
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Stuttgart, February 27, 2023

Masterarbeit Nr. 96

Filter Dictionaries for Optical Flow
Prediction with RAFT

Peter Walter

Course of Study: Simulation Technology

Examiner: Prof. Dr.-Ing. Andrés Bruhn

2nd Examiner: Prof. Dr. rer. nat. Thomas Ertl

Supervisor: M. Sc. Jenny Schmalfuss

Abstract

In the field of optical flow estimation, a dense vector field must be generated describing
the apparent two-dimensional displacement of objects in consecutive images of a sequence.
Although state of the art predictions are currently produced by deep convolutional neural
networks, one major issue is that they are strongly susceptible to adversarial attacks, such as
the Perturbation Constrained Flow Attack, which create small, noisy perturbations pursuing
maximal change in the optical flow estimate. To improve adversarial robustness, this thesis
includes receptive field convolutional layers into the optical flow predicting neural network
RAFT. These receptive field layers use filter dictionaries to impose specific (geometric) priors
onto convolutional kernels and improve results in image classification and reconstruction
tasks. Each kernel in these RFCNNs can be written as a weighted sum over a fixed subset
of filters taken from the dictionary. Besides the existing Gaussian derivative and Parseval
completed sparse directional dictionaries, a novel PCA dictionary is proposed which consists of
the principal components of the previously trained network’s kernels. All types of dictionaries
are compared against each other at multiple positions in the network. Results show that
receptive fields in individual layers mostly do not affect and in RAFT’s feature encoder even
degrade performance, while Parseval completed dictionaries do not benefit the neural network
in this context of optical flow. However, filter dictionaries with geometric motivations in RAFT’s
update block, namely the Gaussian derivatives and sparse directional FDs, make the network
up to 20% more robust against the PCFA in exchange for a worse fit in quality.

Keywords Filter dictionaries · Receptive fields · Neural networks · Optical flow · Adversarial
robustness

Contents

1 Introduction 7

2 Related Work 11
2.1 Predicting Optical Flow . 11
2.2 Improvement of Neural Networks with Filter Dictionaries 21

3 About Various Filter Dictionaries 25
3.1 Gaussian Derivative Filter Dictionaries . 25
3.2 Sparse Directional Filter Dictionaries . 29
3.3 Principal Component Analysis Filter Dictionaries 30
3.4 Parseval Frame Completed Filter Dictionaries 37
3.5 Overview of Filter Dictionaries . 40

4 Experiments 41
4.1 Baseline . 41
4.2 Different Filter Dictionaries in a Single Layer . 43
4.3 Different Filter Dictionaries in the Complete Feature Encoder 50
4.4 Different Filter Dictionaries in the Complete Update Block 55
4.5 Lipschitz Constant Constraint Regularization . 59

5 Conclusions and Outlook 63

Bibliography 65

5

1 Introduction

Optical flow refers to the apparent 2D displacement of correspondences on a per-pixel basis
between a source and a target frame in an image sequence or video. In numerous applications,
optical flow plays an essential part by providing such dense fields of correspondences. These
fields can then be further used in downstream tasks, such as video inpainting [Kim et al., 2019;
Xu et al., 2019], frame interpolation [Liu et al., 2020; Huang et al., 2022b], action recognition
[Ullah et al., 2018; Zhao et al., 2020b; Ilic et al., 2022] and autonomous driving [Wang et al.,
2021], or serve as a basis for human interpretation in medical applications [Yan et al., 2019;
Li et al., 2022; Yu et al., 2020; Tehrani et al., 2020].

To estimate the optical flow, traditional optimization techniques, for example the method of
[Horn and Schunck, 1981], have been widely replaced by deep convolutional neural networks
with which more accurate results on demanding benchmarks like Sintel [Butler et al., 2012]
or KITTI [Menze and Geiger, 2015] are achieved. These neural networks range from simple
concatenated convolutional layers like FlowNet [Dosovitskiy et al., 2015; Ilg et al., 2017], to
more complex structures such as PWC-Net, SpyNet, GMA and the Recurrent All-Pairs Field
Transform (RAFT) [Sun et al., 2018; Ranjan and Black, 2017; Jiang et al., 2021; Teed and
Deng, 2020], including 4D cost volumes, recurrent units and most recently also transformers
in FlowFormer [Huang et al., 2022a].

One significant weakness of current state of the art neural networks, no matter the application,
is their vanishing robustness against so called adversarial attacks [Cisse et al., 2017b; Moosavi-
Dezfooli et al., 2017; Akhtar and Mian, 2018; Wu et al., 2020; Ranjan et al., 2019; Schmalfuss
et al., 2022b]. These attacks seek a small, noisy perturbation of the input producing maximal
change in the output, thus rendering the prediction futile. In the context of optical flow,
the Perturbation-Constrained (Adversarial) Flow Attack (PCFA) of [Schmalfuss et al., 2022b]
provides a potent attack. While closing the distance between the network’s prediction and a
pre-defined target flow, which is assumed to be sufficiently far away, the PCFA also constrains
the perturbation below a certain threshold.

The distance thus reached is called the adversarial robustness and provides a lower bound
to the Lipschitz constant of the network. Whereas computing the exact Lipschitz constant is
NP-hard [Virmaux and Scaman, 2018], its upper bounds are known to be linked to robustness
and generalization performance [Goodfellow et al., 2014; Szegedy et al., 2014; Yoshida and
Miyato, 2017; Gouk et al., 2021; Cisse et al., 2017a].

7

1 Introduction

To improve the adversarial robustness of the optical flow predicting neural network RAFT, this
work adopts structured Receptive Field Convolutional Neural Networks (RFCNN) to enforce
specific (geometric) priors into convolutional layers shown to enhance performance in image
classification and inpainting [Jacobsen et al., 2016; Schmalfuss et al., 2022a]. This strategy
uses clever spanning sets of filters called Filter Dictionaries (FD) which can contain low-pass,
derivative and other motivated filters. Weighting these filters with trainable parameters retains
the network’s ability to learn from training data. By taking a linear combination of a random
but fixed subset of a FD with only 3 filters, as proposed by [Schmalfuss et al., 2022a], the
resulting kernels are interpretable filters with a motivated meaning, e.g. a mixture of derivative
filters in different directions and orders. With several kernels to learn, it is assumed that the
network is able to cover all possible kernels, since all filters are chosen sufficiently often. On
the other hand, trimming the learnable parameters for each kernel to 3 also reduces the total
number parameters significantly.

A first trial of this approach is tested in [Walter, 2022], which uses Parseval completed sparse
directional FDs and places them in single convolutional layers of RAFT. In summary, both the
quality on the test data and robustness suffers when placed in the first layers of the image
encoders, but improves robustness in the motion encoder of the recurrent block.

Research Questions

Since sparse directional FDs are not the only choice for receptive fields, this raises the following
questions. 1) Do other FDs, such as Gaussian derivative FDs, which more closely represent the
smoother kernels of the trained baseline yield better robustness? 2) Thinking one step further,
can a FD fitted to the freely trained filters of the applied layer improve robustness? 3) Can
FDs without Parseval completion yield a better robustness? 4) In which positions is a FD most
effectively placed?

To be precise, this work covers three main research questions:

Q.1 How much does the FD-choice matter in improving optical flow robustness?

Q.1.1 Next to Parseval completed sparse directional FDs, how do smooth Gaussian deriva-
tive FDs perform?

Q.1.2 Next to Parseval completed sparse directional FDs, how does a novel FD, which is
tailored to freely trained filters, perform?

Q.2 Is the Parseval condition of FDs necessary for improved robustness or do plain dictionaries
suffice?

Q.3 Which layers of the RAFT network yield the best robustness improvement when replaced
with receptive fields?

8

Thesis Structure

This thesis starts in Chapter 2 with a more thorough introduction into the optical flow task, its
prediction via variational methods and recent neural networks, including a detailed description
of RAFT, and takes a closer look on the PCFA and possible defenses against adversarial attacks.
The chapter then finishes with the principles of RFCNNs leading up to the author’s project
work [Walter, 2022]. To answer the first two Questions Q.1 and Q.2, Chapter 3 explains
how the mentioned FDs can be created and clarifies their individual motivations. It also
provides an overview of the FDs’ basic properties and their usage in this thesis for kernels with
miscellaneous kernel sizes.

Their performance including the placement in the RAFT network, Question Q.3, is then exam-
ined in Chapter 4. The experiments are split into five parts, each concerning a different place-
ment of the FDs. Starting with the baseline in Experiment 4.1, the FD placements into single
layers, the complete feature encoder and update block are discussed in Experiments 4.2 to 4.4
respectively. Experiment 4.5 then attempts to replicate achieved improvements by regularizing
the Lipschitz constant of specific layers using the method of [Gouk et al., 2021].

All combinations of FD choice and layer position (configurations) are evaluated by using the
following three aspects: 1) quality on the trained Sintel train and test data, 2) generalization
performance on the KITTI training split, without further finetuning, and 3) adversarial robust-
ness against the PCFA on the Sintel test set. In addition to the lower Lipschitz bound of the
whole network through the robustness, upper bounds of the convolutional layers’ Lipschitz
constants are investigated as well. Lastly, a short summary of this thesis and possible future
topics are given in Chapter 5.

9

2 Related Work

Given all the previous studies which prompted this thesis, this chapter will give a short summary
of all parts necessary for further understanding. It will start by introducing the concept of
optical flow and its predictions methods. From plain variational methods to recent artificial
neural networks these methods have become more complex and more accurate. However,
neural networks lack stability against so called adversarial attacks and struggle to generalize
properly [Sun et al., 2022; Schmalfuss et al., 2022b]. One such state of the art neural network,
RAFT, can be interpreted as a self-learned variational method. RAFT forms the baseline onto
which the Filter Dictionaries of Chapter 3 are applied.

The second part will explore how FDs help to improve neural networks by following the works
of Jacobsen et al. [2016] and Schmalfuss et al. [2022a], while an in depth analysis of FDs and
their creation is located in Chapter 3. Finally, this chapter will conclude with a recapitulation
of the author’s project work [Walter, 2022], a first trial testing the viability of FDs in the above
mentioned neural network RAFT.

2.1 Predicting Optical Flow

In the field of computer vision, optical flow is the apparent 2D displacement of an object from
one image to the next in a video or image sequence. An object located at pixel (x, y) in the
first image I1 could be located at a potentially different pixel (x̃, ỹ) in the second image I2,
This could be a consequence of the object’s and the camera’s movement, thus, and to avoid
unnecessary confusion, this thesis will always consider motion with respect to the camera’s
frame of reference.

The goal of optical flow estimation is to find a dense vector field (u, v)⊤ : I1 → R2, i.e. find a
vector (u(x, y), v(x, y))⊤ for every (x, y) ∈ I1 which describes the object’s movement direction
and velocity to the second image. Measured in pixels, adding the optical flow to the original
position should ideally result in the pixel(

x̃

ỹ

)
=
(

x + u(x, y)
y + v(x, y)

)
(2.1)

of the object in I2. It is easy to see that this cannot hold everywhere. If, for example, the object
moves out of frame or becomes occluded by another object, (x̃, ỹ) does not exist. However

11

2 Related Work

optical flow can still be defined to be the motion to the place where the object would be, if it
was visible.

Between two images of the Sintel data set [Butler et al., 2012] the optical flow could look
similar to Figure 2.1. Here, the resulting, scaled vector field is shown for a sub-sampled set of
pixels. To visualize the optical flow at all pixels, the vectors are color encoded with the hue
showing the direction and the saturation denoting the magnitude of the flow.

Figure 2.1: Two example images from the Sintel data set [Butler et al., 2012] and the respec-
tive optical flow as a vector field and color encoded image.

The challenge of optical flow prediction lies in accurately matching pixels from I1 to I2. A
simple toy example are two images of a flat, white wall. Without further information it is
impossible to determine whether the wall has or has not moved. Any non-white object like
a picture frame or painting on the wall would change the situation considerably. With this
’feature’ located in I1 one could look for the same constellation of pixels in I2. By extrapolating
this motion onto the whole image one can infer that the wall has moved just the same. The
definitions of such ’features’ have changed over the years and led to several approaches
discussed in the following section.

12

2.1 Predicting Optical Flow

2.1.1 Variational Methods
Variational methods for optical flow predictions rely on the so called “brightness constancy
assumption”, “gradient constancy assumption” or others [Horn and Schunck, 1981; Nagel and
Enkelmann, 1986; Barron et al., 1994; Brox et al., 2004; Zach et al., 2007; Zimmer et al., 2011;
Fortun et al., 2015; Maurer et al., 2017]. In the case of the brightness constancy assumption,
the same object is assumed to have equal brightness in both I1 and I2, i.e. for all x, y ∈ I1

Î1(x, y) = Î2(x + u(x, y), y + v(x, y)), (2.2)

with Î being the gray value representation of I. In other words, the flow should minimize the
following data term

D(Î1, Î2, u(x, y), v(x, y)) := (Î2(x + u(x, y), y + v(x, y))− Î1(x, y))2. (2.3)

Since Equation (2.2) has two unknowns, a unique solution cannot be determined. To solve
this so called “aperture problem” [Bertero et al., 1988], one must add regularizing constraints,
e.g. enforced spatial smoothness of the flow [Horn and Schunck, 1981]. These constraints are
added to D(·) as an additional regularizing term R(·).

The optical flow problem can then be stated as a general minimization problem of the following
energy

E(u(x, y), v(x, y); α) =
∫∫

(x,y)∈I1
D(Î1, Î2, u(x, y), v(x, y))

+ α2 R(x, y, u(x, y), v(x, y),∇u(x, y),∇v(x, y), . . .) dx dy,

(2.4)

with regularization weight α.

The Method of Horn and Schunck

One such variational method is the method of [Horn and Schunck, 1981]. Assuming the
brightness constancy assumption of Equation (2.3), a first order Taylor expansion of I1(x, y) in
both space and time and enforcing no sudden changes in the resulting vector field yields:

EHS(u(x, y), v(x, y); α) =
∫∫

(x,y)∈I1
(u(x, y)∂xÎ1(x, y) + v(x, y)∂yÎ1(x, y) + ∂tÎ1(x, y))2

+ α2(∥∇u(x, y)∥2 + ∥∇v(x, y)∥2) dx dy,

(2.5)

where ∂tÎ1(x, y) := Î2(x, y)− Î1(x, y). Here, the time difference is assumed to be normalized
to 1.

In this case, a linear system of equations is obtained from the energy through optimization and
discretization. While solving this system, the data term drives the solution towards a flow that

13

2 Related Work

respects the brightness constancy term and is most influential where the image derivatives are
large, i.e. the edges, corners of that picture frame from the example above. But in places on
the images where all derivatives are close to 0, i.e. the white wall, the optical flow could, in
theory, be chosen arbitrarily. In these areas the regularizing term takes over through enforcing
few to no changes in the flow field. By extension, the optical flow in smooth areas of the image
gets filled with the values coming from the informative ’features’.

More advanced variational approaches build upon the method of Horn and Schunck and derive
more accurate and detailed forms of the data term as well as more complex regularizers [Nagel
and Enkelmann, 1986; Brox et al., 2004; Zach et al., 2007; Werlberger et al., 2009; Zimmer
et al., 2011; Maurer et al., 2017]. For example, Brox et al. [2004] add the gradient constancy
assumption to the minimizing energy and Werlberger et al. [2009] explore anisotropic regular-
ization techniques. These methods however yield improvements in accuracy, but also lead to
large computation times [Bruhn et al., 2003].

2.1.2 Neural Networks and the RAFT Architecture

More recently, optical flow predictions using neural networks, like FlowNet [Dosovitskiy et al.,
2015; Ilg et al., 2017], MaskFlownet [Zhao et al., 2020a], SpyNet [Ranjan and Black, 2017],
PWC-Net [Sun et al., 2018], RAFT [Teed and Deng, 2020], GMA [Jiang et al., 2021] and
Flowformer [Huang et al., 2022a] have emerged. Not only are they more accurate than
variational methods but also have fast inferences on demanding benchmarks such as KITTI
[Menze and Geiger, 2015] and Sintel [Butler et al., 2012].

It is important to note that for neural networks no assumptions and regularizing terms have to
be constructed, they learn to recognize and interpret image ’features’ just from training data.
Being both a blessing and a curse, this leads to the risks of overfitting making generalization
behavior a crucial part of neural network training [Dietterich, 1995; Sun et al., 2022].

Besides network architecture design, training procedures cannot be neglected [Sun et al.,
2022] with data augmentation being an essential part. Another possibility for improving
generalization power is to apply unsupervised learning procedures to given neural networks.
Hence is is possible to extend the networks skills into the wild by training also on unlabeled
data [Yu et al., 2016; Jonschkowski et al., 2020; Kong and Yang, 2022; Scheurer, 2022]. On
labeled benchmarks however, unsupervised learning gives mixed results and generally lags
behind supervised counterparts. As unsupervised learning applications are largely independent
of the network in question it is practicable to compare the different approaches solely on their
supervised performance.

Neural networks for optical flow predictions often draw inspiration from their theoretical
counterparts, extend upon existing networks, or borrow successful techniques from other fields
and are therefore carefully orchestrated architectures. The rest of this section is dedicated
to paraphrase how networks can originate from theoretic principles, explain the Recurrent

14

2.1 Predicting Optical Flow

All-Pairs Field Transform in detail which serves as the plain-vanilla network used in this thesis
and finally touch how, in the recent past, natural language processing has influenced optical
flow.

PCW-Net

PWC-Net for example is based upon a coarse-to-fine warping technique known from variational
methods [Sun et al., 2018; Brox et al., 2004]. A sequence of sub-sampled images becoming
more coarse at every level make up the so called spatial pyramid. Starting at the coarsest
level, a flow estimate is computed which is then upsampled to be the initial guess of the finer
prediction. Warping is the concept of incorporating this initial guess into the fixed part of the
minimization equation, thus, only solving for the missing modification to this flow. Finally,
the sum of the flow of all layers is the final prediction. PCWNet differs in only two aspects.
It uses learned features in different resolutions to build the pyramid, instead of the images
themselves, and replaces the numerical solver with a neural network at every level.

RAFT

One state of the art convolutional neural network (CNN) for optical flow prediction is the
Recurrent All-Pairs Field Transform [Teed and Deng, 2020]. With the Networks architecture,
seen in Figure 2.2, the authors imitate a variational method’s iterative prediction process.
The idea behind this neural network formulation is to allow for complex energies without
needing to derive any equations. All necessary terms are automatically learned from the
data, while uninformative terms are ignored. Due to the inherent Black-Box nature of neural
networks, none of these terms can easily be verified to be the exact counterparts of an energy
minimization [Shrikumar et al., 2017; Olden and Jackson, 2002; Adadi and Berrada, 2018;
Gunning et al., 2019]. Nevertheless, the RAFT optical flow calculation can be split into three
main parts: feature extraction, visual similarity computation and iterative updates.

Feature extraction is done through two convolutional networks. The feature encoder learns
data-specific feature vectors for every pixel to be calculated for both images, while the context
encoder is applied only to the first image. Both of these learned features could in theory encode
anything ranging from pixel brightness, edges, corners, or more abstract elements like the
aforementioned picture frame on the wall.

Visual similarity. Secondly, the visual similarity between both images is calculated as a 4D
Correlation Volume of the two feature encoder outputs. Each entry holds the information of
similarity between pixels (x1, y1) ∈ I1 and (x2, y2) ∈ I2 as the dot product of their feature
vectors. This setup allows the network to extract the correlation between each pixel (x, y)
and its corresponding point (x̃, ỹ) := (x + u(x, y), y + v(x, y)) with (u, v)⊤ being the current
flow estimate, a quantity analogous to the data term D(·) seen in variational approaches. The

15

2 Related Work

difference being that the features are automatically fitted to the data instead of predefined,
fixed properties such as the brightness constancy assumption.

To later find flows with better similarity and to be computationally efficient, the correlation
is read out only in a small neighborhood of (x̃, ỹ). This procedure omits information about
a possible improvement for large changes of the current flow estimate, e.g. bigger than the
range of the neighborhood. Therefore, Teed and Deng construct a 4-layer correlation pyramid
by pooling the volume in the latter two dimensions with kernel sizes k = 1, 2, 4, 8. Now, with
the same number of look-ups in each pyramid layer a bigger, yet coarser, neighborhood can
also be sampled without drastically increasing the computational effort.

Iterative updates. Finally, a recurrent neural network performs ten or more iterative updates
to simulate a first-order optimization algorithm. Starting with an initial guess, e.g. zero-flow,
the update block repeatedly computes flow updates ∆F . The quantity L can be interpreted as
the discrete optimization objective ERAFT = L(θ; I1, I2, u(x, y), v(x, y)). One part of L is the
current flow estimate itself, while the other part is computed from a combined convolutional
encoding of correlation and flow estimate and relates to the energy analogous data and
regularization terms. The main driving force is then a Gated Recurrent Unit (GRU) feeding
externally on the objective L(·) and the context encoder’s features. Its hidden layer output
is then passed through two more convolutions before becoming the current flow update
Ft+1 = Ft + ∆Ft, t ≥ 0. Note, the GRU in RAFT is based on convolutions instead of fully
connected layers.

Layer-names. Further, it is crucial to this thesis to assign layer-names to all important
convolutional layers, c.f. the detailed RAFT architecture in Figure 2.2b. Convolutions with
kernel size of 1 × 1 are not explicitly named. The feature and context encoder consist of a
7 × 7 convolution feature1 (context1) followed by twelve 3 × 3 Residual Units featureL1-12
(contextL1-12). The update block starts with the motion encoder of the 7× 7 flow1 and 3× 3
flow2 flow estimate encoders, the 3× 3 corr2 correlation encoder and the 3× 3 convolution
motion1. The GRU block is split up into a 1× 5 and a 5× 1 GRU. Its three activations being
z1, r1, q1 and z2, r2, q2 respectively. The final flow update layer consists of the two 3 × 3
convolutions flowhead1 and flowhead2.

Flowformer

At the time of writing this thesis the forefront of current research has advanced one step
further. A significant drawback of CNNs is their fixed and rather small kernel size, because only
elements within that range can be connected to learn features. Attention based transformers are
used in natural language processing [Vaswani et al., 2017] and just now have been applied to
computer vision [Dosovitskiy et al., 2020; Huang et al., 2022a]. Due to their ability of modeling
long-range relations they can be very effective for optical flow prediction. By exploiting this
property Huang et al. [2022a] have developed the RAFT-based architecture FlowFormer which,

16

2.1 Predicting Optical Flow

(a) The RAFT network

(b) All RAFT layers and its kernel sizes with indicated nomenclature (blue).

Figure 2.2: The principle of RAFT and its architecture. Both images originally taken from
[Teed and Deng, 2020]. The kernel sizes of the last layers in Figure 2.2b of the
encoders and the update block are adjusted to fit the implementation

broadly speaking, improves the motion encoder and the recurrent unit to directly extract and
interpret information about the cost volume across the whole image. With this network they
currently rank as one of the best published results on Sintel and also show strong cross-data
set generalization.

17

2 Related Work

2.1.3 PCFA and Adversarial Robustness

However, even state of the art neural networks are notorious for being vulnerable against
adversarial attacks as various authors show. They intend to corrupt the models predictions
as much as possible by changing the input, ideally only by a small amount [Szegedy et al.,
2014; Moosavi-Dezfooli et al., 2017; Akhtar and Mian, 2018; Bhambri et al., 2019; Akhtar
et al., 2021; Cisse et al., 2017b; Ranjan et al., 2019; Schrodi et al., 2022; Schmalfuss et al.,
2022b].

Successfully applied in classification tasks, targeted attacks are a common form of attack. They
search for a perturbation which is able to change the predicted label l to the target label ľ ̸= l.
This perturbation is usually minimized or its norm constrained below some threshold, as a
small change constitutes a more effective attack. In addition, attacks can be performed on
each image separately (image/frame-specific) or on a set of images yielding a single, universal
perturbation which changes the predicted label for a large number of images. Next to these
options, it is also possible to confine the global perturbations to a localized patch by only
changing pixel values in a spatially confined domain. Patch attacks are particularly effective in
the wild where a printed perturbation cannot fill the whole field of view [Huang et al., 2020;
Wu et al., 2020; Ranjan et al., 2019].

PCFA

A strong attack specifically designed for adversarial flow is the global Perturbation-Constrained
(Adversarial) Flow Attack by [Schmalfuss et al., 2022b]. It seeks the perturbation δ̂ = δ1, δ2
for each image of the current time step which minimizes the distance L(f̌ , f t) between the
perturbed flow f̌ and a predefined target flow f t under the constraint that the perturbation
remains within a certain bound ε2 > 0. Thus, the PCFA solves the optimization problem

argmin
δ̂

L(f̌ , f t) s.t. ∥δ̂∥2 ≤ ε2
√

2I, Iz + δz ∈ [0, 1]I , z = 1, 2, (2.6)

where the additional factor
√

2I makes the perturbation bound independent of the image size
I = M ·N · C. Typical values for the maximal average relative distortion ε2 range between
0.05% = 5 · 10−4 ≤ ε2 ≤ 5 · 10−2 = 5%. Keeping the perturbed image Iz + δz ∈ [0, 1]I within
the allowed range is a non-trivial task and requires particular attention. Besides clipping the
values on either end to 0 or 1, a change of variables instead optimizes the auxiliary variable
ωz defined by δz = 1

2(tanh(ωz) + 1)− Iz through which the perturbed images never leave the
desired domain.

The PCFA in this thesis is fixed to the change of variables with disjoint perturbations, i.e. δ1
and δ2 are separately optimized quantities. The target flow is chosen to be zero-flow f t = 0
and its distance to the perturbed flow L(f̌ , f t) is measured in the average endpoint error
AEE(f̌ , f t) = 1

I

∑
i∈I∥f̌i − f t

i ∥2. Defining the short hand ε̂2 = ε2
√

2I, squaring the constraint

18

2.1 Predicting Optical Flow

on both sides ∥δ̂∥22 ≤ ε̂2
2 and using a penalty method with Lagrangian multiplier µ ∈ R, the

optimization problem now reads

argmin
δ̂

1
I

∑
i∈I

∥f̌i − f t
i ∥2 + µ max(0, ∥δ̂∥22 − ε̂2

2), Iz + δz ∈ [0, 1]I , z = 1, 2, (2.7)

which is then solved with the L-BFGS optimizer [Nocedal, 1980]. As one can confirm in figure
2.3, the images do not significantly change, but the RAFT predicted flow (almost) completely
vanishes for ε2 = 5× 10−3 = 0.5%. With a weaker attack (ε2 = 1× 10−3 = 0.1%) the outline
of the correct motion can still be recognized.

Adversarial Robustness

Adversarial attacks are directly linked to (adversarial) robustness by providing a lower bound
to the model’s Lipschitz constant Λ which controls the extend an input can change the output

∥f(x)− f(x + δ)∥p ≤ Λ∥δ∥p, p > 1, for any operation f(·) and inputs x, x + δ. (2.8)

Upper bounds to the Lipschitz constant require analytic and architecture-specific considerations
[Goodfellow et al., 2014; Szegedy et al., 2014] and computing the exact Lipschitz constant is
NP-hard [Virmaux and Scaman, 2018]. Hence, adversarial attacks provide a suitable measure
to quantify robustness for neural networks. The adversarial robustness is defined as

AEE(f̌ , f) s.t. ∥δ̂∥ ≤ ε̂2 (2.9)

with f and f̌ being the initial and attacked flow. The lower the value the better the robustness,
since, so assumed, the Lipschitz constant is smaller as well.

Defending against Adversarial Attacks

Defending against adversarial attacks can be done trough adversarial training or by controlling
the Lipschitz constant of the model/network, not only making the models more robust but also
improving generalization. Adversarial training can be seen as a form of data augmentation,
since it directly incorporates adversarial samples into the training loss, e.g by averaging the
loss of the clean and perturbed inputs [Goodfellow et al., 2014; Zhang and Wang, 2019].

Directly constraining the Lipschitz constant from above has been done through means of
weight decay designed to minimize the squared largest singular value of the weight matrices
[Yoshida and Miyato, 2017] and through rescaling said matrices to smaller Lipschitz constants
via W ← λ

max(λ,∥W ∥p) W, p ∈ {1, 2,∞}, λ ∈ R [Gouk et al., 2021]. They note that the actual
choice of the Lipschitz bound λ for each layer is crucial to the performance and a lower constant
does not always imply improvements.

19

2 Related Work

On the other hand, [Cisse et al., 2017a] confine the optimization space of neural networks to
Parseval tight frame weight matrices by adding an approximate projection step onto the Stiefel
manifold

S := {W ∈ Rdout×din : dout ≤ din, W ⊤W = Idin×din
}. (2.10)

Here, din and dout are the number of input and output dimensions and in the CNN case the
respective number of channels, thus, giving the weights a largest singular value and Lipschitz
constant of 1. The drawback is that the output dimension must necessarily be smaller than the
input dimension which is not always desired.

(a) Unattacked prediction

(b) Attacked prediction ϵ2 = 5 · 10−3 and µ = 5 · 105

(c) Attacked prediction ϵ2 = 1 · 10−3 and µ = 1 · 106

Figure 2.3: The Perturbation-Constrained Adversarial Attack visualized. An unattached RAFT
[Teed and Deng, 2020] prediction on the Sintel data set [Butler et al., 2012] (a).
The same prediction with attacked images of different strength (b,c), i.e. ϵ2 and µ.

20

2.2 Improvement of Neural Networks with Filter Dictionaries

2.2 Improvement of Neural Networks with Filter Dictionaries

RFCNNs have also been successfully used to enhance generalization performance on computer
vision tasks by [Jacobsen et al., 2016; Safari et al., 2020; Schmalfuss et al., 2022a]. This thesis
aims to transfer these achievements to the optical flow predicting network RAFT and improve
its robustness against the aforementioned PCFA which it currently lacks [Schmalfuss et al.,
2022b].

RFCNNs are a special class of convolutional neural networks, where the n×m-dimensional
convolutional kernels K ∈ Rn×m are linear combinations of ddict ∈ N filters from a predefined
filter dictionary or filter bank

{A}0≤d<ddict
∈ Rddict×n×m. (2.11)

Hence, instead of training all kernel entries directly, the linear weights {α}0≤d<ddict
∈ Rddict

are now the trainable parameters and each kernel of a convolution reads

K =
ddict−1∑

d=0
αdAd. (2.12)

Note that every conventional convolutional layer can be written as a RFCNN by simply letting
Ad = Iddict×n·m, with I being the identity and Rddict×n×m ≡ Rddict×n·m. Therefore, a sparsity
constraint is commonly implemented by using only a random, significantly smaller subset of
the FD. A reasonable value is dsparse := 3 < ddict. Most importantly, the subset is independently
chosen for every kernel in the network with a side effect being the considerable reduction of
parameters. Denoting a random but fixed permutation of the index set {d ∈ N0 | 0 ≤ d < ddict}
as π(·) the notation does not change significantly and the kernels become

K =
dsparse−1∑

d=0
αdAπ(d). (2.13)

Furthermore, the learned kernels show enhanced interpretation ability over regular CNNs,
since they are only a combination of but three appropriate filters, which makes the choice of
the FD a very important task for RFCNNs.

Gaussian Derivative (GD) Filter Dictionaries

[Jacobsen et al., 2016] first introduce RFCNNs with Gaussian derivative filter dictionaries
to regularize kernels for the extraction of smooth features up to fourth order. Results show
improvements on classification tasks in computer vision, especially when data are scarce.

By interpreting images as functions in scale space they motivate using a basis of Gaussian
derivatives Gk(x, y, σ) to combine image derivatives of the scale space image instead of pixels

21

2 Related Work

like in regular CNNs. The scale space of an image J is defined via the convolution of the
original image I by a Gaussian kernel G(x, y, σ) with scale σ2

J (x, y; σ2) = I(x, y) ∗G(x, y; σ). (2.14)

Since J is infinitely differentiable it can be written as the Taylor expansion around a

J (x; σ2) =
∞∑

m=0

J k(a; σ2)
k! (x− a)k

=
∞∑

m=0

(I(·) ∗G(·; σ))k(a)
k! (x− a)k

=
∞∑

m=0

(I(·) ∗Gk(·; σ))(a)
k! (x− a)k,

(2.15)

where for the sake of argument I and by extension J are one-dimensional. The local geometry
of the scale space image can be obtained by convolution with GDs. Since each GD fixes
one independent degree of freedom, all GDs form a minimal, complete set. Thus, linearly
combining Gaussian derivatives is the functional equivalent of weighting individual pixels in a
standard CNN. One main advantage is that image derivatives in terms of pixels must not be
learned by the network.

The GDs can be constructed via point wise multiplication with the orthogonal Hermite polyno-
mials Hm(·) [Romeny, 2008], that is

Gk(x; σ) = G(x; σ) ◦ (−1)k

√
σ

k
·Hm(x

σ
√

2
). (2.16)

In approximations of J , GDs with orders above k > 4 are considered to not carry any more
meaningful information to visual perception [Koenderink and Van Doorn, 1987]. Hence, they
may be dismissed leaving the family {Gk(x; σ)}k=0,1,2,3,4. In two dimensions the basis would
include derivatives along both x and y axes, i.e. G, Gx, Gy, Gxx, Gxy, Gyy, . . . , from which all
other directions can be obtained through careful linear combinations [Freeman et al., 1991].
More details are given in Section 3.1.

Sparse Directional (SD) Filter Dictionaries

Another way of prescribing derivatives into a CNNs parameter space are sparse directional
filter dictionaries proposed by [Safari et al., 2020]. Next to a low pass filter, e.g. a Gaussian
G(x; σ), the SD-FD contains finite difference derivative kernels of first and second order in
all discrete directions. Finite difference kernels produce derivatives of images like their GD
counterparts, but are also sparse and have compact support.

22

2.2 Improvement of Neural Networks with Filter Dictionaries

SD Parseval Extended Filter Dictionary Frames (SDp)

[Safari et al., 2020] and [Schmalfuss et al., 2022a] use SD Parseval extended dictionary frames
to ensure the completeness of their basis and outperform regular CNNs when trained on few
data while being competitive on large, extensive data sets. A SDp-FD induces a Parseval wavelet
frame (framelet) in the space of square integrable functions L2(Rs) (s = 2 for two-dimensional
images) [Atreas et al., 2019]. In other words, the filters of the FD A have wavelet-like
properties while also incorporating custom-selected filters. Details on this completion process
is given in Section 3.4. This procedure ensures that the neural network not only extracts
important features, like derivatives, but also a representation holding additional information
for a full reconstruction of the original image. It is further indicated that these FDs lower the
average spectral norm avg(∥Ki,j∥2) of kernels in their layer which is closely connected to a
network’s generalization behavior [Safari et al., 2020; Long and Sedghi, 2019].

Though related, this concept must not be confused with the Parseval Networks in Section 2.1.3,
since neither the dictionary A /∈ S ⇔ A⊤A ̸= Iddict×n·m nor the complete convolution operator
W = {Ki,0, Ki,1, . . . , Ki,din

}0≤d<dout /∈ S ⊂ Rdout×n·m·din are Parseval tight frames in Rn·m, i.e.
in the Stiefel-manifold of Equation (2.10). Here, the kernels Ki,j are subscripted by their
corresponding input and output channels numbering din, dout ∈ N.

A First Improvement of RAFT using Filter Dictionaries.

Spreading SDp filter dictionaries to optical flow prediction, the author, [Walter, 2022], pre-
sented a first improvement of RAFT using filter dictionaries. Contrary to [Schmalfuss et al.,
2022a], placing the receptive fields into the first layers of the feature and context encoders
(feature1, context1) lowers both prediction quality and adversarial robustness. In the baseline
RAFT these kernels already adequately show a smooth derivative behavior. Flow1 in the motion
encoder is another layer which is expected to extract derivative based features directly from
the current flow estimate, but it is one that does not show derivatives as clearly as the first
encoders. Here, a RFCNN layer does make RAFT more robust.

From said project work, the three still uninvestigated Questions Q.1 to Q.3 emerge and are now
covered the following chapters. The first question aims at discerning different groups of FDs:
GD-FDs, SD-FDs, and a novel FD which uses the freely trained kernels to impose frequently
learned filters on the network. Secondly, this thesis also applies the Parseval completed FDs of
the SD-FD and the novel FD to detect whether this additional property leads to performance
improvements in Optical flow like it does in blind image inpainting [Schmalfuss et al., 2022a].
Since the receptive field is not located in the front of the network in the only beneficial
configuration of the project work, the third and last question addresses the impact of different
positions on the networks quality and robustness measures.

23

3 About Various Filter Dictionaries

As mentioned in the previous Section 2.2, the choice of a FD plays a vital role for RFCNNs. This
chapter will analyze the three main groups of FDs which are inserted into RAFT in Chapter 4 to
then answer research Questions Q.1 and Q.2. Namely, it will list how GD- and SD-FDs can be
created and how to obtain a Parseval frame completion of existing FDs. Since Question Q.1.2
asks for a FD fitted to freely trained filters, Section 3.3 introduces the principal component
analysis filter dictionary by taking each principal component of a set of trained filters as one
member of the whole dictionary family. Lastly, Section 3.5 will provide an overview of all FDs
used in Chapter 4.

3.1 Gaussian Derivative Filter Dictionaries

A closed formula for computing Gaussian derivatives Gk(x, y; σ) of scale σ2 for GD-FDs can
also be derived in two dimensions by extending Equation (2.16) [Jacobsen et al., 2016]. The
resulting equations become more complex, but the underlying principle stays the same. The
now two-dimensional Gaussian has to be multiplied point wise by the respective Hermine
polynomial H·(·) in x direction for every row and in y-directional polynomial for every column.
This procedure can be written with the outer product ⊗ as

∂kx+ky

∂xkx∂yky
G(x, y; σ) = G(x, y; σ) ◦ (−1)kx+ky

√
σx

kx√σy
ky
·
[
Hkx(x

σx

√
2

)⊗Hky (y

σy

√
2

)
]

, (3.1)

where the kx-th derivative in x direction and ky-th derivative in y direction of the Gaussian is
taken.

Further, it can be shown that the kth order Gaussian derivative in any direction is a linear
combination of a minimal set of all whole number derivatives with kx + ky = k [Freeman et al.,
1991]. It is reasonable to ignore higher derivatives, since GDs of order k > 4 are considered to
not carry any more meaningful information to visual perception [Koenderink and Van Doorn,
1987].

25

3 About Various Filter Dictionaries

GD-FD up to Order 4 and Scale σ = 1 (GD4)

Hence, for an isotropic GD-FD up to order 4 and scale 1 (σ := σx = σy = 1) it is sufficient to
create the 15 kernels

G; Gx, Gy; Gxx, Gxy, Gyy; Gxxx, Gxxy, Gxyy, Gyyy; Gxxxx, Gxxxy, Gxxyy, Gxyyy, Gyyyy,

where the arguments have been omitted and each x, y denotes one derivative in its direction,
cf. Figure 3.1 for a visual representation. In general, a GD-FD of order k has ddict = (k+1)(k+2)

2
filters each representing one independent degree of freedom.

To employ Gaussian derivatives in a neural network setting, one merely has to evaluate these
filters on a n × m regular grid {(x, y) ∈ Z | −⌊n

2 ⌋ ≤ x ≤ ⌊n
2 ⌋,−⌊

m
2 ⌋ ≤ y ≤ ⌊m

2 ⌋}. When
used in the network, this automatically scales the effective range down to pixel size, making
the parameter σ invariant to the image resolution. Also note that ddict is independent of the
grid size. Thus, for n, m = 3, meaning 9 degrees of freedom, a GD-FD up to order 3 would
theoretically contain enough filters (ddict = 10) to span the space Rn×m of all 3× 3 filters. In
practice this is not always true, because on a discrete grid the infinite support and continuity
of the GDs is neglected and filters may contain the same information.

This property can be checked by computing the right-hand invertibility of the dictionary in
matrix representation A ∈ Rddict×n·m. If A is right-hand invertible, any kernel K ∈ Rn·m can
be written as the linear combination of the dictionary K = αA (Equation (2.12) in matrix
notation) with weights α = KA−1 ∈ Rddict . In other words, A spans Rn·m ≡ Rn×m. By
checking this criterion numerically it turns out that GD4 spans R3×3,R1×5 and R5×1, and thus
suffices to be used for filters of these sizes.

GD-FD up to Order 9 and Scale σ = 1 (GD9)

However, GD4 is not sufficient for n, m = 7 for which two alternatives are explored, cf.
Figure 3.2. The first option is to use additional derivatives up to order 9, giving GD9 with
ddict = 55. Although being invertible, the inversion process would be numerically unstable,
since A does not have full rank1, i.e. rank(A) = 48 < 49 = 7 · 7. The space of kernels which
are numerically hard to represent is shown in Figure 3.2b. Therefore, GD9 is used for 7× 7
kernels only in Experiment 4.2.

1The smallest eigenvalue is below the default tolerance of numpy.linalg.matrix_rank(): 2.2267e − 14 = σmin <

55 · σmax · ϵ = 5.8864e − 12, where ϵ is the double precision accuracy. https://numpy.org/doc/stable/

reference/generated/numpy.linalg.matrix_rank.html, Accessed: 2023-01-18

26

https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html

3.1 Gaussian Derivative Filter Dictionaries

GD4-FD with Four Scales σ = 1, 2, 4, 8 (GD4s) and σ = 0.5, 1, 2, 4 (GD4s05)

Another possibility is to use multiple GD4-FDs with varying scales, shown in Figure 3.2. 4
GD4-FDs are needed to complete the FD, giving ddict = 60 ≥ 49. Using σ = 1, 2, 4, 8 and
σ = 0.5, 1, 2, 4 results in the FDs named GD4s and GD4s05 respectively. Not only are they
right-hand invertible, but also incorporate different scales, giving information after different
degrees of smoothing. In comparison GD4s05 tends towards sharper images, while GD4s
represents more blurry scales. Both GD4s and Gd4s05 can be seen as the successors to GD9
and are is used in the subsequent Experiments 4.3 to 4.5.

(a) GD4 3x3 (b) GD4 Parseval 3x3 (c) GD4 1x5 (d) GD4 Parseval 1x5

(e) GD4 7x7 (f) GD4 Parseval 7x7

Figure 3.1: Gaussian derivatives filter dictionaries up to order 4. 5 × 1 FDs are transposed
versions of the 1× 5 FD.

27

3 About Various Filter Dictionaries

(a) GD9 7x7 (b) Numerically unrepresented kernel of GD9 7x7

(c) GD4s 7x7 (d) GD4s05 7x7

Figure 3.2: Gaussian derivatives filter dictionaries up to order 9 (top left) and its numerically
not represented filter (top right) and order 4 with different σ = 1, 2, 4, 8 (bottom
left) and σ = 0.5, 1, 2, 4 (bottom right).

28

3.1 Gaussian Derivative Filter Dictionaries

3.2 Sparse Directional Filter Dictionaries

Sparse directional FDs (SD) consist, as the name suggests, of a family of ddict (two-
dimensional) sparse filters {A}1≤d<ddict

∈ Rn×m and one single low pass filter A0 ∈ Rn×m.
Here, the standard Gaussian A0 = G(x, y, 1) is chosen. The other filters are finite difference
kernels in all possible discrete directions up to first and second order with 2 and 3 constant,
non-zero entries respectively, cf. Figure 3.3. It is easy to verify that in this case all ddict = n ·m
kernels form an orthogonal basis of Rn×m. Thus, every filter can be represented using a linear
combination of SD filters.

(a) Sparse directional
3× 3

(b) Sparse directional
Parseval 3× 3

(c) Sparse directional
1× 5

(d) Sparse directional
Parseval 1× 5

(e) Sparse directional 7× 7 (f) Sparse directional Parseval 7× 7

Figure 3.3: Sparse directional filter dictionaries. 5× 1 FDs are transposed versions of the 1× 5
FD.

29

3 About Various Filter Dictionaries

3.3 Principal Component Analysis Filter Dictionaries

GD- and SD-FDs are predefined to be either smooth or sparse which might not be the perfect
FDs for a task. Principal component analysis FDs try to solve this issue on a convolutional layer
basis by taking learned filters from a baseline network into account. For this thesis the baseline
network is the RAFT network trained in Experiment 4.1.

Principal Component Analysis FD (PCA)

The space of all ddata learned n ×m filters in one particular layer, the data, can be seen as
a point cloud F ∈ Rddata×n·m. By assuming that the data shows non-zero variance in all
directions, its singular value decomposition has full rank:

F = UΣV ∗. (3.2)

All orthogonal principal components A = V ∗ will provide the PCA dictionary of size ddict = n·m
and thus span Rn×m. Each diagonal entry σd = Σd,d, 0 ≤ d < ddict determines the explained
variance of F as σ2

d in direction Ad. Thus, the sparsity constraint of Equation (2.13) forces the
network to also learn filters in other directions than it has predominately learned. Figures 3.4
to 3.8 show the PCA dictionaries for each convolutional layer in the RAFT network.

Truncated PCA-FD (PCAx)

Instead of using all components, it might be beneficial to focus on some principal components
explaining the majority of the data’s variability. A simple approach is to omit filters which
explain less variance than a given threshold. Experiment 4.2 uses this approach for the RAFT
layers feature1 and flow1 generating the FDs PCA14 and PCA24 respectively, cf. Figures 3.4a,
3.7a and 3.9. The first consisting of the 14 principal components with their explained variance
above PCA14 = {Ad | σ2

d > (0.5)2, 0 ≤ d < 49} in the feature1 layer, where the spectrum lies
in σd ∈ (0.19, 4.78). The latter consists of the 24 components above PCA24 = {Ad | σ2

d >

(0.87)2, 0 ≤ d < 49} in the flow1 layer, where the spectrum lies in σd ∈ (0.09, 3.16). Due to the
rather arbitrary threshold, PCA14 and PCA24 are only used in Experiment 4.2.

Data Related PCA-FD (PCArel)

A more universal method is to adjust the frequency for which each component is cho-
sen to be in the sparsity constraint enforced subset of filters. That is which subset
π({d ∈ N0 | 0 ≤ d < dsparse}) spans the kernel K =

∑dsparse

d=1 αdAπ(d). Drawing the basis filters
according to the discrete probability density function defined by the normalized spectrum of the

30

3.3 Principal Component Analysis Filter Dictionaries

explained standard deviation {σd}0≤d<ddict
, ensures that the components with high contribu-

tions are chosen more often. This FD is named PCArel as is chooses the basis filters in relation
to their significance in the data. It replaces PCA14 and PCA24 in the Experiments 4.3 to 4.5.

(a) feature1 (b) feature1 Parseval

(c) context1 (d) context1 Parseval

Figure 3.4: PCA filter dictionaries in the first layers of the image encoders.

31

3 About Various Filter Dictionaries

(a) featureL1 (b) featureL1 P (c) featureL2 (d) featureL2 P

(e) featureL3 (f) featureL3 P (g) featureL4 (h) featureL4 P

(i) featureL5 (j) featureL5 P (k) featureL6 (l) featureL6 P

(m) featureL7 (n) featureL7 P (o) featureL8 (p) featureL8 P

(q) featureL9 (r) featureL9 P (s) featureL10 (t) featureL10 P

(u) featureL11 (v) featureL11 P (w) featureL12 (x) featureL12 P

Figure 3.5: PCA filter dictionaries in the feature encoder residual layers. Parseval completed
dictionaries are abbreviated with P.

32

3.3 Principal Component Analysis Filter Dictionaries

(a) contextL1 (b) contextL1 P (c) contextL2 (d) contextL2 P

(e) contextL3 (f) contextL3 P (g) contextL4 (h) contextL4 P

(i) contextL5 (j) contextL5 P (k) contextL6 (l) contextL6 P

(m) contextL7 (n) contextL7 P (o) contextL8 (p) contextL8 P

(q) contextL9 (r) contextL9 P (s) contextL10 (t) contextL10 P

(u) contextL11 (v) contextL11 P (w) contextL12 (x) contextL12 P

Figure 3.6: PCA filter dictionaries in the context encoder residual layers. Parseval completed
dictionaries are abbreviated with P.

33

3 About Various Filter Dictionaries

(a) flow1 (b) flow1 P

(c) flow2 (d) flow2 P (e) corr2 (f) corr2 P

(g) motion1 (h) motion1 P

(i) flowhead1 (j) flowhead1 P (k) flowhead2 (l) flowhead2 P

Figure 3.7: PCA filter dictionaries in the update encoder and flow-head. Parseval completed
dictionaries are abbreviated with P.

34

3.3 Principal Component Analysis Filter Dictionaries

(a) q1 (b) q1 P (c) q2 (d) q2 P

(e) r1 (f) r1 P (g) r2 (h) r2 P

(i) z1 (j) z1 P (k) z2 (l) z2 P

Figure 3.8: PCA filter dictionaries in the GRU of the update block. Parseval completed dictio-
naries are abbreviated with P.

35

3 About Various Filter Dictionaries

(a) feature1 14 filters (b) feature1 14 filters Parseval

(c) flow1 24 filters (d) flow1 24 filters Parseval

Figure 3.9: Truncated PCA filter dictionaries of feature1 and flow1.

36

3.4 Parseval Frame Completed Filter Dictionaries

3.4 Parseval Frame Completed Filter Dictionaries

The goal of Parseval completing a FD is to achieve a filter-set which is a Parseval framelet,
without loosing custom-selected filters. The important part about framelets is that a Parseval
framelet is a generalized wavelet fulfilling the Parseval condition for which [Atreas et al., 2019]
prove a sufficient constraint on the set of underlying filters while also allowing room for custom
filters. Thus the learned feature representation contains information useful to reconstruct the
image in addition to important features such as derivatives.

Sparse Directional Parseval Completed FD (SDp)

[Safari et al., 2020] and [Schmalfuss et al., 2022a] employ this strategy to complete SD-FDs to
sparse directional Parseval filter dictionaries, seen in Figure 3.3. The crux is to use the existing
dictionary of filters {A} ∈ RL+1×N in vectorized form with N := n ·m and L + 1 := ddict ≤ N .
Then take the point wise square-root of the low-pass filter c =

√
A0, given A0 > 0, scale all

high pass filters by some optimized λ∗ ∈ Rddict

{D1(λ∗)} = {Ad ·
λ∗

d

cd
}1≤d≤L (3.3)

and add a completing set {D2} ∈ Rυ×N such that the following condition, equivalent to
Equation (2.10), holds: c

D1(λ∗)
D2

⊤ c

D1(λ∗)
D2

 = IN×N . (3.4)

The resulting dictionary

P =
[
A0
B

]
=

 c

D1(λ∗)
D2

 · diag(c) (3.5)

contains the low pass filter, all custom high pass filters up to scalar multiplication and some
necessary high pass filters D2.

The complete process of [Schmalfuss et al., 2022a] is shown in Algorithm 3.1, where several
changes are marked in color. One conceptual change (red) is to formally extend the completion
to rectangular and one-dimensional filters such as the 1× 5 filters necessary in the RAFT GRU
block. Since the pseudo algorithm works with the vectorized dimension N anyway, only the
input and output changes. Additionally, one must not forget to convert c back to the low pass
filter A0 in Line 22.

37

3 About Various Filter Dictionaries

Algorithm 3.1 Parseval Frame Dictionary Construction
Require: The filter size n × m, a low-pass filter A0 and L high-pass filters A1 . . . AL with

L+1 ≤ N := n ·m

1 function SDPF(N, A0, A1, . . . , AL, ϵ, ϵsingle)
2 a← Λ(A0) ∈ RN // Λ: filter to vector
3 c← (√a0,

√
a1, . . . ,

√
aN−1) ∈ RN // Add normalization

4 λ← (1, . . . , 1) ∈ RL // Initialize λ

5 for i = 1 . . . L do
6 di(λ)← λi

(Λ(Ai)1
c1

, . . . ,
Λ(Ai)N

cN

)
7 end for

8 D1(λ)←

d1(λ)

...
dL(λ)

 ∈ RL×N

9 λinit ← (1,...,1)
0.9·∥(c⊤c+D1(λ)⊤D1(λ))∥ ∈ RL // Good initialization, then recurse lines 5− 8

10 λ∗ ← argmax
λ

trace(c⊤c + D1(λ)⊤D1(λ)) s.t. ∥c⊤c + D1(λ)⊤D1(λ)∥ ≤ 1 − ϵsingle

// Adjust bounds from 0 ≤ λ ≤ 1 to 0 ≤ λ ≤ 1.1 ·max (λinit)

11 Q←
(

c

D1(λ∗)

)
∈ R(L+1)×N

12 V, Σ1 ← SVD of Q = UΣ1V ⊤

13 for i = 0 . . . L do
14 si ← 1− (Σ1)2

i,i // Moved
√
· to Line 19

15 if si < ϵ then
16 si ← 0
17 end if
18 end for
19 Σ2 ← diag(0,

√
s1, . . . ,

√
sL, 1, . . . , 1) ∈ RN×N // s0 ≈ 0

20 D2 ← Σ2V ⊤ ∈ RN×N

21 B ←
(

D1(λ∗)
D2

)
diag(c), eliminate 0-rows

22 P ←
(

c2

B

)
∈ R(υ+1)×N , υ ≥ N − 1 // c2 = a

23 return P

24 end function

Ensures: Parseval filter bank P ∈ R(v+1)×N , with v high-pass filters and 1 low-pass filter,
filters obtained by reshaping the rows of P into n×m matrices.

38

3.4 Parseval Frame Completed Filter Dictionaries

Violet adjustments mainly address the numerical stability of the optimization step in Line 10,
where the constraint has been sharpened by a single precision ε ≈ 1e− 6 . Secondly, the low
pass vector c is implicitly normalized in Line 3. Line 9 empirically chooses a good initialization
for λinit, such that the constraint should be slightly violated:

∥c⊤c + D1(λinit)⊤D1(λinit)∥ ≤ 1 + ∥D1(λinit)⊤D1(λinit)∥ = 19
9 ⪆ 1. (3.6)

The range of λ∗ during optimization in Line 10 has been adjusted from [0, 1]L to
[0, 1.1 · max(λinit)]L.

Additionally, the singular values
√

si of Σ2 (Line 14) are cut off already if their square si is
smaller than ε. Because c is orthogonal to all other filters and normalized, the largest singular
value (Σ1)0,0 is, up to numerical errors, exactly 1, this does not make a difference here, as it
is the only one close enough to yield a cut off in all of the discussed Parseval dictionaries. In
fact rank(D2) = N − 1, and the resulting Parseval frame includes υ = L + N vectors in RN .
To explicitly state said result, Line 13 and 19 formally include a 0 in blue. The initialization of
λinit ∈ RN in Line 4 is presumed to be a minor writing mistake and marked in blue as well.

Other Parseval Completed FDs (GD4p, PCAp, PCA14p, PCA24p)

With this Parseval framelet completion algorithm the FDs GD4p (Figure 3.1), PCAp for each
layer (Figures 3.4 to 3.8), PCA14p for feature1 and PCA24p for flow1 (Figure 3.9) can be
constructed. The GD4p-FDs are shown for the proof of concept only as they are not used in any
experiment. Like PCA14 and PCA24, PCA14p and PCA24p are only used on Experiment 4.2.

Lastly, it is not certain whether PCA trained FDs do have a (reasonable) low pass filter. Hence,
one can check if the first filter P0 := |A0| > 0 is strictly positive. If this is not the case, a
Gaussian A0 = G(x, y, 1) is inserted in front of all other filters before Parseval completion.
PCA-FDs which do not have a low pass filter are in the layers feature1 in Figure 3.4a and
featureL10 in Figure 3.5s. Lastly, PCArelp collapses back to PCAp, since the concept of explained
variance is not feasible for the additional filters D2 diag(c).

39

3 About Various Filter Dictionaries

3.5 Overview of Filter Dictionaries

This section is dedicated to provide an overview of the most important properties of the
mentioned FDs and list the experiments in which they are used. The first three columns of
Table 3.1 show the experiment in which the FD is used in, if it is Parseval completed and, if
applicable, which scale σ is used for Gaussian kernels. All other columns state for every FD
and kernel size the dictionary size ddict and whether it is used in any experiment.

FD Experiments Parseval σ
1× 5, 5× 1 3× 3 7× 7

ddict used ddict used ddict used

GD9 4.2 – 1 55 – 55 – 55 ✓

GD4 4.2 – 4.5 – 1 15 ✓ 15 ✓ 15 –
GD4s 4.3 – 4.5 – 1, 2, 4, 8 60 – 60 – 60 ✓

GD4s05 4.3 – 4.4 – 0.5, 1, 2, 4 60 – 60 – 60 ✓

SD 4.2 – 4.4 – 1 5 ✓ 9 ✓ 49 ✓

PCA 4.2 – 4.4 – – 5 ✓ 9 ✓ 49 ✓

PCAx 4.2 – – x – x – x ✓

PCArel 4.3 – 4.4 – – 5 ✓ 9 ✓ 49 ✓

GD4p – ✓ – 63 – 63 – 63 –
SDp 4.2 – 4.4 ✓ 1 9 ✓ 17 ✓ 97 ✓

PCAp 4.3 – 4.4 ✓ –,1 9 ✓ 17, 18 ✓ 97, 98 ✓

PCAxp 4.2 ✓ –,1 x + 4 (+1) – x + 8 (+1) – x + 48 (+1) ✓

Table 3.1: Overview of all FDs and in which Experiments 4 they are used.

40

4 Experiments

By taking the various filter dictionaries from Chapter 3, this chapter addresses Ques-
tions Q.1 and Q.2 to identify the most beneficial FD type and whether a Parseval completion
is necessary to improve results. Determining in which layers FDs are most effective, Ques-
tion Q.3, is also investigated by placing receptive fields with various FD types into different
layer positions of the RAFT network.

It starts by first presenting the reference RAFT baseline and the common training schedule,
evaluation metrics and attack method in Experiment 4.1. Experiment 4.2 then inserts FDs into
single layers of the network, followed by Experiments 4.3 and 4.4 which replace the whole
feature encoder and update block with receptive field layers. Lastly, Experiment 4.5 tries to
replicate and improve the performance gains reached with GD-FDs in the update block by
constraining the Lipschitz constant of selected layers.

4.1 Baseline

The RAFT network baseline is trained and evaluated similar to the description of [Teed and
Deng, 2020] by pre-training on FlyingChairs and FlyingThings then finetuning on Sintel in
combination with KITTI and HD1K data for 100k iterations each [Dosovitskiy et al., 2015;
Mayer et al., 2016; Butler et al., 2012; Menze and Geiger, 2015; Kondermann et al., 2016]. It
provides the filters to construct the PCA-FDs in Section 3.3. During training the computations
are done in single precision, whereas mixed precision is used for inference. The baseline and
all other configurations are evaluated using the previous flow estimate as the initial guess
(warm-start) and the number of flow update iterations is kept unaltered at 32 on Sintel and 24
on KITTI.

Quantities of interest include the average endpoint error AEE(f, fg) = 1
I

∑
i∈I∥fi − fg

i ∥2
towards the ground truth, averaged on the Sintel clean and final training sets, and the clean
and final AEE score of the Sintel submission. Additionally and without further finetuning, the
cross data-set generalization on the KITTI training data is considered in terms of the AEE and
the percentage of outliers F1-all exceeding 3 pixels and 5% of the ground truth value. Lastly,
the robustness against the PCFA, as explained in Section 2.1.3, is evaluated with respect to the
AEE(f̌ , f) of the attacked flow against the initial flow prediction, the smaller the better, and
the AEE(f̌ , f t) of the attacked flow against the target flow, the bigger the better. Discussions

41

4 Experiments

of results in the following chapters neglect the training performance and focus predominantly
on the Sintel test final, KITTI F1-all, and the robustness AEE(f̌ , f) metrics.

The target flow of the attack is chosen to be the zero flow f t = 0, while the perturbations for
each image are kept below δ1, δ2 ≤ ε2 = 1 × 10−3 = 0.1% by using the Lagrange multiplier
µ = 106. This attack corresponds to the weaker attack shown in Figure 2.3c and thus allows not
only potential improvements in robustness but also leaves room to recognize more susceptible
RAFT configurations.

To reduce the number of uploads to the Sintel benchmark, the Sintel training-test-split of [Zhao
et al., 2020a] is used to evaluate all configurations. Finetuning with this split omits 20% of
sequences during the final 100k iterations which are reserved for subsequent evaluation. Only
selected configurations are then trained on the full Sintel training data-set, starting with the
already trained weights after 200k iterations.

Discussion

Even though results are similar to [Teed and Deng, 2020], there is a non-negligible spread
of quality and robustness, c.f. Table 4.1, where values differ in the second or third digits. To
partially compensate for this effect, the baseline is trained and evaluated twice on the Sintel
split. The trained baselines are then attacked up to three times for both training scenarios.
By assuming normal distributed values, a crude estimate of the expected range can be made
with which the modified configurations are compared against. The mean µ and the 2- and 3-σ
confidence intervals (CI) of the split and full Sintel trained baselines are shown in Table 4.2.

Training
Sintel (train) Sintel (test) KITTI (train) PCFA AEE

Clean Final Clean Final AEE F1-all f̌ ↔ f f̌ ↔ f t

split
0.627 0.984 1.667 3.695 1.469 5.442 11.982 5.768

0.637 0.997 1.690 3.569 1.453 5.339 11.944 5.703
12.078 5.572

full 0.739* 1.198* 1.613* 2.743* 1.557 5.755 12.60* 5.46*
12.157 5.918

Table 4.1: Evaluation of the baseline RAFT network configuration trained on the Sintel bench-
mark and the Sintel split [Butler et al., 2012; Zhao et al., 2020a]. Attacks are
performed on the Sintel test final benchmark. Results with asterix* are taken from
[Walter, 2022].

42

4.2 Different Filter Dictionaries in a Single Layer

Training Bound
Sintel (train) Sintel (test) KITTI (train) PCFA AEE

Clean Final Clean Final AEE F1-all f̌ ↔ f f̌ ↔ f t

split

µ− 3σ 0.611 0.963 1.630 3.365 1.427 5.172 11.794 5.381
µ− 2σ 0.618 0.972 1.646 3.454 1.438 5.245 11.863 5.481
µ 0.632 0.991 1.679 3.632 1.461 5.391 12.001 5.681
µ + 2σ 0.646 1.009 1.711 3.810 1.484 5.536 12.139 5.881
µ + 3σ 0.653 1.018 1.727 3.899 1.495 5.609 12.209 5.981

full

µ− 3σ – – – – – – 11.439 4.717
µ− 2σ – – – – – – 11.752 5.041
µ 0.739 1.198 1.613 2.743 1.557 5.755 12.379 5.689
µ + 2σ – – – – – – 13.005 6.337
µ + 3σ – – – – – – 13.318 6.661

Table 4.2: Mean and confidence intervals of the baseline quality and robustness evaluations.
Attacks are performed on the Sintel test final benchmark.

4.2 Different Filter Dictionaries in a Single Layer

This first experiment is a direct continuation of the authors project work [Walter, 2022],
by extending the choice of FDs placed in the first layers of the feature encoder and update
block. For feature1 all in Table 3.1 described categories of FDs are employed, while for corr2,
flow1 only the SDp and in the latter case also PCA24 is used. The results are shown in
Tables 4.3 and 4.4 with the joint evaluation of the metrics of focus, i.e. quality on Sintel
split/full final data, KITTI training set F1-all and its robustness AEE(f̌ , f), being visualized in
Figure 4.1 where the expected CIs of the baseline are indicated by filled and framed boxes.

Discussion

When trained on the Sintel split, the majority of configurations stay within the 2σ CI for both
quality measures and are less robust, i.e. outside the 3σ CI. Exceptions are PCA14p and SDp in
feature1 which show a significantly better quality on the test split, while SDp in corr2 is just
outside the 2σ CI . Similarly, SDp in flow1 is more robust, yet remains in the 3σ CI and with
comparable quality as the baseline. GD9 yields the worst fit on the Sintel split but still within
the 3σ CI and is the least robust among all configurations.

Training on the full Sintel data-set shows a much larger CI on the robustness axis, while no
information is available in the quality direction. Nevertheless, all submitted configurations
display a worse evaluation on the Sintel benchmark but better quality on the KITTI training

43

4 Experiments

Configuration Split (train) Split (test) KITTI (train) PCFA AEE

Layer FD Clean Final Clean Final AEE F1-all f̌ ↔ f f̌ ↔ f t

base
0.627 0.984 1.667 3.695 1.469 5.442 11.982 5.768

0.637 0.997 1.690 3.569 1.453 5.339 11.944 5.703
12.078 5.572

feature1

GD9 0.624 0.990 1.734 3.794 1.468 5.386 12.951 4.714
SD 0.627 0.980 1.602 3.564 1.451 5.401 12.890† 4.906†

SDp 0.621 1.029 1.687 3.161 1.450 5.337 12.762 5.016
PCA 0.615 0.971 1.652 3.748 1.462 5.423 12.600 4.982
PCA14 0.630 0.973 1.621 3.631 1.471 5.437 12.452 5.226
PCA14p 0.625 0.981 1.627 3.393 1.454 5.304 12.704 5.024

flow1
SDp 0.623 0.962 1.716 3.734 1.485 5.397 11.843 5.730
PCA24 0.636 0.981 1.597 3.675 1.452 5.435 12.166 5.558

corr2 SDp 0.636 0.970 1.738 3.557 1.466 5.288 12.208 5.438

Table 4.3: Evaluation of the single layer RAFT network configurations trained on the Sintel
split [Zhao et al., 2020a]. Attacks are performed on the Sintel test final benchmark.
Attacks with dagger†x have x ≤ 5 frames filtered out such that the average pertur-
bation is below 0.0012. Best results are displayed in bold font.

Configuration Sintel (train) Sintel (test) KITTI (train) PCFA AEE

Layer FD Clean Final Clean Final AEE F1-all f̌ ↔ f f̌ ↔ f t

base 0.739* 1.198* 1.613* 2.743* 1.557 5.755 12.60* 5.46*
12.157 5.918

f1c1 SDp 0.752* 1.354* 1.639* 3.133* 1.538 5.513 13.94* 4.00*

context1 SDp 0.767* 1.321* 1.635* 3.163* 1.512 5.551 13.32* 4.80*

flow1 SDp 0.751* 1.182* 1.639* 2.840* 1.535 5.537 12.14* 5.90*

feature1
SDp 0.743* 1.245* 1.616* 3.191* 1.578 5.623 13.11* 4.81*
PCA14 0.735 1.184 1.715 2.982 1.527 5.619 13.056 4.913
PCA14p 0.708 1.184 1.648 3.084 1.521 5.550 13.061 4.895

corr2 SDp 0.760 1.214 1.553 3.049 1.501 5.458 12.741 5.306

Table 4.4: Evaluation of the single layer RAFT network configurations trained on the Sintel
benchmark. Attacks are performed on the Sintel test final data-set. Results with
asterix* are taken from [Walter, 2022]. Best results are displayed in bold font.

44

4.2 Different Filter Dictionaries in a Single Layer

(a) Trained on Sintel split data-set (b) Trained on full Sintel data-set

Figure 4.1: Joint evaluation of the baseline and single layer RAFT network configurations by
prediction quality and adversarial robustness on Sintel (top) and KITTI (bottom).
All RAFT network configurations are trained on the Sintel split (left) and full Sintel
data-set (right). Assuming a normal distribution of the baseline trials, the 2− and
3 − σ confidence intervals are shown. In Figure 4.1b the confidence interval is
known only for robustness. feature1context1 is abbreviated as f1c1.

45

4 Experiments

data. Their robustness is generally worse with the ones having receptive fields in the update
block being close to the upper bound of the 2σ CI. SDp in flow1, although better than the
baseline, is now located well within the 2σ CI.

Overall, the configurations which are significantly better on Sintel split test final, i.e. PCAp and
SDp in feature1, do not transfer this trait to the fully trained case. Thus, all configurations
do not change the network enough to make a detectable difference, disregarding the worse
robustness. When trained on the full Sintel data-set, there seems to be a trade-off between
the quality on the test data and the generalization capability. Yet, one must keep in mind
that the CI is not computed for the full training scenario in the scope of this thesis and this
trade-off is not observed in the split scenario. Added with the best results being spread over
the configurations in the other quality metrics, as seen in Tables 4.3 and 4.4, no clear trend
is visible to deduce a strong conclusion besides for receptive fields in the feature encoder
decreasing robustness no matter the FD choice.

Layer Wise Mean Neuron Activation

With the quality and robustness results being largely inconclusive, the magnitude of the
networks neuron activations gives insight into the changes occurring through the use of
receptive fields. [Srivastava et al., 2014] show that the regularization technique of dropout
improves generalization and induces a more sparse activation of neurons, since the mean of
the mean neuron activations decreases. The normalized histogram of mean neuron activation,
during the evaluation on the Sintel training and test split sampled to one third of their size,
seen in Figures 4.2 and 4.3, also exhibit a drop of highly activated neurons for receptive field
layers. One single exception being the GD9 in feature1 which is the least robust configuration
and the worst fit to the Sintel split test.

Next to much smaller activations for the remaining FDs, it can be seen in these histograms
in Figures 4.2 and 4.3 that especially Parseval completed FDs in feature1 show many specific
amplitudes which get activated rather often. This could possibly be caused by some neurons
that are activated the same across the whole data-set. Thus they do not hold any significant
additional information and remain unused and untrained, effectively diminishing the networks
performance in the first layers of the network. An attack would therefore need to trigger less
neurons to develop an adversarial behavior. The later layers of flow1 and corr2 are much less
impaired, coinciding with the similar performance as the baseline.

Yet, this line of reasoning does only explain why the Parseval completed FDs in feature1 are
less robust, but not for the other configurations. Since each kernel of this first layer lies within
a fixed three-dimensional space, it is plausible to assume it being easier for the PCFA to trigger
more kernels with perturbation patterns. Some kernels might also have overlapping bases
which is less likely in the baseline and thus one single pattern easily changes multiple neurons

46

4.2 Different Filter Dictionaries in a Single Layer

at once. For the receptive fields in the hidden layers, flow1 and corr2, this is more difficult for
the attack as there are other network layers to trick first.

In conclusion of this first experiment, it can be established that the Parseval completion might
introduce filters which provide no practical use for the network. Additionally, replacing only
one layer in RAFT does not yield definite conclusions other than including receptive fields into
the first layers of the feature encoder makes the networks more volatile against the PCFA. This
stands very much in contrast to [Schmalfuss et al., 2022a], where the first layers have the most
positive impact. Hence, the next sections deal with changing the whole feature encoder or
update block.

47

4 Experiments

0 2 4
Activation

0

1

2

3
Fr
eq

ue
nc

y

(a) base (feature1)

0 5 10
Activation

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y
(b) GD9 feature1

0.00 0.25 0.50 0.75
Activation

0

2

4

6

8

Fr
eq

ue
nc

y

(c) SD feature1

0.0 0.5 1.0
Activation

0

2

4

6

Fr
eq

ue
nc

y

(d) PCA feature1

0.0 0.5 1.0 1.5
Activation

0

1

2

3

4

Fr
eq

ue
nc

y

(e) PCA14 feature1

0.0 0.2 0.4
Activation

0

10

20

30

40

Fr
eq

ue
nc

y

(f) PCA14p feature1

0.0 0.2 0.4
Activation

0

5

10

15

20

25

Fr
eq

ue
nc

y

(g) SDp feature1

0 1 2
Activation

0

2

4

6

8

Fr
eq

ue
nc

y

(h) base (flow1)

0.0 0.2 0.4
Activation

0

10

20

30

40

50

Fr
eq

ue
nc

y

(i) SDp flow1

0.0 0.5 1.0
Activation

0.0

2.5

5.0

7.5

10.0

12.5

Fr
eq

ue
nc

y

(j) PCA24 flow1

0 5 10 15
Activation

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

(k) base (corr2)

0 1 2 3
Activation

0.00

0.25

0.50

0.75

1.00

1.25

Fr
eq

ue
nc

y

(l) SDp corr2

Figure 4.2: Normalized histogram of the average neuron activation on the full Sintel train
and test data-set for receptive field layers feature1, flow1 and corr2 (top to bottom
row). All RAFT network configurations are trained on the Sintel split data-set.

48

4.2 Different Filter Dictionaries in a Single Layer

0 1 2 3
Activation

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y

(a) base (feature1)

0.0 0.5 1.0 1.5
Activation

0

1

2

3

4

5

Fr
eq

ue
nc

y

(b) PCA14 feature1

0.0 0.2 0.4
Activation

0

5

10

15

20

25

Fr
eq

ue
nc

y
(c) PCA14p feature1

0.0 0.2 0.4
Activation

0

5

10

15

20

25

Fr
eq

ue
nc

y

(d) SDp feature1

0 1 2
Activation

0

2

4

6

8

Fr
eq

ue
nc

y

(e) base (flow1)

0.0 0.2 0.4
Activation

0

10

20

30

40

50

Fr
eq

ue
nc

y

(f) SDp flow1

0 5 10 15
Activation

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

(g) base (corr2)

0 1 2 3
Activation

0.00

0.25

0.50

0.75

1.00

1.25

Fr
eq

ue
nc

y

(h) SDp corr2

Figure 4.3: Normalized histogram of the average neuron activation on the full Sintel train
and test data-set for receptive field layers feature1, flow1 and corr2 (top to bottom
row). All RAFT network configurations are trained on the full Sintel data-set.

49

4 Experiments

4.3 Different Filter Dictionaries in the Complete Feature Encoder

Since inserting only one receptive field layer in the previous experiment does not result in
clear trends, this section places FDs into all convolutional layers of the RAFT feature encoder:
feature1, featureL1-featureL12. All in Table 3.1 described categories of FDs are used and results
are shown individually in Tables 4.5 and 4.6 at the end of this section. Again, the quality
metrics of focus are also shown jointly with the robustness in Figure 4.5.

Discussion

In the joint quality and robustness evaluations of the split training in Figure 4.5a at the end of
this section it is visible that GD4s, SDp and PCArel show the same inconclusive behavior as
in the single layer experiment by being less robust and in the 2σ CI in quality on the Sintel
test. GD4s05 and SD have a worse fit on the data with the first being on the lower bound of
the 3σ robustness CI and the latter again worse than the baseline. The only improvement in
quality, still in the 3σ CI, is achieved by the PCA-FD which inherits filters learned by RAFT
on the full Sintel training, thus, including the test data in this scenario making the result not
surprising. KITTI evaluations reveal similar trends for the mentioned configurations, while SD
shows stronger generalization by moving up relative to the others and PCA being worse than
the baseline.

The PCAp FD proves to be a significantly more robust configuration in trade-off with quality
both on Sintel and KITTI. Therefore, it is trained but not submitted on the Sintel benchmark,
because the train and KITTI evaluations are about ten times as large as the baseline. Although
being more robust in the split scenario, PCAp still seems to worsen performance.

Lipschitz Constants

Gaining insight into the changes of the receptive fields and identifying the cause of PCAp’s
unusual behavior is still of interest. As discussed in Section 2.1.3, the Lipschitz constant plays
a crucial role in the network’s ability to generalize and defend against adversarial attacks. In
individual two-dimensional convolutional layers l with kernel size 2k + 1 the Lipschitz constant
can be computed by using the bound of [Cisse et al., 2017a]:

Λl ≤ (2k + 1)∥W∥2, (4.1)

where W ∈ Rdout×(2k+1)2din are the weights of all convolutions in flattened representation.
Instead of this upper bound which suffices here, [Gouk et al., 2021] propose to use the power
method to exactly compute the largest singular value of W ⊤W by iteratively applying a forward
and a backward pass on an arbitrary input vector.

50

4.3 Different Filter Dictionaries in the Complete Feature Encoder

fe
at

ur
e1

fe
at

ur
eL

1
fe

at
ur

eL
2

fe
at

ur
eL

3
fe

at
ur

eL
4

fe
at

ur
eL

5
fe

at
ur

eL
6

fe
at

ur
eL

7
fe

at
ur

eL
8

fe
at

ur
eL

9
fe

at
ur

eL
10

fe
at

ur
eL

11
fe

at
ur

eL
12

co
nt

ex
t1

co
nt

ex
tL

1
co

nt
ex

tL
2

co
nt

ex
tL

3
co

nt
ex

tL
4

co
nt

ex
tL

5
co

nt
ex

tL
6

co
nt

ex
tL

7
co

nt
ex

tL
8

co
nt

ex
tL

9
co

nt
ex

tL
10

co
nt

ex
tL

11
co

nt
ex

tL
12

flo
w1

flo
w2

co
rr2

m
ot

io
n1 z1 r1 q1 z2 r2 q2

flo
wh

ea
d1

flo
wh

ea
d2

Layer

0

5

10

15

20

25

30

35

40

Lip
sc

hi
tz

 c
on

st
an

t

base
GD4s feature
GD4s05 feature
SD feature

PCA feature
PCArel feature
SDp feature
PCAp feature

Figure 4.4: Lipschitz constants of every named convolutional layer in the baseline and feature
encoder RAFT network configurations. Layers are grouped into feature block,
context block, update block from left to right. All RAFT network configurations
are trained on the Sintel split data-set.

The calculated Lipschitz constants of each named layer can be seen in Figure 4.4, where FDs
reduce the Lipschitz bounds, with the exception of SD, and the remaining layers stay close
to the baseline. While PCA and PCArel have Lipschitz constants in the feature encoder at
about 10, GD4s, GD4s05 and SDp lie between 2 and 3. In the extreme case of PCAp the
bound is, with a magnitude of 10−4 to 10−3, very close to zero. Since the Parseval completed
filters are imposed on the network by the receptive field in addition to the less used principle
components, these could make up many kernels with for optical flow uninformative features
and extremely small weights bringing down the Lipschitz constant. This is further supported
by similar findings in the neuron activations of the previous Experiment 4.2. Hence, this is
most likely the reason why the performance suffers significantly during full Sintel training,
since gradients are hardly propagated into the earlier layers due to the small weights caused
by many, presumably non-relevant filters.

The question remains why the lower Lipschitz constants of the feature encoder, seen in
Figure 4.4, do not make an impact on performance for the other configurations. To answer
this, it is important to note, that the overall Lipschitz constant is also influenced by activations
functions, residual connections and batch norms. Non-linear activation functions like ReLU
have a trivial Lipschitz constant of 1 and can be neglected. Batch norms, however, are present
in the RAFT encoders after every convolutional layer (feature1 excluded). It is thus reasonable

51

4 Experiments

to assume that this dissipates any effects of Lipschitz constants by normalizing the range of
activations fittingly to similar bounds for the baseline and its modifications. Therefore, no
configurations are reliably able to improve the networks quality nor robustness.

Configuration Split (train) Split (test) KITTI (train) PCFA AEE

Layer FD Clean Final Clean Final AEE F1-all f̌ ↔ f f̌ ↔ f t

base
0.627 0.984 1.667 3.695 1.469 5.442 11.982 5.768

0.637 0.997 1.690 3.569 1.453 5.339 11.944 5.703
12.078 5.572

feature

GD4s 0.683 1.049 1.970 3.735 1.543 6.000 12.501 5.230
GD4s05 0.671 1.024 1.868 3.937 1.537 5.676 11.812† 5.735†

SD 0.668 1.052 1.812 4.095 1.527 5.612 12.314 5.378
SDp 0.662 1.035 1.877 3.734 1.495 5.654 12.993 4.607
PCA 0.664 1.052 1.937 3.495 1.507 5.636 11.978 5.651
PCArel 0.645 1.012 1.783 3.700 1.479 5.480 12.440 5.397
PCAp 0.699 1.065 2.003 3.963 1.586 5.967 11.330 6.270

update

GD4s 0.800 1.204 1.990 3.401 2.085 9.901 9.529† 7.899†

GD4s05 0.787 1.245 1.941 3.509 1.960 9.354 10.307†2 7.011†2

SD 0.660 1.089 1.824 3.658 1.592 6.161 11.423† 5.840†

SDp 0.733 1.138 2.129 3.917 1.791 7.034 11.951 5.283
PCA 0.641 1.064 1.717 3.430 1.524 5.706 11.978 5.597
PCArel 0.634 1.041 1.692 3.561 1.475 5.351 11.812 5.810
PCAp – – – – – – – –

Table 4.5: Evaluation of the baseline, feature encoder and update block RAFT network config-
urations trained on the Sintel split [Zhao et al., 2020a]. Attacks are performed on
the Sintel test final data-set. Attacks with dagger†x have x ≤ 5 frames filtered out
such that the average perturbation is below 0.0012. Best results are displayed in
bold font.

52

4.3 Different Filter Dictionaries in the Complete Feature Encoder

Configuration Sintel (train) Sintel (test) KITTI (train) PCFA AEE

Layer FD Clean Final Clean Final AEE F1-all f̌ ↔ f f̌ ↔ f t

base 0.739* 1.198* 1.613* 2.743* 1.557 5.755 12.60* 5.46*
12.157 5.918

feature PCAp 7.102 9.480 – – 10.681 42.983 11.957† 5.786†

update
GD4s 0.981 1.431 2.178 3.411 2.062 9.519 10.278 7.206
GD4s05 0.938 1.472 2.075 3.353 2.021 9.737 10.230 7.700
SD 0.785 1.285 1.736 3.165 1.680 6.530 11.828 5.908

Table 4.6: Evaluation of the baseline, feature encoder and update block RAFT network config-
urations trained on the Sintel benchmark. Attacks are performed on the Sintel test
final data-set. Results with asterix* are taken from [Walter, 2022]. Attacks with
dagger†x have x ≤ 5 frames filtered out such that the average perturbation is below
0.0012. Best results are displayed in bold font.

53

4 Experiments

(a) Trained on Sintel split data-set (b) Trained on full Sintel data-set

Figure 4.5: Joint evaluation of the baseline, feature encoder and update block RAFT network
configurations by prediction quality and adversarial robustness on Sintel (top)
and KITTI (bottom). All RAFT network configurations are trained on the Sintel
split (left) and full Sintel data-set (right). Assuming a normal distribution of the
baseline trials the 2− and 3− σ confidence intervals are shown. In Figure 4.5b the
confidence interval is known only for robustness.

54

4.4 Different Filter Dictionaries in the Complete Update Block

4.4 Different Filter Dictionaries in the Complete Update Block

Performing the same trials as in the previous Section, now with FDs in the RAFT update block,
results are shown again in Tables 4.5 and 4.6 and jointly in Figure 4.5 located immediately in
front of this section. To reiterate, all in Table 3.1 described categories of FDs are inserted into
the complete update block: flow1-2, corr2, motion1, z1-2, r1-2, q1-2 and flowhead1-2.

Discussion

Similar to FDs in the feature encoder, the Sintel fitted FDs PCA performs slightly better on the
Sintel split lying just outside the 3σ CI as well as being worse on KITTI. PCArel is more robust
than the baseline also by the 3σ margin. Both of these improvements can be traced back to
having the underlying filters learned on Sintel data.

In this experiment, PCAp is not able to learn the first pre-training phase FlyingChairs and
is prematurely stopped after 28k iterations. It is assumed that this is caused by too many
uninformative filters being enforced onto the network, coinciding with findings from the
previous two experiments. The other Parseval completed SDp-FD performs worse on the Sintel
and KITTI test sets, but is still able to be competitive, likely because half of the dictionary
is composed of a low pass filter and useful derivative filters, while the additional filters also
contain multiple first derivative filters, c.f. the visual representation in Figure 3.3.

Considerable improvements in robustness are achieved by the remaining SD-, GD4s05- and
GD4s-FDs and boost performance on the Sintel splits test while declining on the KITTI train
data. These configurations are then trained and submitted to the Sintel benchmark loosing
accuracy on both data-sets for a gain in robustness. GD4s and GD4s05 achieve the largest
development thus far, the first of which being over 20% more robust. Since the employed
Gaussian derivatives compute derivatives of smoothed versions of images (for flow1 even on
multiple scales), suggests that they are more invariant under noisy changes in the correlation
volume and altered features caused by attacks. Most importantly, a consistent trend is visible
when submitting these three configurations to the Sintel benchmark.

Lipschitz Constants

Similar to FDs in the feature encoder, Lipschitz constants seen in Figure 4.6 decrease in
receptive field layers by small amount for the baseline similar configurations of PCA and
PCArel. SDp shows a decrease in all update block layers, however, the robust cases of SD,
GD4s and GD4s05 contrarily increase the constant in the GRU. This hints to a different, not
robustifying reduction of Lipschitz induced by the Parseval completed FD, possibly caused by the
additional, for optical flow as uninformative understood Parseval filters. Further investigating
the robust configurations, the decrease in the layers apart from the GRU correlate to the

55

4 Experiments

achieved robustness with SD reducing the constant by a smaller amount than the Gaussian
derivative FDs and hence only improving to a lesser extent.

A closer look into the RAFT architecture identifies the hyperbolic tangent and sigmoid as
activation functions in the GRU, mapping into [−1, 1] and [0, 1] respectively. Like the batch
norms in the feature encoder, these contractions are likely mitigating any effects of changing
Lipschitz constants. The remaining layers of the motion encoder and flowhead (flow1, flow2,
corr2, motion1, flowhead1, flowhead2) only have the ReLU as their activation function. Thus, the
in comparison to the baseline amplifying GRU might compensate for smaller neuron activations
produced by previous attenuating layers, while not affecting the robustness negatively.

Besides the GD- and SD-FDs enforcing derivative filters upon the network’s kernels, it is thus
concluded that lower Lipschitz constants in these layers cause improved robustness. This effect
is also clearly visible, since the update block is passed through multiple times during evaluation,
in contrast to the feature encoder. Counter-intuitively, the higher Lipschitz constants in the
GRU might also play a role in retaining the majority of the networks quality, since SDp has got
lower constants, but lacks the higher values like the others.

Additional Remark

An additional remark is that the increased robustness of GD4s manifests itself in very few
scenes where the network largely remains unimpaired under attack and is considerably better
than the baseline. The most notable examples can be seen in Figure 4.7. Other patches show
similar volatility as the baseline, leading to the conclusion that GD4s robustifies only in these
particular scenes instead of partly improving every flow estimation.

56

4.4 Different Filter Dictionaries in the Complete Update Block

fe
at

ur
e1

fe
at

ur
eL

1
fe

at
ur

eL
2

fe
at

ur
eL

3
fe

at
ur

eL
4

fe
at

ur
eL

5
fe

at
ur

eL
6

fe
at

ur
eL

7
fe

at
ur

eL
8

fe
at

ur
eL

9
fe

at
ur

eL
10

fe
at

ur
eL

11
fe

at
ur

eL
12

co
nt

ex
t1

co
nt

ex
tL

1
co

nt
ex

tL
2

co
nt

ex
tL

3
co

nt
ex

tL
4

co
nt

ex
tL

5
co

nt
ex

tL
6

co
nt

ex
tL

7
co

nt
ex

tL
8

co
nt

ex
tL

9
co

nt
ex

tL
10

co
nt

ex
tL

11
co

nt
ex

tL
12

flo
w1

flo
w2

co
rr2

m
ot

io
n1 z1 r1 q1 z2 r2 q2

flo
wh

ea
d1

flo
wh

ea
d2

Layer

101

102

Lip
sc

hi
tz

 c
on

st
an

t

base
GD4s update
GD4s05 update
SD update

PCA update
PCArel update
SDp update

(a) Trained on Sintel split data-set

fe
at
ur
e1

fe
at
ur
eL
1

fe
at
ur
eL
2

fe
at
ur
eL
3

fe
at
ur
eL
4

fe
at
ur
eL
5

fe
at
ur
eL
6

fe
at
ur
eL
7

fe
at
ur
eL
8

fe
at
ur
eL
9

fe
at
ur
eL
10

fe
at
ur
eL
11

fe
at
ur
eL
12

co
nt
ex
t1

co
nt
ex
tL
1

co
nt
ex
tL
2

co
nt
ex
tL
3

co
nt
ex
tL
4

co
nt
ex
tL
5

co
nt
ex
tL
6

co
nt
ex
tL
7

co
nt
ex
tL
8

co
nt
ex
tL
9

co
nt
ex
tL
10

co
nt
ex
tL
11

co
nt
ex
tL
12

flo
w1

flo
w2

co
rr2

m
ot
io
n1 z1 r1 q1 z2 r2 q2

flo
wh

ea
d1

flo
wh

ea
d2

Layer

101

102

Lip
sc
hi
tz
 c
on
st
an
t

base
GD4s update

GD4s05 update
SD update

(b) Trained on full Sintel data-set

Figure 4.6: Lipschitz constants of every named convolutional layer in the baseline and update
block RAFT network configurations. Layers are grouped into feature block, context
block, update block from left to right. All RAFT network configurations are trained
on the Sintel split (top) and full Sintel (bottom) data-set.

57

4 Experiments

Images

Perturbation of image 1 Initial flow Attacked flow

base

GD4s update

Images

Perturbation of image 1 Initial flow Attacked flow

base

GD4s update

Images

Perturbation of image 1 Initial flow Attacked flow

base

GD4s update

Figure 4.7: PCFA attack comparison of the baseline RAFT network against the more robust
RAFT with GD4s in the update block. The target flow is zero flow. Shown is only
a subset of frames where a significant difference in the attacked flow is present.
Both configurations are trained on the full Sintel data-set.

58

4.5 Lipschitz Constant Constraint Regularization

4.5 Lipschitz Constant Constraint Regularization

This last experiment builds upon the successful improvement of robustness achieved by SD-,
GD4s05- and GD4s-FDs in the update block, c.f. Experiment 4.4. Their common trend in
Lipschitz constants is a decrease in all update block layers except in the GRU, i.e. flow1-2 corr2,
motion1 and flowhead1-2. Hence, GD4s as the most robust configuration and the baseline
are considered for Lipschitz constant constraint regularization (LCC) following the method of
[Gouk et al., 2021] in these five layers. While the regularized GD4s aims at further improving
the robustness, the baseline seeks to replicate the success without receptive fields.

Lipschitz Constants

To hold the Lipschitz constant below λ > 0, all weights are scaled down accordingly after
each backward pass, if the bound is exceeded. By choosing λ = 1 and p = 2 the additional
update, as discussed in Section 2.1.3, reads for fully connected layers W ← 1

max(1,∥W ∥2) W .
Instead of the exact spectral norm for convolutions, the easy to compute bound (2k + 1)∥W∥2
of Equation (4.1) is used.

Verifying the regularization technique, the layers in question indeed have a Lipschitz constant
of 1 which can be seen in Figure 4.8. As it is already the case in the robust GD- and SD-
configurations configuration of Experiment 4.4, the Lipschitz constants in the GRU also grow
larger. In terms of Lipschitz constants, the same behavior as the robust configurations can be
achieved through plain Lipschitz regularization.

Discussion

Results of the Sintel split trained scenario are shown in Table 4.7 and jointly in in Figure 4.9. In
the joint quality and robustness evaluation the dictionary EYE labels the regularized baseline in
which the identity FD is used as an implementation trick. Both Lipschitz constant constrained
configurations are worse than their counterparts. The regularized baseline has a worse fit
and no effect onto the robustness, while the LCC GD4s looses in both metrics to GD4s. Each
regularization diminishes the quality on the KITTI training data-set by roughly 100% effectively
quadrupling the F1-all score with respect to the baseline in the case of LCC GD4s.

Overall, the usage of GD-FDs is, in this small scenario, neither replicable nor improvable by
constraining the Lipschitz constant with the method of [Gouk et al., 2021] who note that their
results heavily depend on the choice of the bounding hyperparameter λ. GD-FDs are therefore
not improving RAFT only by reducing the layer’s Lipschitz constants, but rather through their
geometric interpretation with the smaller constants being a mere side effect. Hence, Gaussian
derivative FDs provide a unique approach to robustify neural networks in optical flow.

59

4 Experiments

fe
at
ur
e1

fe
at
ur
eL

1
fe
at
ur
eL

2
fe
at
ur
eL

3
fe
at
ur
eL

4
fe
at
ur
eL

5
fe
at
ur
eL

6
fe
at
ur
eL

7
fe
at
ur
eL

8
fe
at
ur
eL

9
fe
at
ur
eL

10
fe
at
ur
eL

11
fe
at
ur
eL

12
co

nt
ex

t1
co

nt
ex

tL
1

co
nt
ex

tL
2

co
nt
ex

tL
3

co
nt
ex

tL
4

co
nt
ex

tL
5

co
nt
ex

tL
6

co
nt
ex

tL
7

co
nt
ex

tL
8

co
nt
ex

tL
9

co
nt
ex

tL
10

co
nt
ex

tL
11

co
nt
ex

tL
12

flo
w1

flo
w2

co
rr2

m
ot
io
n1 z1 r1 q1 z2 r2 q2

flo
wh

ea
d1

flo
wh

ea
d2

Layer

100

101

102

Lip
sc

hi
tz
 c
on

st
an

t

base
GD4s update

GD4s update LCC
EYE update LCC

Figure 4.8: Lipschitz constants of every named convolutional layer in the baseline, GD4s
and Lipschitz regularized RAFT network configurations. Layers are grouped into
feature block, context block, update block from left to right. All RAFT network
configurations are trained on the Sintel split data-set.

60

4.5 Lipschitz Constant Constraint Regularization

Configuration Split (train) Split (test) KITTI (train) PCFA AEE

Layer FD Clean Final Clean Final AEE F1-all f̌ ↔ f f̌ ↔ f t

base
0.627 0.984 1.667 3.695 1.469 5.442 11.982 5.768

0.637 0.997 1.690 3.569 1.453 5.339 11.944 5.703
12.078 5.572

update GD4s 0.800 1.204 1.990 3.401 2.085 9.901 9.529† 7.899†

update LCC
– 1.028 1.400 2.370 4.264 2.273 9.882 12.009†5 4.804†5

GD4s 1.574 2.063 3.014 4.808 3.534 17.727 10.099 6.968

Table 4.7: Evaluation of the baseline, GD4s and Lipschitz regularized RAFT network configu-
rations trained on the Sintel split [Zhao et al., 2020a]. Attacks are performed on
the Sintel test final benchmark. Attacks with dagger†x have x ≤ 5 frames filtered
out such that the average perturbation is below 0.0012. The perturbation for the
LCC regularized baseline is at 0.001456. Best results are displayed in bold font.

Figure 4.9: Joint evaluation of the baseline and Lipschitz regularized RAFT network configu-
rations by prediction quality and adversarial robustness on Sintel (left) and KITTI
(right). All RAFT network configurations are trained on the Sintel split data-set.
EYE is the identity FD and denotes the regularized baseline.

61

5 Conclusions and Outlook

In summary, this thesis employs RFCNNs in the context of optical flow prediction and adversar-
ial robustness by using various FDs and a sparsity constraint of three basis-filters per kernel.
Starting with the baseline RAFT network, unmodified Sintel training schedule and inserting
GD-, SD-, SDp- Parseval completed FDs with useful geometric properties, it introduces a novel
PCA-FD which consists of the principal components of the previously trained network’s kernels.
While the ablation PCAp enforces Parseval frame properties onto the FD, PCArel mimics the
original network as close as possible albeit reducing the learnable space for the kernels.

Conclusions

Results show that modifying single layers in RAFT do not positively impact robustness and often
lead to minuscule changes in quality indicating the benefits of the already extensive training
schedule. Larger shifts are achieved by extending receptive field layers to the complete feature
encoder and update block. The trained PCA-FDs slightly improve the quality on the test split of
the training data-set Sintel by choosing appropriately fitting filters to start with. A Comparison
between the SD- and PCA-FDs and their Parseval completed counterparts reveals worse and in
the case of PCAp sometimes catastrophic performance in both metrics. Since these Parseval
completed FDs introduce additional filters holding useful information for subsequent image
reconstruction, they may hold advantages for blind image inpainting in [Schmalfuss et al.,
2022a], but have adverse effects in the non-reconstructive task of optical flow generation.

While receptive fields in the feature encoder yield worse results in either quality or robustness,
the geometric motivated SD- and GD-FDs improve adversarial robustness when placed in the
update block. The smooth Gaussian derivatives are over 20% more robust. However, quality
on the Sintel benchmark and KITTI training data diminishes in exchange. Hence, the two
measures of robustness against adversarial attack and a network’s generalization capability can
be isolated in this scenario, meaning a more robust network might be worse on other, more
distant data-sets.

Additionally, a connection between receptive fields, convolutional layer Lipschitz constants and
adversarial robustness can be drawn. FDs generally reduce the layer’s Lipschitz constant with
the exception of the GRU, where an increase is observed. By further lowering the constant of a
GD configuration and the unmodified RAFT to be below λ = 1 the results were not replicable.
As [Gouk et al., 2021] note, the performance of Lipschitz constant constraint regularization

63

5 Conclusions and Outlook

is very sensitive to the imposed bound λ. In this limited trial, GD-FDs thus pose a unique
approach for improving a networks robustness which is more than just decreasing the Lipschitz
constant.

Outlook

Overall, only the GD-FDs, and to a smaller extent SD-FDs, in the update block improve the
robustness of RAFT, while Parseval completed dictionaries worsen performance in optical
flow prediction. Conversely, it is not yet observed whether this applies to reconstructive tasks
such as in blind image inpainting in [Schmalfuss et al., 2022a] as well or Parseval completion
instead yields a better performance than plain FDs. Gaussian derivatives thus provide a
promising research direction for any neural network involving the extraction of features linked
to derivatives and the desire to become more robust against adversarial attacks. Besides optical
flow, applications include but are not limited to other computer vision tasks [Voulodimos et al.,
2018], e.g. adversarial attack susceptible object detection [Wu et al., 2020].

Remaining in the problem statement of this thesis, FDs when placed into the feature encoder
of RAFT improve neither quality nor robustness. It is pointed out that these are the only layers
holding normalization layers, i.e. a batch norm, which might interfere with the inserted FDs.
Therefore, a trial with removed batch norms could conclude whether the position itself or the
usage of normalization layers is unsuited for receptive fields.

A topic closely related is the reduction of individual layers’ Lipschitz constants through the use
of receptive fields. Since FDs only affect the convolutional layers directly and not adjacent
normalization and activation functions, the overall Lipschitz constant might remain unaltered
and thus leading to unchanged adversarial robustness. Next to receptive fields, a more
sophisticated investigation of Lipschitz constraining, normalization techniques and contracting
activation functions pose an alternative way to regularize the layers in the update block and
therefore, improving the robustness of RAFT. Viable options for Lipschitz constraining neural
networks could be computational intensive Parseval networks [Cisse et al., 2017a] or the
rescaling technique of [Gouk et al., 2021] which is applied in this thesis, while also refraining
from upper bounds of the Lipschitz constants by using the power method and including batch
norms in the regularization.

64

Bibliography

Adadi, A. and Berrada, M. (2018). Peeking inside the black-box: a survey on explainable
artificial intelligence (xai). IEEE access, 6:52138–52160. (Cited on page 15)

Akhtar, N. and Mian, A. (2018). Threat of adversarial attacks on deep learning in computer
vision: A survey. Ieee Access, 6:14410–14430. (Cited on pages 7 and 18)

Akhtar, N., Mian, A., Kardan, N., and Shah, M. (2021). Advances in adversarial attacks and
defenses in computer vision: A survey. IEEE Access, 9:155161–155196. (Cited on page 18)

Atreas, N., Karantzas, N., Papadakis, M., and Stavropoulos, T. (2019). On the design of
multi-dimensional compactly supported parseval framelets with directional characteristics.
Linear Algebra and its Applications, 582:1–36. (Cited on pages 23 and 37)

Barron, J. L., Fleet, D. J., and Beauchemin, S. S. (1994). Performance of optical flow techniques.
International journal of computer vision, 12(1):43–77. (Cited on page 13)

Bertero, M., Poggio, T. A., and Torre, V. (1988). Ill-posed problems in early vision. Proceedings
of the IEEE, 76(8):869–889. (Cited on page 13)

Bhambri, S., Muku, S., Tulasi, A., and Buduru, A. B. (2019). A survey of black-box adversarial
attacks on computer vision models. arXiv preprint arXiv:1912.01667. (Cited on page 18)

Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. (2004). High accuracy optical flow
estimation based on a theory for warping. In European conference on computer vision, pages
25–36. Springer. (Cited on pages 13, 14 and 15)

Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., and Schnörr, C. (2003). Real-time optic
flow computation with variational methods. In International Conference on Computer Analysis
of Images and Patterns, pages 222–229. Springer. (Cited on page 14)

Butler, D. J., Wulff, J., Stanley, G. B., and Black, M. J. (2012). A naturalistic open source movie
for optical flow evaluation. In Computer Vision–ECCV 2012: 12th European Conference on
Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VI 12, pages 611–625.
Springer. (Cited on pages 7, 12, 14, 20, 41 and 42)

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and Usunier, N. (2017a). Parseval networks:
Improving robustness to adversarial examples. In International Conference on Machine
Learning, pages 854–863. PMLR. (Cited on pages 7, 20, 50 and 64)

65

Bibliography

Cisse, M. M., Adi, Y., Neverova, N., and Keshet, J. (2017b). Houdini: Fooling deep struc-
tured visual and speech recognition models with adversarial examples. Advances in neural
information processing systems, 30. (Cited on pages 7 and 18)

Dietterich, T. (1995). Overfitting and undercomputing in machine learning. ACM computing
surveys (CSUR), 27(3):326–327. (Cited on page 14)

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. (Cited on
page 16)

Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt, P.,
Cremers, D., and Brox, T. (2015). Flownet: Learning optical flow with convolutional
networks. In Proceedings of the IEEE international conference on computer vision, pages
2758–2766. (Cited on pages 7, 14 and 41)

Fortun, D., Bouthemy, P., and Kervrann, C. (2015). Optical flow modeling and computation: A
survey. Computer Vision and Image Understanding, 134:1–21. (Cited on page 13)

Freeman, W. T., Adelson, E. H., et al. (1991). The design and use of steerable filters. IEEE
Transactions on Pattern analysis and machine intelligence, 13(9):891–906. (Cited on pages 22
and 25)

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572. (Cited on pages 7 and 19)

Gouk, H., Frank, E., Pfahringer, B., and Cree, M. J. (2021). Regularisation of neural networks
by enforcing lipschitz continuity. Machine Learning, 110(2):393–416. (Cited on pages 7, 9,
19, 50, 59, 63 and 64)

Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., and Yang, G.-Z. (2019). Xai—explainable
artificial intelligence. Science robotics, 4(37):eaay7120. (Cited on page 15)

Horn, B. and Schunck, B. (1981). Determining optical flow. intechniques and applications of
image understanding (vol. 281, pp. 319-331). International Society for Optics and Photonics.
(Cited on pages 7 and 13)

Huang, L., Gao, C., Zhou, Y., Xie, C., Yuille, A. L., Zou, C., and Liu, N. (2020). Universal
physical camouflage attacks on object detectors. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 720–729. (Cited on page 18)

Huang, Z., Shi, X., Zhang, C., Wang, Q., Cheung, K. C., Qin, H., Dai, J., and Li, H. (2022a).
Flowformer: A transformer architecture for optical flow. arXiv preprint arXiv:2203.16194.
(Cited on pages 7, 14 and 16)

66

Bibliography

Huang, Z., Zhang, T., Heng, W., Shi, B., and Zhou, S. (2022b). Real-time intermediate flow
estimation for video frame interpolation. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XIV, pages 624–642.
Springer. (Cited on page 7)

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., and Brox, T. (2017). Flownet 2.0:
Evolution of optical flow estimation with deep networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2462–2470. (Cited on pages 7 and 14)

Ilic, F., Pock, T., and Wildes, R. P. (2022). Is appearance free action recognition possible? In
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part IV, pages 156–173. Springer. (Cited on page 7)

Jacobsen, J.-H., Van Gemert, J., Lou, Z., and Smeulders, A. W. (2016). Structured recep-
tive fields in cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2610–2619. (Cited on pages 8, 11, 21 and 25)

Jiang, S., Campbell, D., Lu, Y., Li, H., and Hartley, R. (2021). Learning to estimate hidden
motions with global motion aggregation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9772–9781. (Cited on pages 7 and 14)

Jonschkowski, R., Stone, A., Barron, J. T., Gordon, A., Konolige, K., and Angelova, A. (2020).
What matters in unsupervised optical flow. In European Conference on Computer Vision, pages
557–572. Springer. (Cited on page 14)

Kim, D., Woo, S., Lee, J.-Y., and Kweon, I. S. (2019). Deep video inpainting. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5792–5801.
(Cited on page 7)

Koenderink, J. J. and Van Doorn, A. J. (1987). Representation of local geometry in the visual
system. Biological cybernetics, 55(6):367–375. (Cited on pages 22 and 25)

Kondermann, D., Nair, R., Honauer, K., Krispin, K., Andrulis, J., Brock, A., Gussefeld, B.,
Rahimimoghaddam, M., Hofmann, S., Brenner, C., and Jahne, B. (2016). The hci benchmark
suite: Stereo and flow ground truth with uncertainties for urban autonomous driving.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops. (Cited on page 41)

Kong, L. and Yang, J. (2022). Mdflow: Unsupervised optical flow learning by reliable mutual
knowledge distillation. IEEE Transactions on Circuits and Systems for Video Technology. (Cited
on page 14)

Li, Y. Y., Craft, J., Cheng, Y., Schapiro, W., Gliganic, K., Haag, E., and Cao, J. J. (2022).
Optical flow analysis of left ventricle wall motion with real-time cardiac magnetic resonance
imaging in healthy subjects and heart failure patients. Annals of Biomedical Engineering,
50(2):195–210. (Cited on page 7)

67

Bibliography

Liu, X., Liu, H., and Lin, Y. (2020). Video frame interpolation via optical flow estimation with
image inpainting. International Journal of Intelligent Systems, 35(12):2087–2102. (Cited on
page 7)

Long, P. M. and Sedghi, H. (2019). Generalization bounds for deep convolutional neural
networks. arXiv preprint arXiv:1905.12600. (Cited on page 23)

Maurer, D., Stoll, M., Volz, S., Gairing, P., and Bruhn, A. (2017). A comparison of isotropic
and anisotropic second order regularisers for optical flow. In International Conference on
Scale Space and Variational Methods in Computer Vision, pages 537–549. Springer. (Cited on
pages 13 and 14)

Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., and Brox, T. (2016).
A large dataset to train convolutional networks for disparity, optical flow, and scene flow
estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (Cited on page 41)

Menze, M. and Geiger, A. (2015). Object scene flow for autonomous vehicles. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 3061–3070. (Cited on
pages 7, 14 and 41)

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., and Frossard, P. (2017). Universal adversarial
perturbations. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1765–1773. (Cited on pages 7 and 18)

Nagel, H.-H. and Enkelmann, W. (1986). An investigation of smoothness constraints for the
estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern
Analysis and Machine Intelligence, (5):565–593. (Cited on pages 13 and 14)

Nocedal, J. (1980). Updating quasi-newton matrices with limited storage. Mathematics of
computation, 35(151):773–782. (Cited on page 19)

Olden, J. D. and Jackson, D. A. (2002). Illuminating the “black box”: a randomization approach
for understanding variable contributions in artificial neural networks. Ecological modelling,
154(1-2):135–150. (Cited on page 15)

Ranjan, A. and Black, M. J. (2017). Optical flow estimation using a spatial pyramid network.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
(Cited on pages 7 and 14)

Ranjan, A., Janai, J., Geiger, A., and Black, M. J. (2019). Attacking optical flow. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV). (Cited on pages 7
and 18)

Romeny, B. M. H. (2008). Front-end vision and multi-scale image analysis: multi-scale computer
vision theory and applications, written in mathematica, volume 27. Springer Science &
Business Media. (Cited on page 22)

68

Bibliography

Safari, K., Haque, M., Karantzas, N., Shahraki, F. F., Prasad, S., and Labate, D. (2020).
Improved image classification using receptive field convolutional neural networks. (Cited on
pages 21, 22, 23 and 37)

Scheurer, E. (2022). An optimization approach to attacking the horn and schunck model.
Bachelors’ thesis, Institute for Visualisation and Interactive Systems, University of Stuttgart.
(Cited on page 14)

Schmalfuss, J., Scheurer, E., Zhao, H., Karantzas, N., Bruhn, A., and Labate, D. (2022a). Blind
image inpainting with sparse directional filter dictionaries for lightweight cnns. Journal of
Mathematical Imaging and Vision. (Cited on pages 8, 11, 21, 23, 37, 47, 63 and 64)

Schmalfuss, J., Scholze, P., and Bruhn, A. (2022b). A perturbation-constrained adversarial
attack for evaluating the robustness of optical flow. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXII, pages
183–200. Springer. (Cited on pages 7, 11, 18 and 21)

Schrodi, S., Saikia, T., and Brox, T. (2022). Towards understanding adversarial robustness of
optical flow networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8916–8924. (Cited on page 18)

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important features through
propagating activation differences. In International conference on machine learning, pages
3145–3153. PMLR. (Cited on page 15)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine learning
research, 15(1):1929–1958. (Cited on page 46)

Sun, D., Herrmann, C., Reda, F., Rubinstein, M., Fleet, D. J., and Freeman, W. T. (2022).
Disentangling architecture and training for optical flow. In European Conference on Computer
Vision, pages 165–182. Springer. (Cited on pages 11 and 14)

Sun, D., Yang, X., Liu, M.-Y., and Kautz, J. (2018). Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 8934–8943. (Cited on pages 7, 14 and 15)

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R.
(2014). Intriguing properties of neural networks: Proceedings of the international conference
on learning representations. (Cited on pages 7, 18 and 19)

Teed, Z. and Deng, J. (2020). Raft: Recurrent all-pairs field transforms for optical flow. In
Vedaldi, A., Bischof, H., Brox, T., and Frahm, J.-M., editors, Computer Vision – ECCV 2020,
pages 402–419, Cham. Springer International Publishing. (Cited on pages 7, 14, 15, 17, 20,
41 and 42)

69

Bibliography

Tehrani, A., Mirzaei, M., and Rivaz, H. (2020). Semi-supervised training of optical flow
convolutional neural networks in ultrasound elastography. In Medical Image Computing
and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru,
October 4–8, 2020, Proceedings, Part III 23, pages 504–513. Springer. (Cited on page 7)

Ullah, A., Muhammad, K., Del Ser, J., Baik, S. W., and de Albuquerque, V. H. C. (2018). Activity
recognition using temporal optical flow convolutional features and multilayer lstm. IEEE
Transactions on Industrial Electronics, 66(12):9692–9702. (Cited on page 7)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30. (Cited on page 16)

Virmaux, A. and Scaman, K. (2018). Lipschitz regularity of deep neural networks: analysis
and efficient estimation. Advances in Neural Information Processing Systems, 31. (Cited on
pages 7 and 19)

Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E., et al. (2018). Deep learning
for computer vision: A brief review. Computational intelligence and neuroscience, 2018. (Cited
on page 64)

Walter, P. (2022). Sparse filters for optical flow robustness. Project-work simtech, Institute for
Visualisation and Interactive Systems, University of Stuttgart. (Cited on pages 8, 9, 11, 23,
42, 43, 44 and 53)

Wang, H., Cai, P., Fan, R., Sun, Y., and Liu, M. (2021). End-to-end interactive prediction
and planning with optical flow distillation for autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2229–2238. (Cited
on page 7)

Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., and Bischof, H. (2009). Anisotropic
huber-l1 optical flow. In BMVC, volume 1, page 3. (Cited on page 14)

Wu, Z., Lim, S.-N., Davis, L. S., and Goldstein, T. (2020). Making an invisibility cloak: Real
world adversarial attacks on object detectors. In European Conference on Computer Vision,
pages 1–17. Springer. (Cited on pages 7, 18 and 64)

Xu, R., Li, X., Zhou, B., and Loy, C. C. (2019). Deep flow-guided video inpainting. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3723–3732.
(Cited on page 7)

Yan, W., Wang, Y., van der Geest, R. J., and Tao, Q. (2019). Cine mri analysis by deep
learning of optical flow: Adding the temporal dimension. Computers in biology and medicine,
111:103356. (Cited on page 7)

Yoshida, Y. and Miyato, T. (2017). Spectral norm regularization for improving the generaliz-
ability of deep learning. arXiv preprint arXiv:1705.10941. (Cited on pages 7 and 19)

70

Bibliography

Yu, H., Chen, X., Shi, H., Chen, T., Huang, T. S., and Sun, S. (2020). Motion pyramid networks
for accurate and efficient cardiac motion estimation. In Medical Image Computing and
Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru,
October 4–8, 2020, Proceedings, Part VI 23, pages 436–446. Springer. (Cited on page 7)

Yu, J. J., Harley, A. W., and Derpanis, K. G. (2016). Back to basics: Unsupervised learning of
optical flow via brightness constancy and motion smoothness. In European Conference on
Computer Vision, pages 3–10. Springer. (Cited on page 14)

Zach, C., Pock, T., and Bischof, H. (2007). A duality based approach for realtime tv-l 1 optical
flow. In Joint pattern recognition symposium, pages 214–223. Springer. (Cited on pages 13
and 14)

Zhang, H. and Wang, J. (2019). Towards adversarially robust object detection. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 421–430. (Cited on
page 19)

Zhao, S., Sheng, Y., Dong, Y., Chang, E. I., Xu, Y., et al. (2020a). Maskflownet: Asymmetric
feature matching with learnable occlusion mask. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6278–6287. (Cited on pages 14, 42, 44,
52 and 61)

Zhao, Y., Man, K. L., Smith, J., Siddique, K., and Guan, S.-U. (2020b). Improved two-stream
model for human action recognition. EURASIP Journal on Image and Video Processing,
2020:1–9. (Cited on page 7)

Zimmer, H., Bruhn, A., and Weickert, J. (2011). Optic flow in harmony. International Journal
of Computer Vision, 93(3):368–388. (Cited on pages 13 and 14)

All links were last followed on February, 26, 2023.

71

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Related Work
	2.1 Predicting Optical Flow
	2.2 Improvement of Neural Networks with Filter Dictionaries

	3 About Various Filter Dictionaries
	3.1 Gaussian Derivative Filter Dictionaries
	3.2 Sparse Directional Filter Dictionaries
	3.3 Principal Component Analysis Filter Dictionaries
	3.4 Parseval Frame Completed Filter Dictionaries
	3.5 Overview of Filter Dictionaries

	4 Experiments
	4.1 Baseline
	4.2 Different Filter Dictionaries in a Single Layer
	4.3 Different Filter Dictionaries in the Complete Feature Encoder
	4.4 Different Filter Dictionaries in the Complete Update Block
	4.5 Lipschitz Constant Constraint Regularization

	5 Conclusions and Outlook
	Bibliography

