in the limitation section another starting point is to look into the other interface
description languages MDSL offers and how these could be extended to also include service level
objectives. Also, other future work could start and look for other quality characteristics, which
could be integrated into MDSL.

It also could be investigated how and which other vendors could be integrated into the OpenSLO
model to serve as data sources for our service level indicators.

A last point where future work can start is taking the feedback to the evaluation and implementing
it to conduct a further experiment. This experiment could be conducted with a bigger group and
people with different backgrounds and experience levels to validate if the suggested improvements
are actually improving the prototype.

48

Bibliography

[Atl] Atlassian. SLA vs. SLO vs. SLI - differences. url: https://www.atlassian.com/
incident-management/kpis/sla-vs-slo-vs-sli (cit. on p. 7).

[BCR94] V. R. Basili, G. Caldiera, H. D. Rombach. “The goal question metric approach”. In:
Encyclopedia of software engineering (1994), pp. 528–532 (cit. on p. 42).

[BMa] I. Bartholomew, N. Murphy. url: https://openslo.com/ (cit. on p. 7).

[BMb] I. Bartholomew, N. Murphy. OpenSLO/openslo: Open specification for defining and
expressing service level objectives (SLO). url: https://github.com/OpenSLO/OpenSLO
(cit. on pp. 7–12).

[ES] S. Efftinge, M. Spoenemann. Xtext. url: https://www.eclipse.org/Xtext/ (cit. on
p. 5).

[ES19] K. Eilebrecht, G. Starke. Patterns kompakt. Springer Berlin Heidelberg, 2019. doi:
10.1007/978-3-662-57937-4. url: https://doi.org/10.1007/978-3-662-57937-4
(cit. on p. 4).

[FL14] M. Fowler, J. Lewis. Microservices. 2014. url: https://martinfowler.com/articles/
microservices.html (cit. on p. 3).

[Fow10] M. Fowler. Domain-specific languages. Pearson Education, 2010, p. 27 (cit. on p. 4).

[Fre] P. Frenandez. Isa-Group/SLA4OAI-specification. url: https://github.com/isa-
group/SLA4OAI-Specification (cit. on p. 27).

[FW21] D. Falcioni, R. Woitsch. “OLIVE, a Model-Aware Microservice Framework”. In: The
Practice of Enterprise Modeling. Ed. by E. Serral, J. Stirna, J. Ralyté, J. Grabis. Cham:
Springer International Publishing, 2021, pp. 90–99. isbn: 978-3-030-91279-6 (cit. on
p. 14).

[GCD+17] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, A. Di Salle.
“Towards Recovering the Software Architecture of Microservice-Based Systems”. In:
2017 IEEE International Conference on Software Architecture Workshops (ICSAW).
2017, pp. 46–53. doi: 10.1109/ICSAW.2017.48 (cit. on p. 14).

[Gro] R. Gronback. Eclipse modeling project: The eclipse foundation. url: https://www.
eclipse.org/modeling/emf/ (cit. on p. 5).

[MPT78] M. D. McIlroy, E. N. Pinson, B. A. Tague. “UNIX Time-Sharing System: Foreword”. In:
Bell System Technical Journal 57.6 (July 1978), pp. 1899–1904. doi: 10.1002/j.1538-
7305.1978.tb02135.x. url: https://doi.org/10.1002/j.1538-7305.1978.tb02135.x
(cit. on p. 3).

[Net] I. d. Net. Yaml Ain’t markup language (YAML™) version 1.2. url: https://yaml.org/
spec/1.2.2/ (cit. on p. 22).

49

https://www.atlassian.com/incident-management/kpis/sla-vs-slo-vs-sli
https://www.atlassian.com/incident-management/kpis/sla-vs-slo-vs-sli
https://openslo.com/
https://github.com/OpenSLO/OpenSLO
https://www.eclipse.org/Xtext/
https://doi.org/10.1007/978-3-662-57937-4
https://doi.org/10.1007/978-3-662-57937-4
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://github.com/isa-group/SLA4OAI-Specification
https://github.com/isa-group/SLA4OAI-Specification
https://doi.org/10.1109/ICSAW.2017.48
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://doi.org/10.1002/j.1538-7305.1978.tb02135.x
https://doi.org/10.1002/j.1538-7305.1978.tb02135.x
https://doi.org/10.1002/j.1538-7305.1978.tb02135.x
https://yaml.org/spec/1.2.2/
https://yaml.org/spec/1.2.2/

Bibliography

[New21] S. Newman. Building microservices. 2nd ed. Sebastopol, CA: O’Reilly Media, Sept.
2021. isbn: 978-1-492-03402-5 (cit. on p. 3).

[Rad] F. Rademacher. LEMMA Documentation. url: https://seelabfhdo.github.io/lemma-
docs/ (cit. on p. 14).

[Rad22] F. Rademacher. “A Language Ecosystem for Modeling Microservice Architecture”.
PhD thesis. Kassel, Universität Kassel, Fachbereich Elektrotechnik / Informatik, 2022
(cit. on p. 14).

[RH09] P. Runeson, M. Höst. “Guidelines for conducting and reporting case study research in
software engineering”. In: Empir. Softw. Eng. 14.2 (2009), pp. 131–164 (cit. on p. 45).

[SMID22] A. Suljkanović, B. Milosavljević, V. Inđić, I. Dejanović. “Developing Microservice-
Based Applications Using the Silvera Domain-Specific Language”. In: Applied
Sciences 12.13 (2022). issn: 2076-3417. doi: 10.3390/app12136679. url: https:
//www.mdpi.com/2076-3417/12/13/6679 (cit. on p. 13).

[SSB22] S. Speth, S. Stieß, S. Becker. “A Saga Pattern Microservice Reference Architecture
for an Elastic SLO Violation Analysis”. In: Companion Proceedings of 19th IEEE
International Conference on Software Architecture (ICSA-C 2022). IEEE, Mar. 2022.
doi: 10.1109/ICSA-C54293.2022.00029 (cit. on pp. 26, 36, 41).

[WB23] A. Wąsowski, T. Berger. Domain-Specific Languages. Springer International Publish-
ing, 2023. doi: 10.1007/978-3-031-23669-3. url: https://doi.org/10.1007/978-3-
031-23669-3 (cit. on p. 4).

[Wol15] E. Wolff. Microservices. de. 1st ed. Heidelberg, Germany: dpunkt, Nov. 2015. isbn:
978-3-86490-313-7 (cit. on p. 3).

[Zim] O. Zimmermann. Microservice domain-specific language (MDSL) homepage. url:
https://microservice-api-patterns.github.io/MDSL-Specification/ (cit. on pp. 5,
6).

All links were last checked on March 1, 2023.

50

https://seelabfhdo.github.io/lemma-docs/
https://seelabfhdo.github.io/lemma-docs/
https://doi.org/10.3390/app12136679
https://www.mdpi.com/2076-3417/12/13/6679
https://www.mdpi.com/2076-3417/12/13/6679
https://doi.org/10.1109/ICSA-C54293.2022.00029
https://doi.org/10.1007/978-3-031-23669-3
https://doi.org/10.1007/978-3-031-23669-3
https://doi.org/10.1007/978-3-031-23669-3
https://microservice-api-patterns.github.io/MDSL-Specification/

A Appendix

A.1 OpenSLO file example

Listing A.1 Generated YAML document from our example part one.

apiVersion: openslo/v1

kind: SLO

metadata:

name: BasicSLO

displayName: Basic Service Level Indicator

spec:

service: MonitoringService

indicatorRef: SiteAvailabilityIndicator

timeWindow:

duration: 30d

calendar:

startTime: 2023-02-05 23:59:59

timeZone: Berlin/Europe

isRolling: "false"

budgetingMethod: Timeslices

objectives:

- displayName: Site Availability

targetPercent: 99.0

timeSliceTarget: 90.0

timeSliceWindow: 2h

alertPolicies:

- BasicAlert

apiVersion: openslo/v1

kind: SLI

metadata:

name: SiteAvailabilityIndicator

spec:

description: Indicator describes the applications availability

ratioMetric:

counter: true

good:

metricSource:

metricSourceRef: ExamplePrometheusServer

type: Prometheus

spec: http_requests_total{status_code="200"}

total:

metricSource:

metricSourceRef: ExamplePrometheusServer

type: Prometheus

spec: http_requests_total

51

A Appendix

Listing A.2 Generated YAML document from our example part two.

apiVersion: openslo/v1

kind: AlertPolicy

metadata:

name: BasicAlert

spec:

alertWhenNoData: true

alertWhenResolved: true

alertWhenBreaching: true

conditions:

- kind: AlertCondition

metadata:

name: SlightlyBelowTarget

spec:

severity: page

condition:

kind: burnrate

op: gt

threshold: 1

lookbackWindow: 30d

alertAfter: 6h

notificationTargets:

- targetRef: sreEngineer

apiVersion: openslo/v1

kind: AlertNotificationTarget

metadata:

name: sreEngineer

displayName: John Miller

spec:

target: push message

description: John Miller is the site reliability engineer reposible for this service

apiVersion: openslo/v1

kind: Service

metadata:

name: MonitoringService

displayName: Standard monitoring service

spec:

description: All SLOs associated with this service are for minotirng the application

apiVersion: openslo/v1

kind: DataSource

metadata:

name: ExamplePrometheusServer

displayName: Example prometheus main server

spec:

description: Example prometheus server

type: Prometheus

connectionDetails:

url: http:www.example.com/prometheus/api/v1

52

A.2 Experiment

A.2 Experiment

A.2.1 MDSL model of the inventory service

Listing A.3 MDSL file of the t2-inventory service provided to the study participants.

API description t2InventoryService

data type Identification D<string>

data type HTTPStatusCode {"successStatusCode":D<int>}

data type Product {"id": D<string>,

"name": D<string>,

"description": D<string>,

"units": D<int>,

"price": D<double>}

endpoint type InventoryEndpoint

serves as INFORMATION_HOLDER_RESOURCE

exposes

operation addProduct

expecting payload Identification

delivering payload HTTPStatusCode compensated by deleteProduct

operation deleteProduct

expecting payload Identification

delivering payload HTTPStatusCode

operation getProduct

expecting payload Identification

delivering payload Product

endpoint type RestockEndpoint

serves as DATA_TRANSFER_RESOURCE

exposes

operation restocProducts

delivering payload HTTPStatusCode

endpoint type GenerationEndpoint

serves as DATA_TRANSFER_RESOURCE

exposes

operation generate

delivering payload HTTPStatusCode

/////////////////Begin Open SLO //////////////////////////////////////

///////////////// End Open SLO //////////////////////////////////////

53

A Appendix

Listing A.4 MDSL file of the t2-inventory service provided to the study participants.

API provider InventorySerivceProvider

offers InventoryEndpoint

at endpoint location "http://t2-project/api"

via protocol HTTP

binding resource ProductResource at "/inventory{id}"

operation addProduct to POST

operation addProduct to PUT

operation deleteProduct to DELETE

operation getProduct to GET

offers RestockEndpoint

at endpoint location "http://t2-project/api"

via protocol HTTP

binding resource RestockResource at "/restock"

operation restocProducts to GET

offers GenerationEndpoint

at endpoint location "http://t2-project/api"

via protocol HTTP

binding resource GenerateResource at "/generate"

operation generate to GET

IPA

A.2.2 Predefined Service Level Objective

The data source represented a Prometheus server it has the following attributes.

• Name: T2PrometheusServer

• Display name: “T2 Project Prometheus Main Server”

• Type: “Prometheus”

• URL: “http://www.t2-project.de/prometeus/api/v1”

The service had the following attributes.

• Name: MonitoringService

• Display name: “Default Monitoring Service”

• Description: “All SLOs associated with this service are for monitoring the T2-Project
application”

The alert notification target had the following attributes

• Name: ShopDeveloper

• Display name: “John Doe”

• Target: “push message”

54

A.2 Experiment

• Description “Person to contact when an SLO breaches”

The alert policy following attributes

• Name: BasicAlert

• AlertWhenNoData: true

• AlertWhenResolved: true

• AlertWhenBreaching: true

• Alert condition: SlightlyBelowTarget

The alert condition looks as follows.

• Name: SlightlyBelowTarget

• Severity: “page”

• Kind: “burnrate”

• Operator: gt

• Threshold: 1

• Look-back: 30d

• Alert after: 2d

• Alert notification target: ShopDeveloper

The service level indicator used has the following attributes

• Name: SiteAvailabilityIndicator

• Display name: “Availability”

• Description: “Indicator describes availability of the T2-Project application”

• Ratio metric

– good:

∗ Counter: false

∗ Data Source: TeaShopPrometheusServer

∗ Type: “Prometheus”

∗ Spec: "http_requests_total"

– total

∗ Data source: TeaShopPrometheusServer

∗ Type: “Prometheus”

∗ Spec: "http_requests_total{satus_code=“200”}"

The service level objective has the following attributes

55

• Name: BasicSLO

• Service: MonitoringService

• Service Level Indicator:

• Time-window: 30d

• Starting point: 2023-02-05 23:59:59

• Time-zone: “Europe/Berlin”

• Budgeting: Occurrences

• Objective:

– “Site Availability”

– Target percent: 99

– Alert policy: BasicAlert

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

Stuttgart, 01.03.2023

	1 Introduction
	2 Foundations and Related Work
	2.1 Foundations
	2.2 Related work
	2.3 DSL Analysis & Selection

	3 Concept
	3.1 Concept Overview
	3.2 SLO Integration into a DSL
	3.3 SLO Integration into Interface Description Language
	3.4 SLO Generation in OpenSLO
	3.5 Usage of OpenSLO

	4 Architecture and Implementation
	4.1 Architecture
	4.2 Implementation of built-in SLOs
	4.3 Adding OpenSLO to MDSL
	4.4 Document Validation

	5 Evaluation
	5.1 Experiment
	5.2 Results
	5.3 Discussion
	5.4 Threats to Validity

	6 Conclusion
	6.1 Summary
	6.2 Limitations
	6.3 Lessons Learned
	6.4 Future Work

	Bibliography
	A Appendix
	A.1 OpenSLO file example
	A.2 Experiment

