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Summary
The standard in rod finite element formulations is the Bubnov–Galerkin
projection method, where the test functions arise from a consistent variation
of the ansatz functions. This approach becomes increasingly complex when
highly nonlinear ansatz functions are chosen to approximate the rod’s center-
line and cross-section orientations. Using a Petrov–Galerkin projection method,
we propose a whole family of rod finite element formulations where the nodal
generalized virtual displacements and generalized velocities are interpolated
instead of using the consistent variations and time derivatives of the ansatz func-
tions. This approach leads to a significant simplification of the expressions in
the discrete virtual work functionals. In addition, independent strategies can be
chosen for interpolating the nodal centerline points and cross-section orienta-
tions. We discuss three objective interpolation strategies and give an in-depth
analysis concerning locking and convergence behavior for the whole family of
rod finite element formulations.
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1 INTRODUCTION

The theory of shear-deformable (spatial) rod formulations dates back to the pioneering works of the Cosserat brothers [10],
Timoshenko [48], Reissner [40] and Simo [45]. Thus, depending on the chosen literature, shear-deformable rods are called
among others (special) Cosserat rods [2], Simo–Reissner beams [35], spatial Timoshenko beams [15], or geometrically
exact beams [7]. In this article, we call the object of interest Cosserat rod, or just rod.

For the numerical treatment of Cosserat rods, there is a vast amount of finite element formulations available, see [35]
for an exhaustive literature survey. Instead of giving an incomplete list of previous formulations, we want to address here
some major challenges that appear in large-strain spatial rod finite element formulations. This could be of particular
interest for application-oriented researchers, who are looking for the most efficient way to learn about rod theory and its
computational analysis.

There have been many efforts to deduce the rod equations from a three-dimensional continuum theory, [1, 4, 15, 38].
However, the most direct way is to consider a rod in the sense of an intrinsic theory as a generalized one-dimensional
continuum, that is, as a spatial curve with additional degrees of freedom that describe the orientations of the rod’s
cross-sections. The procedure to obtain the governing rod equations in the form of partial differential equations (PDEs)
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original work is properly cited.
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can be sketched as follows, consult [13, 17] for more details. First, one must accept to postulate mechanics within the
variational framework of the principle of virtual work, see [14]. Second, the internal virtual work functional is defined.
The structure of this functional follows from an objectivity requirement to the strain energy density. Then the internal
virtual work functional together with the principle of virtual work implies the applicable external interactions a rod can
resist to. For a Cosserat rod, these are forces and moments. Augmented by an inertial virtual work functional, finally, the
PDEs of the Cosserat rod follow from the principle of virtual work, which can be seen as the weak form of the governing
PDEs. The PDEs can also be interpreted as localized balances of linear and angular momentum. Hence, it is also possi-
ble to derive the governing PDEs from these two balance laws together with the assumption that the contact interactions
inside the rod are given by forces and moments, [2, Chapter 8]. However, we advocate for the variational approach because
the idea of finite elements is the approximation of the weak form of the governing PDEs, that is, the approximation of the
principle of virtual work.

Besides the two different postulation philosophies in mechanics, another difficulty arises in the representation of
vector quantities with respect to different bases. Since Truesdell and Noll [49], most theoretical works in continuum
mechanics abstain from choosing a particular basis for the abstract three-dimensional real inner-product space, which in
classical mechanics often serves as a convenient model of the ambient space. Only after the choice of a particular basis, a
vector representation with three real numbers is obtained. We will discuss this issue in greater detail in Section 2. In this
so-called coordinate-free framework, a distinction can be made whether the continuum is formulated in the material or
spatial description, that is, whether the appearing fields are formulated as functions of a reference configuration or of the
deformed configuration, [13, 16]. Partially, this concept can also be transferred to the theory of rods, see [45]. However, in
the reference configuration of a rod with a straight undeformed state, one usually introduces a distinct orthonormal basis,
where two referential base vectors are aligned with the rod’s cross-section-fixed bases [8, 19, 45]. In the subsequent compu-
tational analysis, it is then tacitly assumed to make use of this referential basis although another choice would have been
possible. The components of material vectors with respect to the referential basis then coincide with the corresponding
spatial vectors represented with respect to the cross-section-fixed bases. Consequently, it is enough to focus on the spatial
description. Representations of spatial vectors with respect to cross-section-fixed bases or the inertial basis coincide with
what in computational mechanics literature is referred to as the material and spatial description, respectively.

Maybe the major challenge in large-strain Cosserat rod finite element formulations is caused by the description of
the cross-section orientations, which mathematically are captured by a function whose codomain is the set of orthog-
onal matrices, that is, the special orthogonal group SO(3). This group is also a smooth three-dimensional manifold
and infinitely many different SO(3)-parametrizations exist, for example, Euler-angles, Tait-Bryan angles, rotation vec-
tors, Rodrigues parameters. Unfortunately, these formulations come with non-uniqueness and singularity problems. A
widespread strategy is to keep the orientation angles moderate by using updated Lagrangian schemes, [8, 26, 46]. These
schemes require rod-specific update procedures and are quite delicate to handle. Crisfield and Jelenić [12] were the first
who recognized that most of the updates presented at their time lead to path-dependent solutions. Alternatively, SO(3)
can also be parameterized as a submanifold, that is, using more than three coordinates but adding additional conditions.
For instance, unit quaternions are given by a quadruple with Euclidean norm one. The 9-parameter method takes all
entries of the orthogonal matrix together with the six conditions of orthonormality, [7]. Not surprisingly, for most of the
parametrizations a rod finite element formulation exists. See [31] for rotation angles, [19] for quaternions, and [7, 42] for
9-parameter method, to name a few.

Another pitfall lies in the approximation of the cross-section orientations. Then not every interpolation strategy of
nodal cross-section orientations does preserve the objectivity of the continuous formulation. Assume two different iner-
tial bases that are related by a constant transformation matrix. Then, the nodal cross-section orientations can be expressed
with respect to one or the other inertial basis. An interpolation strategy is objective if the interpolated values of these two
different nodal cross-section orientations differ only (multiplicatively) by the constant transformation matrix relating the
two inertial bases. Before [12], most interpolation strategies were based on the direct interpolation of the SO(3)-parameters
or their incremental updates [8, 27, 46], which violates objectivity. As a result of non-objective interpolations, the dis-
crete strain measures of a deformed rod change under a superimposed rigid motion. This problem was recognized in
[12] and resolved by an interpolation strategy using relative rotation vectors. A few years later, Betsch and Steinmann
[7] as well as Romero and Armero [42] proposed simultaneously an objective interpolation strategy that directly interpo-
lates the cross-section base vectors. Admittedly, this strategy comes at the price of abandoning the orthogonality within
an element.

The approximations of centerline and cross-section orientations can be considered as the ansatz functions of the
rod finite element formulation. The corresponding test functions are the virtual displacement of the centerline and the
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virtual rotations of the cross-sections. In a Bubnov–Galerkin method, which is the standard in rod finite elements, the test
functions follow from a consistent variation of the ansatz functions. In contrast, in a Petrov–Galerkin method [39], the test
functions are assumed as independent fields with approximations that are independent of the ansatz functions. Especially,
for highly nonlinear ansatz functions, for example, [12, 31], a Bubnov–Galerkin method becomes almost impenetrable.
To simplify the expressions of the discrete virtual work, an independent approximation of the virtual rotation field is
suggested in [31]. Very recently, in [25], the authors of this article took up the idea and presented a Petrov–Galerkin rod
finite element formulation, in which nodal Euclidean transformation matrices are interpolated with the aid of relative
twists; a strategy that originates from Sonneville et al. [47] arising from the SE(3)-structure of the Cosserat rod kinematics.
Therefore, this interpolation is called here SE(3)-interpolation.

Another numerical problem in rod theory is known as locking. As discussed in [5], shear and membrane locking in
rods can occur if Kirchhoff (shear-rigidity) and inextensibility constraints follow in the limit case of a parameter tending to
zero. This appears for instance for very slender rods if the stiffness parameters are computed in the sense of Saint-Venant
by using the material’s Young’s and shear moduli, respectively, together with the cross-section geometry. Finite elements
that are prone to locking cannot fulfill these constraints exactly over the entire element and introduce parasitic dilata-
tion and shear strains. This is either cured by reduced integration, re-interpolation of strain measures [20, 34], or mixed
formulations [6, 43, 44].

As a consequence of the discussed challenges, a state-of-the-art large-strain rod formulation should be
path-independent, objective, and singularity-free. Moreover, a strategy to avoid locking should be available. Often these
difficulties are addressed in a very intertwined way. Regularly, rod formulations are proposed together with very spe-
cific update rules for static or dynamic numerical analysis [42]. While the Petrov–Galerkin projection in combination
with the SE(3)-interpolation was already discussed in [25], the idea of the paper at hand is to present the modular-
ity of this projection method. Indeed, we suggest an entire family of rod finite elements in which the interpolation of
the ansatz functions can be exchanged more or less arbitrarily. In particular, the main contributions of the article are
the following:

• We present a family of total Lagrangian (thus path-independent) and objective rod finite element formulations
parametrized by the nodal total rotation vectors and centerline points. Consequently, the formulations have all a
minimal number of six nodal generalized position coordinates.

• We apply a Petrov–Galerkin projection method where the virtual centerline displacements are represented in the
inertial basis and the virtual rotations are represented in the cross-section-fixed bases. We compare three different
well-established interpolation strategies: the R12-interpolation [7, 42], the R3 × SO(3)-interpolation [12, 31], and the
SE(3)-interpolation [47].

• The introduction of independent velocity fields with the same interpolation as the test functions leads, for the entire
family, to the same discrete inertial virtual work functional with a constant and symmetric mass matrix. The discrete
equations of motion are in the form of a first-order ordinary differential equation (ODE), which can be integrated using
standard methods.

• The nodal generalized velocities are coupled with the time-derivative of the nodal generalized position coordinates.
• Possible singularities in dynamic simulations are circumvented by employing the concept of the complement rotation

vector.

Since the interpolation strategies chosen in this article are from well-established formulations, we want to high-
light here some notable differences between these formulations and those presented here. The list is not exhaustive,
but it would be too technical for an introduction to go into all the differences. The R12-interpolation proposed in [7,
42] is used together with a Bubnov–Galerkin projection. For that the virtual work functionals are reformulated as func-
tionals of the virtual displacement of the centerline and the variations of the cross-section base vectors, also called
directors. While [7] introduces additional constraint forces to guarantee orthonormality of the base vectors at the nodes,
[42] proposes a consistent update rule. The two approaches coincide if a null space method [32] is applied to [7]. The
R3 × SO(3)-interpolation was suggested in combination with a Petrov–Galerkin projection. In contrast to the approach
proposed here, in [31] the virtual rotations are represented with respect to the inertial basis. Moreover, the generalized
velocities follow from a consistent time derivative of the ansatz functions. These choices result in a second-order ODE
with a non-symmetric and configuration dependent mass matrix. In [47], where the SE(3)-interpolation is applied, the rod
theory and its numerical treatment with a Bubnov–Galerkin projection is formulated exclusively in the SE(3) Lie group
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setting. Therefore, highly specialized Lie group solvers are needed for the numerical solutions in statics and dynamics.
Moreover, the Bubnov–Galerkin projection method requires the computation of the SE(3)-tangent map, its inverse, and
its derivatives. Strains, generalized velocities, and generalized virtual displacements are introduced as elements of the Lie
algebra 𝔰𝔢(3). Consequently, the virtual centerline displacements and the centerline velocities are expressed with respect
to the cross-section-fixed basis; this is in contrast to our approach, which uses representations with respect to the inertial
bases for these quantities.

The remainder of this article is organized as follows. Section 2, starts with a digression on vector and affine spaces
in conjunction with the introduction of a practical notation containing information about different component repre-
sentations. In Section 3, the Cosserat rod theory is briefly recapitulated in variational form and presented directly as a
coordinate representation of [17]. The core of the article is in Section 4, where the entire family of Petrov–Galerkin finite
element formulations is presented. The formulation allows to treat most of the introduced challenges independently. The
SO(3)-parameterization by total rotation vectors affects only the nodal coordinates, which are introduced in Section 4.2.
The singularity problem within the kinematic differential equations arising with this choice, and the strategy for avoiding
it, are discussed in Section 4.7. The three different objective interpolation strategies are presented in the Sections 4.3–4.5.
The approximation of the test functions and the velocity fields, that is, the interpolation of the generalized virtual dis-
placements and velocities are treated in Section 4.6. The family of rod finite element formulations readily follows in
Section 4.8 by inserting the discrete kinematics into the continuous formulation from Section 3. Eventually, in Section 4.9,
the discretization results in the discrete equations of motion of the rod in the form of a first-order ODE. The rod with the
SE(3)-interpolation has already been successfully tested against analytical solutions, see [25]. Therefore, Section 5 gives
an in-depth analysis concerning locking and convergence behavior of the different rod formulations. Moreover, a highly
dynamic problem with the flexible heavy top is shown, which in the limit of infinitely high stiffness parameters leads to
the precession motion of a rigid heavy top. Conclusions are drawn in Section 6.

2 MODEL OF THE AMBIENT SPACE AND SOME NOTATIONAL
PRELIMINARIES

We introduce the three-dimensional Euclidean vector space E3 as an abstract 3-dimensional real inner-product space.
In this article, only right-handed orthonormal bases are considered. The base vectors of a basis I, or I-basis, are denoted
by eI

x, eI
y, eI

z ∈ E3. The triple Ia = (aI
x, aI

y, aI
z) ∈ R3 contains the components of a vector a = aI

xeI
x + aI

yeI
y + aI

zeI
z ∈ E3 with

respect to the I-basis. Thus, we carefully distinguish R3 from the three-dimensional Euclidean vector space E3. For
computations in components, triples are treated in the sense of matrix multiplication as R3×1-matrices, that is, as “col-
umn vectors.” For another basis K, the same vector a = aK

x eK
x + aK

y eK
y + aK

z eK
z ∈ E3 has different components collected

in Ka = (aK
x , aK

y , aK
z ) ∈ R3. Since both I- and K-basis are right-handed orthonormal bases, the relation between the two

representations is given by

Ia = AIK Ka, where AIK ∈ SO(3) = {A ∈ R
3×3|ATA = 13×3 ∧ det A = +1}. (1)

The transformation matrix AIK is an element of the special orthogonal group SO(3) and transforms the components of
a vector with respect to the K-basis to its representation in the I-basis. Note the suggestive notation, where two adjacent
letters cancel each other.

As a model of the ambient space, we introduce the three-dimensional Euclidean point space 3, which is an affine
space modeled on the Euclidean vector space E3, see [11] for more details. By definition, for any pair of points P,Q ∈ 3,
there exists the unique vector rPQ ∈ E3 such that Q = P ̂+rPQ, where ̂+ ∶ 3 × E3 → 3 denotes the affine structure of the
affine space. Further, we introduce the concept of a frame, which is the set composed of a point P ∈ 3 together with the
orthonormal base vectors of some basis of the vector space E3. Let the -frame be given by the set  = {P, eK

x , eK
y , eK

z }.
Then, a point Q ∈ 3 can uniquely be described by its representation with respect to the -frame, which is given by
the Cartesian coordinates contained in the triple K rPQ ∈ R3. Introducing the -frame as the set {O, eI

x, eI
y, eI

z}, the coor-
dinates of the point Q in the -frame are given by IrOQ, which relate to the coordinates in the -frame by the affine
transformation

IrOQ = IrOP +AIK K rPQ. (2)
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Using so-called homogenous coordinates, that is, extending the triple by an entry that is 1, the affine relation (2) can be
written as the linear transformation

(

IrOQ

1

)

= H

(

K rPQ

1

)

, with H =

(
AIK IrOP

01×3 1

)

. (3)

The matrix H is called the Euclidean transformation matrix, which transforms the coordinates of a point in the-frame
to the coordinates in the -frame. The Euclidean transformation matrix H is an element of the special Euclidean group
SE(3), which is considered here as a Lie subgroup of the general linear group GL(4) with the matrix multiplication as
group operation. While this article can be read with a rudimentary knowledge of matrix Lie groups, the interested reader
is referred to [25, Appendix A] for a deeper understanding of the applied concepts. Direct computation readily verifies
that the inverse of H is

H−1

=

(
AT

IK −AT
IK IrOP

01×3 1

)

. (4)

Both points and base vectors can be considered as functions of time t or some other parameters resulting in
parameter-dependent coordinates. The coordinates of a moving point P = P(t) ∈ 3 in the inertial -frame are given by
the time-dependent triple IrOP = IrOP(t) ∈ R3.

3 COSSERAT ROD THEORY

3.1 Centerline and cross-section orientations

Let 𝜉 ∈  = [0, 1] ⊂ R denote the centerline parameter and(𝜉) ⊂ R2 the cross-section area at 𝜉. Considering the rod as
a three-dimensional continuum, a point Q of the rod can be addressed by

IrOQ(𝜉, 𝜂, 𝜁 , t) = IrOP(𝜉, t) +AIK(𝜉, t) K rPQ(𝜂, 𝜁), (𝜉, 𝜂, 𝜁) ∈  =  ×( ) ⊂ R
3
. (5)

Herein, IrOP are the components with respect to the inertial I-basis of the time-dependent centerline curve rOP, where
the subscript P refers to the centerline point, see Figure 1. At each centerline point rOP(𝜉, t), there is a cross-section-fixed
K-basis determined by the base vectors eK

i = eK
i (𝜉, t), i ∈ {x, y, z}, which are functions of the centerline parameter 𝜉

and time t. According to (1), the transformation matrix AIK(𝜉, t) ∈ SO(3) relates the representation of a vector in the
cross-section-fixed K-basis to its representation in the inertial I-basis. Consequently, the function AIK captures the
cross-section orientations, which vary with time and along the rod. Moreover, K rPQ denotes the cross-section coordinates,
which are independent of time.

F I G U R E 1 Kinematics of the centerline curve with their attached orthonormal basis vectors.
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The centerline point P together with the cross-section-fixed K-basis determine the -frame given by the set  =
{P, eK

x , eK
y , eK

z }. Comparison of (5) with (3) reveals the affine structure of the Cosserat rod kinematics and allows to write
the motion of the rod (5) in homogenous coordinates as

(

IrOQ

1

)

= H

(

K rPQ

1

)

, with H(𝜉, t) =

(
AIK(𝜉, t) IrOP(𝜉, t)

01×3 1

)

∈ SE(3). (6)

The Euclidean transformation matrix H(𝜉, t) relates the coordinates of point Q in the cross-section-fixed -frame to
the inertial -frame. For the application at hand, particularly the group structure of H(𝜉, t) will be of relevance.

3.2 Velocities, variations, and curvature

We denote by ̇(•) and (•)
,𝜉

the derivatives with respect to time t and centerline parameter 𝜉, respectively. The variation of
a function is indicated by 𝛿(•). The centerline velocity IvP and the virtual displacement I𝛿rP of the centerline are given
by the time derivative as well as the variation of the centerline curve

IvP = (IrOP)⋅, I𝛿rP = 𝛿 (IrOP) . (7)

The angular velocity of the cross-section-fixed K-basis relative to the inertial I-basis, in components with respect to the
K-basis, is defined by

K𝝎IK ∶= j−1
SO(3)

(
K 𝝎̃IK

)
, with K 𝝎̃IK ∶= AT

IK(AIK)⋅, (8)

where jSO(3) ∶ R3 → 𝔰𝔬(3) = {B ∈ R3×3|BT = −B} is the linear and bijective map such that 𝝎̃r = jSO(3)(𝝎)r = 𝝎 × r for all
𝝎, r ∈ R3. Analogously, we define the virtual rotation as

K𝛿𝝓IK ∶= j−1
SO(3)

(

K𝛿̃𝝓IK

)

, with K𝛿̃𝝓IK ∶= AT
IK𝛿 (AIK) , (9)

and the scaled curvature as

K𝜿IK ∶= j−1
SO(3)

(

K
̃

𝜿IK

)

, with K
̃

𝜿IK ∶= AT
IKAIK,𝜉 . (10)

3.3 Objective strain measures

For the reference centerline curve Ir0
OP, the length of the rod’s tangent vector is J = ||Ir0

OP,𝜉||. Thus, for a given centerline
parameter 𝜉, the reference arc length s is defined by

s(𝜉) ∶=
∫

𝜉

0
J(𝜉) d𝜉. (11)

Following [24], the derivative with respect to the reference arc length s of a function f = f(𝜉, t) ∈ R3 can be defined as

f
,s(𝜉, t) ∶= f

,𝜉
(𝜉, t)∕J(𝜉). (12)

The objective strain measures of a Cosserat rod, compare [2, Section 8.2 and 8.6], are

K𝜿IK = K𝜿IK∕J and K𝜸 = K𝜸∕J, with K𝜸 ∶= (AIK)TIrOP,𝜉 , (13)

which can be gathered in the six-dimensional tuple 𝜺 = (K𝜸, K𝜿IK) ∈ R6. Therein, the dilatation and shear strains are
captured by K𝜸, while K𝜿IK measures torsion and bending.
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3.4 Internal virtual work

Without loss of generality, we restrict ourselves to hyperelastic material models where the strain energy density with
respect to the reference arc length W = W(K𝜸, K𝜿IK ; 𝜉) depends on the strain measures (13) and possibly explicitly on the
centerline parameter 𝜉. By that, the internal virtual work functional is defined as

𝛿W int ∶= −
∫


𝛿WJd𝜉 = −
∫


{
𝛿(K𝜸)TKn + 𝛿(K𝜿IK)TKm

}
d𝜉, (14)

where we have introduced the constitutive equations

Kn ∶=
(
𝜕W
𝜕K𝜸

)T

, Km ∶=
(

𝜕W
𝜕K𝜿IK

)T

. (15)

Note that even in the inelastic case, where no strain energy density W is available, the internal virtual work (14) can be
used, with internal forces and moments Kn and Km given by different constitutive laws, [17]. Evaluation of 𝛿(K𝜸) and
𝛿(K𝜿IK) (see [25, Appendix B] for details) within the internal virtual work functional (14) leads to the following expression

𝛿W int = −
∫


{

(I𝛿rP,𝜉)TAIK Kn +
[
(K𝛿𝝓IK),𝜉

]T
Km − (K𝛿𝝓IK)T

[
K𝜸 × Kn + K𝜿IK × Km

]}

d𝜉. (16)

As in [46, eq. 2.10], we introduce the diagonal elasticity matrices C𝜸 = diag(ke, ks, ks) and C𝜿 = diag(kt, kby , kbz ) with
constant coefficients. In the following, the simple quadratic strain energy density

W(K𝜸, K𝜿IK ; 𝜉) =
1
2
(

K𝜸 − K𝜸
0)TC𝜸

(
K𝜸 − K𝜸

0) + 1
2
(

K𝜿IK − K𝜿
0
IK
)TC𝜿

(
K𝜿IK − K𝜿

0
IK
)
, (17)

is used, where the superscript 0 refers to the evaluation in the rod’s reference configuration.

3.5 External virtual work

Assume the line distributed external forces Ib = Ib(𝜉, t) ∈ R3 and moments Kc = Kc(𝜉, t) ∈ R3 to be given as densities
with respect to the reference arc length. Moreover, for i ∈ {0, 1}, point forces Ibi = Ibi(t) ∈ R3 and point moments K ci =
K ci(t) ∈ R3 can be applied to the rod’s boundaries at 𝜉0 = 0 and 𝜉1 = 1. The corresponding external virtual work functional
is defined as

𝛿Wext ∶=
∫


{
(I𝛿rP)TIb + (K𝛿𝝓IK)TKc

}
Jd𝜉 +

1∑

i=0

[
(I𝛿rP)TIbi + (K𝛿𝝓IK)TK ci

]

𝜉i
. (18)

3.6 Inertial virtual work

Let 𝜌0 = 𝜌0(𝜉) denote the rod’s scalar-valued mass density per unit reference volume and dA the cross-section surface
element. It is convenient to define the following abbreviations

A
𝜌0(𝜉) ∶= ∫

(𝜉)
𝜌0 dA, K I

𝜌0(𝜉) ∶= ∫
(𝜉)

K r̃PQ (K r̃PQ)T𝜌0 dA. (19)

Further, using the mass differential dm = 𝜌0JdAd𝜉 and expressing the variation and second time derivative of rOQ in terms
of the rod’s kinematics (5), in case rOP is the line of centroids, the inertial virtual work functional of the Cosserat rod can
be written as (cf. [17, eq. 9.54] for a coordinate-free version)

𝛿Wdyn ∶= −
∫


(I𝛿rOQ)TI r̈OQ dm = −
∫


{
(I𝛿rP)TA

𝜌0(Ivp)⋅ + (K𝛿𝝓IK)T(K I
𝜌0(K𝝎IK)⋅ + K 𝝎̃IK K I

𝜌0 K𝝎IK)
}

Jd𝜉. (20)



8 of 21 EUGSTER and HARSCH

4 PETROV–GALERKIN FINITE ELEMENT FORMULATION

4.1 Lagrangian basis functions

For the discretization, the rod’s parameter space  is divided into nel linearly spaced element intervals  e = [𝜉e
, 𝜉

e+1) via
J=

⋃nel−1
e=0 Je. For a pth order finite element, the closure of each of the intervals  e contains p + 1 evenly spaced points 𝜉e

i ∈
cl( e) = [𝜉e

, 𝜉

e+1] with i ∈ {0, … , p} such that 𝜉e
0 = 𝜉

e
< 𝜉

e
1 < · · · < 𝜉

e
p = 𝜉e+1. Note, for e ∈ {0, … ,nel − 2}, the points

𝜉

e
p = 𝜉e+1

0 denote the same point 𝜉e+1, which is the boundary point of the adjacent element intervals. It is convenient to
use both indexations in the following. For a given element interval  e = [𝜉e

, 𝜉

e+1), the pth order Lagrange basis function
and derivative of node i ∈ {0, … , p} are

Np,e
i (𝜉) =

∏

0jp≤j≠i

𝜉 − 𝜉e
j

𝜉

e
i − 𝜉

e
j
, Np,e

i,𝜉 (𝜉) = Np,e
i (𝜉)

p∑

k0=k≠i

1
𝜉 − 𝜉e

k
, (21)

where 𝜉e
i , 𝜉e

j , and 𝜉e
k are the points contained in the set {𝜉e

0 = 𝜉
e
, 𝜉

e
1, … , 𝜉

e
p = 𝜉e+1}.

4.2 Nodal coordinates

The here discussed interpolation strategies approximate the centerline curve IrOP and the cross-section orientations AIK
by interpolating nodal centerline points IrOPe

i
(t) ∈ R3 and nodal transformation matrices AIKe

i
(t) ∈ SO(3). For each node

i ∈ {0, … , p}within element e ∈ {0, … ,nel − 1}, it will hold that IrOPe
i
(t) = IrOP(𝜉e

i , t) and AIKe
i
(t) = AIK(𝜉e

i , t). Since the
nodal transformation matrices AIKe

i
are elements of SO(3), which is a three-dimensional submanifold of the general linear

group GL(3), a parametrization is required. To obtain a minimal number of nodal coordinates, we propose nodal total
rotation vectors 𝝍 e

i (t) ∈ R3, which parameterize the orientations using the Rodrigues’ formula

AIKe
i
= ExpSO(3)(𝝍 e

i ) = 13×3 +
sin(||𝝍 e

i ||)
||𝝍 e

i ||
𝝍̃

e
i +

1 − cos(||𝝍 e
i ||)

||𝝍 e
i ||

2 (𝝍̃ e
i )2 ∈ SO(3). (22)

Note the introduction of a “capitalized” SO(3)-exponential map ExpSO(3) ∶ R3 → SO(3), which is defined by ExpSO(3) ∶=
expSO(3)◦jSO(3), where the lower case counterpart expSO(3) ∶ 𝔰𝔬(3) → SO(3) denotes the actual SO(3)-exponential map. In
the following, we will use this abuse in naming for other Lie group mappings as well. Since (22) has a removable singular-
ity at 𝝍 e

i = 0, for small angles ||𝝍 e
i || < 𝜖

1, it is beneficial to use the first-order approximation ExpSO(3)(𝝍 e
i ) = 13×3 + 𝝍̃ e

i ∈
SO(3).

Accordingly, the N = (pnel + 1) nodal generalized position coordinates qe
i (t) = (IrOPe

i
,𝝍

e
i )(t) ∈ R6 are given by the

nodal centerline points IrOPe
i

and the nodal total rotation vectors 𝝍 e
i resulting in nq = 6N positional degrees of freedom

of the discretized rod. The nodal quantities can be assembled in the global tuple of generalized position coordinates
q(t) =

(

q0
0, … ,q0

p−1, … ,qe
0, … ,qe

p−1, … ,qnel−1
0 , … ,qnel−1

p−1 ,q
nel−1
p

)

(t) ∈ R
nq . For e ∈ {0, … ,nel − 2}, the coordinates

qe
p = qe+1

0 refer to the same nodal coordinates. Introducing an appropriate Boolean connectivity matrix Ce ∈ R
6(p+1)×nq , the

element generalized coordinates qe(t) =
(
qe

0, … ,qe
p
)
(t) ∈ R6(p+1) can be extracted from the global generalized position

coordinates q via qe = Ceq. With two further Boolean connectivity matrices Cr,i,C𝝍 ,i ∈ R3×6(p+1), the centerline points
IrOPe

i
and total rotation vectors 𝝍 e

i at node i in element e can be extracted from the element generalized coordinates qe

via IrOPe
i
= Cr,iqe and 𝝍 e

i = C𝝍 ,iqe. The Boolean connectivity matrices are only used for the mathematical description of
these extraction procedures. During a numerical implementation it is advisable to slice arrays instead of multiply them
with Boolean matrices.

4.3 R
12-interpolation

Following [7, 42], both the centerline and the cross-section orientations are approximated by the piecewise interpolation
with pth order Lagrangian polynomials (21)1, which can be written as

1Here and for all subsequent first-order approximations a critical value of 𝜖 = 10−6 was used.
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IrOP(𝜉,q) =
nel−1∑

e=0
𝜒 e (𝜉)

p∑

i=0
Np,e

i (𝜉)IrOPe
i
, AIK(𝜉,q) =

nel−1∑

e=0
𝜒 e(𝜉)

p∑

i=0
Np,e

i (𝜉)AIKe
i
(q), (23)

where we have used the characteristic function 𝜒 e ∶  → {0, 1}, which is one for 𝜉 ∈  e = [𝜉e
, 𝜉

e+1) and zero elsewhere.
In contrast to [7, 42], the nodal cross-section orientations AIKe

i
are not coordinates of the system, but are parametrized

by the corresponding nodal total rotation vector 𝝍 e
i in agreement with AIKe

i
(q) = ExpSO(3)(𝝍 e

i ). Except at the nodes, the
polynomial interpolation (23)2 leads to non-orthogonal matrices AIK . This inconsistency with the continuous formula-
tion is accepted as a discretization error that diminishes for decreasing element sizes or increasing polynomial degree.
Since (23) interpolates the three nodal position coordinates and the nine entries of the nodal transformation matrix, the
interpolation is called R12-interpolation.

The discretized dilatation and shear strains contained in K𝜸 are computed by inserting the interpolation (23) into
(13)2. As the interpolated transformation matrices are not orthogonal, the curvature vector cannot be directly extracted
by j−1

SO(3). Hence, the discretized version is computed as

K𝜿IK = j−1
SO(3)

(
Skw(AT

IKAIK,𝜉)
)
∕J, (24)

where the map Skw(A) = 1
2
(A −AT) ∈ 𝔰𝔬(3) extracts the skew-symmetric part of the matrix A ∈ R3×3. See Figure 2A,B

for the discrete strain measures of a quarter circle approximated by one element with p = 1 and p = 2, respectively. The
objectivity of the discrete strain measures is proven in [7].

4.4 R
3 × SO(3)-interpolation

The objective R3 × SO(3)-interpolation was originally proposed by Crisfield and Jelenić [12], who recognized that most
rod finite elements at that time do not preserve objectivity after discretization. In our investigations, we will only consider
the easiest two-node element of [12]. The centerline is discretized by the piecewise linear interpolation

IrOP(𝜉,q) =
nel−1∑

e=0
𝜒 e (𝜉)

(
N1,e

0 (𝜉)IrOPe
0
+ N1,e

1 (𝜉)IrOPe
1

)
. (25)

The interpolation of the cross-section orientations is constructed as follows. First, the nodal cross-section orientations
AIKe

0
(q) = ExpSO(3)(𝝍 e

0) and AIKe
1
(q) = ExpSO(3)(𝝍 e

1) are evaluated. Second, the relative change of orientation AKe
0Ke

1
=

(AIKe
0
)TAIKe

1
is computed, from which the relative rotation vector

𝝍
e
01 = LogSO(3)

(
AKe

0Ke
1

)
, (26)

is extracted by using the inverse of ExpSO(3) given by the SO(3)-logarithm map

LogSO(3)(A) =
𝜔(A)

2 sin (𝜔(A))

⎛
⎜
⎜
⎜
⎝

A32 − A23

A13 − A31

A21 − A12

⎞
⎟
⎟
⎟
⎠

, with 𝜔(A) = arccos
(1

2
(tr(A) − 1)

)

and A ∈ SO(3). (27)

Note that (27) has a singularity for a relative rotation angle 𝜔 = ||𝝍 e
01|| = 𝜋. Hence, the interpolation strategy is restricted

to applications in which ||𝝍 e
01|| < 𝜋. A discretization with a higher number of elements always cures this problem. Lastly,

the cross-section orientations are discretized by the ansatz

AIK(𝜉,q) =
nel−1∑

e=0
𝜒 e (𝜉)AIKe

0
(q)AKe

0K(𝜉,q), with AKe
0K(𝜉,q) = ExpSO(3)

(
N1,e

1 (𝜉) 𝝍 e
01(q)

)
. (28)

Inside element e, the interpolation (28) can be understood as a composition of a reference orientation AIKe
0

with a relative
change of orientation AKe

0K scaling with 𝜉 such that AKe
0K(𝜉e

,q) = 13×3 and AKe
0K(𝜉e+1

,q) = AKe
0Ke

1
.
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(A)

(B)

(C)

(D)

F I G U R E 2 Volume rendering with base vectors and strain measures of deformed configurations. The nodal rotation vectors are given
by 𝝍 i = (0, 𝜓i, 0) and the nodal centerline by I rOPi

= (1 − cos(𝜓i), 0, sin(𝜓i))2∕𝜋 with 𝜓i = 𝜋

2
i

N−1
.

While again K𝜸 is approximated by inserting the interpolations (25) and (28) into (13)2, in [12] it is shown that the
discretized curvature simplifies to the piecewise constant curvature

K𝜿IK(𝜉,q) =
nel−1∑

e=0
𝜒 e (𝜉)

𝝍
e
01(q)

𝜉

e+1 − 𝜉e
1
J
. (29)

Consequently, this interpolation can represent the constant curvatures of the quarter circle with just one element, see
Figure 2C.
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4.5 SE(3)-interpolation

In the SE(3)-interpolation, originally proposed by Sonneville et al. [47] and recently taken up in [25], the idea from the
R3 × SO(3)-interpolation to use relative rotation vectors is extended to the interpolation of nodal Euclidean transforma-
tion matrices with the aid of relative twists. This leads to a strategy coupling the interpolations of centerline points and
cross-section orientations. Also here, only a two-node element is presented.

First, the nodal Euclidean transformation matrices

He
0
(q) =

(
ExpSO(3)(𝝍 e

0) IrOPe
0

03×1 1

)

and He
1
(q) =

(
ExpSO(3)(𝝍 e

1) IrOPe
1

03×1 1

)

, (30)

are evaluated. Second, the relative Euclidean transformation He
0

e
1
= (He

0
)−1He

1
is computed, from which the relative

twist vector

𝜽
e
01 = LogSE(3)

(
He

0
e
1

)
=

(
T−T

SO(3)(𝝍
e
01) Ke

0
rPe

0Pe
1

𝝍
e
01

)

with 𝝍
e
01 = LogSO(3)

(
AKe

0Ke
1

)
, (31)

is extracted by the SE(3)-logarithm map

LogSE(3)

[(
A r

01×3 1

)]

=

(
T−T

SO(3)
(
LogSO(3)(A)

)
r

LogSO(3)(A)

)

∈ R
6
, where A ∈ SO(3), r ∈ R

3
. (32)

The SE(3)-logarithm map (32) requires the inverse of the SO(3)-tangent map given as

T−1
SO(3)(𝝍) = 13×3 +

1
2
𝝍̃ +

(

1 −
||𝝍||

2
cot

(
||𝝍||

2

))
𝝍̃

2

||𝝍||2
. (33)

As the extraction of the relative twist (31) requires the SO(3)-logarithm map (27), also the SE(3)-interpolation contains
a singularity for a relative rotation angle 𝜔 = ||𝝍 e

01|| = 𝜋 restricting one element not to be bent more than 180◦. More-
over, the removable singularity of the inverse tangent map at 𝝍 = 0 is avoided for ||𝝍|| < 𝜖 by using the first-order
approximation T−1

SO(3)(𝝍) = 13×3 + 1
2
𝝍̃ .

For the interpolation, we further require the SE(3)-exponential map

ExpSE(3)

[(
d
𝝍

)]

=

(
ExpSO(3)(𝝍) TT

SO(3)(𝝍)d
01×3 1

)

∈ SE(3), where d,𝝍 ∈ R
3
, (34)

which is determined by the SO(3)-exponential map (22) and the SO(3)-tangent map, see [18, Section 4.2],

TSO(3)(𝝍) = 13×3 +
(

cos(||𝝍||) − 1
||𝝍||2

)

𝝍̃ +
(

1 − sin(||𝝍||)
||𝝍||

)
𝝍̃

2

||𝝍||2
, (35)

with the first-order approximation TSO(3)(𝝍) = 13×3 − 1
2
𝝍̃ for ||𝝍|| < 𝜖. The interpolation of the nodal Euclidean transfor-

mations is then defined as

H(𝜉,q) =
nel−1∑

e=0
𝜒 e(𝜉)He

0
(q)He

0
(𝜉,q), with He

0
(𝜉,q) = ExpSE(3)

(
N1,e

1 (𝜉) 𝜽e
01(q)

)
. (36)

Inside element e, the interpolation (36) can be understood as a composition of a reference Euclidean trans-
formation He

0
with a relative Euclidean transformation He

0
scaling with 𝜉 such that He

0
(𝜉e
,q) = 14×4 and

He
0
(𝜉e+1

,q) = He
0

e
1
. Note the striking resemblance of (28) with (36), where just SO(3)- and SE(3)-objects switch

places.
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According to (6), the Euclidean transformation matrices H encode the cross-section orientations and the centerline
curve. Explicit computation of the components in (36) leads to the rod’s centerline discretization

IrOP(𝜉,q) =
nel−1∑

e=0
𝜒 e (𝜉)

(

IrOPe
0
+ N1,e

1 (𝜉) AIKe
0
(q)TT

SO(3)
(

N1,e
1 (𝜉)𝝍 e

01(q)
)

T−T
SO(3)

(
𝝍

e
01(q)

)
Ke

0
rPe

0Pe
1
(q)

)

, (37)

and the cross-section orientations

AIK(𝜉,q) =
nel−1∑

e=0
𝜒 e (𝜉)AIKe

i
(q)ExpSO(3)

(
N1,e

1 (𝜉) 𝝍 e
01(q)

)
, (38)

which are interpolated in the same way as in the R3 × SO(3)-interpolation strategy (28).
Besides the preservation of objectivity, in [25], it is shown that the SE(3)-interpolation leads to piecewise constant

strains

𝜺(𝜉,q) =

(

K𝜸(𝜉,q)

K𝜿IK(𝜉,q)

)

=
nel−1∑

e=0
𝜒 e (𝜉)

𝜽
e
01(q)

𝜉

e+1 − 𝜉e
1
J
. (39)

A fact that has already been recognized in [47]. See Figure 2D for the quarter circle example. Since the piecewise two-node
SE(3)-interpolation can exactly represent constant strains within each element, neither membrane nor shear locking will
appear with this discretization, see [25] for more details concerning the definition of locking. As we need no further
numerical strategies to avoid locking as for instance re-interpolation of strain measures [20, 34] or mixed formulations
[6, 43, 44], this interpolation strategy is called intrinsically locking-free.

4.6 Interpolation of generalized virtual displacements and velocities

If applying a Bubnov–Galerkin projection method, each of the just introduced interpolation strategy would lead
to a different approximation of the virtual displacements and virtual rotations by inserting (23), (25) and (28),
or (37) and (38) into the definitions of the virtual displacements (7)2 and virtual rotations (9). Especially for the
R3 × SO(3)- and the SE(3)-interpolations lengthy and cumbersome expressions can be expected in the discretiza-
tion of the virtual work functionals. Expressions become even longer in a subsequent linearization required for
a gradient-based solution strategy such as the common Newton–Raphson method. Therefore, already Jelenić and
Crisfield [31] suggested the use of virtual rotation fields that do not follow from a variation of the ansatz func-
tion, that is, the interpolation of the cross-section orientations (28). Here, we take up again this idea, but formulate
the virtual work functionals in terms of virtual rotations expressed in the cross-section-fixed K-basis and not in the
inertial I-basis.

At the same N nodes as for the nodal generalized position coordinates, we introduce the nodal generalized virtual
displacements 𝛿se

i (t) = (I𝛿rPe
i
, Ke

i
𝛿𝝓IKe

i
)(t) ∈ R6 given by the nodal centerline displacement I𝛿rPe

i
(t) ∈ R3 and the nodal

virtual rotation Ke
i
𝛿𝝓IKe

i
(t) ∈ R3. In analogy to the virtual displacements, we also introduce nodal generalized veloci-

ties ue
i (t) = (Iv

e
Pi
(t), Ke

i
𝝎IKe

i
(t)) ∈ R6 given by the nodal centerline velocity IvPe

i
(t) ∈ R3 and the nodal angular velocity

Ke
i
𝝎IKe

i
(t) ∈ R3. Similar to the generalized position coordinates q, the nodal generalized virtual displacements and the

nodal generalized velocities are assembled in the global tuple of generalized virtual displacements 𝛿s(t) ∈ R
nq and global

tuple of generalized velocities u(t) ∈ R
nq . Again, the Boolean connectivity matrix Ce extracts the element virtual displace-

ments 𝛿se(t) = (𝛿se
0, … , 𝛿se

p)(t) ∈ R6(p+1) and the element generalized velocities ue(t) = (ue
0, … ,ue

p)(t) ∈ R6(p+1) from the
global quantities via 𝛿se = Ce𝛿s and ue = Ceu. Further, the nodal virtual centerline displacements I𝛿rPe

i
and centerline

velocities IvPe
i

can be extracted from the element generalized virtual displacements 𝛿se and velocities ue via I𝛿rPe
i
= Cr,i𝛿se

and IvPe
i
= Cr,iue, respectively. Identical extraction operations hold for the nodal virtual rotations Ke

i
𝛿𝝓IKe

i
= C𝝍 ,i𝛿se and

angular velocities Ke
i
𝝎IKe

i
= C𝝍 ,iue.

In the sense of a Petrov–Galerkin projection [39], independently of the chosen interpolation strategy for the centerline
points and the cross-section orientations, the nodal virtual displacements and rotations are interpolated by pth order
Lagrangian basis functions (21) in agreement with
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I𝛿rP(𝜉, 𝛿s) =
nel−1∑

e=0
𝜒 e(𝜉)

p∑

i=0
Np,e

i (𝜉)I𝛿rPe
i
, K𝛿𝝓IK(𝜉, 𝛿s) =

nel−1∑

e=0
𝜒 e (𝜉)

p∑

i=0
Np,e

i (𝜉)Ke
i
𝛿𝝓IKe

i
. (40)

In order to obtain a constant and symmetric mass matrix in the discretized formulation, see (46) below, the velocities
are considered as independent fields and are interpolated with the same interpolation as the virtual displacements and
rotations. Explicitly, they are interpolated by pth order Lagrangian polynomials

IvP(𝜉,u) =
nel−1∑

e=0
𝜒 e (𝜉)

p∑

i=0
Np,e

i (𝜉)IvPe
i
, K𝝎IK(𝜉,u) =

nel−1∑

e=0
𝜒 e(𝜉)

p∑

i=0
Np,e

i (𝜉)Ke
i
𝝎IKe

i
. (41)

4.7 Kinematic differential equations

The independent introduction of velocity fields (41) requires a coupling between position coordinates q and velocity
coordinates u. This coupling is satisfied at each node, where the nodal generalized velocities are related to the time
derivative of the nodal generalized position coordinates by the nodal kinematic differential equation

q̇e
i =

(

I ṙOPe
i

𝝍̇
e
i

)

=

(
13×3 03×3

03×3 T−1
SO(3)(𝝍

e
i )

)(

IvPe
i

Ke
i
𝝎IKe

i

)

= Be
i (q

e
i )u

e
i . (42)

See [18, Section 4] for a proof of the kinematic differential equation between angular velocity and time derivative of
the total rotation vector. Since the inverse of the SO(3)-tangent map (33) used in (42) exhibits singularities for ||𝝍|| =
k2𝜋 with k = 0, 1, 2, … , we apply the following strategy to avoid them. As before, the removable singularity at 𝝍 = 0 is
avoided for ||𝝍|| < 𝜖 by using the first-order approximation T−1

SO(3)(𝝍) = 13×3 + 1
2
𝝍̃ . For k > 0, the concept of complement

rotation vectors [8, 27] is applied. Due to the Petrov–Galerkin projection, it is sufficient to introduce a nodal update that is
performed after each successful time step. This update, which corresponds to a change of coordinates for the orientation
parametrization, is given by

𝝍 =

{
𝝍 , ||𝝍|| ≤ 𝜋,

𝝍
C = (1 − 2𝜋∕||𝝍||)𝝍 , ||𝝍|| > 𝜋.

(43)

It is easy to see that there is no difference whether the nodal transformation matrix AIKe
i

is described by the rota-
tion vector 𝝍 e

i or by its complement (𝝍 e
i )

C =
(
1 − 2𝜋∕||𝝍 e

i ||
)
𝝍

e
i , because ExpSO(3)(𝝍 e

i ) = ExpSO(3)
(
(𝝍 e

i )
C). In [27], it

is also shown that Ke
i
𝝎IKe

i
= TSO(3)(𝝍 e

i )𝝍̇
e
i = TSO(3)

(
(𝝍 e

i )
C) [(𝝍 e

i )
C]⋅. Hence, neither the nodal kinematic differential

equations (42) nor the virtual work functionals must be updated upon a change of coordinates (43). For reason-
able time steps a both minimal and singularity-free parametrization of SO(3) is obtained. Note that the proposed
strategy of using the complement rotation vector is only required for dynamic simulation, due to the appearing sin-
gularity in (42); for static equilibrium problems only the already discussed singularities within one element must be
considered. However, these singularities are never a problem, as a higher number of elements always resolves this
problem.

4.8 Discrete virtual work functionals

With the introduced interpolation strategies for ansatz and test functions, we can now discretize the virtual work func-
tionals. In this article, we will discuss the following formulations, all of which have structurally the same discrete
virtual work functionals. For p ∈ {1, 2}, the R12-interpolation with pth order Lagrangian polynomials is combined with
pth order approximations of the generalized virtual displacements and velocities. Both the two-node R3 × SO(3)- and
SE(3)-interpolations allow only for approximations of the generalized virtual displacements and velocities with linear
Lagrangian polynomials, that is, p = 1 for (40) and (41).

Inserting (40) together with the corresponding approximations for centerline, cross-section orientations and strain
measures into (16), the continuous internal virtual work is approximated by
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𝛿W int(q; 𝛿s) = 𝛿sTf int(q), f int(q) =
nel−1∑

e=0
CT

e f int
e (Ceq),

f int
e (qe) = −

∫
 e

p∑

i=0

{

Np,e
i,𝜉 CT

r,iAIK Kn + Np,e
i,𝜉 CT

𝝍 ,iKm − Np,e
i CT

𝝍 ,i
(

K𝜸 × Kn + K𝜿IK × Km
)}

d𝜉, (44)

where we have introduced the internal forces f int and their element contribution f int
e . Above and in the subsequent treat-

ment, we partly suppress the function arguments, which should be clear from the context. Similarly, the external virtual
work (18) is discretized by

𝛿Wext(q; 𝛿s) = 𝛿sTf ext(q), f ext(q) =
nel−1∑

e=0
CT

e f ext
e (Ceq),

f ext
e (qe) =

∫
 e

p∑

i=0

{

Np,e
i CT

r,iIb + Np,e
i CT

𝝍 ,iKc
}

Jd𝜉 + CT
nel−1

[
CT

r,pIb1 + CT
𝝍 ,pK c1

]

𝜉=1 + CT
0

[

CT
r,0Ib0 + CT

𝝍 ,0K c0

]

𝜉=0
, (45)

where we have introduced the external forces f ext with their element contributions f ext
e . Finally, inserting (41) and (40)

into the inertial virtual work functional (20) leads to the discrete counterpart

𝛿Wdyn(u; 𝛿s) = −𝛿sT {
Mu̇ + fgyr(u)

}
, (46)

where we have made use of the symmetric and constant mass matrix

M =
nel−1∑

e=0
(Ce)TMeCe, Me =

∫
 e

p∑

i=0

p∑

k=0
Np,e

i Np,e
k

{
A
𝜌0(Cr,i)TCr,k + (C𝝍 ,i)TK I

𝜌0 C𝝍 ,k
}

Jd𝜉, (47)

and the gyroscopic forces

fgyr(u) =
nel−1∑

e=0
CT

e fgyr
e (Ceu), fgyr

e (ue) =
∫
 e

p∑

i=0
Np,e

i

{

CT
𝝍 ,iK 𝝎̃IK K I

𝜌0 K𝝎IK

}

Jd𝜉. (48)

Due to the introduction of an independent velocity field (41), the inertial virtual work contributions are for all two-node
formulations identical. Moreover, it should be underlined that the mass matrix is constant because the inertial virtual
work functional is formulated with angular velocities and virtual rotations expressed in the cross-section-fixed K-bases.

Element integrals of the form ∫
 e f (𝜉)d𝜉 arising in the discretized internal, external and gyroscopic forces, as well as in

the mass matrix, are subsequently computed using an m-point Gauss–Legendre quadrature rule. The number of quadra-
ture points depends on the chosen polynomial degree p. Full integration requires mfull = ⌈(p + 1)2∕2⌉ quadrature points,
where ⌈x⌉ = min{k ∈ Z|k ≥ x}. As it will turn out in Section 5.1, this choice leads to the well known locking behavior.
Thus, only the internal virtual work contributions are evaluated using a reduced number of integration points mred = p.

A discussion about the conservation properties of the just presented semi-discrete formulation can be found in [25,
Appendix D]. While the discrete total energy and linear momentum of the rod is contained in discrete virtual work func-
tionals, there is no algorithmic access to the discrete angular momentum. Consequently, it is not possible to construct a
numerical time integration scheme that preserves the discrete total angular momentum. If such a conservation property
is crucial for a specific application, the present rod formulation can easily be modified, see also [25, Appendix D]. Instead
of using the nodal virtual rotations Ki𝛿𝝓IKi

(t) ∈ R3 expressed in the cross-section-fixed basis Ki, the nodal virtual rota-
tions I𝛿𝝓IKi

(t) ∈ R3 expressed in the inertial basis I are used. Analogously, the nodal angular velocities Ki𝝎IKi(t) ∈ R3 are
replaced by I𝝎IKi(t) ∈ R3. This comes at the price of a configuration dependent mass matrix.

4.9 Equations of motion and static equilibrium

The principle of virtual work states that the sum of all virtual work functional has to vanish for arbitrary virtual
displacements [14, Chapter 8], that is,

𝛿W tot = 𝛿W int + 𝛿Wext + 𝛿Wdyn !
= 0 ∀𝛿s,∀t. (49)
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Thus, the equations of motion

u̇ = M−1
(

fgyr(u) + f int(q) + f ext(q)
)

, (50)

have to be fulfilled for each instant of time t. Further, the nodal generalized velocities ue
i are related to the time derivatives

of the nodal generalized position coordinates q̇e
i via the nodal kinematic differential equation (42), which can be assem-

bled to a global kinematic differential equation of the form q̇ = B(q)u. Depending on the specific application, either the
system of ODEs

q̇ = B(q)u,

u̇ = M−1
(

fgyr(u) + f int(q) + f ext(q)
)

, (51)

or the nonlinear generalized force equilibrium

f int(q) + f ext(q) = 0, (52)

is obtained. The system of ODEs can be solved using standard higher-order ODE solvers (e.g., family of explicit [22] and
implicit [23, 29] Runge–Kutta methods or structure-preserving algorithms [21, 30]). In order to apply well-established
methods from structural dynamics like the Newmark-𝛽 [37] or the generalized-𝛼 method [9], a slightly modified update
of the generalized coordinates has to be applied, see eqs. (37a) and (37b) of [3]. Alternatively, a generalized-𝛼 formulation
for first-order differential equations [28] can be used without any modifications. The nonlinear generalized force equi-
librium (52) is solved by any root-finding algorithm, for example, Newton–Raphson, Riks. Note that a system of linear
equations with a non-symmetric matrix must be solved in each iteration.

5 NUMERICAL EXPERIMENTS

5.1 Cantilever experiment

We consider an initially straight cantilever rod of length L = 1 × 103 with a quadratic cross-section of width w subjected
to a tip moment K c1 = (0, 0, 0.5𝜋kb∕L) and an out-of-plane tip load Ib1 = AIK (0, 0, 0.5𝜋kb∕L2). In order to investigate
the presence of locking, different slenderness ratios 𝜌 = L∕w ∈ {1 × 10−1

, 1 × 102
, 1 × 103

, 1 × 104} are considered, that
is, widths w ∈ {1 × 102

, 1 × 10−1
, 1, 1 × 10−1}. Further, the elastic constants are given in terms of the Young’s and shear

moduli E = 1 and G = 0.5. That is, axial stiffness ke = EA, shear stiffness ks = GA, bending stiffnesses kb = kby = kbz = EI
and torsional stiffness kt = 2GI, together with A = w2 and I = w4∕12. A visualization of the deformed configurations for
all different slenderness ratios is shown in Figure 3.

The required element integrals of the presented rod formulations are integrated using (i) mfull = ⌈(p + 1)2∕2⌉ and
(ii) mred = p quadrature points. Further, the static equilibrium configurations were found by using a Newton–Raphson
method with absolute tolerances atol in terms of the max error of the total generalized forces, given in Table 1. The
final loads were applied with 50 load increments. Prescribed kinematic boundary conditions were incorporated into the
principle of virtual work using perfect bilateral constraints [18].

As there is no analytical solution for this load case, we require a reference solution whose choice is postponed to the
discussion. We introduce the root-mean-square error of relative twists

ek
𝜽
= 1

k

√
√
√
√

k−1∑

i=0
Δ𝜽(𝜉i)TΔ𝜽(𝜉i), Δ𝜽(𝜉i) = LogSE(3)

(
H(𝜉i)−1H∗


(𝜉i)

)
, 𝜉i =

i
k − 1

, (53)

as a unified error measure for positions and cross-section orientations.
If no reduced integration is performed, all but the SE(3)-element suffer from locking, see first column of Figure 4. Thus,

the solution found by the SE(3) formulation with 512 elements (513 nodes) was chosen as reference for this experiment.
In contrast, the application of reduced integration completely cures the locking phenomenon. Thereby, the second-order
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(A) (B) (C) (D)

F I G U R E 3 Visualization of deformed configuration of the cantilever experiment for (A) 𝜌 = 1 × 10−1, (B) 𝜌 = 1 × 102, (C) 𝜌 = 1 × 103,
and (D) 𝜌 = 1 × 104 for five SE(3)-elements.

T A B L E 1 Experimental parameters of the cantilever experiment.

𝜌 1 × 10−1 1 × 10−1 1 × 103 1 × 104

atol 1 × 10−8 1 × 10−10 1 × 10−12 1 × 10−14

R12-interpolation results in third order spatial convergence, while the other formulations indicate a second-order rate,
see second column of Figure 4. Moreover, the quadratic R12-element outperforms all other formulations by magnitudes
using the same number of unknowns. Hence, we use 256 elements (513 nodes) of the quadratic R12-element as reference
for the second experiment.

For a moderate slenderness 𝜌 = 1 × 102, the internal forces and moments of the reference solution are plotted in
Figure 5. Since the deformation is inhomogeneous, a nonlinear progression is clearly evident.

5.2 Flexible heavy top

Inspired by the investigation of Mäkinen [36], the dynamics of an elastic heavy top is studied here. On the one hand,
this example demonstrates the capability of the presented formulations to be solved using standard ODE solvers. On the
other hand, in the limit case of an infinite stiff rod, the rod shows the well-known behavior of a heavy top. The motion
of the heavy top is described by Euler’s equations, see [33, eqs. 1.83 and 3.35], whose solution is taken as a solution
in the subsequent investigation. For high stiffnesses of the rod, we thus expect the solution to be close to the one of a
rigid body.

Let the top be given by a cylinder of radius r = 0.1 and length L = 0.5 with cross-section area A = 𝜋r2 and second
moment of area I = 𝜋r4∕4. The cylinder is subjected to a constant distributed line force Ib = 𝜌0A(0, 0, −9.81). The stiff
rod should have a uniform density 𝜌0 = 8000, Young’s modulus E = 210 × 106 and shear modulus G = E∕(2(1 + 𝜈)), with
a Poisson’s ratio 𝜈 = 1∕3. Consequently, it has an axial stiffness ke = EA, shear stiffness ks = GA, bending stiffnesses
kb = kby = kbz = EI and torsional stiffness kt = 2GI. We also considered a soft rod for which all stiffnesses were scaled by
a factor 2.5 × 10−3.

Since in the previous example the second-order R12-interpolation outperforms all other formulations, we restricted
the dynamic investigation to this formulation. The top was discretized using a single quadratic R12-element (3 nodes) and
reduced integration was applied for the evaluation of the internal virtual work contributions. The initial position was such
that the top points from the origin in positive eI

x-direction, that is, q0 = (03×1, 03×1, r1, 03×1, r2, 03×1)with r1 = (L∕2, 0, 0)
and r2 = (L, 0, 0). Its initial velocities were chosen such that in the case of a rigid rod a perfect precession motion, see
[33, Section 3.3.2 c], is obtained, that is, u0 = (03×1, 𝛀, 𝛀 × r1,𝛀, 𝛀 × r2,𝛀) with the angular velocity 𝛀 = (Ω, 0, Ωpr),
whereΩ = 50𝜋 andΩpr = gL∕(r2Ω). Finally, the motion of the top was constrained such that the first node coincides with
the origin for all times. This can either be guaranteed by removing the corresponding degrees of freedom from the set of
unknowns, or by using the concept of perfect bilateral constraints, [18].



EUGSTER and HARSCH 17 of 21

F I G U R E 4 Spatial convergence rates for different interpolation strategies and slenderness ratios using full integration (first column)
and reduced integration (second column).

Using a standard fourth-order Runge–Kutta method, with the absolute and relative tolerances atol = rtol = 1 × 10−8,
see [22], the simulations were performed until a final time of t1 = 2𝜋∕Ωpr was reached, that is, the rigid top performed a
full rotation.

In Figure 6A, the spatial trajectories of the different tops’ free ends are shown. When comparing the projections of
the rod’s free tip, it can be seen that the assertion is true that the solution of a stiff rod cannot be distinguished from
the rigid body solution, while the soft rod’s tip performs a fascinating oscillatory motion superimposed to the rigid body
solution. The time evolution of potential Epot, kinetic Ekin, and total energy Etot for both the stiff and soft tops is illustrated
in Figure 7. Despite minor numerical artifacts, the total energy remains constant throughout the simulation, providing
numerical evidence for the conservation of total energy as proven in of [25, Appendix D]. However, since there is hardly
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(A) (B)

F I G U R E 5 Internal forces and moments of the cantilever experiment for a moderate slenderness 𝜌 = 1 × 102, computed with 256
elements (513 nodes) of the quadratic R12-element.

(A) (B)

F I G U R E 6 Tip displacement of the rigid top versus stiff and soft rod solutions. The rigid top solution is drawn in black, the stiff rod in
red and the soft rod in blue. (A) Spatial tip trajectory. (B) Tip displacements versus time.

(A) (B)

F I G U R E 7 Time evolution of kinetic Ekin, potential Epot and total energy Etot of the (A) stiff and (B) soft rod.
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any exchange of kinetic and potential energy in this example, the authors would like to emphasize that this is by no means
a demonstrative study of the conservation properties for the presented family of rod finite element formulations.

6 CONCLUSIONS

We presented an entire family of Petrov–Galerkin rod finite element formulations, where the individual formula-
tions distinguish in the chosen interpolation strategy of centerline points and cross-section orientations, that is, R12-,
R3 × SO(3)-, or SE(3)-interpolation. The Petrov–Galerkin projection method significantly simplifies the expressions of
the discrete virtual work functionals, as no variations of the ansatz functions are required. Since all interpolation strate-
gies are based on the nodal centerline points and cross-section orientations, they are independent of the underlying
nodal SO(3)-parameterization. We suggested a parametrization with nodal total rotation vectors whose singularity prob-
lems in the kinematic differential equations are resolved by introducing the complement rotation vector. Certainly, a
singularity-free parametrization for instance with unit quaternions would be possible. However, an in-depth analysis of
the effect of such a parametrization would have to be carried out. It is not clear whether the inclusion of the additional
conditions that guarantee unit length of the quaternions influences the solvability of the equilibrium equations. Another
interesting approach that follows from the formulation presented here would be to use constant strains as generalized
position coordinates, compare [41]. The approximations of centerline and cross-section orientations would then follow
from a recursive kinematic chain. Due to the Petrov–Galerkin method, the inertial virtual work would remain unaffected
and the external virtual work would become only more complex if forces and moments are applied which are represented
with respect to cross-section-fixed bases or the inertial basis, respectively.

While the SE(3)-interpolation leads to an intrinsically locking-free formulation, the locking problems in the other
interpolations could be cured by a simple reduced integration. The R12-interpolation with polynomial degree p = 2
stands out with a surprisingly low absolute error and a cubic spatial convergence behavior. Certainly, the comparison
is not completely fair, as there would also be the possibility to interpolate the relative rotations (28) or twists (38) by
higher-order Lagrangian polynomials. This was already suggested by [12] for the R3 × SO(3)-interpolation. However in
this case, the simplification to piecewise constant curvature (29) or strains (39) is no longer valid and the evaluation of
the SO(3) or SE(3)-tangent maps, respectively, are required for computing the strains. This would make the already com-
plex and computationally expensive interpolations even more demanding. In contrast, raising the polynomial order in
the R12-interpolation is not accompanied by an increased complexity in the formulation.

Consequently, for an application-oriented researcher, we recommend the R12-interpolation strategy, which requires
the least number of different concepts. These are for the static analysis (i) the continuous virtual work functionals of the
Cosserat rod, (ii) the SO(3)-parameterization with rotation vectors, (iii) pth order Lagrangian polynomials, and for a stan-
dard Newton–Raphson algorithm (iv) the linearization of the equilibrium equations which can be found partially in [25].
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