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Abstract

Native language identification (NLI) refers to the task of automatically

deducing the native language (L1) of a document’s author, when the

document is written in a second language (L2). Documents stem from

different sources, but recently more documents are altered before publica-

tion through paraphrasing methods. This alteration changes the content,

grammar, and style of the document, which inherently obfuscates the

L1 of the author. In addition, the demographic metadata of the author,

such as age and gender, may influence the performance with which an

author’s L1 may be detected. In this thesis, two corpora which provide

necessary demographic metadata, the International Corpus of Learner

English (ICLE) and the Trustpilot corpus, are used to analyze the

impact of paraphrasing and demographic factors in the context of NLI

tasks. To analyze the effect of paraphrasing on a document, new versions

of both corpora are created, which contain paraphrased versions of the

documents contained. The effect is inspected using two state-of-the-art

NLI systems to perform the task, while the results were analyzed using a

regression analysis in combination with dominance analysis (DA). Para-

phrasing was found to have a substantial influence in performance of NLI

tasks, regardless of corpus, classifier, or paraphrasing method. The usual

influence of demographic factors on NLI tasks could not be confirmed

in this thesis. Regression analysis and DA allowed for a more profound

analysis of the results, which allowed for findings regarding the influence

of specific L1s on performance of NLI tasks.



Kurzfassung

Die Identifizierung der Muttersprache (NLI) bezieht sich auf die au-

tomatische Bestimmung der Erstsprache (L1) eines Autors anhand eines

Dokuments, das in einer zweiten Sprache (L2) verfasst ist. Dokumente

stammen aus verschiedenen Quellen, aber in letzter Zeit werden mehr

Dokumente vor der Veröffentlichung durch Paraphrasierungstechniken

verändert. Diese Änderungen beeinflussen den Inhalt, die Grammatik

und den Stil des Dokuments und erschweren dadurch die Feststellung

der L1 des Autors. Zusätzlich können demografische Metadaten des Au-

tors wie Alter und Geschlecht die Genauigkeit der L1-Erkennung bee-

influssen. In dieser Arbeit werden zwei Korpora, das International Cor-

pus of Learner English (ICLE) und der Trustpilot-Korpus, verwendet,

um den Einfluss von Umschreibungen und demografischen Faktoren im

Zusammenhang mit NLI-Aufgaben zu analysieren. Um den Effekt von

Umschreibungen auf ein Dokument zu untersuchen, werden neue Versio-

nen beider Korpora erstellt, die paraphrasierte Varianten der enthalte-

nen Dokumente enthalten. Der Effekt wird mithilfe von zwei modernen

NLI-Systemen analysiert, und die Ergebnisse werden durch Regression-

und Dominanzanalyse (DA) untersucht. Es wurde festgestellt, dass Para-

phrasierungen einen signifikanten Einfluss auf die Leistung von NLI-

Aufgaben haben, unabhängig vom Korpus, Klassifizierer oder der verwen-

deten Paraphrasierungsmethode. Die übliche Auswirkung demografischer

Faktoren auf NLI-Aufgaben konnte in dieser Arbeit nicht bestätigt wer-

den. Die Regressionsanalyse und DA ermöglichten eine detaillierte Anal-

yse der Ergebnisse und lieferten Erkenntnisse über den Einfluss bes-

timmter Muttersprachen auf die Leistung von NLI-Aufgaben.
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1 Introduction

Native Language Identification (NLI) is the field within Natural Language Process-

ing (NLP) which consists of the task of, given an English document, identifying the

native language of the original author (L1), given that their native language was

not English in the first place.

Usually, this is achieved via supervised machine learning, in which a classifier is

trained on a corpus of English documents written by authors whose native language

is not English.

NLI has been investigated in several different setups including many datasets,

notably due to two NLI Shared Tasks for written documents in 2013 and 2017

(Tetreault et al., 2013) (Malmasi et al., 2017). In both, participants presented win-

ning results using innovative technologies, such as stacked classifiers used by Cimino

and Dell’Orletta (2017).

However, all existing work as of now focuses on original and unaltered docu-

ments. This does not represent the current state of published written documents,

as tools such as Grammarly and LanguageTool are increasingly gaining new users.

OpenAI has arguably caused the largest increase in documents which do not reflect

the authors’ original abilities. Their publicly available service ChatGPT has reached

a million users within 5 days of its launch (Altman, 2022), generating new contro-

versy about the legitimacy of texts that do not represent the user’s abilities (Thorp,

2023). ChatGPT uses a large language model (LLM), which are capable of not only

generating texts, but are generally able to perform a broad range of NLP tasks, such

as text summarization, sentiment analysis, translation, or NLI. Services such as the

three mentioned are used, among other things, to paraphrase a document. Often

the goal is to alter the document in a manner that rectifies errors in the original

document, or improves legibility and style. This way, the author of a document is

able to produce a document of a quality that supersedes their true skill or hides

mistakes made due to the native language of the author.

This circumstance creates a new difficulty for NLI classification tasks because the

trained classifiers try to classify documents, which have already been altered. Be-
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cause of this, the hypothesis of this work is that the mentioned AI systems influence

the final document so much, that NLI becomes significantly more difficult.

In this thesis, we investigate how the performance of classifiers changes on NLI

tasks when the documents to be classified are paraphrased by AI models, as well as

the influence of demographic factors on unaltered versions of the documents. The

effects of paraphrasing documents have not been researched in the context of NLI,

which makes this the main novelty for this work.

To further understand how paraphrasing changes a classifiers’ prediction, and to

combat potential biases, the demographic properties age and gender of the author

will be researched as well. After classifying the documents, the influence of the

demographic properties will be investigated by determining how well a classifier

performed on documents of a specific gender or age group. This way, the influence

of the paraphrasing can be broken down to determine, how younger, older, male, or

female authors are influenced differently, and if there is any bias present. We assume

there to be a difference between all demographic groups, since topics of documents

vary depending on the author’s gender and age, as has been shown before by Hovy

et al. (2015).

Given the motivation mentioned, this work targets two separate research ques-

tions. The first, “Do non-paraphrased and paraphrased corpora differ in difficulty in

NLI, and how is this difference mediated by demographic factors?”, aims at inves-

tigating how paraphrasing a corpus influences the performance of an NLI classifier.

Since a potential change in performance on a paraphrased corpus will likely also be

reflected by the demographic factors, we investigate how they behave in the different

corpora. The second question, “Do classifiers transfer to other corpora which have

been modified by paraphrasing, and how are demographic factors influenced by the

transfer?”, behaves similarly, but focuses on the transfer of a classifier across two

corpora, of which at least one has been paraphrased.

Each experiment investigating a research question will make use of two corpora,

and newly created corpora, which will be generated through paraphrasing the two

original corpora using a language model by OpenAI.
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To better analyze the results, and to extract more information on the behavior

of demographic factors, we will use regression analysis and dominance analysis as

has been done before in works such as Dayanik et al. (2022). This method of ana-

lyzing the influence of demographic factors on NLI has been researched very little,

especially when combined with the paraphrasing aspect.
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2 Technical Background

This section is intended to provide the necessary background knowledge to under-

stand this work. To achieve that, a brief introduction to machine learning and its

related technologies is given, along with a description of NLP and its subfield NLI.

2.1 Machine Learning

Machine Learning is defined as “a field of computer science that studies algorithms

and techniques for automating solutions to complex problems that are hard to pro-

gram using conventional programming methods” by Rebala et al. (2019).

Machine learning algorithms process datasets to predict the solution to a prob-

lem. The learning process is achieved through mathematical procedures, which vary

depending on the implementation. Machine learning algorithms need data to learn

from, which can be split into labeled and unlabeled datasets. Labeled datasets are

datasets in which the solution to that problem or datapoint is already present. Un-

labeled datasets, however, do not provide the solution to the posed problem.

Machine learning problems can be categorized into: supervised learning, unsu-

pervised learning, and reinforcement learning.

In supervised learning, the algorithm learns from a labeled dataset. The algo-

rithm can then learn patterns, and the importance of specific features within the

dataset. Once the algorithm has learned from the data, it can make predictions on

new data, where the answer is not provided already.

Unsupervised learning works similarly, but uses unlabeled datasets. The algo-

rithm also learns underlying patterns from the data, without feedback about the

correctness of a prediction. Clustering tasks are examples of unsupervised learning

tasks, where data points are clustered based on only the features, without the need

for labels.

Lastly, reinforcement learning is used in dynamic environments, such as video

games or puzzles. The algorithm has to adapt to the environment changing, and
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predict according to it. Reinforcement learning algorithms are provided with a value

function, which serves as a heuristic for the predefined goal it should pursue. The

algorithm’s predictions are rated by the value function, and adapts according to its

result.

The type of machine learning relevant to this work is supervised machine learn-

ing, as we only use labeled datasets.

2.2 NLP

Eisenstein (2019) defines Natural language processing (NLP) as “the set of methods

for making human language accessible to computers”. It mentions how NLP has

become a part of our daily lives, since many applications make use of NLP. Some

of the more present use cases are machine translation, text classification for spam

detection, search engines, and dialog systems. However, the understanding and mod-

elling of natural language as a whole without a specific application is also of interest,

as it forms the basis for processing natural language using computers (Manning and

Schutze, 1999). All of these applications require understanding of structure, word-

ing, and context of the natural language, so it can be processed appropriately by a

computer.

Due to the apparently unstructured nature of written and spoken language, texts

are often transformed and represented in other ways, such as n-grams, or TF-IDF

vectors. The datasets used to train NLP models are often constructed by collecting

existing news articles, books, essays, or less formal texts such as social media posts.

2.3 NLI

Native language identification (NLI) is an NLP task that tries to determine the

native language (L1) of a text’s author. This is a challenging task, as it requires the

algorithm to identify subtle differences in grammar, vocabulary, and style that are

characteristic of the L1. Stehwien and Padó (2016) identified the use of “specially”

as a mistake predominantly made by Spanish authors, at the same time, French
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authors tend to misspell “example” as “exemple”. German authors stand out due

to their introduction of subordinate clauses using a comma, as in “, that”.

NLI is interesting from a linguistic perspective, but also offers practical use. It

can be used in forensics to determine the L1 of a suspect writing in English (Perkins,

2014). It can also be used to study language transfer, which happens when linguistic

features from one language are applied to another, this often happens when learning

a new language (Malmasi and Dras, 2014). More profound understanding of language

transfer can then be used in a pedagogic context by language learning systems, to

help remedy the effects of language transfer when acquiring a second language.

In the last decade, many new techniques to improve classifier performance have

been established. The results of the first NLI shared task (Tetreault et al., 2013)

show, that SVMs have always shown high accuracy on NLI classification tasks,

mostly using word n-grams and POS n-grams as features. In 2017, the second NLI

shared task (Malmasi et al., 2017) took place, again demonstrating the dominance

of SVMs and n-grams.

In their work, Cimino and Dell’Orletta (2017), who were the winning participants

of the 2017 NLI shared task (Malmasi et al., 2017), not only additionally used

syntactic features, which were used in the 2013 already, just not by as many teams,

but they also achieved the winning F1-score using stacked classifiers. Although many

other entries performed similarly well, the ItaliaNLP Lab team outperformed other

approaches, including traditional SVM architectures and ensembles.

Malmasi and Dras (2018) demonstrated how Tetreault et al. (2012) introduced

the idea of classifier ensembles, and how it has been used since. This technique

together with classifier stacking noticeably improves accuracy for NLI classification

tasks, as can be seen in the methods used by the teams in (Malmasi et al., 2017).

2.4 TF-IDF

Documents as such cannot be processed very well by machine learning algorithms

due to the apparently unstructured nature. However, methods exist to convert a
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textual document into a matrix, which can then be processed by machine learning

algorithms.

Term frequency-inverse document frequency (TF-IDF) is a weighting scheme

used in information retrieval and NLP to convert purely textual data into numerical

values in the form of a matrix. It assigns a weight to each term in a document, based

on the importance of that term to the document and to the entire corpus.

The term frequency (TF) part of the weighting scheme measures the importance

of a term to a particular document. Multiple variations exist, including forms in

which TF is normalized. Schütze et al. (2008) calculates it using the logarithm as

such:

tf(t, d) =

1 + log(ft,d) , if ft,d > 0

0 , otherwise

ft,d : Count of term t in document d

This means that terms that appear more frequently in a document will be given a

higher weight.

The inverse document frequency (IDF) part of the weighting scheme measures

the importance of a term to the corpus as a whole. It is calculated as the logarithm

of the total number of documents in the corpus, divided by the number of documents

that contain the term. This means that terms that are rare across the corpus will be

given a higher weight. There are different variants to calculate the IDF, one example

includes avoiding a potential division by zero by adding 1 to the denominator.

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
D : Collection of documents

N : Total number of documents in collection = |D|

|{d ∈ D : t ∈ d}| : Count of documents in which term t appears
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The TF-IDF weight of a term in a document is calculated by multiplying TF and

IDF.

tfidf(t, d,D) = tf(t, d) · idf(t,D)

This means that terms that are both frequent in a particular document and rare

across the corpus will be given the highest weight.

TF-IDF weighting as a feature for NLI has been introduced in Gebre et al. (2013),

and also showed improvements when used. It has been used consistently since its

introduction.

2.5 Classification and SVMs

Machine learning tasks can be divided further, with one of its subfields being clas-

sification tasks. Rebala et al. (2019) defines classification tasks as “the problem

of identifying the category to which an input belongs to among a possible set of

categories”.

This is most often used when data needs to be sorted into predefined categories.

For example, a classification algorithm might be used to recognize different types

of animals in a photograph. In that case, the predefined categories are the different

animals.

Many techniques exist to perform this type of task, with neural networks, logistic

regression, and support vector machines (SVMs) being the relevant ones for this

work.

SVMs are a type of supervised learning algorithm that can be used for classifi-

cation and regression tasks. The goal of an SVM is to find the optimal hyperplane

that maximally separates the data points in a dataset, based on their class labels.

These data points can be understood as vectors in a multidimensional space. There

are many ways in which documents can be converted and represented as vectors in

that space, with the recently introduced TF-IDF matrix being used often.

Given a dataset consisting of vectors x⃗i, we want to find a separating hyperplane

in the form of w⃗Tx⃗ − b = 0, where w⃗ is the normal vector of the hyperplane and b
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is a bias term, which will be our decision boundary. To classify a datapoint x⃗i, we

compute f(x⃗) = sign(w⃗Tx⃗ + b), as this yields 1 or -1 depending on which side of

the decision boundary the datapoint lies. Since we want to maximize the margins of

the datapoints to the decision boundary, we want to maximize 2
||w|| , as this denotes

the length of the two support vectors. To instead convert this into a minimization

problem, we minimize w⃗ · w⃗ as is explained by Cortes and Vapnik (1995).

The result of this process is visualized in Figure 1, where the decision boundary

separates all datapoints while having maximized the length of both support vectors.

Figure 1: Visualization of SVM procedure. The decision boundary separates the data

points by class, and maintains the maximum distance to the nearest point of each

class.

An SVM is a binary classifier, which means that it can only distinguish between

two classes. In the case of a multi-class classification problem, multiple SVMs can

be trained, one for each class pair, essentially allowing SVMs to work as multi-class

classifiers.

In contrast to classification by neural networks, SVMs stand out due to their low

resource consumption and the lack of long and expensive training times.
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2.6 Regression

Another prominent subfield of machine learning alongside classification is regression.

Regression is defined as “an act of learning from existing data (can be past data) in

trying to find relationships in the data” by Rebala et al. (2019).

Linear regression predicts a continuous numerical value based on the existing

data using a model such as this one:

y ∼ α1x1 + · · · + αnxn

Here the xn are the values of the selected features, and αn are the coefficients assigned

to each feature. The coefficients αn are commonly learned using methods such as

least-squares estimation, which minimize the sum of the squares of the residuals.

This way, the value of y can be predicted.

Logistic regression works similarly, but predicts the probability of the binary

target variable y being 1 as opposed to 0. To achieve this, a similar model is used,

but additionally the sigmoid function is applied to it. The coefficients are learned

using maximum likelihood estimation (MLE), which may also be used to learn the

coefficients of linear regression models.

P (y = 1) ∼ σ(α1x1 + · · · + αnxn)

σ(x) =
1

1 + e−x

More details about the characteristics of each model are provided in works such as

Harrell et al. (2001). Similar to classification tasks, regression tasks can be applied

to many fields, such as economics (Hellwig, 2014), which lie outside of computer

science scopes.
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2.7 Neural Network models

Neural network models are structures meant to resemble the human brain, they

consist of many artificial neurons which are interconnected. The artificial neurons

transform and process data from the input or previous neurons and output it to the

next neuron or output. Neural networks typically consist of an input layer, one or

multiple hidden layers, and an output layer.

2.7.1 Representation Learning

Neural networks rely heavily on the data they are provided to learn on. More pre-

cisely, they are also very reliant on the representation of the data they are provided,

and on the features provided to them. The process of defining the features to be

used often requires domain knowledge specific to the task, and is called feature en-

gineering (Bengio et al. (2013), Liu et al. (2023)). Depending on the domain, the

resulting features may vary strongly, as features for two different fields may not be

interchangeable.

2.7.2 Word Embeddings

The most important feature for NLP tasks are word embeddings. Word embeddings

are a representation of words in text as a vector in a multi-dimensional space. The

main advantage of word embeddings is that they can capture semantic and syntactic

information, such as context, similarity, synonymy, and antonymy. Word embeddings

are obtained through machine learning, which generates the embedding for each

word.

Crucially, word embeddings can be learned from unlabeled data. Devlin et al.

(2019) describe how masked language modeling and next sentence prediction can

be used to learn word embeddings without labeled data. During masked language

modeling, a random word in a sentence is “masked” (by replacing it with a special

token such as [MASK]), and the language model then predicts the missing word. Next

sentence prediction is a binary task, in which the language model predicts, whether
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a given sentence is likely to be followed by another. This training procedure helps

the model learn the relationship between sentences and how they combine to form

a coherent paragraph or document.

Word2vec (Mikolov et al., 2013) and the word embeddings produced by Google’s

BERT (Devlin et al., 2019) are both popular methods capable of producing word

embeddings. However, the main difference is that BERT generates multiple word

embeddings for the same word if the context differs to capture the context better

depending on the sentence. This is useful for sentences containing polysemantic

words, such as “Tennis is played using a green ball.” and “I went to a ball dance

yesterday.”, where the word “ball” should be represented using different embeddings

according to context.

Due to the nature of the vector-space representation of word embeddings, which

already capture many features relevant for language processing, they are a promising

method to improve performance on many NLP tasks.

2.7.3 Language Models

Language models are computational models trained on large amounts of text data,

that can generate or predict text based on that training. They do this by assigning

a probability to a sequence of words. This mechanic enables language models to

perform tasks such as text generation and text classification.

Language models with many parameters, such as BERT with over 100 million

parameters or GPT-3 with 175 billion parameters, are often called large language

models (LLMs).

Liu et al. (2023) describes the two modern paradigms to create and train NLP

language models. The first paradigm, “pre-train and fine-tune”, is realized by pre-

training a model with a fixed architecture on large amounts of data, while predicting

the probability of the data observed. The resulting pre-trained language model can

be adjusted to be applied on different downstream tasks by introducing additional

parameters and fine-tuning them according to the requirements of the task. Because
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of this, the language model does not need to be pre-trained for every new task, which

reduces the training time significantly.

In the second paradigm, “pre-train, prompt, and predict”, the model is not fine-

tuned for a specific task, instead the tasks are changed to resemble original training

data by formulating them as prompts. These prompts, which often consist of unfin-

ished sentences, are then filled or continued by the language model.

2.7.4 LLM Architectures

Since the terms language model and neural networks cover many technologies and

advancements, the most relevant architectures to the models used in this work will

be introduced here.

Recurrent neural networks (RNNs) are “models of neural networks that are best

suited for processing sequential data” (Rebala et al., 2019). Considering that many

types of data, such as DNA or sentences, are sequential, RNNs are well-suited models

for tasks related to those types of data. The main advantage of RNNs compared to

other neural networks, is that they consider past data and their outputs, such as

the output of a previous word in a sentence.

Self-attention is a mechanism that allows neural networks to focus on the most

relevant parts of the input data. This is achieved by weighing each element of the

input based on its similarity to other elements in the input. The neural network

can then attend to the most important parts of the input. Although RNNs can also

attend to other elements in the data, the main benefit of self-attention mechanisms,

is that it can be influenced by elements that are not near to the processed element

efficiently. RNNs can also be influenced by elements further away from the current

element, even from future elements by using back-propagation, but require more

computational time to achieve a similar performance to self-attention mechanisms.

This makes self-attention an important improvement for NLP, since longer inputs,

such as documents with multiple sentences, can now be processed with greater per-

formance.
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Transformers are a type of neural network architecture that utilizes the men-

tioned self-attention mechanisms introduced by Vaswani et al. (2017). Their benefit

lies in the effective processing of sequential data, such as textual documents or time-

series data. Transformers consist of an encoder, or a decoder, or both, depending

on the implementation. The encoder uses self-attention mechanisms to convert the

input, and the decoder generates the output given the previous representation.

2.8 BERT

BERT (Bidirectional Encoder Representations from Transformers) is an open-source

(Google, 2023) state-of-the-art NLP model developed by Google (Devlin et al., 2019).

It is designed to pre-train deep bidirectional representations from unlabeled text,

where bidirectional means that it considers both left and right context.

The BERT model is a transformer-based model, which means it uses self-attention

mechanisms to process input sequences and generate output sequences, as explained

in 2.7. This makes the BERT model particularly well-suited for tasks that require a

profound understanding of the underlying semantics, or context of the input text,

such as natural language inference and question answering.

The BERT model is trained on large amounts of unlabeled text data, using

masked language modeling and next sentence prediction, which were introduced in

Section 2.7.2.

It is worth mentioning, that the standard BERT tokenizer only supports tokeniz-

ing 512 tokens, including the necessary [CLS] and [SEP] tokens. This is a limitation

when tokenizing long texts, and approaches to remedy this have been proposed by

Sun et al. (2019a), Mutasodirin and Prasojo (2021), and Beltagy et al. (2020).

The commonly used BERT-Base model (Turc et al., 2019) has been pre-trained

on BookCorpus (Zhu et al., 2015) and English Wikipedia. Once the model has been

pre-trained, it can be fine-tuned for a specific natural language task by adding a

task-specific layer on top of the pre-trained model and training the whole model

end-to-end on a labeled dataset. This can be seen in Figure 2, where many chained
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Figure 2: BERT fine-tuning schematic. With E as embeddings and T as contextual

representation of an input token. Adapted from Devlin et al. (2019).

sentences are fed into the BERT model. This fine-tuning procedure allows the BERT

model to adapt to the specific characteristics of the task, achieving state-of-the-art

performance on a wide range of NLP tasks.

Since 2018, the BERT model by Devlin et al. (2019) has been used to match

or surpass many accuracy milestones set in the past in the NLP field, although

BERT requires more data to achieve better results than the traditional approaches

Steinbakken and Gambäck (2020).

2.9 GPT-3

GPT-3 (Generative Pretrained Transformer 3) is a language model developed by

OpenAI. It is a neural network that has been pre-trained on a large dataset of texts

made up from a filtered version of CommonCrawl, WebText2, Books1, Books2 (two

internet-based books corpora) and Wikipedia. GPT-3 can generate human-like text

in a variety of different styles and formats.
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GPT-3, like BERT, is based on the transformer architecture. Different from

BERT, which is a bidirectional transformer model, it is an autoregressive language

model, meaning that its output relies on its own previous outputs.

One of the key features of GPT-3 is its impressive size and scale. It has 175

billion parameters, making it one of the largest language models ever developed. For

comparison, the previously introduced BERT-Base model, has 110 million parame-

ters. The model reaches a size of 800 GB, which allows it to take into consideration

2048 tokens.

OpenAI (2023) lists GPT as being used by a wide range of applications on

their website, including text generation, question answering, language tutoring ap-

plications, and machine translation. It has shown impressive ability to generate

human-like text, and to perform a wide range of language tasks without any explicit

programming or fine-tuning. The newest GPT model at the time of writing, GPT-4,

was capable of passing the Uniform Bar Examination (UBE), a professional exam

required to practice law in the USA (Katz et al., 2023).

However, it is not open-source and only available through a commercial API

provided by OpenAI.

2.10 Evaluation

The performance of machine learning algorithms can be measured in various ways

to determine whether the algorithm is sufficiently good at its task.

The performance of algorithms performing regression tasks can be measured

using the R2 measure, a measure of goodness of fit.
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It indicates the proportion of variance in the dependent variable that can be

explained by the machine learning model and is calculated as:

SSresidual =
∑
i

(yi − fi)
2

SStotal =
∑
i

(yi − ȳ)2

R2 = 1 − SSresidual

SStotal

yi : i-th value in dataset

fi : i-th value in predicted values

ȳ : mean of dataset

When logistic regression models are used as a classifier, the R2 measure cannot

be applied, as the model does not predict a numerical value anymore. Instead, it

is replaced by a pseudo-R2 measure, which cannot be directly compared to the R2

measure used in linear regression. Many pseudo-R2 measures exist, as there is no

agreed upon standard. A commonly used measure is the R2
McF pseudo-R2 measure

by McFadden et al. (1973). It is defined as

R2
McF = 1 − LLmod

LL0

where LLmod is the log likelihood value for the fitted model and LL0 is the log

likelihood value for the null model.

To further measure classification algorithms, other metrics are used, the most

common of which is accuracy, which is the fraction of datapoints which were correctly

classified.

This, however, is a simple measure, which is why the F1 score is often a better

indicator of good performance.
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It is based on precision (P) and recall (R), which are defined as:

P =
TP

TP + FP

R =
TP

TP + FN

TP : True Positive

FP : False Positive

FN : False Negative

The F1 score is then calculated as:

F1 =
2PR

P + R

A high precision means that the algorithm is good at avoiding predicting wrong

instances of a category, while a high recall means that the algorithm is good at

finding most instances of a category. The F1 score takes both of these factors into

account, and provides a single metric that can be used to compare the performance

of different models.

The F1 score can take on a value between 0 and 1, where a higher value generally

indicates a better performance.

2.11 Bias and Fairness

Bias is the preference over one group, or idea, over another, which then leads to

incorrect or unfair conclusions for the disadvantaged party. It is often associated and

studied in human thinking, where phenomena such as “anchor bias”, which describes

the phenomenon of humans relying too heavily on the first piece of information

23



received when making decisions, occur (Tversky and Kahneman, 1974). Bias can be

exerted on many groups, but bias against demographic groups, such as women, is

a very common problem in NLP (Blodgett et al., 2020) (Sun et al., 2019b) (Hovy,

2015). A common example of bias is women being associated with professions such

as “homemaker”, while men are more often associated with professions which are

traditionally dominated by males such as “computer programmer” as has been found

in Lu et al. (2020).

Machine learning algorithms tend to be susceptible to bias, as they learn from

existing data, which can already be biased in itself, generating a biased algorithm

(Meyer et al., 2020). The International Corpus of Learner English (ICLE) corpus

used in this work has been analyzed in Brooke and Hirst (2012) and Brooke and

Hirst (2013), which detected a high topic bias. They demonstrated that topic bias

is a significant problem when paired with NLI. In an experiment, they proved that

splitting the corpus into each topic causes the accuracy to drop significantly, demon-

strating that most classifiers make their decisions based on words only present when

writing about specific topics. Filtering the documents to remove words also present

in the prompt for the document resulted to be difficult, since too many other words

also indicate the original topic. The resulting algorithms then apply the underlying

bias to the new tasks, propagating it further.

Hovy (2015) demonstrated, that demographic metadata such as age and gender

clearly improve classification performance when a classifier is allowed to use them as

additional features. He demonstrated slight improvements when making classifiers

aware of sentiment, topic, or gender. It is to be noted that he also showed a clearly

differentiated distribution of document topics between male and female authors.

The presence of bias implies the presence of unfairness, in which the group against

which the bias is directed, experiences a form of disadvantage. Modern-day examples

include machine learning algorithms for credit approval, which may discriminate

against certain demographics, complicating access to credits to entire groups (Fuster

et al., 2022).
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2.12 AI writing support

Artificial Intelligence (AI) writing support is a rapidly evolving field that combines

NLP and machine learning to assist writers in various aspects of the writing pro-

cess. Very often, AI writing support systems aim to enhance the quality of writing

by improving grammar, spelling, style, and tone. Grammarly and LanguageTool, are

two commonly used tools for grammar checking. Ventayen and Orlanda-Ventayen

(2018) shows that graduate students report improved writing and improved confi-

dence during writing when using Grammarly.

Modern language models like OpenAI’s GPT-3 and ChatGPT are transforming

the use-case of AI writing support systems, and converting to generating roles, in-

stead of just assisting. Thorp (2023) shows how these new systems generate entire

passages of text, questioning the authorship of available texts.

But these language models create new ethical challenges, mostly stemming from

the choice of training data. Flaws in the training data, such as gender bias, or racial

bias, are likely to be present in outputs produced by the language model, propagat-

ing the biases further. This effect can also concern potentially sensitive data such as

phone numbers or medical conditions in the training data. In some cases, misinfor-

mation may be spread by the language model when it was present in the training

data, but in some cases the language model may even produce misinformation that

is not present in the training data, which may even allege that innocent individuals

committed serious crimes such as sexual misconduct (Verma and Oremus, 2023).

The effect most commonly discussed is the authorship of the documents because

the authors of the documents in the training set are not quoted, however, the texts

that the language model produces may contain entire passages of texts written by

those authors. Since the authors are not credited and the producing texts may

contain passages from a different author, the produced texts may be plagiarized

without the user’s knowledge.

Preventing some of the mentioned issues is easy, such as prohibiting the lan-

guage model to output phone numbers, but most of the problems stem from data

in the training set, that are only detected as problematic after human judgement.
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These problems will continue to persist, due to the difficulty of detecting whether a

document of the training set contains problematic data and due to the difficulty of

detecting if produced content by the language model is misleading or plagiarized.
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3 Data

Due to the nature of the experiments, which require corpora with demographic

metadata along with a non-English native author, not many corpora fulfill all those

requirements. This is to be expected, as a corpus containing that much information

about its author raises privacy concerns. Table 1 shows some of the more commonly

used corpora in the NLI field. Each entry is supplemented with the type of document

present in the corpus, along with the information whether the required metadata,

L1, age, and gender, are present, or can be deduced, from the corpus.

As can be seen from the table, only five of the selected corpora provide the

necessary demographic data. Out of those five, the Artie Bias Corpus does only

provide an accent of the author, which is not enough to determine the true L1 of the

author. crowd-enVENT does provide some data about the author’s origin, but since

it is only as specific as “European”, or “North American”, no L1 can be deduced

either. The Hate Speech Twitter corpus, does only provide the race of the author,

which cannot be used to determine their native language.

The only two remaining corpora are the ICLE corpus, and the Trustpilot

corpus, as they provide the author’s native language along with the demographic

metadata.

Both corpora are now introduced, as they are the basis of the experiments of

this work. In addition, the following procedures, in which the data is prepared, are

illustrated in Figure 7.

3.1 ICLEv2

The International Corpus of Learner English (ICLE) (Granger et al., 2009) in its

second version is a collection of 6085 essays written by students learning the En-

glish language. The students were high intermediate to advanced learners of English

(approximately equivalent to B2-C2 in the Common European Framework (CEF)

(Council of Europe. Council for Cultural Co-operation. Education Committee. Mod-

ern Languages Division, 2001)), and had 16 different native languages.
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Name Content L1 Age Gender

ICLE (Granger et al., 2009) Essays Yes Yes Yes

TRUSTPILOT

(Hovy et al., 2015)

Trustpilot

reviews

Yes Yes Yes

Hate speech Twitter

(Waseem and Hovy, 2016)

Tweets Only race Yes Yes

crowd-enVENT

(Troiano et al., 2023)

Stories

about

emotional

experiences

Only broad region Yes Yes

Artie Bias Corpus

(Meyer et al., 2020)

Subset of

Mozilla

Common

Voice Cor-

pus

Only accent Yes Yes

ACL-NLI

(Stehwien and Padó,

2015)

ACL arti-

cles

Yes No No

EFCamDat

(Geertzen et al., 2013)

Englishtown

Submissions

Yes No No

ICNALE (Ishikawa, 2011) Essays Country of origin No No

Lang-8

(Brooke and Hirst, 2013)

Texts for

correction

Yes No No

L2-Reddit

(Rabinovich et al., 2018)

Reddit

posts

From Reddit flair No No

TOEFL-11

(Blanchard et al., 2013)

TOEFL-

Tests

Yes No No

Table 1: Common available corpora for NLI
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The length distribution of the documents is displayed in Figure 3, where most

essays are between 500 and 1000 tokens in length. It has been noted multiple times,

that a major flaw of the ICLE corpus is its topic bias (Brooke and Hirst, 2012)

(Brooke and Hirst, 2013), which may inadvertently create a new feature by which

a classifier may classify a document. This means that features present because of

the author’s L1 are drowned out by word choices present exclusively because of the

document’s proposed topic. Brooke and Hirst (2013) showed that simple attempts

to soften or eliminate those words have to be very extensive, and are not feasible

as it requires manual intervention in every document. This work will use ICLE in

an unmodified state, as its topic bias cannot be eliminated. Future evaluations will

consider, that topic bias is likely to improve performance.

The corpus provides documents by authors of 20 different L1 categories. The

categories Other and Unknown are dropped because the L1 cannot be determined

from that information.

Chinese languages are represented using three categories in the ICLE corpus,

Chinese, Chinese-Cantonese, and Chinese-Mandarin. Chinese does not indicate

what Chinese language is represented, since China has many official languages, which

are spoken in the country. Since it also provides a small sample size, the category is

dropped. Although Chinese-Mandarin does refer to a specific language, only eight

documents are present in the corpus and are therefore dropped.

In Figure 4, the age distribution in the corpus after filtering out all entries without

necessary information, as displayed in Figure 7, is shown. In our case, necessary

information means that a valid gender is present and that the age of the author lies

between 10 and 80.

Since ICLEv2 is a learner corpus and most students learn a language in school

or during the early stages of their career, most authors of ICLE essays are com-

paratively young, between 18 and 30 years of age. The gender of the authors in the

corpus was exclusively recorded as male, female, or unknown, omitting documenta-

tion of non-binary genders, which therefore cannot be accounted for. 76.82% of the

authors are male and the remaining 23.18% are female. We split the corpus into an
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Figure 3: Token count distribution in the ICLE corpus.

Figure 4: Age distribution in the ICLE corpus.
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80% training set and a 20% testing set, as no predefined training and testing sets

were given.

The essays cover many different topics, this is an excerpt of an essay written by

a Spanish author answering the prompt “Are we on the right way?”:

“My opinion may sound rather pesimistic, but I do think that as we have reached

the wonderful ”era of the computers”, at the same time we have made ourselves

cooler and more dependent on the very machines we have created. As far as technol-

ogy is concerned , the problem is deep-rooted because nowadays since the childhood

we are given very few chances of creating or imaging. There has been recently a

boom in the selling of a type of games which I find specially harmful. [...]”

3.2 Trustpilot

The Trustpilot corpus was created by Hovy et al. (2015) to demonstrate how

existing reviews from large user-review sites, such as Trustpilot, can be used to

perform large-scale sociolinguistic studies such as this one. This corpus provides

the review written by a user together with other required metadata. The metadata

relevant to this work are the gender, age, and location data. The gender of an author

was filled in when not already present, by inspecting the gender of all other authors

of the same country, and determining whether a gender was predominant. Age was

only supplied when already entered by the user. The location was determined by

analyzing the location the user entered and applying a set of heuristics to deduce a

latitude and longitude.

The corpus also contained documents by authors with English as their native

language, and documents in the native language by German, Danish, and French

authors. Since we want to use this corpus as a NLI corpus, we had to filter out

all documents by the authors with English as a native language. Additionally, all

documents in a language different from English were filtered using the langdetect

library.

In this work, we also determine the L1 of an author by using the deduced location
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Figure 5: Token count distribution in the Trustpilot corpus.

data, however as already noted by Hovy et al. (2015), this cannot be a guarantee

for a correct L1. Errors will therefore exist, as reviewers who moved away from their

birthing country or the place they grew up in will be assigned the wrong L1. We do

not consider this an issue because we assume the share of authors to have moved

away from their country to be small enough.

Since reviews of products or sites do not contain as much information as an essay,

the token length distribution of the Trustpilot corpus shown in Figure 5 shows

that most reviews are shorter than 100 tokens, while only a small fraction is longer

than 200 tokens.

In Figure 6 the age distribution in the corpus after filtering out all entries lacking

the necessary information, as per Figure 7, is shown.

This corpus does not contain learners of English, but reviewers of many back-

grounds. For this reason, the age distribution is not as concentrated, but spread

out over all users of the platform. Similarly to the ICLE corpus, gender has been
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Figure 6: Age distribution in the Trustpilot corpus.

recorded as a binary variable where most of the authors are male, with the exact

distribution being 71.79% male and 28.21% female. This corpus has also been split

into an 80% training set and a 20% testing set, for the same reasons mentioned in

Section 3.1.
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4 Methods

4.1 Workflow

Figure 7: Process of data preparation including filtering and paraphrasing of a cor-

pus.

Figure 8: Showcase of the two experiments performed on corpora, where a classifier

is trained on the same corpus, or different corpora.
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To investigate the two research questions, we conduct two matching experiments.

Before any experiment can be specified, we have to lay out our workflow, as we need

to prepare the data, and specify our requirements before going into more detail

about the experiments.

Figure 7 shows the structure of the dataset and any preprocessing necessary

for the experiments. Section 3 already explains how both corpora were filtered to

match our requirements for both experiments. In addition to the corpora presented,

we need to create paraphrased versions of the corpora. The resulting set of corpora

concludes the preprocessing of the data before the experiments themselves can be

conducted.

After preparing the corpora to match our needs, we can further specify our

experiments. Both experiments will be constructed similarly, as both experiments

consist of a classifier classifying documents from one or more corpora. The main

difference being that the second experiment will process different combinations of

corpora, as is illustrated in Figure 8. The specific structure of each experiment is

explained in the following two sections.

4.1.1 Corpus Creation

To create paraphrased versions of the documents provided by the corpora, we need

to reorder and substitute words in a sentence, such that it sounds more proficient

and correct. At the same time, orthographic and grammatical errors should not

occur anymore, as they are replaced or corrected automatically. This is intended

to reproduce the effects of existing tools used nowadays, such as autocorrection on

phones, or paraphrasing tools used by students to create better sounding sentences

in their thesis. It also constitutes our main hypothesis, that NLI tasks become harder

when texts are paraphrased, as they already are in many produced documents today.

We will create three new versions of the corpora. As the documents in the

Trustpilot corpus are comparatively short, as is shown in Table 5, only a sin-

gle new corpus is created by paraphrasing each document sentence-wise. We created

a paraphrased version of the ICLE corpus using the same method, but this raises
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a problem with this method. When paraphrasing longer documents, such as those

from the ICLE corpus, sentence-wise, the context of surrounding sentences is lost.

Especially when treating with long essays from the ICLE corpus, the context of sur-

rounding sentences is essential to the content of the current sentence. This is why

we created a second paraphrased ICLE corpus using a more sophisticated method,

which we will introduce in Section 5.1.

4.1.2 Experiment 1

The first experiment, which we will refer to as “Experiment 1”, consists of a NLI

classifier, a training set, and a testing set. This experiment aims at answering the

question “Do non-paraphrased and paraphrased corpora differ in difficulty in NLI?”.

As mentioned before, we expect to encounter a significant increase in difficulty when

using paraphrased corpora.

To conduct the experiment, the classifier will train on the training set, and

will then be applied to the testing set. Both the training set, and the testing set

stem from the same corpus. The available corpora are: ICLE, ICLE P, ICLE S,

Trustpilot, and Trustpilot P. This results in five testing-training combinations

for each of the two used classifiers.

4.1.3 Experiment 2

Although this experiment, “Experiment 2”, has the same structure as Experiment

1, it differs in the combinations in which the datasets are used. The classifier will

now train on a dataset, but classify documents from a different dataset in addition

to the documents from the training corpus. In the future, this will be denoted as

Corpus 1 - Corpus 2, where Corpus 1 is the corpus the classifier will train and

test on, and Corpus 2 is the corpus which will also be classified in addition to

the first corpus. This creates training-testing combinations such as ICLE-ICLE P,

ICLE P-ICLE, Trustpilot-Trustpilot P, and Trustpilot P-Trustpilot,

for a total of eight testing-training combinations for each classifier.
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By doing this, we aim at answering the question “Do classifiers transfer to other

corpora which have been modified by paraphrasing?”. We expect this experiment

to yield more complex results, as the direction of classification will likely determine

the performance.

4.2 Classification

Both experiments require an NLI classifier to work. To add a layer of comparability,

we chose to use two different classifiers per experiment.

Since SVMs, introduced in Section 2.5, in combination with the TF-IDF weight-

ing scheme have been the state-of-the-art classifiers for NLI tasks, we chose an SVM

as our first classifier. However, as already mentioned in Section 2.8, the BERT lan-

guage model is a modern language model based on a neural network structure. As

the fundamentals of SVMs and BERT differ strongly, we chose BERT as the second

classifier. Due to the promising performance of BERT and other neural network

language models in NLP tasks, one might consider this comparison a comparison

between what has been the state-of-the-art approach to NLI tasks and a technology

which may become the new state-of-the-art in such tasks (Devlin et al., 2019).

4.3 Evaluation

Both of the experiments generate a lot of data to analyze, which has to be analyzed

in different aspects. This leads to a more sophisticated evaluation procedure, which

is strongly based on Dayanik et al. (2022). We will also use the regression-based

analysis with dominance analysis (DA).

This evaluation procedure uses a regression model to investigate potential bi-

ases in the classification results by another classifier. This approach has multiple

advantages over other approaches to analyze biases, such as the simple analysis

of performance differences. In addition to simply detecting biases, this approach,

among other advantages, also offers quantified results for each predictor variable

present in the regression model. Because of this model, we will be able to detect
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Figure 9: Evaluation procedure. Adapted from Dayanik et al. (2022).

potential biases, their influence, their significance, and their contribution to the to-

tal variance in the model. This presupposes a well-defined and annotated set of

predictor variables, which rely on domain expertise and an extensively annotated

corpus.

This evaluation procedure is illustrated in Figure 9 and will be explained step

by step in the following sections.

4.3.1 Regression Model

As pointed out in Dayanik et al. (2022), classification tasks require a logistic regres-

sion model to analyze the output. As this is the case for this set of experiments, we

used a basic logistic regression model as introduced in Section 2.6.

4.3.2 Predictor Selection

In our case, the predictor selection is given by the experiment structure. The Trust-

pilot corpus makes both age and gender available to us, which will be used as pre-

dictors, as they are the main variables to be investigated. While we also use gender
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L1 Danish vs. Mean French vs. Mean

Danish 1 0

French 0 1

German -1 -1

Table 2: Deviation encoding of the L1s in the Trustpilot corpus

as a predictor for the ICLE corpus, we cannot use the age variable because of the

unimodal age distribution in the corpus, which makes the age variable not yield any

additional information.

Age is represented as its integer value, while gender is converted to 1 for female

and 0 for male. We chose to encode the L1 using deviation regression coding, this

way we can compare the performance of each L1 to the grand mean of all L1s.

Deviation coding works by comparing “the mean of the dependent variable for a

given level to the grand mean of the dependent variable” (Chen et al., 2011). How

such an encoding may look using the L1s from the Trustpilot corpus is shown

in Table 2. One variable is chosen as the “base level” and n − 1 new variables are

created for the n variables given. The resulting values can be interpreted as the

difference between the level and the mean. Trustpilot then uses 2 new variables,

shown in Table 2, while ICLE uses 15 new variables, as it has 16 L1s.

In Experiment 2 we also include whether the classified document originated from

the training or the testing corpus, represented as a binary 1 or 0 variable. Since only

two corpora are considered, but up to three exist in practice, it will always be

mentioned which corpus is being referred to by the variable.

Finally, the variable we want to predict, is whether the classifier correctly pro-

cessed and classified that document. This way, we can model the influence of each

predictor has on the performance of the classifier.
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This results in the following model for the Trustpilot corpus:

p(Correct) ∼ σ(Age + Gender + Paraphrased + L1 Danish vs. Mean

+ L1 French vs. Mean)

And this larger model for the ICLE corpus:

p(Correct) ∼ σ(Gender + Paraphrased + L1 Bulgarian vs. Mean + L1 Chinese vs. Mean

+ L1 Czech vs. Mean + L1 Dutch vs. Mean + L1 Finnish vs. Mean

+ L1 French vs. Mean + L1 German vs. Mean + L1 Italian vs. Mean

+ L1 Japanese vs. Mean + L1 Norwegian vs. Mean

+ L1 Polish vs. Mean + L1 Russian vs. Mean + L1 Spanish vs. Mean

+ L1 Swedish vs. Mean + L1 Turkish vs. Mean)

4.3.3 Model Validation

According to Thompson et al. (2017) multicollinearity is the presence of “high levels

of interdependence among predictors in a regression model”, and can cause estimated

coefficients to lose statistical significance or be assigned the wrong sign. To avoid

this, we can measure multicollinearity using the variance inflation factor (VIF) as

such:

V IFi =
1

1 −R2
i

,

where R2
i is the correlation coefficient obtained when predicting αi from all other

available predictors, therefor the higher the VIF value is, the more multicollinearity

is present between variables.

Tables 3 and 4 show the variance inflation factors (VIF) for each independent

variable for each corpus and classifier. We chose a VIF cutoff value of 4, as higher

values are considered to be problematic according to Thompson et al. (2017) because

they indicate that the variable correlates strongly with another set of variables.

None of the VIF values for any of the two corpora rise above the set threshold

of 4, so no additional investigation is necessary.

40



Gender 2.44

Paraphrased 1.72

L1 2.28

Table 3: VIF ICLE

Age 3.68

Gender 1.34

Paraphrased 1.88

L1 3.43

Table 4: VIF TP

4.3.4 Model Fit and Effect Sizes

To retrieve significant measures about the regression model, we not only need the

coefficients of the model itself, but also additional measures to assess the quality of

the model, and the contribution of each variable.

First, the goodness of fit is measured, while this is usually achieved using a R2

measure, logistic regression models do not provide an equivalent measure. To cir-

cumvent this issue, a pseudo R2 measure is used. Many measures have been proposed

in the past, due to simplicity reasons we will use the McFadden pseudo R2 measure,

to guarantee comparable results regarding other values produced by all models.

Furthermore, we need to assess the relative importance of each variable, which

is also not trivial for logistic regression models. We used Dominance Analysis (DA)

(Budescu, 1993) to investigate this metric. DA estimates the contribution of each

predictor variable to the explained variance in the outcome variable. This is done

by applying regression to all possible subsets of predictor variables, and estimating

the R2 value for each regression. A variable is said to dominate another variable, if

it is more useful than the other variable in all subset regressions.
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This leaves us with the following metrics for each classifier-corpus pairing: The

F1 score, a coefficient retrieved from the logistic regression model for each predictor,

along with its significance level, the total dominance score calculated using DA for

each predictor, the pseudo-R2 value of the model, and the accuracy of the model.

Section 2.10 introduced the F1-Score, although a high value is generally an indi-

cator of good performance, we mainly focus on the difference of F1-Scores between

different setups.

The coefficients for the demographic properties are an indication of contribution

to the performance of the outcome variable. Negative values indicate that when the

value of that variable increases, the value of the outcome variable decreases. Positive

values then indicate that when the value of the same variable increases, the value

of the outcome variable increases. The coefficients of the L1s given by the logistic

regression model as explained in 4.3.2 are a comparison of each L1 to the mean.

The significance level for each coefficient retrieved from the regression model

indicates whether the predictor variable has a statistically significant relationship

to the outcome variable. Generally, a higher significance level allows one to make

better statements about the variable’s influence. In all the following tables, we use

* for α ≤ 0.05, ** for α ≤ 0.01, and *** for α ≤ 0.001.

A higher total dominance for a predictor variable from dominance analysis indi-

cates that it has a stronger overall impact on the outcome variable relative to other

predictor variables. Therefor, predictor variables with a higher total dominance are

considered more important than other predictor variables.

The regression model also makes the pseudo-R2, and the accuracy available,

which are an indication of model fit. When our pseudo-R2 measure increases, we

know that a higher proportion of the dependent variable is explained by our inde-

pendent variables, which is desirable.
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5 Experimental Setup

5.1 Paraphrasing using GPT-3

We will create the new paraphrased versions of using GPT-3. GPT-3, which was al-

ready introduced in 2.9, offers different trained language models to process text. The

different models have different prices and qualities, but the only model capable of

paraphrasing a sentence and keeping its original meaning reliably is text-davinci.

It is priced at $0.02 per 1000 tokens, where 1000 tokens correspond to approxi-

mately 750 words. OpenAI also provides an API which allows for automation of the

paraphrasing.

The Trustpilot corpus was paraphrased sentence-wise, as the documents are

not long enough that any context has to be retained between sentences. The prompt

given was: "Paraphrase this to sound fluent:" followed by the sentence itself.

Parameters were set in a way that results are as deterministic as possible. Mainly,

the temperature parameter was set to 0, which minimizes randomness and therefore

maximizes reproducibility. The resulting corpus will be called Trustpilot P.

At first, the ICLE corpus was paraphrased the same way, sentence by sentence

to create ICLE S. This, however, is not optimal, as the context of surrounding sen-

tences is not considered during paraphrasing. This means that the sentence being

paraphrased does not consider references to surrounding sentences, nor does it pro-

cess the already paraphrased versions of those sentences. Since the ICLE corpus

contains learner essays with longer, coherent passages of text, which are longer than

the user reviews in the Trustpilot corpus, context from surrounding sentences is

of much higher importance.

To combat this effect, a new method was used, its requirements were to include

context from surrounding sentences, and to be reasonably efficient, since paraphras-

ing relies on the commercial OpenAI API.

The method is illustrated in Figure 10. To let the contents of surrounding sen-

tences influence the result, a document d of n sentences Sj
i is paraphrased in groups
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Figure 10: Paraphrasing procedure to let the context of surrounding sentences in-

fluence the final document

of three, where i indicates the sentence in the document, and j the amount of para-

phrasing steps performed on that sentence. The first paraphrasing step (i = 0)

simply paraphrases the first three sentences S0
0 , S0

1 and S0
2 to produce S1

0 , S1
1 and

S1
2 . Similarly to the other method, the prompt was: "Paraphrase Si Si+1 Si+2 to

sound more fluent.". Subsequent steps work by paraphrasing sentences Sj−1
i , S0

i+1

and S0
i+2, this way, the already paraphrased content from previous steps is consid-

ered. This is done until every sentence has been paraphrased once at the least, which

takes ⌈n
2
⌉ steps. Each version of the sentence with the most paraphrasing steps is then

merged with the others to create the final product, consisting of {S⌈ i
2
⌉

i : 0 ≤ i ≤ |d|}.

The new corpus will be referenced as ICLE P.

The model used for the first ICLE paraphrasing was text-davinci-002 as it

was the newest at the time, all following paraphrasing procedures were performed

using the newer model text-davinci-003.

Table 5 shows three examples of paraphrased sentences. Since the sentences

were paraphrased for fluency only, no major restructuring has taken place. But
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# Original Paraphrased

1 According to me the highest financial

reward should get miners, pilots and

sailors.

In my view, miners, pilots and sailors

should be the ones who receive the

highest financial compensation.

2 There are also some very good books

written in our modern world.

Additionally, there are some excellent

books written in our contemporary

society.

3 A statement, such as the quote from

George Orwell’s novel Animal Farm

”all animals are equal, but some ani-

mals are more equal than others”, can

be studied from a couple of points of

view and al!

The quote from George Orwell’s Ani-

mal Farm, ”all animals are equal, but

some animals are more equal than

others”, can be interpreted in various

ways, all of which are relevant to our

current times.

Table 5: Paraphrasing results by GPT-3

common stylistic errors, such as "very good books" were not only replaced by

better sounding combinations, such as "excellent books" according to context,

but also integrated into more fluent wordings. Moreover, important to this process,

is that quotes do not get paraphrased, which they do not, as can be seen in the third

example, this indicates that a quote is treated correctly according to context.

Since paraphrasing a text will likely change its structure, we also briefly investi-

gate how the original corpora differ from the newly created paraphrased versions.

Table 6 shows some basic characteristics of all the corpora mentioned. Values

worth mentioning are highlighted and will be discussed in the following section.

Although the average number of words in a document is a very general metric, it

does vary noticeably for the ICLE corpora. Documents from ICLE P are on average

45 words longer than the originals, this is expected, since GPT-3’s language skills

and vocabulary stem from a collection of documents of proficient English, which
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ICLE ICLE P ICLE S TP TP P

Average # of Words per

Document

740.19 785 705.23 54.02 50.26

Average # of Sentences per

Document

33.68 33.33 37 3.03 3.02

Average # of Words per Sentence 20.72 22.35 18.11 14.92 14.71

Average Length of Word 4.24 4.37 4.25 3.99 3.92

# of different words 68558 43608 48332 16172 10900

Table 6: Corpus analysis after paraphrasing (Trustpilot has been abbreviated as

TP)

generates more elaborated wordings. ICLE S however, is shorter on average, this is

not expected, as it used the same language model as ICLE P. It is likely, however,

that the sentences were shortened for stylistic purposes during paraphrasing, and

because no surrounding context was present, no references could be made to other

content, resulting in shorter sentences. This corresponds with the average amount of

words per sentence, which is higher for ICLE P and lower for ICLE S, and is also

illustrated in Figure 11. In the distribution plot, it is clearly visible that ICLE P

has a similar distribution to the original ICLE corpus, but its sentences are longer

on average. The ICLE S corpus’ distribution shows a much larger peak at 15 words

per sentence, but shows a sharper drop than the other corpora, meaning that long

sentences were shortened, and sentences that were short already, were kept at a

similar length.

The average length of a word does not show any noticeable changes, only ICLE P

has slightly longer words than the other two ICLE corpora, although only by ap-

proximately 3%.

An expected phenomenon, is that the number of unique words in the paraphrased

corpora is significantly lower. This is because the original corpora contain spelling
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Figure 11: Distribution of number of words in a sentence in the ICLE corpora

errors, something the paraphrased versions do not, since the GPT-3 language model

will attempt to correct them.

The Trustpilot corpora show similar phenomena, the average number of words

per document has fallen in Trustpilot P similarly to ICLE S. Figure 12 shows,

that the distribution change from Trustpilot to Trustpilot P resembles the

change between ICLE and ICLE P, in the way that all sentences have become

longer overall.

The vocabulary size of Trustpilot P has also shrunk to 67.4% of the original

size, for the same reasons present in the ICLE corpora.
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Figure 12: Distribution of number of words in a sentence in the Trustpilot corpora

5.2 SVM

The SVM was implemented using the scikit-learn, numpy and nltk libraries in

Python. First, the data was filtered and prepared to fit the structure and criteria

mentioned in Section 3. Afterward the TF-IDF matrix was constructed, to achieve

that, each document was tokenized and then converted into uni- and bigrams.

To retrieve results, the SVM was used to classify the documents of the testing

set of the current training-testing pair. Performance was measured using a weighted

F1-Score, which calculates the macro F1-Score for each class, and then finds their

average weighted by the number of true instances per class. This was done once for

the entire testing set, and then for each predefined demographic group. The weighted

F1-score was chosen to counteract the class distribution, since the classes in all the

datasets are imbalanced.
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5.3 Language Model

Although the BERT model uses the same data pairs as the SVM, its ability to process

raw text instead of vectors meant that the documents only had to be tokenized using

the matching tokenizer for the BERT model. The libraries needed for the BERT

classifier and the tokenizer were transformers and pytorch. The pretrained model

used for this task was bert-base-uncased, which meant that the documents were

tokenized using the tokenizer with the same name.

The 512 token limit of the tokenizer is often reached by the ICLE corpus, as

can be seen in Figure 3, many of the available methods to circumvent this limit are

not feasible in the scope of this work. Alternatives to truncation of the document

to 512 tokens include using a different tokenizer, such as Longformer by Beltagy

et al. (2020) or splitting documents of more than 512 tokens into smaller pieces

to classify each of them separately. The latter option, however, raises many more

issues and design ideas, that do not match the scope of this work, so truncation

was used anyway. Although both Sun et al. (2019a) and Mutasodirin and Prasojo

(2021) mention potential improvements using special truncation techniques, we do

not consider them relevant to the scope of this work, as we are mainly interested

in performance differences instead of raw performance. Therefor, documents longer

than 512 tokens are automatically truncated in our setup.

After testing, the hyperparameters for the model were chosen as recommended

by Devlin et al. (2019), as they achieved the best performance, even in the restricted

number of epochs. The batch size was set to 8 as this was the highest reasonable

number the GPU (NVIDIA RTX 3080 10GB) used could handle. We used the Adam

optimizer (Kingma and Ba, 2014) in training and set its learning rate to 3 ∗ 10−5.

Finally, the model was limited to 4 epochs of training, as any further epochs raised

the accuracy on the training set, while maintaining the accuracy of the testing set.

This indicates an increased risk of overfitting to features in the training set, which

are not relevant in other documents.

Finally, the performance metrics were chosen to be the same as for the SVM, to

retain comparability.
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5.4 Evaluation

The regression analysis, which includes the VIF analysis, was implemented using

the statsmodels library. The DA was performed using the dominance-analysis

Python library, which also uses statsmodels to calculate all necessary logistic re-

gression. Since we use the same library for all logistic regressions, we can assume

all values, such as the previously mentioned McFadden pseudo-R2 measure, to be

comparable between each other, as the underlying system remains constant.
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6 Results

In this section, we will discuss the results of both experiments and compare the

different setups. Since both experiments generate numerous results, the tables con-

taining the results have been reduced to the values required to show the main points

in these sections. The full tables containing all values can be found in the appendix.

6.1 Experiment 1

6.1.1 ICLE

SVM BERT

ICLE ICLE P ICLE S ICLE ICLE P ICLE S

Overall 83.75 71.87 74.60 75.79 64.79 69.54

Male 84.35 73.44 73.69 78.65 66.35 72.32

Female 83.72 71.49 75.07 74.88 64.44 68.97

Bias 0.99 0.97 1.02 0.95 0.97 0.95

Table 7: F1-Scores for the ICLE corpora (Bias = F1Female/F1Male)

Table 7 shows the F1-scores for the ICLE corpus. The F1-scores have been split

up by gender to allow for the analysis of the gender bias.

Our hypothesis was that the performance of classifiers would decrease signifi-

cantly on paraphrased corpora. Additionally, we expected some level of bias when

investigating the demographic properties gender and age.

The first observable phenomenon is the clear drop in F1-score in all paraphrased

versions of the original corpora. ICLE P is the corpus showing the strongest decrease

in F1-score, lowering the score by over 10 points compared to the original corpus.

However, ICLE S also shows similar effects regardless of classifier, indicating that
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it applies to all ICLE corpora. The clear decrease in F1-score across both classifiers

suggests that paraphrasing a corpus does indeed lower the performance when trying

to deduce the L1 of the document’s author.

Although this alone supports the main hypothesis for this experiment, multiple

other phenomena can be observed from these results.

At first, it is noticeable that although the ICLE S corpus performs worse than the

unmodified ICLE corpus, it does perform better than the thoroughly paraphrased

ICLE P corpus. This is easily explained by looking at the way the corpora were

paraphrased. Since ICLE S was paraphrased sentence by sentence, it is very similar

to the original corpus. The overall structure was not changed, as each sentence was

only replaced by a modified version of itself. This also restricted the freedom the

GPT model had to restructure the sentence, as it did not have any context available.

When inspecting gender bias, a small and consistent male bias can be seen. Only

one of the six corpora show a slight female bias, which is also small, while the ICLE

and ICLE S corpora with the BERT model showing the highest bias at a ratio of

0.95. Although some bias is present, this does not match the expected extent.

The SVM performs better on the ICLE corpora, which can be explained by the

length of the documents in the corpora. Many documents supersede the 512 token

limit of the BERT tokenizer mentioned in Section 2.8, as can be seen in Table 3.

When the BERT language model trains on these documents, much of the documents

is discarded, a problem which the SVM does not have.

Although the age of the authors was also investigated, it did not yield any sub-

stantial results and has been left out, as performance was highly dictated by data

availability.

The results of the regression analysis have been displayed in Table 8. The table

has been severely reduced to the essential results relevant to the analysis. The full

version is available in the appendix.

The first table shows the results of the regression analysis of the original ICLE

corpus, since the results were similar for all three versions of the corpus. Both

language-independent factors stand out because they are not considered important
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ICLE

SVM Coef. 0.00 0.33 -1.11*** 1.37*** -0.21 -0.68 -1.02*** -0.21 1.61* -0.64* -0.56* 0.09 0.84

DA 0.00 0.00 0.02 0.02 0.00 0.00 0.01 0.00 0.01 0.01 0.00

BERT Coef. 0.00 0.22 0.13 3.03*** -1.34*** -1.32*** -1.24*** 0.81* 0.99* -0.72* -1.13*** 0.18 0.77

DA 0.01 0.00 0.00 0.04 0.02 0.02 0.03 0.00 0.00 0.01 0.02

Table 8: Results from regression model and DA for ICLE corpora

by the DA. In addition, the coefficients are not significant and 0 for the length pre-

dictor. The gender predictor, although insignificant, is slightly positive, indicating a

stronger positive influence by documents with female authors.

When looking at the L1 predictors, some L1s are better predictors for correct

classification than others. The ones that stand out as good predictors are Chinese

and Japanese. Chinese is by far the strongest predictor, showing the highest coef-

ficient and the highest importance by the DA, along with a high significance level.

That Chinese and Japanese are the two L1s standing out as good predictors can

be explained by the fact that they are the only two languages, apart from Tswana,

that are not Indo-European. Therefore, the documents with Chinese and Japanese

authors present more unique features, that can be detected by both classifiers.

Most of the other language predictors stand out due to the negative sign, along

with a high significance level. Especially French stands out, as it also has a high

importance assigned by the DA. This may be explained by French being closely

linked to English in terms of historical language development due to geographic and

cultural reasons.

Although other L1s such as Bulgarian and Italian show noticeable behavior, we

cannot reasonably explain their behavior without speculating.

Finally, the R2 measure is significantly higher when using the BERT model,

this is true for all three ICLE corpora. This means that a larger proportion of the
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variance in the dependent variable can be explained by the predictor variables when

using the BERT model. This is in line with the proportion of coefficients in each

classifier that have a high significant level.

6.1.2 Trustpilot

SVM BERT

Trustpilot Trustpilot P Trustpilot Trustpilot P

Overall 72.58 65.30 77.30 70.36

Male 72.93 66.27 76.94 70.57

Female 71.41 62.35 78.24 69.82

Bias 0.98 0.94 1.02 0.99

Table 9: F1-Scores for the Trustpilot corpora (Bias = F1Female/F1Male)

Table 9 shows the F1-scores for the Trustpilot corpora. They have also been

split up by gender.

The results show a very similar behavior to the ICLE corpora, where paraphras-

ing a corpus entails a significant decrease in performance regardless of the classifier

used. Both corpora show a similar amount of gender bias to the ICLE corpora, where

three out of four classifiers were male-biased, although none surpassed the ratio of

0.98.

In this case, the BERT model outperforms the SVM, but this has the same

explanation as the SVM outperforming the BERT model on ICLE corpora. The

majority of documents in the Trustpilot corpora do not exceed the 512 token

limit of the tokenizer. Since BERT produces higher F1-scores on arguably equal

terms, we can assume that the model outperforms the SVM on this corpus.

Due to the same reasons described in Section 6.1.1, age has been left out and all

statements about the influence of age on classification has to stem from the following
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Trustpilot

SVM Coef. 0.00* -0.02 0.00 0.5*** 0.02 0.03 0.72

DA 0.01 0.00 0.00 0.02 0.00

BERT Coef. 0.00 0.12 0.01 0.59*** 0.07 0.05 0.78

DA 0.00 0.00 0.00 0.04 0.01

Trustpilot P

SVM Coef. 0.00 -0.15 0.00 0.6*** -0.24* 0.04 0.65

DA 0.00 0.00 0.00 0.03 0.00

BERT Coef. 0.00 -0.04 0.01 0.61*** -0.16 0.04 0.71

DA 0.00 0.00 0.00 0.03 0.00

Table 10: Results from regression model and DA for Trustpilot corpora

analysis of the regression model.

The results of the regression analysis on the Trustpilot corpora is shown in

Table 10.

The results of the analysis show similar traits to the analysis of the ICLE corpora,

with some interesting differences.

Both coefficients for length and gender stay close to 0, and their importance

by the DA is 0 as well. This analysis also includes age as a predictor, which again

shows no importance or significant coefficient. Now that all demographic variables

seem to be unimportant, we can discard our starting assumption that demographic

properties would be strong indicators of classifier performance.

Since German has been selected as the “base level” for the deviation coding,

only Danish and French remain as L1 predictors. It is clear that Danish is notice-

ably easier to classify than German, as all coefficients are above 0.5 and highly

significant. The DA marks this predictor as highly important, with values between

0.02 and 0.04, while no other predictor rises above 0.01. This is likely attributed to
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the data distribution, which strongly favors documents with a Danish L1. Another

plausible explanation is that Danish is structurally different from English because

Danish natives tend to construct subordinate clauses using “main clause” word order

(Christensen et al., 2020), something both classifiers may detect easily.

Another interesting phenomenon is that the coefficients for the French predictor

are slightly lower for the Trustpilot P than for the original corpus. This can be

interpreted as French being harder to classify than German after being paraphrased,

speaking in relative terms. On average, it can be said, that documents by French au-

thors are masked better by the paraphrasing procedure, as the performance improves

relatively to other L1s after paraphrasing.

Lastly, the R2 value is now almost equal between the two classifiers and the two

corpora, as only very few documents cross the 512 token threshold.

6.2 Experiment 2

This experiment provides similar results to the first experiment, with the important

distinction, that the classifiers have classified a different corpus in addition to the

one they were trained on. The notation is explained here for easier understanding

in the following sections.

The corpus pairs consist of two corpora, Corpus 1 and Corpus 2, and are de-

noted as Corpus 1 - Corpus 2. Corpus 1 is the testing dataset on which the clas-

sifiers trained on. The testing set is the union of both corpora Corpus 1 and Corpus

2.

When a corpus pair is mentioned as “ICLE - ICLE P”, it means that the classifier

trained on the ICLE corpus, and was used to classify documents from both ICLE

and ICLE P.

The focus of this experiment lies on the domain transfer effects a classifier may

show. Although the corpus pairs stem from the same original corpus, we argue that

they are different enough, that these effects may be considered effects of domain

transfer.
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Overall 66.80 75.80 71.58 69.66 78.63 68.22 60.59 63.67 67.00 66.39 69.58 64.74

Male 67.92 74.64 73.90 71.82 78.57 70.65 62.72 66.60 69.85 68.23 72.17 67.11

Female 66.48 76.23 70.99 69.12 78.84 67.52 60.04 62.88 66.38 66.04 69.17 64.24

Bias 0.98 1.02 0.96 0.96 1.00 0.96 0.96 0.94 0.95 0.97 0.96 0.96

Table 11: F1-Scores for the ICLE corpora (Bias = F1Female/F1Male)

The hypothesis for this experiment was similar to that of the first experiment, in

that we expected performance of classifiers to decrease significantly on paraphrased

corpora. Due to the added aspect of the domain transfer in this experiment, we also

expected the performance to decrease more when classifying a paraphrased corpus

compared to when we classify the original corpus when we trained on a paraphrased

corpus. Furthermore, we assumed to find similar biases in the demographic factors.

Similarly to Experiment 1 in Section 6.1.1, Table 11 shows the overall F1-scores,

as well as the F1-scores split by gender, for all ICLE corpus pairs. The performance

discrepancies between the SVM and the BERT model behave similarly for the same

reasons mentioned before. Even the gender bias stays similarly male-biased in 10 of

the 12 corpus-pairs.

When inspecting the F1-scores for the pair tested, some interesting patterns

arise. Classifiers which have been trained on the unaltered ICLE corpus and have

been applied to a different version of the corpus perform significantly worse, when
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ICLE - ICLE P

SVM Coef. 0.89*** 0.00** 0.2 0.07 -0.3 -0.65* -1.04*** 0.15 0.78

DA 0.03 0.01 0.00 0.00 0.00 0.01 0.02

BERT Coef. 0.49*** 0.00** 0.17 -0.37 -0.21 -1.68*** -1.55*** 0.25 0.75

DA 0.01 0.01 0.00 0.00 0.00 0.03 0.05

ICLE P - ICLE

SVM Coef. -0.02 0.00 0.2 -0.77*** 0.06 -0.32 0.04 0.10 0.72

DA 0.00 0.00 0.00 0.01 0.00 0.00 0.00

BERT Coef. 0.14 0.00 0.27* -0.83*** -0.93*** -0.67** -0.03 0.18 0.72

DA 0.00 0.01 0.00 0.01 0.01 0.01 0.00

Table 12: Results from regression model and DA for ICLE corpora

compared to the same classifier applied to the original corpus. A notable exception

is the ICLE-ICLE S pairing, as it achieved a higher F1-score than the classifier that

trained and classified ICLE S. This can be attributed to the similarity of ICLE S

to the original corpus, although this does not explain the increase in performance

itself.

Classifiers trained on “harder” corpora, such as ICLE P and ICLE S, do not

necessarily perform worse, however, as some combinations yielded better results

than their counterparts that classified the same corpus they were trained on.

When looking at the results of the regression analysis, the most interesting predic-

tor is the “Paraphrased” variable, as it will indicate whether classifying a document

from a different corpus is a good indicator for performance.

When looking at the analysis results of the ICLE corpora from Table 12, we notice

multiple similar phenomena that have already been discussed in the first experiment.

Mainly, the R2 measure, which is higher when using the BERT classifier, and the
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demographic predictors, which show no influence of the variables apart from a slight

positive female influence, have not changed.

The new “Paraphrased” predictor does confirm our hypothesis, when a classifier

is trained on the original ICLE corpus, it performs much better when classifying

a document from the same corpus, instead of one from the ICLE P corpus. This

in itself is expected, as domain transfer always increases difficulty. However, when

we look at the same values in the pairing, in which the classifier was trained on

ICLE P, we notice that none of the two corpora were easier to classify than the

other, as the coefficients are low, have no significance level, and the importance

assigned by the DA is 0.00. This indicates that a classifier that has been trained

on “harder” paraphrased corpora does not gain any performance advantage from

classifying the original corpus.

The L1 predictors in the Table have been chosen by whether they differ sig-

nificantly from the results of Experiment 1, or if their values changed significantly

between corpus-pairing in this experiment.

The predictor for Czech, indicates that it is harder to classify (compared to

Tswana) when the classifier was trained on a corpus different from the original ICLE

version, suggesting that Czech is masked better than some other languages when

training on paraphrased corpora. The same behavior can be observed for documents

with Spanish as a L1, but only when using the BERT classifier, the SVM does not

change the relative difficulty.

When classifying documents with a Finnish L1, it appears as if training on

the paraphrased corpus makes the documents easier to classify than before. Polish

shows a similar change, however, the predictor loses its significance levels, and its

importance.
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6.2.2 Trustpilot

SVM BERT

T
p

-
T
p
P

T
p
P

-
T

P

T
p

-
T
p
P

T
p
P

-
T

P

Overall 61.24 68.84 65.65 71.92

Male 60.97 69.55 66.20 71.90

Female 62.10 66.50 63.76 71.73

Bias 1.02 0.96 0.96 1.00

Table 13: F1-Scores for the Trustpilot corpora (Bias = F1Female/F1Male)

(Trustpilot abbreviated as Tp)

The F1-scores of each corpus pair and classifier are shown in Table 13, along with

the split by gender. BERT outperforms the SVM once again, although the reasons

remain the same as in Section 6.1.2. The gender bias remains low but male-biased

in three out of four results.

Although the same patterns arise in the Trustpilot corpora when inspecting

performance differences among corpus pairs, they are easier to display. The effect

of a classifier performing better when trained on a “harder” corpus is stronger. The

Trustpilot P - Trustpilot combination is a good example of this effect, as

it achieved a F1-score of 71.92, while the classifier that classified Trustpilot P

instead of only being trained on it, achieved a lower F1-score of 70.36.

This behavior can be expressed more easily when labelling corpora as “harder”

or “easier” than others, based on whether they were paraphrased. When doing so,

a clear performance hierarchy can be constructed, which is shown as an example

using the Trustpilot classifiers in Table 14.
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F1-score Tp > Tp P - Tp > Tp P > Tp - Tp P

SVM 72.58 > 68.84 > 65.30 > 61.24

BERT 77.30 > 71.92 > 70.36 > 65.65

Table 14: Sorted F1-scores of all classifiers using the Trustpilot corpora

The classifier training on the easier corpus and classifies it, performs the best.

The next-best classifier is the one training on harder data, but classifies the easier

corpus. After that comes the classifier working solely on the harder corpus, and the

worst performing classifier then is the one, that trains on the easy corpus, but then

classifies the hard corpus.

The same structure can be built for the ICLE corpora, when declaring the ICLE S

corpus to be a middle-ground between ICLE and ICLE P. In this case, some excep-

tions do happen, but the general idea still holds.

The regression analysis for the Trustpilot corpora pairs, shown in Table 15, stays

mostly identical to the one shown in Section 6.1.2. The demographic predictors, the

language predictors, and the R2 measure all present identical behavior to before.

However, similarly to the analysis for the ICLE corpora, the “Paraphrased” pre-

dictor is of interest. It also shows that classifying documents from a paraphrased

corpus is harder, than classifying documents from the original and unmodified cor-

pus the classifier was trained on. Again, when using the paraphrased corpus to train,

this effect does not occur anymore, and the classifier does not perform significantly

better or worse on documents from one corpus or another.
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Trustpilot - Trustpilot P

SVM Coef. 0.45*** 0.00 0.05 0.00 0.69*** -0.13 0.06 0.68

DA 0.01 0.00 0.00 0.00 0.05 0.00

BERT Coef. 0.54*** 0.00 0.01 0.00 0.69*** 0.09 0.08 0.74

DA 0.01 0.00 0.00 0.00 0.05 0.01

Trustpilot P - Trustpilot

SVM Coef. 0.18 0.00* -0.13 0.00 0.51*** -0.18* 0.03 0.67

DA 0.00 0.00 0.00 0.00 0.02 0.00

BERT Coef. 0.07 0.00 0.01 0.01** 0.55*** -0.15 0.03 0.72

DA 0.00 0.00 0.00 0.01 0.03 0.00

Table 15: Results from regression model and DA for Trustpilot corpora

7 Discussion

Experiment 1 shows that NLI classification performance decreases significantly when

using paraphrased versions of the same corpus. It has also shown that the method

used to paraphrase a document has an impact on the performance. When inspecting

the F1-scores, we only detected a small male bias, which is lower than typical for

similar experiments (Dayanik et al., 2022). In general, performance measured using

an F1-score was dictated by data availability, which made analyzing the F1-score

by age obsolete, as its distribution was unimodal and concentrated. Both the low

impact of gender, and the low impact of age did not match our assumptions, as we

expected there to be a significant influence. But both cases are hugely influenced by

data distribution, which may hide some larger biases.

The effects of truncation by the BERT tokenizer can be observed in the results,

as it performs worse than the SVM on the ICLE corpora, which contain longer
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documents on average. This also affected the R2 values of the regression analysis,

which are higher than the SVMs when the BERT language model only had truncated

data available. Another plausible explanation is that misspellings of words, which

may be motivated by the L1, are tokenized in such a differing way from the correctly

spelled token that they influence the performance of the language model. This can be

mitigated in many ways, but a word-based spelling correction so that the sentence

structure remains equal is likely to reduce the effect while preserving our other

findings.

Experiment 2 confirmed the findings of the first experiment, and additionally

allowed for more findings. Together with the F1-scores available from the first ex-

periment, each classifier can be compared to create a hierarchy in performance. This

hierarchy indicates that the classifiers can be sorted from the classifier that only

classifies the original corpus, to the classifier that trains on the original corpus, and

additionally classifies the paraphrased version.

The regression analysis of both experiments show that, as seen in the F1-scores,

demographic predictors, as well as the length predictor did not contribute signifi-

cantly to any classifier. This finding is not expected, as our hypothesis assumed a

stronger influence of demographic factors on the classifier’s performance. We cannot

give a reasonable explanation for this behavior. However, we can assume that the

corpora used suffer from topic bias and other demographic biases as can be seen in

other studies (Brooke and Hirst (2013), Hovy et al. (2015), Hovy (2015)). This indi-

cates that the effect of lack of influence from demographic factors is likely introduced

during this work.

The important finding from the regression analysis of Experiment 2 is, that when

trained on an original corpus, the classifier performs best when classifying documents

from the same corpus. When trained on an altered version of the corpus, however,

this phenomenon fades, as no classifier performed better or worse on documents

from the original or from the altered corpus.

Many of the language predictors in both experiments were not significant or

important enough to be mentioned, and some mentioned do not offer an obvious
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explanation. But we observed some L1s providing additional information and per-

formance to the classifier in both experiments. Mainly, the Chinese and Japanese

stood out as easy to classify, due to them not being Indo-European. Danish was

also easy to classify, most likely due to the data availability or the subordinate

clause word order typical for Danish natives (Christensen et al., 2020). Other L1s,

such as French, Norwegian, and Swedish, presented themselves as harder to classify,

although the reasons were often unclear.

Very few languages became noticeably harder or easier to classify after para-

phrasing. An example of such an effect are documents of French natives, as they are

slightly harder to classify after being paraphrased in the Trustpilot corpus. This

effect is explained by the fact that documents from French natives are more likely

to present some spelling errors over others. Other authors of other native languages

also present this effect, just with other spelling errors. Stehwien and Padó (2016)

lists “exemple” as a common spelling mistake made by French authors. Although

correctly spelled, “Indeed” and “To conclude” are two formal sentence introductions

also often used by French authors. Occurrences of these words are likely to be an

indicator for the classifier that are changed through paraphrasing.

Additionally to the just mentioned frequency of specific spelling errors by au-

thors with different native languages, the ICLE corpus poses another explanation

for easily identifiable tokens. As mentioned in Section 3.1, Brooke and Hirst (2013)

demonstrated that the ICLE corpus suffers from significant topic bias. This changes

the vocabulary used in each document, but it is difficult to attribute a change in per-

formance through paraphrasing. Nevertheless, it is likely to affect the performance

of the classifiers. We assume an increase in performance because of the topic bias,

and we also assume this increase in performance to distribute unevenly between all

L1s. However, it is difficult to quantify the influence of ICLE’s topic bias on a per-L1

basis.
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8 Conclusion

In this thesis, we utilized the ICLE corpus, a learner corpus, and the Trustpilot

corpus, a web-scraped corpus, to conduct NLI experiments. We created new versions

of both corpora by paraphrasing each document using GPT-3. To better paraphrase

the longer documents of the ICLE corpus, we developed a new technique to effi-

ciently paraphrase a document, while allowing for structural changes within itself

to create a second paraphrased version of the corpus. Using the five corpora, and

additional demographic metadata such as age and gender, together with the length

of each document, we performed two different NLI experiments. To classify each

document, we used two different NLI classifiers, an SVM which was trained using

TF-IDF constructed from uni- and bigrams, and a pre-trained BERT language. We

analyzed our results using typical performance measures, such as the F1-score, and

an advanced combination of regression analysis and dominance analysis.

We conducted two experiments in which we detected a significant performance

decrease through the influence of the paraphrased corpora. In both experiments we

noticed the lack of influence by demographic factors, while overall L1s were a better

predictor for a correct classification.

In this work, we showed how performing NLI experiments are heavily influenced

when the documents used to perform such experiments are paraphrased. This finding

is in line with the expected results. We also expected demographic factors to have a

significant influence on the performance of the NLI classifiers themselves, but found

that the influence of such factors is negligibly small or non-existent. This contradicts

our expectations, as well as findings by previous works such as Hovy (2015) and Sun

et al. (2019b). We found the L1 of a document’s author to be a better predictor

of classification success. The regression analysis allowed us to quantify the relative

influence of each L1, which in turn allowed us to detect performance differences in

classification motivated by features unique to a language.

The data available, the execution of the experiments, and the resulting findings

were limited by factors common for NLP experiments. The corpora choice was highly

dictated by the availability of corpora containing the necessary metadata for our
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experiments. This limits the amount of data available to us, which impacts the

performance of classifiers which rely on training data. The quality of the data can

also be questioned, since both corpora pose slight concerns when it comes to their

quality. Brooke and Hirst (2013) already demonstrated that ICLE suffers from topic

bias, which cannot be easily removed. The Trustpilot corpus suffers from notable

gender bias (Hovy, 2015), and additionally consists of reviews which tend to be short

on average, as can be seen in Table 5.

The method we developed to paraphrase a document thoroughly to allow for the

retention of surrounding context fulfilled its purpose. However, it was designed with

its cost in mind, which is a limitation. More resources would allow for the design of

an even more thorough paraphrasing method, which we assume would amplify the

impact of paraphrasing on NLI tasks.

Although computing power was a limiting factor during the training of the BERT

language model, it did not impact the results, as more computing power would

only deliver the results faster. When using larger corpora with longer documents,

however, the computing power might be insufficient to conduct the experiments in

a reasonable time.

The findings in this work can be improved by using larger corpora, mostly be-

cause the BERT language model profits from a larger quantity of datapoints (Stein-

bakken and Gambäck, 2020). Additionally, the paraphrasing method developed in

this work, can be improved. Although the method sufficed to prove our hypothesis,

it is reasonable to assume that a more sophisticated and elaborate method could

further “hide” a L1 from an NLI classifier.

We chose BERT as the language model to represent neural network language

models, but many more exist and new ones are being developed. An analysis com-

paring the effect of paraphrasing on NLI, along with the influence of demographic

factors when using different neural network language models is likely to yield further

findings in this field.

Finally, our hypothesis that demographic metadata would be a significant pre-

dictor was shown to be untrue, however, the reason behind this behavior is unclear.
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Further research could investigate whether this behavior is systematic or bound to

our experimental setup.
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9 Appendix

ICLE ICLE P ICLE S

SVM Male Overall 84.35 73.44 73.69

Male 10-30 85.32 74.32 74.49

Male 31-99 52.14 33.33 57.50

Female Overall 83.72 71.49 75.07

Female 10-30 84.17 68.07 75.40

Female 31-99 76.70 68.07 70.47

Overall 83.75 71.87 74.60

BERT Male Overall 78.65 66.35 72.32

Male 10-30 79.44 68.01 73.83

Male 31-99 65.48 21.43 45.00

Female Overall 74.88 64.44 68.97

Female 10-30 75.11 64.77 69.30

Female 31-99 65.29 59.13 62.72

Overall 75.79 64.79 69.54

Table 16: F1-Scores for the ICLE corpora
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Trustpilot Trustpilot P

SVM Male Overall 72.93 66.27

Male 10-30 68.25 60.38

Male 31-55 74.10 67.27

Male 56-99 75.33 75.94

Female Overall 71.41 62.35

Female 10-30 62.02 60.88

Female 31-55 81.04 68.06

Female 56-99 64.55 47.75

Overall 72.58 65.30

BERT Male Overall 76.94 70.57

Male 10-30 69.55 63.40

Male 31-55 80.85 73.97

Male 56-99 83.74 78.58

Female Overall 78.24 69.82

Female 10-30 76.04 69.20

Female 31-55 82.10 71.55

Female 56-99 79.39 66.44

Overall 77.30 70.36

Table 17: F1-Scores for the Trustpilot corpora
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ICLE

SVM Coef. 0.00 0.33 -1.11*** 1.37*** -0.13 -0.21 -0.21 0.22 -0.68 -1.02*** -0.21 1.61* -0.64* -0.08 0.16 -0.56* -0.32 0.09 0.84

DA 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00

BERT Coef. 0.00 0.22 0.13 3.03*** -0.63* -0.42 -1.34*** -0.46 -1.32*** -1.24*** 0.81* 0.99* -0.72* -0.52 -0.07 -1.13*** 0.71 0.18 0.77

DA 0.01 0.00 0.00 0.04 0.01 0.00 0.02 0.00 0.02 0.03 0.00 0.00 0.01 0.00 0.00 0.02 0.00

ICLE P

SVM Coef. 0.00 0.23 -0.98*** 1.8*** -0.46 0.03 -0.24 -0.1 -0.44 -0.68* 0.75* 0.97** -0.51 -0.33 -0.32 -0.24 -0.76*** 0.11 0.73

DA 0.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01

BERT Coef. 0.00 0.31 0.2 3.16*** -0.98** 0.08 -1.01** -0.93** -0.61* -0.84** 0.84** 1.03** -1.08*** -0.12 -0.6* -0.7** -0.06 0.18 0.72

DA 0.01 0.00 0.00 0.07 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.00 0.01 0.01 0.00

ICLE S

SVM Coef. 0.00 0.38* -0.86*** 1.62*** -0.72* 0.01 -0.69* -0.08 -0.66 -0.49 0.31 1.33** -0.42 0.21 -0.05 -0.12 -0.64** 0.09 0.75

DA 0.00 0.00 0.02 0.03 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01

BERT Coef. 0.00 0.2 -0.14 2.81*** -0.18 -0.24 -1.16*** -0.65* -0.99** -0.79** 1.01** 1.13** -0.74** -0.59* -0.35 -0.93*** 0.49 0.15 0.72

DA 0.01 0.00 0.00 0.05 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.00

Table 18: Results from regression model and DA for ICLE corpora

70



IC
L

E
-

IC
L

E
P

IC
L

E
-

IC
L

E
S

IC
L

E
P

-
IC

L
E

IC
L

E
P

-
IC

L
E

S

IC
L

E
S

-
IC

L
E

IC
L

E
S

-
IC

L
E

P

SVM Male Overall 67.92 74.64 73.90 71.82 78.57 70.65

Male 10-30 68.79 75.35 75.09 73.23 79.28 72.10

Male 31-99 33.93 52.14 32.14 37.50 52.14 27.50

Female Overall 66.48 76.23 70.99 69.12 78.84 67.52

Female 10-30 66.67 76.37 71.34 69.07 79.25 67.88

Female 31-99 75.72 80.29 63.15 77.58 69.64 62.28

Overall 66.80 75.80 71.58 69.66 78.63 68.22

BERT Male Overall 62.72 66.60 69.85 68.23 72.17 67.11

Male 10-30 63.96 68.02 71.91 69.98 73.49 68.46

Male 31-99 25.00 33.93 18.75 25.00 50.00 28.12

Female Overall 60.04 62.88 66.38 66.04 69.17 64.24

Female 10-30 60.32 63.16 66.71 66.07 69.18 64.66

Female 31-99 58.50 56.89 59.90 66.67 68.32 56.71

Overall 60.59 63.67 67.00 66.39 69.58 64.74

Table 19: F1-Scores for the ICLE corpora
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SVM Male Overall 60.97 69.55

Male 10-30 60.23 65.89

Male 31-55 61.36 70.85

Male 56-99 58.05 74.63

Female Overall 62.10 66.50

Female 10-30 56.82 63.93

Female 31-55 69.41 71.24

Female 56-99 60.29 57.78

Overall 61.24 68.84

BERT Male Overall 66.20 71.90

Male 10-30 61.24 61.66

Male 31-55 68.04 77.47

Male 56-99 75.56 75.72

Female Overall 63.76 71.73

Female 10-30 65.47 66.81

Female 31-55 70.09 76.81

Female 56-99 62.12 71.17

Overall 65.65 71.92

Table 20: F1-Scores for the Trustpilot corpora
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ICLE - ICLE P

SVM Coef. 0.89*** 0.00** 0.2 -0.94*** 1.58*** 0.07 0.01 -0.33 -0.3 -0.65* -0.73*** 0.43 1.24*** -1.01*** -1.04*** 0.27 -0.45** -0.16 0.15 0.78

DA 0.03 0.01 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.02 0.02 0.00 0.00 0.00

BERT Coef. 0.49*** 0.00** 0.17 0.02 2.63*** -0.37 -0.28 -1.25*** -0.21 -1.68*** -1.08*** 1.08*** 0.98*** -1.05*** -1.55*** 0.37 -1.4*** 0.79* 0.25 0.75

DA 0.01 0.01 0.00 0.00 0.04 0.00 0.00 0.01 0.00 0.03 0.01 0.00 0.00 0.01 0.05 0.00 0.04 0.00

ICLE - ICLE S

SVM Coef. 0.52*** 0.00 0.39** -1.03*** 1.64*** -0.08 -0.11 -0.49* 0.2 -0.74** -0.83*** 0.19 1.02** -0.95*** -0.04 -0.18 -0.36 -0.35 0.11 0.8

DA 0.01 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00

BERT Coef. 0.45*** 0.00* 0.17 0.23 2.3*** -0.18 -0.06 -1.34*** -0.03 -1.57*** -0.96*** 1.19*** 0.38 -1.21*** -1.14*** 0.11 -1.37*** 1.0** 0.21 0.75

DA 0.01 0.01 0.00 0.00 0.04 0.00 0.00 0.02 0.00 0.03 0.01 0.01 0.00 0.02 0.02 0.00 0.04 0.00

ICLE P - ICLE

SVM Coef. -0.02 0.00 0.2 -0.89*** 1.85*** -0.77*** -0.36* -0.28 0.06 -0.32 -0.6** 0.08 1.1*** -0.61** 0.04 -0.14 -0.12 -0.39* 0.10 0.72

DA 0.00 0.00 0.00 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00

BERT Coef. 0.14 0.00 0.27* 0.12 3.09*** -0.83*** -0.02 -1.34*** -0.93*** -0.67** -1.11*** 1.13*** 1.1*** -0.94*** -0.03 -0.36 -0.61*** 0.18 0.18 0.72

DA 0.00 0.01 0.00 0.00 0.06 0.01 0.00 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.00 0.01 0.00

ICLE P - ICLE S

SVM Coef. 0.12 0.00 0.18 -0.83*** 1.83*** -0.97*** -0.21 -0.33 0.13 -0.34 -0.45* 0.54* 0.93*** -0.77*** 0.03 -0.24 -0.21 -0.48** 0.10 0.72

DA 0.00 0.00 0.00 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

BERT Coef. -0.06 0.00 0.27* -0.01 3.0*** -0.78** 0.12 -0.95*** -0.8*** -0.8*** -0.82*** 1.12*** 0.89*** -1.01*** 0.08 -0.34 -0.68*** -0.16 0.16 0.71

DA 0.00 0.01 0.00 0.00 0.06 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.01 0.00

ICLE S - ICLE

SVM Coef. 0.25* 0.00 0.39** -0.95*** 1.52*** -0.65** -0.12 -0.29 -0.33 -0.55* -0.7*** -0.18 1.53*** -0.37 0.25 -0.01 -0.13 -0.44* 0.09 0.77

DA 0.00 0.00 0.00 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00

BERT Coef. 0.05 0.00 0.31* -0.06 3.3*** -0.18 -0.48** -1.37*** -1.34*** -0.89*** -1.27*** 0.87*** 1.22*** -0.55** -0.36 -0.35 -0.76*** 0.59* 0.18 0.74

DA 0.00 0.01 0.00 0.00 0.06 0.00 0.01 0.02 0.02 0.01 0.03 0.00 0.01 0.00 0.00 0.00 0.01 0.00

ICLE S - ICLE P

SVM Coef. -0.25* 0.00 0.23 -0.85*** 1.77*** -0.4 0.18 -0.83*** -0.86*** -0.43 -0.67*** 0.26 1.55*** -0.41* -0.81*** 0.3 0.13 -0.48** 0.12 0.72

DA 0.00 0.01 0.00 0.02 0.03 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00

BERT Coef. -0.21* 0.00 0.24 -0.15 3.37*** -0.25 -0.4** -0.97*** -1.0*** -1.0*** -0.83*** 0.65** 1.19*** -0.82*** -0.86*** -0.43* -0.91*** 0.77** 0.18 0.71

DA 0.00 0.01 0.00 0.00 0.06 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.02 0.00

Table 21: Results from regression model and DA for ICLE corpora
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