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Summary
Within the framework of plane strain nonlinear elasticity, we present a
discussion on the stability properties of various Enhanced Assumed Strain (EAS)
finite element formulations with respect to physical and artificial (hourglassing)
instabilities. By means of a linearized buckling analysis we analyze the influence
of element formulations on the geometric stiffness and provide new mechanical
insights into the hourglassing phenomenon. Based on these findings, a simple
strategy to avoid hourglassing for compression problems is proposed. It is based
on a modification of the discrete Green-Lagrange strain, simple to implement
and generally applicable. The stabilization concept is tested for various popular
element formulations (namely EAS elements and the assumed stress element by
Pian and Sumihara). A further aspect of the present contribution is a discussion
on proper benchmarking of finite elements in the context of hourglassing. We
propose a simple bifurcation problem for which analytical solutions are readily
available in the literature. It is tailored for an in-depth stability analysis of finite
elements and allows a reliable assessment of its stability properties.
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1 INTRODUCTION

The incentive for the present work emanates from the unsolved problem of artificial instabilities encountered in large
strain nonlinear finite element analysis in the field of solid and structural mechanics. The problem that is addressed is
briefly summarized in the following.

Standard Galerkin finite elements may suffer from locking and perform too stiff in certain situations. One of the first
ideas to remove locking was to use reduced integration but it was soon detected that this may lead to artificial insta-
bilities.1,2 Such artificial instabilities are often denoted as hourglassing, because in the pattern of the artificial buckling
modes, pairs of elements resemble the shape of an hourglass. Later, hourglass stabilization has been developed to alle-
viate this problem, see for example, References 3,4. In the meantime, numerous alternative “unlocking” schemes have
been developed, which are mostly stable in the linear case. For the important class of mixed finite elements in the linear
regime, numerical stability can be guaranteed by the celebrated inf-sup-condition.5

In the context of nonlinear problems, however, the flexibility introduced by unlocking schemes may give rise to
unphysical unstable configurations, even if full integration is used and the elements are stable in the linear case. This
was first described by Wriggers and Reese6 and De Souza Neto et al.7 The problem appears to be intrinsic to many
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typical approaches that are taken to remove locking and is not an exclusive quality of only a few particular strategies
in finite element technology. To the authors’ best knowledge, in contrast to the linear case, there is no mathematical
theory for numerical stability for general nonlinear problems. One of the reasons is that the exact solution may contain
physical instabilities, such that naively requiring the finite element model to be stable, over all ranges of deformation,
is not appropriate. Accordingly, finite element models should be able to capture physical instabilities, without present-
ing extra unphysical instabilities associated to numerical pathologies. The delicate distinction of pathological numerical
instabilities and physical instabilities is one of the key challenges tackled in this paper.

Similar to physical instabilities, artificial, unphysical instabilities can be induced by geometric or material nonlinear-
ity, see Reese et al.8,9 When trying to analyze the underlying effects, it is crucial to separate these two classes of nonlinear
problems. In the following, we will therefore refer to geometric hourglassing for the former and material hourglassing for
the latter case.

Despite the considerable amount of literature, the development of nonlinear finite elements has not reached the same
level of maturity as it is the case in the linear regime. The following literature review is restricted to some selected works
and we refer to the recent overview by Pfefferkorn and Betsch10 as well as Chap. 10 of Wriggers11 for further references.

In analogy to geometric (structural) instabilities we introduce the term geometric hourglassing and relate it to artificial
instabilities that occur under compressive stress states, triggered by negative geometric stiffness. First investigations by
Simo and Armero12 and Wriggers and Reese6 showed that this type of hourglassing occurs for Enhanced Assumed Strain
elements (EAS)13 in the presence of large compressive strain and may be identified by negative eigenvalues of the element
stiffness matrix. For rectangular elements it can be shown that the strain enhancement that eliminates shear locking is
responsible for this pathology.

From an engineering viewpoint, this type of instability can be associated with “buckling on element level”, where
the negative geometric stiffness triggers geometric hourglassing, see for example, Reese et al.8 and Wall et al.14 In Refer-
ence 14 it is shown that the well-known hourglass patterns can be explained by the violation of inter-element continuity,
along with the equivalence of EAS elements and the method of incompatible modes. As the denomination “geometric
hourglassing” suggests, this type of instabilities is strongly influenced by the element’s geometric properties. Thus, for
elements with a large aspect ratio, geometric hourglassing can already occur in small strain regimes, as descriptively
shown in Sussmann and Bathe,15 see also the aspect ratio dependent modal analysis in Armero.16 Geometric hourglass-
ing is not only restricted to EAS elements, but is also observed for other element formulations such as assumed stress
elements17 and reduced integrated elements.18 As shown for the compression problem in Auricchio et al.19 (Sec. 6.1.2),
some displacement-pressure type formulations may also suffer from geometric hourglassing, although less pronounced
compared to standard EAS elements.

Many remedies against geometric hourglassing are, explicitly or implicitly, based on a modification of the geometric
tangent. For the classical EAS formulation,12 Korelc and Wriggers20 proposed a simple modification of the enhanced
shear strain, such that the geometric stiffness parts that trigger hourglassing are eliminated (cf. Section 2 in this work).
The element shows no geometric hourglassing, but further technical modifications are required to ensure objectivity, see
for example, References 10,21. With the same outcome, Wall et al.14 constructed a variational, deformation dependent
stabilization procedure that eliminates the critical parts of the geometric stiffness for a special two-dimensional case. A
similar philosophy was pursued by Reese et al.8 in the context of reduced integrated elements, combined with physical
stabilization. They proposed to neglect the (destabilizing) geometric part of the hourglass “stabilization”. Other elements
that are free from geometric hourglassing are the Cosserat point element by Nadler et al.22 and the EAS formulation
by Mueller-Hoeppe et al.,23 both incorporating linear elasticity theory for the construction of the higher order stiffness.
However, in the present study we propose a more generally applicable concept with improved performance for nonlinear
bending dominated problems.

Since the remedy of shear locking is critical with respect to geometric hourglassing, an obvious way to alleviate it
is to simply accept shear locking and rely on formulations that exclusively deal with volumetric locking, for example,
displacement-pressure type formulations24 or reduced EAS or mixed formulations.17,25

Apart from EAS related literature, other recent contributions to element technology for large strain problems are
available. The authors want to highlight in particular the triangular element formulations with edge degrees of freedom
of Neunteufel et al.,26 the nonconforming formulations of Bayat et al.27 as well as formulations based on a polyconvex
structure of the strain energy functions.28,29 Each of the formulations show a good performance for the considered set of
large strain compression problems. However, these discretization concepts are out of scope herein.

The term material hourglassing will be used to describe artificial instabilities that arise due to material nonlineari-
ties, usually accompanied by strain softening, that is, horizontal tangents in the stress strain relation. These phenomena
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are closely related to (global) physical instabilities as well as (local) material instability of the underlying constitutive
model, see for example, Petryk30 or the descriptive discussion in Chen and Baker.31 In other words, problems that suffer
from material hourglass formation are also susceptible to physical material-induced instabilities and an hourglass study
requires consideration of both phenomena.

Material hourglassing, as opposed to geometric hourglassing, is driven by a negative material stiffness. In the context
of EAS elements it was shown by Armero16 that the strain enhancement that eliminates volumetric locking is responsi-
ble for this type of numerical instability. Typical cases in which material hourglassing is observed for EAS elements are
inelastic problems, such as the necking simulations of stretched specimens.32,33 However, also elastic simulations under
certain tensile stress conditions can exhibit material hourglassing, as shown in Reese et al.8 (Sec. 4.5.2). Besides EAS ele-
ments, displacement-pressure type formulations (e.g., Q1/P0) may also suffer from material hourglassing, although less
pronounced, see for example, References 12,34 or Auricchio et al.19,35 In this context it was shown by Schröder et al.24 that
numerical stability of two-field formulations, with an independent pressure field as additional unknown, can depend on
the choice of the penalty function that weakly enforces the volume constraint, whereas the classical three-field formu-
lation of Simo et al.36 is more robust. Interestingly, the combined formulation of Q1/P0 and EAS of Reference 16 shows
promising results for 2D problems but fails in 3D simulations, as recently shown by Hille et al.37

Resolving the issue of material hourglassing remains rather laborious and many approaches involve a reintroduction
of locking. In order to alleviate material hourglassing, Simo et al.32 proposed higher order integration. This, however,
appears to be a pyrrhic victory, because the higher order integration introduces certain locking effects that only appear
in nonlinear problems. These higher order, nonlinear locking phenomena have been detected only recently by Willmann
et al.38 In fact, it is this nonlinear locking phenomenon that produces the stabilizing effect.

With a similar motivation Glaser and Armero21 proposed to stabilize EAS elements via a variational control term,
penalizing the EAS-induced volumetric energy, see also References 39,40. This typically requires a proper choice for the
penalty factor, that is, a balance between the numerical model being too stiff (reintroducing locking) and too flexible
(hourglassing). An ad hoc stabilization was proposed by Reese41 by enforcing a positive definite tangent and thus ensuring
a positive hourglass (stabilization) stiffness. Typical drawbacks of this approach are its parameter dependency as well as
loss of accuracy in bending dominated problems. Similar to the case of geometric hourglassing in Reference 23 material
hourglassing is avoided via a linear elastic description of the higher order stiffness.

Ongoing research activities in the field indicate that, despite the presence of individual solutions, a general solution
or understanding is still lacking. This point of view is strengthened by the authors’ observation that the aforementioned
formulations have barely entered commercial finite element codes. Therefore, an improvement of existing established
formulations is a primary motivation in the present contribution.

A further essential difficulty in the analysis of numerical instabilities coming along with geometric and material hour-
glassing is that they are inevitably connected to deformation states that are also potentially prone to physical instabilities.
Thus, getting a clear view on whether or not hourglassing is present, one always has to cope with the physical instability
problem, see Auricchio et al.35 It is therefore essential to consider both effects in a proper analysis of nonlinear finite ele-
ments. The requirements on proper element design are twofold: (i) physical instabilities should be captured accurately,
that is, good convergence towards the correct critical points with mesh refinement, which is achieved by a consistent finite
element formulation as well as a locking-free response; (ii) artificial instabilities should be excluded, that is, a singular
stiffness matrix should exclusively be related to a physical instability.

The remainder of the paper is structured as follows: Section 2 aims to show, in a simplified manner, how locking-free
element formulations influence the geometric stiffness and how this triggers numerical instabilities. Section 3 reviews
some popular element formulations from literature. Closely related to the work of Armero,16 the modal analysis in
Section 3.4 provides some additional insights in terms of geometric and material hourglassing. The core contribution of
this work consists in the stabilization concept to avoid geometric hourglassing in Section 4 as well as the in-depth analysis
of the benchmark setup proposed in Section 5. Finally, a collection of elements is tested for some standard benchmarks
in Section 6.

2 PHYSICAL AND ARTIFICIAL BUCKLING: SOME SIMPLE
CONSIDERATIONS

2.1 Element stability

With the aim of explaining how unlocking schemes have an influence on the geometric stiffness and trigger artificial
buckling, we focus on the stability properties of a two-dimensional Le

1 × Le
2 rectangular incompatible mode element* from
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Wilson et al.42 The element is under plane strain conditions with out-of-plane unit thickness, furthermore kinematic
constraints are enforced such that the displacements are zero at the element centroid. A homogeneous uniaxial stress
state 𝜎22 = −𝛾p is applied, see Figure 1A, where p is a reference (unit) load and 𝛾 is a load parameter, indicating the load
magnitude.

To gain some mechanical insights on the element’s stability properties, we consider a classical pre-buckling analysis43

(
Ke + 𝛾cKLIN

g
)
𝚽 = 0 with 𝚽 ≠ 0. (1)

Here Ke is the linear elastic stiffness matrix and KLIN
g is the linearized geometric stiffness matrix, defined as KLIN

g =
d

d𝛾
Kg|𝛾=0, where Kg is the fully nonlinear geometric stiffness matrix. The smallest positive eigenvalue of this generalized

eigenvalue problem provides an estimate for the critical load factor 𝛾c and the corresponding eigenvector𝚽 indicates the
buckling mode.

With natural element coordinates (𝜉, 𝜂) ∈ Ωref = [−1, 1]2 and taking into account the aforementioned geometric
constraints, a general displacement field within the element can be expressed as

u = uc + ũ = 1
2

[
c1𝜉 + c3𝜂 + c5𝜉𝜂

c2𝜂 + c4𝜉 + c6𝜉𝜂

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

compatible

+ 1
4

[
c7(𝜂2 − 1)
c8(𝜉2 − 1)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

incompatible

, (2)

where parameters c1−6 represent the compatible displacement modes and c7−8 are the incompatible modes, introduced to
eliminate shear locking.

In the following, we study the properties of stiffness matrices referring to c1−8 as generalized degrees of freedom.
Using a standard isoparametric mappingΩref → Ω, the linear elastic stiffness matrix for an isotropic elastic material with
Young’s modulus E, shear modulus G = E∕2 (implying that Poisson’s ratio is zero) and element aspect ratio re = Le

1∕Le
2 is

given as

Ke =
[
KAB

e
]
=

[
K0

e 0
0 K1

e

]

(3)

with

K0
e =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

E
re

0 0 0

0 Ere 0 0
0 0 Gre G
0 0 G G

re

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and K1
e =

1
3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E
re
+ Gre 0 0 G

0 Ere + G
re

G 0

0 G Gre 0
G 0 0 G

re

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

(A) (B) (C) (D) (E)

F I G U R E 1 (A) Model problem and (B) infinitesimal line segment dX1 × Le
2 and load dP = 𝛾p dX1. (C)–(E) Modes where the P-Δ–effect

contributes to the geometric stiffness via integration of (𝜕𝜑∕𝜕Δ)2dP over the element domain
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Here, the upper indices A,B refer to the modal degrees of freedom cA and cB. The first part K0
e contains the three

constant strain modes, required for consistency, and a rigid body rotation. The second part K1
e represents the stiffness

related to the non-constant strain modes c5−8. The issue of in-plane shear locking is reflected by the shear terms in
K55

e = E∕(3re) + Gre∕3 and K66
e = Ere∕3 + G∕(3re), which become infinite for the limit cases re →∞ and re → 0, respec-

tively. However, thanks to the incompatible modes this pathology is removed. For more details we refer to Appendix
A. We focus now on the implications of ansatz (2) on the geometric stiffness matrix, which turns out to be a diagonal
matrix

Kg = 𝛾KLIN
g = 𝛾 ⋅ diag

(
0, −pre, −pre, 0,−

pre

3
,−

pre

3
,−

pre

3
, 0

)
. (5)

Here, the essential trigger mechanism for geometric instabilities are the three underlined terms. They are related
to a phenomenon denoted as “P-Δ-effect” in structural mechanics.† It is a destabilizing stiffness that emanates
from a change of lever arms of axial forces due to lateral displacements in axially compressed structures. To
specify this further, computation of the entries of the geometric stiffness matrix can be boiled down to (no
summation)

KAA
g =

∫Ω

𝜕
2

𝜕c2
A

1
2
(
HTH

)
∶ 𝝈 dA =

∫Ω

𝜕
2

𝜕c2
A

1
2
(H2

12 +H2
22) ⋅ 𝜎22 dA, (6)

with the displacement gradient H = Gradu. Herein, the stiffness contributions due to

H2
12 =

(
𝜕u1

𝜕X2

)2

= (c3 + c5𝜉 + c7𝜂)2
(

Le
2
)2 (7)

are associated with the P-Δ-terms. A geometric illustration of the involved element strain modes 3, 5 and 7 is given in
Figure 1B–E. Next, the degrees of freedom c7 and c8, associated with the incompatible modes, are eliminated on element
level via static condensation. This provides a reduced stiffness matrix, which is given in Appendix A. For small ratios of
𝜎22∕E the reduced stiffness matrix can be approximated as

K1
red ≈

⎡
⎢
⎢
⎣

E
3re

0

0 Ere
3

⎤
⎥
⎥
⎦
+

⎡
⎢
⎢
⎣

re
3
𝜎22 0
0 r2

e+1
3re
𝜎22

⎤
⎥
⎥
⎦

(8)

and we will work with this approximation in the following.
With these preliminary considerations we now focus on critical load factors 𝛾c that are solutions of the eigenvalue

problem (1). For the part of the stiffness matrix associated with the constant strain modes, the only instability on element
level is the rigid body rotation with 𝛾c = 0. The geometric term K33

g = −𝛾pre is crucial for consistency, that is, providing
the correct (physical) stability behavior with mesh refinement. The stability properties of the higher modes are directly
linked to two different geometric hourglass phenomena:

1. For a large aspect ratio re ≫ 1 geometric hourglassing is likely to occur in the shape of mode 5. It is triggered by the
negative geometric stiffness K55

g = −𝛾pre∕3 associated with this mode. With the shear locking-free reduced stiffness
(after static condensation) we obtain

K55
red =

E
3re

−
𝛾cpre

3
= 0 → 𝛾c =

E
pr2

e
(9)

This value represents an approximation of the critical load factor that yields the “classical” geometric hourglassing of
mode 5.

2. On the other side, for small aspect ratios re ≪ 1 (Le
1 ≪ Le

2), the geometric term K77
g = −𝛾pre∕3, related to the incom-

patible mode 7 triggers an instability of mode 6. With the approximated reduced stiffness (after static condensation,
cf. Appendix A.1) we obtain
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K66
red ≈

Ere

3
−
𝛾cpre

3
−
𝛾cp
3re

= 0 → 𝛾c =
Er2

e

p(1 + r2
e )
≈ E

p
r2

e (10)

This represents the value that triggers hourglassing of mode 6 and resembles a (quadratic) Ritz approximation of the
Euler buckling load pEuler

c = 𝜋2Er2
e∕12 ≈ 0.82Er2

e of a beam pinned at both ends. In literature it is frequently concluded
that this mode is “physically correct”. However, this is refuted within the next subsection.

A similar analysis, based on small strain theory, can also be found in the work of Sussman and Bathe.15 It is shown in
the next section that both element instabilities (mode 5 and 6) can spoil the real, physical instability properties and yield
undesired hourglass patterns.

An alternative formulation, denoted as Q1/HT4 (cf. Section 3.3.3), relies on the “transposed Wilson modes” proposed
in References 20,21. This enhancement cannot be derived from an incompatible displacement field. It can be incorporated
within the EAS framework via the strain enhancement H̃ = GradũT. By a similar analysis as above (cf. Appendix A.2) it
can be shown that the reduced hourglass stiffness then reads

K55
red =

E
3re

−
𝛾pre

3
+

𝛾pre

3
⏟⏟⏟

EAS term

= E
3re

and K66
red =

Ere

3
−
𝛾pre

3
, (11)

effectively excluding all critical geometric stiffness terms and thus avoiding geometric hourglassing, while maintaining
the favorable locking-free response. It provides a clear mechanical explanation why the element is free of geometric
hourglassing. However, this approach is not applicable to other element formulations, such as the Q1/E4 based on an
enhancement of the Green-Lagrange strain (cf. Section 3.3.2).

2.2 Patch stability

Besides the deformation state, whether or not geometric hourglassing occurs within a patch of elements depends mainly
on re as well as on the displacement boundary conditions. To exclude any influence of the latter, we consider again the
minimally constrained problem sketched in Figure 1A but with an assembled patch of elements. Now, we have to differ-
entiate between the element’s aspect ratio re and the block’s aspect ratio denoted as r = L1∕L2, with Li being the length
of the block in direction Xi. Next, we compare the results of a fully nonlinear finite element analysis with a compressible
Neo-Hookean material (E = 1000, 𝜈 = 0) with the estimates of the preceding section.

Figure 2 shows the undeformed reference mesh (grey) as well as the first three buckling modes𝚽(j) superimposed on
the deformed configuration for various discretizations of a short block, (A)–(C), and a tall block, (D)–(F). Each buckling
mode corresponds to the eigenvector associated with a zero eigenvalue‡ of the stiffness matrix emanating from the primary
path (uniaxial homogeneous compression). Furthermore, the load values 𝛾 (j)c , related to the critical points in increasing
order, as well as the hourglass estimates (9) and (10) are listed in Table 1.

Geometric hourglassing occurs when the critical load of a single element is reached. Depending on the global (physi-
cal) stability behavior, this can occur for the first critical point (e.g., r = 10, re = 20 or r = 1∕10, re = 1∕20 in Table 1) or
for higher ones (e.g., Figure 2B,C,E,F), in case physical buckling is initially dominant.

The estimates (9) and (10) are only reasonable for stiff structures, for which the pre-buckling behavior is approxi-
mately linear. Thus, for re ≈ 1, these predictions become a poor approximation and a large strain analysis is required.
Nevertheless, the principal mechanism that triggers hourglassing remains the same.

2.3 Summary

The presented results can be summarized as follows:

• Geometric hourglassing of mode 5 is triggered by the geometric stiffness originating from the same compatible mode 5,
that is, K55

g in Equation (5). This is especially pronounced for large element aspect ratios re ≫ 1, see Equation (9).



2644 BIEBER et al.

T A B L E 1 Critical load factor 𝛾c based on the minimum of estimate (9) and (10) and the jth critical load factor 𝛾 (j)c of the fully
nonlinear finite element analysis with different structured nX1

ele × nX2
ele meshes

Mesh r = re 𝜸c 𝜸
(1)
c 𝜸

(2)
c 𝜸

(3)
c

Short block r = 10

1 × 1 10 10 9.9 — —

2 × 2 10 10 9.9 9.9⋆ 38.37⋆

4 × 4 10 10 8.56 9.9⋆ 14.92⋆

2 × 4 20 2.5 2.49⋆ 3.77⋆ 9.86

4 × 2 5 40 8.58 38.4⋆ 38.4

40 × 4 1 — 8.14 31.55 67.05

Tall block r = 1∕10

1 × 1 1/10 9.9 9.61 — —

2 × 2 1/10 9.9 9.61 9.61⋆ 34.42⋆

4 × 4 1/10 9.9 8.34 9.61⋆ 14.28⋆

2 × 4 1/5 38.46 8.37 34.42⋆ 34.42

4 × 2 1/20 2.49 2.48⋆ 3.73⋆ 9.58

4 × 40 1 — 7.95 28.85 56.12

Note: Values marked with ⋆ are afflicted with geometric hourglassing.

(A)

(D) (E) (F)

(B) (C)

F I G U R E 2 Physical or artificial buckling modes for a discretized uniaxial prestressed block, compare Figure 1A, with aspect ratio of
r = 10 (top) and r = 1∕10 (bottom). The first three modes are shown for each configuration
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• Geometric hourglassing of mode 6 is triggered by the geometric stiffness originating from the incompatible mode 7,
that is, K77

g in Equation (5). This is especially pronounced for small element aspect ratios re ≪ 1, see Equation (10).
• Both estimates (9) and (10) are a good approximation of the critical load associated with the artificial buckling modes

in the small strain regime, that is, for the limit cases of re.
• The strain enhancement of the Q1/HT4, based on the “transposed Wilson modes”, modifies the geometric stiffness

such that the destabilizing geometric terms cancel and consequently geometric hourglassing is avoided.

In view of the remainder of the work we point out that a straightforward solution to avoid geometric hourglassing is
to skip the responsible geometric stiffness terms. A novel and economic way to achieve this is the core of Section 4.

3 A FAMILY OF QUADRILATERAL FINITE ELEMENTS

3.1 Continuum mechanics

Let us briefly recall some basic notation and equations that are a prerequisite for the finite elasticity problems in the subse-
quent sections. The main kinematic and constitutive relations are summarized in Table 2, see textbooks.11,44 Throughout
the remainder of this work, only elasto-static plane strain problems are studied.

We consider a problem with displacement-controlled loading, governed by the balance of linear momentum

DivP = 0 in , (12)

with prescribed displacements u = û on the respective boundary. This implies a stationary elastic potential

Π[u] =
∫


W(E) dA =
∫


W(F) dA ⇒ stat., (13)

giving rise to the weak form

𝛿Π[u, 𝛿u] ∶= 𝛿u ⋅ Π,u =
∫


𝛿E(u, 𝛿u) ∶ S(u) dA =
∫


𝛿F(𝛿u) ∶ P(u) dA = 0, (14)

with admissible variations 𝛿u. The comma denotes a partial derivative with respect to u. Linearization of (12) provides
the incremental expression

Δ𝛿Π[u, 𝛿u,Δu] ∶= 𝛿u ⋅ Π,uuΔu =
∫


{𝛿E(u, 𝛿u) ∶ C(u) ∶ ΔE(u,Δu) + Δ𝛿E ∶ S(u)} dA

=
∫


𝛿F(𝛿u) ∶ A(u) ∶ ΔF(Δu) dA, (15)

T A B L E 2 Basic variables and notation

 Material configuration 𝜑() Spatial configuration

X ∈  Material points x = 𝜑(X) Spatial points / deformation map

F = Grad𝝋 Deformation gradient u Displacement field

J = det F Jacobian (volume change) H = Gradu Displacement gradient

FTF Right Cauchy-Green strain E = 1
2
(C − 1) Green-Lagrange strain

W(E), W(F) Strain energy functions 𝜆1, 𝜆2 Principle stretches

S = 𝜕
,EW Second Piola-Kirchhoff stress P = 𝜕

,FW First Piola-Kirchhoff stress

C = 𝜕
,EEW Elasticity tensor related to conjugate pair (S,E) A = 𝜕

,FFW Elasticity tensor related to conjugate pair (P,F)

Ω Element area (material) d Nodal element disp. vector

k♭♯ Element stiffness matrix related to DOFs ♭ and ♯ r♭ Element residual vector related to DOF ♭
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required for definition of the tangent stiffness matrix. Here Δu denotes the incremental displacement field. The strain
variations and increments are given by

𝛿H = Grad𝛿u, ΔH = GradΔu, 𝛿E = sym(FT
𝛿H), Δ𝛿E = sym(ΔHT

𝛿H). (16)

These equations are the variational basis for the subsequent finite element formulations. For standard displacement based
finite elements corresponding formulations described within a total Lagrangian setting (S,E) or a two-point setting (P,F)
are identical. However, for EAS formulations it has various implications, which will be discussed in the following.

3.2 Displacement formulation (Qp-elements)

Let us consider a standard finite element procedure with isoparametric plane quadrilateral Qp-elements with bilin-
ear shape functions for p = 1, biquadratic shape functions for p = 2, and so forth. The geometry and displacement
approximation for a generic element e are given as

Xh =
nno∑

A=1
NAXA and {u, 𝛿u,Δu}h =

nno∑

A=1
NA{dA

, 𝛿dA
,ΔdA}, (17)

where nno denotes the number of element nodes, NA(𝜉, 𝜂) is the Lagrangian shape function of node A defined on the
reference element Ωref = [−1, 1]2 and {dA

, 𝛿dA
,ΔdA} are the actual, virtual and incremental nodal displacements. The

basis of an incremental-iterative finite element procedure is the linearized discrete representation of the weak form (12)

KΔD = −R with (K,R,h) =
nele⋃

e=1
(kdd

e , rd
e ,Ωe), (18)

where standard assembly procedures of the element stiffness matrix and residual vector are used. Here nele denotes the
total number of elements and ΔD the global displacement vector. For ease of readability, we will skip the indices e and h
in the following. If not otherwise stated, the expressions always refer to the discretized variables of one generic element.
Tensor and matrix notation are not further distinguished and should become clear from the context.

In view of the following developments we introduce the compatible Green-Lagrange strain of a generic element as

Ec(d) ∶= 1
2

(
HcT +Hc +HcT Hc

)
, (19)

with element displacement vector d, based on the compatible displacement gradient Hc = Gradu derived from (15)2.
Related to (12) and (13) we obtain the internal force vector

rd ∶= Π,d =
∫Ω

Ec
,d ∶ S dA (20)

and the element stiffness matrix

kdd ∶= Π,dd =
∫Ω

Ec
,d ∶ C ∶ Ec

,d dA
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

kdd
m

+
∫Ω

Ec
,dd ∶ S dA

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

kdd
g

. (21)

Here, we employ a split of the stiffness matrix into a material part kdd
m and a geometric part kdd

g . In view of what comes
next, we emphasize that the geometric stiffness depends only on the nonlinear (quadratic in d) part HcT Hc of the strain
expression (17), see also the incremental expression (14)4.

For the actual implementation it is practical to represent (18) and (19) in Voigt notation as

rd =
∫Ω

BTS dA and kdd =
∫Ω

BTC(Ec)B dA +
∫Ω

G
dd(Ec

, S) dA, (22)
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with the incremental strain-displacement operator

B ∶=
[

Ec
11 Ec

22 2Ec
12

]T

,d
(23)

and the geometric operator

G
dd(Ec

, S) =
[
(Gdd

𝛿jk)AB] ∶= (HiIHiJ),dA
j dB

k
SIJ = NA

,I SIJNB
,J𝛿

AB
jk . (24)

Here, upper indices A,B refer to the element nodes and lower indices i, j, .. and I, J, … to the spatial and material
coordinates, respectively.

3.3 Enhanced assumed strain formulations

3.3.1 General concept

A well established class of finite elements for nonlinear problems are enhanced assumed strain (EAS) elements, proposed
by Simo’s landmark contributions.12,13 The EAS method is a variationally consistent version of the method of incompatible
modes, developed earlier to avoid various locking phenomena. The principal idea is to enrich the compatible displacement
based strain by an enhanced assumed strain field defined through internal (element-wise defined) parameters 𝜶. Starting
point is a three-field functional, which, after enforcing a certain orthogonality condition, yields a discrete representation
of a two-field elastic potential,

Π̃[d,𝜶] =
∫Ω

W[E(d,𝜶)] dA. (25)

The appealing features are its simplicity as well as the strain driven format, which enables a broad scope of applications
concerning the material model. The chosen ansatz functions for the enhanced strain crucially influence the (locking-)
behavior of the element. Moreover, for the geometrically nonlinear case the type of strain measure that is subject to
enhancement is important, particularly with respect to hourglassing. This point will be further highlighted in the next
sections.

Based on (23) the discrete system of incremental element equations reads
[

kdd kd𝛼

k𝛼d k𝛼𝛼

][
Δd
Δ𝜶

]

= −

[
rd

r𝛼

]

, (26)

where rd and kdd are obtained by replacing Π with Π̃ in (18) and (19) respectively. The remaining contributions are

r𝛼 ∶= Π̃,𝜶 =
∫Ω

E,𝜶 ∶ S dA = 0, (27)

k𝛼𝛼 ∶= Π̃,𝜶𝜶 =
∫Ω

E,𝜶 ∶ C ∶ E,𝜶 dA
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k𝛼𝛼m

+
∫Ω

E,𝜶𝜶 ∶ S dA
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

k𝛼𝛼g

, (28)

k𝛼d ∶= Π̃,𝜶d =
∫Ω

E,𝜶 ∶ C ∶ E,d dA
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

K𝛼d
m

+
∫Ω

E,𝜶d ∶ S dA
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

k𝛼d
g

=
(
kd𝛼)T

. (29)

Since the enhanced strain parameters are defined on element level they are usually eliminated via static condensation

(kdd − kd𝛼(k𝛼𝛼)−1k𝛼d)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

kred

Δd = −
(
rd − kd𝛼(k𝛼𝛼)−1r𝛼

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

rred

, (30)

with kred and rred being the reduced element stiffness matrix and element residual vector.
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A representation in matrix notation is obtained in analogy to the preceding section, with incremental
strain-enhancement operator B̃ = ET

,𝜶
and, similar to (22), geometric operators G𝛼𝛼(E, S) and G𝛼d(E, S).

3.3.2 Enhancement of Green-Lagrange strain (Qp/En)

The first class of EAS elements considered here is based on an additive enhancement of the compatible Green-Lagrange
strain tensor (17)

E(d,𝜶) = Ec(d) + Ẽ(𝜶), (31)

where Ẽ = det(J0)
det(J)

J−T
0 ẼrefJ−1

0 denotes the enhanced strain§ and Ẽref is a linear function of 𝜶. Elements based on this concept
are particularly popular for the membrane part of shell elements45,46 as well as for three-dimensional brick elements.47

The variational basis may be derived by inserting (29) into a total Lagrangian three-field Hu-Washizu type functional

ΠSE[d,𝜶, S⋆] =
∫Ω

(
W(Ec + Ẽ) − S⋆ ∶ Ẽ

)
dA (32)

and exploiting the orthogonality condition (cf. References 13,45) between the independent stress S⋆ and the enhanced
strain field Ẽ, which removes the underlined term in (30) and thus recovers (23).

An interpretation of the strain enhancement (29) via an incompatible displacement ansatz is only possible for the geo-
metrically linear case and from (26) to (27) it becomes clear that the geometric part of the stiffness matrix is not influenced,
since E,d𝜶 = 0 and E,𝜶𝜶 = 0. Thus, geometric hourglassing is fully driven by the geometric stiffness in Equation (19), that
is, by the compatible displacement degrees of freedom.

A popular formulation is the Q1/E4 element, defined by the enhancement

Ẽref =

[
𝜉𝛼1 𝜉𝛼3 + 𝜂𝛼4

𝜉𝛼3 + 𝜂𝛼4 𝜂𝛼2

]

. (33)

For undistorted elements, volumetric locking and shear locking are fully removed by this ansatz. Alternative formulations
that only handle one of the two locking issues are denoted as Q1/E2n (using only 𝛼1, 𝛼2) and Q1/E2s (using only 𝛼3, 𝛼4) in
this paper. Another element that will be considered in the subsequent analysis is the Q2/E11 element proposed by Bischoff
and Ramm.46 This element formulation avoids volumetric locking and shear locking, present in the displacement based
nine-noded Q2 with the strain enhancement

Ẽref
11 = 𝛼1(1 − 3𝜉2) + 𝛼2(𝜂 − 3𝜉2

𝜂) + 𝛼3(𝜂2 − 3𝜉2
𝜂

2),

Ẽref
22 = 𝛼4(1 − 3𝜂2) + 𝛼5(𝜉 − 3𝜉𝜂2) + 𝛼6(𝜉2 − 3𝜉2

𝜂
2),

Ẽref
12 = 𝛼7(1 − 3𝜉2) + 𝛼8(1 − 3𝜂2) + 𝛼9(𝜂 − 3𝜉2

𝜂) + 𝛼10(𝜉 − 3𝜉𝜂2) + 𝛼11(1 − 3(𝜉2 + 𝜂2) + 9𝜉2
𝜂

2), (34)

see also Section 3.3 in Reference 46.

3.3.3 Enhancement of displacement gradient (Q1/H4 and Q1/HT4)

The second element class that we consider is the classical nonlinear EAS formulation by Simo and Armero.12 It can be
formulated via an additive enhancement of the compatible displacement gradient as

H(d,𝜶) = Hc(d) + H̃(𝜶), (35)

where H̃ = det(J0)
det(J)

J−T
0 H̃refJ−1

0 is defined on element level. Again, a three-field functional of the form

ΠPH[d,𝜶,P⋆] =
∫Ω

(
W(Hc + H̃) − P⋆ ∶ H̃

)
dA (36)
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can be used as a variational basis. This time, orthogonality is required between the first Piola-Kirchhoff stress P⋆

and the enhanced displacement gradient field H̃ to remove the underlined term and reduce the formulation to a
two-field principle. To compare this formulation with the one from Section 3.3.2 we compute the Green-Lagrange strain
based on (33) as

E(d,𝜶) = Ec + 1
2

(
H̃T + H̃ + H̃TH̃ +HcT H̃ +HcH̃T

)
, (37)

which is obviously more involved in terms of geometrical nonlinearity than the enhanced strain in Equation (29). One
important consequence of this difference is the fact that also the geometric stiffness is affected by the enhanced part. The
classical enhancement based on the Wilson modes42 is presented in Reference 12 as

H̃ref =

[
𝜉𝛼1 𝜂𝛼3

𝜉𝛼4 𝜂𝛼2

]

. (38)

The corresponding element will be denoted as Q1/H4 in the following.
An alternative enhancement of the displacement gradient are the “transposed Wilson modes” as proposed in

Reference 21, given by

H(d,𝜶) = Hc(d) + Fc
0(d)H̃

T(𝜶). (39)

Here Fc
0 denotes the compatible deformation gradient evaluated at the element centroid. The specific construction is a

prerequisite for frame-invariance of the element. The corresponding element is denoted as Q1/HT4.

3.3.4 Further possible enhancements

Since a multitude of definitions of nonlinear strain measures is possible, each one is a potential candidate for an improved
EAS formulation. Two contributions with a particular focus on hourglassing are mentioned in the following. Crisfield
et al.48 proposed an enhancement of the right stretch tensor and thus avoided geometric hourglassing for a large strain
compression problem. There is, however, no specific discussion or explanation of the mechanism that avoids hourglassing.
Within a Petrov-Galekin approach, Pfefferkorn & Betsch49 proposed an interesting enhancement of the spatial deforma-
tion gradient. Numerical examples indicate that the element is free from geometric and material hourglassing. However,
this comes at the cost of a more complex formulation as well as an unsymmetric stiffness matrix.

3.4 Element analysis based on eigenvalues and eigenmodes

3.4.1 Problem setup

Insight into element behavior can be gained by monitoring the eigenvalues of the hourglass modes of the element tangent
stiffness matrices under homogeneous deformation states. We consider a rectangular element with aspect ratio re = Le

1∕Le
2

under plane strain condition and a prescribed (homogeneous) stretch state F = diag(𝜆1, 𝜆2). The hourglass eigenvalues
are given as

𝜔
hg
i = 𝚽T

i kred(𝜆1, 𝜆2)𝚽i i = 1, 2, (40)

with the reduced stiffness matrix defined in (28) and the normalized hourglass eigenvector 𝚽i. A zero or negative
hourglass eigenvalue is an indicator that geometric or material hourglassing is likely to occur. However, as shown in
Reference 40, artificial instabilities can also be observed for small positive hourglass eigenvalues.

Extending the work of Armero16 we compute closed form expressions of the hourglass eigenvalues. The results are
summarized in Table 3. The required coefficients of the tangents C and A (or C and A in matrix notation) are defined via
the incremental stress-strain relations
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T A B L E 3 Hourglass eigenvalues

𝝎
hg
1 𝝎

hg
2

Q1 1
3re

(
An

11 + r2
e As

11
) 1

3re

(
r2

e An
22 + As

22
)

= 𝜆
2
1(Cn

11+r2
e Cs

12)
3re

+ (r2
e S2+S1)

3re
= 𝜆

2
2(r2

e Cn
22+Cs

12)
3re

+ (r2
e S2+S1)

3re

Q1/E4 𝜆
2
1 det Cn

3reCn
22
+ (r2

e S2+S1)
3re

re𝜆
2
2 det Cn

3Cn
11

+ (r2
e S2+S1)

3re

Q1/E2s 𝜆
2
1Cn

11
3re

+ (r2
e S2+S1)

3re

re𝜆
2
2Cn

11

3
+ (r2

e S2+S1)
3re

Q1/E2n 𝜆
2
1 det Cn

3reCn
22
+ re𝜆

2
1Cs

12
3

+ (r2
e S2+S1)

3re

re𝜆
2
2 det Cn

3Cn
11

+ 𝜆
2
2Cs

12
3re

+ (r2
e S2+S1)

3re

Q1/H4 det An

3reAn
22
+ re det As

3As
22

re det An

3An
11

+ det As

3reAs
11

Q1/HT4 det An

3reAn
22

re det An

3An
11

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ΔP11

ΔP22

ΔP12

ΔP21

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= AΔF =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

An
11 An

12 0 0
An

12 An
22 0 0

0 0 As
11 As

12

0 0 As
12 As

22

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ΔF11

ΔF22

ΔF12

ΔF21

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(41)

and

⎡
⎢
⎢
⎢
⎣

ΔS11

ΔS22

ΔS12

⎤
⎥
⎥
⎥
⎦

= CΔE =
⎡
⎢
⎢
⎢
⎣

Cn
11 Cn

12 0
Cn

12 Cn
22 0

0 0 Cs
12

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

ΔE11

ΔE22

2ΔE12

⎤
⎥
⎥
⎥
⎦

, (42)

with sub-matrices An, As and Cn defined by the respective blocks. Further details are given in Appendix B.
For the constitutive response we consider the so called special Blatz-Ko rubber,¶ which is characterized by the

remarkably simple strain-energy function

W(𝜆1, 𝜆2) =
𝜇

2

(
1
𝜆

2
1
+ 1
𝜆

2
2
+ 2𝜆1𝜆2 − 4

)

, (43)

with the shear modulus 𝜇 as only material parameter. Besides its simplicity, the main motif to use this model is its strain
softening response under tension, relevant for the analysis of material hourglassing. For the plane strain case it was shown
by Knowles and Sternberg51 (see also Horgan52) that material stability, that is, ellipticity of the underlying equilibrium
equations, is bounded by

2 −
√

3 < 𝜆1

𝜆2
< 2 +

√
3. (44)

Figure 3A shows the boundary of ellipticity condition (42), the relation between the stretches for a uniaxial and biaxial
stress state as well as the contour lines where the determinant of the sub-matrices vanishes, that is, the respective tan-
gent loses its positive definiteness. For the case of uniaxial tension in X2-direction (S11 = 0, S22 ≠ 0) these lines indicate
the onset of strain softening in the respective stress strain relation, see Figure 3B. Here, strain softening occurs slightly
before ellipticity is lost. This becomes particularly interesting in Section 5.4 where physical instabilities as well as material
hourglassing occurs.

3.4.2 Example I: Uniaxial stress state

First, we consider a homogeneous uniaxial stress state governed by the principal stress

S1 = 0 ⇒ 𝜆1 = 3𝜆−1∕3
2 , S2 =

1
𝜆2

W,𝜆2 = 𝜇

(
𝜆

8∕3
2 − 1

)

𝜆
4
2

. (45)
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(A) (B)

F I G U R E 3 (A) Isolines of various quantities in the 𝜆1-𝜆2-plane. The thick dashed lines indicate the boundaries where ellipticity is lost,
see Equation (42); (B) various stress quantities for a uniaxial stress state with S1 = 0

Thus, all following quantities can be expressed as a function of 𝜆2. In particular, Figure 4 shows both hourglass eigenvalues
for the elements described in Sections 3.3.2 and 3.3.3 as functions of 𝜆2. Also the newly proposed elements Q1/ME4,
Q1/MH4-I and Q1/MH4-II (discussed in Section 4) are included. Due to the compressible material as well as re = 1,
locking is not very pronounced in this case and the eigenvalues for the undeformed case 𝜆2 = 1 are only slightly larger
for Q1 than for the EAS elements.

For compressive deformations, 𝜆2 < 1, both standard EAS formulations Q1/E4 and Q1/H4 suffer from geometric hour-
glassing, which is reflected by the zero eigenvalue 𝜔hg

1 = 0 at 𝜆2 ≈ 0.73 (cf. Figure 4A,C). This defect is obviously not
present for Q1/E2n. The element is “stabilized” by shear locking. Also Q1/HT4 as well as the newly proposed Q1/ME4
are stable in this case due to the implicit elimination of the geometric stiffness for the hourglass modes. For Q1/H4
the destabilizing geometric terms arise from the shear contributions. Their extrapolation around the reference state
provide

re det As

3As
22

≈ re

3
ΔS2 and det As

3reAs
11
≈ 1

3re
ΔS2, (46)

for𝜔hg
1 and𝜔hg

2 , respectively (cf. Table 3). ForΔS2 = 𝛾cp, these expressions formally resemble the critical geometric terms
in estimates (9) and (10). However, due to the moderate aspect ratio, as well as an increase in axial stiffness Cn

22 (due to
compression in X2-direction), a softening of 𝜔2 is not observed for this example.

For the case of tensile deformation, 𝜆2 > 1, some eigenvalues pass through zero, which is an indication for material
hourglassing. Let us first focus on Figure 4A. The Q1/E4 element has a zero eigenvalue𝜔hg

1 right after a horizontal tangent
occurs in the S2-𝜆2-relation (Figure 3B) at 𝜆2 = 33∕8 ≈ 1.51. With further stretching, 𝜔hg

1 tends quickly to minus infinity
when the axial stiffness becomes Cn

22 = 0 at 𝜆2 = 23∕4 ≈ 1.68. The cause for that can be illustrated by the limit value of the
first hourglass eigenvalue of Q1/E4:

lim
Cn

22→+0

(
𝜆

2
1Cn

11

3re
−
𝜆

2
1(C

n
12)

2

3reCn
22

+
r2

e S2

3re

)

= −∞ with Cn
11,C

n
12 > 0. (47)

Here, the underlined part corresponds to the volumetric EAS terms which, on the one hand eliminates volumetric locking
(reflected by Cn

11 →∞ in the incompressible limit) and on the other hand, is responsible for triggering material hour-
glassing due to the large negative stiffness when Cn

22 approaches zero (e.g., due to strain softening). Similar considerations
explain why the second hourglass eigenvalue 𝜔hg

2 becomes negative.
The results for Q1/H4 and Q1/HT4 are depicted in Figure 4C and they qualitatively confirm the results reported in

Reference 16. For these elements, a zero eigenvalue𝜔hg
1 is related to an horizontal tangent in the P2-𝜆2-relation at𝜆2 = 33∕4.

However, no singularity is obtained, since An
22, in contrast to Cn

22, does not approach zero but remains positive due to the
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(A) (B)

(C) (D)

F I G U R E 4 Uniaxial stress state (S1 = 0), re = 1, both hourglass eigenvalues as a function of 𝜆2

geometric terms involved. For Q1/HT4 the zero eigenvalue arises slightly earlier than for Q1/H4 due to the absence of the
geometric hourglass stiffness. The situation is different for𝜔hg

2 . It becomes negative for Q1/HT4, while it remains positive
for Q1/H4. This can be explained by the stabilizing effect of the EAS induced geometric stiffness, present only for the
Q1/H4 (cf. Equation (44)2).

3.4.3 Example II: Biaxial stress state

Next, we consider a biaxial stress state

S1 = 𝜇
𝜆

3
1𝜆2 − 1
𝜆

4
1

, S2 = 𝜇
𝜆

3
2𝜆1 − 1
𝜆

4
2

, (48)

with independently prescribed stretches 𝜆1 and 𝜆2. The objective is to cover a broader range of (still homogeneous) strain
states.

Figure 5A,B visualize the roots of various eigenvalues 𝜔hg
1 . The filled regions, enveloped by the corresponding root,

represent domains with negative eigenvalues, whereas everywhere else the corresponding eigenvalue is positive. Uniaxial
stress states are represented by dashed lines and its intersections with the lines of zero eigenvalues coincide with the zero
eigenvalues in Figure 4.

Geometric hourglassing does not occur for Q1/ME4, Q1/MH4-I and Q1/HT4 and, similar to the uniaxial case in
Example I, no negative eigenvalue occurs for the compression case (S2 ≤ 0 and S1 ≤ 0). For Q1/H4 and Q1/E4; however,
𝜔

hg
1 becomes zero in the compressive domain. Interestingly, the root of Q1/H4 falls below the one of Q1/E4, indicating that

the corresponding eigenvalue of Q1/H4, and thus the hourglass stiffness, is smaller. The reason for this phenomenon is
the contribution of the EAS terms to the (negative) geometric stiffness. Material hourglassing shows up for all considered
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(A) (B)

F I G U R E 5 Biaxial stress state, re = 1, the colored lines indicate a zero eigenvalue 𝜔hg
1 (𝜆1, 𝜆2) = 0. They envelope the filled regions, in

which the corresponding eigenvalue is negative

EAS elements. The branches of Q1/ME4 and Q1/HT4 in Figure 5A,B are identical to the ones of det Cn = 0 and det An = 0,
respectively, in Figure 3A. Furthermore, Figure 5A shows that both “E”-enhanced elements share the same envelope,
which also corresponds to Cn

22 = 0. Here, the eigenvalue becomes infinite, compare Equation (45), and subsequently a
further sign change occurs.

4 STABILIZATION CONCEPT TO AVOID GEOMETRIC HOURGLASSING

4.1 Principal idea

Let us consider an additive split of a generic (possibly enhanced) displacement gradient H = Hr +Hh, where Hh denotes
the part that is responsible for hourglassing and has yet to be identified and Hr the remaining part. With this definition,
the geometric part of the element stiffness matrix reads

kg =
∫Ω

1
2

(
HT

r Hr +HT
r Hh +HT

hHr +HT
hHh

)

,
̇
̆d ̇̆d
∶ S dA, (49)

where ̇
̆d represents a generic element vector of degrees of freedom (e.g., ̇̆d =

[
d 𝜶

]T). The underlined term is the one
which can trigger geometric hourglassing. An obvious option to avoid geometric hourglassing is to remove this term from
the definition of the geometric tangent, as proposed by Reese et al.8 in the context of a reduced integration concept with
physical stabilization. This, however, requires the stabilization procedure to be constant, at least within each increment,
to preserve quadratic convergence in the nonlinear solution process.

The stabilization concept proposed herein is more general (see the various element formulations below), quadratic
convergence is automatically preserved and, most importantly, only minor changes in existing element routines
are required. The idea is to drop precisely this destabilizing part HT

hHh in the definition of a modified (discrete)
Green-Lagrange strain

É ∶= Elin +
1
2
(
HT

r Hr +HT
r Hh +HT

hHr
)

(50)

with Elin = sym(H) being the unmodified (possibly enhanced) geometrically linear part of the strain tensor. The definition
of Hh depends on the finite element formulation and may be obtained by an investigation of the element stiffness matrix.
Since hourglassing is related to higher order terms only, the modification does not affect the constant strain modes, which
are always included in Hr and thus consistency of the finite element formulation is not affected. This also guarantees
convergence towards physically correct instabilities with mesh refinement.
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The technical implications on the framework of a finite element procedure are fairly simple. For consistent lineariza-
tion, the definition in Equation (50) requires the modified operators

𝛿É = B́𝛿 ̇̆d and Δ𝛿É ∶ S = 𝛿 ̇̆d
T
́G(É, S)Δ ̇̆d (51)

for computation of the residual vector as well as the material and geometric stiffness matrix. In this process, the stress and
elastic tangent are computed as a function of the modified strain measure, that is, S(É) and C(É). Further implementation
aspects are discussed in Appendix C.

4.2 Examples

4.2.1 Stabilized element Q1/ME4

As shown in the preceding sections, geometric hourglassing of the Q1/E4 element is triggered by the geometric stiffness
coming from the compatible bilinear hourglass modes. Employing a split of the compatible part of the displacement
gradient into a constant and linear part

Hc(𝜉, 𝜂) = Hc
0 +Hc

1(𝜉, 𝜂) with Hc
0 = Hc|||𝜉=𝜂=0

, (52)

we can define

Hr ∶= Hc
0 and Hh ∶= Hc

1 (53)

and obtain a modified expression for the compatible part of the Green-Lagrange strain in (29) as

Éc = 1
2

⎡
⎢
⎢
⎢
⎢
⎣

Hc
0 +HcT

0 +Hc
1 +HcT

1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2Ec
lin

+HcT

0 Hc
0 +HcT

0 Hc
1 +HcT

1 Hc
0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2Éc
quad

⎤
⎥
⎥
⎥
⎥
⎦

. (54)

Within the EAS framework, the modified strain (29) is adapted as E = Éc + Ẽ and the resulting element is denoted as
Q1/ME4. In view of the modal analysis of Section 3.4, the corresponding hourglass eigenvalues reduce to 𝜔hg

1 = 𝜆
2
1 det Cn

3reCn
22

and 𝜔hg
2 = 𝜆

2
2re det Cn

3Cn
11

. These are identical to the ones of Q1/E4 without geometric terms in Table 3. Figures 4 and 5 show
that, similar to Q1/HT4, the element’s eigenvalues remain positive under compression.

4.2.2 Stabilized element Q2/ME11

Like its bilinear counterpart, the biquadric element Q2/E11 suffers from geometric hourglassing, which is triggered by
the geometric stiffness of certain compatible displacement modes. However, the order of locking is shifted to quadratic
displacement modes.# Similar as before, we consider a Taylor expansion of the compatible displacement gradient of the
form

Hc = Hc
0 +Hc

1(𝜉, 𝜂) +Hc
2(𝜉

2
, 𝜂

2
, 𝜉𝜂) +Hc

3(𝜉
2
𝜂, 𝜉𝜂

2
, 𝜉

2
𝜂

2). (55)

For the uniaxial compression test, numerical investigations indicate that the last two terms trigger “higher order”
geometric hourglassing. Thus we define

Hr ∶= Hc
0 +Hc

1 and Hh ∶= Hc
2 +Hc

3 (56)

and proceed as before. As not necessarily all geometric stiffness contributions from (53)2 are responsible for geometric
hourglassing, alternative definitions of Hh are possible. The corresponding element is denoted as Q2/ME11.
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4.2.3 Stabilized element Q1/MH4-I and Q1/MH4-II

Also Q1/H4 suffers from geometric hourglassing and the remedy described in Section 4.2.1 can also be applied to this
element formulation. The element is denoted as Q1/MH4-I with Hr = Hc

0 + H̃ and Hh = Hc
1. The eigenvalue is then

modified according to

𝜔
hg
1 = det An

3reAn
22
+ Cs

12

(
re𝜆

2
1

3
+
𝜆

2
2

3re

)

−
As

22

3re
−

re(As
12)

2

3As
22

(55)

𝜔
hg
2 = re det An

3An
11

+ Cs
12

(
re𝜆

2
1

3
+
𝜆

2
2

3re

)

−
reAs

11

3
−
(As

12)
2

3reAs
11

(56)

However, in contrast to Q1/E4, the shear strain enhancement of Q1/H4 contains also a quadratic part H̃TH̃, which
causes an additional geometric hourglassing phenomenon, see Section 2. In order to avoid it, we redefine the strain
enhancement of Q1/H4 from Equation (35) as

É = Éc + 1
2

(
H̃T + H̃ +HcT H̃ +HcH̃T

)
. (59)

The element is denoted as Q1/MH4-II. For undistorted elements and homogeneous strain states, where the mixed terms
are not activated, it provides the same results as Q1/ME4.

4.2.4 Stabilization of assumed stress element Q1/S5

The proposed stabilization procedure can also be applied to the assumed stress elements by Pian and Sumihara.53 Within
this work we consider a total Lagrangian formulation based on an independent second Piola-Kirchhoff stress field. The
required inverse stress-strain relation of the Neo-Hookean material is adopted from Reference 54. We refer to the work of
Viebahn et al.17 for further details. The stabilized version, denoted as Q1/MS5, is based on the modified Green-Lagrange
strain (54).

4.3 Discussion

By design, the proposed stabilization concept modifies element stiffness such that geometric hourglassing, occuring under
compressive states of stress, is effectively removed. The same modifications; however, apparently have a detrimental,
destabilizing effect in the context of material hourglassing for states of tensile stress. However, as material hourglassing
emanates from artefacts in the material stiffness, not from the geometric stiffness, this is not an issue in the authors’
opinion. Stabilizing the elements in the tensile regime by adding (not removing, respectively) artificial geometric stiffness
would substantiate a strategy of balancing one error with another one. For material hourglassing (as for any parasitic or
unphysical behavior) removing the source of the problem instead of fighting its symptoms is the way to go. Moreover, a
broad class of problems do not involve material hourglassing anyway.

The nature of material hourglassing is quite different from the one of geometric hourglassing. The modal analysis in
Section 3.4 and the benchmark in Section 5.4 imply that whether or not geometric terms are involved might be of little
relevance.

The proposed methodology can be viewed as a self-adaptive stabilization approach in the sense that the element’s
linear response is not affected and only the onset of geometric nonlinearity will activate the strain modification.

Here, the definition of Hh is based on a stability analysis of an undistorted element and we do not claim that hourglass-
ing is fully avoided for distorted mesh configurations. Numerical experiments, however, indicate an hourglassing-free
performance also for severely distorted meshes.

Throughout this work, the concept of “stiffness” is used to analyze the elements. Nevertheless, for explicit compu-
tations, which are solely based on residual quantities, this approach is straightforwardly applicable via the modified
operator (48)1.
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A further aspect is the fact that the proposed modification of the strain tensor (50) implies that det Ć < 0
(self-penetration of matter) is possible, with Ć = 2É − 1 being the modified rigth Cauchy-Green tensor. Exemplified for
a pure bending deformation u1 = c5𝜉𝜂 of a square Q1/ME4 element, it can be shown that at location 𝜂 = 𝜂0 (e.g., an inte-
gration point), det Ć becomes zero for c5 = 1∕(2𝜂0). As this corresponds to very large in-plane bending deformations it is
of minor relevance for practical computations. More importantly, with mesh refinement this defect vanishes. However,
possible remedies can be found by adding volumetric stabilization terms, see Reference 21.

5 PHYSICAL VERSUS ARTIFICIAL INSTABILITIES: SOME ANALYTICAL
AND NUMERICAL RESULTS

5.1 Motivation

Availability of mathematical tools to analyze finite element solutions of nonlinear problems is limited, which underlines
the importance of numerical benchmarks. Design of feasible benchmarks is not trivial, since a unique solution does not
always exist and critical points, such as limit points or bifurcation points can occur and exhaustive analytical solutions
are rarely available.

In this section we propose a simple bifurcation problem, for which analytical solutions can be obtained, as a bench-
mark tailored to study stability properties of finite elements in large strain nonlinear analysis. The comparison with
numerical results provides insight on the stability properties of the elements discussed in the preceding sections.

5.2 Problem setup: Bifurcation of a hyperelastic rectangular block

Let us consider a rectangular block with dimensions 2L1 × 2L2, made of an isotropic, compressible, hyperelastic material.
The reference configuration  is assumed to be stress-free and plane strain conditions apply, that is, 𝜆3 = 1. The block
is constrained at X2 = ±L2 by a prescribed vertical displacement u2(X1,±L2) = ±𝛾û2 with zero shear tractions (roller
support), whereas the lateral edges at X1 = ±L1 remain completely traction-free, see Figure 6. Horizontal rigid body modes
are assumed to be restricted. With these boundary conditions at hand, the solution of the displacement-controlled problem
is governed by the weak equilibrium equation

Π,u[u, 𝛾]𝛿u =
∫


𝛿F ∶ P(u, 𝛾) dA = 0, (60)

with admissible virtual displacement 𝛿u. For a sufficiently small load factor 𝛾 a unique solution (the minimizer of Π) is
given by the deformed configuration 2L1𝜆1 × 2L2𝜆2, with a homogeneous uniaxial stress state and biaxial stretching

F I G U R E 6 Problem description exemplified for a compression test
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P = diag(0,P2) and F = diag(𝜆1(𝜆2), 𝜆2), with 𝜆2(𝛾) = 1 + 𝛾û2∕L2. (61)

The corresponding displacement field u0(X, 𝛾)marks the primary path of the solution. In the subsequent analysis we focus
on critical points on the primary path at which bifurcation into secondary equilibrium paths may be triggered. They are
associated with critical stretches 𝜆2 =∶ 𝜆(j)c . Here, integer j denotes the jth bifurcation point andΔu(j) is the corresponding
incremental bifurcation mode (buckling mode). The criterion for a critical point is given by the incremental eigenvalue
problem

(Π,u𝛿u),uΔu(j) =
∫


𝛿F ∶ A(u0, 𝜆
(j)
c ) ∶ GradΔu(j)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

ΔP(j)

dA = 0, (62)

subjected to the incremental boundary conditions

ΔP(j)11(±L1, X2) = 0, ΔP(j)12(±L1, X2) = 0, ΔP(j)21(X1, ±L2) = 0, Δu(j)(X1, ±L2) = 0. (63)

This bifurcation problem is well studied in the literature, including analytical solutions for criterion (59), and we refer to
Appendix D for further details and references. The exact location of the bifurcation point in the numerical solution of (59)
along with the corresponding bifurcation mode can be found with the method of extended systems as a direct approach,
see Reference 55 and, in the context of displacement-controlled loading.56

5.3 Geometric instabilities–Compression test

5.3.1 Setup and reference solution

We first consider a block with Neo-Hookean material under compression, such that û2 < 0, P2 < 0 and 𝜆2 < 1. The
corresponding strain energy function is given by

W(𝜆1, 𝜆2) =
𝜇

2
(𝜆−2

1 + 𝜆−2
2 − 2) − 𝜇 ln(𝜆1𝜆2) +

Λ
2

ln (𝜆1𝜆2)2. (64)

Similar to Equation (43), the stress-free condition S1 = 0 allows to eliminate one stretch component

S1 =
𝜇𝜆

2
1 + Λ ln(𝜆1𝜆2) − 𝜇

𝜆
2
1

= 0 ⇒ 𝜆1 = exp
⎛
⎜
⎜
⎜
⎝

𝜇

Λ
−

WL

(
2𝜇 exp(2𝜇∕Λ)

Λ𝜆2
2

)

2

⎞
⎟
⎟
⎟
⎠

1
𝜆2
. (65)

Here, WL is the Lambert W function. Next, we study the stability properties of the block in dependence of its aspect
ratio r = L1∕L2 in the undeformed configuration. The stability spectrum in Figure 7 shows the first four critical stretches
𝜆
(j)
c that appear along the primary path as a function of r. As expected, high sensitivity with respect to the aspect ratio

r is observed. Tall, skinny blocks r → 0 buckle in accordance with Euler’s solution for buckling of beams, whereas for
the “thick” limit r → ∞ all critical branches converge towards the same value, which physically characterises surface
buckling of an infinite half-space.

These results are the basis for the subsequent assessment of the various finite element formulations w.r.t. geometric
hourglassing. As well known from linear problems, displacement based finite element formulations perform too stiff,
that is, for a loading by prescribed external forces, displacements are underestimated and converge towards the correct
solution from below (cf. “best approximation property”,57 Chap. 4.1). Although not generally supported by mathematical
proofs, the same phenomenon is observed in nonlinear problems. For the present case of prescribed displacements this
means that the resulting reaction forces converge from above. This implies that critical loads are overestimated. From this
assertion, the following can be derived:

• An approximation of the jth branch should not appear above the analytical solution of that branch (note that the vertical
axis depicts the stretch in vertical direction, not the load factor).
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• Consequently, none of the displacement based finite element approximations of a bifurcation branch in Figure 7 should
appear in the stable region above the analytic curves.

As shown in References 58,59, the convergence properties of EAS elements are similar for linear problems, that is,
displacements converge from below for load cases with prescribed forces and reaction forces converge from above for load
cases with prescribed displacements. In the nonlinear regime, however, we observe violations of (i) and (ii), associated
with an hourglass instability. Therefore, in the subsequent analysis we use conditions (i) and (ii) as criteria to detect
hourglassing without visual inspection of the corresponding buckling modes.

Remark 1. This work focuses only on the incremental bifurcation problem itself and post-bifurcation states
(e.g., triggered via perturbation methods) are not further considered. Here, the block’s aspect ratio plays
a crucial role. As known from structural models, small aspect ratios yield stable bifurcated equilibrium
branches whereas thicker blocks exhibit unstable ones (generating a limit point). For the present example,
this change occurs at r ≈ 0.7. For a corresponding theoretical analysis the interested reader is referred to
Triantafyllidis et al.60

5.3.2 Influence of the aspect ratio

For the first test we consider a mesh with the same number of elements in both directions and only vary the block’s aspect
ratio, such that always r = re, with re being the aspect ratio of an individual finite element. As a consequence, highly dis-
torted elements are obtained in the limit cases. For r → 0 we recover the thin beam limit, which would require only one
single layer of (locking-free) elements across the thickness (X1-direction) and a number of elements in X2-direction to
resolve the Euler buckling modes, that is, a 1 × n-mesh would be optimal in terms of computational efficiency. Interest-
ingly, the naive idea of using an n × 1-mesh instead for the opposite limiting case r → ∞ is not feasible, because a single
element along the lateral boundaries X1 = ±L1 is unable to properly resolve the surface buckling modes. In this case,
depending on the number of modes to be resolved, a locally refined mesh at the boundary would be “optimal”. This, how-
ever, is only a sideremark, because this benchmark is tailored to detect hourglass instabilities of specific finite element
formulations and not to assess their efficiency (coarse mesh accuracy) in solving the problem at hand.

The graphs in Figure 8 show the critical stretches computed with Q1 and Q2 elements as well as various EAS formu-
lations. The results obtained with a mesh with 8 × 8 elements are compared with the ones of a single element (dashed)

F I G U R E 7 Left: geometric stability spectrum with analytical solution of the first four bifurcation points, Neo-Hooke with
E = 1000, 𝜈 = 0.45 (Λ ≈ 3103.448, 𝜇 ≈ 344.827), corresponding numerical data are provided in Table D1 in Appendix D; right: contour plot
of various buckling modes, superimposed on the undeformed geometry, exemplified for three aspect ratios. Here, the detailed surface
buckling patterns for r = 10 are exemplified for mode numbers n = {1, 1, 8, 20} (from left to right) and  i∕i designate
symmetric/antisymmetric modes w.r.t the Xi-axis
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(A) (B)

(C) (D)

F I G U R E 8 Geometric stability spectrum, analytical solution versus various FE formulations, mesh: 8 × 8 and 1 × 1 (dashed),
Neo-Hooke E = 1000, 𝜈 = 0.45. Due to numerical difficulties, some higher-order hourglassing-related branches are not fully displayed

as well as the analytical solution (thick grey). As expected, the results of the displacement based elements (A) fulfill con-
dition (i) and (ii), whereas all standard EAS formulations (B)–(D) surpass some critical reference branches for certain
aspect ratios.

For large re artificial instabilities occur for both meshes which is the “classical hourglassing”, driven by the geometric
stiffness of higher-order compatible strain modes. On the other hand, small values of re only cause problems for Q1/H4
and Q1/H4-I (not shown), which is the “Euler buckling” on element level, driven by the geometric contributions of the
enhanced strain part (cf. curvature-related P-Δ-effect in Figure 1D).

Since the boundary conditions hinder a constraint-free development of this hourglass pattern this effect is less pro-
nounced for this example than the former hourglass effect. Typical examples of both hourglass patterns are sketched in
Figure 9B.

In contrast to this, the modified element formulation Q1/ME4 (for this problem equivalent to Q1/MH4-II),
as well as Q1/HT4 (not shown), fully avoid both hourglass effects and, importantly, no loss of accuracy is
observed in regions where also the standard elements perform well. Some buckling modes are exemplarily sketched
in Figure 9A.

Remark 2. Bifurcation points are characterized by a zero-crossing eigenvalue of the stiffness matrix. This
information can then be used as a criterion to start a more accurate computation of the critical points via
extended systems. For this problem, one usually observes that physical instabilities are reflected by a smooth
propagation of the critical eigenvalues, whereas the onset of hourglass instabilities appear abruptly. From
a numerical point of view this often causes difficulties in the computation of (artificial) critical points via
extended systems and bisection algorithms may alternatively be used.
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(A) (B)

F I G U R E 9 Geometric instabilities; buckling modes superimposed on the undeformed mesh configuration

F I G U R E 10 Convergence behavior towards the first 3 critical points, mesh: m × 2m, Neo-Hooke E = 1000, 𝜈 = 0.45

5.3.3 Convergence study

For the second test we consider a tall block with r = 1∕2 and a uniform m × 2m mesh such that the element’s aspect ratio
is re = 1. Figure 10 shows the normalized value 𝜆(j)c,FE∕𝜆

(j)
c for the first three critical points versus m.

Q1 and Q1/ME4 are able to capture the critical points properly with mesh refinement without showing any sign of
hourglassing. The small difference between both is due to mild locking of Q1. For j = 1, the Q1/E4 shows a slightly better
convergence than the Q1/ME4 which can be explained by the absence of the geometric hourglass stiffness. However,
the higher critical points j = 2, 3 are overestimated due to hourglassing. Similar results (not shown) are obtained for the
Q1/H4 (cf. Q1/E4) and the Q1/MH4-I (cf. Q1/HT4), see also the numerical values in Table 4.

5.3.4 Mesh distortion

The analysis up to now was restricted to rectangular-shaped elements and the purpose of this test is to cover the case when
the mesh is distorted. Figure 11 sketches one of the distorted meshes together with some buckling modes. In contrast
to the previous examples, the onset of artificial instabilities are now determined by the individual element, that is most
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T A B L E 4 Convergence study (cf. Figure 10); critical stretches for two selected uniform meshes

Ref. Mesh Q1 Q1/E4 Q1/ME4 Q1/H4 Q1/MH4-I Q1/HT4

𝜆
(1)
c 0.805 4/8 0.759 0.742 0.786 0.793 0.790 0.790

32/64 0.804 0.805 0.805 0.805 0.805 0.805

𝜆
(2)
c 0.582 4/8 0.276 0.656⋆ 0.257 0.675⋆ 0.374 0.374

32/64 0.578 0.656⋆ 0.579 0.675⋆ 0.580 0.580

𝜆
(3)
c 0.544 4/8 0.245 0.597⋆ — 0.653⋆ 0.293 0.293

32/64 0.532 0.654⋆ 0.536 0.669⋆ 0.526 0.538

Note: Values marked with ⋆ are afflicted with geometric hourglassing.

F I G U R E 11 Buckling modes superimposed on the undeformed mesh configuration

T A B L E 5 Mesh distortion test: critical stretches for j = 1, 2, 3

Ref. nele Q1 Q1/E4 Q1/ME4 Q1/H4 Q1/MH4-I Q1/HT4

𝜆
(1)
c 0.805 54 0.757 0.799 0.793 0.801 0.792 0.792

24 0.709 0.782 0.766 0.782 0.765 0.766

𝜆
(2)
c 0.582 54 0.193 0.636⋆ 0.490 0.771⋆ 0.447 0.394

24 0.177 0.682⋆ 0.517 0.647⋆ 0.477 0.449

𝜆
(3)
c 0.544 54 0.146 0.635⋆ 0.485 0.733⋆ 0.431 0.388

24 0.142 0.655⋆ 0.491 0.467 0.467 0.449

Note: Values marked with ⋆ are afflicted with geometric hourglassing.

prone to become unstable. For the selected cases, no artificial instabilities are observed for the newly proposed elements
(cf. Table 5).

5.4 Material induced instabilities–Tension test

5.4.1 Setup and reference solution

Inspired by Triantafyllidis et al.,60 we consider the special Blatz-Ko rubber for the tension test, such that û2 > 0, P2 > 0
and 𝜆2 > 1. The analytical solutions for the first four critical stretches are shown in Figure 12 as functions of the block’s
aspect ratio. For r → 0 all critical stretches converge towards the value where the P2 − 𝜆2 relation reaches an asymptote
(dashed line). For more bulky blocks, the critical stretches are larger. The kinks in the branches result from intersections
of solution branches, that is, when the sequence of certain buckling modes, when sorted according to the magnitude of
the critical 𝜆2, changes. Interestingly, the underlying differential equation remains fully in the elliptic regime, see also
Section 3.4.
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F I G U R E 12 Left: Material stability spectrum with analytical solution of the first four bifurcation points, special Blatz-Ko, E = 1000,
numerical data are provided in Table D1 in Appendix D; right: Contour plot of the first four buckling modes, also called diffuse bifurcation
modes, superimposed on the undeformed geometry

T A B L E 6 Material hourglassing: Critical stretches for j = 1, 2, 3

Ref. Mesh Q2 /E11 /ME11 Q1 /E4 /ME4 /H4 /HT4

𝜆
(1)
c 2.302 1/1 2.307 1.519⋆ 1.495⋆ — 1.519⋆ 1.510⋆ 2.306 2.279

8/8 2.302 1.519⋆ 1.316⋆ 2.313 1.519⋆ 1.509⋆ 2.302 2.279⋆

𝜆
(2)
c 2.363 8/8 2.364 1.520⋆ 1.326⋆ 2.414 1.521⋆ 1.511⋆ 2.306⋆ 2.283⋆

𝜆
(3)
c 2.447 8/8 2.450 1.522⋆ 1.354⋆ 2.577 1.526⋆ 1.517⋆ 2.310⋆ 2.295⋆

Note: Values marked with ⋆ are afflicted with geometric hourglassing.

5.4.2 Material hourglassing

All enhanced assumed strain elements fail to reproduce the correct (physical) buckling loads for this simple tension test,
The reason for this pathological behavior is material hourglassing.

Table 6 shows analytical and numerical results of the critical stretches for a square block (r = 1). In accordance
with the results of the modal analysis in Section 3.4, we observe a principally different behavior of the “E” and “H”
enhanced formulations. The first ones fail around the stretch state 𝜆2 = 1.509 and the latter ones at around 𝜆2 =
2.279. These values can be related to the horizontal tangents of the S2 − 𝜆2- and P2 − 𝜆2-curves in Figure 3. How-
ever, within each of the two classes, minor differences between the individual formulations can be observed, which
emanate from different treatment of the geometric stiffness. While Q1/MH4 and Q1/HT4 fail exactly at the stretch value
with the horizontal tangent, Q1/E4 as well as Q1/H4 are slightly delayed due to the stabilizing geometric hourglass
stiffness.

For the displacement based Q2 element, the upper row of Figure 13 shows the first four critical buckling modes
superimposed onto the initial mesh. These modes are in good agreement with the analytical modes sketched in
Figure 12. The lower row of Figure 13 sketches typical (material) hourglass patterns for various formulations. Inter-
estingly, the first buckling mode of Q1/H4 (not shown) is a good approximation to the reference solution, the
second buckling mode of the Q1/H4 is repeated version of the first mode spoiled with some hourglass patterns.
This shows that it is important to consider also higher-order buckling modes for the stability analysis of finite
elements.

In summary, we can conclude that, at least for this example, the elements proposed in Section 4, for example, Q1/ME4,
as well as the Q1/HT4 perform worse w.r.t material hourglassing. The reason is the absence of the stabilizing geomet-
ric hourglass stiffness. In addition, the “nonlinear enhanced” Q1/H4 is superior to the “linear enhanced” Q1/E4 and,
although not free of material hourglassing, seems to be more suitable when strong material nonlinearities are involved.



BIEBER et al. 2663

F I G U R E 13 Buckling modes superimposed onto the initial mesh configuration; (upper row) approximation with Q2 of the first four
buckling modes (the actually curved element edges are not plotted); (lower row) typical hourglass patterns of various EAS formulations

F I G U R E 14 Cook’s membrane; problem description and two deformed 2m ×m (m = 12) mesh configurations

6 FURTHER NUMERICAL EXPERIMENTS

This section analyzes possible consequences of the modification of the Green-Lagrange strain proposed in Section 4. In
particular, convergence and stability of the novel elements in comparison with established EAS elements is studied. For
this purpose we consider three large strain bending problems. For the sake of brevity, we primarily focus on Q1/ME4.
For all simulations the compressible Neo-Hookean strain energy function (61) is used. Furthermore, standard Gauss
quadrature, that is, 2 × 2 for bilinear elements and 3 × 3 for biquadratic elements, is used.

6.1 Cook’s membrane

This is a well-known benchmark to test element performance in in-plane bending situations. The initial geometry as
well as two deformed configurations are depicted in Figure 14. We follow Reference 21 and use a quasi incompressible
Neo-Hookean model with Lamé parameters Λ = 400942 and 𝜇 = 80.1938 (Young’s modulus E = 240.5654 and Poisson’s
ratio 𝜈 = 0.4999). The quantity of interest is the absolute nodal tip displacement ||dA|| of the upper right corner for two
different scenarios.
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First, we consider an m ×m mesh and a vertical loading with a resultant force Pv = 100 (Ph = 0). Figure 15A shows
the convergence plot for various EAS elements. Due to in-plane shear locking, Q1/E2n is stiffer than all other elements.
Interestingly, the novel Q1/ME4 element performs slightly more flexible for coarse meshes than the Q1/E4. However, this
effect decreases with mesh refinement and all elements converge properly.

For the second scenario we consider a 2m ×m mesh in combination with a higher load of Pv = Ph = 300, which makes
it more challenging with respect to geometric hourglassing. Figure 15B shows that Q1/E4 and Q1/H4 are too flexible
for coarse meshes. Moreover, the results become unstable for m > 10. In contrast to that, the other elements apparently
converge towards the same value. The stress singularity at the top left corner produces potential numerical issues with
mesh refinement, but this aspect is not further discussed herein. Figure 14 depicts the deformed meshes for Q1/ME4 as
well as Q1/E4. For the latter, the iterations failed to converge after reaching approximately 87% of the target load. The
local hourglassing at the upper left corner for Q1/E4 is clearly visible.

6.2 Pure bending deformations

We next consider the coiling of an initially flat beam-like structure with length L = 10 and thickness T = 2. A
Neo-Hookean material with E = 100 and varying Poisson’s ratio is considered. The block is clamped at the left end and
subjected to two different loading scenarios at the right edge: (i) force control via follower loads and (ii) prescribed rotation
angle 𝛼, see Figure 16.

We first consider a scenario that uses a 1 ×m mesh and 𝜈 = 0.3. The structure is subjected to pair of follower loads
PM invoking a bending moment M = PM ⋅ t = E∕15. Figure 17A shows the absolute tip displacement of point A for an

(A) (B)

F I G U R E 15 Cook’s membrane; convergence plot for (A) Pv = 100, Ph = 0, uniform m ×m mesh and (B) Pv = Ph = 300, 2m ×m mesh

F I G U R E 16 Pure bending problem; problem description and deformed 3 × 15 mesh
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(A) (B)

F I G U R E 17 Pure bending problem with prescribed M = E∕15; (A) tip displacement versus number of elements and (B)
load-displacement curve for a 1 × 5 mesh

increasing number of elements in length direction (X1-direction). Shear locking for Q1/E2n and in addition (mild) vol-
umetric locking for Q1 yields a stiffer response than the remaining fully locking-free elements. They perform similar,
with a slightly stiffer response of Q1/ME4. The reason for this difference is the modification of the hourglass stiffness
in combination with the fact that there is no mesh refinement in transverse direction (X2-direction). Figure 17B shows
the load-displacement curve for a 1 × 5 mesh, with the load scaled by load factor 𝛾 . The results of Q1/ME4 an Q1/E4
coincide at the beginning of the deformation process but deviate when the load is increased and the nonlinear hourglass
contributions become more influential. For a similar problem, the slightly stiffer response was also observed by Schwarze
and Reese61 (cf. Sec. 7.4) in the context of a shell formulation where the quadratic Green-Lagrange strain component in
thickness direction is neglected.

For the second scenario we consider an m × 5m mesh, such that the element shapes remain square. A rotation angle
𝛼 = 𝜋 is prescribed at the right edge along with the constraint of the edge remaining straight. The aim of this second
scenario is to show that the novel elements perform well for large bending problems and that the slight deviations from
the previous scenario diminishes with mesh refinement in transverse direction. For the incompressible case (𝜈 = 0.5) it
is possible to derive an analytical solution for this problem, see Destrade et al.62 As a reference we use the variation of the
second Piola-Kirchhoff stress component in transverse direction.

S11 =
157.07963X3

2 + 217.6835X2
2 − 114.29004X2 − 162.05561

5X2
2 + 8.79635X2 + 3.868795

. (66)

It is homogeneous in length direction (X1-direction), i.e. independent of X1. The numerical results for S11 in cross sections
passing through the Gauss quadrature points, using a quasi incompressible material with 𝜈 = 0.4999, is compared to this
reference solution. Figure 18 shows the convergence behavior of the relative error

e(S11) =
∫

T
0 (S11 − Sh

11)
2 dX2

∫
T

0 (S11)2 dX2
(67)

versus the number of elements m in X2-direction. The integrals in (64) are evaluated with the same Gauss quadrature
rule as the element stiffness matrices. For an excellent review on the analytical solution as well as the underlying stability
problem, the interested reader is referred to the Secs. 5.5 and 12.4 in Bigoni.63

For coarse meshes Q1/E4 performs slightly better than Q1/ME4 and, interestingly, Q1/HT4 performs slightly bet-
ter than Q1/H4. With mesh refinement these differences diminish. Almost identical results are observed for Q1/S5 and
Q1/MS5 (not shown for the sake of brevity). Qualitatively similar results are also observed for the biquadratic counter-
parts Q2/E11 and Q2/ME11. The differences are much smaller, though, since the bending problem is dominated by the
bilinear (hourglass) strain mode, which is not modified for Q2/ME11.
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F I G U R E 18 Pure bending problem with prescribed 𝛼 = 𝜋; convergence behavior of various elements. It is remarked that the quasi
incompressible simulation does obviously not converge towards the isochoric reference solution with further mesh refinement (the error
becomes dominant at around e ≈ 10−4 for 𝜈 = 0.4999)

F I G U R E 19 Inhomogeneous compression problem; left: problem description; right: deformed mesh at the limit point (Q2,
nele = 1125, 𝛾c = 1.03)

6.3 Inhomogeneous compression of a rubber block

For the last benchmark we consider the problem setup shown in Figure 19, see also References 64,65. It consists of a
Neo-Hookean block (E = 1000, 𝜈 = 0.49) subjected to a asymmetrically placed line load q. A load controlled nonlinear
analysis is performed with the aim of studying stability of the equilibrium points. Critical points are computed with a
combination of accompanying eigenvalue analysis and a bisection algorithm.

The right side of Figure 19 depicts a deformed configuration for a load level at which a (physical) limit point is reached
when using Q2 elements. A locally non-smooth deformation pattern near the point marked with A in Figure 19, left, is
faintly visible, but it turns out that a finer mesh would be needed to further resolve it. Eventually, the deformation localizes
near the point A. For a refined mesh with 1602 elements a limit point is reached with a load factor of 𝛾c = 1.0215. This
value is considered as a numerical reference solution in the following, without claiming that it is a converged solution.

First, we focus on the coarse mesh accuracy of some selected elements. Figure 20 shows the corresponding
load-displacement curves for a uniform 6 × 3 mesh as well as some deformed mesh configurations. Each of them
correspond to the respective final point of the load-displacement curves shown on the left. All simulations with stan-
dard EAS elements reach a limit point at around 𝛾c ≈ 1 (coincidentally, this value is close to the numerical reference



BIEBER et al. 2667

F I G U R E 20 Inhomogeneous compression problem; left: load-displacement curves for 3 × 6 mesh; right: deformed mesh
configurations of the final state of the corresponding load-displacement curves

F I G U R E 21 Inhomogeneous compression problem; top: critical load factor versus number of elements; bottom: post-critical deformed
configurations for nele = 198 (second data-set in graph)
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value), but the corresponding buckling modes are obviously dominated by hourglassing, that is, this is not the phys-
ically correct critical load. Q1/HT4 is free from hourglassing but fails the reproduce the physical instability. Also
Q1/ME4 is free from artificial instabilities but it runs into a stable bifurcation near 𝛾 ≈ 2.1. The fact that both elements
fail to reproduce the correct physical instability can be explained by the extremely coarse mesh. Only the quadratic
elements Q1/ME11 and Q2 are capable of reproducing an approximation of the physical instability mode for this
coarse mesh.

We finally consider some refined meshes (nele = {57,198, 432,732, 1125, 1602}). The diagram in Figure 21 shows the
numerical results for the critical loads plotted versus the number of elements. These computations reveal the difficulties
that are often encountered in the distinction between physical and artificial instabilities. As an example, Q1/E4 exhibits
geometric hourglassing for the first three meshes and then, coincidentally, accomplishes to capture the limit point, at
least visually (not shown). In contrast to that, Q1/H4 fails throughout all simulations in form of local hourglassing, see
the enlarged detail. The newly proposed elements as well as Q1/HT4 are free from hourglassing and reproduce a buckling
mode that can be considered as likely physical.

7 CONCLUSIONS

The present study provides new insights into the origin of numerical instabilities observed for various locking-free finite
element formulations for nonlinear elasticity, with a focus on Enhanced Assumed Strain (EAS) elements. In particular, the
numerical phenomena can be traced back to phenomena that are explainable with classical concepts of stability analysis
in structural mechanics. With the help of tailor-made benchmark problems, for which analytical solutions are available,
the relationship between element aspect ratio, element formulation and stability properties are systematically described.
The results imply a classification of nonlinear hourglassing phenomena into geometric and material hourglassing. Both
of them apparently require different strategies to avoid them.

With respect to geometric hourglassing, numerical evidence reported in this paper implies that a newly proposed
method based on a modification of the computation of the Green Lagrange strain on element level is able to avoid numeri-
cal instabilities, while representing physical ones. However, for material hourglassing – prominent in problems involving
large tensile strains – the newly proposed modification yields even slightly detrimental behavior. The analysis of material
hourglassing and corresponding remedies are subject to ongoing research. In this context, both regarding the impor-
tant distinction between physical and numerical instabilities and the problem of material hourglassing, which strongly
depends on the material law, further research is needed to define feasible benchmarks. This does not only apply for
stability analysis of finite elements in nonlinear problems but for nonlinear finite element technology in general.
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ENDNOTES
∗For undistorted elements this is equivalent to the EAS formulation of Simo and Armero.12 See also the Q1/H4 element in Section 3.3.
†Mostly associated with the lateral geometric stiffness −P∕L of an axially loaded column of length L and compression load P.
‡The rigid body rotations are discarded.
§The indicated manipulation with J0 (the element’s Jacobia J = 𝜕X∕𝜕𝝃 at the element center) is necessary to pass the patch test.
¶A special variant of the constitutive relation proposed by Blatz and Ko,50 implying 𝜈 = 1∕4 and f = 0, suitable to model for example, foamed

polyurethane elastomers.
#Q1 cannot represent constant in-plane bending modes, Q2 is unable to represent linear in-plane bending without artificial strain.
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APPENDIX A. LINEARIZED STIFFNESS MATRIX

A.1 Based on the “Wilson modes” (Q1/H4)
In compact matrix notation the stiffness matrices derived in Section 2.1 can be computed via

Ke =
∫Ω

BT
HAeBH dA and Kg =

∫Ω
BT

HAgBH dA (A1)

with modal strain-displacement operator

BH =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1∕L1 0 0 0 𝜂∕L1 0 0 0
0 1∕L2 0 0 0 𝜉∕L2 0 0
0 0 1∕L2 0 𝜉∕L2 0 𝜂∕L2 0
0 0 0 1∕L1 0 𝜂∕L1 0 𝜉∕L1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (A2)

associated with displacement gradient (H11,H22,H12,H21)T and displacement ansatz (2). The general material matrix and
stress matrix read

Ae =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Λ + 2G Λ 0 0
Λ Λ + 2G 0 0
0 0 G G
0 0 G G

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and Ag =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜎11 0 0 0
0 𝜎22 0 0
0 0 𝜎22 0
0 0 0 𝜎11

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (A3)

respectively, with elastic constants Λ = G(E − 2G)∕(3G − E). This yields, with Λ = 𝜈 = 0, E = 2G and stress state 𝝈 =
diag(0,−𝛾p) the elastic stiffness (3) as well as the geometric stiffness matrix (5).

Static condensation of parameters c7−8 from K1 = K1
e +K1

g (cf. Equations (3) and (5)) provides the stiffness matrix

K1
red =

⎡
⎢
⎢
⎣

E
3re
+ Gre

3
+ 𝜎22re

3
0

0 Ere
3
+ G

3re
+ 𝜎22re

3

⎤
⎥
⎥
⎦
−
⎡
⎢
⎢
⎣

Gre
3

0
0 G2

3re(G+𝜎22)

⎤
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

EAS contribution

. (A4)
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Here, the second diagonal term can be written as a power series in 𝜎22 as

K66
red =

Ere

3
+ 1

3
r2

e + 1
re

𝜎22 +
1

3re

∞∑

n=1

(−2)n

En (𝜎22)n+1
, (A5)

where for small ratios 𝜎22∕E, the last term may be neglected and approximation (10) is recovered, making it more
accessible for a physical interpretation.

A.2 Based on the “transposed Wilson modes” (Q1/HT4)
The corresponding stiffness matrix is obtained by a modified BH-operator which is obtained by switching the terms in
the last two rows of Equation (A2). Static condensation of c7−8 yields

K1
red =

⎡
⎢
⎢
⎣

E
3re
+ Gre

3
+ 𝜎22re

3
0

0 Ere
3
+ G

3re
+ 𝜎22re

3

⎤
⎥
⎥
⎦
−
⎡
⎢
⎢
⎣

Gre
3
+ 𝜎22re

3
0

0 G
3re

⎤
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

EAS contribution

(A6)

and recovers Equation (9).

APPENDIX B. MODAL ANALYSIS

Relation between A and C is given by

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

An
11 An

12 0 0
An

12 An
22 0 0

0 0 As
11 As

12

0 0 As
12 As

22

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜆
2
1Cn

11 + S1 𝜆1𝜆2Cn
12 0 0

𝜆1𝜆2Cn
12 𝜆

2
2Cn

22 + S2 0 0
0 0 𝜆

2
1Cs

12 + S2 𝜆1𝜆2Cs
12

0 0 𝜆1𝜆2Cs
12 𝜆

2
2Cs

12 + S1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (B1)

For the strain energy function (41) of the Blatz-Ko rubber, the corresponding coefficients of the elastic moduli C are
given as

Cn
11 = C1111 = 𝜇

(
4
𝜆

6
1
− 𝜆2

𝜆
3
1

)

, Cn
22 = C2222 = 𝜇

(
4
𝜆

6
2

− 𝜆1

𝜆
3
2

)

,

Cn
12 = C1122 = 𝜇

(
1

𝜆1𝜆2

)
, Cs

12 = C1221 = 𝜇

(

− 1
𝜆1𝜆2

+ 1
𝜆

2
1𝜆

4
2
+ 1
𝜆

4
1𝜆

2
2

)

.

(B2)

APPENDIX C. IMPLEMENTATION

At element node A, the shape function NA and its material gradient ∇NA = GradNA is used to express the compatible
displacement gradient and variation of the Green-Lagrange strain as

H =
nno∑

A
dA

⊗ ∇NA and 𝛿E =
nno∑

A
BA

𝛿dA
. (C1)

Here, the “standard” nodal B-operator reads

BA ∶= Bno
(
F,∇NA) =

⎡
⎢
⎢
⎢
⎣

F11NA
,1 F21NA

,1

F12NA
,2 F22NA

,2

F12NA
,1 + F11NA

,2 F21NA
,2 + F22NA

,1

⎤
⎥
⎥
⎥
⎦

. (C2)
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Furthermore, we obtain the “standard” geometric operator (22) for node A and B via

[
G

dd]AB ∶= G
dd
no(S,∇NA

,∇NB) = (∇NA)TS∇NB ⋅ 1, (C3)

with S = S(E).
A possible way to implement the principle idea of Section 4 is to subtract the undesired terms from existing (“standard”)

quantities. The modified strain expression in Equation (50) can then be expressed as É = E − 1
2
HT

hHh. In correspondence

with the split of the displacement gradient we introduce N = Nr +Nh. Assumimg that ̇̆d = d (EAS parts are not altered),
the modified operators in (48) read

B́A ∶= BA − Bno
(
Hh,GradNA

h
)

and
[
́G

dd]AB
∶=

[
G

dd]AB −G
dd
no(S,∇NA

h ,∇NB
h ), (C4)

with S = S(É). Exemplified for the modified strain expression (51) of Q1/ME4, the terms which have to be subtracted read

Bno
(
Hh,GradNA

h
)
=

⎡
⎢
⎢
⎢
⎣

H1|11NA
1|,1 H1|12NA

1|,1

H1|12NA
1|,2 H1|22NA

1|,2

H1|12NA
1|,1 +H1|11NA

1|,2 H1|21NA
1|,2 +H1|22NA

1|,1

⎤
⎥
⎥
⎥
⎦

(C5)

and

G
dd
no(S,∇NA

h ,∇NB
h ) = (∇NA

1 )
TS(É)∇NB

1 ⋅ 1. (C6)

Here NA
1 = NA − NA

0 , with NA
0 = NA|||𝝃=0

, denotes the non-constant part of the standard bilinear shape functions and

S = S(Éc + Ẽ).

APPENDIX D. ANALYTICAL SOLUTION OF THE BIFURCATION PROBLEM

The theoretical analysis is based on the pioneering work of Biot.66 A more general treatment can be found in Hill
and Hutchinson67 and Young,68 for the tension case and compression case, respectively, see also Chap. 6.3 of Ogden.69

In the following we provide a short sketch of the solution. The notation is adopted from the readable paper of
Triantafyllidis et al.60

Starting point for the analytical solution is the Euler-Lagrange equation of bifurcation criterion (59)

Div (A(u0, 𝜆c) ∶ GradΔu) = 0 (D1)

This yields the characteristic equation

aΔui,1111 + bΔui,1122 + cΔui,2222 = 0, (D2)

with i = 1, 2 and coefficients (related to the elasticity tensor A)

a ∶= A1111A1212, 2b ∶= A1111A2222 + A1212A2121 − (A1122A2112)2, c ∶= A2222A2121. (D3)

Equation (D1) and the corresponding incremental boundary conditions (cf. Section 5.2) can be satisfied by the ansatz

1

⎧
⎪
⎨
⎪
⎩

Δu1 = v1(p1X1) cos(p2X2)
Δu2 = −v2(p1X1) sin(p2X2)
p2 = n𝜋∕L2

or 1

⎧
⎪
⎨
⎪
⎩

Δu1 = v1(p1X1) sin(p2X2)
Δu2 = −v2(p1X1) cos(p2X2)
p2 =

(
n − 1

2

)
𝜋∕L2

(D4)
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with positive integers n. Here 1∕1 and (later) 2∕2 designate the symmetric/antisymmetric modes w.r.t the X1- and
X2-axis. Inserting ansatz (D3) in (D1) yields the characteristic equation

a
(

p1

p2

)4

+ b
(

p1

p2

)2

+ c = 0, (D5)

with the four solutions

T A B L E D1 Critical stretches 𝜆2 = 𝜆
(j)
c ; left: compression problem of a Neo-Hookean block with 𝜈 = 0.45 and strain energy

function (61); right: tension problem of a Blatz-Ko block, with strain energy function (41)

r 𝝀
(1)
c 𝝀

(2)
c 𝝀

(3)
c 𝝀

(4)
c

Neo-Hooke – compression

0.1000 0.9917 0.9672 0.9268 0.8718

0.1258 0.9869 0.9482 0.8852 0.8031

0.1584 0.9794 0.9185 0.8225 0.7149

0.1995 0.9674 0.8724 0.7376 0.6338

0.2511 0.9485 0.8039 0.6516 0.5820

0.3162 0.9189 0.7158 0.5922 0.5546

0.3981 0.8730 0.6345 0.5598 0.5419

0.5011 0.8048 0.5824 0.5442 0.5370

0.6309 0.7167 0.5548 0.5378 0.5356

0.7943 0.6352 0.5420 0.5358 0.5352

1.0000 0.5828 0.5371 0.5353 0.5352

1.2589 0.5550 0.5356 0.5352 0.5352

1.5848 0.5421 0.5353 0.5352 0.5352

1.9952 0.5371 0.5352 0.5352 0.5352

2.5118 0.5356 0.5352 0.5352 0.5352

3.1622 0.5353 0.5352 0.5352 0.5352

3.9810 0.5352 0.5352 0.5352 0.5352

5.0118 0.5352 0.5352 0.5352 0.5352

6.3095 0.5352 0.5352 0.5352 0.5352

7.9432 0.5352 0.5352 0.5352 0.5352

10.000 0.5352 0.5352 0.5352 0.5352

Special Blatz-Ko – tension

0.1 2.2797 2.2804 2.2815 2.2831

0.5 2.2852 2.3020 2.3287 2.3633

1.0 2.3020 2.3633 2.4479 2.4775

1.5 2.3287 2.4479 2.4838 2.4864

2.0 2.3633 2.4864 2.5037 2.5116

2.5 2.4038 2.4775 2.5116 2.5162

3.0 2.4479 2.4864 2.5082 2.5168

3.5 2.4932 2.5070 2.5143 2.5173

4.0 2.5037 2.5126 2.5168 2.5182
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(
p1

p2

)2

= −b ±
√

b2 − ac
a

⇒ p1 = p2 {±i𝛼, ±i𝛽} , (D6)

where i =
√
−1 denotes the imaginary unit. We are only interested in the elliptic domain, that is, where ellipticity of

Equation (D1) holds. This implies a > 0, c > 0, b > −
√

ac (cf. Sec. 6.2.7 in Reference 69) and yields the distinction between
two different cases:

• Elliptic-imaginary (EI) solutions with b >
√

ac and real 𝛼, 𝛽 (cf. Case 1 in Reference 69, p. 417).
• Elliptic-complex (EC) solutions with b <

√
ac and complex conjugates 𝛼 = 𝛾 + i𝛿 and 𝛽 = 𝛾 − i𝛿 (cf. Case 3 in Reference

69, p. 418).

This requires a X1-dependent ansatz of the form

2

{
v1 = A1s𝛼 + B1s𝛽
v2 = A2c𝛼 + B2c𝛽

or 2

{
v1 = C1c𝛼 + D1c𝛽
v2 = C2s𝛼 + D2s𝛽

(D7)

for the EI case and

2

{
v1 = A1s𝛾 cos(𝛿p2X1) + B1c𝛾 sin(𝛿p2X1)
v2 = A2c𝛾 cos(𝛿p2X1) + B2s𝛾 sin(𝛿p2X1)

or 2

{
v1 = C1c𝛾 cos(𝛿p2X1) + D1s𝛾 sin(𝛿p2X1)
v2 = C2s𝛾 cos(𝛿p2X1) + D2c𝛾 sin(𝛿p2X1)

(D8)

for the EC case. Here, (A,B,C,D)j are real constants and s{♭} = sinh(
{
♭

}
p2X1) and c{♭} = cosh(

{
♭

}
p2X1). Incremental

equilibrium (D1) together with the incremental boundary conditions (60) provide solutions in form of the critical stretch
𝜆2 = 𝜆(j)c and corresponding buckling modeΔu = Δu(j). For further technical details we refer to Reference 69. For the two
bifurcation problems considered in this work the numerical values for the critical stretches are provided in Table D1.
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