Novel Early and Late Transition Metal Complexes FOR THE SYNTHESIS OF FUNCTIONAL VINYL-INSERTION and Metathesis Polymerization-Derived BlockCOPOLYMERS

Von der Fakultät Chemie der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

vorgelegt von
Gurram Venkata Narayana, M.Sc.
aus Andhra Pradesh/ Indien

Erstberichter	$:$	Prof. Dr. Michael R. Buchmeiser
Mitberichter	$:$	Prof. Dr. Sabine Ludwigs
Zusätzlicher Prüfer	$:$	Prof. Dr.-Ing. Elias Klemm
Tag der mündlichen Prüfung	$:$	$07 / 03 / 2012$

Institut für Polymerchemie der Universität Stuttgart

Dedicated to My Family

Acknowledgements

First of all I would like to express my deepest thanks to my advisor Prof. Dr. Michael R.Buchmeiser for giving me an opportunity to work and study in his well-established research group. It has been an honour in my life to work in his group and I am very grateful for his motivation, encouragement, valuable advices and generous support during my Ph.D programme.

Special thanks to Dr. Dongren Wang and Jan Pigorsch for their support to build the polymerization reactor and high temperature NMR measurements. I would also like to thank Dr. Wolfgang Frey for the X-ray analysis of the metal complexes and Dr. Michael Schweizer (ITCF, Denkendorf) for the DSC measurements of polymers.

I would like to thank all my former colleagues at the IOM, Leipzig and present colleagues at the Institute of Polymer Chemie, University of Stuttgart for their help during my Ph.D. Especially, I would like to mention my dearest friends Dr. Rajendar Bandari, Dr. Sudhendran Mavila, Dr. Sankaran Anantharaman, Dr. Arunoday Singh and Anjan Kumar for their kind help and suggestions during the time I spent in Germany. I like to thank my close friends in India, especially Kiran Kumar, Krishna, Suresh, PVB Swamy, Dr. Rambabu, Dr. Raji reddy and Dr. Ravi Kumar.

My deepest gratitude goes to my father, mother, my brother, my sister-in-law, my grand mother and my relatives for their love and continuous support in my life. Last but not least, I would like to express my heartiest thanks to my wife Gurram Radha for her kind support during my Ph.D, without her help and encouragement this dissertation would not have been completed.

Curriculum Vitae

Personal Details

Family name	$:$	Gurram
Given name	$:$	Venkata Narayana
Nationality	$:$	Indian
Sex	$:$	Male
Date of Birth	$:$	$26^{\text {th }}$ April 1975

Presenet Address

Allmandring-I, H. No: 12B/17, Stuttgart, D-70569,
Germany.
Tel (m): +49-176-70202477
Email: gurram.venkata@ipoc.uni-stuttgart.de

Permanent Address S/o Gurram Venkateswarlu, Dendukur(Post),Madhira (Mandal), Khammam(Dist), Andhra pradesh, India- 507203.
gurramvenkat2002@gmail.com

Education

Ph.D
※ From Jan 2010- Mar 2012 Ph.D in Polymer Chemistry, Institute of Polymer Chemistry, University of Stuttgart, Germany. Supervisor: Prof. Michael R. Buchmeiser.

* From May 2008- Dec 2009 Ph.D in Polymer Chemistry at the Leibniz-Institute of Surface Modification (IOM), University of Leipzig, Leipzig, Germany. Supervisor: Prof. Michael R. Buchmeiser.

Thesis title: "Synthesis of Novel Early and Late Transition Metal Complexes for the Synthesis of Functional Vinyl-insertion and Metathesis Polymerization-Derived Block-Copolymers".

Master of Sciences (M.Sc)

* From 1996-98 M.Sc (Organic Chemistry) from Osmania University, Hyderabad, India.

Career Summary

* GVK Biosciences Pvt. Ltd

Nov 2003-Apr 2008
As a Sr. Research Associate at GVK Biosciences, Hyderabad, India. This is a custom research organization (CRO), to deliver the research and development services to the leading pharmaceutical companies in the World.

* Suven Life Sciences Ltd.

Dec 2000-Oct 2003
As a Chemist in Suven Life sciences, Suryapet, India. This is a process research and development unit to transfer the technology from R\&D to pilot plants.

List of Publications

1. Pseudo-Halide and Nitrate Derivatives of Grubbs and Grubbs-Hoveyda Initiators: Some Structural Features Related to the Alternating Ring-Opening Metathesis Copolymerization of Norborn-2-ene with Cyclic Olefins. M.R. Buchmeiser, I. Ahmad, V.N. Gurram, P.S. Kumar, Macromolecules, 2011, 44, 4098-4106.
2. Tandem Catalysts for Olefin Polymerization. S.Camadanli, Y. Zou, V.N. Gurram, M.R. Buchmeiser, Stuttgarter Kunststoff-Kolloquium 1V1, 1-6, ISBN 978-3-00034152-6 (2011).
3. Catalysts for the Simultaneous Ring-Opening Metathesis and Vinyl Insertion Copolymerization of Ethylene with Cyclic Olefins. S. Camadanli, Y. Zou, V.N.Gurram, D.Wang, M.R. Buchmeiser, Polym.Preprints (Div. Polym. Chem, Am. Chem. Soc) 2011, 52, 217.
4. Group-IV Dimethylsilylenbisamido Complexes Bearing the 6-(2-(Diethylboryl) phenyl) pyrid-2-yl Motif: Synthesis and Use in Tandem Ring-Opening Metathesis/Vinyl-Insertion Copolymerization of Cyclic Olefins with Ethylene. Y. Zou, D. Wang, K. Wurst, C. Kühnel, I. Reinhardt, U. Decker, V.N. Gurram, S. Camadanli, M.R. Buchmeiser, Chem. Eur. J., 2011, 17, 13832-13846.
5. Bis(diamido)silylene Zirconium (IV) and Non-bridged Half-Titanocene (IV) Complexes; Synthesis and Use in Olefin Polymerization, V.N. Gurram, D.Wang, W. Frey, M.R. Buchmeiser, (manuscript in preparation).

Posters and International Conferences attended

1. Macromolecular Colloquium, Feb $25^{\text {th }}-28^{\text {th }} 2009$, Freiburg, Germany.
2. ISOM XVIII- $18^{\text {th }}$ International Symposium on Olefin Metathesis and Related Chemistry, Aug 02-07, 2009, Leipzig, Germany.
3. ISOM XIV- $19^{\text {th }}$ International Symposium on Olefin Metathesis and Related Chemistry, July 10-15, 2011, Rennes, France.
4. Pseudo-Halide and Nitrate Derivatives of Grubbs and Grubbs-Hoveyda Initiators: Some Structural Features Related to the Alternating Ring-Opening Metathesis Copolymerization of Norborn-2-ene with Cyclic Olefins; V. N. Gurram, A. Irshad, P. Santosh Kumar, Michael R. Buchmeiser, The $19^{\text {th }}$ International Symposium on Olefin Metathesis and Related Chemistry (ISOM XIV) July 10-15, 2011, Rennes, France.

Table of Contents

List abbreviations i
Zusammenfassung v
Abstract viii
Aim of the Thesis xi
1.0 General introduction
1.1 Historical development of polyolefins1
1.2 Ziegler-Natta catalysis 3
1.3 Metallocenes 5
1.4 Chain termination.6
1.5 Ring opening metathesis polymerization 9
1.5.1 Schrock-type initiators and reactivity 11
1.5.2 Grubbs-type initiators and reactivity 12
1.6 Vinyl Insertion Polymerization 16
1.7 Relationship between Vinyl Insertion Polymerization (VIP) and Ring Opening Metathesis Polymerization (ROMP) 17
1.8 References 19
2.0 Pseudo-Halide and Nitrate Derivatives of Grubbs- and Grubbs-Hoveyda Initiators: Structural Features Related to the Alternating Ring Opening Metathesis Copolymerization of Norborn-2-ene with Cyclic Olefins
2.1 Introduction 25
2.2 Results and discussion
2.2.1 Synthesis of initiators 26
2.2.2 Homopolmerization of norborn-2-ene (NBE) 27
2.2.3 Alternating copolymerization of NBE with CPE 28
2.2.4 Cis/trans Ratio of the poly(NBE) homopolymer blocks in poly(NBE)-alt- poly(CPE) 32
2.2.5 Influence of the NBE: CPE ratio on the extent of alternating copolymerization 34
2.2.6 Alternating copolymerization of NBE with cis-cyclooctene (COE) 36
2.3 Summary 41
2.4 Polymerization procedure
2.4.1 Typical copolymerization procedure 41
2.4.2 Typical homopolymerization procedure 41
2.5 References 42
3.0 Bis(diamido)silylene Zirconium (IV) and Non-bridged Half-Titanocene (IV) Complexes; Synthesis and use in Olefin Polymerization
3.1 Introduction 47
3.2 Results and Discussion
3.2.1 Synthesis of ligands and precatalysts 49
3.2.2 Synthesis of model compounds 59
3.2.3 Synthesis of ethyl- and phenyl- bridged ligands 61
3.2.4 Unsuccessful synthesis of metal complexes 62
3.3 Homopolymerizations
3.3.1 Homopolymerization of ethylene 65
3.3.2 Homopolymerization of styrene 69
3.4 Copolymerizations
3.4.1 Copolymerization of ethylene with cyclopentene (CPE) 72
3.4.2 Copolymerization of ethylene with norborn-2-ene (NBE) using the Zr - based precatalysts 13 and 17 75
3.4.3 Copolymerization of ethylene with norborn-2-ene (NBE) using Ti-based precatalysts 22, 23, 24, 26 and 27 83
3.4.4 Copolymerization of ethylene with cis-cyclooctene (COE) 86
$3.5 \quad{ }^{13} \mathrm{C}$ NMR spectroscopic analysis of the E-NBE copolymers
3.5.1. Microstructure of the Zr -based complexes $\mathbf{1 3}$ and $\mathbf{1 7}$ derived E-NBE copolymers 88
3.5.2. Microstructure of the Ti-based complexes 22, 23, 24, 26 and 27 derived E- NBE copolymers 91
3.6 Conclusion 93
3.7 References 94
4.0 Experimental data. 99
5.0 Appendix 117

List of Abbreviations

Å

ADMET
Ad
Bn
Bu
CM
CGC
CHE
CHP
COE
CPE
COCs
Cp
DCPD
DMF
DMSO
DSC
${ }^{\circ} \mathrm{C}$
DCM
et.al
Et
E
EVE
eq.
Flu
GC-MS
GPC
h
HDPE
HR-MS
HT-GPC

Ind
iPP

Angstrom
Acyclic diene metathesis polymerization
Adamantyl
Benzyl
Butyl
Cross-metathesis
Constrained geometry complexes
Cyclohexene
Cycloheptene
cis-Cyclooctene
Cyclopentene
Cyclic olefin copolymers
Cyclopentadienyl
Dicyclopentadiene
N, N-Dimethylformamide
Dimethylsulfoxide
Differntial Scanning Calorimetry
Degree Celcius
Dichloromethane
and others
Ethyl
Ethylene
Ethyl vinyl ether
Equation
Fluorenyl
Gas chromatography -mass spectrometry
Gel permeation chromatography
Hour
High density polyethylene
High resolution mass spectra
High temperature gel permeation
chromatography
Indenyl
Isotactic polypropylene

iPr	Isopropyl
J	Coupling constants in Hertz
k_{i}	Rate of initiation
k_{p}	Rate of propagation
LAH	Lithium aluminum hydride
LDPE	Low density polyethylene
LLDPE	Linear low density polyethylene
LUMO	Lowest unoccupied molecular orbital
MAO	Methyl aluminoxane
MDPE	Medium density polyethylene
Me	Methyl
MeOH	Methanol
mg	Milligram
m	Multiplet
M_{n}	Number-average molecular weight
M_{w}	Weight-average molecular weight
mol.	Mole
MWD	Molecular weight distribution
NBE	Norborn-2-ene
NMR	Nuclear magnetic resonance
PA	Phenylacetylene
PCy_{3}	Tricyclohexylphosphine
PDI	Polydispersity index
PE	Polyethylene
PP	Polypropylene
PPh_{3}	Triphenyl phosphine
ppm	parts per million
Ph	Phenyl
RCM	Ring closing metathesis
ROM	Ring opening metathesis
ROMP	Ring opening metathesis polymerization
SPS	Solvent purification system
t	Triplet
tert.	Tertiary
TEA	Triethylamine

THF	Tetrahydrofuran
TIBA	Triisobutylaluminum
TLC	Thin layer chromatography
T_{g}	Glass transition temperature
T_{m}	Melting temperature
VLDPE	Very low density polyethylene
VIP	Vinyl insertion polymerization
Z.N	Ziegler-Natta

Zusammenfassung

Polyolefine bilden eine überaus wichtige Materialklasse mit einer großen Bandbreite an Anwendungen und werden industriell in großem Maßstab hergestellt. Ein beachtlicher Anteil dieser Polyolefine wird durch katalytische (Co-)Polymerisation von 1Olefinen mittels Übergangsmetallen produziert.

Das erste Kapitel dieser Arbeit befasst sich mit einer allgemeinen Einführung in das Gebiet der Polyolefine und der geschichtlichen Entwicklung der Ziegler-Natta-Katalyse und damit auch der homogenen Katalyse. Des Weiteren sollen ihre Anwendungen in der Polymerchemie skizziert werden. Darüber hinaus soll die Chemie der Grubbs- und SchrockKatalysatoren und ihre Reaktivität in der Metathese beschrieben werden und insbesondere die Zusammenhänge zwischen Ziegler-Natta und Metathese sollen näher beleuchtet werden.

Im zweiten Kapitel werden Synthese und Reaktivität einer Reihe neuartiger RuAlkylidene erläutert, bei denen beide Chloridliganden durch Pseudohalogen- oder NitratLiganden ersetzt wurden, also $0(\mathbf{1 b}),\left[\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]$ (1c), $\left[\mathrm{Ru}(\mathrm{NCO})\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]$
$\left[\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]$
$\left[\mathrm{Ru}(\mathrm{NCS})_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right](\mathbf{1 f}),\left[\mathrm{Ru}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right](\mathbf{2 d})$ und $\quad\left[\mathrm{Ru}\left(\left(\mathrm{CF}_{2}\right)_{3}\left(\mathrm{CO}_{2}\right)_{2}\right)\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{CH}-2-(2-\mathrm{PrO})\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] \quad\right.$ (2f), $\quad\left(\mathrm{IMesH}_{2}=1,3-\right.$ Dimesitylimidazolin-2-yliden). Diese neuen Initiatoren sowie die der allgemeinen Zusammensetzung $\quad\left[\mathrm{RuX}_{2}(\mathrm{~L})_{n}(\mathrm{NHC})(\mathrm{CHPh})\right] \quad$ bzw. $\quad\left[\mathrm{RuX}_{2}(\mathrm{NHC})\left(\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{COO}$; $\mathrm{NHC}=\mathrm{IMesH}_{2}$, 1,3-Dimesitylpyrimidin-2-yliden, 1,3-Dimesityldiazepin-2yliden, 1-Mesityl-3-(2-phenylethyl)imidazolin-2-yliden, 1-Mesityl-3-adamantylimidiazolin-2yliden; $\mathrm{L}=\mathrm{PCy}_{3}$, Pyridin, $\mathrm{n}=1,2$) wurden in Bezug auf ihre Neigung zur alternierenden Copolymerisation von Norborn-2-en (NBE) mit Cyclopenten (CPE) und cis-Cycloocten (COE) hin untersucht. Alternierende Copolymere der Art Poly(NBE-alt-CPE) n_{n} und Poly(NBE-alt-COE) ${ }_{n}$ mit bis zu 55 und 40% alternierenden Diaden wurden erhalten. Außerdem stellte sich $\operatorname{Ru}\left(\mathrm{CF}_{3} \mathrm{COO}\right)_{2}(1,3$-dimesityl-4,5,6,7-tetrahydro-1,3-diazepin-2yliden) $\left(=\mathrm{CH}-2-(2-\mathrm{PrO}) \mathrm{C}_{6} \mathrm{H}_{4}\right)(4 \mathbf{b})$ als hocheffizienter Initiator für die Homopolymerisation von Cyclopenten (CPE) heraus und ermöglichte die Synthese von Poly(CPE) mit hohen Molmassen. Einige grundlegende Auswirkungen der Art des Pseudohalogenliganden auf den Grad der Alternierung bei der Copolymerisation von NBE mit CPE oder COE werden vorgestellt werden. Abschließend wird noch die Auswirkung der Ringgröße des N heterocyclischen Carbens auf die Konfiguration der Doppelbindungen im Polymer angesprochen. Im dritten Kapitel werden neuartige $\mathrm{Zr}^{\mathrm{IV}}-\mathrm{Kopmlexe}$ des $\mathrm{Typus}\left(\mathrm{Me}_{2} \mathrm{Si}((\mathrm{NR})(6-\right.$ (2-(diethylboryl)phenyl)pyrid-2-yl)) $\mathrm{ZrCl}_{2} \cdot \mathrm{THF} ; \mathrm{R}={ }^{\mathrm{t}} \mathrm{Bu}$ (13), Adamantyl (17)) und $\mathrm{Ti}^{\mathrm{IV}}$ -
basierte Metallocenkomplexe, und zwar $\operatorname{Bis}((\mathrm{N}(6-(2-(d i e t h y l b o r y l) p h e n y l)-p y r i d-2-$ yl)Me) TiCl_{2}; (24)) sowie nicht-verbrückte Halb-Titanocenverbindungen der Art $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}\left(\mathrm{~N}\left(6-\left(2-\left(\right.\right.\right.\right.$ diethylboryl)phenyl)-pyrid-2-yl)R); $\mathrm{R}=\mathrm{Me}\left(\mathbf{2 2 , 2 3)}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right.$ (26, 27), $C p^{\prime}=C p\left(22\right.$ und 26), C^{*} (23 und 27) besprochen. Zusätzlich wird noch die Chemie der Aminoboran-freien Modelkomplexe $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}$ (N-(biphenyl-3-yl)R); $\mathrm{R}=\operatorname{SiMe}_{3} \mathbf{(3 0 , 3 1}$), Me (33, 34), $\left(C p^{\prime}=C p(30,34), C p *(31,33)\right)$ erörtert (Abbildung 2). Diese Zr - und Ti-Komplexe wurden durch ${ }^{1} \mathrm{H}$ - und ${ }^{13} \mathrm{C}$-NMR-Spektroskopien und durch Elementaranalysen charakterisiert. Die Molekularstruktur der Verbindungen 22, 23, 27 und 34 wurde durch Röntgenstrukturanalyse bestimmt. Nach Aktivierung mit MAO zeigen die Komplexe 13, 17, 22, 23, 26 und 27 für die Homopolymerisation von Ethylen (E) Aktivitäten von bis zu 3000 kg -PE /mol-M•h, wobei hauptsächlich lineares Polyethylen (PE) (HDPE) mit molaren Massen zwischen 100000 und $4 \times 10^{6} \mathrm{~g} / \mathrm{mol}$ gebildet wird. Überraschenderweise zeigt Komolex 13 bei der Copolymerisation von Ethylen (E) mit CPE eine hohe katalytische Aktivität (30000 kg -PE /mol-Zrh), wobei Poly(E)-co-poly(CPE) VIP produziert wird, das 3-4 mol-\% CPE durch Vinyladditionspolymerisation aufweist. Die Komplexe 13, 17, 22, 23, 26 und 27 ergeben bei der Copolymerisation von E mit NBE vorwiegend Poly(E)-co-poly(NBE) vIP durch Vinyladditionspolymerisation mit eingebauten NBE-Anteilen von bis zu 36%, wie durch ${ }^{13} \mathrm{C}$ -NMR-Messungen bewiesen werden konnte. Interessanterweise ergibt sich bei niedrigem Druck (2 bar) von Ethylen und hohen NBE-Konzentrationen für den Komplex 23/MAO, reversibel hergestellt durch ROMP- und VIP-abgeleitete Co-Polymere von NBE mit E, die Bildung von poly(NBE) $)_{\text {ROMP }}-c o-$ poly(NBE $)_{\text {VIP }}-c o-$ poly(E). Diese bestimmte Co-PolymerBildung kann durch einen reversiblen α-H-Elimination-/ α-H-Additions-Prozess während der Polymerisation erklärt werden und wird eindeutig der Rolle des 6-[2-(diethylboryl)phenyl]pyrid-2-yl-Ligandenrestes in diesem Komplex zugeordnet. Die katalytische Aktivität Zr-basierter Komplexe für die Copolymerisation von E mit NBE war niedriger als für die Homopolymerisation von E. Die E-NBE Copolymere die durch die $\mathrm{Zr}^{\text {IV }}$ basierten und die nicht-verbrückten Halb-Titanocen-Komplexe erhalten wurden, besaßen alternierende it E-NBE Abschnitte und st E-NBE Abschnitte neben isolierten NBESequenzen. Durch einen hohen Anteil an NN-Diaden im NBE-Copolymer ($>10 \mathrm{~mol}-\mathrm{\%}$) tauchten mehrere kleinere Signale bei 21.2, 31.0, 33.5 und 41.1 ppm auf. Der Einbau von NBE in die resultierenden Copolymere wurde stark durch den eingestellten Druck von E beeinflusst, vor allem bei niedrigen Drücken (1 oder 2 bar E) war der NBE-Gehalt im Copolymer hoch. Auch die NBE-Konzentration wirkte sich auf die katalytische Aktivität und die zahlenmittlere Molmasse der Copolymere aus. Mit wachsender NBE-Konzentration sank die katalytische Aktivität. In ähnlicher Weise erhöhte sich die zahlenmittlere Molmasse im
resultierenden E-NBE-Copolymer. Copolymere mit niedrigem NBE-Anteil ($<10 \mathrm{~mol}-\%$) besaßen nur alternierende st E-NBE-Sequenzen neben isolierten NBE-Abschnitten ohne jegliche alternierenden it E-NBE-Sequenzen und NBE Diaden. Copolymere mit hohem NBEAnteil (>10 mol-\%) besaßen sowohl it und st E-NBE-Sequenzen als auch isolierte NBEAbschnitte mit einigen schwachen Resonanzen von NBE Diaden.

Zusätzlich wurde noch die Homopolymerisation von Styrol mit den nicht-verbrückten Halb-Titanocen Komplexen 26 und 27, die den 6-[2-(Diethylboryl)phenyl]-pyrid-2-ylBaustein enthielten, und den Aminoboran-freien nicht-verbrückten Halb-TitanocenKomplexen 31 und $\mathbf{3 2}$ unter verschiedenen Bedingungen in der Anwesenheit von MAO als Cokatalysator untersucht. Die Ergebnisse zeigten, dass die katalytischen Aktivitäten bei Erhöhung der Polymerisationstemperatur wuchsen. Komplexe, die den 6-[2-(Diethylboryl)phenyl]-pyrid-2-yl-Baustein beinhalteten, zeigten niedrigere Aktivitäten (bis zu $1100 \mathrm{~kg} . \mathrm{spS} / \mathrm{mol}_{\text {Katalysator }}$ h) im Vergleich zu den Aminoboran-freien nicht-verbrückten Halb-Titanocen-Komplexen (bis zu $3500 \mathrm{~kg} . s \mathrm{PS} /$ mol $_{\text {Katalysator }} \mathrm{h}$), und all diese Verbindungen führten hauptsächlich zu syndiotaktischem Polystyrol mit zahlenmittleren Molmassen im Bereich zwischen 29000 und $1,4 \times 10^{5} \mathrm{~g} / \mathrm{mol}$.

Abstract

Polyolefins form a highly important class of materials with a wide range of applications and are produced industrially on a large scale. A significant fraction of polyolefins are produced via the catalytic (co-)polymerization of 1-olefins using transition metal catalysts.

The first chapter of this thesis deals with a general introduction to polyolefins and the historical development of Ziegler-Natta catalysis as well as with homogeneous catalysis. Furthermore, their applications in the field of polymer chemistry are outlined. Also, the chemistry of Grubbs- and Schrock-type catalysts and their reactivity in metathesis and the intercorrelation between Ziegler-Natta and metathesis chemistry is described.

The second chapter deals with the synthesis and reactivity of a series of novel Ru-alkylidene-based initiators, in which both chloride ligands were replaced by pseudo-halides or by nitrate, i.e. $\quad\left[\mathrm{Ru}(\mathrm{NCO})_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right] \quad$ (1b), $\left[\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]$ $\left[\mathrm{Ru}(\mathrm{NCO})\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]$ $\left[\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]$ $\left[\mathrm{Ru}(\mathrm{NCS})_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right](\mathbf{1 f}),\left[\mathrm{Ru}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right](\mathbf{2 d})$ and $\quad\left[\mathrm{Ru}\left(\left(\mathrm{CF}_{2}\right)_{3}\left(\mathrm{CO}_{2}\right)_{2}\right)\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{CH}-2-(2-\mathrm{PrO})\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] \quad(\mathbf{2 f}), \quad\left(\mathrm{IMesH}_{2}=1,3-\right.\right.$

 dimesitylimidazolin-2-ylidene). The novel initiators and those of the general formula $\left[\mathrm{RuX}_{2}(\mathrm{~L})_{n}(\mathrm{NHC})(\mathrm{CHPh})\right]$ and $\quad\left[\mathrm{RuX}_{2}(\mathrm{NHC})\left(\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] \quad\left(\mathrm{X}=\mathrm{Cl}, \quad \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{COO}\right.$; $\mathrm{NHC}=\mathrm{IMesH} \mathrm{H}_{2}$, 1,3-dimesitylpyrimidin-2-ylidene, 1,3-dimesityldiazepin-2-ylidene, 1-mesityl-3-(2-phenylethyl)imidazolin-2-ylidene, 1-mesityl-3-adamantylimidiazolin-2-ylidene; $\mathrm{L}=\mathrm{PCy}_{3}$, pyridine, $\mathrm{n}=1,2$) were investigated for their propensity to copolymerize norborn-2-ene (NBE) with cyclopentene (CPE) and cis-cyclooctene (COE), respectively, in an alternating way. Alternating copolymers, that is, poly(NBE-alt-CPE) $)_{n}$ and poly(NBE-alt-COE) $)_{n}$ containing up to 55 and 40% alternating diads, respectively, were obtained. Moreover, $\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{COO}\right)_{2}(1,3-$ dimesityl-4,5,6,7-tetrahydro-1,3-diazepin-2-ylidene) $\left(=\mathrm{CH}-2-(2-\mathrm{PrO}) \mathrm{C}_{6} \mathrm{H}_{4}\right)(\mathbf{4 b})$ turned out to be a highly efficient initiator for the homopolymerization of cyclopentene (CPE), allowing for the synthesis of high-molecular weight poly(CPE). Some fundamental effects of the nature of the pseudo-halide ligand on the extent of alternating copolymerization of NBE with CPE or COE are presented. Finally, the effects of the ring-size of the N-heterocyclic carbene on the configuration of the double bonds in the final polymer are addressed.The $3^{\text {rd }}$ chapter deals with novel $\mathrm{Zr}^{\text {IV }}$-complexes of the type $\left(\mathrm{Me}_{2} \mathrm{Si}((\mathrm{NR})(6-(2-\right.$ (diethylboryl)phenyl)pyrid-2-yl)) $\mathrm{ZrCl}_{2} \cdot \mathrm{THF} ; \mathrm{R}={ }^{\mathrm{t}} \mathrm{Bu}$ (13), adamantyl (17)) and $\mathrm{Ti}^{\mathrm{IV}}$-based
metallocene-type complexes i.e. bis((N(6-(2-(diethylboryl)phenyl)-pyrid-2-yl)Me) TiCl_{2} (24) and non-bridged half-titanocene complexes of the type $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}(\mathrm{~N}(6-(2-$ (diethylboryl)phenyl)-pyrid-2-yl)R); $\mathrm{R}=\mathrm{Me}(\mathbf{2 2}, \mathbf{2 3}), \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}(\mathbf{2 6}, \mathbf{2 7}), \mathrm{Cp}{ }^{\prime}=\mathrm{Cp}(\mathbf{2 2}$ and 26), Cp* (23 and 27) as well as with the chemistry of the aminoborane-free model complexes $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}\left(\mathrm{~N}\right.$-(biphenyl-3-yl)R); $\mathrm{R}=\mathrm{SiMe}_{3}(\mathbf{3 0}, \mathbf{3 1})$, $\mathrm{Me}(\mathbf{3 3}, \mathbf{3 4}),\left(\mathrm{Cp}^{\prime}=\mathrm{Cp}(\mathbf{3 0}, \mathbf{3 4}), \mathrm{Cp}{ }^{*}(\mathbf{3 1}\right.$, 33)); (Figure 2). These Zr - and Ti-complexes were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and elemental analysis. The molecular structures of complexes 22, 23, 27 and $\mathbf{3 4}$ were determined by single-crystal X-ray diffraction. Upon activation with MAO, complexes 13, 17, 22, 23, 26 and 27 show activities up to $3000 \mathrm{~kg}-\mathrm{PE} / \mathrm{mol}-\mathrm{Mh}$ in the homopolymerization of ethylene (E), producing mainly linear poly(ethylene) (PE) (HDPE) with molecular weights in the range of $100,000<M_{n}<4 \times 10^{6} \mathrm{~g} \mathrm{~mol}^{-1}$. Surprisingly, in the copolymerization of ethylene (E) with CPE, complex 13 exhibits high catalytic activity ($30,000 \mathrm{~kg}-\mathrm{PE} / \mathrm{mol}-\mathrm{Zr} h$), producing poly(E)-co-poly(CPE) $)_{\mathrm{VIP}}$ with $3-4 \mathrm{~mol}-\%$ of vinyl addition polymer incorporated CPE. In the copolymerization of E with NBE, complexes 13, 17, 22, 23, 26 and 27 mainly produced vinyl addition copolymerization-derived poly(E)-copoly(NBE) $)_{\text {VIP }}$ with incorporated NBE-fractions of up to $36 \mathrm{~mol} \%$ as evidenced by ${ }^{13} \mathrm{C}$ NMR analysis. Interestingly, at low E pressures (2 bar) and higher NBE concentrations, complex 23/MAO produced reversible ROMP- and VIP-derived copolymers of NBE with E, resulting in the formation of poly(NBE) $)_{\text {Romp }}$-co-poly(NBE) VIP -co-poly(E). This particular copolymer formation can be explained by a reversible $\alpha-\mathrm{H}$ elimination/ $\alpha-\mathrm{H}$ addition process during the polymerization and is attributed to the unique role of the 6-[2-(diethylboryl)phenyl]pyrid-2-yl ligand moiety in this complex. The catalytic activity of Zr -based complexes for the copolymerization E with NBE was lower than that for E homopolymerization. The $\mathrm{Zr}^{\mathrm{IV}}$-based and non-bridged half-titanocenes complexes derived E-NBE copolymers possessed alternating it E-NBE sequences and st E-NBE sequences along with isolated NBE sequences. Several minor signals at $21.2,31.0,33.5$ and 41.1 ppm appeared, due to the result of NN diads in high content of NBE ($>10 \mathrm{~mol}-\%$) copolymers. The incorporation of NBE in the resulting copolymers was highly influenced by the E pressure, mainly at low pressures (1 or 2 bar E) the NBE content was high in the resulting copolymers. The influence of the NBE feed also exhibits impact on both the catalytic activity and NBE incorporation as well as on the number-average molecular weights of the resulting copolymers. While increasing the NBE feed, the catalytic activity decreased. Similarly, the number-average molecular weight increased in the resulting E-NBE copolymer. Copolymers with low NBE incorporation (<10 mol-\%) possessed only alternating st E-NBE sequences along with isolated NBE sequences without any alternating it E-NBE sequences and NBE diads. Copolymers with a high NBE
content (>10 mol-\%) possessed both alternating it and st E-NBE sequences as well as isolated NBE sequences with some minor NBE diads resonances.

In addition, the homopolymerization of styrene was investigated using the non-bridged half-titanocene complexes 26 and 27 containing the 6-[2-(diethylboryl)phenyl]-pyrid-2-yl motif, as well as the aminoborane-free non-bridged half-titanocene complexes $\mathbf{3 0}$ and $\mathbf{3 1}$ at various conditions in the presence of MAO as co-catalyst. The study revealed that catalytic activities increased upon increasing the polymerization temperatures. Complexes bearing the 6-[2-(diethylboryl)phenyl]-pyrid-2-yl motif exhibited lower activities (up to 1100 $\mathrm{kg} . \mathrm{sps} / \mathrm{mol}_{\text {catalyst }} \mathrm{h}$) when compared with aminoborane-free non-bridged half-titanocene complexes (up to $3500 \mathrm{~kg} \cdot$ sps $/ \mathrm{mol}_{\text {catalyst }} \mathrm{h}$) and all these complexes mainly produced syndiotactic poly(styrene) with number-average molecular weights in the range of 29,000 < $M_{n}<1.4 \times 10^{5} \mathrm{~g} / \mathrm{mol}$.

Aim of the Thesis

The first aspect of my research was related to the alternating ring-opening metathesis copolymerization of norborn-2-ene (NBE) with cyclopentene (CPE) and ciscyclooctene (COE), respectively, using various modified Grubbs- and Grubbs-Hoveyda-type initiators. The degree of copolymerization was quantified by ${ }^{13} \mathrm{C}$ NMR and correlated with the structural features of the initiators used. For these purposes, various metathesis catalysts, i.e. $\mathbf{1 a - 1 g}, \mathbf{2 a - 2 g}, \mathbf{3 a - 3 d}, \mathbf{4 a}, \mathbf{4 b}, \mathbf{5 a}, \mathbf{5 b}, \mathbf{6}$ (Figure 1) were prepared and investigated for their copolymerization propensity. ${ }^{[1]}$ The obtained results are discussed in Chapter 2.

Another aspect of my thesis includes the synthesis of well-defined group IV organometalic precatalysts for the simultaneous vinyl insertion/ ring-opening metathesis copolymerization of cyclic olefins with 1-olefins. These organometallic complexes bear an auxiliary amine- and borane- containing ligand, which is capable of reversibly switching between ROMP and VIP by abstracting a proton from the cationic species and re-adding a proton to the metal alkylidene. In other words, α-H elimination/ α-H addition can be induced thereby allowing for metathesis and Ziegler-Natta type polymerization to take place within the same polymer chain. This α-elimination process is temperature-dependent. The derived polymers hold both saturated (VIP) and unsaturated (ROMP) units within one single polymer chain and had high molecular weights and narrow molecular weight distribution. The focus of this work was thus on the synthesis of designed ligands and the corresponding group IV organometallic complexes 13, 17, 22, 23, 24, 26, 27, 30, 31, 33 and 34 (Figure 2) and their applications in simultaneous vinyl insertion and ring-opening metathesis co-polymerization of cyclic olefins with 1-olefins. The obtained results are discussed in Chapter 3. The synthetic protocol of all ligands and group IV organometallic complexes and their characterization (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HRMS, and elemental analysis) are shown in the experimental part of chapter 4. Single-crystal X-ray analyses of selected organometallic complexes are summarized in the appendix.

Figure 1. Structure of initiators $\mathbf{1 a - 1 g}, \mathbf{2 a - 2 g}, \mathbf{3 a - 3 d}, \mathbf{4 a}, \mathbf{4 b}, \mathbf{5 a}, \mathbf{5 b}$ and $\mathbf{6}$.

13

17

24

22

23

31

26

33

27

34

Figure 2. Structure of precatalysts 13, 17, 22, 23, 24, 26, 27, 30, 31, 33 and 34.

CHAPTER 1

General Introduction

I. Introduction: Background

1.1. Historical Development of Polyolefins

Polyolefins form a highly important class of materials with a wide range of applications and are produced industrially on a large scale. A significant fraction of polyolefins are produced via the catalytic (co-)polymerization of 1-olefins using transition metal catalysts. Olefin-based polymers such as PE, PP and ethylene/1-olefin copolymers are widely used as synthetic commodity polymers world wide due to their versatility, flexibility and strength. They posses a combination of properties including flexibility, strength, lightness, stability, impermeability and processability. PE and poly PP are also well suited for recycling and re-use. PE, PP and poly(ethylene)-co-poly(vinyl acetate) are among the most important commercial polymers. PE is classified according to its density as very low density polyethylene (VLDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), and high density polyethylene (HDPE).

Table 1.1. Classification and applications of polyolefin products.

Name	Abbr.	Density $\left(\mathbf{g} / \mathbf{c m}^{3}\right)$	Use
High Density Polyethylene	HDPE	>0.941	Plastic lumber, fuel tanks, furniture, storage sheds, chemical \& heat resistant piping \& containers
Medium Density Polyethylene	MDPE	$0.926-0.940$	Containers with good shock and drop resistance, gas pipes, shrink film, packaging films
Linear Low Density Polyethylene	LLDPE	$0,915-0.920$	Industrial containers, trash cans, automotive parts, packaging materials under FDA regulations
Low Density Polyethylene	LDPE	$0.910-0.940$	Trays \& general purpose containers, computer parts, plastic bags, playground equipment
Very Low Density Polyethylene	VLDPE	$0.880-0.915$	Blown films, molded parts, industrial \& general rubber, stretch wrap
Polypropylene	PP	$0.855-0.946$	Packaging, textile fibers, ropes, thermal clothing, reusable containers
Poly(ethylene)-co-poly(vinyl acetate)	EVA	0.93	Biomedical applications for time release medications, foam padding for sport equipment.

Figure 1.1. Structure of different PE.

The first industrial PE synthesis was invented by Eric Fawcett and Reginald Gibson from ICI chemicals in 1933. Ethylene was polymerized under high pressure (500$1200 \mathrm{~atm})$ and high temperatures $\left(200-400^{\circ} \mathrm{C}\right)$ to produce a white waxy material. This reaction was initiated by trace contamination of oxygen. ${ }^{[2]}$ Robert Bank's and John Hogan's synthesis of the PE at low pressure and temperature led to the discovery of the Phillips catalyst (chromium trioxide on silica) in 1951 at Phillips petroleum. This type of catalyst was patented in 1958. ${ }^{[3]}$ In 1953, Karl Ziegler discovered a heterogeneous catalyst system based on titanium halides that allowed for producing HDPE upon activation with organoaluminium co-catalysts such as $\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}$ by coordination polymerization at low temperature and pressure. In 1954, G. Natta et.al synthesized rubber-like PP using $\mathrm{TiCl}_{4} / \mathrm{Al}_{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \text {. The }}$ polymers obtained contained different kinds of polymers, from which an insoluble polymer was isolated from boiling heptane, showing a melting point $>160^{\circ} \mathrm{C}$. Later, in 1955 G . Natta proved the existence of isotactic polypropylene, which was prepared by supported CrO_{3} catalysts. Another important milestone was achieved by Natta. He showed that the stereospecificity of the polymerization was connected to the regularity of the surface of the heterogeneous catalyst. For this purpose, crystalline TiCl_{3} was prepared by reduction of TiCl_{4} with hydrogen and treated with trialkylaluminum or dialkylaluminum chloride in a hydrocarbon solvent. By this approach, the percentage of $i \mathrm{PP}$ was drastically enhanced from 40% to around 90% of the produced polymer. The use of a Lewis base in the polymerization further increased the $i \mathrm{PP}$ content up to 95%. In view of catalytic activity, a major improvement was achieved by supporting TiCl_{4} on activated $\mathrm{MgCl}_{2}{ }^{[4]}$ or other magnesium compounds. ${ }^{[5,6][7-9]}$

Polyolefin consumption significantly increased each year and is expected to almost double by 2017. The graph below illustrates polyolefin consumption (Figure 1.2).

Source: Nexant
Asia : Asia excludes China and indonesia
Figure 1.2. Polyolefin consumption by region.

1.2. Ziegler-Natta Catalysis

Coordination polymerization originated in the mid-1950s with the pioneering work of Karl Ziegler in Germany and Giulio Natta in Italy. While Ziegler discovered in the early 1950s that a combination of aluminum alkyls with certain transition metal compounds such as TiCl_{4} or VCl_{4} generated a complexes that would polymerize ethylene at low temperatures and pressures producing PE with an essentially linear structure, referred to as high density polyethylene (HDPE), Natta's work led to the recognition that the catalytic complexes described by Ziegler were capable of polymerizing 1-alkenes to yield stereoregular polymers. These types of catalysts are known as Ziegler-Natta catalysts. For their pioneering work, Karl Ziegler and G. Natta jointly won the Nobel Prize for Chemistry in 1963. Research was subsequently extended aiming on polymers with a wide range of stereoregular structures including those derived from cycloalkenes. Many polymers are now manufactured on a commercial scale using Ziegler-Natta catalysts, the most prominent among them being stereoregular $i \mathrm{PP}$ of high molecular weight. ${ }^{[5]}$ The most important stereospecific structures of polymers are shown in Figure 1.3.

Zig-zag notation

e.

f.

c.

d.

Figure 1.3. Stereoregular polymer structures: a) isotactic, b) syndiotactic, c) heterotactic, d) hemiisotactic, e) isotactic stereoblock, f) atactic. ${ }^{[10]}$

In the late 1970s in Germany, Kaminsky and Sinn discovered a new class of Ziegler-Natta catalysts based on metallocene/methylaluminoxane. ${ }^{[7-9,11]}$ This new generation of catalysts showed higher activity and the resulting polymers had higher molecular weights than those produced with commercially available Ziegler-Natta type catalysts.

A further step was the discovery of chiral ansa-metallocenes with well-defined active centers by Britzinger in 1982. This catalyst was used for the synthesis of highly i PP by Kaminsky, Britzinger in $1985^{[5,12,13]}$ Since then, the structure of the metallocenes has been modified worldwide in industrial and academic areas to provide a range of different catalyst structures that can be used to synthesize highly isotactic, syndiotactic or atactic polyolefins with different molecular weights and different degrees of tacticity.

1.3 Metallocenes

Metallocenes show high activity in 1-olefin polymerization. The advantage of these homogeneous polymerization catalysts is their well-defined single-site nature and their versatility and flexibility in synthesis, which leads to higher control over the specific polymer microstructure together with high molecular weights and narrow molecular weight distributions (MWD) as compared to multi-site heterogeneous catalysts. ${ }^{[14, ~ 15] ~ T h i s ~ u n i q u e ~}$ class of complexes can also be used to produce high-density polyethylene (HDPE), PP with various tacticities (atactic, isotactic, syndiotactic, etc.), and copolymers of ethylene with $\boldsymbol{\alpha}$ olefins, and for the synthesis of COCs. ${ }^{[16]}$

Figure 1.4. Structure of metallocenes exemplified by Dicyclopentadientyl Ti-dichloride.

Natta and co-workers reported in 1957 that dicyclopentadienyltitanium dichloride polymerized ethylene and produced polymers that had low molecular weights, also the catalytic activities were very low, and these catalytic systems was inactive for propylene polymerization when activated with trialkylaluminum. ${ }^{[17]}$ Natta also reported that in the polymerization of ethylene at $95^{\circ} \mathrm{C}, 40 \mathrm{~atm}$ in heptane solution for 20 hours, about 8.0 g of PE was produced in the presence of 0.6 g of an Ti-Al complex. ${ }^{[17]}$ Therefore, these catalytic systems show much lower activities than heterogeneous Ziegler-Natta catalysts (3000 g) $\mathrm{mol} \mathrm{Ti}^{\mathrm{h}}$).

Figure 1.5. Structure of methylaluminoxane.

A major discovery by Natta ${ }^{[17]}$ that was confirmed by Breslow et.al was the complete inactivity of dicyclopentadienyltitanium dichloride in the polymerization of ethylene in the absence of a cocatalyst. ${ }^{[18]}$ Thus, the trialkyl aluminum species served as an important role as a co-catalyst. In 1980, Sinn and Kaminsky discovered that partially hydrolyzed trimethylaluminum, called methylalumoxane (MAO), employed as a co-catalyst, amazingly enhanced metallocene activity in polymerization. ${ }^{[11, ~ 14, ~ 19] ~}{ }^{[20]}$ The catalytic mechanism for 1olefin polymerization is shown in Scheme 1.1. The dicyclopentadienylzirconium dichloride
$\left(\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}\right)$ is an 16 -electron species complex and activated cationic group IV metallocene species are generally assumed to be 14 electron species and these active species are stabilized by $\boldsymbol{\alpha}$-agostic interactions. Initially, MAO alkylates the chloride ligands of metallocene and excess of MAO abstracts one of the methyl groups, which creates a cationic metal center and a weakly coordinated anion, which is the active species for olefin polymerization. The interaction between the metal and the hydrogen on the methyl group called an $\boldsymbol{\alpha}$-agostic interaction ${ }^{[21]}$. Upon addition of monomer as propylene, a four-membered transition state forms (Scheme 1.1, v) and this strained four-membered ring allows for the breaking of the Zr -methyl bond, and forms a bond between Zr and the $\boldsymbol{\beta}$ carbon on the monomer. Again, a fourteen electron species is formed, which is active for repeating the polymerization cycle. ${ }^{[16]}$

Scheme 1.1. Metallocene polymerization mechanism. ${ }^{[16]}$

1.4 Chain Termination

An important chain-transfer reaction is the β-hydrogen transfer to a monomer (Scheme 1.2). This reaction produces vinyl groups at the terminated chain end and n-ethyl groups at the initiated chain end. An alternative chain-transfer reaction is a β-hydrogen transfer to the metal (Scheme 1.3). The same chain end groups derived from β-hydrogen transfer to the monomer are formed through this reaction. This is the dominant chain transfer mechanism under the usual experimental conditions. β-Hydrogen elimination (i.e., hydrogen transfer to the metal) can only compete in the limit of very small monomer concentrations or if monomer complexation is otherwise disfavored. The activation barrier for β-hydrogen transfer to the monomer is only weakly dependent on the character of the metal center and the auxiliary
ligand ${ }^{[22]}$. β-Hydrogen elimination is the main cause for low molecular weights of the produced polymers, in comparison with heterogeneous catalysts ${ }^{[23]}$

Scheme 1.2. β-Hydrogen transfer to monomer. ${ }^{[22]}$

Scheme 1.3. β-Hydrogen elimination (hydrogen transfer to metal).

The third chain transfer reaction is a β-methyl transfer to the metal and the chain end structure of a vinyl group is formed through β-methyl elimination. β-methyl transfer is dominant during propene polymerization by sterically crowded systems. i.e. $\operatorname{bis}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ metallocens. It has been suggested that the reason for this is the orientation of the polymer. The migrating methyl group lies between the Cp-rings rather than eclipses the $\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$ rings, and can migrate the methyl group to the lowest unoccupied molecular orbital (LUMO) of the metal. ${ }^{[16]}{ }^{[24]} \beta$-Methyl elimination becomes viable and is actually the most important in propylene polymerization when $\mathrm{Cp}^{*}{ }_{2} \mathrm{M}^{\mathrm{IV}}$-type complexes ($\mathrm{Cp}{ }^{*}=$ pentamethyl cyclopentadienyl; $\mathrm{M}=\mathrm{Zr}, \mathrm{Hf}$) are used as catalyst precursors. ${ }^{[24-27]}$

Scheme 1.4. β-Methyl elimination mechanism.

The fourth chain transfer reaction is a chain transfer to Al^{3+}. In the case of MAO, this chain transfer reaction occurs at lower polymerization temperature or lower propylene concentration. In the case of AlR_{3} (without MAO), chain transfer to aluminum was determined by chain-end analysis of the resulting polypropylenes. The presence of isobutyl end groups was indicated by ${ }^{13} \mathrm{C}$ NMR analysis. ${ }^{[28, ~ 29]}$

Scheme 1.5. Chain transfer to Al^{3+}. ${ }^{[28,29]}$

Stereochemistry of the polymerization reaction depends on both the ligand set of a single-site catalyst, as well as growing polymer chain. During a chain-growth polymerization reaction and monomer enchainment, a polymer chain remains bound to the active metal center. Thus, last enchained monomer unit stereogenic center will have influence on the stereochemistry of the incoming monomer addition. If this influence is significant, the mode of stereochemical control is referred to as "polymer chain-end control". If the chirality of the ligand has a dominant influence on the stereochemistry of the resulting polymer chain, the mechanism is referred to as 'enantiomorphic-site-control'. ${ }^{[19]}$ The effect of catalyst symmetry on polymer stereoselectivity can be seen in Figure 1.6.

$R=M e, P h$

C_{1}

Syndiotactic poly(propylene)

isotactic-atactic stereoblock

教

Hemiisotactic

Figure 1.6. Catalyst symmetry effects on stereospecificity. ${ }^{[19]}$

Polymer tacticity mainly depends on the symmetry of the catalytic system; catalysts such as $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ exhibiting $C_{2 \mathrm{v}}$ symmetry, these complexes mainly produce atactic polymers. As for C_{2} symmetric complexes, both racemic mixtures and enantiomerically pure complexes typically produce isotactic polymers. C_{s} symmetric metallocene catalysts typically produce syndiospecific polymers, Ewen et.al reported that a C_{s} symmetric catalyst such as isopropyl(cyclopentadienyl-1-fluorenyl)hafnium (IV) dichloride i.e. ($i-\mathrm{PrCp}-1-\mathrm{FluHfCl}_{2}$), is highly active for the syndiospecific polymerization of propylene. ${ }^{[30]}$ Stereoselectivities of C_{1} (asymmetric) catalysts are unpredictable, and the derived polymers architecture from these catalysts have been reported to produce isotactic, atactic, hemiisotactic and isotactic-atactic stereoblock polymers, Ewen et.al reported that C_{1} symmetric catalyst, such as $\mathrm{Me}_{2} \mathrm{C}(3-$ $\mathrm{MeCp})(\mathrm{Flu}) \mathrm{ZrCl}_{2}$ polymerize propylene to hemiisotactic polypropylene. Interestingly, Waymouth and Coates reported that oscillating metallocene complex i.e (2phenylindenyl) $)_{2} \mathrm{ZrCl}_{2}$ produces isotactic and atactic stereoblock polypropylene. ${ }^{[19,31]}$

1.5 Ring Opening Metathesis Polymerization (ROMP)

Ring-opening metathesis polymerization (ROMP) ${ }^{[32]}$ is a chain-growth polymerization process, in which monocyclic (CPE and COE) or bicyclic olefins (NBE) are converted to a polymer. ROMP has emerged as a powerful and broadly applicable method for synthesizing polymeric materials ${ }^{[33-36]}$. The olefin metathesis polymerization mechanism is a metal- mediated one, in which a carbon-carbon double bond exchange process takes place between two olefins. The basic mechanism of ROMP is illustrated in Scheme 1.6. Among the large number of contributions, R.H. Grubbs, R.R. Schrock and Y. Chauvin were honored for their discovery by the award of the Noble Prize in Chemistry in 2005. ${ }^{[37-39]}$

Propagation:

Termination:

Scheme 1.6. General mechanism for ROMP. ${ }^{[35]}$

The ability of a cycloalkene (CPE, NBE and COE) to undergo ROMP is primarily related to the difference in free energy between the ring and the corresponding open chain structure. The reaction is driven from the monomer to polymer by the release of ring strain associated with the cyclic olefin. The most common monomers used in ROMP are cyclic olefins which possess a considerable degree of strain ($>5 \mathrm{kcal} / \mathrm{mol}$) such as cyclobutene, cyclopentene, cis-cyclooctene and norborn-2-ene. Cyclohexene is one notable exception due to its low ring strain. Hence it does not undergo ROMP unless there is high ring strain in the molecule due to bridging, like in norbornene. Steric factors such as substituents close to the double bond are also important in determining the reactivity of a cyclic monomer. Finally, since the polymers have double bonds (i.e. one per repeat unit), there may be a chance for intramolecular chain-transfer reactions (i.e. back-biting) leading to cyclic oligomers and polymers. The back-biting process mainly depends on temperature, the solvent, monomer concentration and cis/trans configuration of the double bonds within the polymer chain as well as on the steric bulk of the monomer. ${ }^{[40]}$

Intermolecular Chain Transfer:

Intramolecular Chain Transfer:

Scheme 1.7. Inter- and intra-chain transfer reactions in ROMP. ${ }^{[35]}$

Effective catalysts for ROMP (and also for olefin metathesis) are metal alkylidene ($\mathrm{LnM}=\mathrm{CHR}$) complexes of molybdenum, tungsten, tantalum, rhenium and ruthenium. From these, two classes of alkylidene complexes are well-defined. i.e. Schrock-type molybdenum complexes and Grubbs-type ruthenium complexes.

1.5.1 Schrock-type initiators and reactivity

The synthesis of high oxidation state molybdenum alkylidenes was first reported by Schrock et.al. These and the analogous tungsten systems are commonly noted as "Schrock-type catalysts". ${ }^{[41-43]}$ These catalysts posses the general formula $\mathrm{M}\left(\mathrm{NAr}^{\prime}\right)\left(\mathrm{OR}^{\prime}\right)_{2}(\mathrm{CHR})$ where $\mathrm{M}=\mathrm{Mo}, \mathrm{W}$; Ar'=Phenyl or substituted phenyl, adamantyl; $\mathrm{R}=$ ethyl, phenyl, trimethylsilyl, t-butyl and $\mathrm{CMe}_{2} \mathrm{Ph} ; \mathrm{R}^{\prime}=\mathrm{CMe}_{3}, \mathrm{CMe}_{2} \mathrm{CF}_{3}, \mathrm{CMe}\left(\mathrm{CF}_{3}\right)_{2}$, aryl etc. The structures of typical Schrock-type initiators are illustrated in Figure 1.7.

S2

S3; $R={ }^{i} \mathrm{Pr} ; \mathrm{R}^{\prime}=\mathrm{Me}$
S4; $R=M e, R^{\prime}=P h$

S5

Figure 1.7. Schrock-type initiators (S1, S2, S3, S4 and S5).

In the late 1980's Schrock et.al reported on the development of well-defined catalysts for ROMP. ${ }^{[41-43]}$ Molybdenum and tungsten carbene complexes have been reported to exhibit high activities for ROMP with good control over molecular weight and stereochemistry of the resulting polymers. ${ }^{[19]}$ However, for several reasons molybdenum complexes are much more preferred than the corresponding tungsten complexes. First molybdenum is much cheaper than tungsten; second, molybdenum complexes are synthesized more easily; and third molybdacyclobutane rings are less stable than tungstacyclobutanes and finally, molybdenum is more tolerant towards functionalities such as carbonyl groups. ${ }^{[44]}$

In an alkylidene complex, the electron withdrawing effect of an alkoxide is the most important factor for tuning the reactivity of the complex. Electron-withdrawing groups render the metal more electrophilic and the resulting complex will be a more active catalyst. ${ }^{[44,}{ }^{45]}$ Schrock type initiators of the type $\mathrm{Mo}\left(\mathrm{NAr}^{\prime}\right)\left(\mathrm{OR}_{2}^{\prime}\right)\left(\mathrm{CHCMe}_{2} \mathrm{R}\right)$ posses a tetrahedral geometry. Addition of PMe_{3} or quinuclidine to $\mathrm{Mo}(\mathrm{NAr})\left(\mathrm{OCMe}\left(\mathrm{CF}_{3}\right)_{2}\right)_{2}(\mathrm{CH}-\mathrm{t}-$ Bu), allows for identifying two isomers, i.e. syn- and anti-rotamers of the alkylidene ligand. ${ }^{[46]}$ The approach of the alkene via the C/N/O face of the alkylidene ligand is considered the main reaction pathway. $\mathrm{Mo}\left(\mathrm{NAr}^{\prime}\right)\left(\mathrm{OR}^{\prime}\right)_{2}(\mathrm{CHR})$ complexes, in which $\mathrm{R}=$ tertbutyl or $\mathrm{CMe}_{2} \mathrm{Ph}$ point towards the imido-ligand are called the syn-rotamers, while those, in
which the R group points away from the imido-ligand are called anti-rotamers (Scheme 1.8). The rotamer ratio and reactivity is affected by the electronic nature of the alkoxide ligand, which was found to be responsible for the structure of final ROMP derived polymer.

Scheme 1.8. Syn- and anti-rotamers of Schrock catalysts. $k_{\mathrm{s} / \mathrm{a}}$ and $k_{\mathrm{a} / \mathrm{s}}$ are the rate constants of inter conversion from the syn- into the anti-rotamer and vice versa. ${ }^{[47]}$

2,3-Bis(trifluoromethyl)bicyclo[2.2.1]hepta-2,5-diene was polymerized to give $>98 \%$ trans-vinylenes ${ }^{[48]}$ in the resulting polymer using the molybdenum complex S1 (Figure. 1.7). In 1992 Gibson et.al ${ }^{[49]}$ reported that, 2,3-bis(trifluoromethyl)bicyclo[2.2.1]hepta-2,5diene was polymerized to give $>98 \%$ cis-vinylenes using the partially fluorinated complex S2 (Figure. 1.7). ${ }^{[19]}$

Scheme 1.9. Formation of cis and trans- poly(2,3-bis(trifluoromethyl)norbornadiene from the syn and anti -rotamers of a Schrock catalyst. ${ }^{[47]}$

1.5.2 Grubbs-type initiators and reactivity

In 1992, Grubbs et.al. described the synthesis of the first well-defined ruthenium alkylidene complexes for olefin metathesis. Their air stability and functional group tolerance were their main advantages. ${ }^{[50]}$ The reaction of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ with 2,2-diphenylcyclopropene
in benzene or dichloromethane (DCM) yielded the desired carbene complex $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}=\mathrm{CH}=\mathrm{CPh}_{2}\right)$ (A). Exchange of the triphenylphosphane ligands with tricyclohexylphosphane yielded initiator B (Scheme 1.10). These systems are highly active in ROMP and RCM. In addition, these complexes show a remarkable stability towards functional groups and protic media. However, an alternative route to ruthenium alkylidenes was elaborated by Schwab et.al and Grubbs et.al to avoid the multistep synthesis of diphenylcyclopropene and low initiation rates of diphenylvinylalkylidenes. The synthetic protocol entailed the reaction of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ with an diazoalkane (Scheme 1.11). ${ }^{[50]}$

Scheme 1.10. Synthesis of vinyl alkylidene complexes A and $\mathbf{B} .{ }^{[50]}$

Scheme 1.11. Synthesis of alkylidene complexes. ${ }^{[50]}$

Via this route, the resulting compounds of the general formula $\mathrm{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{2}(\mathrm{CHR})(\mathrm{R}=\mathrm{Ph}, \mathrm{Cy}$ and $\mathrm{R}^{\prime}=\mathrm{Ph}$, Me , Et, etc.) become known as the $1^{\text {st }}$-generation Grubbs catalysts. ${ }^{[51]}$ A synthetic protocol consisting of the reaction of $\left.\mathrm{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{2}(\mathrm{CHR})^{\prime}\right) \quad\left(\mathrm{R}=\mathrm{Ph}, \mathrm{Cy}\right.$ and $\mathrm{R}^{\prime}=\mathrm{Ph}, \mathrm{Me}, \mathrm{Et}$, etc.) with 1,3-dimesityl-4,5-dihydroimidazolin-2-ylidene $\left(\mathrm{IMesH}_{2}\right)$, resulted in the formation of $\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{IMesH}_{2}\right)(\mathrm{CHPh})$, known as the $2^{\text {nd }}$-generation Grubbs Catalyst. (Figure 1.8). Another breakthrough in catalyst activity was the development of Grubbs-type initiators with oxygen-chelated ruthenium alkylidenes known as $1^{\text {st }}$-generation Grubbs-Hoveyda type $\left(\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right) \quad\right.$ and $\quad 2^{\text {nd }}$-generation Grubbs-Hoveyda $\left(\mathrm{RuCl}_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right.$ catalysts ${ }^{[52]}$ (Figure 1.8).

1

2

3

Figure 1.8. $2^{\text {nd }}$ generation Grubbs catalyst (1), $1^{\text {st }}$ generation Grubbs-Hoveyda catalyst (2), $2^{\text {nd }}$ generation Grubbs-Hoveyda catalyst (3). ${ }^{[52]}$

The introduction of "pseudo-halide" ligands has led to significant advances in reactivity and selectivity for the synthesis of organic molecules as well as macromolecular materials. Mol et.al reported that the exchanging of chloride ligands with carboxylates to get a Ru-alkylidene carboxylate dimer these complexes are active in acyclic alkene metathesis as well as in ring closing metathesis. ${ }^{[53][54]}$ These anion-exchanged metathesis catalysts were defined as "pseudo-halide" derivatives. Buchmeiser et.al synthesized modified Grubbs-type and Grubbs-Hoveyda-type Ru-alkylidene based initiators ${ }^{[34]}{ }^{[55-59]}$, in which both chlorides were replaced by pseudo-halides or nitrates i.e, $\left[\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]$, $\left[\mathrm{Ru}(\mathrm{NCO})\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]$,
$\left[\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]$,
$\left[\mathrm{Ru}(\mathrm{NCS})_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right], \quad\left[\mathrm{Ru}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] \quad$ and $\left[\mathrm{Ru}\left(\mathrm{CF}_{2}\right)_{3}\left(\mathrm{CO}_{2}\right)_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] \quad\left(\mathrm{IMesH}_{2}=1,3\right.$-dimesitylimidazolin-2ylidene). The novel initiators and those of the general formula $\left[\mathrm{RuX}_{2}(\mathrm{~L})_{n}(\mathrm{NHC})(\mathrm{CHPh})\right]$ and $\left[\mathrm{RuX}_{2}(\mathrm{NHC})\left(\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] \quad\left(\mathrm{X}=\mathrm{Cl}, \quad \mathrm{CF}_{3} \mathrm{COO}, \quad \mathrm{N}=\mathrm{C}=\mathrm{O}, \quad \mathrm{N}=\mathrm{C}=\mathrm{S}, \quad \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{COO}\right.$; $\mathrm{NHC}=\mathrm{IMesH} 2,1,3$-dimesitylpyrimidin-2-ylidene, 1,3-dimesityldiazepin-2-ylidene, 1-mesityl-3-(2-phenylethyl)imidazolin-2-ylidene, 1-mesityl-3-adamantylimidiazolin-2-ylidene; $\mathrm{L}=\mathrm{PCy}_{3}$, pyridine, $\mathrm{n}=1,2$) were also synthesized. The Ru-alkylidene complexes containing mixed anionic ligands, such as $\left[\mathrm{Ru}(\mathrm{NCO})\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)(\mathrm{CHPh})\right]$, $\left[\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)(\mathrm{CHPh})\right]$, and $\left[\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)\left(\mathrm{IMesH}_{2}\right)(\mathrm{CH}-\right.$ 2-(2-PrO)- $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$], did not show any ligand scrambling, most propably because of the high stability of the Ru-triflate bonds. ${ }^{[1]}$ Among the isocyanate- and thioisocyanate-derived $2^{\text {nd }}$ generation Grubbs-Hoveyda-type Ru-alkylidene complexes, the isocyanate- derived Rualkylidene complexes were found to have excellent activity in the ROMP of cis-cycloocta-1,5-diene(COD) and as well as shows good catalytic activity in cross-metathesis(CM) reactions. Finally, isocyanate-derived Ru-alkylidene complexes were shown to display excellent activity in the regioselective cyclopolymerization of 1,6-heptadiynes. ${ }^{[57]}$ In view of the high activity of these 'pseudo-halide' derived Grubbs- and Grubbs-Hoveyda-type complexes, ${ }^{[1,55,56,58,59]}$ we investigated their propensity to cyclopolymerize 1, 6-heptadiynes. Cyclopolymerization derived polymers are attractive due to the conjugated double bonds in the polymer back bone and these polymers are normally highly soluble in organic solvents due to the 5 - and 6 -membered rings with pendant groups. The formation of these five- or sixmembered rings depends on the mode of insertion of the monomer into the initiator. α Insertion leads to the formation of 5 -membered rings and the β-insertion results in the formation of six-membered rings. ${ }^{[60]}$ These highly conjugated polymers exhibit high
conductivity upon doping with doping agents such as I_{2} or $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$. While both polymers are conjugated, especially polymers based on five- membered repeat units i.e poly(cyclopent-1-ene-2-vinylene)s have higher conjugation lengths and display higher conductivity. ${ }^{[55,61]}$

Scheme 1.12. Formation of poly(ene)s based on five- and six-membered repeat units, $\mathrm{X}=$ $\mathrm{NH}^{\text {s }}$ or O .

The reactivity of Grubbs type ruthenium-based initiator is different when compared to Schrock-type initiators (molybdenum- or tungsten-based). The difference in reactivity of Grubbs-type catalysts varies by changing the different phosphane ligands ${ }^{[62]}$ or the nature of the alkylidene moieties ${ }^{[50]}$ or by replacing the halide anions by pseudo-halides. ${ }^{[63-65]}$ Two pathways were proposed for ROMP; ${ }^{[66]}$ one is an associative pathway, in which two phosphane groups attached to the metal form together with the monomer an 18 -electron transition state and a dissociative pathway, in which only one phosphane group remains attached to the metal and forms together with the monomer an 16-electron transition complex. The existence of these pathways and of the mono- and diphosphane complexes were confirmed by quantum molecular dynamic simulation studies. ${ }^{[67]}$ Grubbs et.al studied the experimental data of complexes of the general formula $\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(=\mathrm{CHPh})$ to identify the mechanism of olefin metathesis. Their results clearly indicate that a monophospine complex is more reactive than the corresponding biphosphine complex as demonstrated by the addition of CuCl or CuCl_{2} as phosphane scavenger. Thus, addition of CuCl resulted in significantly increased the catalytic activities, ${ }^{[67]}{ }^{[68]}$ at the same time the addition of an excess phosphane resulted in a decreased catalytic activity in both RCM and ROMP. The most accepted mechanism is a dissociate one and is shown in Scheme 1.13.

Scheme 1.13. Mechanism of ROMP for Grubbs type initiators. ${ }^{[32]}$

The catalyst performance is, e.g. affected by the size and nature of the phosphane ligands; Gibson et.al ${ }^{[69]}$ reported that small variations in the phosphane ligand had a larger impact on metathesis performance, for this reason they turned to smaller and less basic phosphane ligands such as $\mathrm{PCy}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ as compared to the PCy_{3} ligand, to synthesize the initiator $\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)(=\mathrm{CHPh})$, which was found to have remarkable initiation characteristics for the ROMP of norborn-5-ene-2,3-dicarboximides and to allow for a good control of the molecular weights and molecular weight distributions. At the same time by varying the anionic ligands ($\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) in the ruthenium complexes, their reactivity in olefin metathesis was investigated. These reactivity of the catalysts decreased while changing the anion from Cl to Br to I . In terms of initiation, the rate constant of initiation was increased from Cl to Br to I . The increase in initiation is due to the increasing steric bulk on ruthenium center while moving the anion from Cl to Br to I , thus promoting the dissociation of ligand. ${ }^{[64]}$

1.6 Vinyl Insertion Polymerization (VIP)

Homopolymers of poly(NBE) $)_{\text {vinyl }}$, poly(CPE $)_{\text {vinyl }}$, poly(COE) $)_{\text {vinyl }}$ consist of rings, which are formed via the addition polymerization of the cyclic olefin. These polymers generally exhibit higher melting points ($T_{m}>400{ }^{\circ} \mathrm{C}$) or high glass transition temperatures (T_{g}), which are nearly close to their decomposition temperature, they also posses very poor solubility in most organic solvents, which makes them difficult to process and of limited commercial interest. ${ }^{[70]}$ To overcome these difficulties, the introduction of a co-monomer such as ethylene or another α-olefin into the poly(cycloolefin) (poly(NBE) $)_{\text {vinyl }}$, poly(CPE) $)_{\text {vinyl }}$, poly(COE) $)_{\text {vinyl }}$) chains via the coordinative addition mechanism is a useful method because the resulting cyclic olefin copolymers (COCs) have lower rigidity. COCs are characterized by excellent transparency and outstanding thermal, optical and mechanical properties such as excellent heat resistance. COCs are soluble and can be melt-processed. Due to their high carbon and hydrogen ratio, these copolymers have a high refractive index, e.g., 1.53 for an ethylene-norbornene copolymer with $50 \mathrm{~mol}-\%$ of NBE incorporation (TOPAS ${ }^{\circledR}$). ${ }^{[71]}$ These features render those materials attractive for optical applications, e.g., for compact discs, lenses, optical fibers and films.

poly(CPE ${ }_{1,2}$)
poly(CPE 1,3)

poly(NBE)

poly(CHE)

poly(COE)

poly(E-co-CPE)

poly(E-co-NBE)

poly(E-co-CHE)

poly(E-co-COE)

Figure 1.9. Homopolymers of monocyclic olefins and copolymers of cyclic olefins with ethylene.

1.7 Relationship between vinyl insertion polymerization (VIP) and ring opening metathesis polymerization (ROMP)

Simultaneous vinyl insertion and ring opening metathesis copolymerization of cyclic olefins with α-olefins is a fascinating field. In several cases it has been reported that cyclic olefin-derived polymers contained double bonds opened (ring-retained) and ring opened units, which indicates that the polymer contains both saturated and unsaturated units. For example, cyclobutene and derivatives of cyclobutene polymers contain both ring-retained and ring-opened units. This is the basic speculation for the possibility that both a ZieglerNatta and ROMP-based mechanism are active within the same catalytic system. Evidence for this possibility comes from two patents where IR spectra showed that ethylene and cyclopentene could be co-polymerized to give unsaturated and saturated units with in the same polymeric chain. ${ }^{[72,73]}$ To account for this, Ivin proposed a mechanism for the possibility of VIP and ROMP in the same polymer chain based on $\alpha-\mathrm{H}$ migration, which requires a switch between $\alpha-\mathrm{H}$ addition and $\alpha-\mathrm{H}$ elimination. ${ }^{[74]}$

Later Farona et.al reported that the presence of both VIP- and ROMP-derived structures within the same polymer chain using Mo and Re based initiators ${ }^{[74,}{ }^{75]}$, and they unambiguously labeled the characteristic signals for the quaternary carbon and methylene group in VIP and ROMP derived poly(NBE). The VIP and ROMP takes place within the same polymer chain and the underlying mechanism can be explained by a reversible $\alpha-\mathrm{H}$ elimination/ α - H addition process.

Scheme 1.14. Mechanism proposed by Ivin. ${ }^{[75]}[74]$

Grubbs et.al proved that it is possible to switch from ROMP to vinyl addition polymerization in one direction. ${ }^{[76]}$ A titanocyclobutane compound was active in the ROMP of NBE. After forming one block of ROMP-derived polymer, the metalcarbene was converted into a cationic species, which was active in the vinyl addition polymerization of ethylene (E). This process was carried out by addition of an alcohol followed by activation with $\mathrm{Et}_{2} \mathrm{AlCl}$. This resulted finally in an AB block copolymer i.e poly(NBE) ROMP $-b-$ poly (E).

Scheme 1.15. Single switch from ROMP to VIP. ${ }^{[76]}$

Kaminsky et.al ${ }^{[77]}$ reported that the controlled transformation from a vinyl addition polymerization to ROMP can be achieved by introducing a reactive transfer agent like phenyl acetylene (PA) during the polymerization. They succeeded in synthesizing poly(NBE) $)_{\text {vinyl }}-b-$ poly(NBE $)_{\text {Romp }}$, poly(NBE) $)_{\text {vinyl }}-b-$ poly $(C P E)_{\text {Romp }}$ and poly(NBE) $)_{\text {vinyl }}-b-$ poly(COE) $)_{\text {ROMP }}$ (Scheme 1.16). However, these polymers were not fully characterized $\left({ }^{13} \mathrm{C}\right.$ NMR, GPC and DSC) due to poor solubility.

Scheme 1.16. Proposed structure of polymers by switching from VIP to ROMP using phenylacetylene (PA) . ${ }^{[77]}$

1.8 References:

[1] M. R. Buchmeiser, I. Ahmad, V. Gurram, P. S. Kumar, Macromolecules 2011, 44, 4098.
[2] E. W. Fawcett, R. O. Gibson, M. W. Perrin, J. G. Paton, E. G. Williams, Imperial Chemical Industries Ltd. GB 471590 (1937).
[3] J. P. Hogan, R. L. Banks, Polymerization of olefins; USA US 2825721; Philips Petroleum Co. 1958.
[4] U. Giunnmi, A. Cussuru. P. Longi, R. Marrochi, Belg. Pat. 785332 (1972), Montedison. S.p.A.
[5] P. Pino, R. Mülhaupt, Angew. Chem. 1980, 92, 869; Angew. Chem. Int. Ed. 1980, 19, 857.
[6] K. Gardner, I. W. Parsons, R. N. Haward, J. Polym. Sci.: Polym. Chem. Ed. 1978, 16, 1683.
[7] K. Ziegler, E. Holzkamp, H. Breil, H. Martin, Angew. Chem. 1955, 67, 541.
[8] G. Natta, Angew. Chem. 1956, 68, 393.
[9] G. Natta, Angew. Chem. 1964, 76, 553.
[10] M. J. Miri, B. P. Pritchard, H. N. Cheng, J. Mol. Model. 2011, 17, 1767-1780 2011.
[11] H. Sinn, W. Kaminsky, H.-J. Vollmer, R. Woldt, Angew. Chem. 1980, 92, 396; Angew. Chem. Int. Ed. 1980, 19, 390.
[12] W. Kaminsky, K. Külper, H. H. Brintzinger, F. R. W. P. Wild, Angew.Chem. Int. Ed. 1985, 24, 507; Angew. Chem. 1985, 97, 507.
[13] F. R. W. P. Wild, M. Wasiucionek, G. Huttner, H. H. Brintzinger, J. Organomet. Chem. 1985, 288, 63.
[14] A. L. McKnight, R. M. Waymouth, Chem. Rev. 1998, 98, 2587.
[15] G. G. Hlatky, Chem. Rev. 2000, 100, 1347.
[16] M. W. McKittrick, Single-site Olefin Polymerization Catalysts via the Molecular Design of Porous Silica; thesis, Georgia Institute of Technology 2005.
[17] G. Natta, P. Pino, G. Mazzanti, U. Giannini, J. Am. Chem. Soc. 1957, 79, 2975.
[18] D. S. Breslow, N. R. Newburg, J. Am. Chem. Soc. 1957, 79, 5072.
[19] G. W. Coates, Chem. Rev. 2000, 100, 1223.
[20] W. Kaminsky, R. Steiger, Polyhedron 1988, 7, 2375.
[21] L. Resconi, L. Cavallo, A. Fait, F. Piemontesi, Chem. Rev. 2000, 100, 1253.
[22] P. Margl, L. Deng, T. Ziegler, J. Am. Chem. Soc. 1998, 121, 154.
[23] L. Resconi, F. Piemontesi, G. Franciscono, L. Abis, T. Fiorani, J. Am. Chem. Soc. 1992, 114, 1025.
[24] M. Lin, G. J. Spivak, M. C. Baird, Organometallics 2002, 21, 2350.
[25] S. Hajela, J. E. Bercaw, Organometallics 1994, 13, 1147.
[26] Z. Guo, D. C. Swenson, R. F. Jordan, Organometallics 1994, 13, 1424.
[27] L. Resconi, F. Piemontesi, I. Camurati, D. Balboni, A. Sironi, M. Moret, H. Rychlicki, R. Zeigler, Organometallics 1996, 15, 5046.
[28] L. Resconi, S. Bossi, L. Abis, Macromolecules 1990, 23, 4489.
[29] N. Naga, K. Mizunuma, Polymer 1998, 39, 5059.
[30] J. A. Ewen, R. L. Jones, A. Razavi, J. D. Ferrara, J. Am. Chem. Soc. 1988, 110, 6255.
[31] G. W. Coates, R. M. Waymouth, Science 1995, 267, 217.
[32] P. Dubois, O. Coulembier, J.-M. Raquez, Handbook of Ring-Opening Polymerization, Chapter 8, Willey-VCH, Weinheim, 2009.
[33] U. Frenzel, O. Nuyken, J. Poly. Sci. Part A: Poly. Chem. 2002, 40, 2895.
[34] M. R. Buchmeiser, Chem. Rev. 2000, 100, 1565.
[35] C. W. Bielawski, R. H. Grubbs, Prog. Polym. Sci. 2007, 32, 1.
[36] T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2000, 34, 18.
[37] Y. Chauvin, Angew. Chem. 2006, 118, 3824; Angew. Chem. Int. Ed. 2006, 45, 3740.
[38] R. H. Grubbs, Angew. Chem. 2006, 118, 3845; Angew. Chem. Int. Ed. 2006, 45, 3760.
[39] R. R. Schrock, Angew. Chem. 2006, 118, 3832 ; Angew. Chem. Int. Ed. 2006, 45, 3748.
[40] M. R. Buchmeiser, Adv. Polym. Sci. 2005, 89, 176.
[41] R. R. Schrock, Acc. Chem. Res. 1990, 23, 158.
[42] R. R. Schrock, Chem. Rev. 2009, 109, 3211.
[43] R. R. Schrock, Chem. Rev. 2002, 102, 145.
[44] S. Richard R, Tetrahedron 1999, 55, 8141.
[45] S. Richard R, Polyhedron 1995, 14, 3177.
[46] R. R. Schrock, W. E. Crowe, G. C. Bazan, M. DiMare, M. B. O'Regan, M. H. Schofield, Organometallics 1991, 10, 1832.
[47] M. R. Buchmeiser, Handbook of Ring-Opening Polymerization, (Eds.: P. Dubois, O. Coulembier, J.-M. Raquez) $1^{\text {st }}$ ed., Willey-VCH, Weinheim, 2009, pp 197-219.
[48] G. C. Bazan, E. Khosravi, R. R. Schrock, W. J. Feast, V. C. Gibson, M. B. O'Regan, J. K. Thomas, W. M. Davis, J. Am. Chem. Soc. 1990, 112, 8378.
[49] W. J. Feast, V. C. Gibson, E. L. Marshall, J. Chem. Soc., Chem. Commun. 1992, 1157.
[50] P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100.
[51] P. Schwab, M. B. France, J. W. Ziller, R. H. Grubbs, Angew. Chem. 1995, 107, 21792181; Angew. Chem. Int. Ed. 1995, 34, 2039.
[52] S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc. 2000, 122, 8168.
[53] W. Buchowicz, F. Ingold, J. C. Mol, M. Lutz, A. L. Spek, Chem. Eur. J. 2001, 7, 2842.
[54] W. Buchowicz, J. C. Mol, M. Lutz, A. L. Spek, J. Organomet. Chem. 1999, 588, 205.
[55] P. S. Kumar, K. Wurst, M. R. Buchmeiser, J. Am. Chem. Soc. 2008, 131, 387.
[56] P. S. Kumar, K. Wurst, M. R. Buchmeiser, Organometallics 2009, 28, 1785.
[57] P. S. Kumar, K. Wurst, M. R. Buchmeiser, Chem. Asian. J. 2009, 4, 1275.
[58] J. O. Krause, O. Nuyken, K. Wurst, M. R. Buchmeiser, Chem. Eur. J. 2004, 10, 777.
[59] J. O. Krause, O. Nuyken, M. R. Buchmeiser, Chem. Eur. J. 2004, 10, 2029.
[60] H. H. Fox, R. R. Schrock, Organometallics 1992, 11, 2763.
[61] J. O. Krause, D. Wang, U. Anders, R. Weberskirch, M. T. Zarka, O. Nuyken, C. Jäger, D. Haarer, M. R. Buchmeiser, Macromol. Symp. 2004, 217, 179.
[62] M. 1. E. Cucullu, C. Li, S. P. Nolan, S. T. Nguyen, R. H. Grubbs, Organometallics 1998, 17, 5565.
[63] Z. Wu, S. T. Nguyen, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1995, 117, 5503.
[64] M. S. Sanford, J. A. Love, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 6543.
[65] M. S. Sanford, M. Ulman, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 749.
[66] S. F. Vyboishchikov, M. Bühl, W. Thiel, Chem. Eur. J. 2002, 8, 3962.
[67] O. M. Aagaard, R. J. Meier, F. Buda, J. Am. Chem. Soc. 1998, 120, 7174.
[68] E. L. Dias, S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc. 1997, 119, 3887.
[69] D. A. Robson, V. C. Gibson, R. G. Davies, M. North, Macromolecules 1999, 32, 6371.
[70] W. Kaminsky, J. Chem. Soc., Dalton Trans. 1998, 1413.
[71] W. Kaminsky, P.-D. Tran, R. Werner, Macromol. Symp. 2004, 213, 101.
[72] G. Dall'Asta, G. Motroni, J. Polym. Sci. Part A: Polym. Chem. 1968, 6, 2405.
[73] G. Dall'Asta, J. Polym. Sci. Part A: Polym. Chem. 1968, 6, 2397.
[74] Maria A. Alonso, Kenneth E. Bower, Jay A. Johnston, M. F. Farona, Polym. Bull. 1988, 19, 211.
[75] J. A. Johnston, M. Tokles, G. S. Hatvany, P. L. Rinaldi, M. F. Farona, Macromolecules 1991, 24, 5532.
[76] I. Tritto, M. C. Sacchi, R. H. Grubbs, J. Mol. Catal. 1993, 82, 103.
[77] R. Manivannan, G. Sundararajan, W. Kaminsky, J. Mol. Cat. A 2000, 160, 85.

Pseudo-Halide and Nitrate Derivatives of Grubbs- and Grubbs-Hoveyda Initiators: Structural Features Related to the Alternating Ring Opening Metathesis Copolymerization of Norborn-2-ene with Cyclic Olefins

The material covered in this chapter is part of a paper that appeared in M. R. Buchmeiser, I. Ahmad, V. Gurram, P. S. Kumar, Macromolecules 2011, 44, 4098.

2.1 Introduction

During the last 20 years, remarkable progress in more efficient and selective metathesis catalysts has been achieved paving the way for various types of metathesis-based reactions in organic and polymer chemistry as well as in materials science. ${ }^{[1]}$ Both well-defined Schrock ${ }^{[2-5]}$ and Grubbs-type ${ }^{[1,6,7]}$ initiators match well the requirements for ring-opening metathesis polymerization (ROMP) ${ }^{[8]}$ and in many cases allow for truly living polymerizations. Significant efforts have been put into the development of even more efficient and active Ru-alkylidene metathesis catalysts. For these purposes, numerous variations in the N-heterocyclic carbene (NHC) as well as in the alkylidene (benzylidene) ligand have been reported. Our group developed modified Grubbs- and Grubbs-Hoveyda initiators by replacing the parent chloride ligands in complexes of the general formula $\mathrm{RuCl}_{2}(\mathrm{~L})(\mathrm{NHC})(\mathrm{CHR}) \quad\left(\mathrm{NHC}=\mathrm{IMesH}_{2}, \quad 1,3-\right.$ dimesitylpyrimidin-2-ylidene, 1,3-dimesityldiazepin-2-ylidene, 1-mesityl-3-(2-phenylethyl)imidazolin-2-ylidene; $\mathrm{L}=\mathrm{PCy}_{3}$, pyridine; $\mathrm{n}=1,2 ; \mathrm{R}=\mathrm{Ph}, 2-\mathrm{PrO}-\mathrm{C}_{6} \mathrm{H}_{4},(\mathrm{OMe})_{3}-\mathrm{C}_{6} \mathrm{H}_{2}$, 2-PrO-5- $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}$) by pseudo-halide ligands such as triflates, carboxylates, phenoxides, isocyanates and isothiocyanates. ${ }^{[9-15]}$

Here, we report on a library of novel Ru-alkylidenes by replacing the chloride ligand by electron withdrawing pseudo halide ligands such as isocyanates $\left(\mathrm{OCN}^{-}\right)$, isothiocyanates (SCN^{-}), perfluorocarboxylates (e.g., $\mathrm{CF}_{3} \mathrm{CO}_{2}^{-},\left\{\left(\mathrm{CF}_{2}\right)_{3}\left(\mathrm{CO}_{2}^{-}\right)_{2}\right\}$), nitrate and trifluoromethanesulfonates $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)$(Figure 2.1). ${ }^{[12,14,15]}$ In some cases we were able to prepare the mono(pyridine)-based " 3 rd -generation Grubbs-type" versions instead of the synthetically more easily accessible 2-PrObenzylidene (Hoveyda-type) versions of these initiators. In total, 23 modified Grubbs- and Grubbs-Hoveyda-type initiators were investigated for their propensity to promote the alternating copolymerization ${ }^{[16-24]}$ of NBE with cyclopentene (CPE) and COE, respectively. Since both the selectivity and reactivity of Grubbs- or Grubbs-Hoveyda-type initiators is governed by the nature of the N-heterocyclic carbene (NHC), of the alkylidene and the anionic (pseudo) halide ligands, one goal of this investigation was therefore to identify the influence of each of these ligands on the extent of alternating copolymerization.

2.2 Result and Discussion

2.2.1 Synthesis of Initiators

Initiators $\mathbf{1 a - g}, \mathbf{2 a - d}, \mathbf{3 a - c}, \mathbf{4 a - b}, \mathbf{5 a - b}$, and $\mathbf{6}$ (Figure 2.1) were prepared according to reported procedures. ${ }^{[10-12,14,15,25-30]}$

Figure 2.1. Structure of initiators 1a-g, 2a-g, 3a-d, 4a-b, 5a-b, 6.

The complexes $\left[\mathrm{Ru}(\mathrm{N}=\mathrm{C}=\mathrm{O})_{2}\left(\mathrm{IMesH}_{2}\right)\left(=\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] \quad$ (2b) and $\left[\mathrm{Ru}(\mathrm{N}=\mathrm{C}=\mathrm{S})_{2}\left(\mathrm{IMesH}_{2}\right)\left(=\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right](2 \mathrm{c}){ }^{[15]}$ were prepared from the $2^{\text {nd }}$ generation Grubbs-Hoveyda initiator $\mathrm{RuCl}_{2}\left(\mathrm{IMesH}_{2}\right)\left(=\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ by exchanging the chloride anions with two equivalents of silver isocyanate and silver thiocyanate, respectively. The resulting complexes $\mathbf{2 b}$ and $\mathbf{2 c}$ were isolated as dark green and dark yellow green solids in 80% and 75% yields, respectively, and were characterized by ${ }^{1} \mathrm{H}$ NMR, showing an upfield shift of the Ru-alkylidene proton signal at $\delta=16.37 \mathrm{ppm}$ (2b) and $\delta=16.4 \mathrm{ppm}$ (2c) as compared to the alkylidene proton signal (16.56 ppm) of the parent Grubbs-Hoveyda. ${ }^{[27]}$
$\left[\mathrm{Ru}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] \mathbf{2 d}$ was prepared from $\mathrm{RuCl}_{2}\left(\mathrm{IMesH}_{2}\right)(\mathrm{CH}-2-$ (2-PrO) $-\mathrm{C}_{6} \mathrm{H}_{4}$) and 2 equiv. of AgNO_{3} in THF and is to the best of our knowledge the first Ru-alkylidene-dinitrate complex. It was isolated as a brown solid in 84% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum, a significant downfield shift of the signal for the alkylidene proton ($\delta=18.63 \mathrm{ppm}$) as compared to the parent $2^{\text {nd }}$ generation Grubbs-Hoveyda initiator $(\delta=16.56 \mathrm{ppm}){ }^{[27]}$ was observed, which is indicative for a stronger ionic character of the $\mathrm{Ru}-\mathrm{NO}_{3}$ bonds as compared to the $\mathrm{Ru}-\mathrm{Cl}$
bonds, ultimately resulting in a stronger polarization of the Ru -alkylidene bond. Complex $\left[\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}\left(\mathrm{IMesH}_{2}\right)\left(\mathrm{CH}-2-(2-\mathrm{PrO})\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] \quad(2 \mathrm{~g})^{[12]} \quad\left[10, \quad{ }^{11]}\right.\right.$ was prepared from $\left[\mathrm{RuCl}_{2}\left(\mathrm{IMesH}_{2}\right)\left(=\mathrm{CH}-2-(2-\mathrm{PrO})-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$ via reaction with two equiv. of $\mathrm{CF}_{3} \mathrm{COOAg}$ and isolated as a red-brown solid in 86% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum, $\mathbf{2 g}$ was characterized by a downfield shift of the alkylidene proton signal to $\delta=17.38 \mathrm{ppm}$ compared to the alkylidene proton signal of the parent second generation Grubbs-Hoveyda initiator ($\delta=16.56 \mathrm{ppm}$). ${ }^{[27]}$ Complex $\operatorname{RuCl}_{2}(1,3-$ dimesityl-4,5,6,7-tetrahydro-1,3-diazepin-2-ylidene)(=CH-2-(2-PrO)C $\mathrm{C}_{6} \mathrm{H}_{4}$) published procedures. ${ }^{[12,18]}$

2.2.2 Homopolymerization of Norborn-2-ene (NBE) ${ }^{\text {a }}$

Table 2.1. Homopolymerization of NBE by the action of initiators 2a, 2g, 3a, 3d, 5a and $\mathbf{6}$.

$\#$	initiator	Isolated yield $\mathbf{(\%)}$	Cis/trans $^{\text {ratio }^{\mathbf{b}}}$	$\mathbf{M}_{\mathbf{n}}(\mathbf{g} / \mathbf{m o l})^{\mathbf{c}}$	PDI $^{\mathbf{c}}$
$\mathbf{1}$	$\mathbf{2 a}$	60	$35 / 65$	550,000	1.2
$\mathbf{2}$	$\mathbf{2 g}$	100	$65 / 35$	700,000	1.3
$\mathbf{3}$	$\mathbf{3 a}$	72	$65 / 35$	650,000	1.3
$\mathbf{4}$	$\mathbf{3 d}$	65	$45 / 55$	10,000	4.0
$\mathbf{5}$	$\mathbf{5 a}$	73	$60 / 40$	600,000	1.6
$\mathbf{6}$	$\mathbf{6}$	60	$10 / 90$	300,000	1.6

[a] initiator: NBE $=1: 1000, \mathrm{CH}_{2} \mathrm{Cl}_{2}, M_{n}($ theor. $)=94,150 \mathrm{~g} / \mathrm{mol} ;[\mathrm{b}]$ Calculated from the ${ }^{1} \mathrm{H}$ NMR spectra, [c] determined by GPC.

Initiators $\mathbf{1 a - e}, \mathbf{2 a - g}, \mathbf{3 a - d}, \mathbf{4 a}, \mathbf{b}, \mathbf{5 a}, \mathbf{b}$ and $\mathbf{6}$ are active for the ROMP of NBE. ${ }^{[11, ~ 14, ~ 25, ~ 26] ~}$ Poly (NBE) was prepared using a ratio of 1: 1000 (initiator: NBE) and the number- average molecular weights $\left(M_{n}\right)$ of the resulting polymer were in the range of $10,000-700,000 \mathrm{~g} / \mathrm{mol}\left(M_{n}\right.$ ${ }_{\text {(theor }}=94,150 \mathrm{~g} / \mathrm{mol}$), polydispersity indices (PDIs) ranged from $1.2<$ PDI <4.1. These data strongly suggest a non-living behavior of the initiators. The ROMP of NBE was completed in 60
s using $0.1 \mathrm{~mol}-\%$ of initiator with respect to NBE at room temperature. Interestingly, the observed cis-content was around 50% in all cases, except with initiator 6 . Those, initiators that beared the unsymmetrical NHC ligand gave poly(NBE) with a high content of trans-configured double bonds (90%) in the resulting poly(NBE).

Figure 2.2. ${ }^{1} \mathrm{H}$ NMR spectrum of poly (NBE) in CDCl_{3} prepared by the action of 3a (Table 2.1, entry 3).

Figure 2.3. ${ }^{1} \mathrm{H}$ NMR spectrum of poly (NBE) in CDCl_{3} prepared by the action of $\mathbf{6}$ (Table 2.1, entry 6).

2.2.3 Alternating Copolymerization of Norborn-2-ene (NBE) With Cyclopentene (CPE)

Initiators $\mathbf{1 a}-\mathbf{e}, \mathbf{2 b - e}, \mathbf{3 a - c}, \mathbf{4 a - b}, \mathbf{5 b}$, and $\mathbf{6}$ were used in the copolymerization of NBE with CPE using a NBE:CPE ratio of $1: 1$. Due to its bicyclic nature, NBE is a by far more reactive monomer in ROMP than cyclopentene. Consequently, usually a considerable excess of CPE is used in the copolymerization with NBE in order to realize a substantial fraction of alternating diads in the corresponding copolymer.

Table 2.2. Alternating copolymerization of NBE and CPE by the action of initiators $\mathbf{1 a - e}, \mathbf{2 b - d}$, $\mathbf{3 b - d}, 4 a-b, 5 a-b$ and 6.

\#	initiator	poly(NBE)		poly(CPE)		poly(NBE-alt-CPE) \boldsymbol{n}
		(\%)	cis/trans	(\%)	cis/trans	\%
$\mathbf{1}$	1a	78	$50 / 50$	7	$30 / 70$	15
$\mathbf{2}$	1b	88	$60 / 40$	4	$20 / 80$	8
$\mathbf{3}$	1c	91	$60 / 40$	2	n. a.	7
$\mathbf{4}$	1d	84	$60 / 40$	5	$30 / 70$	10
$\mathbf{5}$	1e	66	$60 / 40$	8	$30 / 70$	26
$\mathbf{6}$	2a	65	$40 / 60$	20	$15 / 85$	15
$\mathbf{7}$	2b	66	$60 / 40$	17	$20 / 80$	17
$\mathbf{8}$	2c	90	$60 / 40$	3	$30 / 70$	7
$\mathbf{9}$	2d	64	$40 / 60$	5	$20 / 80$	31
$\mathbf{1 0}$	2e	57	$70 / 30$	11	$20 / 80$	32
$\mathbf{1 1}$	2f	78	$60 / 40$	6	$30 / 70$	16
$\mathbf{1 2}$	2g	48	$40 / 60$	22	$30 / 70$	30
$\mathbf{1 3}$	3a	85	$70 / 30$	10	$15 / 85$	5
$\mathbf{1 4}$	3b	86	$50 / 50$	5	$20 / 80$	9
$\mathbf{1 5}$	3c	89	$50 / 50$	2	$25 / 75$	9
$\mathbf{1 6}$	3d	50	$60 / 40$	13	$15 / 85$	37
$\mathbf{1 7}$	4a	77	$75 / 25$	10	$20 / 80$	13
$\mathbf{1 8}$	4b	50	$70 / 30$	10	$20 / 80$	40
$\mathbf{1 9}$	5a	29	$60 / 40$	16	$25 / 75$	55
$\mathbf{2 0}$	5b	59	$60 / 40$	24	$20 / 80$	17
$\mathbf{2 1}$	$\mathbf{6}$	91	$30 / 70$	0	-	9

${ }^{\text {a }}$ Calculated from the ${ }^{13} \mathrm{C}$ NMR spectra, initiator: NBE:CPE=1:1000:1000, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. n. a. not analyzed because of insufficient signal intensities and/or resolution.

Despite the low NBE:CPE ratio used here, the resulting copolymers contained up to 55% alternating diads (initiator 5a, entry 19, Table 2.2), which is indicative for steric constraints in the NBE homopolymerization and which can be avoided by an alternating insertion of CPE. A
representative ${ }^{13} \mathrm{C}$ NMR of a copolymer prepared by the action of $\mathbf{3 d}, \mathbf{4 b}$ and $\mathbf{5 a}$ is shown in Figure 2.4, 2.5 and 2.6.

Figure 2.4. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of poly $(\mathrm{NBE}-\text { alt- } \mathrm{CPE})_{n}$ prepared by the action of 3d (Table 2.1, entry 16).

Figure 2.5. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of poly $(\mathrm{NBE}-\text { alt-CPE })_{n}$ prepared by the action of $\mathbf{4 b}$ (Table 2.1, entry 18).

Figure 2.6. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of poly(NBE-alt-CPE $)_{n}$ prepared by the action of $\mathbf{5 a}$ (Table 2.1, entry 19).

There, the signals for poly(NBE) at $\delta=133-134 \mathrm{ppm}$ can be detected. ${ }^{[23,32]}$ The signals around $\delta=130 \mathrm{ppm}$ stem from the poly(CPE) block. The signals around $\delta=135$-136 and 128-129 ppm can be clearly attributed to the alternating copolymer. The first set of signals around $\delta=135-$ 136 ppm is designated to the $\mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}$ carbon atoms and consists of eight different signals at $135.64,135.55,135.41,135.33,135.18,135.05,134.99$, and 134.91 ppm , which can be attributed to the corresponding $c c c, t c c, c t c, c c t$, $t t c, t c t, c t t$, and $t t t$ diads. ${ }^{[21,22]}$ The less resolved signals around $\delta=128-129 \mathrm{ppm}$ are assigned to the $\mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}$ carbon atoms and correspond to the same diads.

Using a 1:1 ratio of NBE:CPE, the highest content of alternating copolymer with 26-55\% of alternating diads was observed with initiators $\mathbf{1 e}, \mathbf{2 d}, \mathbf{2 e}, \mathbf{2 g}, \mathbf{4 b}, \mathbf{3 d}$ and $\mathbf{5 a}$ (Table 2.2). Surprisingly, $\mathbf{4 b}$ was found to be an efficient initiator for the homopolymerization of CPE.

Thus, 5000 molequiv. of CPE with respect to $\mathbf{4 b}$ were quantitatively consumed within 30 s yielding poly(CPE) with an M_{n} of $125,000 \mathrm{~g} / \mathrm{mol}$ and a PDI of 1.62 ($\sigma_{c i s}=17 \%$) (Figure 2.7).

Figure 2.7. GPC of poly (CPE) in CHCl_{3} derived from initiator $\mathbf{4 b}$.

An important finding that becomes evident is that the use of initiators in which both chlorides have been substituted by electron-withdrawing, potentially chelating ligands such as $\mathrm{CF}_{3} \mathrm{COO}^{-}, \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}, \mathrm{NO}_{3}^{-}$or $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{COO}^{-}$as found in $\mathbf{1 e}, \mathbf{2 d}, \mathbf{2 e}, \mathbf{2 g}, \mathbf{3 d}$ and $\mathbf{4 b}$ favors the formation of alternating copolymers. Exceptions are initiator 5a, which represents an unsymmetrically substituted NHC , as well as $\mathbf{1 c}$ bearing two $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$-ligands. The mechanism of alternating copolymerization with Ru-carbenes bearing un-symmetrically substituted NHCs as realized in 5a has already been proposed. ${ }^{[18,23,33]}$ The low copolymerization propensity of $\mathbf{1 c}$ is not surprising, since bis(trifluoromethanesulfonate)-substituted metathesis initiators and catalysts often display a reactivity that differs significantly from the one of other anionic ligands and which rather stems from the special features of the $\mathrm{CF}_{3} \mathrm{SO}_{3}$ group than from the excellent leaving group character of the ligand. Thus, bis(trifluoromethanesulfonate)-substituted Mo-alkylidenes are virtually inactive in ROMP, too. ${ }^{[34]}$ Unlike in Mo-based Schrock initiators, ${ }^{[34]}$ no correlation of the electron-withdrawing character of the X-ligand with the cis/trans ratio of the final polymer was found.

2.2.4 Cis/trans Ratios of the Poly(NBE) Homopolymer Blocks in Poly(NBE)-altpoly(CPE)

In the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, the signals of the cis- and trans-double bonds of poly(NBE)-alt-poly(CPE) can be found at $\delta=5.38 / 5.28$ and $135.4 / 128.4 \mathrm{ppm}$, respectively .

Because of overlapping signals, the cis-content of the alternating diads was hard to determine exactly, however, was estimated to lie in the range of $50<\sigma_{c i s}<70 \%$ throughout. Except for initiators 2a, 3a, 4a, 4b and 6, a cis:trans ratio around 1:1 was observed for the poly(NBE) block. A comparison of initiators 1a, 2a, 3a, 4a, which differ in the size of the NHC (i.e. imidazolin-2ylidene (1a, 2a) vs. pyrimidin-2-ylidene (3a) or 1,3-diazepin-2-ylidene (4a)), reveals no differences in their propensity to produce alternating copolymers from NBE with CPE (Table 2.2). However, changing from the imidazolin-2-ylidene (1a) to the pyrimidin-2-ylidene (3a) and 1,3-diazepin-2-ylidene (4a) results in a strong increase of the cis-content in homo-poly(NBE) $(50 / 50 \rightarrow 70 / 30 \rightarrow 75 / 25$, Table 2.2). The high cis-content of the poly(NBE) homopolymer blocks apparently origins from NHCs based on tetrahydropyrimidin-2-ylidenes and diazepin-2ylidenes. In these NHCs, the angle at the nitrogens defined by the mesityl group and the carbene are smaller than those in imidazolin-2-ylidenes, consequently, the two mesityl groups are located closer to the Ru-alkylidene than in 1a. In due consequence, the steric interaction between the growing polymer chain (P) and the mesityl groups increases in case an intermediary ruthenacyclobutane trans to the NHC forms (structure B, Figure 2.8). As an alternative, a ruthenacyclobutane with side-on coordination and one Cl-ligand trans to the NHC can form (structure A, Figure 2.8). In order to reduce the steric interaction between the growing polymer chain and mesityl groups, a cis-configured ruthenacyclobutane is favored, which gives raise to cis-configured double bonds along the polymer chain (Figure 2.8).

Figure 2.8. Different ruthenacyclobutanes and impact on the cis/trans configuration of the final polymer.

In contrast, the use of initiator $\mathbf{6}$ bearing an unsymmetrically substituted NHC results in the formation of poly (NBE) blocks with a high trans-content (70\%). This particular feature of $\mathbf{6}$ is related to the restricted rotation of the NHC -ligand around the $\mathrm{Ru}-\mathrm{C}_{2}$-bond, thereby forcing the propagating alkylidene to remain at the same side as the mesityl ligand. ${ }^{[25]}$ There, a
ruthenacyclobutane trans to the NHC is energetically favored (structure C, Figure 2.8), resulting in a higher fraction of trans-configured double bonds in the polymer. As outlined for the alternating copolymerization of NBE with COE by the action of 5a, poly(CPE) derived Rualkylidenes are sterically much less demanding than poly(NBE)-derived Ru-alkylidenes. Consequently, ruthenacyclobutanes trans to the NHC should dominate, giving raise to larger fractions of trans-configured double bonds in the poly (CPE) blocks. In fact, these poly (CPE) blocks were characterized by a cis:trans ratio around 20:80 throughout.

Despite the correlations outlined above one has to state that the influence of changes in both the NHC and the X-ligand on both the initiator's reactivity and the polymer structure are much less pronounced than, e.g., in Schrock-type carbenes. This is attributed to the nature of the $\mathrm{Ru}=\mathrm{C}$-bond, which is, as confirmed by numerous electrochemical measurements, ${ }^{[1,}{ }^{35]}$ more a $\mathrm{Ru}(\mathrm{II})$-carbene than a true $\mathrm{Ru}(\mathrm{IV})$ alkylidene, which is in stark contrast to high-oxidation state Schrock catalysts, ${ }^{[3,4,36]}$ which possess a pronounced metal-alkylidene character.

2.2.5 Influence of the NBE:CPE Ratio on the Extent of Alternating Copolymerization

To further explore the scope and limits of the alternating copolymerization of NBE with CPE, we focused on the most promising initiators, i.e. 2d, $\mathbf{4 b}$ and $\mathbf{6}$, and used different NBE:CPE ratios. The results in terms of the percentage of alternating diads are summarized in Table 2.2. With 2d, an increase in the NBE:CPE ratio from 1:1 to 1:5 resulted in an increase in the content of the alternating diads from 31 to 46%.

A further increase of the NBE:CPE ratio up to 1:50, however, resulted in a decrease in the content of alternating diads and, concomitantly, in a strong decrease in the formation of the poly(NBE) homopolymer block as well as in a significant increase in the formation of the poly(CPE) homopolymer block. Similar results were found for initiators $\mathbf{4 b}$. There a maximum of alternating diads of 40% was found (Table 2.3).

Table 2.3. Alternating copolymerization of NBE and CPE by the action of initiators 2d, 4b and $\mathbf{6}$ using different monomer ratios (solvent $=\mathrm{CH}_{2} \mathrm{Cl}_{2}$), $T=25^{\circ} \mathrm{C}, t=3 \mathrm{~min}$). ${ }^{\text {a }}$

initiator	I:NBE:CPE	poly(NBE)		poly(CPE)		poly(NBE-alt-CPE) $\boldsymbol{n}_{\boldsymbol{n}}$
		$\mathbf{(\%)}$	cis/trans	$\mathbf{(\%)}$	cis/trans	$\mathbf{(\%)}$
2d	$1: 1000: 1000$	64	$40 / 60$	5	$20 / 80$	31
2d	$1: 1000: 5000$	28	$30 / 70$	26	$30 / 70$	46
2d	$1: 1000: 7000$	22	$30 / 70$	35	$30 / 70$	43
2d	$1: 1000: 10000$	11	$30 / 70$	50	$30 / 70$	39
2d	$1: 1000: 50000$	0	-	73	$30 / 70$	27
4b	$1: 1000: 500$	68	$70 / 30$	3	$0 / 100$	29
4b	$1: 1000: 1000$	50	$70 / 30$	10	$20 / 80$	40
$\mathbf{4 b}$	$1: 1000: 2000$	18	$70 / 30$	47	$20 / 80$	35
$\mathbf{6}$	$1: 1000: 1000$	91	$30 / 70$	0	-	9
$\mathbf{6}$	$1: 1000: 3000$	81	$30 / 70$	0	-	19
$\mathbf{6}$	$1: 1000: 4000$	74	$30 / 70$	0	-	26
$\mathbf{6}$	$1: 1000: 10000$	58	$20 / 80$	0	-	42
$\mathbf{6}$	$1: 1000: 20000$	51	$10 / 90$	5	$11 / 89$	44
$\mathbf{6}$	$1: 1000: 30000$	42	$20 / 80$	11	$12 / 88$	47
$\mathbf{6}$	$1: 1000: 40000$	33	$10 / 90$	16	$10 / 90$	51
$\mathbf{6}$	$1: 1000: 50000$	28	$15 / 85$	19	$14 / 86$	53
$\mathbf{6}$	$1: 1000: 60000$	14	$10 / 90$	38	$13 / 87$	48

${ }^{\text {a }}$ Calculated from the ${ }^{13} \mathrm{C}$ NMR spectra.

These data clearly show that irrespective of the anionic ligand, the NHC and the NBE:CPE ratio used, the content of alternating diads was $<53 \%$ throughout for initiators $2 \mathbf{d}$ and 4b and thus much smaller than in alternating copolymers prepared by the action of unsymmetrical NHC ligands. ${ }^{[18,23]}$ To clarify the role of such unsymmetrical NHCs, we also investigated the scope and limitations of a Grubbs-type initiator bearing such an unsymmetrically substituted N-heterocyclic carbene (NHC), i.e. $\left[\mathrm{RuCl}_{2}\left(\mathrm{IAdMesH}_{2}\right)(\mathrm{CHPh})(\mathrm{PCy})_{3}\right]$ (6) containing one (comparably small) mesityl and one (large) adamantly(Ad) group in the 1- and 3-position of the imidazolin-2-ylidene, respectively. Using different ratios of NBE:CPE (1:1 to $1: 50$), the percentage of alternating diads could in fact be increased from 9 to 53%.

Figure 2.9. ${ }^{13} \mathrm{C}$ NMR of poly(NBE-alt-CPE) in CDCl_{3} prepared by the action of 6 .
I: NBE: CPE (1:1000: 40,000).

2.2.6 Alternating Copolymerization of NBE with cis-Cyclooctene (COE)

We also looked into the copolymerization of NBE with COE, ${ }^{[16,17,24]}$ again using a NBE:COE ratio of 1:1. The results are summarized in Table 2.4.

Table 2.4. Alternating copolymerization of NBE and COE by the action of initiators 1a-e, 2b-e, $\mathbf{3 b}-\mathbf{c}, \mathbf{4 a}, \mathbf{b}$, and $\mathbf{5 b}$ and 6 .

$\#$	initiator	poly(NBE)		poly(COE)		poly(NBE-alt-COE) \boldsymbol{n}
		(\%)	cis/trans	(\%)	cis/trans	\%
$\mathbf{1}$	1a	42	$60 / 40$	48	$20 / 80$	10
2	1b	42	$60 / 40$	44	$30 / 70$	14
3	1c	100	$60 / 40$	0	-	0
4	1d	67	$60 / 40$	27	$60 / 40$	6
$\mathbf{5}$	1e	79	$40 / 60$	13	$30 / 70$	8
$\mathbf{6}$	2a	35	$70 / 30$	55	$20 / 80$	10
7	2b	39	$40 / 60$	44	$20 / 80$	17
$\mathbf{8}$	2c	59	$60 / 40$	29	$40 / 60$	12
9	2d	70	$40 / 60$	18	$50 / 50$	12
$\mathbf{1 0}$	2e	77	$70 / 30$	15	$30 / 70$	8

$\mathbf{1 1}$	$\mathbf{2 g}$	47	$40 / 60$	45	$25 / 75$	8
$\mathbf{1 2}$	$\mathbf{3 a}$	36	$70 / 30$	64	$30 / 70$	0
$\mathbf{1 3}$	$\mathbf{3 b}$	42	$60 / 40$	50	$20 / 80$	8
$\mathbf{1 4}$	$\mathbf{3 c}$	46	$50 / 50$	32	$45 / 55$	22
$\mathbf{1 5}$	$\mathbf{3 d}$	100	$50 / 50$	0	-	0
$\mathbf{1 6}$	$\mathbf{4 a}$	49	$70 / 30$	48	$30 / 70$	3
$\mathbf{1 7}$	$\mathbf{4 b}$	99	$80 / 20$	1	-	0
$\mathbf{1 8}$	$\mathbf{5 a}$	29	$60 / 40$	31	$40 / 60$	40
$\mathbf{1 9}$	$\mathbf{5 b}$	53	$60 / 40$	38	$40 / 60$	9
$\mathbf{2 0}$	$\mathbf{6}$	88	$20 / 80$	8	$10 / 90$	4

${ }^{\mathrm{a}}$ Calculated from the ${ }^{13} \mathrm{C}$ NMR spectra, initiator: NBE:COE=1:1000:1000, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Initiators $\mathbf{1 c}$ and $\mathbf{4 b}$ bearing $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$and $\mathrm{CF}_{3} \mathrm{COO}^{-}$groups, respectively, produced only poly (NBE) under the given conditions. Among all initiators investigated, 5a showed the highest content of 40% of alternating diads. This percentage of alternating units is lower than the one obtained in the copolymerization of NBE with CPE (Table 2.2).

Figure 2.10. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of poly(NBE-alt-COE) $)_{n}$ prepared by the action of 3c I: NBE: COE (1:1000: 1000, Table 2.4, entry 14).

Figure 2.11. ${ }^{13} \mathrm{C}$ NMR of poly(NBE -alt- COE$)$ in CDCl_{3} prepared by the action of $\mathbf{5 a}$.
I: NBE: COE (1:1000: 1000, Table 2.4, entry 18).

Figure 2.12. ${ }^{13} \mathrm{C}$ NMR of poly(NBE-co-COE) in CDCl_{3} prepared by the action of $\mathbf{3 a}$.
I: NBE: COE (1:1000: 1000, Table 2.4, entry 12).

Figure 2.13. ${ }^{13} \mathrm{C}$ NMR of poly(NBE-co-COE) in CDCl_{3} prepared by the action of 3d.
I: NBE: COE (1:1000: 1000, Table 2.4, entry 15).

Figure 2.14. ${ }^{13} \mathrm{C}$ NMR of poly(NBE-alt-COE) in CDCl_{3} prepared by the action of $\mathbf{2 a}$. I: NBE: COE (1:1000: 1000, Table 2.4, entry 6).
cVG-2000-61

Figure 2.15. ${ }^{13} \mathrm{C}$ NMR of poly(NBE-alt-COE) in CDCl_{3} prepared by the action of $\mathbf{2 g}$.
I: NBE: COE (1:1000: 1000, Table 2.4, entry 11).

2.3 Summary

A series of modified $2^{\text {nd }}$-generation Grubbs- and Grubbs-Hoveyda-type metathesis initiators in which the chloride ligands were replaced by electron-withdrawing pseudo-halide ligands have been investigated for their ROMP activity vs. NBE as well as for their propensity to copolymerize NBE with cyclic olefins such as COE and CPE. $\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{COO}\right)_{2}(1,3$-dimesityl-1,3-diazepinidin-2-ylidene)(CH-2-(2-PrO)- $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$) (4b) was identified as an unusually active initiator for the homopolymerization of cyclopentene. All initiators containing electron-withdrawing potentially chelating ligands showed high activity in the alternating copolymerization with NBE/CPE. In addition, in the copolymerization with CPE, an increase in the size of the NHC favors the formation of poly(NBE) blocks with a high cis-content.

2.4 Polymerization Procedure

2.4.1 Typical Copolymerization Procedure:

Initiator $5 \mathbf{5 a}(2.0 \mathrm{mg}, 0.0032 \mathrm{mmol})$, dissolved in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added to a solution of NBE ($300 \mathrm{mg}, 3.18 \mathrm{mmol}$) and CPE ($218 \mathrm{mg}, 3.18 \mathrm{mmol}$) in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred for 2 min . Then the reaction was stopped by the addition of ethyl vinyl ether, and the polymer was precipitated by the drop-wise addition of the reaction mixture into methanol. The precipitated polymer was collected by filtration and washed with an excess methanol and dried in vacuo.

2.4.2 Typical Homopolymerization Procedure:

Initiator $\mathbf{2 b}(2 \mathrm{mg}, 0.0031 \mathrm{mmol})$, dissolved in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added to a solution of cyclopentene ($210 \mathrm{mg}, 3.08 \mathrm{mmol}$) in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred for 5 h at $50^{\circ} \mathrm{C}$. After 5 h , the reaction was stopped by the addition of ethyl vinyl ether and the polymer was precipitated by the drop-wise addition of the solution into methanol. The precipitated polymer was collected by filtration and washed with an excess methanol and dried in vacuo.

2.5 References

[1] R. H. Grubbs, Handbook of Metathesis, $1^{s t}$ ed.; Willey-VCH: Weinheim, 2003, Vols. 1-3.
[2] R. R. Schrock, Ring-Opening Metathesis Polymerization. In Ring-Opening Polymerization, $I^{s t}$ ed.; Brunelle, D.J., Ed.; Hanser: Munich 1993, pp 129.
[3] R. R. Schrock, Chem. Rev. 2001, 102, 145.
[4] R. R. Schrock, Chem. Rev. 2009, 109, 3211.
[5] R. R. Schrock, The Discovery and Development of High-Oxidation State Mo and W Imido Alkylidene Complexes for Alkene Metathesis, 2003, $I^{\text {st }}$ ed.; Wiley-VCH: Weinheim, Vol. 1, pp 8.
[6] R. H. Grubbs, Angew. Chem, 2006, 118, 3845-3850; Angew. Chem. Int. Ed. 2006, 45, 3760-3765.
[7] T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2000, 34, 18.
[8] M. R. Buchmeiser, Ring-Opening Metathesis Polymerization, It ed., Willey-VCH: Weinheim; 2009, pp 197
[9] J. O. Krause, M. T. Zarka, U. Anders, R. Weberskirch, O. Nuyken, M. R. Buchmeiser, Angew. Chem. 2003, 115, 6147; Angew. Chem. Int. Ed. 2003, 42, 5965.
[10] J. O. Krause, O. Nuyken, M. R. Buchmeiser, Chem. Eur. J. 2004, 10, 2029.
[11] J. O. Krause, O. Nuyken, K. Wurst, M. R. Buchmeiser, Chem. Eur. J. 2004, 10, 777.
[12] P. S. Kumar, K. Wurst, M. R. Buchmeiser, J. Am. Chem. Soc. 2008, 131, 387.
[13] Y. S. Vygodskii, A. S. Shaplov, E. I. Lozinskaya, P. S. Vlasov, I. A. Malyshkina, N. D. Gavrilova, P. Santhosh Kumar, M. R. Buchmeiser, Macromolecules 2008, 41, 1919.
[14] P. S. Kumar, K. Wurst, M. R. Buchmeiser, Organometallics 2009, $28,1785$.
[15] P. S. Kumar, K. Wurst, M. R. Buchmeiser, Chem. Asian. J. 2009, 4, 1275.
[16] M. Bornand, P. Chen, Angew. Chem. 2005, 117, 8123; Angew. Chem. Int. Ed. 2005, 44, 7909, 117.
[17] S. Torker, A. Müller, P. Chen, Angew. Chem. 2010, 122, 3850; Angew. Chem. Int. Ed. 2010, 49, 3762, 122.
[18] K. Vehlow, D. Wang, M. R. Buchmeiser, S. Blechert, Angew. Chem. 2008, 120, 2655; Angew. Chem. Int. Ed. 2008, 47, 2615.
[19] J. G. Hamilton, K. J. Ivin, J. J. Rooney, L. C. Waring, Chem. Commun. 1983, 159.
[20] M. Buchmeiser, R. R. Schrock, Macromolecules 1995, 28, 6642.
[21] B. Al Samak, A. G. Carvill, J. J. Rooney, J. M. Thompson, Chem. Commun. 1997, 2057.
[22] V. Amir-Ebrahimi, J. J. Rooney, J. Mol. Cat. A 2004, 208, 115.
[23] M. Lichtenheldt, D. Wang, K. Vehlow, I. Reinhardt, C. Kühnel, U. Decker, S. Blechert, M. R. Buchmeiser, Chem. Eur. J. 2009, 15, 9451.
[24] M. Bornand, S. Torker, P. Chen, Organometallics 2007, 26, 3585.
[25] M. B. Dinger, P. Nieczypor, J. C. Mol, Organometallics 2003, 22, 5291.
[26] J. C. Conrad, K. D. Camm, D. E. Fogg, Inorg. Chim. Acta 2006, 359, 1967.
[27] S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc. 2000, 122, 8168.
[28] M. S. Sanford, J. A. Love, R. H. Grubbs, Organometallics 2001, $20,5314$.
[29] T.-L. Choi, R. H. Grubbs, Angew. Chem. 2003, 115, 1785; Angew. Chem. Int. Ed. 2003, 42, 1743.
[30] R. Bandari, A. Prager-Duschke, C. Kühnel, U. Decker, B. Schlemmer, M. R. Buchmeiser, Macromolecules 2006, 39, 5222.
[31] M. Iglesias, D. J. Beetstra, J. C. Knight, L.-L. Ooi, A. Stasch, S. Coles, L. Male, M. B. Hursthouse, K. J. Cavell, A. Dervisi, I. A. Fallis, Organometallics 2008, 27, 3279.
[32] K. Vehlow, S. Gessler, S. Blechert, Angew. Chem. Int. Ed. 2007, 46, 8082; Angew.Chem. 2007, 119, 8228.
[33] K. Vehlow, M. Lichtenheldt, D. Wang, S. Blechert, M. R. Buchmeiser, Macromol. Symp. 2010, 296, 44.
[34] S. Richard R, Polyhedron 1995, 14, 3177.
[35] T. K. Maishal, B. Mondal, V. G. Puranik, P. P. Wadgaonkar, G. K. Lahiri, A. Sarkar, J. Organomet. Chem. 2005, 690, 1018.
[36] R. R. Schrock, Chem. Commun. 2005, 2773.

Chapter 3

Bis(diamido)silylene Zirconium (IV) and Non-bridged Half-Titanocene (IV) Complexes; Synthesis and Use in Olefin Polymerization

Novel $\mathrm{Zr}^{\mathrm{IV}}$-complexes of the type $\left(\mathrm{Me}_{2} \mathrm{Si}((\mathrm{NR})(6\right.$-(2-(diethylboryl)phenyl)pyridyl-2$\mathrm{yl})) \mathrm{ZrCl}_{2} \cdot \mathrm{THF} ; \mathrm{R}={ }^{\mathrm{t}} \mathrm{Bu}$ (13), adamantyl (17)) and the $\mathrm{Ti}^{\mathrm{IV}}$-based metallocene-type complex $\operatorname{bis}\left(\left(\mathrm{N}\left(6-\left(2\right.\right.\right.\right.$-(diethylboryl)phenyl)-pyrid-2-yl)Me) $\mathrm{TiCl}_{2} \quad$ (24); and the non-bridged halftitanocene complexes of the type $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}(\mathrm{~N}(6-(2-($ diethylboryl)phenyl)-pyrid-2-yl)R $) ; \mathrm{R}=\mathrm{Me}$ (22,23), $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}(\mathbf{2 6}, \mathbf{2 7}), \mathrm{Cp}^{\prime}=\mathrm{Cp}$ (22 and 26), Cp^{*} (23 and 27) as well as aminoborane-free model complexes $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}\left(\mathrm{~N}\right.$-(biphenyl-3-yl)R); $\mathrm{R}=\mathrm{SiMe}_{3}(\mathbf{3 0}, \mathbf{3 1})$, $\mathrm{Me}(\mathbf{3 3}, \mathbf{3 4})$, $\left(\mathrm{Cp}^{\prime}=\mathrm{Cp}\right.$ $\left.(\mathbf{3 0}, \mathbf{3 4}), \mathrm{Cp}^{*}(\mathbf{3 1}, \mathbf{3 3})\right)$ have been synthesized. These Zr and Ti complexes were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and elemental analysis. The molecular structures of complexes 22, 23, 27 and $\mathbf{3 4}$ were determined by single-crystal X-ray diffraction analysis. In polymerization, upon activation of these complexes with MAO, complexes 13, 17, 22, 23, 26 and 27 showed activities up to $3000 \mathrm{~kg}-\mathrm{PE} / \mathrm{mol}-\mathrm{M} \cdot \mathrm{h}$ in the homopolymerization of ethylene (E), producing mainly linear PE (HDPE) with molecular weights in the range of 100,000 < $M_{n}<4 \times 10^{6} \mathrm{~g} \mathrm{~mol}^{-1}$. Surprisingly, in the copolymerization of ethylene with CPE, complex 13 exhibits high catalytic activity ($30,000 \mathrm{~kg}-\mathrm{PE} / \mathrm{mol}^{-\mathrm{Zr}} \mathrm{h}$), producing poly(E)-co-poly(CPE) VIP with 3-4 mol- $\%$ of vinyl addition polymer incorporated CPE. In the copolymerization of ethylene with NBE, complexes 13, 17, 22, 23, 26 and 27 mainly produced vinyl addition copolymerization derived poly(E)-co-poly(NBE) ${ }_{\text {vIP }}$ with incorporated NBE-fractions of up to $36 \mathrm{~mol}-\%$ as evidenced by ${ }^{13} \mathrm{C}$ NMR analysis.

3.1 Introduction

Olefin polymerization by homogeneous transition metal complexes is a mature field of polymer chemistry, especially when using early transition metals. ${ }^{[1-6]}$ During the past twenty years it has emerged that group IV transition metal complexes containing amide ligands are promising systems in olefin polymerization catalysis. ${ }^{[2]}$ In particular, a large number of metallocene complexes have been developed for the copolymerization of ethylene with cycloolefins. ${ }^{[7,8]}$ Metallocene catalysts, particularly zirconium complexes, are effective catalyst systems for the copolymerization of ethylene with cycloolefins (NBE, CPE). The copolymerization of ethylene and norborn-2-ene has been investigated with various metallocene catalysts, and the resulting polymer turned out to be amorphous solids with high transparency. ${ }^{[9-14]}$ Kaminsky et.al ${ }^{[15]}$ reported that C_{s} symmetric catalyst systems, e.g ($\left[\mathrm{Me}_{2} \mathrm{C}(\mathrm{Flu})(\mathrm{Cp})\right] \mathrm{ZrCl}_{2}$ or $\left(\left[\mathrm{Ph}_{2} \mathrm{C}(\mathrm{Flu})(\mathrm{Cp})\right] \mathrm{ZrCl}_{2}\right.$, are well suited for yielding amorphous copolymers with high activities and high glass transition temperatures ($<180^{\circ}$) compared to C_{2}-symmetric catalyst systems e.g $\left(\left[\mathrm{Me}_{2} \mathrm{Si}(\mathrm{Ind})_{2}\right] \mathrm{ZrCl}_{2}\right.$, $\left(\left[\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{Ind})_{2}\right] \mathrm{ZrCl}_{2}\right.$ under the same conditions.

Nomura et.al ${ }^{[16,17]}$ reported on non-bridged (anilido)(cyclopentadienyl)titanium(IV) complexes of the type $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}\left[\mathrm{~N}\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)(\mathrm{R})\right]\left(\mathrm{Cp}^{\prime}=\mathrm{C}_{5} \mathrm{Me}_{5}, 1,3-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3},\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cp}\right.$; $\mathrm{R}=\mathrm{SiMe}_{3}$) for olefin polymerization, in which particularly $\mathrm{Cp}^{*} \mathrm{TiCl}_{2}[\mathrm{~N}(2,6-$ $\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\left(\mathrm{SiMe}_{3}\right)$] exhibited moderate activity ($1080 \mathrm{Kg} \mathrm{PE/mol} \mathrm{Ti} \mathrm{h}$) in ethylene polymerization. However, the zirconium analogues $\mathrm{Cp}^{*} \mathrm{ZrCl}_{2}\left[\mathrm{~N}\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\left(\mathrm{SiMe}_{3}\right)\right]$ showed lower activity ($637 \mathrm{Kg} \mathrm{PE} / \mathrm{mol}$ Tih) in ethylene homopolymerization. In the copolymerization of ethylene with NBE by various non-bridged (aryloxo)(cyclopentadienyl) TiCl_{2} type complexes of the general formula $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}(\mathrm{OAr})$ $\left\{\mathrm{Cp}^{\prime}=\right.$ indenyl, $\left.\mathrm{C}_{5} \mathrm{Me}_{5}, t-\mathrm{BuC}_{5} \mathrm{H}_{4}, 1,2,4-\mathrm{Me}_{3} \mathrm{C}_{5} \mathrm{H}_{2} ; \mathrm{OAr}=\mathrm{O}-2,6-i-\mathrm{Pr} \mathrm{C}_{6} \mathrm{H}_{3}\right\}$ the catalytic activity and incorporation of NBE was found to be highly dependent on the substituent on Cp^{\prime}. Especially indenyl-based Ti complexes showed high activity and efficient incorporation of NBE in poly(E)-co-poly(NBE). These complexes were also active in the copolymerization of ethylene with CPE, however, incorporation of CPE was less effective than the one of NBE. ${ }^{[18]}$ [9]

We recently reported on $\mathrm{Me}_{2} \mathrm{Si}\left(\eta^{5}-\mathrm{Me}_{4} \mathrm{Cp}\right)(6-(2$-(diethylboryl)phenyl)pyridine-2amine) $\mathrm{TiCl}_{2},{ }^{[19]} \mathrm{Me}_{2} \mathrm{Si}(\mathrm{DbppN})_{2} \mathrm{ZrCl}_{2}$ (THF) and $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{DbppN})_{2} \mathrm{HfCl}_{2}$ (THF), (DbppN=6-(2-(diethylboryl)phenyl)pyridine-2-amido) initiator systems, which were after activation with methylalumoxane (MAO) capable of forming both VIP- and ROMP-derived structures from a cyclic olefin and which were additionally capable of copolymerizing ethylene to yield narrowly distributed ($1.05<\mathrm{PDI}<2.0$), high-molecular weight copolymers ($M_{n} \leq 1,500,000$ $\mathrm{g} / \mathrm{mol}$) containing multiple blocks of both ROMP- and VIP-derived structures within one single polymer chain.

In view of these results we were interested in the question which reactivity and $\alpha-\mathrm{H}$ elimination propensity of $\mathrm{Zr}^{\mathrm{IV}}$ - and $\mathrm{Ti}^{\mathrm{IV}}$-based bis(amido) precatalysts and $\mathrm{Ti}^{\mathrm{IV}}$-based half metallocenes precatalysts (Figure 3.1) would display. Consequently, such systems were prepared and investigated in the homopolymerization of ethylene (E) as well as in the copolymerization of E with both CPE and NBE. These $\mathrm{Zr}^{\mathrm{IV}}$-based bis(amido) precatalysts having C_{s} symmetric system (Figure 3.1), were not performing well in the reversible $\alpha-\mathrm{H}$ elimination $/ \alpha-H$ addition process to switch from Ziegler-Natta polymerization to ROMP and vice versa. However, these complexes are well suited to synthesize mostly linear PE and as well as vinyl addition derived copolymers of poly(E)-co-poly(NBE) $)_{\text {VIP }}$ and poly(E)-copoly(CPE) $)_{\text {VIP }}$ with high molecular weights.

13

17

24

23

26

27

30

31

33

34

Figure 3.1. Structure of precatalysts 13, 17, 22, 23, 24, 26, 27, 30, 31, 33 and 34.

3.2 Results and Discussion

3.2.1 Synthesis of ligands and precatalysts

An efficient synthesis was developed for the synthesis of the aminoborane-containing ligand 9 (Scheme 3.1). It entailed the reaction of $2-\mathrm{Br}-5$-aminopyridine with $2-\mathrm{Br}-$ phenylboronic acid to yield 2-(2-Br-phenyl)-5-aminopyridine (7). Compound 7 was then N protected with 1,2 bis[(dimethylamino)dimethylsilyl]ethane to yield $\mathbf{8}$. Compound $\mathbf{8}$ was deprotonated using n-BuLi and borylated with diethylmethoxyborane to yield 9 . In this entire sequence, the use of bis[(dimethylamino)dimethylsilyl]ethane turned out to be crucial for the high-yield synthesis of 9 and allowed for its synthesis in 51% overall yield. Subsequently, N-tert-butyl-chlorodimethylsilylamine (11) was synthesized by treating tert-butyl amine with dichlorodimethylsilane in the presence of a base such as triethylamine to yield 11 in 90% yield. Subsequently, deprotonation of $\mathbf{9}$ with n -BuLi and in-situ reaction with N -tert-butyl-chloro-dimethylsilylamine (11) yielded $\mathbf{1 2}$. In a similar way, $\mathbf{1 0}$ was treated with N adamantylchlorodimethylsilyl amine (15) to yield 16. Finally, the Zr complexes $\mathbf{1 3}$ and $\mathbf{1 7}$
were synthesized via the reaction of $\left(\mathrm{Me}_{2} \mathrm{Si}((\mathrm{NHR})\right.$ (6-(2-(diethylboryl)phenyl)pyrid-2-yl)); $\mathrm{R}=$ tert-butyl (12), adamantyl (16)) with 2.0 equiv of $\mathrm{n}-\mathrm{BuLi}$ at $-36^{\circ} \mathrm{C}$, followed by treatment with $\mathrm{ZrCl}_{4} 2 \mathrm{THF}$ in toluene. The desired Zr -complexes were isolated in approx. 70% yield and were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and elemental analysis. Particularly with complex 13, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data as well as elemental analysis showed that no ligand scrambling occurred before crystallization (Figure 3.2). Before crystallization the elemental analysis calcd. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{BCl}_{2} \mathrm{~N}_{3} \mathrm{OSiZr}$: C 50.08; H 6.72; N 7.01; found C 50.37; H 7.08; N 7.34. These data clearly show that no ligand scrambling occurred before the crystallization process.

Scheme 3.1. Synthesis of compounds 7-17.
Finally, the Zr complex $\mathbf{1 3}$ was crystallized from toluene and pentane (3:7), white needles were grown upon standing at $-36^{\circ} \mathrm{C}$ inside a glove-box for 10 days. The molecular
structure of complex $\mathbf{1 3}$ was determined by single-crystal X-ray diffraction analysis and revealed that the Zr -complex $\mathbf{1 3}$ contained two bisamido ligands upon standing for a long time in a solvent thus forming complex 13a (Scheme 3.2). The X-ray structure is shown in Figure 3.4. For comparison, the of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the Zr -based complex $\mathbf{1 3}$ (before crystallization) and complex 13a (after crystallization) are shown in Figures 3.2 and 3.3. Similarly, all attempts to synthesize the corresponding Hf-based complexes from the Li-salt of compounds $\mathbf{1 2}$ and $\mathbf{1 6}$ with 1.0 equiv of HfCl_{4} in different solvents such as toluene and diethyl ether lead to Hf-complexes containing two bisamido ligands (Scheme 3.3) as confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and elemental analysis. Also all attempts to synthesize the Ti-based complexes from the Li-salt of compounds $\mathbf{1 2}$ and $\mathbf{1 6}$ with $\mathrm{TiCl}_{4} 2 \mathrm{THF}$ in both toluene and diethyl ether were unsuccessful.

Figure 3.2. a) ${ }^{13} \mathrm{C}$ NMR of complex $\mathbf{1 3}$ before crystallization; b) ${ }^{13} \mathrm{C}$ NMR of complex $\mathbf{1 3}$ after crystallization in toluene and pentane (3:7).

Figure 3.3. a) ${ }^{1} \mathrm{H}$ NMR of complex 13 before crystallization and \mathbf{b}) after crystallization in toluene and pentane (3:7).

Scheme 3.2. Structure of Zr-based complex 13a, which was formed during the crystallization of 13 .

Figure 3.4. Molecular structure of complex $\mathbf{1 3}$ a, containing two bisamido ligands.

Scheme 3.3. Synthesis of Hf-based complexes 18 and 19.
The Ti-based complexes $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}\{\mathrm{~N}-[6$-(2-diethylborylphenyl)pyrid-2-yl]-N-Me\} ($\mathrm{Cp}^{\prime}=\mathrm{Cp}$ (22), $\mathrm{Cp} *$ (23), and $\mathrm{TiCl}_{2}\{$ bis-(N-[6-(2-diethylborylphenyl)pyrid-2-yl]-N-Me) \} (24) were synthesized in a three step procedure according to Scheme 3.4. In a first step, the ligand N-(6-(2-(diethylborylphenyl)pyrid-2-yl))-N-methylamine (20) was synthesized via the reaction of compound 9 with NaH ($60 w t-\%$ in mineral oil) in DMF at $0^{\circ} \mathrm{C}$ followed by treatment with $\mathrm{CH}_{3} \mathrm{I}$ and was isolated in high yield (90%). The resulting compound $\mathbf{2 0}$ was
deprotonated using n -BuLi (1.6 M) in n-pentane and the corresponding Li salt (21) was isolated by filtration. Finally, the Li salt (21) was treated with $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{3}\left(\mathrm{Cp}^{\prime}=\mathrm{Cp}\right.$ and $\left.\mathrm{Cp}^{*}\right)$ in toluene at room temperature for 12 h and the corresponding Ti-complexes of $\mathbf{2 2}$ and $\mathbf{2 3}$ were isolated in moderate yields ($50-55 \%$). The Ti complex 24 was synthesized in an analogous manner using 0.5 mol eq. of $\mathrm{TiCl}_{4} 2 \mathrm{THF}$ in toluene. ${ }^{[20]}$ All complexes were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and elemental analysis. Complex 22 and $\mathbf{2 3}$ were crystallized in a mixture of toluene and pentane $(2: 8)$ at $-36^{\circ} \mathrm{C}$ inside a glove-box. After a few days, the red colored needle type crystals had grown from the solvent mixture and these crystals were subjected to single-crystal X-ray diffractometry. The molecular structures of complexes $\mathbf{2 2}$ and $\mathbf{2 3}$ are shown in Figure 3.5 and 3.6, selected bong lengths (\AA) and bond angels $\left(^{\circ}\right)$ are summarized in Tables 3.1 and 3.2 respectively. Complex 22 crystallizes in monoclinic space group $P 2(1) / n$, $\mathrm{a}=10.9979(11), \mathrm{b}=16.1318(19), \mathrm{c}=12.3324(11) \mathrm{pm}, \alpha=\gamma=90^{\circ}, \beta=106.79^{\circ}, \mathrm{Z}=4$, complex 23 crystallizes in the triclinic space group $\mathrm{p}-1, \mathrm{a}=9.2538(4), \mathrm{b}=11.5135(5), \mathrm{c}=12.7779(6) \mathrm{pm}$, $\alpha=77.233, \beta=81.007, \gamma=72.946^{\circ}, Z=2$ respectively. The structural analysis reveals that both complexes 22 and 23 have a tetrahedral geometry around the metal center and that the pyridine-nitrogen is coordinated to the diethylboryl group in the solid state. Bond lengths and bond angles were compared to those of previously reported Ti-complexes from Nomura et.al ${ }^{[21]}$ and Ying Mu et.al. ${ }^{[22]}$ The Ti-N distances in complex 22 ($1.8891 \AA$) and complex 23 $(1.9259 \AA)$ are longer than the reported values $(1.867-1.878 \AA)$. In all these complexes, the $\mathrm{Ti}-\mathrm{N}$ distance is shorter than the estimated value ($2.02 \AA$) of a Ti-N single bond according to Pauling's radii. The average bond distance of the Ti-Cl in complexes 22 ($2.267 \AA$) and complex $23(2.2719 \AA)$ are shorter than those reported for $\left[\mathrm{CpTiCl}_{2}\left\{\mathrm{~N}\left(2,6-i \operatorname{Pr}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Me}\right\}\right]$ $(2.275 \AA),\left[\mathrm{Cp}^{*} \mathrm{TiCl}_{2}\left\{\mathrm{~N}\left(2,6-i \operatorname{Pr}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Me}\right\}\right] \quad(2.285 \AA),\left[\mathrm{Cp}^{*} \mathrm{TiCl}_{2}\left\{\mathrm{~N}\left(2,6-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Me}\right\}\right]$ $(2.281 \AA)^{[22]}$ and longer than the reported value of $\left[\mathrm{Cp}^{*} \mathrm{TiCl}_{2}\{\mathrm{~N}(\mathrm{Me}) \mathrm{Cy}\}\right](2.303 \AA)^{[21]}$, which indicates that the bond distances are slightly changing by varying the anionic ligand. The $\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(1)$ bond angle is almost of the same length in both Ti-complexes 22 $\left(106.22^{\circ}\right)$ and $23\left(106.26^{\circ}\right)$, a slight difference was observed in the bond angles of $\mathrm{N}(1)-\mathrm{Ti}(1)-$ $\mathrm{Cl}(2)$ in complexes $22\left(100.95^{\circ}\right)$ and $23\left(99.61^{\circ}\right)$. The bond angles of $\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$ (103.71° in 22 and 101.22° in 23) were slightly smaller when compared to [$\mathrm{CpTiCl}_{2}\{\mathrm{~N}(2,6-$ $\left.\left.\left.i \operatorname{Pr}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Me}\right\}\right]\left(105.22^{\circ}\right)$ and $\left[\mathrm{Cp}^{*} \mathrm{TiCl}_{2}\left\{\mathrm{~N}\left(2,6-i \operatorname{Pr}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Me}\right\}\right]\left(104.91^{\circ}\right)$, respectively.

Scheme 3.4. Synthesis of compounds 20-23 and 24.

Figure 3.5. Molecular structure of complex 22.

Table 3.1. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ of complex 22. ${ }^{\text {a }}$

Bond length (\AA)			
$\mathrm{Ti}(1)-\mathrm{N}(1)$	1.8891	$\mathrm{Ti}(1)-\mathrm{C}(1)$	2.355
$\mathrm{Ti}(1)-\mathrm{Cl}(1)$	2.2601	$\mathrm{Ti}(1)-\mathrm{C}(2)$	2.358
$\mathrm{Ti}(1)-\mathrm{Cl}(2)$	2.2739	$\mathrm{Ti}(1)-\mathrm{C}(3)$	2.337
$\mathrm{~N}(1)-\mathrm{C}(6)$	1.490	$\mathrm{Ti}(1)-\mathrm{C}(4)$	2.334
$\mathrm{~N}(1)-\mathrm{C}(7)$	1.413	$\mathrm{Ti}(1)-\mathrm{C}(5)$	2.3459
$\mathrm{~B}(1)-\mathrm{N}(2)$	1.694	$\mathrm{~N}(2)-\mathrm{C}(7)$	1.360
Bond angle $\left(^{\circ}\right)$			
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(1)$	106.22	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{Ti}(1)$	136.20
$\mathrm{~N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	100.95	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{Ti}(1)$	108.79
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	103.71	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(6)$	111.17

${ }^{a}$ For detailed X-ray structural data information, please refer to the appendix.

Figure 3.6. Molecular structure of complex 23.

Table 3.2. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ of complex 23. ${ }^{\text {a }}$

Bond length (\AA)			
$\mathrm{Ti}(1)-\mathrm{N}(1)$	1.9259	$\mathrm{Ti}(1)-\mathrm{C}(3)$	2.3724
$\mathrm{Ti}(1)-\mathrm{Cl}(1)$	2.2571	$\mathrm{Ti}(1)-\mathrm{C}(4)$	2.3795
$\mathrm{Ti}(1)-\mathrm{Cl}(2)$	2.2868	$\mathrm{Ti}(1)-\mathrm{C}(5)$	2.3874
$\mathrm{~N}(1)-\mathrm{C}(6)$	1.4779	$\mathrm{C}(1)-\mathrm{C}(22)$	1.4991
$\mathrm{~N}(1)-\mathrm{C}(7)$	1.4242	$\mathrm{C}(2)-\mathrm{C}(23)$	1.5015
$\mathrm{~B}(1)-\mathrm{N}(2)$	1.6800	$\mathrm{C}(3)-\mathrm{C}(24)$	1.5005
$\mathrm{Ti}(1)-\mathrm{C}(1)$	2.3670	$\mathrm{C}(4)-\mathrm{C}(25)$	1.4935
$\mathrm{Ti}(1)-\mathrm{C}(2)$	2.3842	$\mathrm{C}(5)-\mathrm{C}(26)$	1.5034
Bond angle $\left(^{\circ}\right)$			
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(1)$	106.26	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{Ti}(1)$	
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	99.61	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{Ti}(1)$	117.28
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	101.225	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(6)$	109.24

${ }^{\text {a }}$ For detailed X-ray structural data information, please refer to the appendix.

The Ti-based complexes $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}\left(\mathrm{~N}\right.$-(6-(2-(diethylboryl)phenyl)pyrid-2-yl)SiMe ${ }_{3}$); $\left(\mathrm{Cp}^{\prime}=\mathrm{Cp}\right.$ (26), $\mathrm{Cp}{ }^{*}$ (27)) (Scheme 3.5) were synthesized in high yields (80%), by the reaction of CpTiCl_{3} and $\mathrm{Cp} * \mathrm{TiCl}_{3}$, respectively, with the Li -salt of compound $\mathbf{2 5}$ in toluene. The isolated complexes 26 and 27 were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and elemental analysis. Crystallization of these complexes from a mixture of toluene and pentane (2:8) allowed for growing red colored needle-type crystals from a concentrated solution of complex 27 upon standing several days at $-36^{\circ} \mathrm{C}$ inside the glove-box. These crystals were found suitable for single-crystal X-ray diffraction analysis. The molecular structure of complex 27 is shown in Figure 3.7, selected bond lengths (\AA) and bond angels $\left({ }^{\circ}\right)$ are summarized in Table 3.3. The X-ray data of complex 27 was compared to those of $\left(1,3-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right) \mathrm{TiCl}_{2}[\mathrm{~N}(2,6-$ $\left.\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\left(\mathrm{SiMe}_{3}\right)\right]$ reported by Nomura et.al. ${ }^{[16]}$ The X-ray structural analysis of complex 27 reveals a tetrahedral geometry around the metal centre with the aryl ligand almost perpendicular to the cyclopentadienyl ring in the Ti-N-Si plane. The bond distance (1.9319 \AA) of $\mathrm{Ti}(1)-\mathrm{N}(1)$ is slightly longer than the one $(1.898 \AA)$ in $\left(1,3-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right) \mathrm{TiCl}_{2}[\mathrm{~N}(2,6-$ $\left.\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\left(\mathrm{SiMe}_{3}\right)\right] .{ }^{[16]}$ The average bond distance $(2.2684 \AA$) of Ti-Cl is shorter than the bond distance $(2.2716 \AA)$ of $\left(1,3-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right) \mathrm{TiCl}_{2}\left[\mathrm{~N}\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\left(\mathrm{SiMe}_{3}\right)\right]{ }^{[16]}$ Finally, attempts to synthesize the Zr - and Hf-based analogues of $\mathrm{Cp}^{\prime} \mathrm{MCl}_{2}(\mathrm{~N}$-(6-(2-(diethylboryl)phenyl)pyrid-2$\left.\mathrm{yl}) \mathrm{SiMe}_{3}\right)$; $\left(\mathrm{Cp}^{\prime}=\mathrm{Cp}, \mathrm{Cp}^{*}\right.$ and $\mathrm{M}=\mathrm{Zr}$, Hf) via the reaction of $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{3}$ with $\mathrm{LiN}[6-(2-$ (diethylboryl)phenyl)pyrid-2-yl] SiMe_{3} were not successful.

Scheme 3.5. Synthesis of compounds 25, 26 and 27.

Figure 3.7. Molecular structure of complex 27.
Table 3.3. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ of complex 27. ${ }^{\text {a }}$

Bond length (\AA)			
$\mathrm{Ti}(1)-\mathrm{N}(1)$	1.9319	$\mathrm{Ti}(1)-\mathrm{C}(3)$	2.3680
$\mathrm{Ti}(1)-\mathrm{Cl}(1)$	2.2715	$\mathrm{Ti}(1)-\mathrm{C}(4)$	2.3920
$\mathrm{Ti}(1)-\mathrm{Cl}(2)$	2.2653	$\mathrm{Ti}(1)-\mathrm{C}(5)$	2.4042
$\mathrm{~N}(1)-\mathrm{Si}(1)$	1.8327	$\mathrm{C}(1)-\mathrm{C}(6)$	1.498
$\mathrm{~N}(1)-\mathrm{C}(11)$	1.412	$\mathrm{C}(2)-\mathrm{C}(7)$	1.503
$\mathrm{~B}(1)-\mathrm{N}(2)$	1.697	$\mathrm{C}(3)-\mathrm{C}(8)$	1.497
$\mathrm{Ti}(1)-\mathrm{C}(1)$	2.4124	$\mathrm{C}(4)-\mathrm{C}(9)$	1.488
$\mathrm{Ti}(1)-\mathrm{C}(2)$	2.3815	$\mathrm{C}(5)-\mathrm{C}(10)$	1.503

Bond angle $\left({ }^{\circ}\right)$			
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(1)$	104.02	$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{Ti}(1)$	130.65
$\mathrm{~N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	104.77	$\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{Ti}(1)$	118.84
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	97.121	$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{Si}(1)$	108.53

${ }^{a}$ For detailed X-ray structure data information, please refer to the appendix.

3.2.2 Synthesis of model compounds

The synthesis of the aminoborane-free half-titanocene model complexes of the general formula $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}(\mathrm{~N} \text {-(biphenyl-3-yl)SiMe })_{3}$; $\left(\mathrm{Cp}^{\prime}=\mathrm{Cp}\right.$ (30), Cp^{*} (31)) (Scheme 3.6) was accomplished in a three-step approach in high yields (75\%). The first step entailed the palladium-catalyzed cross-coupling Suzuki reaction between 3-bromoaniline and phenylboronic acid in the presence of a base and yielded 3-phenylaniline (28). In the $2^{\text {nd }}$ step compound 28 was deprotonated using $n-\mathrm{BuLi}$ and reacted with TMSCl to yield compound 29 in 75% yield. In the $3^{\text {rd }}$ step, deprotonation of compound 29 with $n-B u L i$ in diethyl ether and treatment with $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{3}$ in toluene resulted in the formation of $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}$ (N -(biphenyl-3$\left.\mathrm{yl}) \mathrm{SiMe}_{3}\right)$; $\left(\mathrm{Cp}^{\prime}=\mathrm{Cp}(\mathbf{3 0}), \mathrm{Cp}{ }^{*}(\mathbf{3 1})\right)$. The isolated complexes were characterized by ${ }^{1} \mathrm{H} \mathrm{NMR}$, ${ }^{13} \mathrm{C}$ NMR and elemental analysis.

Scheme 3.6. Synthesis of compounds 28-31.
The aminoborane-free half-titanocene model complexes $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}[\mathrm{~N}$-(biphenyl-3yl)Me]; $\left(\mathrm{Cp}^{\prime}=\mathrm{Cp} *(\mathbf{3 3}), \mathrm{Cp}(\mathbf{3 4})\right)$ were synthesized in a two-step procedure (Scheme 3.7). In a first step, the ligand N-methyl-3-phenylaniline (32) was synthesized by the palladiumcatalyzed cross-coupling Suzuki reaction between 3-bromo- N-methylaniline and phenylboronic acid in the presence of a base in 90% yield. The resulting compound $\mathbf{3 2}$ was
deprotonated using $n-\operatorname{BuLi}(1.6 \mathrm{M})$ in diethyl ether and treated with $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{3}$ in toluene to yield $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}\left[\mathrm{~N}\right.$-(biphenyl-3-yl)Me]; $\left(\mathrm{Cp}^{\prime}=\mathrm{Cp}\right.$ (34), Cp^{*} (33)). These complexes were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and elemental analysis. Complex 34 crystallized in a mixture of toluene and pentane (2:8) at $-36^{\circ} \mathrm{C}$ inside the glove-box. Yellow colored needletype crystals were grown from the solvent mixture and these crystals were measured by single-crystal X-ray diffractometry. The molecular structure of complex $\mathbf{3 4}$ is shown in Figure 3.8 , selected bong lengths (\AA), bond angels $\left({ }^{\circ}\right)$ are summarized in Table 3.4. Complex 34 crystallizes in the orthorhombic space group, $a=13.2542(12), b=11.6665(9), c=21.732(2)$ $\mathrm{pm}, \alpha=\beta=\gamma=90^{\circ}$ and $Z=8$. The structural analysis revealed that complex 34 has a tetrahedral geometry around the metal center. The bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ were compared with the aminoborane group-containing complex type $\mathrm{CpTiCl}_{2}\{\mathrm{~N}-[6-(2-$ Diethylborylphenyl)pyrid-2-yl]-N-Me\} (22). The Ti-N bond length in complex 22 ($1.8891 \AA$) is longer than the corresponding bond in complex $\mathbf{3 4}(1.8750 \AA)$. In all these complexes, the $\mathrm{Ti}-\mathrm{N}$ distance is shorter than the estimated value ($2.02 \AA$) of the $\mathrm{Ti}-\mathrm{N}$ single bond according to Pauling's radii. The average bond distance of the Ti-Cl bond in complex $22(2.267 \AA)$ is slightly shorter than the Ti-Cl bond distance in complex $34(2.278 \AA)$. The $\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(1)$ bond angle $\left(106.22^{\circ}\right)$ of complex 22 is larger than in complex $34\left(103.02^{\circ}\right)$. For $\mathrm{N}(1)-\mathrm{Ti}(1)-$ $\mathrm{Cl}(2)$, the bond angle in complex $34\left(107.34^{\circ}\right)$ is substantially larger than in complex 22 $\left(100.95^{\circ}\right)$. The bond angle of $\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$ in $22\left(103.71^{\circ}\right)$ is greater than the one in complex 34 (101.05°).

Scheme 3.7. Synthesis of compounds 32-34.

Figure 3.8. Molecular structure of complex 34.
Table 3.4. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ of complex 34. ${ }^{\text {a }}$

Bond length (\AA)				
$\mathrm{Ti}(1)-\mathrm{N}(1)$	1.8750	$\mathrm{Ti}(1)-\mathrm{C} \mathrm{(1)}$	2.3505	
$\mathrm{Ti}(1)-\mathrm{Cl}(1)$	2.2759	$\mathrm{Ti}(1)-\mathrm{C}(2)$	2.3446	
$\mathrm{Ti}(1)-\mathrm{Cl}(2)$	2.2810	$\mathrm{Ti}(1)-\mathrm{C}(3)$	2.3489	
$\mathrm{~N}(1)-\mathrm{C}(6)$	1.4327	$\mathrm{Ti}(1)-\mathrm{C}(4)$	2.3400	
$\mathrm{~N}(1)-\mathrm{C}(18)$	1.4803	$\mathrm{Ti}(1)-\mathrm{C}(5)$	2.3384	
Bond angle $\left(^{\circ}\right)$				
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(1)$	103.02	$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{Ti}(1)$	109.19	
$\mathrm{~N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	107.34	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{Ti}(1)$	138.24	
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	101.055	$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{C}(6)$	112.27	

${ }^{\text {a }}$ For detailed X-ray structure data information, please refer to the appendix.

3.2.3 Synthesis of ethyl- and phenyl- bridged ligands

Ligands 36 and 37 were successfully synthesized in up to 70% yield using the standard protocol for the Buchwald-Hattwig cross-coupling of aryl halides and aryl amines in the presence of palladium acetate, tri-tert.butyl phosphine and a base such as sodium tertbutoxide. The symmetrical ligand $\mathbf{3 8}$ was synthesized in 55% yield using NaH ($60 w t-\%$ in mineral oil) as base to deprotonate $\mathbf{9}$ followed by the addition of $\mathbf{3 5}$ (Scheme 3.8). All ligands were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS respectively.

Aiming on an enhancement of the bulkiness of the ligand by introducing tert-butyl and adamantyl groups, ligands 41 and 43 (Scheme 3.9) were successfully synthesized by reacting $\mathbf{9}$ with bromoacetyl bromide in the presence of base such as DMAP in DCM. Treatment of $\mathbf{3 9}$ with excess amine (tert-butyl and adamantyl amine) in DCM resulted 40 and 42. Subsequent
reduction of the carbonyl group with LiAlH_{4} in THF yielded ligands 41 and $\mathbf{4 3}$, these compounds were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and GC-MS respectively.

3.2.4 Unsuccessful synthesis of metal complexes

The attempted synthesis of the Zr - and Ti -based organometallic complexes prepared from 36, $\mathbf{3 7}$ and $\mathbf{3 8}$ in diethyl ether using 2 equivalents of $n-B u L i$ to deprotonate the corresponding amine, followed by treatment with $\mathrm{ZrCl}_{4} 2 \mathrm{THF} / \mathrm{ZrCl}_{4}$ or $\mathrm{TiCl}_{4} 2 \mathrm{THF} / \mathrm{TiCl}_{4}$ in toluene at $-36^{\circ} \mathrm{C}$ to room temperature and failed. An alternative approach that entailed the use of tetrakis(dimethylamido)zirconium (IV) and tetrakis(dimethylamido)titanium (IV) in toluene at various temperatures $\left(70^{\circ}\right.$ to $\left.130^{\circ} \mathrm{C}\right)$ was unsuccessful, too.

Scheme 3.8. Synthesis of compounds 35-38.
An attempted synthesis of the Zr - and Ti-based organometallic complexes prepared from 41 and $\mathbf{4 3}$, respectively, in diethyl ether using 2 equivalents of $\mathrm{n}-\mathrm{BuLi}$ to deprotonate the amine followed by treatment with $\mathrm{ZrCl}_{4} 2 \mathrm{THF} / \mathrm{ZrCl}_{4}$ or $\mathrm{TiCl}_{4} 2 \mathrm{THF} / \mathrm{TiCl}_{4}$ in toluene at $-36^{\circ} \mathrm{C}$ to room temperature resulted in a black solution with formation of multiple products. In conclusion, the synthesis of both alkyl- and phenyl- bridged Zr - and Ti-based complexes containing the aminoborane moiety were unsuccessful.

Scheme 3.9. Synthesis of compounds 39-43.

Table 3.5. Crystallographic data of complexes 22, 23 and 27; Diffractometer: Bruker Kappa APEXII Duo; Structure solution: direct methods; Refinement: full matrix least squares.

	Complex No. 22	Complex No. 23	Complex No. 27
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BCl}_{2} \mathrm{~N}_{2} \mathrm{Ti}$	$\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{BCl}_{2} \mathrm{~N}_{2} \mathrm{Ti}$	$\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{BCl}_{2} \mathrm{~N}_{2} \mathrm{SiTi}$
Formula weight	435.04	505.17	563.33
Temp.	100(2) K	100(2) K	100(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system, space group	monoclinic, P2(1)/n	triclinic, p-1	monoclinic, P2(1)/c
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=10.9979(11) \AA \text { alpha }=90 \operatorname{deg} \\ & \mathrm{~b}=16.1318(19) \AA \mathrm{beta}=106.79(6) \mathrm{deg} \\ & \mathrm{c}=12.3324(11) \AA \text { gamma }=90 \mathrm{deg} \end{aligned}$	$\begin{aligned} & \mathrm{a}=9.2538(4) \AA \text { alpha=77.233(2)deg } \\ & \mathrm{b}=11.5135(5) \AA \text { beta=81.007(2) deg } \\ & \mathrm{c}=12.7779(6) \AA \text { gamma }=72.946(2) \mathrm{deg} \end{aligned}$	$\begin{aligned} & \mathrm{a}=9.2509(4) \AA \text { alpha }=90 \mathrm{deg} \\ & \mathrm{~b}=15.4881(6) \AA \text { beta }=98.239(3) \mathrm{deg} \\ & \mathrm{c}=20.6554(10) \AA \text { gamma }=90 \mathrm{deg} \end{aligned}$
Volume	2094.6(4) \AA^{3}	1263.24(10) \AA^{3}	2928.9(2) \AA^{3}
Z, Calculated density	$4,1.380 \mathrm{Mg} / \mathrm{m}^{3}$	$2,1.328 \mathrm{Mg} / \mathrm{m}^{3}$	$4,1.277 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.672 \mathrm{~mm}^{-1}$	$0.567 \mathrm{~mm}^{-1}$	$0.535 \mathrm{~mm}^{-1}$
F_{000}	904	532	1192
Crystal size	$0.22 \times 0.19 \times 0.08 \mathrm{~mm}$	$0.36 \times 0.20 \times 0.10 \mathrm{~mm}$	$0.22 \times 0.16 \times 0.14 \mathrm{~mm}$
θ range for data collection	2.14 to 28.57 deg	1.64 to 28.49 deg	1.65 to 28.38 deg
Limiting indices	$-14<=\mathrm{h}<=14,-21<=\mathrm{k}<=21,-14<=1<=16$	$-12<=\mathrm{h}<=12,-15<=\mathrm{k}<=15,-17<=1<=17$	$-12<=\mathrm{h}<=12,-20<=\mathrm{k}<=20,-27<=1<=24$
Reflections collected/unique	$19850 / 5240[\mathrm{R}(\mathrm{int})=0.0584]$	$44991 / 6331$ [$\mathrm{R}(\mathrm{int})=0.0242]$	$51448 / 7311[\mathrm{R}(\mathrm{int})=0.0452]$
Completeness to theta	97.9 \%	98.8 \%	99.4 \%
Max. and min. transmission	0.9482 and 0.8662	0.9444 and 0.8240	0.7454 and 0.7160
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5240 / 0 / 247	6331 / 0 / 297	7311 / 0 / 326
Goodness of fit on F^{2}	1.047	1.039	1.049
Final R indices	$\mathrm{R} 1=0.0418, \mathrm{wR} 2=0.0741$	$\mathrm{R} 1=0.0274, \mathrm{wR} 2=0.0712$	$\mathrm{R} 1=0.0355, \mathrm{wR} 2=0.0749$
R indices (all data)	$\mathrm{R} 1=0.0792, \mathrm{wR} 2=0.0804$	$\mathrm{R} 1=0.0360, \mathrm{wR} 2=0.0742$	$\mathrm{R} 1=0.0581, \mathrm{wR} 2=0.0798$
Largest diff. peak and hole	0.403 and -0.291 e. \AA^{-3}	0.362 and -0.257 e. \AA^{-3}	0.392 and -0.391 e. \AA^{-3}

3.3 Homopolymerization

3.3.1 Homopolymerization of Ethylene

Group IV bisamido-complexes are known to present active precatalysts for olefin homo- and copolymerization. ${ }^{[2,23,24]}$ While non-bridged bisamido complexes showed comparably moderate activities ($<20 \mathrm{~kg}$ of polymer $/ \mathrm{mol}_{\text {catalyst }} \mathrm{h} \cdot \mathrm{bar}$), the bridged analogues allow for activities of up to $350,000 \mathrm{~kg} / \operatorname{mol}_{\text {catalyst }}$ h, e.g., in the polymerization of 1-hexene, ${ }^{[25}$, ${ }^{26]}$ however, typical values for PE and PP are in the range of 3.5-5300 and 7-320 $\mathrm{kg} /$ mol $_{\text {catalyst }} \mathrm{h}$ bar. ${ }^{[27]}{ }^{[28-30]}{ }^{[31,32]}$ In all these polymerizations, both the polymerization kinetics and the activity are strongly influenced by the chelate ring size. ${ }^{[30]}$

Homopolymerization of Ethylene (E) using Zr-(13 and 17) and Ti-based Precatalysts (22-24, 26 and 27)

The homopolymerization of E by the action of $\mathbf{1 3}$ and 17 was activated by methylaluminoxane (MAO) and produced highly linear PE with melting points in the range of $130<T_{m}<133^{\circ} \mathrm{C}$ (Table 3.6). Moderate activities up to $700 \mathrm{~kg} / \mathrm{mol}_{\text {catalyst }}$ h were observed. The molecular weights ranged from $325,000<M_{n}<4,000,000 \mathrm{~g} / \mathrm{mol}$.

Table 3.6. Results of E homopolymerization by the action of the Zr -based complexes $\mathbf{1 3}$ and 17 activated by MAO.

\# ${ }^{\text {a }}$	Cat.	$\begin{gathered} T \\ \left({ }^{\circ} \mathbf{C}\right) \\ \hline \end{gathered}$	Productivity ${ }^{\text {b }}$	$\begin{gathered} \mathbf{M}_{\mathrm{n}} \\ (\mathrm{~g} / \mathrm{mol})^{c} \\ \hline \end{gathered}$	PDI ${ }^{\text {c }}$	Tm $\left.{ }^{\circ} \mathrm{C}\right)^{\text {d }}$
1		50	212	1,800,000	9	133
2		65	215	1,000,000	11	130
3		90	700	900,000	8	132
4		50	350	325,000	11	133
5		65	480	n.d	n.d	133
6		90	550	4,000,000	7	132

${ }^{\text {a }}$ Polymerization conditions: 500 mL autoclave, total volume of the reaction mixture: 250 mL , catalyst:MAO $=1: 2000, \mathrm{p}=4$ bar of E unless stated otherwise, toluene, $t=1 \mathrm{~h} . ;{ }^{\mathrm{b}} \mathrm{kg} / \mathrm{mol}_{\text {catalyst }} \mathrm{h}$. ; ${ }^{\mathrm{c}}$ GPC data in 1,2,4-trichlorobenzene vs. PS; ${ }^{\mathrm{d}}$ measured by DSC; n.d. $=$ not determined due to poor solubility.

Tables 3.6 and 3.7 summarize the results of E-homopolymerization with the Zr -based catalysts $\mathbf{1 3}$ and $\mathbf{1 7}$ and the Ti-based half-metallocene catalysts 22, 23, 24, 26 and 27 at various temperatures i.e. 50,65 and $90^{\circ} \mathrm{C}$ while keeping the E pressure constant at 4 bar. An increase in temperature resulted in an increase in activity and a constant E-uptake was observed over 60 minutes, especially in the case of catalysts $\mathbf{1 3}$ and $\mathbf{1 7}$, which reflects that the catalyst was still active after this time. With increasing polymerization temperature the resulting polymer molecular weights dramatically decreased. This can be attributed to either an increasing $\beta-\mathrm{H}$ elimination reaction or an $\alpha-\mathrm{H}$ elimination reaction followed by crossmetathesis with E. ${ }^{[33]}{ }^{[34]}$ The resulting poly(ethylene), ${ }^{s} T_{\mathrm{m}}$, molecular weights and molecular weight distributions (PDIs) were measured by DSC and GPC analysis, respectively. In most cases, broad molecular weight distributions were observed by GPC analysis (Table 3.6), GPC profiles of complex 13-derived PE at various temperatures are shown in Figure 3.9.

The molecular weights of the resulting polymers were mainly dependent on the structure of the catalyst; a complex which contained bulky ligands produced high-molecular weight polymers. Complex $\mathbf{1 3}$ possesses a tert-butyl amido-type ligand, which is less bulky than the one in complex 17, which contains an adamantyl amido-ligand. Variation of the molecular weights of polymers prepared from the Zr -based complexes $\mathbf{1 3}$ and $\mathbf{1 7}$ can be explained, by the bulky nature of the ligand around the metal centre.

In the homopolymerization of E with the Zr -based 13, 17 and Ti-based complexes 22, 24 and 26 mostly linear PE (HDPE) was obtained. High temperature ${ }^{13} \mathrm{C}$ NMR indicates that the obtained PE possessed virtually no branching evidenced in the high melting temperatures (T_{m} values $130-136^{\circ} \mathrm{C}$) measured by DSC. ${ }^{[35]}{ }^{13} \mathrm{C}$ NMRs of the resulting PE are shown in Figures 3.10, 3.11 and 3.12.

Figure 3.9. GPC graphs of complex 13/MAO-derived PE at different polymerization temperatures (Table 3.6, entries 1-3).

Table 3.7. Results of E homopolymerization by the action of the Ti-based complexes 22, 23, 24, 26 and 27 activated by MAO.

\# ${ }^{\text {a }}$	Cat.	$\begin{gathered} T \\ \left({ }^{\circ} \mathbf{C}\right) \\ \hline \end{gathered}$	Productivity ${ }^{\text {b }}$	$\begin{gathered} \mathbf{M}_{\mathrm{n}} \\ (\mathrm{~g} / \mathrm{mol})^{c} \\ \hline \end{gathered}$	PDI ${ }^{\text {c }}$	Tm $\left.{ }^{\circ} \mathrm{C}\right)^{\text {d }}$
1	\triangle	50	50	1,800,000	1.65	132
2		65	75	900,000	2.7	133
3		90	22	800,000	2.1	130
4		50	50	3,000,000	17	115
5		65	65	n.d	n.d	130
6		90	65	1,500,000	6	132
7		50	1200	2,700,000	3.4	136
8		65	3000	700,000	4.7	134
9		90	3000	600,000	6	131
10		50	125	2,500,000	1.6	130
11		65	105	1,500,000	2.6	134
12		90	80	1,000,000	3.1	132

${ }^{\text {a }}$ Polymerization conditions: 500 mL autoclave, total volume of the reaction mixture: 250 mL , catalyst:MAO $=1: 2000, \mathrm{p}=4$ bar of E unless stated otherwise, toluene, $t=1 \mathrm{~h} ;{ }^{\mathrm{b}} \mathrm{kg} / \mathrm{mol}_{\text {catalyst }} \mathrm{h} ;{ }^{\mathrm{c}}$ GPC data in 1,2,4-trichlorobenzene vs PS; ${ }^{\text {d }}$ measured by DSC; n.d. $=$ not determined due to poor solubility.

Figure 3.10. ${ }^{13} \mathrm{C}$ NMR spectrum of PE produced by the action of $\mathbf{2 3} / \mathbf{M A O}$ at 90° using 4 bar of E (Table 3.7, entry 6 in 1,1,2,2-[$\left.\mathrm{D}_{2}\right]$ tetrachloroethane).

Figure 3.11. ${ }^{13} \mathrm{C}$ NMR spectrum of PE produced by the action of $\mathbf{2 4 / M A O}$ at $65^{\circ} \mathrm{C}$ using 4 bar of E (Table 3.7, entry 8 in 1,1,2,2-[$\left.\mathrm{D}_{2}\right]$ tetrachloroethane).

Figure 3.12. ${ }^{13} \mathrm{C}$ NMR spectrum of PE produced by the action of $\mathbf{2 4} / \mathrm{MAO}$ at $90^{\circ} \mathrm{C}$ using 4 bar of E (Table 3.7, entry 9 in 1,1,2,2-[$\left.\mathrm{D}_{2}\right]$ tetrachloroethane).

Figure 3.13. GPC graphs of complex 24/MAO-derived PE at different polymerization temperatures (Table 3.7, entries 7-9).

Figure 3.14. GPC graphs of complex 26/MAO-derived PE at different polymerization temperatures (Table 3.7, entries 10-12).

3.3.2 Homopolymerization of Styrene

The polymerization of styrene was first accomplished by Ishihara and co-workers ${ }^{[36]}$ with Ti-based half-metallocenes in the presence of MAO to yield syndiotactic polystyrene (stPS). $s t$-PS is a crystalline material with a high melting point $\left(270^{\circ} \mathrm{C}\right)$ and good resistance to water and organic solvents at ambient temperature. Recent studies have identified mono $\left(\eta^{5}\right.$ cyclopentadienyl) complexes of group IV metals as efficient catalysts for styrene polymerization. While $\left[\mathrm{Zr}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$-based complexes are poorly syndioselective, the related Ti-complexes are effective in the stereocontrol of polystyrene. ${ }^{[37-39]}$

In view of these results, we were interested to study the homopolymerization of styrene ${ }^{[36,37]}$ by non-bridged half-titanocene ${ }^{[40]}$ complexes containing aminoborane moiety of the formula $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}\left(\mathrm{~N}\left(6-\left(2\right.\right.\right.$-(diethylboryl)phenyl)-pyrid-2-yl)R); $\mathrm{R}=\mathrm{Si}_{(}\left(\mathrm{CH}_{3}\right)_{3} \quad$ (26, 27), $\mathrm{Cp}^{\prime}=\mathrm{Cp}$ (26), Cp^{*} (27) and by the aminoborane-free model complexes of the general formula $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}$ (N -(biphenyl-3-yl)SiMe $)_{3}$; ($\mathrm{Cp}^{\prime}=\mathrm{Cp} \quad$ (30), $\quad \mathrm{Cp}^{*} \quad$ (31)) $\quad(\mathrm{Cp}=$ cyclopentadienyl; Cp*=pentamethylcyclopentadienyl) using MAO as co-catalyst at various temperatures and monomer concentrations. The results are summarized in Table 3.8. The catalytic activity increased with increasing polymerization temperature, while the resulting polymer numberaverage molecular weights decreased. The aminoborane-free model complexes 30/MAO and 31/MAO showed better performance in terms of catalytic activity than the 26/MAO and 27/MAO systems, respectively. All complexes produced a MAO mixture of atactic 'at' (around 10%, at-PS) and syndiotactic ' $s t$ ' PS (around 90%, $s t$-PS), from which the $s t$-PS was isolated from boiling acetone via filtration. The number-average molecular weight of the resulting $s t$-PS was affected by the nature of the Cp ligand; thus the introduction of methyl donor groups, which additionally exert a steric hindrance to the cyclopentadienyl ligand, was effective for obtaining high molecular weight $s t$-PS. This could be due to a reduced propensity for α / β-H elimination reactions, so that the molecular weight of the resulting st-PS increases and leaving the polydispersity index in the range of $1.24<\mathrm{PDI}<2.05$. The observed numberaverage molecular weights $\left(M_{n}\right)$ of the resulting st-PS derived from non-bridged halftitanocenes increased in the order of $\mathrm{Cp} * \mathrm{TiCl}_{2}\left(\mathrm{~N}\right.$-(biphenyl-3-yl) $\mathrm{SiMe}_{3}(\mathbf{3 1})>\mathrm{Cp}^{*} \mathrm{TiCl}_{2}(\mathrm{~N}(6-$ (2-(diethylboryl)phenyl)-pyrid-2-yl)Si(Me) $)_{3}$ (27) $>\mathrm{CpTiCl}_{2}\left(\mathrm{~N}\right.$-(biphenyl-3-yl) $\mathrm{SiMe}_{3}(\mathbf{3 0})>$ $\mathrm{CpTiCl}_{2}\left(\mathrm{~N}\left(6-(2 \text {-(diethylboryl)phenyl)-pyrid-2-yl)Si(Me) })_{3}\right.\right.$)(26).
The ${ }^{13} \mathrm{C}$ NMR of $s t$ - PS in $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$ reveals the typical signals of $s t-\mathrm{PS}$ at $\delta=145.1\left(\mathrm{C}_{\mathrm{ipso}}\right.$ of Ph$)$, $\delta=127.8,127.5(o-$ and $m-\mathrm{CH}$ of Ph$), \delta=125.5(p-\mathrm{CH}$ of Ph$), \delta=43.4(\mathrm{CH})$ and $40.3\left(\mathrm{CH}_{2}\right)$ ppm (Figure 3.15). ${ }^{[39]}$ The presence of a sharp signal for the quaternary carbon of the phenyl ring at $\delta=145.1 \mathrm{ppm}$ revealed that the polymer was highly $s t$-PS.

Table 3.8. Results of styrene homopolymerization by the action of 26, 27, $\mathbf{3 0}$ and 31/MAO.

\#	Cat.	Cat : MAO : Styrene	T (${ }^{\circ} \mathrm{C}$)	Productivity ${ }^{\text {a }}$	$\begin{gathered} M_{n} \\ (\mathrm{~g} / \mathrm{mol}) \end{gathered}$	PDI ${ }^{\text {b }}$
1		1: $1500: 5000$	50	300	97,000	1.51
2		1: $1500: 5000$	60	900	53,000	1.57
3		1: $1500: 5000$	75	1100	29,000	1.63
4		1:1500: 15000	50	500	160,000	1.52
5		1:1500: 15000	60	1000	105,000	1.30
6		1:1500: 15000	75	1100	84,000	1.66
7		1: $1500: 5000$	50	0	--	--
8		1: $1500: 5000$	60	115	445,000	1.37
9		1: $1500: 5000$	75	285	273,000	1.53
10		1: $1500: 5000$	50	550	559,000	1.59
11		1: $1500: 5000$	60	1200	1,065,000	1.45
12	,	1: $1500: 5000$	75	1600	1,400,000	1.38
13		1:1500: 15000	50	700	1,000,000	1.72
14		1:1500: 15000	60	3500	930,000	1.41
15		1: $1500: 15000$	75	5000	960,000	1.24
16		1: $1500: 5000$	50	720	97,000	1.76
17	\bigcirc	1: $1500: 5000$	60	1100	65,000	1.56
18		1: $1500: 5000$	75	1360	36,000	2.0
19		1:1500: 15000	50	1700	188,000	1.58
20	${ }^{30}$	1:1500:15000	60	2638	83,000	2.1
21		1:1500:15000	75	2978	30,000	1.94

${ }^{\text {a }}$ Polymerization conditions: 50 mL of toluene, $t=15 \mathrm{~min} ;{ }^{\mathrm{b}} \mathrm{kg}_{\cdot s \mathrm{sP}} / \mathrm{mol}_{\text {catalyst }} \mathrm{h} ;{ }^{\mathrm{c}} \overline{\mathrm{GPC}}$ data in 1,2,4-trichlorobenzene vs PS.

Figure 3.15. ${ }^{13} \mathrm{C}$ NMR of st-PS derived from the non-bridged half-titanocene complex 27/MAO (in 1,1,2,2-[$\left.\mathrm{D}_{2}\right]$ tetrachloroethane)

3.4 Copolymerizations

3.4.1 Copolymerization of E with cyclopentene (CPE)

The copolymerization of E with CPE was carried out with the Zr -complexes $\mathbf{1 3}$ and $\mathbf{1 7}$ at $50^{\circ} \mathrm{C}$. Polymerization results are summarized in Table 3.9. One important effect was observed in the copolymerization of E with CPE in toluene at $50^{\circ} \mathrm{C}$ by the action of $13 / \mathrm{MAO}$ using different concentrations of CPE. Thus, no CPE-incorporation was detected by NMR up to 20 vol. $-\%$ of CPE, at a further increase to 40 vol. $-\%$ of CPE in the reaction mixture $\mathrm{a} \leq 4$ mol-\% incorporation of CPE was observed. One important note in this copolymerization is that during the polymerization the reaction temperature gradually increased from 50 to $95^{\circ} \mathrm{C}$ during the reaction time of 60 min . and a continuous ethylene uptake was observed until closing the E-valve. Due to this strongly exothermic event, the number-average molecular weight of the resulting polymer decreased. However, the activity increased from 2300 to $30,000 \mathrm{~kg}_{\text {polymer }} / \mathrm{mol}_{\text {catalyst }} \mathrm{h}$ (Table 3.9 , entries 1,4) by increasing CPE concentration from 2 to 40 vol.-\% in the reaction mixture. In this case, PE with number-average molecular weights between 50,000 and $900,000 \mathrm{~g} / \mathrm{mol}$ (PDI in the range of 1.5 to 2.5) and $127^{\circ}<T_{m}<134^{\circ} \mathrm{C}$ was produced.

In the case of complex 24, the copolymerization of E with CPE was carried out at 50 and $70^{\circ} \mathrm{C}$ with various CPE concentrations (10 vol. $\%$ and 25 vol.- $\%$) (Table 3.9, entries 8 11). The observed activities were in the range of $800-1100 \mathrm{Kg} \mathrm{PE} / \mathrm{mol}_{\text {catalyst }} \mathrm{h}$, and catalyst activity decreased with increasing CPE concentration. The resulting polymer number-average molecular weights also decreased. Generally, the activity of the Ti-based complexes was low
compared to corresponding Zr -based complex $\mathbf{1 3}$ and the polymers derived from the Ti-based complexes were mostly linear PE without any noticeable incorporation of CPE.

Table 3.9. Results of E homopolymerization in the presence of CPE by the action of complexes 13, 23 and $\mathbf{2 4}$ activated by MAO.

${ }^{\text {a }}$ Polymerization conditions: 500 mL autoclave, total volume of the reaction mixture: 250 mL , $\mathrm{p}=4$ bar of E unless stated otherwise, catalyst: $\mathrm{MAO}=1: 2000$; toluene, $t=1 \mathrm{~h} ;{ }^{\mathrm{b}} \mathrm{kg} / \mathrm{mol}_{\text {catalyst }} \mathrm{h}$; ${ }^{\mathrm{c}}$ GPC data in 1,2,4-trichlorobenzene vs. PS; ${ }^{\text {d }}$ co-monomer content in the copolymer [mol-\%] as estimated by ${ }^{13} \mathrm{C}$ NMR spectroscopy; ${ }^{\mathrm{e}}$ measured by DSC; n.d. $=$ not determined due to poor solubility.

Figure 3.16 illustrates the GPC-traces of the polymerizations of E in the presence of varying amount of CPE. The gradual increase in the CPE feed leads to a decrease in the
resulting polymer number-average molecular weight, suggesting that elimination reactions become more dominant.

Figure 3.16. GPC graphs of complex $\mathbf{1 3} / \mathrm{MAO}$-derived PE in the presence of CPE at $50^{\circ} \mathrm{C}$ (Table 3.9, entries 1-4).

Figure 3.17. ${ }^{13} \mathrm{C}$ NMR of complex 13/MAO-derived poly(E-co-CPE) using 40 vol.- $\%$ of CPE (Table 3.9, entry 4 in 1,1,2,2-[$\left.\mathrm{D}_{2}\right]$ tetrachloroethane).

Figure 3.17 shows the ${ }^{13} \mathrm{C}$ NMR spectrum of poly(E)-co-poly(CPE) $)_{\text {vinyl }}$ prepared in the presence of 40 vol.-\% CPE (Table 3.9, entry 4). Approx. 4 mol-\% of CPE incorporation can be detected by ${ }^{13} \mathrm{C}$ NMR. Apart from the signal for linear PE at $\delta=29.68 \mathrm{ppm}$, the signals at $\delta=31.9\left(\mathrm{C}_{4,5} 5^{\prime}\right), 40.3\left(\mathrm{C}_{1^{1}, 3^{\prime}}\right)$ and $40.8\left(\mathrm{C}_{2^{\prime}}\right)$ are typical for 1,3-incorporated CPE units that are
formed via 1,2-insertion of CPE followed by β-H elimination and subsequent reinsertion ${ }^{[41-}$ ${ }^{44]}$ and the signals at $\delta=42.9\left(\mathrm{C}_{1,2}\right), 30.7\left(\mathrm{C}_{3,5}\right)$ and $\delta=25.3$ (4) are assigned to isolated 1,2incorporated CPE units in the E sequence.

The role of the aminoborane ligand in polymerization of E in the presence of CPE was investigated in a previous paper ${ }^{[34]}$ using the aminoborane-free model catalyst $\left\{\mathrm{Me}_{2} \mathrm{Si}(\mathrm{N}(2-\right.$ $i \operatorname{Pr}$-biphenyl-3-yl) $\left.)_{2}\right\} \mathrm{ZrCl}_{2}$ THF. With this precatalyst the polymerization of E in the presence of 60 vol.- $\%$ of CPE resulted PE activities of $25,000 \mathrm{~kg} / \mathrm{mol}_{\text {catalyst }} \mathrm{h}$ are observed without any noticable CPE incorporation (compared to $30,000 \mathrm{~kg} / \mathrm{mol}_{\text {catalyst }}$ h for $\mathbf{1 3} / \mathbf{M A O}$ using $40 \mathrm{vol} .-\%$ of CPE, Table 3.9, entry 4). The activities of both the aminoborane-free Zr -based complex $\left\{\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{N}(2-i \operatorname{Pr} \text {-biphenyl-3-yl) })_{2}\right\} \mathrm{ZrCl}_{2}\right.$ THF and aminoborane-containing complex 13/MAO can be enhanced up to a factor of 15 by increasing the CPE concentration from 2 to 40-60 vol.-\% of CPE. Since CPE was hardly incorporated into the polymer chain ($\leq 4 \mathrm{~mol} \%$), it must preferably serve as a stabilizing ligand/chain transfer agent, reversibly coordinating to the cationic Zr -center. After β-H elimination, most probably from an E as the last inserted monomer, the terminal alkene is then replaced by CPE, which inserts into the $\mathrm{Zr}-\mathrm{H}$ bond and starts a new polymer chain. ${ }^{[34]}$

3.4.2 Copolymerization of E with norborn-2-ene (NBE) using the Zr-based precatalysts 13 and 17

Recently, our group reported on group IV catalysts bearing the aminoborane motif, activated by MAO, which undergo $\alpha-\mathrm{H}$ elimination $/ \alpha-\mathrm{H}$ addition process, with both VIP and ROMP occurring within the same polymer chain at high concentration of the cyclic olefins allowing for the formation of poly(NBE) $)_{\text {ROMP }}-c o-p o l y(N B E)_{V I P}-c o-p o l y(E)$ as demonstrated for a (η^{5}-tetramethylcyclopentadienyl)dimethylsilylamido- $\mathrm{Ti}^{\mathrm{IV}}$ and a $\mathrm{Zr}^{\mathrm{IV}}$-bisamido system. ${ }^{[19}$, ${ }^{34]}$ To check for the propensity of other $\mathrm{Zr}^{\mathrm{IV}}$-bisamido systems and Ti-based half-metallocenes (Figure 3.1) bearing the same aminoborane motif to promote the formation of such copolymers, we used the Zr-based complexes $\mathbf{1 3}$ and $\mathbf{1 7}$ and the Ti-based complexes 22, 23, 24, 26 and 27 containing Cp and Cp * ligands in the copolymerization of E with NBE.

It turned out that the Zr -based complexes $\mathbf{1 3}$ and $\mathbf{1 7}$ allowed for formation of vinyl insertion copolymerization-derived poly(E)-co-poly(NBE) $)_{\text {VIP }}$ with activities between 7 and $2000 \mathrm{~kg}_{\text {polymer }} / \mathrm{mol}_{\text {cat }}$ h using both low and high NBE concentrations at various temperatures and pressures. The results are summarized in Tables 3.10-3.12.

Table 3.10 summarizes the results of copolymerization of E with NBE at various temperatures yielding poly(E)-co-poly(NBE) $)_{\text {VIP }}$. In most cases an increase in polymerization
temperature resulted in an increase in catalytic activity, concomitantly, the NBE content in the resulting copolymer increased up to $T=90^{\circ} \mathrm{C}$. However, a further increase in the polymerization temperature causes a decrease in catalytic activity and incorporation of NBE. In the ${ }^{13} \mathrm{C}$ NMR spectrum of poly(E)-co-poly(NBE) ${ }_{\text {VIP }}$ obtained by the action $\mathbf{1 3}$ and $\mathbf{1 7}$ (Figures 3.18 and 3.19), the signals characteristic for both alternating (E-N-E-N) and isolated (E-N-E-E-E-E) NBE sequences were observed and assigned as follows: $\delta=47.8$, 47.0 (2 signals, $\mathrm{C}_{2} / \mathrm{C}_{3}$), 42.0, $41.5\left(2\right.$ signals, $\left.\mathrm{C}_{1} / \mathrm{C}_{4}\right)$, $32.8\left(\mathrm{C}_{7}\right)$, and $30.7-29.0 \mathrm{ppm}\left(\mathrm{C}_{5} / \mathrm{C}_{6}, \mathrm{PE}\right.$, all $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$). The copolymers contained mainly isolated NBE units with only few alternating (stitit) E-NBE diads ${ }^{[11, ~ 13, ~ 14, ~ 45-47] . ~ S i g n a l s ~ a s s i g n a b l e ~ t o ~ N B E-N B E ~ d i a d s ~ a n d ~ N B E-N B E-N B E ~}$ triads were absent. None of the copolymers showed signals for ROMP-derived poly(NBE) ROMP , at various temperatures using 4 bar of E. As expected, an increase in polymerization temperature resulted in a decrease in the number-average molecular weight of the resulting polymer.

Table 3.10. Results of E-NBE copolymerization by the action of complexes 13, 17/MAO at various temperatures.

\# ${ }^{\text {a }}$	Cat.	$\begin{gathered} \boldsymbol{T} \\ \left({ }^{\circ} \mathbf{C}\right) \end{gathered}$	Productivity	NBE content $($ mol- $\%$)	$\begin{gathered} M_{n} \\ (\mathrm{~g} / \mathrm{mol})^{\mathrm{d}} \end{gathered}$	PDI ${ }^{\text {d }}$	$\boldsymbol{T}_{\boldsymbol{m}}\left({ }_{\mathrm{e}}{ }^{\text {C }} \mathbf{C}\right)$
1		50	30	1	1,300,000	3.5	123
2		70	180	3.5	550,000	2.9	99
3		90	240	20	540,000	2.2	73
4		110	110	2.7	350,000	3.3	124
5		50	165	4.2	1,400,000	2.0	119
6		70	275	7.7	800,000	1.76	96
7		90	165	8.9	400,000	2.3	124

${ }^{a}$ Polymerization conditions: 500 mL autoclave, total volume of the reaction mixture: 250 mL (including monomer), $\mathrm{p}=4$ bar of E unless stated otherwise, catalyst: MAO: $\mathrm{NBE}=1$: 2000: 20000, toluene, $\mathrm{t}=1 \mathrm{~h}$; ${ }^{\mathrm{b}} \mathrm{kg}_{\text {polymer }} /$ mol $_{\text {catalyst }} \mathrm{h} . ;{ }^{\mathrm{c}} \mathrm{NBE}$ content estimated by ${ }^{13} \mathrm{C}$ NMR; ${ }^{\mathrm{d}}$ GPC data in 1,2,4-trichlorobenzene $v s$. PS; ${ }^{e}$ measured by DSC; n.d. $=$ not determined due to poor solubility.

Figure 3.18. Complex $\mathbf{1 7 / M A O}$-derived poly(E)-co-poly(NBE) $)_{\text {VIP }}(\mathbf{a})$ at $50^{\circ} \mathrm{C}$; (b) at $70^{\circ} \mathrm{C}$; (c) at $90^{\circ} \mathrm{C}$ (Table 3.10, entries 5, 6 and 7 in 1,1,2,2-[$\left.\mathrm{D}_{2}\right]$ tetrachloroethane).

Figure 3.19. Complex 13/MAO derived poly(E)-co-poly(NBE) ${ }_{\text {VIP }}$ (a) at 50°; (b) at 70°; (c) at $90^{\circ} \mathrm{C}$; (d) at $110^{\circ} \mathrm{C}$ (Table 3.10, entries 1, 2, 3 and 4 in 1,1,2,2-[$\left.\mathrm{D}_{2}\right]$ tetrachloroethane).

Table 3.11 summarizes the copolymerization of E with NBE at $70^{\circ} \mathrm{C}$ using different ratios of NBE with respect to the catalyst, resulting in the formation of poly(E)-copoly(NBE) $)_{\text {vIP }}$. The influence of the NBE concentration on the outcome of the copolymerization of E with NBE was investigated and these results clearly show first an increase and then a sharp decrease of catalytic activity and NBE incorporation in the resulting
polymer backbone, with increasing NBE concentration. ${ }^{[45]}$ The number-average molecular weights of the copolymers increased from 450,000 to $550,000 \mathrm{~g} / \mathrm{mol}$ with increasing NBE concentration from 5000 equivalents to 60,000 equivalents with respect to catalyst and monomodal molecular weight distributions (PDIs) were obtained in the range of $2.4<\mathrm{PDI}<$ 3.0 , respectively.

Table 3.11. Results of E-NBE copolymerization by the action of 13/MAO at different NBE concentrations.

\#	Cat.	$\begin{gathered} \text { Cat:MAO: } \\ \text { NBE } \end{gathered}$	$\underset{b}{\text { Productivity }}$	$\begin{gathered} \text { NBE } \\ \begin{array}{c} \text { content } \\ (\text { mol-\%) } \end{array}{ }^{\text {c }} \end{gathered}$	$\begin{gathered} M_{n} \\ (\mathrm{~g} / \mathrm{mol})^{\mathrm{d}} \end{gathered}$	PDI ${ }^{\text {d }}$	$\begin{gathered} T_{m} \\ \left({ }^{\circ} \mathrm{C}\right)^{\mathrm{e}} \end{gathered}$
1		1:2000: 5000	75	1.3	450,000	3.0	123
2		1:2000: 10,000	330	5.3	500,000	2.4	115
3		1:2000: 20,000	180	3.4	550,000	2.9	99
4	13	1:2000: 60,000	90	<2	n.d	n.d	--

${ }^{\text {a }}$ Polymerization conditions: 500 mL autoclave, total volume of reaction mixture: 250 mL (including monomer), $T=70^{\circ} \mathrm{C}, \mathrm{p}=4$ bar of E unless stated otherwise, toluene, $t=1 \mathrm{~h}$; ${ }^{\mathrm{b}}$ $\mathrm{kg} /$ mol $_{\text {catalyst }} \mathrm{h}$; ${ }^{\mathrm{c}}$ NBE content estimated by ${ }^{13} \mathrm{C}$ NMR ${ }^{\mathrm{d}}$ GPC data in 1,2,4-trichlorobenzene vs. PS; ${ }^{e}$ measured by DSC; n.d. $=$ not determined due to poor solubility.

Figure 3.20. Complex 13/MAO derived poly(E)-co-poly(NBE) ${ }_{\text {vIP }}$ using (a) cat: MAO: NBE (1: 2000: 5000); (b) cat: MAO: NBE (1: 2000: 10,000); (c) cat: MAO: NBE (1: 2000: 20,000) ; (d) cat: MAO: NBE (1: 2000: 60,000) (Table 3.11, entries 1, 2, 3 and 4 in 1,1,2,2[D_{2}]tetrachloroethane).

Table 3.12 summarizes the copolymerization results of E with NBE at different pressures using the Zr -based complexes 13 and 17. An increase in the E-pressure leads to an increase in catalytic activity and a reduced incorporation of NBE in the resulting copolymers. Complex 13/MAO-derived poly(E)-co-poly(NBE) vip shows up to 36 mol-\% of NBE incorporation at $70^{\circ} \mathrm{C}$ using 1 bar of E. Clearly, at a low E-pressure (1 bar), the incorporation of NBE is higher than at high pressure ($\mathrm{p}=4 \mathrm{bar}$). In fact, the observed $36 \mathrm{~mol}-\%$ of NBE incorporation is so far the higher for all Zr - ($\mathbf{1 3}$ and 17) and Ti ($\mathbf{2 2}, \mathbf{2 3}, 24,26$ and 27) derived poly(E)-co-poly(NBE) $)_{\text {VIP. }}$. In the copolymerization of E with NBE, complex 17 is less active as compared to complex 13, also the incorporation of NBE was low and there was no significant difference in NBE incorporation at 1 and 2 bar of E at $70^{\circ} \mathrm{C}$ (Table 3.12, entries 6 and 7). Upon activation with MAO, both complexes $\mathbf{1 3}$ and $\mathbf{1 7}$ showed very low activity (Table 3.12, entries 4 and 9) at $30^{\circ} \mathrm{C}$ and 2 bar of E. Typical ${ }^{13} \mathrm{C}$ NMR spectra are shown in Figures 3.21 and 3.22 , respectively.

Table 3.12. Results of E-NBE copolymerization by the action of complexes 13/MAO and 17/MAO at various temperature and pressures.

$\#^{\text {a }}$	Cat	$\begin{gathered} T \\ \left({ }^{\circ} \mathbf{C}\right) / \mathbf{p} \\ (\text { (bar) } \\ \hline \end{gathered}$	$\underset{b}{\text { Productivity }}$	$\begin{gathered} \text { NBE } \\ \begin{array}{c} \text { content } \\ (\text { mol- } \%)^{c} \end{array} \\ \hline \end{gathered}$	$\begin{gathered} M_{n} \\ (\mathrm{~g} / \mathrm{mol})^{\mathrm{d}} \end{gathered}$	PDI ${ }^{\text {d }}$	$\begin{gathered} T_{m} \\ \left({ }^{\circ} \mathrm{C}\right)^{\mathrm{e}} \end{gathered}$
$1{ }^{\text {f }}$		70/1	400	36	n.d	n.d	--
$2{ }^{\text {f }}$		70, 2	1800		n.d	n.d	94
$3^{\text {f }}$		70/4	2000	6	300,000	1.69	95
$4^{\text {f }}$		30/2	9.0	10	n.d	n.d	--
$5^{\text {f }}$		50/2	70	19.3	800,000	1.60	124
6		70/1	25	14.7	n.d	n.d	--
7		70/2	155	12.1	350,000	1.66	77
8		70/ 4	275	7.8	800,000	1.76	96
9		30/2	7	n.d	n.d	n.d	--

 (including monomer), toluene, $t=1 \mathrm{~h}$, catalyst: MAO: NBE $=1: 2000: 20000 ;{ }^{\mathrm{b}} \mathrm{kg} / \mathrm{mol}_{\text {catalyst }} \mathrm{h}$; ${ }^{\mathrm{c}}$ NBE content estimated by ${ }^{13} \mathrm{C}$ NMR; ${ }^{\mathrm{d}}$ GPC data in 1,2,4-trichlorobenzene vs. PS; ${ }^{\mathrm{e}}$ measured by DSC; ${ }^{\text {f }}$ solvent, MAO, NBE and catalyst added together into the reactor and heated to desired temperature, then E pressure was applied; n.d. $=$ not determined due to poor solubility.

Figure 3.21. Complex 13/MAO derived poly(E)-co-poly(NBE) VIP at (a) $70^{\circ} \mathrm{C}$ using 1 bar of E ; (b) $50^{\circ} \mathrm{C}$ using 2 bar of E ; (c) $70^{\circ} \mathrm{C}$ using 4 bar of E , (Table 3.12, entries 1,5 and 3 in 1,1,2,2-[$\left.\mathrm{D}_{2}\right]$ tetrachloroethane).

Figure 3.22. Complex 17/MAO-derived poly(E)-co-poly(NBE) VIP obtained at (a) $70^{\circ} \mathrm{C}$ using 1 bar of E ; (b) $70^{\circ} \mathrm{C}$ using 2 bar of E ; (c) $70^{\circ} \mathrm{C}$ using 4 bar of E (Table 3.12, entries 6,7 and 8 in 1,1,2,2-[$\left.\mathrm{D}_{2}\right]$ tetrachloroethane).

3.4.3 Copolymerization of E with NBE using the Ti-based complexes 22, 23, 24, 26 and 27

Various non-bridged half-titanocene complexes of the general formula $\mathrm{Cp}^{\prime} \mathrm{TiCl}_{2}(\mathrm{~N}(6-$ (2-(diethylboryl)phenyl)-pyrid-2-yl)R); $\mathrm{R}=\mathrm{Me}(\mathbf{2 2}, \mathbf{2 3}), \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}(\mathbf{2 6}, \mathbf{2 7}), \mathrm{Cp}=\mathrm{Cp}(\mathbf{2 2}$ and 26), Cp^{*} (23 and 27) and Ti-based metallocene-type TiCl_{2} [(N(6-(2-(diethylboryl)phenyl)-pyrid-2-yl)Me) $]_{2}(\mathbf{2 4})$ have been investigated towards their capabilities to copolymerize E with NBE. All these complexes are mainly producing poly(E)-co-poly(NBE) vIP copolymers at high E pressure (4 bar) and various temperatures, with moderate activities (up to 500 $\mathrm{Kg}_{\text {polymer }} / \mathrm{mol}$.Ti'h) and an NBE incorporation up to $12.5 \mathrm{~mol}-\%$ (Table 3.13). Interestingly, at low pressures (2 bar), complex 23/MAO produced both ROMP- and VIP derived structures within the same polymer chain, thereby forming poly(NBE) $)_{\text {ROMP }}$-co-poly(NBE$)_{\mathrm{VIP}^{-}}$-co-poly(E)-type copolymers. Typical ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are shown in Figure 3.23. The structure of this particular copolymer can in fact be explained by a reversible $\alpha-\mathrm{H}$
elimination/ $\alpha-H$ addition process, where both VIP and ROMP occurred within the same polymer chain. The signal at $\delta=133.17$ corresponds to the ROMP-derived polymer olefinic signal, those at $\delta=47.78$ and 41.9 ppm correspond to the alternating it VIP-derived E-NBE diads and the signals at $\delta=47.04-47.17$ and 41.5 ppm correspond to the alternating st and isolated VIP-derived E-NBE sequences, while the signal at $\delta=32.9 \mathrm{ppm}$ stems from alternating E-NBE and isolated NBE sequences. ${ }^{[11, ~ 13, ~ 14, ~ 45] ~ F i n a l l y, ~ t h e ~ s i g n a l ~ a t ~} \delta=29.7 \mathrm{ppm}$ can be attributed to PE sequences in ${ }^{13} \mathrm{C}$ NMR. The signal around $\delta=5.33$ and 5.50 ppm in the ${ }^{1} \mathrm{H}$ NMR correspond to the ROMP-derived cis and trans olefinic signals (Figure 3.23).

Table 3.13 illustrates that the catalytic activity of the Cp^{*}-containing catalysts $\mathbf{2 3}$ and 27 was higher when compared to the Cp-containing catalysts 22 and 26, and NBE incorporation increased with increasing polymerization temperature. Also, the resulting copolymers possesed lower number-average molecular weights. All Ti-based complexes showed efficient NBE incorporation up to 12.5 mol-\% (Table 3.13, entry 12). The activity of complex 24 was much higher when compared to other half-titanocene complexes 22, 23, 26 and 27 and NBE incorporation increased with increasing temperature. Typical ${ }^{13} \mathrm{C}$ NMR spectra of complex 24-derived poly(E)-co-poly(NBE) $)_{\text {VIP }}$ are shown in Figure 3.24.

Table 3.13. Results of E-NBE copolymerization by the action of Ti-based half-metallocene complexes 22, 23, 24, 26 and 27/MAO at various temperatures.

$\#^{\text {a }}$	Cat	$\begin{gathered} \boldsymbol{T} \\ \left({ }^{\circ} \mathbf{C}\right) \end{gathered}$	$\underset{b}{\text { Productivity }}$	NBE content $\left(\right.$ mol- $\%$) ${ }^{\text {c }}$	$\begin{gathered} M_{n} \\ (\mathrm{~g} / \mathrm{mol})^{\mathrm{d}} \end{gathered}$	PDI ${ }^{\text {d }}$	$\begin{gathered} T_{m} \\ \left({ }^{\circ} \mathrm{C}\right)^{\mathrm{e}} \end{gathered}$
1	Q	50	25	9.3	1,300,000	2.2	103
2		70	60	9.6	700,000	2.5	--
3		90	40	10.3	400,000	2.4	118
4		50	20	5.7	1,000,000	1.43	118
5		70	75	2.5	2,000,000	1.56	115
6		90	85		n.d	n.d	120
7		50	500	10.5	150,000	1.3	120
8		70	400	12.2	250,000	2.5	123

9	50	100	10	700,000	2.3	102
10	70	75	11.3	500,000	2.1	105
11	90	70		450,000	2.8	102
12	50	285	12.5	1,500,000	2.0	114
13	70	90	10.2	550,000	3.3	103

${ }^{\text {a }}$ Polymerization conditions: 500 mL autoclave, total volume of the reaction mixture: 250 mL (including monomer), toluene, $t=1 \mathrm{~h}, 4$ bar of E unless stated otherwise, catalyst: MAO: NBE $=1: 2000: 20000 ;{ }^{\mathrm{b}} \mathrm{kg} / \mathrm{mol}_{\text {catalyst }} \mathrm{h} ;{ }^{\mathrm{c}}$ NBE-content estimated by ${ }^{13} \mathrm{C}$ NMR; ${ }^{\text {d }}$ GPC data in 1,2,4-trichlorobenzene vs. PS; ${ }^{\mathrm{e}}$ measured by DSC; n.d. $=$ not determined due to poor solubility.

Figure 3.23. Complex 23/MAO-derived ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) of poly(NBE) Romp $^{\text {-co-poly(}}$ (NBE) VIP $^{\text {-co-poly }}$ (E) prepared at $50^{\circ} \mathrm{C}$ using 2 bar of E (in 1,1,2,2[D_{2}]tetrachloroethane).

Figure 3.24. Complex 24/MAO-derived ${ }^{13} \mathrm{C}$ NMR spectrum of poly(E)-co-poly(NBE) ${ }_{\mathrm{VIP}}$ (a) at $T=70^{\circ} \mathrm{C}$ using 4 bar of E ; (b) at $50^{\circ} \mathrm{C}$ using 4 bar of E (Table 3.13, entries 7 and 8 in 1,1,2,2-[$\left.\mathrm{D}_{2}\right]$ tetrachloroethane).

3.4.4 Copolymerization of E with cis-cyclooctene (COE)

The copolymerization of E with cis-cyclooctene was investigated with the use of the Zr -based complex 13 and the Ti-based complex 23 using different ratios of COE at 50 and $70^{\circ} \mathrm{C}$. Mostly linear PE without any incorporated COE was obtained. The Zr -based complex activities were moderate (up to $500 \mathrm{Kg}_{\text {polymer }} / \mathrm{mol} \mathrm{Zrh}$), the ones of the Ti-based complexes very low (up to $8 \mathrm{Kg}_{\text {polymer }} / \mathrm{mol} \mathrm{Ti} h$). In the polymerization of E in the presence of COE the catalytic activities are lower as compared to the ones in the polymerization of E in the presence of CPE ($30,000 \mathrm{~kg}_{\text {polymer }} / \mathrm{mol} \mathrm{Zrh}$). A typical complex 13-derived ${ }^{13} \mathrm{C}$ NMR spectrum of PE prepared in the presence of COE at $70^{\circ} \mathrm{C}$ is shown in Figure 3.25.

Table 3.14. Results of E-COE copolymerization by the action of 13, 23/MAO.

\# ${ }^{\text {a }}$	Cat	Cat:MAO:COE	$\begin{aligned} & T\left({ }^{\circ} \mathbf{C}\right) / \\ & p(\text { bar }) \\ & \hline \end{aligned}$	$\underset{\text { b }}{\text { Productivity }}$	$\begin{gathered} M_{n} \\ (\mathrm{~g} / \mathrm{mol})^{\mathrm{c}} \\ \hline \end{gathered}$	PDI ${ }^{\text {c }}$	$\boldsymbol{T}_{\boldsymbol{m}}\left({ }^{\circ} \mathrm{C}\right.$)
1		1: $2000: 10,000$	50/4	136	1,500,000	3.6	133
2		1: $2000: 30,000$	50/ 4	140	350,000	5.8	131
3		1: $2000: 10,000$	70/ 4	500	900,000	8.3	132
4		1: $2000: 30,000$	70/ 4	475	700,000	4.5	130
5		1: $2000: 30,000$	50/2	180			
6		1: $2000: 30,000$	50/ 2	8	n.d	n.d	--

${ }^{\text {a }}$ Polymerization conditions: 500 mL autoclave, total volume of the reaction mixture: 250 mL (including monomer), toluene, $t=1 \mathrm{~h} ;{ }^{\mathrm{b}} \mathrm{kg}_{\text {polymer }} /$ mol $_{\text {catalyst }} \mathrm{h} ;{ }^{\mathrm{c}}$ GPC data in $1,2,4-$ trichlorobenzene vs. PS; ${ }^{\text {d }}$ measured by DSC; n.d. $=$ not determined due to poor solubility.

Figure 3.25. ${ }^{13} \mathrm{C}$ NMR of PE prepared by the action of complex 13/MAO in the presence of COE at $70^{\circ} \mathrm{C}$ using 4 bar of E (Table 3.14, entry 3 in 1,1,2,2-[$\left.\mathrm{D}_{2}\right]$ tetrachloroethane).

$3.5 \quad{ }^{13} \mathrm{C}$ NMR spectroscopic analysis of E-NBE copolymers

3.5.1 Microstructure of the Zr-based complexes 13, 17-derived E-NBE copolymers

${ }^{13} \mathrm{C}$ NMR studies on the microstructure of E-NBE copolymer have been carried out and the interpretation of signals exists in the literature. ${ }^{[9,11,13,14,45,46,48,49]}$ The assignments of the chemical shifts for the different carbon atoms are listed in Table 3.14. The chemical shifts between 28 and 32 ppm , i.e. the ethene signals overlap with the C 5 and C 6 resonances of the NBE carbon atoms. The ${ }^{13} \mathrm{C}$ NMR of the E-NBE copolymer microstructure with higher norbornene contents reveals many resonances and looks more complex due to different monomer sequences and different lengths of NBE microblocks and different stereosequences in the E-N copolymers.

A copolymer chain in which every NBE unit is considered isolated from other NBE units in the polymer chain (EEEENEEE) is shown in Figure 3.26. Figure 3.27 illustrates the possible blocks in the copolymer chain, in which the NBE units are alternating (ENENE), diads (ENNE) and triads (ENNNE) regardless of the stereochemical differences (structrures A, B and C) and the configuration of the C2, C3 carbons in NBE. These can either be R/S or S/R and the relationship to the alternating NBE unit will be either meso (alternating $i t$) or racemic (alternating $s t$). Generally, microstructure formation mainly depends on the structure of the catalyst. ${ }^{[48,50]}$ (structures D and E)

Figure 3.26. Isolated NBE unit in a E-NBE polymer chain.

(ENENE) alternating E-NBE chain

diad (ENNE)

C
triad (ENNNE)

alternating-it (meso)

alternating-st (racemic)

Figure 3.27. Possible blocks in E-N polymer chains. ${ }^{\text {[48] }}$

Table 3.15. ${ }^{13} \mathrm{C}$ NMR assignments of the resonance in E-NBE copolymers.

${ }^{13} \mathrm{C}$ NMR chemical shifts (ppm)	assignment
$28.0-32.0$	$\mathrm{C} 5, \mathrm{C} 6$ and $\mathrm{C}_{\alpha}, \mathrm{C}_{\beta}, \mathrm{C}_{\gamma}, \mathrm{C}_{\delta}$
29.69	$(\mathrm{EEEE})_{\mathrm{n}}$
$32.8-33.5$	C 7
$41.0-42.5$	$\mathrm{C} 1, \mathrm{C} 4$
$47.0-48.5$	$\mathrm{C} 2, \mathrm{C} 3$

Figure 3.28. ${ }^{13} \mathrm{C}$ NMR of poly(E-co-NBE) $)_{\text {VIP }}$ produced by the action of (a) $\mathbf{1 3} / \mathbf{M A O}$ at $70^{\circ} \mathrm{C}$ using 1 bar of E; (b) 17/MAO at $70^{\circ} \mathrm{C}$ using 1 bar of E (Table 3.12, entries 1 and 6).

Figure 3.28 shows typical ${ }^{13} \mathrm{C}$ NMR spectra of poly(E-co-NBE) $)_{\text {VIP }}$ prepared by the action of 13 and $\mathbf{1 7 / M A O}$ at $70^{\circ} \mathrm{C}$ using 1 bar of E. The obtained copolymers contained 36 and 14.7 mol-\% of NBE, respectively. Analysis of the E-NBE copolymer spectra revealed that copolymers with high NBE incorporation were complex; moreover, in both spectra (a and b) mixtures of alternating it ($\mathrm{C} 2 / \mathrm{C} 3 ; 47.8$ and $\mathrm{C} 1 / \mathrm{C} 4 ; 42.0 \mathrm{ppm}$) and st $\mathrm{E}-\mathrm{NBE}$ sequences as well as isolated NBE sequences (C2/C3; 47.0-47.2 and C1/C4; 41.4-41.6 ppm) along with NBE diads were visible. The NBE diads resonances showed up at 28.2, 31.3, 33.5 and 41.3 ppm (Figure 3.28(a)). Complex 13/MAO exhibited excellent NBE-incorporation when compared to $17 / \mathrm{MAO}$.

The E-pressure also shows a significant impact on NBE incorporation in the resulting E-NBE copolymers. Thus, the microstructure of the copolymers prepared by the action of $\mathbf{1 3}$ and $\mathbf{1 7 / M A O}$ at 1 bar of E (Figure $3.28 \mathbf{a}$ and \mathbf{b}) is entirely different from the one obtained at 4 bar of E (Figure $3.29 \mathbf{a}$ and \mathbf{b}). Also, the incorporation of NBE dropped to around $6 \mathrm{~mol}-\%$ using complex 13/MAO at 4 bar of E mainly produced alternating st E-NBE sequences as well as isolated NBE sequences without any alternating it E-NBE sequences and NBE diads or triad sequences (Figure 3.29, a). Moreover, complex 17-derived copolymers contain alternating it (47.8 and 42.0 ppm), st as well as isolated NBE sequences ($47.0,41.5 \mathrm{ppm}$).

Figure 3.29. ${ }^{13} \mathrm{C}$ NMR of poly(E-co-NBE) ${ }_{\mathrm{VIP}}$ produced by the action of (a) $\mathbf{1 3} / \mathbf{M A O}$ at $70^{\circ} \mathrm{C}$ using 4 bar of E; (b) 17/MAO at $70^{\circ} \mathrm{C}$ using 4 bar of E (Table 3.12, entries 3 and 8).

3.5.2 Microstructure of the Ti-based complexes 22, 23, 24, 26 and 27-derived ENBE copolymers

Figure 3.30. ${ }^{13} \mathrm{C}$ NMR of poly(E-co-NBE) $)_{\text {VIP }}$ produced by the action of (a) 22/MAO; (b) 23/MAO at $70^{\circ} \mathrm{C}$ using 4 bar of E (Table 3.13, entries 2 and 5).

Figure 3.30 shows a typical ${ }^{13} \mathrm{C}$ NMR spectra of poly(E-co-NBE) $)_{\text {VIP }}$ prepared by the action of 22 (a, 9.6 mol- \% of NBE) and 23/MAO (b, $2.5 \mathrm{~mol}-\%$ of NBE) systems. The chemical shifts of the observed signals along with the integral peak area were used for calculating the NBEcontent of the resulting copolymer using the following equation:

$$
\operatorname{NBE}(\%)=1 / 3\left(I_{\mathrm{C} 2, \mathrm{C} 3}+I_{\mathrm{C} 1, \mathrm{C} 4}+2 I_{\mathrm{C} 7}\right) / I_{\mathrm{CH} 2}
$$

22/MAO derived spectra posses a mixture of alternating it (C2/C3 47.8 and $\mathrm{C} 1 / \mathrm{C} 441.9 \mathrm{ppm}$) and alternating $s t$ E-NBE sequences as well as isolated NBE sequences (47.0 and 41.5 ppm). On the other hand, resonances of the NBE diads were absent. Complex 23/MAO mainly produced alternating st along with isolated NBE units in the resulting copolymer (47.0 and 41.5 ppm) without any NBE diads.

Figure 3.31 illustrates a typical ${ }^{13} \mathrm{C}$ NMR spectrum of poly(E-co-NBE) $)_{\text {VIP }}$ prepared by the action of 26/MAO (b, $11.3 \mathrm{~mol}-\%$ of NBE) and 27/MAO (a, $10.2 \mathrm{~mol}-\%$ of NBE). Differences can be observed when comparing both 26- and 27-derived E-NBE copolymer. Although, both copolymers have nearly the same NBE content, spectrum a, which is derived from 27/MAO, shows more isolated and alternating st E-NBE sequences without any NBE diads, while spectrum \mathbf{b} which is derived from 26/MAO, displays a mixture of alternating it and $s t$ E-NBE sequences and isolated NBE sequences along with NBE diads.

Figure 3.31. ${ }^{13} \mathrm{C}$ NMR of poly(E-co-NBE) ${ }_{\text {vIP }}$ produced by the action of (a) 27/MAO; (b) $\mathbf{2 6} / \mathrm{MAO}$ at $70^{\circ} \mathrm{C}$ using 4 bar of E (Table 3.13, entries 10 and 13).

3.6 Conclusion

In summary, $\mathrm{Zr}^{\mathrm{IV}}$-dimethylsilylenebisamide complexes and non-bridged half-titanocene complexes bearing the aminoborane motif activated by MAO are capable of homopolymerizing of E. In copolymerization of E with CPE (up to 25 vol.-\%) mainly linear PE (HDPE) without any noticeable incorporation of CPE is observed while higher concentrations (40 vol. $-\%$) of CPE result in a CPE incorporation of up to $4 \mathrm{~mol}-\%$. In the presence of CPE, the catalytic activity of the $\mathrm{Zr}^{\text {IV }}$-based precatalyst $\mathbf{1 3} / \mathbf{M A O}$ dramatically increased up to a factor of 15 (up to $30,000 \mathrm{~kg}_{\text {polymer }} / \mathrm{mol} \mathrm{Zrh}$). In the copolymerization of E with NBE the $\mathrm{Zr}^{\text {IV }}$-based and non-bridged half-titanocene complexes mainly produced poly(E-co-NBE $)_{\text {VIP }}$ with moderate activities. As the NBE feed increased, the catalytic activity decreased and the resulting number-average molecular weights of the copolymers increased, while the incorporation of NBE in the copolymer increased. The ${ }^{13} \mathrm{C}$ NMR spectra of the ENBE copolymers indicate the presence of alternating it and st E-NBE sequences along with isolated NBE sequences. The presence of NN dyads and NNN triads was also detected with copolymers having a high NBE content (>10 mol-\%). The incorporation of NBE in the resulting copolymers was highly influenced by the E pressure, mainly at low pressures (1 or 2 bar E) the NBE content was high in the resulting copolymers. Non-bridged half-titanocenes were also effective in the homopolymerization of styrene in a syndiospecific manner resulting $s t$-PS with moderate activities. Interestingly, the presence of an aminoborane group does not influence the copolymerization of E-NBE in terms of switching the mechanism from vinyl addition to ROMP and vice versa by reversible $\alpha-\mathrm{H}$ elimination/ $\alpha-\mathrm{H}$ addition process.

3.7 References

[1] H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R. M. Waymouth, Angew. Chem. Int. Ed. 1995, 34, 1143; Angew. Chem. 1995, 107, 1255.
[2] G. J. P. Britovsek, V. C. Gibson, D. F. Wass, Angew. Chem. Int. Ed. 1999, 38, 428447; Angew.Chem. 1999, 111, 448-468.
[3] W. Kaminsky, Macromol. Chem. Phys. 1996, 197, 3907.
[4] W. Kaminsky, M. Arndt, Adv. Polym. Sci. 1997, 127, 143.
[5] A. L. McKnight, R. M. Waymouth, Chem. Rev. 1998, 98, 2587.
[6] J. Suhm, J. Heinemann, C. Wörner, P. Müller, F. Stricker, J. Kressler, J. Okuda, R. Mülhaupt, Macromol. Symp. 1998, 129, 1.
[7] S. Collins, W. M. Kelly, Macromolecules 1992, 25, 233.
[8] W. Kaminsky, J. Chem. Soc., Dalton Trans. 1998, 1413.
[9] K. Nomura, M. Tsubota, M. Fujiki, Macromolecules 2003, 36, 3797.
[10] A. L. McKnight, R. M. Waymouth, Macromolecules 1999, 32, 2816.
[11] D. Ruchatz, G. Fink, Macromolecules 1998, 31, 4674.
[12] T. Hasan, T. Ikeda, T. Shiono, Macromolecules 2004, 37, 8503.
[13] D. Ruchatz, G. Fink, Macromolecules 1998, 31, 4681.
[14] D. Ruchatz, G. Fink, Macromolecules 1998, 31, 4684.
[15] W. Kaminsky, A. Noll, Polym. Bull. 1993, 31, 175.
[16] K. Nomura, K. Fujii, Organometallics 2002, 21, 3042.
[17] K. Nomura, J. Liu, S. Padmanabhan, B. Kitiyanan, J. Mol. Catal. A 2007, 267, 1.
[18] W. Wang, T. Tanaka, M. Tsubota, M. Fujiki, S. Yamanaka, K. Nomura, Adv. Synth. Cat. 2005, 347, 433.
[19] M. R. Buchmeiser, S. Camadanli, D. Wang, Y. Zou, U. Decker, C. Kühnel, I. Reinhardt, Angew. Chem. Int. Ed. 2011, 50, 3566; Angew. Chem. 2011,123, 3628.
[20] S. A. A. Shah, H. Dorn, A. Voigt, H. W. Roesky, E. Parisini, H.-G. Schmidt, M. Noltemeyer, Organometallics 1996, 15, 3176.
[21] K. Nomura, K. Fujii, Macromolecules 2003, 36, 2633.
[22] K. Liu, Q. Wu, W. Gao, Y. Mu, L. Ye, Eur. J. Inorg. Chem. 2011, 1901.
[23] R. R. Schrock, P. J. Bonitatebus, Y. Schrodi, Organometallics 2001, 20, 1056.
[24] A. D. Horton, K. L. von Hebel, J. de With, Macromol. Symp. 2001, 173, 123.
[25] J. D. Scollard, D. H. McConville, N. C. Payne, J. J. Vittal, Macromolecules 1996, 29, 5241.
[26] J. D. Scollard, D. H. McConville, J. Am. Chem. Soc. 1996, 118, 10008.
[27] R. Baumann, W. M. Davis, R. R. Schrock, J. Am. Chem. Soc. 1997, 119, 3830.
[28] Y.-M. Jeon, S. J. Park, J. Heo, K. Kim, Organometallics 1998, 17, 3161.
[29] C. H. Lee, Y.-H. La, J. W. Park, Organometallics 2000, 19, 344.
[30] V. C. Gibson, B. S. Kimberley, A. J. P. White, D. J. Williams, P. Howard, Chem. Comтип. 1998, 313.
[31] S. Tinkler, R. J. Deeth, D. J. Duncalf, A. McCamley, Chem. Commun. 1996, 2623.
[32] Y.-M. Jeon, J. Heo, W. M. Lee, T. Chang, K. Kim, Organometallics 1999, 18, 4107.
[33] P. Margl, L. Deng, T. Ziegler, J. Am. Chem. Soc. 1998, 121, 154.
[34] Y. Zou, D. Wang, K. Wurst, C. Kühnel, I. Reinhardt, U. Decker, V. Gurram, S. Camadanli, M. R. Buchmeiser, Chem. Eur. J. 2011, 17, 13832.
[35] Y. Li, H. Gao, Q. Wu, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 93.
[36] N. Ishihara, T. Seimiya, M. Kuramoto, M. Uoi, Macromolecules 1986, 19, 2464.
[37] T. E. Ready, R. O. Day, J. C. W. Chien, M. D. Rausch, Macromolecules 1993, 26, 5822.
[38] A. Zambelli, C. Pellecchia, L. Oliva, P. Longo, A. Grassi, Makromol. Chem. 1991, 192, 223.
[39] D. J. Duncalf, H. J. Wade, C. Waterson, P. J. Derrick, D. M. Haddleton, A. McCamley, Macromolecules 1996, 29, 6399.
[40] D. J. Byun, A. Fudo, A. Tanaka, M. Fujiki, K. Nomura, Macromolecules 2004, 37, 5520.
[41] S. J. McLain, J. Feldman, E. F. McCord, K. H. Gardner, M. F. Teasley, E. B. Coughlin, K. J. Sweetman, L. K. Johnson, M. Brookhart, Macromolecules 1998, 31, 6705.
[42] A. R. Lavoie, M. H. Ho, R. M. Waymouth, Chem. Commun. 2003, 864.
[43] N. Naga, Y. Imanishi, Macromol. Chem. Phys. 2002, 203, 159.
[44] A. Jerschow, E. Ernst, W. Hermann, N. Mueller, Macromolecules 1995, 28, 7095.
[45] D. Ruchatz, G. Fink, Macromolecules 1998, 31, 4669.
[46] I. Tritto, L. Boggioni, M. C. Sacchi, P. Locatelli, J. Mol. Catal. A: Chem. 1998, 133, 139.
[47] R. A. Wendt, G. Fink, J. Mol. Catal. A: Chem. 2003, 203, 101.
[48] I. Tritto, C. Marestin, L. Boggioni, L. Zetta, A. Provasoli, D. R. Ferro, Macromolecules 2000, 33, 8931.
$[49] \quad$ B. A. Harrington, D. J. Crowther, J. Mol. Catal. A: Chem. 1998, 128, 79.
[50] A. Provasoli, D. R. Ferro, I. Tritto, L. Boggioni, Macromolecules 1999, 32, 6697.

CHAPTER 4
Experimental Data

4.0 Experimental Data

General Remarks

Except where noted, all manipulations were conducted in the absence of oxygen and water under an atmosphere of dinitrogen, either by the use of standard Schlenk techniques or within an MBraun glove box utilizing glassware that was oven-dried and evacuated while hot prior to use. The non-deuterated solvents (i.e. toluene, diethyl ether, pentane, THF and dichloromethane) were dried and deoxygenated by means of degassing with dinitrogen gas, followed by passage through a triple-column solvent purification of an MBraun SDS drying system. Deuterated NMR solvents were freeze-pump-thaw degassed. d_{6}-benzene, d_{8}-toluene and d_{8}-tetrahydrofuran were dried and distilled from sodium/benzophenone, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and CDCl_{3} were dried and distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. Methylaluminoxane (MAO) and triisobutylaluminum (1.1 M solution in toluene) were purchased from Aldrich. Trimethylaluminum was removed from commercial MAO ($10 \mathrm{wt}-\%$ solution in toluene, Aldrich) via drying in vacuo ($8 \mathrm{~h}, 70^{\circ} \mathrm{C}$) and the obtained solid MAO was re-dissolved in toluene to make a 2.0 M solution, which was stored in the dry-box. Ethylene and propylene (Air Products) were dried by passing through columns filled with a Cu-based catalyst (BASF catalyst R3-11) and then through molecular sieves ($3 \AA$) before use.

The monomers cyclopentene (95%, Fluka), cyclooctene (90%, Fluka), cyclohexene (99.5%, Fluka), 1-hexene (99%, Aldrich), 1,3-cyclohexadiene (96%, Acro's) and styrene (99.5%, Acro's) were dried over calcium hydride, vacuum transferred and stored in the glove box. Norborn-2-ene (99%, Aldrich) was used without any further purification. NMR data were obtained at 250.13 and 600.25 MHz for proton and 62.5 and 150.0 MHz for carbon in the indicated solvent at $25^{\circ} \mathrm{C}$ on a Bruker Spectrospin 250 and are listed in parts per million downfield from tetramethylsilane for proton and carbon. High-resolution mass spectra (ESI) were recorded on an APEX II FTICR mass spectrometer, Bruker Daltonics. Infrared spectra were recorded from $4000-400 \mathrm{~cm}^{-1}$ on a Perkin-Elmer 881 Spectrometer using ATR technology.
All homopolymerization reactions were performed in Schlenk tubes under an inert atmosphere. All copolymerization reactions of ethylene with cyclic olefins were performed in a Büchi-Uster pressure reactor (polyclave) equipped with a Huber thermostat (Unistat Tango Nuevo). The monomer feed of the gaseous monomer was kept constant with a Büchi pressflow bpc 6010 flow controller. The reaction was monitored by a bdsmc Büchi data system.

GC-MS investigations were carried out on a Shimadzu GCMS-QP2010S with an AOC-20i Autosampler using a SPB fused silica (Rxi-5MS) column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times$ $0.25 \mu \mathrm{~m}$ film thickness). Molecular weights and molecular weight distributions were measured by high temperature gel chromatography (HT-GPC) on a Polymer Standards HT-GPC system with triple detection (refractive index, light-scattering at 15 and 90°, viscosimtry) using three consecutive Waters Styragel HR4 $4.6 \times 300 \mathrm{~mm}$ columns in 1,2,4-trichlorobenzene at $145^{\circ} \mathrm{C}$. The flow rate was set to $1 \mathrm{~mL} / \mathrm{min}$. Narrow polystyrene standards in the range $162<M_{n}$ $<6,035,000 \mathrm{~g} . \mathrm{mol}^{-1}$ (Easi Vial-red, yellow and green) were purchased from Polymer Labs. DSC data were recorded by heating under a nitrogen atmosphere on a DSC7 Perkin-Elmer differential scanning calorimeter.

Catalysts $\mathbf{1 a - 1 g}, \mathbf{2 c}, \mathbf{2 d}, \mathbf{2 e}, \mathbf{2 f}$ and $\mathbf{6}$ have been made by my former colleague I. Ahmad and compounds 7, 8 and 9 were prepared according to the published procedure from Angew. Chem. Int. Ed. 2011, 50, 3566-3571 and Chem. Eur. J. 2011, 17, 13832-13846.

N-tert-butyl-chloro-dimethylsilylamine (11):

To a solution of dichlorodimethylsilane ($17.6 \mathrm{~g}, 136.7 \mathrm{mmol}$) in n-pentane (50 mL) were added triethylamine ($14.5 \mathrm{~g}, 143.5 \mathrm{mmol}$) and tert-butylamine ($10 \mathrm{~g}, 136.7 \mathrm{mmol}$) simultaneously at $0-5^{\circ} \mathrm{C}$, and the resulting reaction mixture was stirred at room temperature for 16 h , then filtered to remove the salts (triethylammonium hydrochloride) and the filtrate was transferred into a distillation apparatus to remove both triethylamine and pentane until a reflux temp. of $50^{\circ} \mathrm{C}$ was reached and remaining liquid was determined to be pure product (10 g, 44%). ${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta=0.29\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.96(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 1.08(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta=4.4,33.1,50.2 \mathrm{ppm} . \mathrm{GC}-\mathrm{MS}: \mathrm{m} / \mathrm{z}$ calcd.for $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{ClNSi}$: 165.07; found. $164.9\left(\mathrm{M}^{-+}\right)$; Elemental anal. calcd. for $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{ClNSi}$: C 43.48; H 9.73; N 8.45; found C 43.26; H 9.85; N 8.63.

N-tert-butyl-N ${ }^{1}$-(6-(2-(diethylboryl)phenyl)pyrid-2-yl) - 1, 1-dimethylsilanediamine (12):

A solution of $\mathrm{n}-\mathrm{BuLi}(0.73 \mathrm{~mL}$ of 1.6 M in hexane, 0.69 mmol$)$ was added to a solution of 9 $(150 \mathrm{mg}, 0.63 \mathrm{mmol})$ in diethyl ether $(20 \mathrm{~mL})$ at $-37^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature for 2 h . Then, $\mathbf{1 1}(0.103 \mathrm{mg}, 0.63 \mathrm{mmol})$ was dissolved in diethyl ether (10 mL) was added slowly to the reaction mixture and stirred at room temperature for 16 h . then the reaction mass was filtered over celite and the filtrate was removed in vacuo to obtain $\mathbf{1 2}$ $(200 \mathrm{mg}, 86 \%)$ as a white solid. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C}_{6} \mathbf{D}_{6}, \mathbf{2 5 0} \mathbf{~ M H z}\right): \delta=0.21\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.71$ (br, 1 H , tert-butyl- NH), $0.87-0.93\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.11$ (s, 9 H , tert-butyl),
1.26-1.38 (m, 2H, B($\left.\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.45-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 5.98$ (br, $\left.1 \mathrm{H}, \mathrm{Ar}-\mathrm{NH}\right)$, 6.67-6.71 (dd, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=0.75 \mathrm{~Hz}, \mathrm{ArH}\right), 6.88-6.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}), 7.13-7.19\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, ArH), 7.3-7.36 (ddd, $1 \mathrm{H}, J_{\mathrm{HH}}=1 \mathrm{~Hz}, \mathrm{ArH}$), 7.48-7.54 (ddd, $1 \mathrm{H}, J_{\mathrm{HH}}=1 \mathrm{~Hz}, \mathrm{ArH}$), 7.70-7.73 (d, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.90-7.93\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C}_{6} \mathbf{D}_{6}, 250\right.$ MHz): $\delta=1.4,8.8,14.1,31.7,48.3,104.3,106.9,119.6,124.1,127.9,128.7,136.4,138.1$ ppm. GC-MS: m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{BN}_{3} \mathrm{Si}$: 367.2 , found. $338.2\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}$.

Synthesis of Zr-complex (13):

A solution of $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $0.73 \mathrm{~mL}, 1.14 \mathrm{mmol})$ was added to a solution of $\mathbf{1 2}$ ($200 \mathrm{mg}, 0.544 \mathrm{mmol}$) in n-pentane $(15 \mathrm{~mL})$ at $-37^{\circ} \mathrm{C}$. A large amount of white precipitate formed during the addition. The reaction mixture was warmed to room temperature and stirred for 3 h . The resulting precipitate was collected on a frit, washed with cold n-pentane $(10 \mathrm{~mL})$ and dried in vacuo to give the pure Li salt of $\mathbf{1 2}(160 \mathrm{mg})$ which was used without any further analysis.
The Li salt of $\mathbf{1 2}$ ($160 \mathrm{mg}, 0.42 \mathrm{mmol}$) was dissolved in toluene $(20 \mathrm{~mL})$ and added to a solution of $\mathrm{ZrCl}_{4} \cdot 2 \mathrm{THF}(160 \mathrm{mg}, 0.42 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL})$ at $-37^{\circ} \mathrm{C}$ and the resulting reaction mixture was allowed to stir at room temperature for 6 h . Then the mixture was filtered through celite and the solvent was removed under reduced pressure. n-Pentane was added to and the solution was stored in glove-box freezer for 24 h to precipitate the Zr complex 13 ($200 \mathrm{mg}, 80 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{6}, \mathbf{2 5 0} \mathbf{~ M H z}$): $\delta=0.52(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.7-0.80\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Si}\left(\underline{\mathrm{CH}}_{3}\right)_{2}, \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}, 1.05-1.14\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}, 1.29-\right.\right.$ 1.40 (m, 4H, THF), 1.62 (s, 9 H , tert-butyl), 4.29 (br, $4 \mathrm{H}, \mathrm{THF}$), $6.70-6.73\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, ArH), $6.95-6.98\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.17-7.24\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.30-7.37$ (ddd, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.49-7.56\left(\mathrm{ddd}, 1 \mathrm{H}, J_{\mathrm{HH}}=0.75 \mathrm{~Hz}, \mathrm{ArH}\right), 6.67-6.70(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{\mathrm{HH}}=7.75 \mathrm{~Hz}, \mathrm{ArH}\right), 7.77-7.74\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.25 \mathrm{~Hz}, \mathrm{ArH}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right)$: $\delta=5.2,5.6,10.9,11.7,20.2,25.0$ (THF), 35.16, 57.5, 78.0 (THF), 107.2, 115.7, 121.0, 125.5, 129.1, 129.6, 137.8, 139.0, 158.1, 160.8 ppm ; Elemental anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{BCl}_{2} \mathrm{~N}_{3} \mathrm{OSiZr}$: C 50.08; H 6.72; N 7.01; found C 50.37; H 7.08; N 7.34 .

Synthesis of \mathbf{N}-adamantylchlorodimethylsilylamine (15):

A solution of $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane $22 \mathrm{~mL}, 34.68 \mathrm{mmol})$ was slowly added to a solution of 1-adamantylamine ($5.0 \mathrm{~g}, 33.05 \mathrm{mmol}$) in pentane $(100 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$. A large amount of white precipitate formed during the addition. The reaction mixture was warmed to room temperature and stirred for 4 h . The resulting precipitate was collected on a frit, washed with
cold n-pentane (10 mL) and dried in vacuo to give pure lithium 1-adamantylamide (5.0 g , 99%), which was used for the next reaction without any analysis.

Dichlorodimethylsilane ($10.25 \mathrm{~g}, 79.49 \mathrm{mmol}$) was stirred in THF (75 mL) and lithium-1adamantylamide ($5.0 \mathrm{~g}, 31.79 \mathrm{mmol}$) in THF (50 mL) was added slowly and the resulting reaction mixture was allowed to stir for 2.5 h at room temperature. Then, all volatiles were removed in vacuo and the residue was extracted with pentane and evaporated under reduced pressure to isolate the $\mathbf{1 5}$ as white solid ($6.0 \mathrm{~g}, 75 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=0.44$ (s, $\left.6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.24(\mathrm{br}, 1 \mathrm{H}, \underline{\mathrm{NH}}), 1.59\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ad}-\mathrm{CH}_{2}\right), 1.70\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ad}-\mathrm{CH}_{2}\right), 2.02(\mathrm{~s}, 3 \mathrm{H}$, Ad-CH) ppm. ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=4.6,29.8,36.1,46.5,50.5 \mathrm{ppm} . \mathrm{GC}-\mathrm{MS}:$ m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{ClNSi}$: 243.1; found.243.1 $\left(\mathrm{M}^{+}\right)$; Elemental anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{ClNSi}: \mathrm{C} 59.11$; H 9.09; N 5.74; found C 58.86; H 8.96; N 5.62.

\mathbf{N}-adamantyl- \mathbf{N}^{1}-(6-(2-(diethylboryl)phenyl)pyridin-2-yl)-1,1'-dimethylsilyldiamine (16):

A solution of $\mathrm{n}-\mathrm{BuLi}(0.73 \mathrm{~mL}$ of 1.6 M in hexane, 1.14 mmol$)$ was added to a solution of 9 $(250 \mathrm{mg}, 1.05 \mathrm{mmol})$ in diethyl ether $(20 \mathrm{~mL})$ at $-37^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature for 2 h . Then, $\mathbf{1 5}(0.25 \mathrm{mg}, 1.05 \mathrm{mmol})$ dissolved in diethyl ether (10 mL) was added slowly to the reaction mixture and the mixture was stirred at room temperature for 16 h . After filtration and evaporation of the solvent in vacuo, 16 ($420 \mathrm{mg}, 90 \%$) was obtained as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta=0.29\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\underline{\mathrm{CH}}_{3}\right)_{2}\right), 0.79(\mathrm{br}, 1 \mathrm{H}$ Ad- $\underline{\mathrm{NH}})$, $0.90-0.96\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.28-1.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.48-1.57(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.57-1.6\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{Ad}-\mathrm{CH}_{2}\right), 1.74-1.75\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{Ad}-\mathrm{CH}_{2}\right), 2.0$ (m, 3H, Ad-CH), 6.05 (br, 1H, Ar-NH), 6.75-6.79 (d, 1H, $\left.J_{\mathrm{HH}}=10 \mathrm{~Hz}, \mathrm{ArH}\right)$, 6.92-6.95 (d, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.20-7.26\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.33-7.39\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, ArH), 7.51-7.57 (t, 1H, $\left.J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.72-7.75\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.93-7.96(\mathrm{~d}$, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta=0.46,10.3,15.4,30.1,36.3,46.9$, $50.1,105.7,108.5,121.0,125.4,129.3,130.0,137.9,139.5,156.2,157.5 \mathrm{ppm}$.

Synthesis of Zr-compound 17:

A solution of $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $1.28 \mathrm{~mL}, 2.0 \mathrm{mmol})$ was added to a solution of $\mathbf{1 6}$ ($420 \mathrm{mg}, 0.94 \mathrm{mmol}$) in n-pentane (40 mL) at $-37^{\circ} \mathrm{C}$. A large amount of white precipitate formed during the addition. The reaction mixture was warmed to room temperature and stirred for 12 h . The resulting precipitate was collected on a frit, washed with cold n-pentane $(10 \mathrm{~mL})$ and dried in vacuo to give the pure Li salt of $\mathbf{1 6}(350 \mathrm{mg})$, which was used without any analysis.

The Li salt of $\mathbf{1 6}(350 \mathrm{mg}, 0.76 \mathrm{mmol})$ was dissolved in toluene $(20 \mathrm{~mL})$ and added to a solution of $\mathrm{ZrCl}_{4} \cdot 2 \mathrm{THF}(0.29 \mathrm{~g}, 0.76 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ at $-37^{\circ} \mathrm{C}$ and the resulting reaction mixture was allowed to stir at room temperature for 16 h . Then the reaction mixture was filtered through celite and all volatiles were removed under reduced pressure. The crude product was dissolved in n-pentane (10 mL) from which $\mathbf{1 7}(280 \mathrm{mg}, 45 \%)$ crystallized as an off-white solid. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta=0.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.78-083\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{HH}}=5\right.$ $\left.\mathrm{Hz}, \mathrm{B}\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right)_{2}\right), 0.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.1$ (br, THF), 1.3-1.46 (m, $\left.4 \mathrm{H}, \mathrm{B}\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{3}\right)_{2}\right)$, 1.67-1.91 (m, 6H, Ad-CH2 $), 2.28(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ad}-\mathrm{CH}), 2.37\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ad}-\mathrm{CH}_{2}\right), 4.30$ (br, THF), 6.7$6.8\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=10 \mathrm{~Hz}, \mathrm{ArH}\right), 6.97-7.00\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.20-7.23\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5\right.$ $\mathrm{Hz}, \mathrm{ArH}$), $7.32-7.39$ (ddd, $1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}$), $7.51-7.58$ (ddd, $1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}$), $7.70-7.73\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.76-7.79\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right.$): $\delta=5.73,6.32,11.21,11.79,14.18$ (pentane), 20.53, 22.62 (pentane), 25.08 (co-ordinated THF), 30.68, 34.32 (pentane), $36.63,48.04,58.89,78.59$ (co-ordinated THF), $107.27,115.93,121.07,125.57,129.12,129.68,137.95,139.09,158.17,160.89 \mathrm{ppm}$; Elemental anal. calcd. for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{BCl}_{2} \mathrm{~N}_{3} \mathrm{OSi} \mathrm{Zr}$: C 54.94; H 6.84; N 6.20. found. C 55.39 ; H 7.39; N 5.88.

Synthesis of Hf- compound 18:

A solution of $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $0.73 \mathrm{~mL}, 1.14 \mathrm{mmol})$ was added to a solution of compound $12(200 \mathrm{mg}, 0.544 \mathrm{mmol})$ in n-pentane $(15 \mathrm{~mL})$ at $-37^{\circ} \mathrm{C}$. A large amount of white precipitate formed during the addition. The reaction mixture was warmed to room temperature and stirred for 3 h . The resulting precipitate was collected on a frit, washed with cold n pentane (10 mL) and dried in vacuo to give the pure Li salt of $\mathbf{1 2}(160 \mathrm{mg})$, which was used without any further analysis.

Li salt of $\mathbf{1 2}(240 \mathrm{mg}, 0.632 \mathrm{mmol})$ was dissolved in toluene $(15 \mathrm{~mL})$, this solution was added to a solution of $\mathrm{HfCl}_{4}(202 \mathrm{mg}, 0.632 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ at $-37^{\circ} \mathrm{C}$ and the resulting reaction mixture was stirred at room temperature for 9 h . Then it was filtered under celite and all volatiles were removed under reduced pressure. n-Pentane was added and the solution was stored in a glove-box freezer for 24 h to precipitate $\mathbf{1 8}(200 \mathrm{mg}, 51 \%)$ as a white solid. ${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C}_{6} \mathbf{D}_{6}, 250 \mathrm{MHz}\right): \delta=0.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.74-0.83\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}, 1.26-1.58\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.64(\mathrm{~s}, 9 \mathrm{H}$, tert-butyl), 6.73-6.76(dd, 1 H , $\left.J_{\mathrm{HH}}=0.75 \mathrm{~Hz}, \mathrm{ArH}\right), 6.94-6.98\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{HH}}=0.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.19-7.25\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, ArH), 7.31-7.38 (ddd, $1 \mathrm{H}, J_{\mathrm{HH}}=1 \mathrm{~Hz}, \mathrm{ArH}$), $7.50-7.56$ (ddd, $1 \mathrm{H}, J_{\mathrm{HH}}=0.75 \mathrm{~Hz}, \mathrm{ArH}$), $7.68-$ $7.72\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.75 \mathrm{~Hz}, \mathrm{ArH}\right), 7.76-7.78\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.25 \mathrm{~Hz}, \mathrm{ArH}\right) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $250 \mathrm{MHz}): \delta=5.4,5.91,11.3,12.0,12.5,19.7,35.9,56.9,107.7,117.0,121.3,125.8,129.4$,
130.0, 138.10, 139.30, 158.4, 161.6 ppm; Elemental anal. calcd. for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~B}_{2} \mathrm{HfN}_{6} \mathrm{Si}_{2}$: C 55.48; H 7.09; N 9.24. found. C 55.45; H 7.20; N 9.19.

Synthesis of Hf-complex 19:

A solution of $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $0.73 \mathrm{~mL}, 1.14 \mathrm{mmol})$ was added to a solution of $\mathbf{1 6}$ ($200 \mathrm{mg}, 0.544 \mathrm{mmol}$) in n-pentane $(15 \mathrm{~mL})$ at $-37^{\circ} \mathrm{C}$. A large amount of white precipitate formed during the addition. The reaction mixture was warmed to room temperature and stirred for 3 h . The resulting precipitate was collected on a frit, washed with cold n-pentane $(10 \mathrm{~mL})$ and dried in vacuo to give the pure Li salt of $\mathbf{1 6}(160 \mathrm{mg})$, which was used without any further analysis.
The Li salt of $16(400 \mathrm{mg}, 0.87 \mathrm{mmol})$ was dissolved in toluene $(20 \mathrm{~mL})$ and added to a solution of $\mathrm{HfCl}_{4}(280 \mathrm{mg}, 0.87 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ and the resulting reaction mixture was stirred at room temperature for 9 h . Then it was filtered through celite and all volatiles were removed under reduced pressure. 20 mL of n-pentane were added to the crude and the solution was stored in a glove-box freezer for 24 h to precipitate the Hf-complex 19 (380 mg , $50 \%)$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta=0.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.67-0.79(\mathrm{~m}$, $9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2},-\mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}, 1.28-1.79\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}, \mathrm{Ad}-\mathrm{CH}_{2}\right), 2.18(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ad}-\mathrm{CH})$, $2.25\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ad}^{-\mathrm{CH}_{2}}\right), 6.67-6.70\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 6.84-6.87\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, ArH), 7.09-7.12 (d, 1H, $\left.J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.21-7.27\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.40-7.46(\mathrm{t}$, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.58-7.61\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.64-7.67\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, $\mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}$): $\delta=5.9,6.6,11.4,12.0,20.1,31.0,36.9,48.8,58.0$, 107.7, 117.1, 121.3, 125.8, 129.40, 130.0, 138.2, 139.3, $158.4,161.5 \mathrm{ppm}$. Elemental anal. calcd. for $\mathrm{C}_{54} \mathrm{H}_{76} \mathrm{~B}_{2} \mathrm{HfN}_{6} \mathrm{Si}_{2}$: C 60.87; H 7.19; N 7.89; found. C 60.79; H 7.80; N 7.15.

Synthesis of N-[6-(2-Diethylborylphenyl)pyrid-2-yl]-N-methylamine (20)

A solution of $9(750 \mathrm{mg}, 3.15 \mathrm{mmol})$ in dimethylformamide $(20 \mathrm{~mL})$ was cooled to $0-5^{\circ} \mathrm{C}$ and $\mathrm{NaH}(60 \mathrm{wt}-\%$ in mineral oil, $125 \mathrm{mg}, 3.15 \mathrm{mmol}$) was added portion wise over 15 minutes and the resulting reaction mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 2 h . After this time, $\mathrm{CH}_{3} \mathrm{I}(0.894$ $\mathrm{mg}, 6.3 \mathrm{mmol}$) in DMF (2 mL) was added. After 30 minutes, the reaction was quenched with ice, and the mixture was extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The combined organic layers were washed with water ($3 \times 25 \mathrm{~mL}$) and brine solution $(20 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Finally, the solvent was removed under reduced pressure. The crude product was purified by column chromatography ($60-120$ silica gel) by eluting $2-3 \%$ ethyl acetate in petroleum ether, $\mathbf{2 0}(720 \mathrm{mg}, 90 \%)$ was obtained as white solid. ${ }^{1} \mathbf{H} \mathbf{~ N M R}\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}): \delta=0.34-0.36\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{~B}\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right)_{2}\right), 0.66-0.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.84-$
$0.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 3.01-3.02\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{3}\right), 5.76(\mathrm{br}, 1 \mathrm{H}, \mathrm{ArNH}), 6.39-$ $6.40\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.17-7.18\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.23-7.25\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}\right.$, ArH), 7.35-7.38 (t, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.52-7.53\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.7-7.72(\mathrm{t}, 2 \mathrm{H}$, $\left.J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=9.9,14.3,29.7,102.5,104.8,120.9$, 125.1, 128.9, 129.5, 137.3, 140.4, 155.6, 157.0 ppm . Elemental anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BN}_{2}$: C 76.21, H 8.39, N 11.11; found. C 76.23, H 8.33, N 11.10 .

Synthesis of lithium N-(6-(2-(diethylboryl) phenyl) pyrid-2-yl)-N-methylamide (21):

A solution of n - BuLi (1.6 M in hexane, $2.72 \mathrm{~mL}, 4.36 \mathrm{mmol}$) was added to a solution of 20 $(1.0 \mathrm{~g}, 3.96 \mathrm{mmol})$ in n-pentane $(40 \mathrm{~mL})$ at $-37^{\circ} \mathrm{C}$. A large amount of precipitate formed during the addition. The reaction mixture was warmed to room temperature for 3 h and the resulting precipitate was collected on a frit, washed with cold n-pentane $(10 \mathrm{~mL})$ and dried in vacuo to give the pure lithium salt of $21(800 \mathrm{mg}, 79 \%)$ as a yellow powder. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $600 \mathrm{MHz}): \delta=-0.38-0.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.51-0.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.62-0.64(\mathrm{t}$. $\left.6 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 6.18-6.19\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 6.50$ - $6.51\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.13-7.16(\mathrm{t}, 1 \mathrm{H}, \mathrm{ArH}), 7.20-7.23\left(\mathrm{ddd}, 1 \mathrm{H}, J_{\mathrm{HH}}=0.6 \mathrm{~Hz}, \mathrm{ArH}\right)$, 7.36-7.38 ($\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}$), 7.61-7.65 (m, 2H, ArH) ppm.

Synthesis of $\mathbf{C p T i C l}_{2}\{\mathbf{N}-[6$-(2-diethylborylphenyl)pyrid-2-yl]-N-Me\} (22):

To a solution of cyclopentadienyl titanium(IV) trichloride ($85 \mathrm{mg}, 0.387 \mathrm{mmol}$) in toluene (10 mL) was added $21(100 \mathrm{mg}, 0.387 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ at $-37^{\circ} \mathrm{C}$ and the resulting reaction mixture was stirred at room temperature for 16 h . Then the mixture was filtered through celite and all volatiles were removed under reduced pressure. Crystallistion from n pentane allowed for isolating $22(120 \mathrm{mg}, 70 \%)$ as a red colored powder. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $250 \mathrm{MHz}): \delta=0.75\left(\mathrm{br}, 6 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.89-1.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.18-1.33(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 4.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 5.86-5.89\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 6.01(\mathrm{~s}, 4 \mathrm{H})$, 6.8-6.9 (ddd, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=1.75 \mathrm{~Hz}, \mathrm{ArH}\right), 7.02-7.05\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.75 \mathrm{~Hz}, \mathrm{ArH}\right.$), 7.19-7.26 (ddd, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=1.25 \mathrm{~Hz}, \mathrm{ArH}\right), 7.35-7.41\left(\mathrm{ddd}, 1 \mathrm{H}, J_{\mathrm{HH}}=1 \mathrm{~Hz}, \operatorname{ArH}\right), 7.56-7.58\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=5 \mathrm{~Hz}\right.$, $\mathrm{ArH})$, 7.75-7.78 ($\left.\mathrm{d}, 1 \mathrm{H}, J_{\mathrm{HH}}=8.25 \mathrm{~Hz}, \mathrm{ArH}\right) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta=10.8,15.2$, $50.7,114.83,118.4,120.4,121.5,123.0,125.4,130.0,130.8,135.7,140.9,159.2,168.2 \mathrm{ppm}$. Elemental anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BCl}_{2} \mathrm{~N}_{2}$ Ti: C 57.98, H 5.79, N 6.44; found C 58.35, H 5.88, N 6.41; Crystals suitable for single-crystal X-ray analysis were obtained via recrystallization from toluene/pentane.

Synthesis of $\mathbf{C p} * \mathbf{T i C l}_{2}\{\mathbf{N}$-[6-(2-diethylborylphenyl)pyrid-2-yl]-N-Me\} (23):

To a solution of pentamethylcyclopentadienyltitanium(IV) trichloride ($0.112 \mathrm{~g}, 0.386 \mathrm{mmol}$) in toluene (20 mL) was added $21(100 \mathrm{mg}, 0.386 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ at $-37^{\circ} \mathrm{C}$ and the resulting reaction mixture was allowed to stir at room temperature for 16 h . Then it was filtered through celite and all volatiles were removed under reduced pressure. Crystallisation from n-pentane allowed for isolating $\mathbf{2 3}(170 \mathrm{mg}, 87 \%)$ as a red colored powder. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta=0.97-1.03\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{HH}}=1.75 \mathrm{~Hz}, \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.15-1.29(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.39-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.00(\mathrm{~s}, 15 \mathrm{H}, \mathrm{cp} *), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 7.06-$ $7.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.316-7.381$ (ddd, $1 \mathrm{H}, J_{\mathrm{HH}}=1.25 \mathrm{~Hz}, \mathrm{ArH}$), $7,50-7.56$ (ddd, $1 \mathrm{H}, J_{\mathrm{HH}}=1 \mathrm{~Hz}$, ArH), 7.67-7.70 (d, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=7.75 \mathrm{~Hz}, \mathrm{ArH}\right), 8.00-8.03\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.25 \mathrm{~Hz}, \mathrm{ArH}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta=10.9,13.6,16.5,49.0,115.0,120.9,121.6,125.5,129.9,130.7$, 133.0, 136.4, 140.7, 159.5, 166.6 ppm . Elemental anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{BCl}_{2} \mathrm{~N}_{2} \mathrm{Ti}$: C 61.82, H 6.98 , N 5.55 , found. C 61.52 , H 7.08, N 5.64 ; Crystals suitable for single-crystal X-ray analysis were obtained via re-crystallization from toluene/pentane.

Synthesis of $\mathbf{T i C l}_{2}\{$ bis-(N-[6-(2-diethylborylphenyl)pyrid-2-yl]-N-Me)\} (24):

To a solution of $\mathrm{TiCl}_{4} \cdot 2 \mathrm{THF}(454 \mathrm{mg}, 1.36 \mathrm{mmol})$ in toluene (25 mL) was added $21(700 \mathrm{mg}$, 2.72 mmol) at $-37^{\circ} \mathrm{C}$ and the resulting reaction mass was stirred 16 h at room temperature. Then it was filtered through celite and all volatiles were removed under reduced pressure. Crystallization from in n-pentane, and washing with cold diethyl ether (3 mL) allowed for obtaining $24(500 \mathrm{mg}, 30 \%)$ as a red colored powder. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=0.43-$ 0.46 ($\left.\mathrm{t}, 12 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{~B}\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right)_{2}\right), 0.84$ (br, $\left.4 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.04$ (br, 4 H , $\left.\mathrm{B}\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{3}\right)_{2}\right), 3.58\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 7.29-7.31\left(\mathrm{t}, 2 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.35-7.36(\mathrm{~d}, 2 \mathrm{H}$, $\left.J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.42-7.45\left(\mathrm{t}, 2 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.61-7.62\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.83-$ $7.84\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.86-7.87\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 8.03-8.05\left(\mathrm{t}, 2 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}\right.$, $\mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=10.5,15.8,42.3,115.5,119.8,121.4,125.4$, $129.3,130.3,135.7,141.6,160.0,162.6,165.2 \mathrm{ppm}$.

Synthesis of N-[6-(2-Diethylboylphenyl)pyrid-2-yl]trimethylsilylamine (25)

A solution of $9(250 \mathrm{mg}, 1.05 \mathrm{mmol})$ in diethyl ether $(20 \mathrm{~mL})$ was cooled to $-50^{\circ} \mathrm{C}$ and n BuLi (1.6 M in hexane, $0.72 \mathrm{~mL}, 1.14 \mathrm{mmol}$) was added slowly. The resulting reaction mixture was stirred at same temperature for 2 h , then trimethylsilyl chloride $(0.125 \mathrm{~g}, 1.15$ mmol) was added and the mixture was stirred for another 3 h , filtered through celite and the diethyl ether was removed under reduced pressure, compound-25 ($270 \mathrm{mg}, 85 \%$) was isolated as a light yellow powder. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right)$: $\delta=0.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.77-0.81(\mathrm{t}$,
$\left.6 \mathrm{H}, J_{\mathrm{HH}}=5 \mathrm{~Hz}, \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.12-1.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.35-1.45(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 5.78(\mathrm{br}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{NH}), 6.08-6.10\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}\right), 6.77-6.79(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}\right), 6.95-6.99\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.208-7.249\left(\mathrm{ddd}, 1 \mathrm{H}, J_{\mathrm{HH}}=0.75 \mathrm{~Hz}\right.$, ArH), 7.388-7.427 (ddd, $1 \mathrm{H}, J_{\mathrm{HH}}=0.75 \mathrm{~Hz}, \mathrm{ArH}$), 7.59-7.61 (d, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.79-$ $7.81\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta=0.01,11.0,16.3,106.6$, 108.2, 121.9, 126.3, 130.2, 131.0, 138.5, 140.8, 157.1, 158.7 ppm . GC-MS (EI, 70 ev) calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{BN}_{2} \mathrm{Si}$: $m / z 310.20$, found. $309.2[\mathrm{M}-\mathrm{H}]^{+}$. Elemental anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{BN}_{2} \mathrm{Si}$: C 69.67, H 8.77, N 9.03; found. C 69.55, H 9.05, N 8.98.

Synthesis of $\mathbf{C p T i C l}_{2}$ (N-(6-(2-(diethylboryl)phenyl)pyrid-2-yl)SiMe ${ }_{3}$) (26):

A solution of $\mathbf{2 5}(280 \mathrm{mg}, 0.903 \mathrm{mmol})$ in diethyl ether $(40 \mathrm{~mL})$ was cooled to $-37^{\circ} \mathrm{C}$ and n BuLi (1.6 M in hexane, $0.4 \mathrm{~mL}, 0.937 \mathrm{mmol}$) was added slowly. The resulting reaction mixture was stirred at room temperature for 2 h , then the solvent was removed under reduced pressure to obtain the Li salt, it was re-dissolved in toluene (20 mL), the mixture was cooled to $-37^{\circ} \mathrm{C}$ and slowly added to a toluene solution of trichloro(cyclopentadienyl)titanium (IV) ($200 \mathrm{mg}, 0.903 \mathrm{mmol}$). The mixture was stirred at room temperature for 12 h , then filtered through celite and the solvent was removed under reduced pressure. The crude product was washed with cold diethyl ether (2 mL) and dried to get $26(200 \mathrm{mg}, 45 \%)$ as a orange colored solid. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta=0.33\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.79\left(\mathrm{br}, 3 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.96$ (br, $\left.2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.16\left(\mathrm{br}, 3 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.24\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.53(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{cp}), 6.17(\mathrm{~s}, 4 \mathrm{H}, \mathrm{cp}), 6.57-6.59\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \operatorname{ArH}\right), 6.99-7.03\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, ArH), 7.09-7.01(d, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.19-7.22\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.36-7.39(\mathrm{t}$, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.58-7.60\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.88-7.90\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, ArH) ppm. ${ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta=3.1,11.1,11.7,15.0,113.5,119.5,121.4,121.6$, 125.1, $130.0,130.3,135.7,139.6,159.7,165.6 \mathrm{ppm}$. Elemental anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BCl}_{2} \mathrm{~N}_{2} \mathrm{SiTi}: \mathrm{C} 56.01, \mathrm{H} 6.34, \mathrm{~N} 5.68$; found. C 55.49 , H 6.49, N 5.50 .

Synthesis of $\mathbf{C p} * \mathbf{T i C l}_{2}\left(\mathbf{N}-(6-(2-(d i e t h y l b o r y l) p h e n y l) p y r i d-2-y l) S i M e_{3}\right)(27):$

A solution of $\mathbf{2 5}(200 \mathrm{mg}, 0.645 \mathrm{mmol})$ in diethyl ether $(40 \mathrm{~mL})$ was cooled to $-37^{\circ} \mathrm{C}$ and n $\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $0.44 \mathrm{~mL}, 0.937 \mathrm{mmol}$) was added slowly. The resulting reaction mixture was allowed to stir at room temperature for 2 h , then the solvent was removed under reduced pressure to obtain the Li salt. It was re-dissolved in toluene (20 mL) and slowly added to a toluene solution containing trichloro (pentamethylcyclopentadienyl) titanium (IV) $(186 \mathrm{mg}, 0.643 \mathrm{mmol})$ at $-37^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 12h. After this time, it was filtered through celite, then the solvent was evaporated under
reduced pressure and the remaining crude material was washed with cold diethyl ether (2 $\mathrm{mL})$ and dried to obtain $\mathbf{2 7}(175 \mathrm{mg}, 50 \%)$ as a red colored solid. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$: $\delta=0.34\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.14-1.5\left(\mathrm{br}, 10 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.74(\mathrm{~s}, 15 \mathrm{H}, \mathrm{cp} *), 6.66(\mathrm{br}, 1 \mathrm{H}$, ArH), 6.93 (br, 1H, ArH), 7.06 (br, 1H, ArH), 7.16 (br, 1H, ArH), 7.32 (br, 1H, ArH), 7.57 (br, $1 \mathrm{H}, \mathrm{ArH}$), $7.90(\mathrm{br}, 1 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): \delta=4.2,12.1,13.5,112.6$, 120. 6, 121.6, 124.9, 128.5, 129.9, 130.3, 133.8, 135.7, 138.5, 158.9, 166.6 ppm; Crystals suitable for single-crystal X-ray analysis were obtained via re-crystallization from toluene/pentane.

Synthesis of Biphenyl-3-yl-amine (28):

3-Bromo aniline ($3.0 \mathrm{~g}, 17.44 \mathrm{mmol}$) and phenylboronic acid ($2.34 \mathrm{~g}, 19.18 \mathrm{mmol}$) were dissolved in a mixture of toluene $(45 \mathrm{~mL})$ and ethanol $(15 \mathrm{~mL})$. To this reaction mixture was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(4.49 \mathrm{~g}, 43.6 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium(0) ($100 \mathrm{mg}, 0.087$ $\mathrm{mmol})$ and water $(10 \mathrm{~mL})$ and the resulting reaction mixture was degassed with nitrogen and heated to reflux for 20 h . Then the solvent was removed under reduced pressure and the residue was diluted with water. The aq. layer was extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$), and the combined organic layers were washed with water (50 mL) and brine solution (50 mL) and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. All volatiles were removed under reduced pressure, and the resulting crude product was purified by column chromatography (60-120 silica) eluting with ethyl acetate in petroleum ether (2:8) to obtain $\mathbf{2 8}(2.5 \mathrm{~g}, 86 \%)$ as an oily product. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=3.75$ (br, 2H, Ar-NH2), 6.72 (br, $1 \mathrm{H}, \mathrm{ArH}$), 6.95 (br, $1 \mathrm{H}, \mathrm{ArH}$), 7.04(br, $1 \mathrm{H}, \mathrm{ArH}$), 7.28 (br, 1H, ArH), 7.38 (br, 1H, ArH), 7.46 (br, 2H, ArH), 7.61 (br, 2H, ArH) ppm. ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=113.9,114.1,117.70,127.1,127.2,128.6,129.7$, $141.4,142.5,146.7 \mathrm{ppm}$. GC-MS: m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}: 169.1$, found. $169.1\left(\mathrm{M}^{+}\right)$.

Synthesis of Biphen-3-yl-trimethylsilylamine (29):

A solution of biphenyl-3-ylamine (28) ($1.0 \mathrm{~g}, 5.9 \mathrm{mmol})$ in diethyl ether $(30 \mathrm{~mL})$ was cooled to $-60^{\circ} \mathrm{C}$ and $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $3.9 \mathrm{~mL}, 6.09 \mathrm{mmol})$ was added slowly. The resulting reaction mixture was stirred for 2 h at $-60^{\circ} \mathrm{C}$. Then trimethylsilyl chloride ($1.28 \mathrm{~g}, 11.8 \mathrm{mmol}$) was added, the mixture was allowed to stir for 5 h at room temperature and then filtered. All volatiles were evaporated under reduced pressure to get $29(1.2 \mathrm{~g}, 80 \%)$ as an off white solid. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): \delta=0.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.98$ (br, 1H, Ar-NH), 6.44 (br, 1 H , $\mathrm{ArH}), 6.73(\mathrm{br}, 1 \mathrm{H}, \mathrm{ArH}), 6.89(\mathrm{br}, 1 \mathrm{H}, \mathrm{ArH}), 7.02(\mathrm{br}, 2 \mathrm{H}, \mathrm{ArH}), 7.12(\mathrm{br}, 2 \mathrm{H}, \mathrm{ArH}), 7.46$ (br, 2H, ArH) ppm. ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): \delta=0.01,115.4,115.8,117.2,127.3,127.5$,
128.9, 129.9, 142.4, 143.0, 148.1 ppm . GC-MS: m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NSi}: 241.10$, found. $241.1\left(\mathrm{M}^{+}\right)$.

Synthesis of $\mathbf{C p T i C l}_{2}$ (\mathbf{N}-(biphenyl-3-yl)SiMe $\mathbf{3}_{\mathbf{3}} \mathbf{(3 0)}$:

A solution of $29(250 \mathrm{mg}, 1.03 \mathrm{mmol})$ in diethyl ether $(20 \mathrm{~mL})$ was cooled to $-37^{\circ} \mathrm{C}$ and n BuLi (1.6 M in hexane, $0.65 \mathrm{~mL}, 1.03 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature for 2 h , and then all volatiles were removed under reduced pressure to get the Li salt of 29 which was re-dissolved in toluene $(20 \mathrm{~mL})$. The solution was added to a toluene solution containing trichloro(cyclopentadienyl)titanium (IV) ($227 \mathrm{mg}, 1.03 \mathrm{mmol}$) at $37^{\circ} \mathrm{C}$ and the resulting reaction mixture was allowed to stir at room temperature for 12 h . Finally the reaction mixture was filtered through celite and solvent was removed under reduced pressure to get the crude product. Which was crystallized from n-pentane to get a pure form of $\mathbf{3 0}(150 \mathrm{mg}, 35 \%)$ as an orange colored solid. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$: $\delta=0.31\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.83(\mathrm{~s}, 4 \mathrm{H}, \mathrm{cp}), 6.37(1 \mathrm{H}, \mathrm{ArH}), 6.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.02(\mathrm{~s}, 2 \mathrm{H}$, ArH), 7.07-7.09 (m, 2H, ArH), $7.36(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): \delta=2.1$, 120.7, 122.1, $122.5,123.4,127.2,129.0,129.1,140.6,141.9,159.5 \mathrm{ppm}$. Elemental anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NSiTi}$. C 56.61, H 5.46, N 3.30; found. C 56.78, H 5.59, N 3.34.

Synthesis of $\mathbf{C p} * \mathbf{T i C l}_{2}$ (N-(biphenyl-3-yl)SiMe $\mathbf{3}^{(31):}$

A solution of $29(250 \mathrm{mg}, 1.03 \mathrm{mmol})$ in diethyl ether $(20 \mathrm{~mL})$ was cooled to $-37^{\circ} \mathrm{C}$ and n $\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $0.65 \mathrm{~mL}, 1.03 \mathrm{mmol})$ was added slowly. The resulting reaction mixture was stirred for 2 h at room temperature. Then the solvent was removed under reduced pressure to get the Li salt of 292, which was re-dissolved in toluene (15 mL). This solution was added to a toluene solution containing trichloro(pentamethylcyclopentadienyl)titanium (IV) ($300 \mathrm{mg}, 1.03 \mathrm{mmol}$) at $-37^{\circ} \mathrm{C}$ and the resulting reaction mixture was allowed to stir at room temperature for 12 h . It was then filtered through celite and the solvent was removed under reduced pressure. The crude product was crystallized from n-pentane to get pure form of $31(300 \mathrm{mg}, 58 \%)$ as red colored solid. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): \delta=0.30(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.72(\mathrm{~s}, 15 \mathrm{H}, \mathrm{cp} *), 6.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.05-7.07(2 \mathrm{H}, \mathrm{ArH}), 7.16(3 \mathrm{H}, \mathrm{ArH}), 7.44$ (s, $1 \mathrm{H}, \mathrm{ArH}$), $7.58(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): \delta=3.2,12.9,123.1,125.0$, 125.1, 127.0, 128.9, 129.2, 131.4, 141.0, 141.6, 153.0 ppm .

Synthesis of Biphenyl-3-yl-methylamine (32):

3-Bromo-N-methyl aniline ($1.0 \mathrm{~g}, 5.37 \mathrm{mmol}$) and phenyl boronic acid ($720 \mathrm{mg}, 5.9 \mathrm{mmol}$) were dissolved in toluene (25 mL) and ethanol (15 mL) and stirred for 10 min . To this solution were added $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.4 \mathrm{~g}, 13.59 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium(0) ($30 \mathrm{mg}, 0.025 \mathrm{mmol}$) and water (5 mL). The resulting reaction mixture was degassed and heated to reflux for 20 h . After this time the solvents were removed under reduced pressure and the residue was diluted with water. The aq. layer was extracted with ethyl acetate (2×40 $\mathrm{mL})$. The combined organic layers were washed with water (25 mL), brine solution (25 mL) and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. All volatiles were removed under reduced pressure. The resulting crude product was purified by column chromatography ($60-120$ silica gel) eluting with ethyl acetate in petroleum ether ($2: 8$) to obtained $\mathbf{3 2}$ ($760 \mathrm{mg}, 75 \%$) as an oily product. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=2.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.64$ (br, $1 \mathrm{H}, \underline{\mathrm{NH}}$), 6.43-6.47 (dddd, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}\right), 6.64-6.66\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}\right), 6.76-6.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.07-$ $7.10(\mathrm{t}, 1 \mathrm{H}, \mathrm{ArH}), 7.13-7.29(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.40-7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $250 \mathrm{MHz}): \delta=31.2,111.6,111.9,116.8,127.5,127.6,129.0,130.0,142.2,142.8,155.0 \mathrm{ppm}$. GC-MS: m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}$: 183.10, found. m / z 183.10.

Synthesis of $\mathbf{C p} * \mathrm{TiCl}_{2}$ [N -(biphenyl-3-yl)Me] (33):

N-Biphen-3-yl-N-methylamine ($\mathbf{3 2}, 100 \mathrm{mg}, 0.546 \mathrm{mmol}$) was dissolved in diethyl ether (15 mL) cooled to $-37^{\circ} \mathrm{C}$ and $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in n -hexane, $0.36 \mathrm{~mL}, 0.54 \mathrm{mmol}$) was added slowly. The resulting reaction mixture was allowed to stir at room temperature for 3 h , Then the diethyl ether was removed under reduced pressure and the residue was re-dissolved in toluene (15 mL), cooled to $-37^{\circ} \mathrm{C}$, and this solution was slowly added to trichloro(pentamethylcyclopentadienyl) titanium(IV) ($0.158 \mathrm{mg}, 0.54 \mathrm{mmol}$) in toluene (15 mL). The mixture was stirred at room temperature for 12 h . Then filtered through celite and the filtrate was removed under reduced pressure. The resulting crude material was stripped off in n-pentane to get pure $\mathbf{3 3}(100 \mathrm{mg}, 40 \%)$ as a red colored powder. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250\right.$ $\mathrm{MHz}): \delta=1.80(\mathrm{~s}, 15 \mathrm{H}, \mathrm{cp} *), 3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 6.81-6.86\left(\mathrm{tt}, 1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.18-$ $7.29(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.47-7.48\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.62-7.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta=12.8,40.7,119.5,121.0,123.0,127.6,127.8,129.3,129.5,130.8$, 141. 6, 142.2, 155.0 ppm. Elemental anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{NTi}$: C 63.32, H 6.24, N 3.21; Found. C 63.39, H 6.63, N 2.98.

Synthesis of $\mathrm{CpTiCl}_{2}[\mathbf{N}$-(biphenyl-3-yl)Me] (34):

N-Biphen-3-yl-N-methylamine (32, $300 \mathrm{mg}, 1.63 \mathrm{mmol}$) was dissolved in diethyl ether (25 mL), the solution was cooled to $-37^{\circ} \mathrm{C}$ and $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in n -hexane, $0.77 \mathrm{~mL}, 1.63 \mathrm{mmol})$
was added slowly. The resulting reaction mixture was allowed to stir at room temperature for 3 h . Then the diethyl ether was removed under reduced pressure and the residue was redissolved in toluene (25 mL) and cooled to $-37^{\circ} \mathrm{C}$, then slowly added to a solution of trichloro(cyclopentadienyl) titanium(IV) ($0.36 \mathrm{mg}, 1.63 \mathrm{mmol}$) in toluene (25 mL). The mixture was stirred at room temperature for 12 h . Then filtered through celite, the all volatiles were removed under reduced pressure. The resulting crude material was stripped off in n pentane to get pure $\mathbf{3 4}(250 \mathrm{mg}, 40 \%)$ as an orange color powder. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$: $\delta=4.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 6.01(\mathrm{~s}, 4 \mathrm{H}, \mathrm{cp}), 6.42-6.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.98-7.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.15-7.2 (m, 4H, ArH), 7.36-7.37 (m, 2H, ArH) ppm. ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): \delta=50.4$, 119.2, 121.0, 121.5, 124.8, 127.3, 127.8, 129.0, 129.6, 140.4, 142.6, 162.6 ppm. Elemental anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NTi}$: C 59.05, H 4.68, N 3.83; found. C 58.96, H 4.70, N 3.76; Crystals suitable for single-crystal X-ray analysis were obtained via re-crystallization from toluene/pentane.

Synthesis of ethane-1,2-diyl bis(4-methylbenzenesulfonate) (35):

To a solution of p-toluenesulfonyl chloride ($1.0 \mathrm{~g}, 5.24 \mathrm{mmol}$) and ethylene glycol ($0.16 \mathrm{~g} /$ $0.15 \mathrm{~mL}, 2.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added triethylamine ($1.58 \mathrm{~g} / 2.1 \mathrm{~mL}, 15.6$ $\mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the resulting reaction mixture was stirred at room temperature for 12 h . Then the organic layer was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with sat. NaHCO_{3} solution (20 mL), water (20 mL) and brine solution (20 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The resulting crude material was purified by column chromatography (60-120 silica) eluting with ethyl acetate in chloroform (2:8), $\mathbf{3 5}$ was isolated as a white solid ($500 \mathrm{mg}, 51 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}): \delta=7.729-7.743\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, \mathrm{ArH}\right), 7.349-7.336\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, \mathrm{ArH}\right), 4.18$ $(\mathrm{s}, 2 \mathrm{H}), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=145.4,132.3,130.1$, 128.0, 66.83, 21.7 ppm . IR (neat, $4000-400 \mathrm{~cm}^{-1}$) $v^{-}=3373,2926,1930,1690,1589,1483$, $1446,1409,1356,1299,1173,1091,1023,911,808,759,659 \mathrm{~cm}^{-1}$.

Synthesis of $\mathbf{N}, \mathbf{N}^{1}$-bis(6-(2-(diethylboryl)phenyl)pyrid-2-yl)benzene-1,2-diamine: (36)

A mixture of tris $($ tert-butyl $)$ phosphine $(21 \mathrm{mg}, 0.103 \mathrm{mmol})$ and palladium(II) acetate (70 $\mathrm{mg}, 0.31 \mathrm{mmol})$ in toluene $(25 \mathrm{~mL})$ was stirred for 10 min . To this reaction mixture, 9 (500 $\mathrm{mg}, 2.1 \mathrm{mmol}$), 1,2-dibromo benzene ($0.29 \mathrm{~g}, 1.26 \mathrm{mmol}$) and sodium tert-butoxide (600 mg , 6.25 mmol) were added under an inert atmosphere and the mixture was heated to $100^{\circ} \mathrm{C}$ for 12 h . Then it was quenched with saturated NaHCO_{3} solution $(10 \mathrm{~mL})$ and extracted with ethyl acetate (2 x 25 mL). The combined organic layers were washed with water (20 mL), brine
solution (20 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the resulting crude material was purified by column chromatography ($60-120$ silica) eluting with ethyl acetate in petroleum ether (2: 8), to obtain the $\mathbf{3 6}(300 \mathrm{mg}, 52 \%)$ as white solid. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=0.35-0.32\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.74-0.70(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.91-0.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 6.69-6.67\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=12 \mathrm{~Hz}, \mathrm{ArH}\right), 7.26-$ 7.23 (ddd, 1H), 7.37-7.31 (m, 3H), 7.42 (br, 1H, Ar-NH), 7.46-7.45 (m, 1H, ArH), 7.52-7.50 $\left(\mathrm{d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{ArH}\right), 7.72-7.69\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, \mathrm{ArH}\right), 7.74-7.72\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right.$, $\mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=10.0,14.6,106.3,107.9,121.0,125.2,125.3$, 127.3, 129.1, 129.8, 133.9, 136.9, 140.6, 153.2, 157.7 ppm. HR-MS (ESI) calcd. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~B}_{2} \mathrm{~N}_{4}$: 550.344 , found: $521.30\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}, 493.16\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{10}\right]^{+}$. IR (neat, $4000-400$ $\left.\mathrm{cm}^{-1}\right) \mathrm{v}^{-}=3369,2934,2858,2804,1619,1569,1480,1443,1380,1293,1163,1099,1031$, $907,872,798,751 \mathrm{~cm}^{-1}$.

Synthesis of $\mathbf{N}, \quad \mathbf{N}^{1}$-bis(6-(2-(diethylboryl)phenyl)pyridi-2-yl)-4-methylbenzene-1,2diamine (37) :A solution of tris (tert-butyl)phosphine ($22 \mathrm{mg}, 0.108 \mathrm{mmol}$) and palladium(II) acetate ($74 \mathrm{mg}, 0.33 \mathrm{mmol}$) in toluene (30 mL) was stirred for 10 min ., then $9(500 \mathrm{mg}, 2.1$ mmol), 3,4-dibromo toluene ($0.315 \mathrm{~g}, 1.26 \mathrm{mmol}$) and sodium tert-butoxide ($600 \mathrm{mg}, 6.3$ mmol) were added under an inert atmosphere and the mixture was heated to $100^{\circ} \mathrm{C}$ for 12 h . After this time, the mixture was quenched with saturated NaHCO_{3} solution (20 mL) and extracted with ethyl acetate ($2 \times 25 \mathrm{~mL}$). The combined organic layers were washed with water (20 mL), brine solution (20 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed in vacuo and the resulting crude material was purified by column chromatography ($60-120$ silica) eluting with ethyl acetate in petroleum ether (2:8) to obtain 37 ($280 \mathrm{mg}, 47 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=0.35-0.30\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.73-0.68(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.91-084\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 6.57-6.56(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, \mathrm{ArH}\right), 6.70-6.69\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, \mathrm{ArH}\right), 7.12-7.11\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, \mathrm{ArH}\right)$, 7.25-7.22 (t, $2 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, J_{\mathrm{HH}}=12 \mathrm{~Hz}, \mathrm{ArH}$), 7.33-7.28 (m, 4H, ArH), 7.37-7.34 (t, 2 H , $J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}$), $7.41(\mathrm{br}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{NH}), 7.52-7.50\left(\mathrm{t}, 2 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.73-7.65(\mathrm{~m}, 4 \mathrm{H}$, ArH) ppm. ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=163.6,157.7,157.5,153.7,153.0,140.6-140.5$ (d), 138.0, 136.95-136.9 (d), 134.2, 130.8, 129.8-129.7(d), 129.0, 127.9, 126.1, 125.2, 121.0, 107.7, 107.4, 106.2, 106.0, 21.3, 14.5, 10.0-9.9(d) ppm. HRMS (ESI positive): calcd. for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~B}_{2} \mathrm{~N}_{4}+\mathrm{Na} 587.349$, found: 587.349. IR (neat, $4000-400 \mathrm{~cm}^{-1}$) $v^{-}=3369$, 2934, 2860, 2807, 1618, 1570, 1524, 1477, 1443, 1380, 1296, 1163, 1122, 1031, 903, 873, 807, $749,654 \mathrm{~cm}^{-1}$.

Synthesis of $\mathbf{N}, \mathbf{N}^{\mathbf{1}}$-bis(6-(2-(diethylboryl)phenyl)pyrid-2-yl)ethane-1,2-diamine (38):
To NaH (60 wt - $\%$ in mineral oil, $0.33 \mathrm{~g}, 8.4 \mathrm{mmol}$), DMF (10 mL) was added and the suspension was cooled to $0^{\circ} \mathrm{C} .9(1.0 \mathrm{~g}, 4.2 \mathrm{mmol})$ dissolved in DMF $(5 \mathrm{~mL})$ was slowly added, and the mixture was heated to $80^{\circ} \mathrm{C}$ for 2 h . Then, $\mathbf{3 5}(1.0 \mathrm{~g}, 2.7 \mathrm{mmol})$ was added portion wise (4 portions) over 60 minutes at $75^{\circ} \mathrm{C}$ and the reaction was allowed to continue for another 1 h at the same temp. Then the mixture was cooled to room temperature and ice water $(5 \mathrm{~mL})$ was added slowly and the mixture was extracted with ethyl acetate $(2 \times 30 \mathrm{~mL})$. The combined organic layers were washed with water ($3 \times 25 \mathrm{~mL}$), brine (25 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then all volatiles were removed in vacuo. The crude product was purified by column chromatography eluting with ethyl acetate in petroleum ether (3:7) to obtained $\mathbf{3 8}$ (310 mg, 41\%) as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=0.37-0.34\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{HH}}=7.8\right.$ $\left.\mathrm{Hz}, J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, \mathrm{~B}\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right)_{2}\right), 0.73-0.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.93-086(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 3.67-3.66\left(\mathrm{t}, 2 \mathrm{H}, J_{\mathrm{HH}}=3 \mathrm{~Hz}, J_{\mathrm{HH}}=3 \mathrm{~Hz},-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\right), 5.99(\mathrm{br}, 1 \mathrm{H}, \mathrm{Ar}-$ NH), 6.51-6.50 (d, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.23-7.23\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=3.6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.25-7.24(\mathrm{~d}$, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{ArH}\right), 7.38-7.36\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{ArH}\right), 7.52-7.51\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{ArH}\right)$, 7.75-7.72 (m, 2H, ArH) ppm. ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=10.0,14.5,42.7,102.8,105.8$, 121.0, 125.2, 129.0, 129.7, 137.1, 140.8, 154.7, 157.4 ppm. HR-MS (ESI positive) calcd. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~B}_{2} \mathrm{~N}_{4}+\mathrm{Na}: 525.334$, found: 525.335. IR (neat, $4000-400 \mathrm{~cm}^{-1}$) $v^{-}=3416,3051,2936$, 2856, 2807, 1617, 1572, 1517, 1472, 1445, 1384, 1289, 1228, 1163, 1088, 1039, 943, 903, $848,800,750,655 \mathrm{~cm}^{-1}$.

Synthesis of 2-Bromo-N-(6-(2-(diethylboryl)phenyl)pyrid-2-yl) acetamide (39)

A solution of bromoacetyl bromide $(0.084 \mathrm{~g}, 0.417 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and $9(100 \mathrm{mg}, 0.42 \mathrm{mmol})$, dimethylaminopyridine ($0.076 \mathrm{~g}, 0.63 \mathrm{mmol}$) were dissolved in 5 mL of dichloromethane each and these reagents were added to the reaction mixture at $0^{\circ} \mathrm{C}$ over 10 min . The reaction was continued for another 3 h at room temperature and its progress was monitored by thin layer chromatography (TLC). Once the reaction was completed, the reaction mass was quenched with ice water (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{~mL})$. The combined organic layers were washed with sat. NaHCO_{3} solution (30 mL), water (30 mL), and brine solution $(30 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the crude product was purified by column chromatography by eluting with 2 3% ethyl acetate in petroleum ether $39(120 \mathrm{mg}, 80 \%)$ was obtained as a white solid. ${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=0.3-0.36\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.83-1.1(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 4.11(\mathrm{~s}, 2 \mathrm{H},-\underline{\mathrm{CH}} 2-\mathrm{Br}), 7.26-7.33\left(\mathrm{ddd}, 1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.4-7.46$ (ddd, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.54-7.57\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.68-7.72\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}\right.$,

ArH), 7.77-7.81 (d, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=10 \mathrm{~Hz}, \mathrm{ArH}\right), 7.95-8.02\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 8.27-8.31(\mathrm{dd}$, $1 \mathrm{H} . J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}$), 9.53 (br, $\left.1 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{NH}}\right) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=10.0$, $15.0,29.0,112.0,113.4,121.6,125.9,129.3,130.8,136.6,141.9,147.5,158.1,164.8 \mathrm{ppm}$.

2-(tert-Butylamino)-N-(6-(2-(diethylboryl) phenyl)pyridin-2-yl)acetamide (40):

To a solution of $\mathbf{3 9}(120 \mathrm{mg}, 0.335 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added tert-butylamine (122 $\mathrm{mg}, 1.67 \mathrm{mmol})$. The mixture was stirred at room temperature for 16 h , then all volatiles were removed under reduced pressure and the resulting crude material was purified by column chromatography (60-120 silica) by eluting with 2-4\% ethyl acetate in petroleum ether to yield $40(100 \mathrm{mg}, 85 \%)$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=0.33-0.39\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{HH}}=7.5\right.$ $\left.\mathrm{Hz}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.9-1.09\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.25(\mathrm{~s}, 9 \mathrm{H}$, tert.butyl), 1.6 (br, 1 H , tert-butyl-NH), $3.53(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.34\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.41-7.47\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, ArH), 7.57-7.6 (d, 1H, $\left.J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.65-7.68\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.79-7.82(\mathrm{~d}$, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.93-7.99\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 8.45-8.48\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, ArH), 10.83 (br, $1 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{NH}}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=9.6,13.35,28.7,47.3$, $51.5,111.6,112.0,120.9,125.2,128.8,128.9,136.4,141.1,147.9,157.3,172.4 \mathrm{ppm}$.

Synthesis of $\mathbf{N}^{-t e r t-B u t y l-\mathbf{N}^{1} \text {-(6-(2-(diethylboryl) phenyl)pyridin-2-yl)ethane-1,2-diamine }}$ (41): To a solution of $\mathbf{4 0}(100 \mathrm{mg}, 0.285 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added LiAlH_{4} slowly at $0^{\circ} \mathrm{C}$, then the reaction mixture was stirred for 2 h at room temperature. It was then quenched with ice and extracted with ethyl acetate $(2 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine solution (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and all volatiles were removed in vacuo and the resulting crude material was purified by column chromatography (60-120 silica) eluting with 1-2\% methanol in chloroform. 41 ($70 \mathrm{mg}, 72 \%$) was obtained as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=0.33-0.40\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.74-0.94$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.18\left(\mathrm{~s}, 9 \mathrm{H}\right.$, tert-butyl), 2.91-2.95 (t, $2 \mathrm{H}, J_{\mathrm{HH}}=5 \mathrm{~Hz}$, tert.butyl-NH-$\left.\underline{\mathrm{CH}}_{2}-\right), 1.45(\mathrm{br}, 1 \mathrm{H}$, tert-butyl-NH$), 3.30-3.37\left(\mathrm{q}, 2 \mathrm{H}, J_{\mathrm{HH}}=5 \mathrm{~Hz}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, J_{\mathrm{HH}}=5 \mathrm{~Hz}, \mathrm{Ar}-\right.$ $\left.\mathrm{NH}-\mathrm{CH}_{2}-\right), 6.38-6.41\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 6.39(\mathrm{br}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{NH}), 7.13-7.16(\mathrm{~d}, 1 \mathrm{H}$, $J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}$), 7.21-7.27 (ddd, $1 \mathrm{H}, J_{\mathrm{HH}}=1.25 \mathrm{~Hz}, \mathrm{ArH}$), 7.33-7.4 (ddd, $1 \mathrm{H}, J_{\mathrm{HH}}=1 \mathrm{~Hz}$, $\mathrm{ArH})$, $7.53-7.56\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.63-7.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $250 \mathrm{MHz}): \delta=10.2,14.1,29.3,41.1,43.3,51.2,103.4,104.9,121.1,125.3,129.2,129.7$, 137.6, 140.5, 155.0, 157.3 ppm . HRMS(ESI positive) calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{BN}_{3}: 337.27$, found: $323.3\left[\mathrm{M}-\mathrm{CH}_{2}\right]$.

Synthesis of 2-(Adamantylamino)-N-(6-(2-(diethylboryl)phenyl)pyrid-2-yl)acetamide (42): To a solution of $\mathbf{3 9}(900 \mathrm{mg}, 2.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added adamantylamine $(1.13 \mathrm{~g}, 7.52 \mathrm{mmol})$. The mixture was stirred at room temperature for 16 h , then all volatiles were removed under reduced pressure and the remaining crude material was purified by column chromatography ($60-120$ silica) eluting with 2-4\% ethyl acetate in petroleum ether. 42 $(1 \mathrm{~g}, 93 \%)$ was obtained as a white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=0.31-0.37(\mathrm{t}, 6 \mathrm{H}$, $\left.J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{~B}\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right)_{2}\right), 0.91-1.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.56(\mathrm{br}, 1 \mathrm{H}, \mathrm{Ad}-\underline{\mathrm{NH}}), 1.67(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{Ad}-\mathrm{CH}_{2}$), 1.72 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Ad}-\mathrm{CH}_{2}$), 2.12 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ad}-\mathrm{CH}$), 3.52 (s, 2H, Ad-NH-CH2-), 7.24$7.28\left(\mathrm{ddd}, 1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.37-7.44\left(\mathrm{ddd}, 1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.54-7.57(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.61-7.65\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}\right), 7.76-7.79\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right)$, 7.9-7.96 (t, $\left.1 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 8.41-8.45\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{ArH}\right), 10.82(\mathrm{br}, 1 \mathrm{H}, \mathrm{Ar}-$ $\mathrm{NH}) \mathrm{ppm}$.

Synthesis of N-Adamantyl-N ${ }^{1}$-(6-(2-(diethylboryl)phenyl)pyrid-2-yl)ethane-1,2-diamine (43): A solution of $42(1 \mathrm{~g}, 2.33 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}, \mathrm{LiAlH}_{4}$ was added and the reaction mixture was stirred for 2 h at room temperature. Then it was quenched with ice and extracted with ethyl acetate (2 x 50 mL). The combined organic layers were washed with brine solution (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The resulting crude material was purified by column chromatography ($60-120$ silica) eluting with 1-2 \% methanol in chloroform. 43 ($750 \mathrm{mg}, 77 \%$) was obtained as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=0.33-0.39\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{~B}\left(\mathrm{CH}_{2} \underline{C H}_{3}\right)_{2}\right), 0.77-0.94(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{B}\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.68\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Ad}-\underline{\mathrm{CH}}_{2}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ad}-\underline{\mathrm{CH}}-), 2.94-2.98\left(\mathrm{t}, 2 \mathrm{H}, J_{\mathrm{HH}}=5 \mathrm{~Hz}\right)$, 3.29-3.26(q, 2H), 6.37-6.40 (d, 1H, ArH), 6.38 (br, 1H, Ar-NH), 7.12-7.15 (dd, $1 \mathrm{H}, J_{\mathrm{HH}}=0.75$ $\mathrm{Hz}, \mathrm{ArH}$), 7.20-7.26 (ddd, $1 \mathrm{H}, J_{\mathrm{HH}}=1.25 \mathrm{~Hz}, \mathrm{ArH}$), 7.33-7.39 (ddd, $1 \mathrm{H}, J_{\mathrm{HH}}=1 \mathrm{~Hz}, \mathrm{ArH}$), $7.52-7.56\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=7.25 \mathrm{~Hz}, \mathrm{ArH}\right), 7.62-7.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 250\right.$ MHz): $\delta=10.3,14.0,30.0,37.1,39.1,43.3,43.8,50.9,103.39,104.8,121.0,125.3,129.2$, 129.7, 137.7, 140.5, 155.0, 157.2 ppm . HRMS (ESI positive) calcd. for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{BN}_{3}: 415.33$, found: 415.30 .

General Procedure for Homopolymerizations: The homopolymerization of styrene, NBE or COE was carried out in Schlenk tubes and all preparations were carried out in a glove box. The freshly distilled monomer and a defined amount of MAO were dissolved in toluene in a Schlenk tube. After the mixture was stirred for 5 minutes it was quickly transfered to the indicated temperature while a defined amount of catalyst in toluene was added. Polymerizations were quenched by addition of 10 mL of methanol. The resulting mixture was
added to a stirred solution of acidic methanol (200 mL including 20 mL of conc. HCl). The polymer was collected by filtration, washed with methanol ($3 \times 200 \mathrm{~mL}$), and then dried in vacuo at $40^{\circ} \mathrm{C}$ for 24 hours.

General Procedure for Ethylene Homo-/Copolymerization: Polymerizations were carried out in a 500 mL Büchi glass autoclave, equipped with a motor stirrer, external temperature control jacket and pressure gauge. The reactor was heated up to $80^{\circ} \mathrm{C}$ in vacuo for 2 h before starting an experiment.
Procedure A: 235 mL of deoxygenated toluene were poured into the reactor and brought to the desired temperature, and a prescribed amount of monomer (CPE/COE/NBE) and 2.0 M toluene solution of MAO was introduced into the reactor followed by 5 mL toluene solution of prescribed catalyst. Polymerization was started by pressurizing the reactor with ethylene (4 bar). Polymerizations were stopped by closing the ethylene valve and introducing methanol $(20 \mathrm{~mL})$ into the reactor. The obtained poly(ethylene) was stirred for 6 h in $20 \mathrm{vol} . \mathrm{-} \%$ of methanolic $\mathrm{HCl}(200 \mathrm{~mL})$ to remove any aluminum oxide. Then the polymer was filtered off, washed with methanol and dried in vacuo at $50^{\circ} \mathrm{C}$ for 12 h .

Procedure B: 235 mL of deoxygenated toluene were poured into the reactor and prescribed amount of monomer (CPE/COE/NBE), 2.0 M toluene solution of MAO was introduced into the reactor followed by a 5 mL toluene solution of prescribed catalyst and heated to desired temperature and the was started by pressurizing the reactor with ethylene (2 bar). Polymerizations were stopped by closing the ethylene valve and introducing methanol (20 mL) into the reactor. The obtained poly(ethylene) was stirred for 6 h in $20 \mathrm{vol} .-\%$ of methanolic $\mathrm{HCl}(200 \mathrm{~mL})$ to remove any aluminum oxide. Then the polymer was filtered off, washed with methanol and dried in vacuo at $50^{\circ} \mathrm{C}$ for 12 h .

X-ray structure data for Catalysts 22, 23, 27 and 34
5.1 Crystal structure of complex 22:

Appendix

Table 1.Crystal data and structure refinement for catalyst 22.

Identification code	Complex 22
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~B} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Ti}$
Formula weight	435.04
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	monoclinic, P2(1)/n
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=10.9979(11) \AA \text { alpha }=90 \mathrm{deg} . \\ & \mathrm{b}=16.1318(19) \AA \text { beta }=106.79(6) \mathrm{deg} \\ & \mathrm{c}=12.3324(11) \AA \text { gamma }=90 \mathrm{deg} . \end{aligned}$
Volume	2094.6(4) \AA^{3}
Z, Calculated density	$4,1.380 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.672 \mathrm{~mm}^{-1}$
$F(000)$	904
Crystal size	$0.22 \times 0.19 \times 0.08 \mathrm{~mm}$
Theta range for data collection	2.14 to 28.57 deg.
Limiting indices	$-14<=\mathrm{h}<=14,-21<=\mathrm{k}<=21,-14<=\mathrm{l}<=16$
Reflections collected / unique	$19850 / 5240$ [$\mathrm{R}(\mathrm{int})=0.0584]$
Completeness to theta $=28.57^{\circ}$	97.9 \%
Max. and min. transmission	0.9482 and 0.8662
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5240 / 0 / 247
Goodness-of-fit on F^{2}	1.047
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0418, \mathrm{wR} 2=0.0741$
R indices (all data)	$\mathrm{R} 1=0.0792, \mathrm{wR} 2=0.0804$
Largest diff. peak and hole	0.403 and -0.291 e. \AA^{-3}

Appendix

Table 2.Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for catalyst 22.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
Ti(1)	6570(1)	305(1)	3511(1)	15(1)
$\mathrm{Cl}(1)$	6500(1)	1566(1)	4289(1)	28(1)
$\mathrm{Cl}(2)$	7611(1)	-496(1)	5010(1)	21(1)
$\mathrm{N}(1)$	7799(2)	380(1)	2717(1)	16(1)
B(1)	7609(2)	1559(1)	607(2)	16(1)
C(1)	5391(2)	-774(1)	2405(2)	21(1)
$\mathrm{N}(2)$	7956(1)	539(1)	830(1)	14(1)
C(2)	4869(2)	-630(2)	3302(2)	27(1)
C(3)	4377(2)	178(2)	3188(2)	29(1)
C(4)	4581(2)	533(1)	2218(2)	24(1)
C(5)	5204(2)	-55(1)	1732(2)	18(1)
C(6)	9040(2)	617(1)	3529(2)	22(1)
C(7)	7969(2)	35(1)	1717(2)	15(1)
C(8)	8187(2)	-804(1)	1674(2)	23(1)
C(9)	8389(2)	-1154(1)	718(2)	27(1)
$\mathrm{C}(10)$	8376(2)	-650(1)	-182(2)	22(1)
$\mathrm{C}(11)$	8170(2)	194(1)	-111(2)	16(1)
$\mathrm{C}(12)$	8158(2)	822(1)	-963(2)	17(1)
C(13)	7885(2)	1602(1)	-602(2)	16(1)
C(14)	7917(2)	2274(1)	-1305(2)	22(1)
C(15)	8186(2)	2151(2)	-2328(2)	26(1)
C(16)	8429(2)	1366(2)	-2672(2)	26(1)
C(17)	8424(2)	691(1)	-1991(2)	23(1)
C(18)	6127(2)	1672(1)	559(2)	17(1)
C(19)	5538(2)	2506(1)	75(2)	26(1)
C(20)	8538(2)	2159(1)	1530(2)	18(1)
$\mathrm{C}(21)$	9955(2)	2093(1)	1647(2)	21(1)

Table 3. Bond lengths [A°] and angles [deg] for catalyst 22.

$\mathrm{Ti}(1)-\mathrm{N}(1)$	$1.8891(16)$
$\mathrm{Ti}(1)-\mathrm{Cl}(1)$	$2.2601(7)$
$\mathrm{Ti}(1)-\mathrm{Cl}(2)$	$2.2739(6)$
$\mathrm{Ti}(1)-\mathrm{C}(4)$	$2.334(2)$
$\mathrm{Ti}(1)-\mathrm{C}(3)$	$2.337(2)$
$\mathrm{Ti}(1)-\mathrm{C}(5)$	$2.3459(19)$
$\mathrm{Ti}(1)-\mathrm{C}(1)$	$2.355(2)$
$\mathrm{Ti}(1)-\mathrm{C}(2)$	$2.358(2)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.413(2)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.490(2)$
$\mathrm{B}(1)-\mathrm{C}(13)$	$1.607(3)$
$\mathrm{B}(1)-\mathrm{C}(20)$	$1.613(3)$
$\mathrm{B}(1)-\mathrm{C}(18)$	$1.624(3)$
$\mathrm{B}(1)-\mathrm{N}(2)$	$1.694(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.404(3)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.406(3)$
$\mathrm{C}(1)-\mathrm{H}(1)$	0.9500
$\mathrm{~N}(2)-\mathrm{C}(7)$	$1.360(2)$
$\mathrm{N}(2)-\mathrm{C}(11)$	$1.368(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.403(3)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.402(3)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.402(3)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.379(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.381(3)$
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.372(3)$
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.387(3)$
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.457(3)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.395(3)$
$\mathrm{C}(12)-\mathrm{C}(17)$	$1.397(3)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.391(3)$
$\mathrm{C}(14)-\mathrm{C}(15)$	0.9500
$\mathrm{C}(14)-\mathrm{H}(14)$	$1.387(3)$
$\mathrm{C}(15)-\mathrm{C}(16)$	0.9500
$\mathrm{C}(15)-\mathrm{H}(15)$	$1.377(3)$
$\mathrm{C}(16)-\mathrm{C}(17)$	0.9500
$\mathrm{C}(16)-\mathrm{H}(16)$	
$\mathrm{C}(17)-\mathrm{H}(17)$	C
$\mathrm{C}(18)-\mathrm{C}(19)$	

$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9900
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9900
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.527(3)$
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9900
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9900
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
$\mathrm{~N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(1)$	$106.22(5)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	$100.95(5)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	$103.71(2)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)$	$107.78(7)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)$	$90.49(6)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)$	$142.88(6)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)$	$140.83(7)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)$	$89.52(6)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)$	$109.96(6)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(3)$	$34.93(8)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)$	$83.78(7)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)$	$121.95(5)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)$	$130.95(6)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(5)$	$34.87(7)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(5)$	$57.91(7)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)$	$95.96(7)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)$	$146.16(6)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)$	$96.58(5)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(1)$	$58.02(7)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(1)$	$57.89(8)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(1)$	$34.81(7)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$130.40(8)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$119.97(6)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$85.58(6)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$57.93(8)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$34.78(8)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$57.73(7)$
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$34.66(7)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(6)$	$111.17(15)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{Ti}(1)$	$136.20(13)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{Ti}(1)$	$108.79(12)$
$\mathrm{C}(13)-\mathrm{B}(1)-\mathrm{C}(20)$	$112.23(17)$
$\mathrm{C}(13)-\mathrm{B}(1)-\mathrm{C}(18)$	$114.70(16)$
$\mathrm{C}(20)-\mathrm{B}(1)-\mathrm{C}(18)$	$112.53(17)$
$\mathrm{C}(13)-\mathrm{B}(1)-\mathrm{N}(2)$	$95.60(15)$
$\mathrm{C}(20)-\mathrm{B}(1)-\mathrm{N}(2)$	$113.63(16)$
$\mathrm{C}(18)-\mathrm{B}(1)-\mathrm{N}(2)$	$106.95(15)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$	$107.8(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Ti}(1)$	$72.12)$

$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{Ti}(1)$	72.23(11)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	126.1
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{H}(1)$	126.1
$\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	120.7
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(11)$	118.35(17)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{B}(1)$	131.34(16)
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{B}(1)$	110.15(15)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	108.0(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Ti}(1)$	71.79(12)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Ti}(1)$	72.58(12)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	126.0
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	126.0
$\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	121.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	108.2(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Ti}(1)$	72.42(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Ti}(1)$	73.42(12)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	125.9
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	125.9
$\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{H}(3)$	120.1
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	107.9(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Ti}(1)$	72.65(12)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Ti}(1)$	73.04(11)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	126.1
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	126.1
$\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{H}(4)$	120.1
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	108.15(18)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Ti}(1)$	72.10(11)
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{Ti}(1)$	72.96(11)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	125.9
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{H}(5)$	125.9
$\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{H}(5)$	120.8
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.5
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.5
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.5
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	109.5
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	109.5
$\mathrm{H}(6 \mathrm{~B})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	109.5
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	121.12(18)
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{N}(1)$	119.59(17)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)$	119.25(18)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	120.5(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.8
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	119.8
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	118.8(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	120.6
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.6
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.6(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.2
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	120.2
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	121.66(19)
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	111.08(17)

$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$127.26(18)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	$123.2(2)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$110.81(17)$
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(11)$	$125.98(19)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$117.10(18)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{B}(1)$	$111.94(17)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{B}(1)$	$130.94(19)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$120.2(2)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	119.9
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.9
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$121.2(2)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.4
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.4
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$120.0(2)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	120.0
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	120.0
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	$118.2(2)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	120.9
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{H}(17)$	120.9
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{B}(1)$	$114.71(17)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	108.6
$\mathrm{~B}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	108.6
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	108.6
$\mathrm{~B}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	108.6
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	107.6
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{B}(1)$	$116.52(17)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	108.2
$\mathrm{~B}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	108.2
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	108.2
$\mathrm{~B}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	108.2
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	107.3
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
(10	

Appendix

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for catalyst 22. The anisotropic displacement factor exponent takes the form: $-2 \mathrm{pi}^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a} \mathrm{a}^{*}\right.$ U12]

	U11	U22	U33	U23	U13	U12
$\mathrm{Ci}(1)$	$16(1)$	$15(1)$	$15(1)$	$-1(1)$	$4(1)$	$-1(1)$
$\mathrm{Cl}(1)$	$36(1)$	$18(1)$	$29(1)$	$6(1)$	$7(1)$	$3(1)$
$\mathrm{Cl}(2)$	$21(1)$	$23(1)$	$20(1)$	$5(1)$	$6(1)$	$2(1)$
$\mathrm{N}(1)$	$14(1)$	$19(1)$	$13(1)$	$1(1)$	$2(1)$	$-1(1)$
$\mathrm{B}(1)$	$18(1)$	$12(1)$	$16(1)$	$1(1)$	$3(1)$	$1(1)$
$\mathrm{C}(1)$	$20(1)$	$19(1)$	$20(1)$	$-2(1)$	$0(1)$	$6(1)$
$\mathrm{N}(2)$	$12(1)$	$15(1)$	$13(1)$	$-2(1)$	$2(1)$	$0(1)$
$\mathrm{C}(2)$	$20(1)$	$34(1)$	$25(1)$	$5(1)$	$4(1)$	$-13(1)$
$\mathrm{C}(3)$	$17(1)$	$40(2)$	$33(1)$	$-8(1)$	$11(1)$	$-6(1)$
$\mathrm{C}(4)$	$16(1)$	$24(1)$	$28(1)$	$3(1)$	$1(1)$	$-1(1)$
$\mathrm{C}(5)$	$14(1)$	$21(1)$	$16(1)$	$1(1)$	$-1(1)$	$-5(1)$
$\mathrm{C}(6)$	$15(1)$	$30(1)$	$18(1)$	$2(1)$	$0(1)$	$-7(1)$
$\mathrm{C}(7)$	$11(1)$	$18(1)$	$17(1)$	$2(1)$	$4(1)$	$1(1)$
$\mathrm{C}(8)$	$25(1)$	$17(1)$	$28(1)$	$7(1)$	$9(1)$	$4(1)$
$\mathrm{C}(9)$	$31(1)$	$15(1)$	$36(1)$	$-2(1)$	$12(1)$	$5(1)$
$\mathrm{C}(10)$	$21(1)$	$23(1)$	$25(1)$	$-8(1)$	$9(1)$	$2(1)$
$\mathrm{C}(11)$	$10(1)$	$20(1)$	$17(1)$	$-4(1)$	(1)	$0(1)$
$\mathrm{C}(12)$	$12(1)$	$22(1)$	$16(1)$	$-3(1)$	$1(1)$	$-3(1)$
$\mathrm{C}(13)$	$13(1)$	$18(1)$	$16(1)$	$0(1)$	$1(1)$	$-3(1)$
$\mathrm{C}(14)$	$22(1)$	$22(1)$	$22(1)$	$1(1)$	$4(1)$	$-3(1)$
$\mathrm{C}(15)$	$23(1)$	$34(1)$	$21(1)$	$8(1)$	$5(1)$	$-7(1)$
$\mathrm{C}(16)$	$19(1)$	$43(2)$	$17(1)$	$-1(1)$	$5(1)$	$-5(1)$
$\mathrm{C}(17)$	$18(1)$	$31(1)$	$19(1)$	$-5(1)$	$4(1)$	$-3(1)$
$\mathrm{C}(18)$	$19(1)$	$15(1)$	$17(1)$	$1(1)$	$3(1)$	$0(1)$
$\mathrm{C}(19)$	$22(1)$	$21(1)$	$35(1)$	$5(1)$	$8(1)$	$4(1)$
$\mathrm{C}(20)$	$22(1)$	$14(1)$	$17(1)$	$-2(1)$	$5(1)$	$0(1)$
$\mathrm{C}(21)$	$22(1)$	$21(1)$	$20(1)$	$-1(1)$	$5(1)$	$-2(1)$

Appendix

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for catalyst 22.

	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U (e q)}$
$\mathrm{H}(1)$	5797	-1269	2277	25
$\mathrm{H}(2)$	4853	-1013	3883	32
$\mathrm{H}(3)$	3974	440	3683	35
$\mathrm{H}(4)$	4340	1075	1938	28
$\mathrm{H}(5)$	5457	19	1064	22
$\mathrm{H}(6 \mathrm{~A})$	9578	124	3735	34
H(6B)	8895	857	4211	34
H(6C)	9462	1026	3174	34
H(8)	8198	-1144	2305	27
H(9)	8535	-1733	685	32
H(10)	8507	-878	-849	27
H(14)	7754	2817	-1085	27
H(15)	8204	2614	-2800	31
H(16)	8599	1293	-3379	32
H(17)	8598	150	-2213	28
H(18A)	5630	1220	92	21
H(18B)	6050	1611	1335	21
H(19A)	6013	2959	538	39
H(19B)	4651	2526	85	39
H(19C)	5576	2565	-705	39
H(20A)	8271	2739	1333	21
H(20B)	8413	2041	2278	21
H(21A)	10249	1529	1880	32
H(21B)	10424	2488	2219	32
H(21C)	10103	2218	918	32

Table 6. Torsion angles [deg] for catalyst 22.

$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$-146.16(18)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$105.92(18)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$-50.3(2)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$-36.1(3)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$-24.65(19)$
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$8.0(2)$
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$12.4(2)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$58.89(13)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$-49.02(13)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$154.79(13)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$168.97(14)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$-179.60(13)$
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$-146.93(13)$
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$-142.55(13)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$174.13(13)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-54.57(17)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$72.34(13)$

$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-78.61(14)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-37.13(13)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-115.82(19)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$-70.05(13)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$61.26(16)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$-171.84(11)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$37.21(12)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$78.69(13)$
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$115.82(19)$
$\mathrm{C}(13)-\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(7)$	$178.45(18)$
$\mathrm{C}(20)-\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(7)$	$61.23)$
$\mathrm{C}(18)-\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(7)$	$-63.6(2)$
$\mathrm{C}(13)-\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	$-6.33(18)$
$\mathrm{C}(20)-\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	$-123.58(17)$
$\mathrm{C}(18)-\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	$111.62(17)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-0.7(2)$
$\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$63.51(15)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Ti}(1)$	$-64.20(13)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-124.02(14)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$32.08(15)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$135.37(13)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-37.46(13)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-78.91(14)$
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-116.33(19)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$-7.68(17)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$148.42(11)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$-108.30(13)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$78.88(13)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$116.33(19)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$37.42(12)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$0.5(2)$
$\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$64.56(15)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Ti}(1)$	$-64.02(14)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$-24.0(2)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$91.55(13)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$-164.02(12)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$-37.49(13)$
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$-78.84(14)$
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$-115.84(19)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$91.80(17)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$-152.61(13)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$-48.18(14)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$115.84(19)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$78.35(14)$
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$37.00(12)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-0.2(2)$
$\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$65.04(14)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Ti}(1)$	$-65.22(15)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$164.32(13)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$-88.45(13)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$25.38(18)$
l	

$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	115.58(19)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	78.44(14)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	37.29(13)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	48.74(14)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	155.97(12)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-90.20(14)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-115.58(19)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-37.15(12)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-78.29(14)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	-0.2(2)
$\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	64.54(13)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Ti}(1)$	-64.78(14)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	0.6(2)
$\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-63.97(14)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{Ti}(1)$	64.55(14)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-133.94(13)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-28.68(14)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	126.95(11)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	37.56(13)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	116.19(18)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	78.93(14)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	109.87(13)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	-144.87(11)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	10.76(15)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	-116.19(18)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	-78.63(13)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	-37.26(12)
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	-0.2(3)
$\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	174.70(18)
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{N}(1)$	177.59(16)
$\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{N}(1)$	-7.5(3)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{N}(2)$	-90.2(2)
$\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{N}(2)$	115.2(2)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	87.6(2)
$\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	-66.9(3)
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-0.5(3)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-178.28(18)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	0.4(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	0.4(3)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	$1.0(3)$
$\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	-174.92(17)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	-178.42(16)
$\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	5.7(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(2)$	-1.1(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	178.20(19)
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-2.2(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	178.44(19)
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	175.59(18)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	-3.8(3)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-1.6(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	176.25(17)

$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{B}(1)$	$179.63(18)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{B}(1)$	$-2.5(2)$
$\mathrm{C}(20)-\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(12)$	$23.43(18)$
$\mathrm{C}(18)-\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(12)$	$-106.5(2)$
$\mathrm{N}(2)-\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(12)$	$5.06(19)$
$\mathrm{C}(20)-\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$-55.1(3)$
$\mathrm{C}(18)-\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$4.9(3)$
$\mathrm{N}(2)-\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$-173.49(19)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$3(3)$
$\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$79.78(19)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-0.1(3)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-0.9(3)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	$6(3)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	$6(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	$-176.87(19)$
$\mathrm{C}(13)-\mathrm{B}(1)-\mathrm{C}(18)-\mathrm{C}(19)$	$-60.9(2)$
$\mathrm{C}(20)-\mathrm{B}(1)-\mathrm{C}(18)-\mathrm{C}(19)$	$69.0(2)$
$\mathrm{N}(2)-\mathrm{B}(1)-\mathrm{C}(18)-\mathrm{C}(19)$	$-165.56(16)$
$\mathrm{C}(13)-\mathrm{B}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	$-49.4(2)$
$\mathrm{C}(18)-\mathrm{B}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	$179.44(17)$
$\mathrm{N}(2)-\mathrm{B}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	$57.7(2)$

Appendix
5.2 Crystal structure of complex 23

Appendix

Table 1. Crystal data and structure refinement for catalyst 23.

Identification code	Catalyst 23
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~B} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Ti}$
Formula weight	505.17
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system, space group	triclinic, p-1
Unit cell dimensions	$\begin{gathered} \mathrm{a}=9.2538(4) \AA \text { alpha=77.233(2) deg. } \\ \mathrm{b}=11.5135(5) \AA \text { beta=81.007(2) deg. } \\ \mathrm{c}=12.7779(6) \AA \text { gamma=72.946(2) deg. } \end{gathered}$
Volume	1263.24(10) \AA^{3}
Z, Calculated density	$2,1.328 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.567 \mathrm{~mm}^{-1}$
$F(000)$	532
Crystal size	$0.36 \times 0.20 \times 0.10 \mathrm{~mm}$
Theta range for data collection	1.64 to 28.49 deg .
Limiting indices	$-12<=\mathrm{h}<=12,-15<=\mathrm{k}<=15,-17<=1<=17$
Reflections collected / unique	$44991 / 6331[\mathrm{R}(\mathrm{int})=0.0242]$
Completeness to theta $=28.49^{\circ}$	98.8 \%
Max. and min. transmission	0.9444 and 0.8240
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$6331 / 0$ / 297
Goodness-of-fit on F^{2}	1.039
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0274, \mathrm{wR} 2=0.0712$
R indices (all data)	$\mathrm{R} 1=0.0360, \mathrm{wR} 2=0.0742$
Largest diff. peak and hole	0.362 and -0.257e. \AA^{-3}

Appendix

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \mathrm{x}$ 10^{3}) for catalyst 23.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Ti}(1)$	$1778(1)$	$936(1)$	$2471(1)$	$17(1)$
$\mathrm{Cl}(1)$	$4287(1)$	$446(1)$	$1927(1)$	$26(1)$
$\mathrm{Cl}(2)$	$1646(1)$	$-663(1)$	$3877(1)$	$26(1)$
$\mathrm{N}(1)$	$1408(1)$	$2256(1)$	$3261(1)$	$18(1)$
$\mathrm{C}(1)$	$1156(2)$	$1598(1)$	$668(1)$	$23(1)$
$\mathrm{B}(1)$	$3035(2)$	$4411(1)$	$2478(1)$	$18(1)$
$\mathrm{N}(2)$	$3323(1)$	$3184(1)$	$3492(1)$	$17(1)$
$\mathrm{C}(2)$	$-110(1)$	$2206(1)$	$1326(1)$	$20(1)$
$\mathrm{C}(3)$	$-724(1)$	$1285(1)$	$2017(1)$	$20(1)$
$\mathrm{C}(4)$	$138(2)$	$113(1)$	$1765(1)$	$24(1)$
$\mathrm{C}(5)$	$1281(2)$	$310(1)$	$932(1)$	$26(1)$
$\mathrm{C}(6)$	$-70(1)$	$2874(1)$	$3789(1)$	$22(1)$
$\mathrm{C}(7)$	$2609(1)$	$2274(1)$	$3826(1)$	$18(1)$
$\mathrm{C}(8)$	$2977(2)$	$1393(1)$	$4750(1)$	$25(1)$
$\mathrm{C}(9)$	$4116(2)$	$1415(1)$	$5327(1)$	$29(1)$
$\mathrm{C}(10)$	$4868(2)$	$2316(1)$	$4978(1)$	$25(1)$
$\mathrm{C}(11)$	$4452(1)$	$3199(1)$	$4064(1)$	$20(1)$
$\mathrm{C}(12)$	$5074(1)$	$4245(1)$	$3604(1)$	$22(1)$
$\mathrm{C}(13)$	$4322(1)$	$4966(1)$	$2715(1)$	$22(1)$
$\mathrm{C}(14)$	$4759(2)$	$6034(1)$	$2212(1)$	$30(1)$
$\mathrm{C}(15)$	$5904(2)$	$6344(2)$	$2582(1)$	$35(1)$
$\mathrm{C}(16)$	$6648(2)$	$5595(2)$	$3458(1)$	$34(1)$
$\mathrm{C}(17)$	$6231(1)$	$4542(1)$	$3985(1)$	$28(1)$
$\mathrm{C}(18)$	$1357(1)$	$5340(1)$	$2660(1)$	$20(1)$
$\mathrm{C}(19)$	$990(2)$	$5819(1)$	$3725(1)$	$23(1)$
$\mathrm{C}(20)$	$3350(1)$	$3962(1)$	$1330(1)$	$21(1)$
$\mathrm{C}(21)$	$4998(2)$	$3364(1)$	$961(1)$	$27(1)$
$\mathrm{C}(22)$	$2073(2)$	$2225(2)$	$-230(1)$	$33(1)$
$\mathrm{C}(23)$	$-751(2)$	$3583(1)$	$1177(1)$	$25(1)$
$\mathrm{C}(24)$	$-2093(2)$	$1445(1)$	$2829(1)$	$26(1)$
$\mathrm{C}(25)$	$-260(2)$	$-1077(1)$	$2222(1)$	$38(1)$
$\mathrm{C}(26)$	$2405(2)$	$682(2)$	$407(1)$	$40(1)$

Table 3. Bond lengths [A°] and angles [deg] for catalyst 23.

$\mathrm{Ti}(1)-\mathrm{N}(1)$	$1.9259(10)$
$\operatorname{Ti}(1)-\mathrm{Cl}(1)$	$2.2571(4)$
$\operatorname{Ti}(1)-\mathrm{Cl}(2)$	$2.2868(4)$
$\operatorname{Ti}(1)-\mathrm{C}(1)$	$2.3670(12)$
$\operatorname{Ti}(1)-\mathrm{C}(3)$	$2.3724(12)$
$\operatorname{Ti}(1)-\mathrm{C}(4)$	$2.3795(13)$
$\operatorname{Ti}(1)-\mathrm{C}(2)$	$2.3842(12)$
$\operatorname{Ti}(1)-\mathrm{C}(5)$	$2.3874(12)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.4242(15)$

$\mathrm{N}(1)-\mathrm{C}(6)$	$1.4779(15)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.4196(19)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.4288(17)$
$\mathrm{C}(1)-\mathrm{C}(22)$	$1.4991(19)$
$\mathrm{B}(1)-\mathrm{C}(13)$	$1.6012(18)$
$\mathrm{B}(1)-\mathrm{C}(20)$	$1.6172(17)$
$\mathrm{B}(1)-\mathrm{C}(18)$	$1.6226(18)$
$\mathrm{B}(1)-\mathrm{N}(2)$	$1.6800(16)$
$\mathrm{N}(2)-\mathrm{C}(7)$	$1.3555(15)$
$\mathrm{N}(2)-\mathrm{C}(11)$	$1.3708(15)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.4169(17)$
$\mathrm{C}(2)-\mathrm{C}(23)$	$1.5015(17)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.4286(17)$
$\mathrm{C}(3)-\mathrm{C}(24)$	$1.5005(18)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.409(2)$
$\mathrm{C}(4)-\mathrm{C}(25)$	$1.4935(19)$
$\mathrm{C}(5)-\mathrm{C}(26)$	$1.5034(18)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.3900(16)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.3871(19)$
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.371(2)$
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.3897(17)$
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.4547(18)$
$\mathrm{C}(12)-\mathrm{C}(17)$	$1.3973(18)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.3983(18)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.3962(18)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.388(2)$
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.391(2)$
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.380(2)$
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.5337(16)$
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9900
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9900
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.5254(17)$
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9900
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.000
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	C
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	C
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	

$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9800
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9800
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9800
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	0.9800
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	0.9800
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	0.9800
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	0.9800
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(1)$	106.26(3)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	99.61(3)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	101.225(14)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)$	114.27(4)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)$	91.63(3)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)$	138.69(3)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)$	98.72(4)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)$	146.99(3)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)$	95.38(3)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)$	58.02(4)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)$	132.85(4)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)$	119.70(3)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)$	82.17(3)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)$	57.70(5)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(4)$	34.99(4)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)$	89.30(4)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)$	123.39(3)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)$	129.96(3)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)$	35.00(4)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(2)$	34.66(4)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(2)$	57.74(4)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)$	146.68(4)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)$	90.16(3)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)$	105.45(4)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)$	34.74(5)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(5)$	57.78(4)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(5)$	34.39(5)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)$	57.75(4)
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(6)$	109.85(9)
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{Ti}(1)$	117.28(7)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{Ti}(1)$	126.24(8)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	108.00(11)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(22)$	125.96(12)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(22)$	125.70(12)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{Ti}(1)$	73.42(7)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Ti}(1)$	73.16(7)

$\mathrm{C}(22)-\mathrm{C}(1)-\mathrm{Ti}(1)$	$124.50(9)$
$\mathrm{C}(13)-\mathrm{B}(1)-\mathrm{C}(20)$	$114.05(10)$
$\mathrm{C}(13)-\mathrm{B}(1)-\mathrm{C}(18)$	$111.15(10)$
$\mathrm{C}(20)-\mathrm{B}(1)-\mathrm{C}(18)$	$112.98(10)$
$\mathrm{C}(13)-\mathrm{B}(1)-\mathrm{N}(2)$	$96.29(9)$
$\mathrm{C}(20)-\mathrm{B}(1)-\mathrm{N}(2)$	$110.40(9)$
$\mathrm{C}(18)-\mathrm{B}(1)-\mathrm{N}(2)$	$110.81(9)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(11)$	$118.77(10)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{B}(1)$	$131.14(9)$
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{B}(1)$	$110.04(9)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$107.74(11)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(23)$	$127.78(11)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(23)$	$124.03(11)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Ti}(1)$	$72.21(7)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Ti}(1)$	$71.84(7)$
$\mathrm{C}(23)-\mathrm{C}(2)-\mathrm{Ti}(1)$	$127.52(8)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$107.85(11)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(24)$	$128.71(11)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(24)$	$123.31(11)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Ti}(1)$	$73.13(7)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Ti}(1)$	$72.78(7)$
$\mathrm{C}(24)-\mathrm{C}(3)-\mathrm{Ti}(1)$	$123.01(8)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$108.25(11)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(25)$	$126.84(12)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(25)$	$124.48(13)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Ti}(1)$	$73.11(7)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Ti}(1)$	$72.23(7)$
$\mathrm{C}(25)-\mathrm{C}(4)-\mathrm{Ti}(1)$	$126.34(9)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	$108.13(11)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(26)$	$125.21(13)$
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(26)$	$126.65(14)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Ti}(1)$	$72.50(7)$
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{Ti}(1)$	$71.84(7)$
$\mathrm{C}(26)-\mathrm{C}(5)-\mathrm{Ti}(1)$	$122.55(9)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.5
$\mathrm{~N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.5
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.5
$\mathrm{~N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	109.5
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	109.5
$\mathrm{H}(6 \mathrm{~B})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	109.5
$\mathrm{~N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.79(11)$
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{N}(1)$	$119.85(10)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)$	$119.27(11)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$120.14(13)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	119.9
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.9
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$119.30(12)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	120.4
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.4
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.15(12)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.4

$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	120.4
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	121.83(12)
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	111.35(10)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	126.80(11)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)$	122.94(13)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(11)$	126.51(12)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	110.53(11)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	117.07(12)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{B}(1)$	131.11(12)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{B}(1)$	111.79(11)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	120.71(14)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	119.6
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.6
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	120.76(14)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.6
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.6
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	120.15(13)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	119.9
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	119.9
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	118.34(14)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	120.8
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{H}(17)$	120.8
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{B}(1)$	115.79(10)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	108.3
$\mathrm{B}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	108.3
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	108.3
$\mathrm{B}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	108.3
H(18A)-C(18)-H(18B)	107.4
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
C(18)-C(19)-H(19C)	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{B}(1)$	116.66(10)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	108.1
$\mathrm{B}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	108.1
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	108.1
$\mathrm{B}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	108.1
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	107.3
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{C}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{C}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{C}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5

$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{C}(2)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5
$\mathrm{C}(2)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{C}(2)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{C}(3)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	109.5
$\mathrm{C}(3)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{C}(3)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{C}(4)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{C}(4)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(25 \mathrm{~B})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{C}(5)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	109.5
$\mathrm{C}(5)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
$\mathrm{C}(5)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{H}(26 \mathrm{~B})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5

Appendix

Table 4.Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for catalyst 23.
The anisotropic displacement factor exponent takes the form:-2 $\mathrm{pi}^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U} 11+\ldots+2 \mathrm{hk}\right.$ a* b* U12]

	U11	U22	U33	U23	U13	U12
$\mathrm{Ti}(1)$	$17(1)$	$17(1)$	$16(1)$	$-5(1)$	$-5(1)$	$1(1)$
$\mathrm{Cl}(1)$	$19(1)$	$32(1)$	$25(1)$	$-10(1)$	$-3(1)$	$1(1)$
$\mathrm{Cl}(2)$	$32(1)$	$22(1)$	$24(1)$	$1(1)$	$-11(1)$	$-7(1)$
$\mathrm{N}(1)$	$18(1)$	$17(1)$	$17(1)$	$-4(1)$	$-3(1)$	$-2(1)$
$\mathrm{C}(1)$	$24(1)$	$30(1)$	$16(1)$	$-5(1)$	$-7(1)$	$-3(1)$
$\mathrm{B}(1)$	$19(1)$	$20(1)$	$15(1)$	$-2(1)$	$-2(1)$	$-4(1)$
$\mathrm{N}(2)$	$15(1)$	$19(1)$	$15(1)$	$-6(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(2)$	$21(1)$	$20(1)$	$19(1)$	$-3(1)$	$-9(1)$	$-2(1)$
$\mathrm{C}(3)$	$20(1)$	$19(1)$	$22(1)$	$-4(1)$	$-8(1)$	$-3(1)$
$\mathrm{C}(4)$	$31(1)$	$19(1)$	$25(1)$	$-6(1)$	$-14(1)$	$-3(1)$
$\mathrm{C}(5)$	$28(1)$	$28(1)$	$22(1)$	$-11(1)$	$-12(1)$	$3(1)$
$\mathrm{C}(6)$	$20(1)$	$23(1)$	$25(1)$	$-10(1)$	$2(1)$	$-5(1)$
$\mathrm{C}(7)$	$20(1)$	$18(1)$	$16(1)$	$-6(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(8)$	$35(1)$	$19(1)$	$19(1)$	$-3(1)$	$-7(1)$	$-4(1)$
$\mathrm{C}(9)$	$39(1)$	$22(1)$	$20(1)$	$-4(1)$	$-13(1)$	$3(1)$
$\mathrm{C}(10)$	$25(1)$	$27(1)$	$23(1)$	$-10(1)$	$-11(1)$	$5(1)$
$\mathrm{C}(11)$	$15(1)$	$24(1)$	$18(1)$	$-10(1)$	$-3(1)$	$3(1)$
$\mathrm{C}(12)$	$15(1)$	$29(1)$	$22(1)$	$-13(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(13)$	$19(1)$	$28(1)$	$20(1)$	$-9(1)$	$2(1)$	$-7(1)$
$\mathrm{C}(14)$	$32(1)$	$36(1)$	$25(1)$	$-7(1)$	$3(1)$	$-16(1)$
$\mathrm{C}(15)$	$34(1)$	$43(1)$	$36(1)$	$-17(1)$	$12(1)$	$-23(1)$
$\mathrm{C}(16)$	$19(1)$	$48(1)$	$41(1)$	$-27(1)$	$6(1)$	$-13(1)$
$\mathrm{C}(17)$	$16(1)$	$40(1)$	$31(1)$	$-20(1)$	$-1(1)$	$-2(1)$
$\mathrm{C}(18)$	$20(1)$	$17(1)$	$20(1)$	$-3(1)$	$-3(1)$	$-3(1)$
$\mathrm{C}(19)$	$23(1)$	$21(1)$	$24(1)$	$-7(1)$	$1(1)$	$-4(1)$
$\mathrm{C}(20)$	$21(1)$	$25(1)$	$15(1)$	$-3(1)$	$-3(1)$	$-4(1)$
$\mathrm{C}(21)$	$24(1)$	$36(1)$	$20(1)$	$-10(1)$	$1(1)$	$-5(1)$
$\mathrm{C}(22)$	$34(1)$	$49(1)$	$17(1)$	$-7(1)$	$-2(1)$	$-13(1)$
$\mathrm{C}(23)$	$28(1)$	$18(1)$	$29(1)$	$-1(1)$	$-13(1)$	$-3(1)$
$\mathrm{C}(24)$	$22(1)$	$28(1)$	$29(1)$	$-4(1)$	$-4(1)$	$-8(1)$
$\mathrm{C}(25)$	$59(1)$	$20(1)$	$42(1)$	$-3(1)$	$-26(1)$	$-12(1)$
$\mathrm{C}(26)$	$42(1)$	$41(1)$	$36(1)$	$-25(1)$	$-14(1)$	$11(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for catalyst 23.

	X		Z	U(eq)
H(6A)	-342	2315	4438	34
H(6B)	-853	3088	3290	34
H(6C)	5	3627	3987	34
H(8)	2446	775	4986	30
H(9)	4374	813	5957	34
H(10)	5663	2337	5356	30
H(14)	4268	6553	1610	36
H(15)	6184	7077	2233	42
H(16)	7444	5809	3694	40
H(17)	6720	4032	4591	33
H(18A)	1244	6060	2059	23
H(18B)	594	4907	2617	23
H(19A)	1140	5117	4330	34
H(19B)	-69	6317	3782	34
H(19C)	1664	6329	3746	34
H(20A)	2754	3365	1366	25
H(20B)	2955	4688	772	25
H(21A)	5584	3975	833	41
H(21B)	5042	3066	293	41
H(21C)	5428	2668	1521	41
H(22A)	3088	1666	-343	49
H(22B)	2162	2979	-42	49
H(22C)	1569	2438	-893	49
H(23A)	-1666	3782	1678	38
H(23B)	-1011	3911	435	38
H(23C)	6	3956	1322	38
H(24A)	-2585	2328	2802	39
H(24B)	-1780	1064	3552	39
H(24C)	-2810	1046	2662	39
H(25A)	-1036	-1152	1818	57
H(25B)	-654	-1092	2981	57
H(25C)	649	-1769	2166	57
H(26A)	2773	-1408	959	61
H(26B)	3263	-372	29	61
H(26C)	1911	-913	-111	61

Table 6. Torsion angles [deg] for catalyst 23.

$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-4.56(8)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	116.23(10)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	37.77(7)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	78.69(8)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	137.24(8)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	28.14(8)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	-120.79(7)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	-116.23(10)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	-78.46(8)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	-37.54(8)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(23)$	17.86(11)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(23)$	-91.25(11)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(23)$	119.83(10)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(23)$	-119.39(14)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(23)$	124.39(14)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(23)$	162.15(13)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(23)$	-156.93(13)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-1.49(13)
$\mathrm{C}(23)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	170.91(11)
$\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-64.99(8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(24)$	-177.40(12)
$\mathrm{C}(23)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(24)$	-5.0(2)
$\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(24)$	119.11(13)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Ti}(1)$	63.50(8)
$\mathrm{C}(23)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Ti}(1)$	-124.10(12)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	75.89(7)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	-63.25(9)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	176.49(6)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	-37.34(7)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	-115.43(10)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	-78.62(8)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-168.68(7)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	52.18(10)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-68.08(7)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	78.09(8)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	115.43(10)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	36.81(7)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(24)$	-49.72(10)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(24)$	171.14(7)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(24)$	50.88(10)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(24)$	-162.95(12)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(24)$	118.96(13)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(24)$	-125.61(13)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(24)$	155.78(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	0.49(14)
$\mathrm{C}(24)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	176.67(11)
$\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-64.73(9)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(25)$	-172.44(12)
$\mathrm{C}(24)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(25)$	3.73(19)
$\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(25)$	122.33(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Ti}(1)$	65.22(8)

$\mathrm{C}(24)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Ti}(1)$	-118.60(11)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	131.51(8)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-34.13(8)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-132.63(7)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$37.10(7)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	116.17(11)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	78.77(8)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	15.34(10)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	-150.30(6)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	111.20(7)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	-79.07(8)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	-37.40(7)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	-116.17(11)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(25)$	-104.81(13)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(25)$	89.55(13)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(25)$	-8.95(12)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(25)$	160.78(14)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(25)$	-120.15(16)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(25)$	-157.55(14)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(25)$	123.68(16)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	0.71(14)
$\mathrm{C}(25)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	173.43(12)
$\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	-63.45(9)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(26)$	-177.94(12)
$\mathrm{C}(25)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(26)$	-5.2(2)
$\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(26)$	117.91(13)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Ti}(1)$	64.16(8)
$\mathrm{C}(25)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Ti}(1)$	-123.12(13)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-1.63(14)
$\mathrm{C}(22)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-175.19(12)
$\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	63.87(9)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(26)$	176.99(12)
$\mathrm{C}(22)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(26)$	3.4(2)
$\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(26)$	-117.50(13)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{Ti}(1)$	-65.51(8)
$\mathrm{C}(22)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{Ti}(1)$	120.94(13)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-88.24(11)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	150.83(7)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	49.13(7)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-116.53(11)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-37.47(7)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-78.71(8)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	28.30(13)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	-92.64(7)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	165.67(7)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	79.06(8)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	116.53(11)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	37.82(7)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(26)$	150.70(11)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(26)$	29.77(13)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(26)$	-71.93(13)

$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(26)$	$122.40(16)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(26)$	$-158.54(14)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(26)$	$-121.06(16)$
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(26)$	$160.23(15)$
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$2.08(16)$
$\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$-175.05(11)$
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{N}(1)$	$178.51(10)$
$\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{N}(1)$	$1.38(17)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{N}(2)$	$-94.89(12)$
$\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{N}(2)$	$111.82(10)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$81.60(13)$
$\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$-71.69(12)$
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-1.89(18)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-178.34(11)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$0.27(19)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$1.07(19)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	$-0.71(16)$
$\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	$176.98(10)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$-179.11(9)$
$\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$-1.41(12)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(2)$	$-0.87(18)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$177.26(11)$
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	$179.80(11)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	$1.50(19)$
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$1.29(13)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-177.01(11)$
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-0.88(18)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$177.70(11)$
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{B}(1)$	$-179.15(11)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{B}(1)$	$-0.57(13)$
$\mathrm{C}(20)-\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$66.17(17)$
$\mathrm{C}(18)-\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$-62.96(17)$
$\mathrm{N}(2)-\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$-178.16(13)$
$\mathrm{C}(20)-\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(12)$	$-115.88(11)$
$\mathrm{C}(18)-\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(12)$	$114.99(11)$
$\mathrm{N}(2)-\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(12)$	$-0.21(11)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$0.66(19)$
$\mathrm{B}(1)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$178.53(13)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$0.4(2)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-1.3(2)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	$1.09(19)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	$0.01(18)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	$-178.34(11)$
$\mathrm{C}(13)-\mathrm{B}(1)-\mathrm{C}(18)-\mathrm{C}(19)$	$-49.38(14)$
$\mathrm{C}(20)-\mathrm{B}(1)-\mathrm{C}(18)-\mathrm{C}(19)$	$-179.07(10)$
$\mathrm{N}(2)-\mathrm{B}(1)-\mathrm{C}(18)-\mathrm{C}(19)$	$56.44(13)$
$\mathrm{C}(13)-\mathrm{B}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	$36.74(15)$
$\mathrm{C}(18)-\mathrm{B}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	$164(11)$
$\mathrm{N}(2)-\mathrm{B}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	$-70.35(13)$

Appendix

5.3 Crystal structure of complex 27

Appendix

Table 1.Crystal data and structure refinement for catalyst 27.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
$F(000)$
Crystal size
Theta range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=28.38^{\circ}$
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole

Catalyst 27
$\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~B} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Si} \mathrm{Ti}$
563.33

100(2) K
$0.71073 \AA$
monoclinic, P2(1)/c
$\mathrm{a}=9.2509(4) \AA$ alpha $=90 \mathrm{deg}$.
$\mathrm{b}=15.4881(6) \AA$ beta $=98.239(3) \mathrm{deg}$.
$\mathrm{c}=20.6554(10) \AA \mathrm{gamma}=90 \mathrm{deg}$.
2928.9(2) A^3
$4,1.277 \mathrm{Mg} / \mathrm{m}^{3}$
$0.535 \mathrm{~mm}^{-1}$
1192
$0.22 \times 0.16 \times 0.14 \mathrm{~mm}$
1.65 to 28.38 deg.
$-12<=\mathrm{h}<=12,-20<=\mathrm{k}<=20,-27<=1<=24$
$51448 / 7311[\mathrm{R}(\mathrm{int})=0.0452]$
99.4 \%
0.7454 and 0.7160

Full-matrix least-squares on F^{2}
7311 / $0 / 326$
1.049
$\mathrm{R} 1=0.0355, \mathrm{wR} 2=0.0749$
$\mathrm{R} 1=0.0581, \mathrm{wR} 2=0.0798$
0.392 and -0.391 e. \AA^{-3}

Appendix

Table 2.Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for catalyst 27.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	y		y	z
$\mathrm{Ti}(1)$	$3988(1)$	$8664(1)$	$1776(1)$	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Cl}(1)$	$6238(1)$	$8784(1)$	$1467(1)$	$20(1)$
$\mathrm{Cl}(2)$	$3701(1)$	$10075(1)$	$2018(1)$	$19(1)$
$\mathrm{Si}(1)$	$6227(1)$	$8030(1)$	$3038(1)$	$15(1)$
$\mathrm{B}(1)$	$2162(2)$	$8784(1)$	$3584(1)$	$14(1)$
$\mathrm{N}(1)$	$4348(1)$	$8092(1)$	$2615(1)$	$12(1)$
$\mathrm{C}(1)$	$1752(2)$	$7905(1)$	$1392(1)$	$16(1)$
$\mathrm{N}(2)$	$2605(1)$	$7780(1)$	$3350(1)$	$12(1)$
$\mathrm{C}(2)$	$1631(2)$	$8761(1)$	$1142(1)$	$17(1)$
$\mathrm{C}(3)$	$2683(2)$	$8872(1)$	$715(1)$	$21(1)$
$\mathrm{C}(4)$	$3456(2)$	$8084(1)$	$695(1)$	$22(1)$
$\mathrm{C}(5)$	$2892(2)$	$7492(1)$	$1117(1)$	$18(1)$
$\mathrm{C}(6)$	$681(2)$	$7474(1)$	$1767(1)$	$20(1)$
$\mathrm{C}(7)$	$454(2)$	$9400(1)$	$1233(1)$	$25(1)$
$\mathrm{C}(8)$	$2915(2)$	$9676(1)$	$341(1)$	$35(1)$
$\mathrm{C}(9)$	$4523(2)$	$7863(2)$	$246(1)$	$35(1)$
$\mathrm{C}(10)$	$3299(2)$	$6553(1)$	$1160(1)$	$28(1)$
$\mathrm{C}(11)$	$3478(2)$	$7508(1)$	$2915(1)$	$12(1)$
$\mathrm{C}(12)$	$3616(2)$	$6624(1)$	$2793(1)$	$16(1)$
$\mathrm{C}(13)$	$2867(2)$	$6023(1)$	$3106(1)$	$17(1)$
$\mathrm{C}(14)$	$1981(2)$	$6300(1)$	$3546(1)$	$17(1)$
$\mathrm{C}(15)$	$1878(2)$	$7176(1)$	$3667(1)$	$13(1)$
$\mathrm{C}(16)$	$1065(2)$	$7575(1)$	$4141(1)$	$14(1)$
$\mathrm{C}(17)$	$249(2)$	$7139(1)$	$4557(1)$	$17(1)$
$\mathrm{C}(18)$	$-436(2)$	$7614(1)$	$4990(1)$	$19(1)$
$\mathrm{C}(19)$	$-315(2)$	$8509(1)$	$5001(1)$	$22(1)$
$\mathrm{C}(20)$	$491(2)$	$8932(1)$	$4580(1)$	$19(1)$
$\mathrm{C}(21)$	$1222(2)$	$8477(1)$	$4141(1)$	$15(1)$
$\mathrm{C}(22)$	$1096(2)$	$9171(1)$	$2959(1)$	$14(1)$
$\mathrm{C}(23)$	$624(2)$	$10112(1)$	$3023(1)$	$21(1)$
$\mathrm{C}(24)$	$3617(2)$	$9348(1)$	$3830(1)$	$17(1)$
$\mathrm{C}(25)$	$3426(2)$	$10094(1)$	$4301(1)$	$23(1)$
$\mathrm{C}(26)$	$7023(2)$	$9130(1)$	$3155(1)$	$23(1)$
$\mathrm{C}(27)$	$6209(2)$	$7511(1)$	$3850(1)$	$23(1)$
$\mathrm{C}(28)$	$7379(2)$	$7300(1)$	$2607(1)$	$23(1)$

Table 3. Bond lengths [A°] and angles [deg] for catalyst 27.

$\mathrm{Ti}(1)-\mathrm{N}(1)$	$1.9319(14)$
$\mathrm{Ti}(1)-\mathrm{Cl}(2)$	$2.2653(5)$
$\mathrm{Ti}(1)-\mathrm{Cl}(1)$	$2.2715(5)$
$\mathrm{Ti}(1)-\mathrm{C}(3)$	$2.3680(18)$
$\mathrm{Ti}(1)-\mathrm{C}(2)$	$2.3815(17)$
$\mathrm{Ti}(1)-\mathrm{C}(4)$	$2.3920(18)$
$\mathrm{Ti}(1)-\mathrm{C}(5)$	$2.4042(17)$
$\mathrm{Ti}(1)-\mathrm{C}(1)$	$2.4124(16)$
$\mathrm{Si}(1)-\mathrm{N}(1)$	$1.8327(14)$
$\mathrm{Si}(1)-\mathrm{C}(26)$	$1.8584(18)$
$\mathrm{Si}(1)-\mathrm{C}(27)$	$1.8622(19)$
$\mathrm{Si}(1)-\mathrm{C}(28)$	$1.8655(18)$
$\mathrm{B}(1)-\mathrm{C}(21)$	$1.609(3)$
$\mathrm{B}(1)-\mathrm{C}(22)$	$1.623(2)$
$\mathrm{B}(1)-\mathrm{C}(24)$	$1.624(2)$
$\mathrm{B}(1)-\mathrm{N}(2)$	$1.697(2)$
$\mathrm{N}(1)-\mathrm{C}(11)$	$1.412(2)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.420(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.422(2)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.498(2)$
$\mathrm{N}(2)-\mathrm{C}(11)$	$1.358(2)$
$\mathrm{N}(2)-\mathrm{C}(15)$	$1.372(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.415(3)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.503(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.419(3)$
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.497(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.415(3)$
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.488(3)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.503(2)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9800
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9800
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	0.9800
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.402(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	C
$\mathrm{C}(12)-\mathrm{H}(12)$	$\mathrm{C}(13)-\mathrm{C}(14)$

$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.386(2)$
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.456(2)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.396(2)$
$\mathrm{C}(16)-\mathrm{C}(21)$	$1.404(2)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.381(2)$
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.390(2)$
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.389(3)$
$\mathrm{C}(19)-\mathrm{H}(19)$	0.9500
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.398(2)$
$\mathrm{C}(20)-\mathrm{H}(20)$	0.9500
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.532(2)$
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9900
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9900
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9800
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.536(2)$
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9900
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9900
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	0.9800
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	0.9800
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	0.9800
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	0.9800
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	0.9800
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	0.9800
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	0.9800
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	0.9800
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	0.9800
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	0.9800
$\mathrm{~N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	$104.77(4)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(1)$	$104.02(4)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{Cl}(1)$	$97.121(18)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)$	$153.16(6)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)$	$90.73(5)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)$	$95.43(5)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$123.30(6)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$86.20(4)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$130.09(5)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$34.65(6)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)$	$130.62(6)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)$	$123.61(5)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)$	$80.92(5)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(4)$	$34.68(6)$
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)$	$57.38(6)$

$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)$	99.59(6)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)$	143.13(4)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)$	103.39(4)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(5)$	57.38(6)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)$	57.17(6)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(5)$	34.31(6)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)$	95.80(6)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)$	114.90(4)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)$	136.44(4)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(1)$	57.51(6)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)$	34.51(5)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(1)$	57.19(6)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(1)$	34.28(6)
$\mathrm{N}(1)-\mathrm{Si}(1)-\mathrm{C}(26)$	110.16(7)
$\mathrm{N}(1)-\mathrm{Si}(1)-\mathrm{C}(27)$	108.82(7)
$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{C}(27)$	109.46(9)
$\mathrm{N}(1)-\mathrm{Si}(1)-\mathrm{C}(28)$	111.84(8)
$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{C}(28)$	112.00(9)
$\mathrm{C}(27)-\mathrm{Si}(1)-\mathrm{C}(28)$	104.36(8)
$\mathrm{C}(21)-\mathrm{B}(1)-\mathrm{C}(22)$	110.40(14)
$\mathrm{C}(21)-\mathrm{B}(1)-\mathrm{C}(24)$	116.44(15)
$\mathrm{C}(22)-\mathrm{B}(1)-\mathrm{C}(24)$	115.54(14)
$\mathrm{C}(21)-\mathrm{B}(1)-\mathrm{N}(2)$	96.35(12)
$\mathrm{C}(22)-\mathrm{B}(1)-\mathrm{N}(2)$	104.80(13)
$\mathrm{C}(24)-\mathrm{B}(1)-\mathrm{N}(2)$	111.01(12)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{Si}(1)$	108.53(10)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{Ti}(1)$	130.65(11)
$\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{Ti}(1)$	118.84(7)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	107.36(15)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(6)$	126.24(15)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	125.39(15)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{Ti}(1)$	72.54(9)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Ti}(1)$	71.56(9)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Ti}(1)$	130.25(12)
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(15)$	118.87(13)
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{B}(1)$	131.66(13)
$\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{B}(1)$	109.45(13)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	108.34(15)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	124.99(16)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	126.11(16)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Ti}(1)$	72.15(10)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Ti}(1)$	73.93(9)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{Ti}(1)$	126.55(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	107.95(16)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	125.86(18)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	126.18(18)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Ti}(1)$	73.20(10)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Ti}(1)$	73.58(10)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{Ti}(1)$	119.96(13)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	107.90(16)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	124.84(18)

$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	$126.74(19)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Ti}(1)$	$73.32(10)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Ti}(1)$	$71.73(10)$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{Ti}(1)$	$127.05(13)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	$108.44(15)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$123.56(17)$
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(10)$	$127.27(17)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Ti}(1)$	$72.37(10)$
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{Ti}(1)$	$73.18(9)$
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{Ti}(1)$	$128.00(12)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.5
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.5
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.5
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	109.5
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	109.5
$\mathrm{H}(6 \mathrm{~B})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	109.5
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.5
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{~N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.00(15)$
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{N}(1)$	$121.44(13)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(1)$	$118.39(15)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$120.75(16)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	119.6
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	119.6
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$119.21(15)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	120.4
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	120.4
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$119.10(15)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.5

$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	120.5
$\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(14)$	122.05(15)
$\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	111.60(13)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	126.32(15)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)$	123.17(16)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	125.86(15)
$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(15)$	110.95(15)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	118.67(16)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	120.7
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	120.7
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	119.84(17)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	120.1
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	120.1
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	120.70(17)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	119.6
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	119.6
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	121.41(16)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	119.3
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	119.3
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	116.20(16)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{B}(1)$	132.47(15)
$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{B}(1)$	111.21(14)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{B}(1)$	115.52(14)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	108.4
$\mathrm{B}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	108.4
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	108.4
$\mathrm{B}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	108.4
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	107.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{B}(1)$	115.88(14)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	108.3
$\mathrm{B}(1)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	108.3
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	108.3
$\mathrm{B}(1)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	108.3
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	107.4
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	109.5
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(25 \mathrm{~B})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5

$\mathrm{H}(26 \mathrm{~B})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	109.5
$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{H}(27 \mathrm{~B})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.5
$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5
$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5
$\mathrm{H}(28 \mathrm{~B})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5

Table 4.Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for catalyst 27.
The anisotropic displacement factor exponent takes the form: $-2 \mathrm{pi}^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U} 11+\ldots+2 \mathrm{hk}\right.$ a* ${ }^{*}$ U12].

		U11	U22	U33	U23	U13
					U12	
$\mathrm{Ti}(1)$	$12(1)$	$13(1)$	$13(1)$	$0(1)$	$3(1)$	$-1(1)$
$\mathrm{Cl}(1)$	$15(1)$	$24(1)$	$21(1)$	$-1(1)$	$6(1)$	$-3(1)$
$\mathrm{Cl}(2)$	$20(1)$	$13(1)$	$25(1)$	$0(1)$	$6(1)$	$-1(1)$
$\mathrm{Si}(1)$	$10(1)$	$18(1)$	$19(1)$	$2(1)$	$3(1)$	$0(1)$
$\mathrm{B}(1)$	$13(1)$	$12(1)$	$17(1)$	$-3(1)$	$5(1)$	$1(1)$
$\mathrm{N}(1)$	$10(1)$	$14(1)$	$14(1)$	$0(1)$	$3(1)$	$0(1)$
$\mathrm{C}(1)$	$13(1)$	$19(1)$	$14(1)$	$-4(1)$	$-1(1)$	$-1(1)$
$\mathrm{N}(2)$	$9(1)$	$13(1)$	$13(1)$	$1(1)$	$1(1)$	$0(1)$
$\mathrm{C}(2)$	$15(1)$	$21(1)$	$14(1)$	$-1(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(3)$	$20(1)$	$29(1)$	$13(1)$	$2(1)$	$-2(1)$	$-4(1)$
$\mathrm{C}(4)$	$16(1)$	$35(1)$	$13(1)$	$-8(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(5)$	$16(1)$	$22(1)$	$16(1)$	$-6(1)$	$0(1)$	$1(1)$
$\mathrm{C}(6)$	$18(1)$	$22(1)$	$21(1)$	$-3(1)$	$2(1)$	$-5(1)$
$\mathrm{C}(7)$	$21(1)$	$26(1)$	$26(1)$	$-1(1)$	$-3(1)$	$7(1)$
$\mathrm{C}(8)$	$41(1)$	$40(1)$	$22(1)$	$11(1)$	$1(1)$	$-11(1)$
$\mathrm{C}(9)$	$24(1)$	$62(1)$	$22(1)$	$-14(1)$	$7(1)$	$-2(1)$
$\mathrm{C}(10)$	$33(1)$	$23(1)$	$27(1)$	$-11(1)$	$-3(1)$	$8(1)$
$\mathrm{C}(11)$	$10(1)$	$13(1)$	$13(1)$	$1(1)$	$1(1)$	$1(1)$
$\mathrm{C}(12)$	$14(1)$	$14(1)$	$18(1)$	$-2(1)$	$3(1)$	$2(1)$
$\mathrm{C}(13)$	$19(1)$	$11(1)$	$21(1)$	$-1(1)$	$2(1)$	$1(1)$
$\mathrm{C}(14)$	$17(1)$	$15(1)$	$19(1)$	$3(1)$	$3(1)$	$-3(1)$
$\mathrm{C}(15)$	$10(1)$	$16(1)$	$14(1)$	$2(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(16)$	$10(1)$	$19(1)$	$14(1)$	$0(1)$	$0(1)$	$0(1)$
$\mathrm{C}(17)$	$14(1)$	$20(1)$	$17(1)$	$2(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(18)$	$13(1)$	$30(1)$	$14(1)$	$4(1)$	$3(1)$	$-2(1)$
$\mathrm{C}(19)$	$19(1)$	$30(1)$	$17(1)$	$-4(1)$	$6(1)$	$2(1)$
$\mathrm{C}(20)$	$18(1)$	$20(1)$	$19(1)$	$-3(1)$	$6(1)$	$0(1)$
$\mathrm{C}(21)$	$12(1)$	$18(1)$	$15(1)$	$-1(1)$	$0(1)$	$0(1)$
$\mathrm{C}(22)$	$11(1)$	$16(1)$	$17(1)$	$0(1)$	$5(1)$	$1(1)$
$\mathrm{C}(23)$	$20(1)$	$16(1)$	$25(1)$	$2(1)$	$2(1)$	$4(1)$
$\mathrm{C}(24)$	$14(1)$	$17(1)$	$21(1)$	$-3(1)$	$4(1)$	$-1(1)$

Appendix

$\mathrm{C}(25)$	$21(1)$	$24(1)$	$24(1)$	$-8(1)$	$4(1)$	$-6(1)$
$\mathrm{C}(26)$	$15(1)$	$26(1)$	$28(1)$	$-2(1)$	$3(1)$	$-6(1)$
$\mathrm{C}(27)$	$15(1)$	$31(1)$	$22(1)$	$7(1)$	$1(1)$	$3(1)$
$\mathrm{C}(28)$	$16(1)$	$22(1)$	$33(1)$	$5(1)$	$9(1)$	$5(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for catalyst 27.

	x	y	z	U(eq)
H(6A)	444	7864	2110	31
H(6B)	1111	6942	1966	31
H(6C)	-211	7336	1469	31
H(7A)	890	9971	1326	37
H(7B)	-40	9218	1599	37
H(7C)	-256	9427	833	37
H(8A)	2302	9657	-87	52
H(8B)	3944	9716	279	52
$\mathrm{H}(8 \mathrm{C})$	2652	10181	585	52
H(9A)	5287	7489	474	53
H(9B)	4966	8394	106	53
H(9C)	4019	7560	-138	53
H(10A)	3062	6285	728	43
H(10B)	2751	6263	1470	43
$\mathrm{H}(10 \mathrm{C})$	4348	6496	1311	43
H(12)	4233	6437	2490	19
H(13)	2961	5425	3020	20
H(14)	1448	5895	3764	20
H(17)	167	6528	4542	21
H(18)	-989	7330	5281	23
H(19)	-788	8834	5299	26
H(20)	547	9545	4591	23
$\mathrm{H}(22 \mathrm{~A})$	1601	9123	2569	17
H(22B)	208	8808	2880	17
H(23A)	141	10174	3413	31
H(23B)	-57	10276	2634	31
H(23C)	1484	10488	3063	31
H(24A)	4378	8954	4047	21
H(24B)	3982	9590	3440	21
H(25A)	2678	10492	4092	35
H(25B)	4354	10402	4408	35
H(25C)	3125	9862	4702	35
H(26A)	7515	9279	2780	35
H(26B)	7732	9143	3556	35
H(26C)	6244	9548	3191	35
H(27A)	5549	7830	4095	34
H(27B)	7198	7516	4095	34
$\mathrm{H}(27 \mathrm{C})$	5871	6913	3788	34
H(28A)	6913	6732	2547	35
H(28B)	8345	7239	2868	35
$\mathrm{H}(28 \mathrm{C})$	7485	7545	2179	35

Table 6. Torsion angles [deg] for catalyst 27.

$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	-138.00(11)
$\mathrm{C}(27)-\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	-17.99(13)
$\mathrm{C}(28)-\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	96.76(12)
$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{Ti}(1)$	56.35(11)
$\mathrm{C}(27)-\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{Ti}(1)$	176.35(8)
$\mathrm{C}(28)-\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{Ti}(1)$	-68.89(10)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	111.03(13)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	-147.55(13)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	-12.3(2)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	15.80(16)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	-57.56(16)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	-41.04(14)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	-6.64(14)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{Si}(1)$	-87.01(7)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{Si}(1)$	14.41(8)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{Si}(1)$	149.61(11)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{Si}(1)$	177.76(7)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{Si}(1)$	104.40(9)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{Si}(1)$	120.92(8)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{Si}(1)$	155.32(8)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	-98.52(11)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	152.23(9)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	18.88(13)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	78.43(11)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	115.76(15)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	36.97(10)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	145.71(10)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	36.46(11)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-96.89(10)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-37.33(10)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-78.80(11)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-115.76(15)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	24.55(15)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	-84.70(15)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	141.95(13)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	-158.50(17)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	-121.16(19)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	160.04(17)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	123.07(19)
$\mathrm{C}(21)-\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	-175.48(15)
$\mathrm{C}(22)-\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	71.43(19)
$\mathrm{C}(24)-\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	-54.0(2)
$\mathrm{C}(21)-\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(15)$	6.29(15)
$\mathrm{C}(22)-\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(15)$	-106.80(14)
$\mathrm{C}(24)-\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(15)$	127.80(15)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	0.26(19)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-168.79(16)
$\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	64.44(12)

$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	171.97(16)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	2.9(3)
$\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	-123.85(17)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Ti}(1)$	-64.18(11)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Ti}(1)$	126.77(17)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-158.00(10)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	96.81(10)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	0.69(12)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-37.71(10)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-78.76(11)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-115.89(15)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	-42.11(12)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	-147.30(10)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	116.59(9)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	115.89(15)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	78.18(11)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	37.13(10)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	81.26(16)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	-23.94(15)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	-120.05(14)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	-120.7(2)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	-158.45(18)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	160.50(18)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	123.4(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	0.31(19)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-171.52(16)
$\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	65.91(12)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	179.22(17)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	7.4(3)
$\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	-115.18(18)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Ti}(1)$	-65.60(12)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Ti}(1)$	122.57(17)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	43.90(18)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	-82.24(10)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	-179.47(9)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	115.12(15)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	78.11(11)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	37.17(9)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-71.22(18)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	162.64(10)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	65.41(10)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-115.12(15)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-37.02(10)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-77.95(11)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	166.06(14)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	39.91(16)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	-57.31(16)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	122.2(2)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	-122.7(2)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	-159.74(18)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	159.33(18)

$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-0.8(2)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-179.66(17)
$\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	64.90(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	171.29(17)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	-7.6(3)
$\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	-123.06(18)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Ti}(1)$	-65.65(12)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Ti}(1)$	115.44(18)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	29.83(13)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-136.90(9)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	130.55(10)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-115.90(15)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-78.22(11)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-36.93(10)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	145.73(10)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	-21.00(12)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	-113.55(10)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	37.68(10)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	115.90(15)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	78.97(11)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(9)$	-91.58(19)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(9)$	101.70(17)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(9)$	9.15(17)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(9)$	122.7(2)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(9)$	160.4(2)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(9)$	-121.4(2)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(9)$	-158.3(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	0.92(19)
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	-171.31(16)
$\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	64.78(12)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	171.79(16)
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	-0.5(3)
$\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	-124.36(17)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Ti}(1)$	-63.85(12)
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Ti}(1)$	123.91(18)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-0.73(19)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	168.20(16)
$\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-64.26(12)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(10)$	-171.16(17)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(10)$	-2.2(3)
$\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(10)$	125.31(18)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{Ti}(1)$	63.53(11)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{Ti}(1)$	-127.54(17)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-157.49(10)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	71.51(13)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-50.47(10)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	37.43(10)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	78.90(11)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	116.29(15)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	86.23(11)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	-44.77(14)

$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	$-166.75(9)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	$-78.86(11)$
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	$-37.39(10)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	$-116.29(15)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(10)$	$-38.29(18)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(10)$	$-169.29(13)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(10)$	$68.73(17)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(10)$	$156.62(19)$
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(10)$	$-161.9(2)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(10)$	$119.2(2)$
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(10)$	$-124.5(2)$
$\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$0.5(2)$
$\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$-177.57(15)$
$\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{N}(1)$	$-174.60(14)$
$\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{N}(1)$	$7.3(2)$
$\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{N}(2)$	$100.58(15)$
$\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{N}(2)$	$-96.05(18)$
$\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$-74.62(16)$
$\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$88.76(17)$
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$0.4(2)$
$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$175.65(15)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-0.3(3)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-0.7(2)$
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(14)$	$-1.5(2)$
$\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(14)$	$176.96(15)$
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	$176.59(14)$
$\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	$-4.92(17)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(2)$	$1.6(2)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-176.22(16)$
$\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-177.96(15)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$0.1(3)$
$\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(21)$	$0.98(19)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(21)$	$179.01(16)$
$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-0.2(2)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$178.65(16)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$0.6(2)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$-0.1(3)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$-1.0(3)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	$1.3(2)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{B}(1)$	$176.98(17)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$	$-0.8(2)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$	$-179.77(14)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{B}(1)$	$-177.34(15)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{B}(1)$	$3.68(19)$
$\mathrm{C}(22)-\mathrm{B}(1)-\mathrm{C}(21)-\mathrm{C}(20)$	$-73.1(2)$
$\mathrm{C}(24)-\mathrm{B}(1)-\mathrm{C}(21)-\mathrm{C}(20)$	$61.2(2)$
$\mathrm{N}(2)-\mathrm{B}(1)-\mathrm{C}(21)-\mathrm{C}(20)$	$178.46(17)$
$\mathrm{C}(22)-\mathrm{B}(1)-\mathrm{C}(21)-\mathrm{C}(16)$	$102.66(15)$
$\mathrm{C}(24)-\mathrm{B}(1)-\mathrm{C}(21)-\mathrm{C}(16)$	$-123.01(15)$
$\mathrm{N}(2)-\mathrm{B}(1)-\mathrm{C}(21)-\mathrm{C}(16)$	$-5.74(16)$
$\mathrm{C}(21)-\mathrm{B}(1)-\mathrm{C}(22)-\mathrm{C}(23)$	$81.817)$

Appendix

$\mathrm{C}(24)-\mathrm{B}(1)-\mathrm{C}(22)-\mathrm{C}(23)$	$-53.0(2)$
$\mathrm{N}(2)-\mathrm{B}(1)-\mathrm{C}(22)-\mathrm{C}(23)$	$-175.46(13)$
$\mathrm{C}(21)-\mathrm{B}(1)-\mathrm{C}(24)-\mathrm{C}(25)$	$-47.2(2)$
$\mathrm{C}(22)-\mathrm{B}(1)-\mathrm{C}(24)-\mathrm{C}(25)$	$84.8(2)$
$\mathrm{N}(2)-\mathrm{B}(1)-\mathrm{C}(24)-\mathrm{C}(25)$	$-156.09(14)$

Appendix
5.4 Crystal structure of complex 34

34

Appendix

Table 1. Crystal data and structure refinement for catalyst 34.

Identification code	Catalyst 34
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NTi}$
Formula weight	366.13
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system, space group	orthorhombic, Pb ca
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=13.2542(12) \AA \text { alpha }=90 \mathrm{deg} . \\ & \mathrm{b}=11.6665(9) \AA \text { beta }=90 \text { deg. } \\ & \mathrm{c}=21.732(2) \AA \text { gamma }=90 \mathrm{deg} . \end{aligned}$
Volume	$3360.3(5) \AA^{3}$
Z, Calculated density	$8,1.447 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.822 \mathrm{~mm}^{-1}$
$F(000)$	1504
Crystal size	$0.41 \times 0.32 \times 0.09 \mathrm{~mm}$
Theta range for data collection	1.87 to 28.44 deg .
Limiting indices	$-17<=\mathrm{h}<=17,-15<=\mathrm{k}<=14,-28<=\mathrm{l}<=28$
Reflections collected / unique	$27226 / 4148[\mathrm{R}(\mathrm{int})=0.0289]$
Completeness to theta $=28.44^{\circ}$	98.0 \%
Max. and min. transmission	0.9267 and 0.7292
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4148 / 0 / 200
Goodness-of-fit on F^{2}	1.045
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0278, \mathrm{wR} 2=0.0673$
R indices (all data)	$\mathrm{R} 1=0.0403, \mathrm{wR} 2=0.0715$
Largest diff. peak and hole	0.356 and -0.304 e. \AA^{-3}

Appendix

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for catalyst 34.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Ti}(1)$	$681(1)$	$3402(1)$	$3136(1)$	$14(1)$
$\mathrm{Cl}(1)$	$1674(1)$	$2119(1)$	$2631(1)$	$28(1)$
$\mathrm{Cl}(2)$	$-431(1)$	$3895(1)$	$2380(1)$	$25(1)$
$\mathrm{N}(1)$	$-17(1)$	$2483(1)$	$3702(1)$	$16(1)$
$\mathrm{C}(1)$	$752(1)$	$5367(1)$	$3372(1)$	$29(1)$
$\mathrm{C}(2)$	$1657(1)$	$5074(1)$	$3072(1)$	$28(1)$
$\mathrm{C}(3)$	$2184(1)$	$4298(2)$	$3446(1)$	$32(1)$
$\mathrm{C}(4)$	$1599(1)$	$4098(2)$	$3977(1)$	$29(1)$
$\mathrm{C}(5)$	$713(1)$	$4755(1)$	$3930(1)$	$27(1)$
$\mathrm{C}(6)$	$-86(1)$	$2345(1)$	$4356(1)$	$16(1)$
$\mathrm{C}(7)$	$-877(1)$	$2835(1)$	$4685(1)$	$18(1)$
$\mathrm{C}(8)$	$-918(1)$	$2680(1)$	$5321(1)$	$19(1)$
$\mathrm{C}(9)$	$-175(1)$	$2052(1)$	$5624(1)$	$18(1)$
$\mathrm{C}(10)$	$620(1)$	$1555(1)$	$5296(1)$	$16(1)$
$\mathrm{C}(11)$	$647(1)$	$1702(1)$	$4656(1)$	$17(1)$
$\mathrm{C}(12)$	$1438(1)$	$914(1)$	$5615(1)$	$17(1)$
$\mathrm{C}(13)$	$1768(1)$	$1257(1)$	$6198(1)$	$19(1)$
$\mathrm{C}(14)$	$2536(1)$	$675(1)$	$6497(1)$	$23(1)$
$\mathrm{C}(15)$	$2986(1)$	$-269(1)$	$6220(1)$	$24(1)$
$\mathrm{C}(16)$	$2669(1)$	$-621(1)$	$5641(1)$	$23(1)$
$\mathrm{C}(17)$	$1898(1)$	$-30(1)$	$5340(1)$	$20(1)$
$\mathrm{C}(18)$	$-582(1)$	$1587(1)$	$3365(1)$	$31(1)$

Table 3. Bond lengths [A°] and angles [deg] for catalyst 34.

$\mathrm{Ti}(1)-\mathrm{N}(1)$	$1.8750(12)$
$\mathrm{Ti}(1)-\mathrm{Cl}(1)$	$2.2759(5)$
$\mathrm{Ti}(1)-\mathrm{Cl}(2)$	$2.2810(4)$
$\mathrm{Ti}(1)-\mathrm{C}(5)$	$2.3384(15)$
$\mathrm{Ti}(1)-\mathrm{C}(4)$	$2.3400(15)$
$\mathrm{Ti}(1)-\mathrm{C}(2)$	$2.3446(16)$
$\mathrm{Ti}(1)-\mathrm{C}(3)$	$2.3489(16)$
$\mathrm{Ti}(1)-\mathrm{C}(1)$	$2.3505(16)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.4327(17)$
$\mathrm{N}(1)-\mathrm{C}(18)$	$1.4803(18)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.407(2)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.409(2)$
$\mathrm{C}(1)-\mathrm{H}(1)$	0.9500
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.404(3)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.409(2)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.406(3)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(11)$	$1.390(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.393(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.3942(19)$
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.391(2)$
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.398(2)$
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.4032(19)$
$\mathrm{C}(10)-\mathrm{C}(12)$	$1.4880(19)$
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500
$\mathrm{C}(12)-\mathrm{C}(17)$	$1.394(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.3978(19)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.386(2)$
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.389(2)$
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.388(2)$
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.395(2)$
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9800
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(1)$	$\mathrm{N})$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$

$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)$	$84.90(5)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)$	$142.12(5)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)$	$111.92(5)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)$	$86.74(5)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)$	$107.69(5)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)$	$144.19(5)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(4)$	$34.98(6)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$141.91(5)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$101.48(4)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$95.95(5)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$58.19(5)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(2)$	$58.08(6)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)$	$119.00(6)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)$	$86.59(5)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)$	$129.98(5)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(3)$	$58.17(6)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(3)$	$34.97(6)$
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)$	$34.80(6)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)$	$115.77(5)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)$	$136.32(4)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)$	$86.40(5)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(1)$	$34.97(6)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(1)$	$58.05(6)$
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)$	$34.88(6)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(1)$	$57.95(6)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(18)$	$112.27(11)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{Ti}(1)$	$138.24(9)$
$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{Ti}(1)$	$109.19(9)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$	$107.91(16)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Ti}(1)$	$72.33(9)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{Ti}(1)$	$72.04(9)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	126.0
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{H}(1)$	126.0
$\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	121.3
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$108.18(15)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Ti}(1)$	$72.77(9)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Ti}(1)$	$72.79(9)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	125.9
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	125.9
$\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	120.3
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$107.90(16)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Ti}(1)$	$72.43(9)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Ti}(1)$	$72.17(9)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	126.0
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	126.0
$\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{H}(3)$	121.1
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$108.10(15)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Ti}(1)$	$72.45(9)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Ti}(1)$	$125.96(9)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	125.9

$\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{H}(4)$	120.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	107.89(14)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Ti}(1)$	72.57(9)
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{Ti}(1)$	72.98(9)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	126.1
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{H}(5)$	126.1
$\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{H}(5)$	120.2
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)$	120.40(13)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{N}(1)$	118.80(12)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(1)$	120.80(13)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	119.03(13)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	120.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	120.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	120.66(13)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	119.7
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.7
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.70(13)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	119.7
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.7
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	118.28(13)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	121.41(13)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(12)$	120.29(13)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	120.92(13)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{H}(11)$	119.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.5
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)$	118.47(13)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(10)$	121.13(13)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(10)$	120.39(13)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	120.98(14)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	119.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119.5
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	120.03(14)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.0
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	120.0
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	119.84(14)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	120.1
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	120.1
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	119.96(15)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	120.0
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	120.0
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	120.72(14)
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{H}(17)$	119.6
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	119.6
$\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5

Appendix

Table 4.Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for catalyst 34.
The anisotropic displacement factor exponent takes the form: $-2 \mathrm{pi}^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U} 11+\ldots+2 \mathrm{hk}\right.$ a* ${ }^{*}$ U12

		U11	U22	U33	U23	U13
U12						
Ti(1)	$15(1)$	$16(1)$	$12(1)$	$1(1)$	$1(1)$	$-1(1)$
$\mathrm{Cl}(1)$	$33(1)$	$29(1)$	$24(1)$	$1(1)$	$6(1)$	$14(1)$
$\mathrm{Cl}(2)$	$21(1)$	$37(1)$	$18(1)$	$7(1)$	$-1(1)$	$4(1)$
$\mathrm{N}(1)$	$20(1)$	$17(1)$	$13(1)$	$0(1)$	$0(1)$	$-3(1)$
$\mathrm{C}(1)$	$38(1)$	$18(1)$	$30(1)$	$-3(1)$	$7(1)$	$-8(1)$
$\mathrm{C}(2)$	$33(1)$	$27(1)$	$25(1)$	$-1(1)$	$8(1)$	$-14(1)$
$\mathrm{C}(3)$	$20(1)$	$42(1)$	$33(1)$	$-4(1)$	$-1(1)$	$-13(1)$
$\mathrm{C}(4)$	$30(1)$	$37(1)$	$20(1)$	$-1(1)$	$-6(1)$	$-16(1)$
$\mathrm{C}(5)$	$36(1)$	$24(1)$	$22(1)$	$-8(1)$	$9(1)$	$-13(1)$
$\mathrm{C}(6)$	$19(1)$	$16(1)$	$14(1)$	$0(1)$	$0(1)$	$-5(1)$
$\mathrm{C}(7)$	$20(1)$	$16(1)$	$19(1)$	$0(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(8)$	$19(1)$	$20(1)$	$19(1)$	$-3(1)$	$3(1)$	$0(1)$
$\mathrm{C}(9)$	$23(1)$	$20(1)$	$12(1)$	$-2(1)$	$1(1)$	$-3(1)$
$\mathrm{C}(10)$	$18(1)$	$14(1)$	$16(1)$	$0(1)$	$-1(1)$	$-3(1)$
$\mathrm{C}(11)$	$19(1)$	$17(1)$	$15(1)$	$-1(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(12)$	$17(1)$	$19(1)$	$15(1)$	$4(1)$	$1(1)$	$-4(1)$
$\mathrm{C}(13)$	$20(1)$	$23(1)$	$15(1)$	$1(1)$	$1(1)$	$-5(1)$
$\mathrm{C}(14)$	$20(1)$	$33(1)$	$15(1)$	$5(1)$	$-1(1)$	$-8(1)$
$\mathrm{C}(15)$	$17(1)$	$30(1)$	$24(1)$	$11(1)$	$-2(1)$	$-4(1)$
$\mathrm{C}(16)$	$22(1)$	$22(1)$	$26(1)$	$4(1)$	$2(1)$	$2(1)$
$\mathrm{C}(17)$	$21(1)$	$21(1)$	$17(1)$	$2(1)$	$-1(1)$	$-2(1)$
$\mathrm{C}(18)$	$48(1)$	$28(1)$	$15(1)$	$-4(1)$	$1(1)$	$-21(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for catalyst 34.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(1)$	256	5886	3224	34
$\mathrm{H}(2)$	1874	5353	2683	34
$\mathrm{H}(3)$	2823	3967	3358	38
$\mathrm{H}(4)$	1773	3605	4308	35
$\mathrm{H}(5)$	182	4781	4223	33
$\mathrm{H}(7)$	-1382	3269	4480	22
$\mathrm{H}(8)$	-1457	3005	5550	23
$\mathrm{H}(9)$	-209	1961	6058	22
$\mathrm{H}(11)$	1173	1357	4424	20
$\mathrm{H}(13)$	1460	1897	6392	23
$\mathrm{H}(14)$	2756	921	6891	27
$\mathrm{H}(15)$	3509	-671	6426	29
$\mathrm{H}(16)$	2977	-1265	5450	28
$\mathrm{H}(17)$	1685	-273	4944	24
$\mathrm{H}(18 \mathrm{~A})$	-336	829	3488	46
$\mathrm{H}(18 \mathrm{~B})$	-481	1688	2921	46
$\mathrm{H}(18 \mathrm{C})$	-1302	1650	3461	46

Table 6.Torsion angles [deg] for catalyst 34.

$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$114.88(14)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$-138.96(14)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$-27.56(15)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$7.46(15)$
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$-13.9(2)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$21.53(17)$
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$-44.50(16)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(18)$	$-58.17(11)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(18)$	$48.00(11)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(18)$	$159.39(11)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(18)$	$-165.58(11)$
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(18)$	$173.06(11)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(18)$	$-151.51(11)$
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(18)$	$142.45(11)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$146.69(10)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-3.52(13)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-105.78(10)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$116.27(15)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$78.75(11)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$37.25(10)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$30.42(12)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$-119.79(9)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$137.95(10)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$-37.52(10)$
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$-116.27(15)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$-79.02(11)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-0.95(18)$
$\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-64.65(11)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Ti}(1)$	$63.70(11)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$62.69(14)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-66.50(10)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-169.09(9)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$78.76(11)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$37.31(10)$
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$115.98(14)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$-53.29(15)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$177.52(9)$
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$74.93(10)$
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$-37.22(10)$
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$-78.66(11)$
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$-115.98(14)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$0.76(18)$
$\mathrm{Ti}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-63.91(11)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Ti}(1)$	$64.66(11)$
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$-141.20(9)$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$115.80(10)$

$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	14.22(12)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	-78.82(11)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	-116.14(16)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	-37.34(10)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-25.06(13)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-128.06(11)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	130.37(10)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	37.33(10)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	116.14(16)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	78.80(11)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-0.27(18)
$\mathrm{Ti}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-64.35(11)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Ti}(1)$	64.08(11)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-85.76(10)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	171.60(8)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	29.78(13)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	78.88(10)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	116.01(15)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	37.52(9)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	158.22(11)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	55.59(11)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	-86.23(13)
$\mathrm{C}(5)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	-116.01(15)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	-37.13(11)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	-78.50(11)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	-0.31(18)
$\mathrm{Ti}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	-64.94(11)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Ti}(1)$	64.62(11)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$0.78(18)$
$\mathrm{Ti}(1)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	64.67(11)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{Ti}(1)$	-63.89(11)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	91.60(10)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-13.09(13)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-161.74(8)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-78.53(10)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-37.32(10)
$\mathrm{C}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-115.64(14)
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	-152.75(11)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	102.55(11)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	-46.10(11)
$\mathrm{C}(4)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	115.64(14)
$\mathrm{C}(2)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	37.12(10)
$\mathrm{C}(3)-\mathrm{Ti}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	78.33(11)
$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	91.54(16)
$\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	-81.36(18)
$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	-87.84(17)
$\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	99.26(17)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	0.6(2)
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	179.96(13)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	0.5(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-0.7(2)

```
C(8)-C(9)-C(10)-C(11) -0.2(2)
C(8)-C(9)-C(10)-C(12) 177.94(13)
C(7)-C(6)-C(11)-C(10) -1.5(2)
N(1)-C(6)-C(11)-C(10) 179.10(12)
C(9)-C(10)-C(11)-C(6) 1.3(2)
C(12)-C(10)-C(11)-C(6) -176.87(13)
C(9)-C(10)-C(12)-C(17) 146.18(14)
C(11)-C(10)-C(12)-C(17) -35.7(2)
C(9)-C(10)-C(12)-C(13) -34.3(2)
C(11)-C(10)-C(12)-C(13) 143.78(14)
C(17)-C(12)-C(13)-C(14) 0.2(2)
C(10)-C(12)-C(13)-C(14) -179.32(13)
C(12)-C(13)-C(14)-C(15) -0.5(2)
C(13)-C(14)-C(15)-C(16) 0.5(2)
C(14)-C(15)-C(16)-C(17) -0.2(2)
C(13)-C(12)-C(17)-C(16) 0.2(2)
C(10)-C(12)-C(17)-C(16) 179.65(13)
C(15)-C(16)-C(17)-C(12) -0.2(2)
```


Appendix

Figure 5.1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 7 in CDCl_{3} at 298 K .

Figure 5.2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Appendix

Figure 5.3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9 in CDCl_{3} at 298 K .

Figure 5.4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Appendix

Figure 5.5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 5}$ in CDCl_{3} at 298 K .

Figure 5.6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Figure 5.7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 13 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Figure 5.8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 16 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Appendix

Figure 5.9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 17 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Figure 5.10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Figure 5.11. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 19 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Figure 5.12. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 20 in CDCl_{3} at 298 K .

Appendix

Figure 5.13. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 22 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Figure 5.14. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 23 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Appendix

Figure 5.15. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 4}$ in CDCl_{3} at 298 K .

Figure 5.16. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 25 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Appendix

Figure 5.17. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 26 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Appendix

Figure 5.18. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 27 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Figure 5.19. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 28 in CDCl_{3} at 298 K .

Appendix

Figure 5.20. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 29 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Figure 5.21. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Appendix

Figure 5.22. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Figure 5.23. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 2}$ in CDCl_{3} at 298 K .

Appendix

hVG-2000-83

Figure 5.24. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 33 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Figure 5.25. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 34 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

Figure 5.26. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 6}$ in CDCl_{3} at 298 K .

Figure 5.27. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 7}$ in CDCl_{3} at 298 K .

Appendix

Figure 5.28. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 5}$ in CDCl_{3} at 298 K .

Figure 5.29. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 38 in CDCl_{3} at 298 K .

Appendix

Figure 5.30. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 39 in CDCl_{3} at 298 K .

Figure 5.31. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 40 in CDCl_{3} at 298 K .

Appendix

Figure 5.32. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 1}$ in CDCl_{3} at 298 K .

Figure 5.33. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 43 in CDCl_{3} at 298 K .

Appendix

Figure 5.34. High temperature GPC calibration curve.

Appendix

DSCs of Polyethylene

DSCs of poly(E-co-CPE)

DSCs of poly(E-co-NBE)

