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It; Ĩt; Iss; it, iss investment expenditures in period t; percentage deviation from

steady state; steady state value; stationarized variable; steady state
of stationarized variable



xviii Notation and Symbols

Kt; K̃t;Kss; kt; kss capital stock available for production in t; percentage deviation from
steady state; steady state value; stationarized variable; steady state
of stationarized variable

Lt; L̃t;Lss hours of leisure in period t; percentage deviation from steady state;
steady state value

Pt final goods price
Πt the representative firm’s objective function/profits
Rt; R̃t;Rss real rental rate on capital in period t; percentage deviation from

steady state; steady state value
Rn

t nominal rental rate on capital in period t

U(·, ·) utility function
UC,t;UH,t shorthand notation for ∂U(Ct, Ht)/∂Ct; ∂U(Ct, Ht)/∂Ht

Wt; W̃t;Wss;wt;wss real wage in period t; percentage deviation from steady state; steady
state value; stationarized variable; steady state of stationarized
variable

W n
t nominal wage in period t
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%g short memory parameter of the growth rate gt

d long memory parameter of TFP’s transitory component (At)

Additional symbols of the Appendix to Chapter 4

A,B,D,G,M,N,P
Q,R,S,T,U,V,W

matrices of state transition equations or canonical forms possibly
appearing with certain indexes

bj, j = 1, 2, . . . coefficients of the infinite moving average representation in the long
memory model

e1; e2 first and second two-dimensional standard unit vector
λ1, . . . , λn generalized eigenvalues
Λ, P,D matrices involved in diagonalization during Klein’s solution method
Ĝ1, Ĝ2 matrices used during Klein’s solution method
Q,Z, S, T matrices of the generalized Schur decomposition possibly appearing

with certain indexes
n number of variables in the model
nb;nf number of backward-looking variables; number of forward-looking

variables
ns;nu number of stable eigenvalues; number of unstable eigenvalues
nz number of elements in the vector z
st auxiliary vector associated with the stable subsystem in Klein’s

solution method
ut auxiliary vector associated with the unstable subsystem in Klein’s

solution method
xt vector containing all model variables
xb

t ;x
f
t part of the vector x containing the backward-looking variables; part

of the vector x containing the forward-looking variables
zt vector containing all exogenous shock processes

Model Variables and Parameters of Chapter 5

Bt value of the risk-free asset at time t
ci

t; ĉi
t consumption of expert i; corresponding optimal value
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c̃j
t ; ˆ̃cj

t consumption of household j; corresponding optimal value
ηt; ηBS

t experts’ wealth share at time t; corresponding value in the bench-
mark model of Brunnermeier and Sannikov

I; J index set of experts; index set of households
ιi; ι̂it; ι expert i’s re-investment rate; corresponding optimal value; corre-

sponding aggregate value
Kt;KBS

t the economy’s aggregate capital stock at time t; corresponding value
in the benchmark model of Brunnermeier and Sannikov

ki
t expert i’s capital holdings at time t
K(t, s) weighting Kernel
µH,ε

η ηt drift of ηt

µq
t drift rate of the price of capital
Nt experts’ aggregate total wealth at time t
ni

t; n̂i
t expert i’s wealth at time t; corresponding optimal value

ñj
t ; ˆ̃nj

t household j’s wealth at time t; corresponding optimal value
πi

t; π̃
j
t amount of risk-free assets held by expert i; amount of risk-free assets

held by household j

qt; q price of capital; corresponding equilibrium value
RY,n;RBS

Y,n growth rate of the economy’s aggregate output; corresponding value
in the benchmark model of Brunnermeier and Sannikov

rt; rBS
t interest rate; corresponding value in the benchmark model of Brun-

nermeier and Sannikov
σH,ε

η ηt volatility of ηt

σq
t volatility rate of the price of capital
ϑi

t; ϑ̂i
t;ϑ expert i’s market price of risk vector; corresponding optimal value;

corresponding aggregate value
(Wt)t≥0 standard Brownian motion/Wiener process
xi

t; x̂i
t share of expert i’s wealth invested in capital; corresponding optimal

value
Yt;Y BS

t the economy’s aggregate output; corresponding value in the bench-
mark model of Brunnermeier and Sannikov

(ZH,ε
t )t≥0 approximation of a type II fractional Brownian motion

a productivity parameter of the AK production technology
δ depreciation rate
ε parameter measuring how close ZH,ε

t is to a type II fBm
H Hurst index
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k̄i
0;

¯̃kj
0 initial value of expert i’s capital holdings; initial value of household

j’s capital holdings
κ parameter of the investment adjustment cost function Φ(·)
¯̃nj

0 initial value of households j’s wealth
Φ(·) investment adjustment cost function
ϕH,ε

t drift component of ZH,ε
t

Ψ(·) inverse function of Φ′(·)
ρ agents’ time preference rate
σ volatility rate in the evolution of capital





Zusammenfassung

Long memory ist eine Eigenschaft stationärer stochastischer Prozesse oder Zeitreihen.
Die Autokorrelationsfunktion eines long memory Prozesses konvergiert so langsam gegen
null, dass die kumulierte Summe ihrer Absolutwerte divergiert. Long memory Prozesse
weisen daher eine sehr starke Abhängigkeitsstruktur auf. Traditionelle Zeitreihenmod-
elle wie ARMA Prozesse sind jedoch sogenannte short memory Prozesse, weil sie eine
sehr schnell abfallende Autokorrelationsfunktion besitzen und damit nur eine begrenzte
Abhängigkeitsstruktur zulassen.

Die vorliegende Dissertationsschrift ist durch die folgende Beobachtung motiviert. Seit
den Arbeiten von Mandelbrot in den 1960er Jahren, die die Forschung zu long memory
Prozessen initiiert haben, und den Arbeiten von Hosking, Granger und Joyeux zu Beginn
der 80er Jahre, die eine wichtige Klasse von long memory Prozessen entwickelt haben, gibt
es einerseits zunehmend empirische Evidenz, dass viele makroökonomische Zeitreihen gut
durch long memory Prozesse beschrieben werden können. Zudem gibt es einige theoretische
Erklärungsansätze, die das Vorliegen von long memory in (makro)ökonomischen Zeitreihen
begründen. Etwa kann die Aggregation von Mikro-Daten auf Makro-Daten long memory
in den Makro-Daten hervorrufen.

Andererseits bilden stochastische Modelle in der modernen Makroökonomik wichtige
Werkzeuge, um gesamtwirtschaftliche Zusammenhänge zu erklären, kontrafaktische Szenar-
ien zu analysieren oder Prognosen zu erstellen. Zwei Repräsentanten von solchen stochastis-
chen Modellen sind die dynamischen stochastischen allgemeinen Gleichgewichtsmodelle
(DSGE Modelle), die überwiegend in diskreter Zeit formuliert sind, sowie die überwiegend
in stetiger Zeit formulierten Makro-Finance Modelle. Beide Modellarten verwenden exogene
stochastische Prozesse zur Beschreibung von Dynamiken der Modellvariablen. Allerd-
ings werden zur Modellierung häufig exogene stochastische Prozesse unterstellt, die weit
überwiegend short memory Prozesse sind. Evident wird dies am Beispiel von DSGE

xxiii
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Modellen, in denen Technologieschocks, Geldpolitikschocks, Präferenzschocks und ähnliche
mit autoregressiven Prozessen erster Ordnung (ein sog. AR(1) Prozess) modelliert werden.
Da DSGE Modelle jedoch typischerweise mit Makro-Daten geschätzt werden, kann es
aber sinnvoll sein, zur Modellierung im Rahmen eines DSGE Modells einen long memory
Prozess anstelle eines short memory Prozesses zu verwenden.

Diese Dissertationsschrift möchte daher einen Beitrag zur Zusammenführung dieser beiden
Literaturstränge leisten, indem long memory Dynamiken in DSGE Makro-Finance Modellen
abgebildet werden.

Bevor in den Kapiteln 4 und 5 die Einführung von long memory in die zwei genannten
Modelltypen realisiert wird, werden in Kapitel 2 neben den mathematischen Rahmenbe-
dingungen die diskreten und stetigen long memory Prozesse eingeführt, die für die Model-
lierung herangezogen werden. Kapitel 3 gibt einen Überblick über long memory in der
ökonomischen und ökonometrischen Forschung und unterstreicht dabei die Relevanz von
long memory.

In Kapitel 4 wird dann ein Real Business Cycle (RBC) Modell betrachtet, welches durch
long memory im exogenen Technologieschock erweitert wird. Damit es sich um eine tatsäch-
liche Verallgemeinerung des bestehenden Modells handelt, wird der seither angenommene
exogene AR(1) Technologieschock durch einen exogenen long memory ARFIMA(1, d, 0)
Prozess ersetzt. Letzterer weist im Vergleich zum ersteren einen weiteren Parameter d
auf, der die Zerfallsrate der Autokorrelation angibt und daher die Stärke des long memory
im Prozess kontrolliert. Setzt man diesen auf null, erhält man das bekannte Standard-
modell (AR(1) Prozess) als Spezialfall zurück. Jedoch ist die Herleitung der Lösung
eines solchen Modells nicht trivial. Nimmt man anstelle eines AR(1) Prozesses einen
ARMA Prozess höherer Ordnung, kann dies recht einfach im Modell durch Erweiterung des
Zustandsvektors abgebildet werden. Bei ARFIMA Prozessen funktioniert dies nicht, da
diese keine endlich dimensionale Zustandsraumdarstellung haben. Somit steht im Rahmen
des Kapitels 4 zunächst die Frage der Lösbarkeit eines solchen DSGE Modells im Fokus. Es
stellt sich heraus, dass die Lösungsmethode von Klein (2000) auf solche Prozesse erweitert
werden kann. Dies eröffnet die Möglichkeit, die Reaktionen der Modellvariablen auf unter-
schiedliche Spezifikationen der exogenen Schocks anhand von Impuls-Reaktionsfunktionen
(IRF) zu analysieren. Dabei werden neben reinen short und long memory Prozessen auch
gemischte Prozesse betrachtet sowie sogenannte Trendschocks, die einen permanenten
Charakter aufweisen.

Es stellt sich heraus, dass sich die Modellreaktionen auf reine long memory Schocks nicht
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stark von reinen short memory AR(1) Schocks unterscheiden. Aus der Modellperspektive
erscheint dies zunächst überraschend, da man annehmen könnte, dass ein unendlich
lang lebender repräsentativer Agent mit rationalen Erwartungen seine intertemporale
Konsum- und Arbeitsangebotsentscheidung anders trifft, wenn er weiß, dass der Schock
lange in die Zukunft wirkt. Dass dies nicht so ist, kann damit erklärt werden, dass der
Haushalt im Modell seinen erwarteten Nutzen mit einer exponentiellen Rate diskontiert.
Somit beeinflussen die Schock-Auswirkungen in späteren Perioden seine Konsum- und
Arbeitsangebotsentscheidung unmittelbar nach Auftreten des Schocks nur in geringem
Maße. Allerdings zeigt sich auch, dass sich die Modellreaktionen im gemischten Fall
von short und long memory deutlich von den Reaktionen der jeweiligen reinen Fälle
unterscheidet. Es wird gezeigt, dass der Effekt des Schocks in der Periode nach seinem
Auftreten gerade der Summe der beiden memory Parameter entspricht. Somit wirkt sich
long memory nicht nur in der langen Frist auf das Modell aus, sondern kann auch in der
kurzen Frist die Modelldynamiken beeinflussen. Abschließend werden die Modellreaktionen
noch mit jenen auf einen permanenten Wachstumsschocks verglichen. Dabei zeigt sich,
dass sich die Modellreaktionen bei hohen short und long memory Parametern in der
kurzen Frist ähnlich zu jenen eines Trendshocks verhalten. In der langen Frist erreicht die
abgebildete Volkswirtschaft einen neuen gleichgewichtigen Wachstumspfad als Reaktion
auf den Wachstumsschock wohingegen sie im gemischten short und long memory Fall
langsam zu ihrem alten Gleichgewicht zurückkehrt.

In Kapitel 5 wird ein zeitstetiges Makro-Finance Modell ebenfalls so erweitert, dass es
long memory in den Wachstumsraten des gesamtwirtschaftlichen Outputs zulässt. Zur
Modellierung wird die im Referenzmodell unterstellte Brownsche Bewegung durch eine
Approximation einer gebrochenen Brownschen Bewegung ersetzt. Dadurch kann der
exogene Schock in einen Drift- und Volatilitätseffekt aufgespalten werden und das Modell
mit bestehenden Lösungsmethoden gelöst werden. Es zeigt sich, dass die Entwicklung der
Vermögensverteilung zwischen den zwei verschiedenen Agenten, die als Zustandsvariable in
dem Modell fungiert, lediglich vom Volatilitätseffekt abhängt. Insbesondere verlangsamt die
Präsenz von long memory die Konvergenz der Zustandsvariablen hin zu ihrem stationären
Wert. Zudem kann die Entwicklung des gesamtwirtschaftlichen Wohlstands ein Stück
weit von der Entwicklung der Vermögensverteilung und damit von der Entwicklung der
Zustandsvariablen abgekoppelt werden.

Zwar können beide betrachteten Modelle mit den allgemeineren long memory Dynamiken
gelöst werden, doch scheint der Preis dafür hoch. So gestaltet sich etwa die Schätzung
eines long memory DSGE Modells schwierig, da das zugehörige DSGE Modell keine endlich
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dimensionale Zustandsraumdarstellung mehr besitzt, die typischerweise zur Schätzung von
DSGE Modellen herangezogen wird. Im zeitstetigen Modell erlaubt zwar die skizzierte
Abkopplung der gesamtwirtschaftlichen Entwicklung von der Vermögensverteilung eine
differenziertere Modellierung, sie scheint aber der Modellstruktur dieser Modellklasse
entgegenzustehen. So ist es Kern dieser Modelle, dass alle Modellvariablen als Funktio-
nen der zugrundeliegenden Zustandsvariablen ausgedrückt werden können. Dies ist im
betrachteten Modell nicht mehr der Fall, sodass eine Verallgemeinerung auf komplexere
Modelle schwierig erscheint.



Abstract

Long memory refers to a property of a stationary stochastic process or a time series. More
specifically, a stationary time series is called a long memory process if its autocorrelation
function (ACF) decays very slowly to zero. Indeed, the convergence is so slow that the
sum of the ACF’s absolute values diverges. In contrast, traditional time series models such
as ARMA processes are so-called short memory processes as their ACF decays rapidly,
such that these processes permit only a limited dependency structure.

This dissertation is motivated by the following observation. In the 1960s, Mandelbrot
initiated research on long memory processes. After the work of Hosking, Granger, and
Joyeux in the early 1980s, who developed a class of long memory processes (the so-called
ARFIMA processes), there is increasing empirical evidence that many macroeconomic
time series can be well-described by long memory processes. Moreover, some theoretical
explanations exist for the presence of long memory in (macro)economic time series. For
instance, the aggregation of microdata can induce long memory in macro data.

On the other hand, stochastic models build a cornerstone in modern macroeconomics to
explain macroeconomic relationships, analyze counterfactual scenarios, or make forecasts.
Two representative types of stochastic models are the discrete-time dynamic stochastic
general equilibrium (DSGE) models and the continuous-time macro-financial models. Both
types of these models use exogenous stochastic processes to describe the dynamics of the
model’s variables. However, the exogenous stochastic processes often assumed for modeling
are predominantly short memory processes. This becomes evident for DSGE models, in
which technology shocks, monetary policy shocks, preference shocks, etc., are described by
first-order autoregressive processes (AR(1) processes). However, since DSGE models are
typically estimated with macro data, it may be appropriate to use a long memory process
instead of a short memory process in a DSGE model.
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This dissertation aims to contribute to the integration of these two strands of the literature
by introducing long memory dynamics in a DSGE and a macro-financial model.

Before Chapter 4 and Chapter 5 introduce long memory into these two types of models,
Chapter 2 introduces the mathematical framework and the discrete-time and continuous-
time long memory processes that will later be used for modeling purposes. Chapter 3
gives an overview of long memory in economic and econometric research and underlines
the relevance of long memory.

Chapter 4 considers a real business cycle (RBC) model extended by long memory in the
exogenous technology shock. In order to ensure that this is a true generalization of the
existing model, the class of so-called ARFIMA processes is used. More precisely, the
assumption of an exogenous AR(1) technology shock is replaced with an exogenous long
memory ARFIMA(1, d, 0) process. Compared to the former, the latter has an additional
parameter d that specifies the ACF’s decay rate and controls the strength of the long
memory in the process. Setting this parameter to zero returns the well-known standard
model (the AR(1) process) as a special case. However, the derivation of the solution of
such a model is not trivial. If one considers a higher-order ARMA process instead of
an AR(1) process, this can be done quite easily by expanding the model’s state space.
For ARFIMA processes, this procedure does not work since they do not have such a
finite-dimensional state space representation. Thus, Chapter 4 focuses on the solvability
of such a long memory DSGE model. It turns out that the solution method of Klein
(2000) can be extended to such models. This opens the possibility of analyzing the
responses of the model’s variables to different specifications of the exogenous shocks
using impulse-response functions (IRF). In addition, besides pure short and long memory
processes, mixed processes, as well as so-called trend shocks with a permanent character,
are considered and contrasted with each other.

It turns out that the model’s responses to pure long memory shocks do not differ qualita-
tively from pure short memory AR(1) shocks. At first glance, this seems surprising from
a model perspective. One might have expected an infinitely-lived representative agent
with rational expectations to account for the long-lasting shock effects in his intertemporal
consumption and labor supply decision. That this is not the case can be explained by the
fact that the household in the model discounts its expected utility at an exponential rate.
Thus, the shock effects in later periods have little impact on his consumption and labor
supply decisions immediately after the time of shock occurrence. However, it is also shown
that the model’s responses in the mixed short and long memory cases differ significantly
from the responses in the corresponding pure cases. It is shown that the effect of the
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shock in the period after its occurrence is equal to the sum of the two memory parameters.
Thus, long memory not only affects the model in the long term but can also affect model
dynamics in the short term. Finally, the model responses are compared with those of
a permanent growth shock. It is illustrated that the model’s responses to shocks with
high short and long memory parameters are similar to those of a trend shock in the short
run. In the long run, the economy reaches a new balanced growth path in response to the
growth shock, whereas, in the mixed short and long memory case, it slowly returns to its
old steady state.

In Chapter 5, a continuous-time macro-financial model is extended to allow for long
memory in the economy’s aggregate output growth rates. For modeling purposes, the
Brownian motion assumed in the reference model is replaced with an approximation of a
fractional Brownian motion. This replacement allows the exogenous shock to be split into
a drift and volatility effect and the model to be solved using existing solution methods.
It turns out that the evolution of the wealth distribution between the two agents in the
model, which serves as a state variable, depends only on the volatility effect. In particular,
the presence of long memory slows down the convergence of the state variable toward its
steady state value. Moreover, the evolution of the aggregate wealth can be decoupled to
some extent from the evolution of the wealth distribution and, thus, from the evolution of
the state variable.

While both models considered in this thesis can be solved given the more general long
memory dynamics, the price for introducing long memory this way seems high. For
example, estimating a long memory DSGE model is difficult because the associated DSGE
model no longer has a finite-dimensional state space representation, which is typically used
for estimating DSGE models. In the continuous-time model, the outlined decoupling of an
economy’s total wealth from wealth distribution allows for more sophisticated modeling.
However, this feature seems to contradict the general model structure of this kind of
models. Generally, in this model category, all variables can be expressed as functions of
the underlying state variables. This no longer holds true in the model under consideration,
so generalizations to more complex models appear difficult.





1
Introduction

Long memory refers to a property of a stationary stochastic process or a time series. More
specifically, a stationary time series is called long memory process if its autocorrelation
function (ACF) decays very slowly to zero. Indeed, the convergence is so slow that the
sum of the ACF’s absolute values diverges.1 Conversely, stationary stochastic processes
whose ACF decays rapidly such that the ACF’s absolute values converge are called short
memory processes. An example of the ACF of a long and a short memory process can be
seen in Panel a) of Figure 1.1.2 The first-order correlation is the same for both processes.
However, the higher-order autocorrelations decay much faster for the short memory process
(dark-blue line) than for the long memory process (light-blue line).

That long memory processes can contribute to explaining empirical puzzles left unexplained
by short memory processes was illustrated by Mandelbrot and Wallis (1968/2002). The
empirical phenomenon Mandelbrot was interested in dates back to the work of Hurst
in the early 1950s. Hurst was working on the optimal size of a water reservoir for the
Nile River. A reservoir is optimal if it is the smallest reservoir that satisfies the following
three properties: the reservoir’s outflow is uniform, the reservoir’s level at the end of a
period is as high as at the beginning of the period, and the reservoir never floods.3 Let
R(n) be the optimal capacity of the reservoir for n periods and S(n) be the standard
deviation of n subsequent reservoir outflows. Hurst observed that the rescaled adjusted
1 More precisely, if ρX is the ACF of a stationary stochastic process X, then X is called a long memory

process if
∑n

k=0 |ρX(k)| → ∞, n → ∞. A precise definition of the ACF is given in Chapter 2.
2 Figure 1.1 was computed using Matlab code written by the author.
3 See Mandelbrot and Wallis (1968/2002, p. 239).
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a) Autocorrelation function b) Normalized spectral density

Figure 1.1: ACF and normalized spectral density of a short and a long memory process. Panel a)
shows the ACF of a short memory process (AR(1) process with % = 0.75) and a long memory process
(ARFIMA(0, d, 0) process with d = 0.43) and Panel b) the corresponding normalized spectral densities. In
order to equalize the area under the spectral density, normalization is performed by dividing the spectral

density by the process’s variance. Note the different scaling of the axes.

range statistic R(n)/S(n) is proportional to nH for large n and 0.5 < H < 1.4 Strikingly,
this behavior holds not only for river statistics or rainfalls but also for the size of tree
rings, the number of sunspots, and wheat prices.5 These observations, also known as the
“Hurst phenomenon”, are remarkable since independent normally distributed variables
would have implied that H = 1/2.6

Inspired by the empirical works of Hurst, Mandelbrot and Wallis (1968/2002) introduced
in 1968 the colorful name “Joseph effect” for stochastic processes whose corresponding
R(n)/S(n) statistic grows as CnH with a constant C and H ∈ (0, 1) with H 6= 1/2.7 His
intention for naming the Joseph effect was derived from the biblical story of Joseph, son
of Jacob. More precisely, Genesis 41, 29-30 states “Seven years of great abundance are
coming throughout the land of Egypt, but seven years of famine will follow them.”8 In
the context of water resources management, where Mandelbrot introduced his concepts,
the Joseph effect states “that a long period of unusually high or low precipitation can be
extremely long.”9 In the end, the Joseph effect describes that periods of precipitation and
droughts do not alternate regularly; instead, several wet years are followed by several dry

4 See Hurst (1951, Figure 4 on p. 787). Hurst uses the variable K instead of H.
5 See Hurst (1951, Figure 4 on p. 787).
6 See Hurst (1956, p. 14).
7 See Mandelbrot and Wallis (1968/2002, p. 246).
8 This passage was taken from the new international version of the Bible, see Biblica (2021), URL in

list of references.
9 Mandelbrot and Wallis (1968/2002, p. 236).
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years. Clearly, an optimal water reservoir must have a greater capacity if the rainfall data
shows the Joseph effect.10 Processes showing the Joseph effect are characterized by local
trends and cycles, i.e., by considering a part of a time series, trends and periodic cycles
appear. However, when looking at the whole time series, the periodicity and the trends
disappear from the series, and the process shows non-periodic cycles of varying lengths.
In addition, periods where the process is above (or below) the mean appear to be quite
long, thereby resembling the mentioned seven good and seven bad years mentioned in the
biblical story of Joseph.11

In 1968, Mandelbrot and van Ness (1968) introduced a continuous-time stochastic process
called fractional Brownian motion (fBm) that depends on a parameter h ∈ (0, 1). Fractional
Brownian motion is a generalization to the ordinary Brownian motion, as the latter can
be recovered from fBm by setting h = 1/2.12 The discrete-time increment process of fBm
(also depending on h) is called fractional Gaussian noise (fGn). It turned out that fGn
was a stationary Gaussian stochastic process that could replicate Hurst’s findings with
H = h if h > 1/2.13 This was the first time a stationary Gaussian process was presented
that was able to explain Hurst’s phenomenon.14 Indeed, it can be shown that fGn is a
long memory process if h > 1/2.15

A possible reason why a stochastic process shows the Joseph effect is strong dependencies
or autocorrelation in the process. A strong degree of autocorrelation implies a tendency in
the process to keep its direction, i.e., if a process starts showing an upward movement,
there is a tendency for keeping this movement for several periods (the periods of great
abundance). Similarly, if the process shows a downward direction, there is a tendency to
keep this movement for some time (the periods of famine). In contrast, a process’s path
appears to be rather jagged if there are negative autocorrelations since positive movements
tend to alternate frequently with negative movements.16 That the autocorrelations of a
stochastic process must be strong to ensure that the process shows the Joseph effect was
already mentioned by Mandelbrot and Wallis (1968/2002, p. 246). Later in 1976, it was
shown by Siddiqui (1976) that all processes with a summable ACF have an R/S statistic
that scales as n1/2.17 Consequently, all short memory processes fail to show Mandelbrot’s
Joseph effect. In order to replicate Hurst’s empirical findings, one has to resort to long
10 See Mandelbrot and Wallis (1968/2002, p. 246).
11 See Mandelbrot (1972, pp. 260 and 275) and Beran (1994, p. 33).
12 See Lemma 2.5.3 below.
13 See Mandelbrot and Wallis (1968/2002, p. 250).
14 See Graves et al. (2017, p. 9).
15 See Lemma 2.5.3 below.
16 See Hassler (2019, p. 25).
17 See Siddiqui (1976, p. 1274).
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memory processes. Therefore, long memory processes seemed to be an important class of
stationary processes as they were able to replicate empirical phenomena that were left
unexplained by short memory processes.18

Long memory may not only be accessible through the ACF of a stationary process but
also through its spectral density. For stationary processes, the spectral density at the
zero frequency corresponds to the sum of the ACF.19 Consequently, since long memory is
associated with a non-summable ACF, one would expect the spectral density of a long
memory process to blow up as the frequency tends to zero. This can be seen in Panel b)
of Figure 1.1, where one can see that the spectral density of a short memory process is
bounded and finite at λ = 0 while it is unbounded for a long memory process.

It has already been noted by Adelman (1965) and Granger (1966) that such behavior is
of great interest in economics. Adelman (1965) provided evidence that many economic
variables have a spectral density blowing up at the zero frequency and Granger (1966)
described such behavior as the “typical spectral shape of an economic variable”.20 More
precisely, the typical spectral density is a smooth function monotonically decreasing with
increasing frequency and blowing up for frequencies converging to zero. Following Granger,
many economic variables show this typical spectral shape after removing a time trend and
seasonal components.21 Regarding business cycles, Granger (1966) restates the typical
spectral shape as “events which affect the economy for a long period are more important
than those which affect it only for a short time”22. It was these early works in economics
that led to the recognition that long memory is also present in many economic time series.

Mandelbrot proposed his stationary fractional Gaussian noise process as a suitable model
for replicating Hurst’s phenomenon. However, a drawback of Mandelbrot’s single parameter
fGn process was that the parameter h can only control for the asymptotic properties of
the ACF. More precisely, the parameter h controls how slowly the ACF converges to zero,
whereas it is impossible to simultaneously match the ACF at small lags. This is in contrast
to the rich-parameter autoregressive moving average (ARMA) models that allow, with their
autoregressive and moving average parameters, for shaping the ACF at small lags.23 In the
18 Some authors do not distinguish between long memory or long-range dependence on the one hand

and the Joseph effect on the other and use both terms synonymously, see, e.g., Cutland et al. (1995,
p. 330) or Graves et al. (2017, p. 10). It should, however, be noted that a long memory process needs
to be stationary. At the same time, no stationarity requirements have to be fulfilled by a process
given the definition in terms of the R/S statistic, see Mandelbrot (1972, p. 267).

19 See Section 2.1.4 for more details.
20 Granger (1966, p. 150).
21 See Granger (1966, p. 150).
22 Granger (1966, Footnote 7 on p. 155).
23 See Siddiqui (1976, p. 1275).
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end, they remain short memory processes and, thus, fail to replicate Hurst’s phenomenon.
The limited flexibility of Mandelbrot’s fBm and fGn might be why they had limited success
in economics. However, a breakthrough for long memory in economics dates back to
Granger and Joyeux (1980/2001) and Hosking (1981). Both propose a generalization of
ARMA processes to make them long memory processes. This generalization refers to
the class of autoregressive fractionally integrated moving average (ARFIMA) processes.
ARFIMA processes are formulated in discrete time and have an additional parameter
d governing the long memory properties of the process. More specifically, if d = 0, the
corresponding ARFIMA process coincides with the standard ARMA process showing short
memory, while for 0 < d < 1/2, the ARFIMA process shows long memory.24 Allowing for
additional autoregressive and moving average parameters that control for the short-run
dynamics is a major advantage of ARMA models over Mandelbrot’s single-parameter fGn
process. Thanks to this flexibility in reflecting both the long- and short-run properties,
ARFIMA models became a standard model for describing long memory dynamics, thereby
asserting against Mandelbrot’s fGn and fBm.

However, things look different in finance, where models are often formulated in continuous
time. In 1973, the seminal works of Black and Scholes (1973) and Merton (1973) propose a
continuous-time stochastic framework, where the price of a stock is modeled as a geometric
Brownian motion.25 These works paved the way for modern finance, where stochastic
differential equations are extensively used to model interest rates, stock prices (and their
volatility), and other financial assets. Many of these finance models implicitly assume that
markets are efficient, i.e., prices in such markets reflect all the available information. If new
information is revealed, it is arbitraged away instantaneously.26 In a Black-Scholes setting,
this is equivalent to the existence of an “equivalent martingale measure” under which the
discounted stock price becomes a martingale.27 In the end, these financial markets are
assumed to be free of arbitrage in order to establish a rational option pricing theory.28

Although the modern finance theory went beyond the initial assumption of a geometric
Brownian motion made by Black and Scholes (1973) and Merton (1973), it still makes use
of martingale methods in their models.29

The original Black-Scholes model implies that stock returns are stochastically independent

24 See Section 2.4 for further details.
25 See Cutland et al. (1995, p. 328).
26 See Cutland et al. (1995, p. 338) and Mandelbrot (1971, p. 225).
27 This is the “Fundamental Theorem of Asset Pricing”, see, e.g., Lamberton and Lapeyre (2008, p. 20).
28 See Merton (1973, p. 143).
29 An early critical voice was Maheswaran and Sims (1993, p. 306) who state that the focus on

semi-martingales in finance is a substantive restriction, not just a regularity condition.
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(and thus uncorrelated).30 Since this contradicts empirical findings, some authors propose
to replace the Brownian motion in the Black-Scholes setting with Mandelbrot and van
Ness’s fractional Brownian motion.31 In such a setting, stock market returns have long
memory and, consequently, are positively autocorrelated, a fact for which there appears
to be empirical evidence. However, that long memory and the absence of arbitrage and
the martingale methods seem incompatible was already suggested by Mandelbrot (1971,
pp. 227f.) and later by Maheswaran and Sims (1993, p. 306) and Rogers (1997, p.
101). Nevertheless, the financial mathematics literature in the 2000s proposed fractional
Brownian motion as a suitable process for modeling asset prices in a continuous-time
stochastic framework. Since fBm is incompatible with the traditional martingale methods
and the Itô calculus, these approaches came along with other difficulties that may have
prevented them from becoming widely applied.32 More recent approaches suggest the use
of stochastic processes that combine long memory and the applicability of martingale
methods in order to make long memory compatible with modern finance theory. One such
suggestion followed in this thesis is based on Dung (2013), who uses an approximation of
fractional Brownian motion as a source of uncertainty in his continuous-time model.

Not surprisingly, ARFIMA models and long memory have become popular in economics
and econometrics since the work of Granger and Joyeux (1980/2001) and Hosking (1981).
There is a large and still growing economic literature dealing with long memory. This
economic literature on long memory can roughly be grouped into three strands, where
the distinction between the first and second strands is not clear-cut.33 The first strand
deals with developing new or evaluating existing statistical or econometric methods for
detecting, estimating, or testing long memory in time series. The second strand applies
the techniques developed by the first strand in order to find evidence for or against long
memory in various data sets. The third strand of the literature works on theoretical
explanations for why long memory is likely to occur in an economic time series. The
early work of Granger (1980) can be assigned to the third strand. Granger (1980) showed
that long memory is likely to occur in aggregate time series, which frequently occur in
macroeconomics. More precisely, he showed that the sum of a large number of individual
short memory processes could, under specific circumstances, show long memory. His
work made it plausible why the time series of an economy’s output or inflation exhibit
long memory. The former can be viewed as the sum of the output of many individual

30 See Cutland et al. (1995).
31 See Section 5.1 for a discussion of this literature.
32 A detailed consideration of the drawbacks of these suggestions can be found at the beginning of

Chapter 5.
33 All of these strands are considered in detail in Chapter 3 of this thesis.
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firms, while an economy’s price level appears to be an aggregate of the prices of different
goods. As illustrated so far, there is an extensive history of long memory in economics
and vast and still growing literature dealing with long memory in economics and finance.
Additionally, there seems to be evidence why long memory processes should primarily be
used for modeling aggregate (macroeconomic) relationships.

On the other hand, in recent years, stochastic models have become a cornerstone in modern
macroeconomics. Two prominent types of models are the discrete-time dynamic stochastic
general equilibrium (DSGE) models and the stochastic continuous-time macro-financial
models. DSGE models have become popular not only among researchers but also in policy
institutions. Essentially, DSGE models are systems of stochastic difference equations
involving exogenous stochastic processes to explain patterns and dependence structures in
the data; they try to explain how shocks affect economies. Additionally, continuous-time
macro-financial models try to merge the two strands of economics and finance. They may
be seen as a continuation of traditional finance theory in a macroeconomic context.

Interestingly, the most common exogenous shock processes involved in DSGE models are
assumed to be small-order ARMA processes having short memory. Additionally, to a
large extent, the choice of the exogenous processes is arbitrary, and most models involve
simple first-order autoregressive processes (AR(1) processes).34 DSGE models require
these exogenous processes. Otherwise, the model would not generate the persistence or
degree of autocorrelation in the data.35 On the other hand, most models assigned to
the continuous-time macro-financial literature build on the Itô calculus and stochastic
differential equations and the Brownian motion as their source of uncertainty in their
models.36

Overall, there appear to be two opposite strands in the literature. The first (subdivided
into three sub-strands, as already mentioned) deals with various aspects of long memory
in an economic and econometric context. The second strand uses exogenous short memory
stochastic processes in their models to gain insights into the economy’s operating principles.
So, why do economic modelers not fall back on long memory processes when they set up
their stochastic models?

Clearly, this thesis cannot answer this question. Instead, it tries to contribute to integrating
both strands by considering long memory processes in the context of stochastic macroeco-
34 See, e.g., Schorfheide (2011, p. 22).
35 See, e.g., Schorfheide (2011, p. 12).
36 Of course, there are finance models involving other stochastic sources such as Poisson processes or

Lévy processes. However, both types of processes share the property of stochastically independent
increments.
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nomic models. More specifically, this thesis focuses on a real business cycle (RBC) DSGE
model and a simplified continuous-time macro-financial model. The following research
questions are addressed.

The first question addresses the theoretical aspects of whether and how a long memory
process can be involved in these two models. Does a DSGE model remain solvable given
this richer exogenous stochastic dynamics? How can it be solved? If a DSGE model stays
solvable, given a long memory process, is its solution stable? Unsurprisingly, the first
question can be affirmed: DSGE models remain solvable. Consequently, the implicated
research question addresses the effects on the model more deeply. More precisely, does the
model economy respond differently to a shock exhibiting long memory than to a shock
exhibiting short memory? If so, can these differences be quantified? and how can they be
quantified? Given the infinitely-lived representative agent in the model, will he make a
different consumption and labor supply decision when faced with a long memory shock
than when faced with a short memory shock?

Similar questions arise in the context of the continuous-time macro-financial model. In
contrast to DSGE models, these models try to capture the whole dynamics of a model’s
variable instead of focusing on the model’s dynamics in a vicinity of a steady state.
Consequently, the question to be addressed in the continuous-time model is whether and
how the endogenous model dynamics are affected by long memory.

These questions regarding the DSGE model are tackled in Chapter 4, where a discrete-time
RBC-DSGE model that builds the framework for the proposed long memory approach is
set up. Although medium to large-scale DSGE models incorporating dozens of exogenous
shocks and parameters have been built and analyzed in the literature nowadays, this thesis
focuses on a simpler structure with a transitory technology shock and a technology growth
shock as the only sources of uncertainty. Since most modern medium- and large-scale
DSGE models are built on such a core RBC model, it seems reasonable to focus on this
core as a first step. The focus on an RBC model is owed to the first research question;
since it is apriori not clear whether and how a DSGE model can be solved, given this
richer long memory dynamics, it seems reasonable to reduce the model-implied intricacy.
To illustrate the different shock impacts on the model economy, the transitory technology
shock considered in this thesis is an ARFIMA(1, d, 0) process. This process has two
parameters % and d. If d = 0 one can recover the AR(1) setup frequently used in the
literature. For 0 < d < 1/2, the process shows long memory. This specification allows
distinguishing three cases: The standard case of pure short memory (% > 0, d = 0), the
case of pure long memory (% = 0, 0 < d < 1/2), and the case of short and long memory
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(% > 0, 0 < d < 1/2). Additionally, the impacts of these shocks’ specifications on the
economy are compared to a growth shock in technology that pushes the economy on a
higher balanced growth path. The growth shock has a permanent character, while both,
the short and long memory shocks, have a transitory character as their impacts finally
die out. Considering all these cases enables a direct comparison between the effects of
these shock specifications. Moreover, since the original case of an AR(1) process is nested
within these processes, the direct implications of long memory can be revealed.

The continuous-time model is treated in Chapter 5. Since fBm is inconsistent with the
martingale framework of the modern finance theory from which the continuous-time
macro-financial literature borrows extensively, the path for introducing long memory in
such a model seems not as straightforward as in the discrete-time model. Consequently,
the approach followed in this thesis is inspired by a stochastic process that can be regarded
as an approximation of fBm while keeping the martingale methods applicable. The model
into which this process is plugged in comes from Brunnermeier and Sannikov (2016, Section
2 on pp. 1504ff.). Similar to the discrete-time DSGE model, the structure of the model is
relatively simple to abstract from model-implied complexities. However the results derived
in Chapter 5 indicate that a generalization to more sophisticated models appears difficult.

By answering the research questions and following the sketched research agenda, this thesis
contributes in various ways to the existing literature. A growing literature questions the
somewhat restrictive assumptions regarding the exogenous stochastic processes made by
the DSGE literature. This literature proposes more sophisticated exogenous processes
(mostly higher-order ARMA processes or their vector-valued counterparts) in the context
of DSGE models.37 To the best of the author’s knowledge, non of these deal with the
possibility of long memory in the exogenous processes. Therefore, this thesis represents the
first step towards fractionally integrated DSGE models that allow for richer persistence
dynamics than the already discussed ones. More precisely, it is shown that such a long
memory DSGE model is indeed solvable, and the model’s solution is derived with the
widely applied solution method of Klein (2000). Another contribution is given by the
considerations of the continuous-time macro-financial model: This thesis aims to combine
the above-mentioned developments in the financial mathematics literature, which allows
for long memory in the exogenous dynamics, and the continuous-time macro-financial
literature, which frequently deals with Brownian or Poisson uncertainty, both associated
with stochastic independence.

The structure of the thesis closely follows the line of reasoning given by the research
37 This literature is considered in more detail in Section 4.3.
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questions mentioned above. Chapter 2 is an extended introduction to long memory.
More precisely, Section 2.1 summarizes the mathematical preliminaries necessary for the
following analysis. There, the traditional short memory ARMA processes are also treated
briefly, focusing on the AR(1) process, which is used later in Chapter 4 as the reference
technology shock in the DSGE model. The aim of Section 2.2 is to go deeper into the
works of Mandelbrot and the Hurst phenomenon. This section illustrates that ARMA
processes cannot replicate the Joseph effect. The link between Hurst’s findings and the
non-summability of a stationary process’s ACF is also carved out in more detail. It
will turn out that the R/S statistic mentioned at the beginning of this introduction has
some disadvantageous properties. Therefore, Section 2.3 introduces the definition of long
memory more rigorously. This section also distinguishes between the notions of “memory”
and “persistence”. At the beginning of Section 2.4, it is outlined that all ARMA processes
are short memory processes, thereby calling for more sophisticated time series models
to replicate long memory. Consequently, Section 2.4 introduces the class of ARFIMA
processes. The last section of Chapter 2, Section 2.5, bridges Mandelbrot’s continuous-time
fractional Brownian motion and discrete-time ARFIMA processes. The considerations of
this section will then be caught up again in Chapter 5.

Chapter 3 discusses relevant literature dealing with long memory in economics and
econometrics. The structure of Chapter 3 corresponds to the three already mentioned
strands of the economic long memory literature. Consequently, Section 3.1 (the first
strand) provides a short review of existing estimation techniques. Additionally, some
difficulties in accessing long memory from an empirical perspective are illustrated. The
following section, Section 3.2, summarizes empirical evidence of long memory. The focus
lies on the gross domestic product (GDP) and related time series (such as GDP growth
rates or the gross national product etc.) as GDP appears to be the major variable in the
RBC model of Chapter 4. Nevertheless, three additional examples of long memory in
economic time series and their theoretical implications are given in this section. Section 3.3
finally reviews some theoretical approaches for generating long memory discussed in the
literature. Overall, the aim of Chapter 3 is to illustrate that long memory is a relevant
topic from an economic perspective and still an active research field to which this thesis
aims to contribute.

Chapter 4 deals with the RBC-DSGE model in more detail. Section 4.1 outlines the struc-
ture of the model and specifies production functions, utility functions, and the exogenous
technology shocks. Section 4.2 treats DSGE models from a theoretical perspective. This
section shows that if the exogenous processes, plugged into a DSGE model, are short
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memory processes, so is the model’s solution. This result justifies the approach followed
in this thesis by introducing long memory via an exogenous stochastic process into a
DSGE model. Additionally, this section outlines the concept of stability in the context
of DSGE models. Section 4.3 provides additional justification for the approach followed
in this thesis by summarizing the literature that also questions the AR(1) assumption of
the DSGE literature. The method for solving the long memory DSGE model is given in
Appendix B.5 and is not discussed in the main text to maintain readability. Section 4.4
analyzes the model responses to the different specifications of the exogenous processes.38

Chapter 5 considers the continuous-time model. Section 5.1 outlines the difficulties when
introducing fBm into stochastic differential equations and briefly discusses some proposed
approaches in the literature to overcome these difficulties. This section finally defines the
shock-generating process for the model showing long memory. Section 5.2 outlines the
model setup and Section 5.3 derives the model’s solution. Section 5.4 discusses the results
and the implications for the benchmark model in the presence of long memory.

Chapter 6 concludes and points to some topics for future research.

38 The reader may wonder why the author decided to treat two rather theoretical sections (Section 4.2
and Section 4.3) between the introduction of the model and the presentation of its results. In the
author’s opinion, these two sections are better accessed by the reader if they have a concrete model
structure in mind when reading them.





2
Long Memory, the Joseph Effect and the Hurst
Phenomenon

As the thesis aims to investigate long memory processes in economic models, this chap-
ter provides the necessary methodological foundations for the model of Chapter 4 and
Chapter 5. Section 2.1 outlines briefly the mathematical concepts needed for the consid-
erations of the following sections. After a brief introduction to stochastic processes and
their properties such as stationarity and persistence, a closer look is taken at so-called
autoregressive moving average (ARMA) processes that play a significant role in dynamic
stochastic general equilibrium (DSGE) models such as those considered in Chapter 4.

Section 2.2 is a short historical review of Mandelbrot’s Joseph effect, which is nowadays
referred to as long memory or long-range dependence. It is also shown that traditional
time series models, such as ARMA processes, fail to replicate the Joseph effect.

The aim of Section 2.3 is to introduce a formal definition of long memory. Additionally,
Section 2.4 focuses on a class of discrete-time long memory models, so-called autoregressive
fractionally integrated moving average (ARFIMA) processes, which generalize ARMA
processes. Furthermore, a closer look is taken at the ARFIMA(1, d, 0) process which is at
the core of Chapter 4’s DSGE model.

Section 2.5 introduces a continuous-time stochastic long memory process called fractional
Brownian motion (fBm) and illustrates some relations to ARFIMA processes. The
theoretical considerations of Section 2.5 are picked up again in the continuous-time

13
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macro-financial model of Chapter 5. The accompanying appendix, Appendix A, contains
additional material such as the proofs of the lemmas given in the text (Appendix A.1),
some details on the definition of the gamma and the Gaussian hypergeometric function
(Appendix A.2) and some moments of the ARFIMA(1, d, 0) process (Appendix A.3).

2.1 Some Mathematical Preliminaries

2.1.1 Stochastic Processes, Moments and Stationarity

As mentioned in the introduction, long memory refers to a property of time series or
stochastic processes. Therefore, the author briefly reviews the key mathematical concepts
necessary for the following. A formal definition of a random variable and a stochastic
process is as follows.39

Definition 2.1.1
Let (Ω,F ,P) be a probability space.

i) Then, an F-measurable function Y : Ω → R is called random variable.

ii) Let T be an index set. A real-valued stochastic process X = (Xt)t∈T is a family
of random variables defined on the same probability space (Ω,F ,P) and assuming
values in R.

o

The index set T in the former definition is assumed to be a subset of R through the whole
thesis and can be either a continuum, e.g., the non-negative real line T = [0,∞) or discrete,
e.g., T = N or T = Z.40

The definition of a stochastic process offers two ways of interpretation. First, by fixing
a certain instant of time, say t0, Xt0(·) defines a function mapping from Ω to R, i.e., for
each instant of time, the process is a random variable. Second, by fixing a specific random
event ω. The function t → Xt(ω) is called the path of the stochastic process, i.e., for
different values of ω, one obtains different functions of time, yielding the interpretation of
a stochastic process as a random function.41

Probabilistic determinants such as distributions, moments, or the degree of dependence
are essential to describe the properties of a stochastic process. An important subgroup of
39 See, e.g., Øksendal (2013, p.8 and Definition 2.1.4 on p. 10).
40 Note that the previous definition is restricted to the univariate case that is assumed throughout the

thesis. Generalizations to higher dimensions are mentioned in the text if they become necessary.
41 See Øksendal (2013, pp. 10f.) and Brockwell and Davis (1987, Definition 1.2.2 on p. 9).
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stochastic processes is given by (strictly) stationary processes that are characterized by a
time-invariant distribution, i.e., Xt+h has the same distribution as Xt for all t, h ∈ T.42

In the context of time series analysis, the consistency is not assumed to hold for the
whole distribution but for different moments, leading to the notion of weak stationarity or
covariance stationarity. Before this concept is outlined in more detail, some key moments
of a random variable and stochastic processes are repeated briefly.

In the following, the (unconditional) expected value of a random variable X is denoted by
E(X).43

Assume that E(|X|2) < ∞, then the variance of X is defined as var(X) := E((E(X) −
X)2) = E(X2) − (E(X)2). If Y is another random variable defined on the same probability
space as X with E(|Y |2) < ∞, then the covariance between X and Y is defined by
cov(X,Y ) = E((X − E(X))(Y − E(Y ))) = E(XY ) − E(X)E(Y ).44

Definition 2.1.2
Let (Xt)t∈T be a real-valued stochastic process as defined in Definition 2.1.1. Then (Xt)t∈T

is called (covariance) stationary, if 45

i) E(|Xt|2) < ∞ for all t ∈ T.

ii) E(Xt) ≡ µ ∈ R.

iii) the autocovariance function γX(t, s) : T × T → R, γX(t, s) = cov(Xt, Xs), satisfies
γX(s+ h, t+ h) = γX(s, t), for all s, h, t ∈ T.

o

It follows immediately from the previous definition that covariance stationary processes
have a constant expected value and variance at each instance of time. However, no inference
can be made about higher moments. Strictly stationary processes have time-consistent
distributions that pin down all moments, i.e., strict stationarity implies covariance station-
arity if E(|Xt|2)) < ∞.46 In the following, a stochastic process is said to be stationary if it
is covariance stationary.47

To describe the dependence structure of a stochastic process, the autocorrelation function
42 See, e.g., Klenke (2013, Definition 20.1 on p. 449).
43 Here, it is implicitly assumed that the expected value of X exists. A necessary condition for this is

E(|X|) < ∞, see, e.g., Klenke (2013, Definition 4.7 on p. 90 and Definition 5.1 on pp. 103f.).
44 See, e.g., Klenke (2013, Definition 5.1 on pp. 103f.).
45 This definition is adapted from Brockwell and Davis (1987, Definition 1.3.2 on p. 12).
46 See Brockwell and Davis (1987, p. 13).
47 This is a usual convention in the time series literature, see, e.g., Brockwell and Davis (1987, p. 12)

and Hamilton (1994, p. 46).
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(ACF), which is now formally defined, becomes essential.

Definition 2.1.3
Let (Xt)t∈T be a real-valued stationary stochastic process. The autocorrelation function of
X is defined as follows 48

ρX : T → [−1, 1], ρX(k) = γX(k)
γX(0) .

o

The ACF measures how strongly the process is correlated with a lagged version of itself.49

If the process shows positive autocorrelations, subsequent observations tend to lie on the
same side of the mean, i.e., a positive k-th order ACF indicates the observation at time t
to lie above the mean if the observation at t− k already lied above the mean.50 If negative
autocorrelations are present, the affected observations tend to lie on different sides of the
mean, implying a more jagged path.51

2.1.2 Wold Decomposition and Impulse-Response Functions

This section focuses on stationary discrete-time (i.e., T = Z) stochastic processes. By the
well-known Wold decomposition, such processes can be uniquely decomposed in a purely
deterministic and a purely non-deterministic part. To be more precise, let (Yt)t∈Z be a
stationary stochastic process, then it yields52

Yt =
∞∑

k=0
ψkεt−k + Vt (2.1)

with a white noise process (εt)t∈Z, ψ0 = 1 and
∞∑

k=0
ψ2

k < ∞.53

The process (Vt)t∈Z is called deterministic as it is “perfectly predictable”54 from past values
of Y .55 It is important to note that deterministic in this sense does not mean that the
48 From Definition 2.1.2, it follows that cov(Xs, Xt) = γX(s, t) = γX(s− t, 0). Thus, it is convenient to

write γX(k) = cov(Xt, Xt+k), for k ∈ T. See again Brockwell and Davis (1987, Remark 2 and 3 on p.
12).

49 See Hamilton (1994, p. 45).
50 See Brockwell and Davis (1987, Remark 7 on p. 29).
51 See Brockwell and Davis (1987, Remark 7 on p. 29).
52 See Brockwell and Davis (1987, Theorem 5.7.1 on pp. 180f.).
53 According to Definition 3.1.1 in Brockwell and Davis (1987, p. 78), (εt)t∈Z is called white noise if

E(εt) ≡ 0, var(εt) ≡ σ2
ε and γε(k) = 0 for k > 0. Additionally, it is often assumed that (εt)t∈Z is a

sequence of Gaussian independent and identically distributed (i.i.d.) random variables. In such a
case, the process is called Gaussian white noise.

54 Brockwell and Davis (1987, p. 180).
55 See also Hamilton (1994, Proposition 4.1 on p. 109).
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process is not random. It can be shown that the processes ε and V are uncorrelated and
that E(Xt) = E(Vt) for all t ∈ Z.56 Within the scope of this thesis, however, processes with
at most a constant value of Vt ≡ V are relevant. Then the process Y can be transformed
to have zero-mean by defining Xt := Yt − V . Eventually, (2.1) becomes

Xt =
∞∑

k=0
ψkεt−k. (2.2)

Processes satisfying (2.2) are called infinite moving average processes.57As will turn out
in the following sections, the discrete-time processes the reader is concerned with can be
represented as an infinite moving average process. Thus, at this stage, it is justified to
describe and analyze such processes in more detail.58

The infinite moving average representation reveals an important interpretation. By taking
the derivative of (2.2) with respect to εt, one obtains

∂Xt+j

∂εt

= ∂

∂εt

∞∑
k=0

ψkεt+j−k = ψj. (2.3)

This expression illustrates that ψj is the impact of an innovation of size one at time t on
Xt+j. This observation motivates the following definition.59

Definition 2.1.4
Let (Xt)t∈Z be a stationary stochastic process with an infinite moving average representation
as in (2.2). The series of coefficients (ψj)∞

j=0 is called impulse-response function (IRF) of
the process (Xt)t∈Z. o

Note that the right-hand side of (2.3) does not depend on t.60 Thus, the response to a
shock is independent of the time of the shock occurrence; it just depends on the number of

56 See Brockwell and Davis (1987, Theorem 5.7.1 on pp. 180f.).
57 In addition, Hassler (2019, pp. 33ff.) motivates the removal of the deterministic component Vt due to

ergodicity concerns.
58 Note that the condition

∑∞
k=0 ψ

2
k < ∞ is not very strong. It follows from Brockwell and Davis (1987,

Theorem 3.2.1 on p. 90) that the autocovariance function of an infinite moving average process X is
given by γX(k) = σ2

ε

∑∞
j=0 ψjψj+|k|, where σ2

ε is the variance of the white noise process in the moving
average representation. Hence, var(X) = γX(0) =

∑∞
k=0 ψ

2
k and the imposed condition is necessary

to ensure a finite variance.
59 Definition 2.1.4 adapted from Hassler (2019, p. 33) and Hamilton (1994, p. 2ff.).
60 Clearly, the IRF (ψj)∞

j=0 depends on the stochastic process X, i.e., one could have written (ψX
j )∞

j=0
instead of (ψj)∞

j=0 to express this dependency. However, the superscript X is suppressed in the
following to keep the notation simple. Additionally, the context of the formulas given in the text shall
make clear to which process the coefficients ψj belong.
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periods following the shock.61,62 Furthermore, as can be deduced from the linear structure
of (2.3), the response to a shock of magnitude other than one, say σ 6= 1, is given by
(σψj)∞

j=0.

As will turn out in Chapter 4, the analysis of IRFs play a major role in the context of
(discrete-time) dynamic stochastic general equilibrium (DSGE) models. There, IRFs show
the economy’s responses to exogenous shocks hitting the economy’s equilibrium state.
Thus, they allow investigations on how the treated economic variables are affected by
the shock under consideration and how long it takes for the economy to reach (if at all)
its equilibrium state again. In the end, the coefficients of the infinite moving average
representation in such a DSGE context depend on the specified model parameters and the
properties of the exogenous stochastic processes.63

2.1.3 Persistence

It follows from the square summability of the IRF, i.e.,
∞∑

k=0
ψ2

k < ∞, that ψj → 0, as
j → ∞. Consequently, the response to a shock dies out over time for all stationary moving
average processes of the form (2.2).

However, the square summability of the IRF does not indicate how fast or slow this decay
will ultimately be. Therefore, the decay of the IRF is referred to as the persistence of the
process, or more precisely “[...] the magnitude of the IRF across different time horizons
indicates how much persistence is present in the series.”64,65

The IRF is an infinitely long series of numbers, so it seems not quite tractable to describe or
compare the persistence of different processes along their IRF.66 For this reason, D. W. K.
Andrews and H.-Y. Chen (1994) propose a scalar measure of persistence, namely the
cumulative impulse response (CIR) for which the formal definition is given now.

Definition 2.1.5
Let (Xt)t∈Z be as in (2.2) with IRF (ψk)∞

k=0 and
∞∑

k=0
ψ2

k < ∞, then the cumulative impulse

61 See Hamilton (1994, p. 3).
62 For these reasons Hamilton (1994, p. 2f. and 442f.) calls the series of coefficients (ψj)∞

j=0 “dynamic
multiplier”.

63 See Chapter 4 for more details.
64 D. W. K. Andrews and H.-Y. Chen (1994, p.187).
65 A similar definition is provided by Pivetta and Reis (2007, p. 1329).
66 See D. W. K. Andrews and H.-Y. Chen (1994, p. 189) and Pivetta and Reis (2007, p. 1329).
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Response (CIR) of X is given by

CIR =
∞∑

k=0
ψk.

o

Thus, the CIR is simply the cumulative sum of the IRF and summarizes the properties
of the IRF in a wield scalar value.67 As the IRF shows the effects of a unit shock on the
process in the periods after the shock occurrence, the CIR is the cumulative effect of this
shock.68

On the other hand, consider that in each period following t0, all values of εt0+j for
j = 0, 1, 3, . . . are increased by one unit, then the effect on Xt0+j is given by

j∑
i=0

∂Xt0+j

∂εt0+i

=
j∑

i=0
ψj−i =

j∑
k=0

ψk −→ CIR, as j → ∞.

Hence, the CIR may further be viewed as the effect of a permanent increase by one unit
of the exogenous shock ε on the process X. This justifies the term “total multiplier”69 or
“long-run effect”70 for the CIR. Thus, the CIR may be seen as the cumulative effect of
a transitory shock or as the long-run effect (defined in the above sense) of a permanent
shock.71

However, there are some drawbacks to summarizing persistence by CIR. Two processes
may have the same CIR, but the IRF’s “mass” is not equally distributed over time between
the processes. Such an unevenly distributed “mass” would be the case, e.g., if one process’s
IRF is characterized by a strong increase followed by a rapid decrease compared to a
process’s IRF showing a slight decrease over all periods.72 Information about the shape of
the IRF is lost by looking only at the CIR. For this reason, the CIR is used to roughly
classify stochastic processes into three main groups:73

Definition 2.1.6
Let X be as in Definition 2.1.5. If i) CIR = 0, X is called anti-persistent; ii) 0 < CIR2 <

67 Similar to Footnote 60, an index expressing the dependency of the CIR on X is suppressed in the
following.

68 This can be seen clearly by plugging (2.3) into the definition of the CIR, i.e., CIR =
∑∞

k=0
∂Xt+k

∂εt
.

69 Hassler (2019, p. 37).
70 Hamilton (1994, p. 6).
71 See Hamilton (1994, p. 7).
72 See D. W. K. Andrews and H.-Y. Chen (1994, p. 190).
73 Definition 2.1.6 is inspired by Hassler (2019, Definition 2.5 on pp. 23f.). Note that Hassler (2019)

motivates the persistence from the long-run variance of a process. As will turn out, both concepts
lead to the same conclusions, see Hassler (2019, Proposition 3.4 on p. 38).
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∞, X is called moderately persistent; iii) CIR2 = ∞, X is called strongly persistent. o

The three cases do not contradict the condition
∞∑

k=0
ψ2

k < ∞. In the case of an anti-
persistent process, the IRF has at least some negative values, i.e., the positive responses
to the shock are balanced by negative ones such that the cumulative response disappears.
Shocks to a moderately persistent process die out quickly to ensure the convergence of
the CIR. In this case, the positive effects outweigh the negative or vice versa. Finally, a
divergent CIR, i.e., CIR = ±∞, indicates a very slowly decaying IRF and, thus, justifies
the notion of strong persistence.

Overall, it can be argued that processes with higher CIR are more persistent than those
with lower CIR. It should be noted, however, that there is no single definition of the term
“persistence” in the literature. In the context of ARMA processes, additional measures
are discussed and briefly reviewed in Section 2.1.5.2. However, these measures are partly
context-dependent and require more knowledge of the underlying process than the more
general structure of an infinite moving average process assumed here.

2.1.4 Spectral Density

So far, some general properties of stochastic processes have been described in the so-called
time domain. In this subsection, some additional properties of stationary discrete-time
stochastic processes are described in the frequency domain. As shown in Section 3.1.2, the
frequency domain provides opportunities for parameter estimation, so the basic foundations
are presented here for convenience.

It is a classical theorem in time series analysis that a zero-mean stationary stochastic
process can be viewed as a superposition of (possibly infinitely many) sinusoidal functions
with different frequencies.74 Thus, each time series may be seen as a sum of cyclical fluctu-
ations at different frequencies with stochastic amplitudes. Further, there is an analogous
representation for the autocovariance function of stationary stochastic processes:75

Definition 2.1.7
A function fX is the spectral density of a stationary stochastic process (Xt)t∈Z with
autocovariance function γX(·) if

i) fX(λ) ≥ 0 for all λ ∈ (−π, π], and

74 See Brockwell and Davis (2016, pp. 102f.) and Brockwell and Davis (1987, Theorem 4.8.2 on p. 140)
for a proof of the “Spectral Representation Theorem”.

75 See Brockwell and Davis (2016, Definition 4.1.1 on p. 99).
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ii) γX(k) =
∫ π

−π
eikλfX(λ) dλ =

∫ π

−π
(cos(λk) + i sin(λk))fX(λ) dλ for all k ∈ Z.

o

Although complex numbers occur in the preceding definition, the spectral density is a
real-valued function, as one can deduce from symmetry properties.76 Especially, it yields

γX(k) = 2
∫ π

0
cos(λk)fX(λ) dλ. (2.4)

On the other hand, by assuming
∞∑

k=0
|γX(k)| < ∞, one can recover the spectral density

from γX(·) by77

fX(λ) = 1
2π

∞∑
k=−∞

e−ikλγX(k) = 1
2π

(
γX(0) + 2

∞∑
k=1

γX(k) cos(λk)
)
, (2.5)

where the second equality uses some symmetric properties of the sinus and cosine functions.
Both (2.4) and (2.5) emphasize that the spectral density and the autocovariance function
of a stationary stochastic process contain the same information, which can be easily
transformed into each other. The serial correlation represented by γX can be mapped into
the frequency domain by (2.4), and the frequency domain information stored in fX can be
transformed into the time domain by (2.4).78

By setting k = 0 in (2.4), one further obtains that var(Xt) = γX(0) =
∫ π

−π fX(λ) dλ. This
expression states that the variance of a stationary stochastic process is given as the integral
of the spectral density over the whole cycle frequencies. Thus, one can analyze how certain
frequencies contribute to the variance. To be more precise, the integral

1
γX(0)

∫ λ̄

−λ̄
fX(λ) dλ = 2

γX(0)

∫ λ̄

0
fX(λ) dλ

represents the percentage contribution of the cycle frequencies less than λ̄ (in absolute
terms) to the process’s variance.79,80

Note that the frequency of a general sinusoid s(t) = a sin
(
λ̄t+ b

)
+ c with some real

constants a, b, c is given by λ̄ ∈ [0, π], i.e., the frequencies summarizes how many cycles

76 The spectral density is non-negative, i.e., fX(λ) ≥ 0 and symmetric, i.e., fX(λ) = fX(−λ), see
Brockwell and Davis (1987, Remark on p. 120).

77 See Brockwell and Davis (1987, Corollary 4.3.2 on p. 118).
78 See Hassler (2019, p. 66).
79 See Hamilton (1994, pp. 156-162).
80 For better comparability, it is convenient to consider the normalized spectral density f̄X(λ) =

fX(λ)/γX(0) in order to unitize the area under the spectral density.
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are completed during 2π periods.81 The corresponding time needed for one complete cycle
duration is inversely related to the frequency. It is defined as the period of the cycle, i.e.,
period =

∣∣∣2π/λ̄∣∣∣.82 Thus, small (high) frequencies correspond to longer (shorter) cycle
periods. If low frequencies contribute mainly to the process’s variance, one would expect
the process’s path to be smoother than that of a process whose variance is mostly explained
by high-frequency components.83

Hence, the spectral density reveals much information about which cycles the process is
driven by. As stated above, a smooth path of a stochastic process is associated with a
higher degree of autocorrelation and a large mass of the spectral density on low frequencies.
Thus, high autocorrelations come along with long cycles contributing to the process’s
variance.

In the context of an infinite moving average process as the one given in (2.2), the spectral
density offers insights into the persistence properties of the process. To be more precise, it
follows from (2.5) that84

fX(0) = 1
2π

∞∑
k=−∞

γX(k) = 1
2π

(
γX(0) + 2

∞∑
k=1

γX(k)
)
. (2.6)

Plugging the values of γX (see Footnote 58) into (2.6) yields

fX(0) = σ2
ε

2π

∞∑
k=−∞

∞∑
j=0

ψjψj+|k| = σ2
ε

2π

( ∞∑
k=0

ψk

)2

= σ2
ε

2πCIR2, (2.7)

where the second equality is derived similarly to Brockwell and Davis (1987, p. 103),
and the third equality uses Definition 2.1.5. Equation (2.7) highlights that the value
of the spectral density at the zero frequency is proportional to the squared CIR. Thus
it follows immediately from Definition 2.1.6 that an infinite moving average process is
moderately persistent if 0 < fX(0) < ∞ and strongly persistent if fX(λ) → ∞, as λ → 0.
Correspondingly, the process is anti-persistent if fX(0) = 0.85,86

Spectral analysis is of general interest in economic and econometric contexts as early
studies by Adelman (1965) and Granger (1966) indicate some stylized facts about the

81 See Hamilton (1994, p. 708).
82 See Hamilton (1994, p. 708).
83 See Brockwell and Davis (2016, pp. 104f.).
84 This is due to cos(0) = 1 and γX(k) = γX(−k).
85 See further Hassler (2019, pp. 66f.).
86 Note that

∑∞
k=1 γX(k) ≥ 0 due to the non-negative definiteness of the autocovariance function, see

Brockwell and Davis (1987, pp. 26f.) .
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“typical spectral shape”87 of economic variables. To be more precise, Adelman (1965)
investigates the spectral density of a battery of economic variables in the U.S., such as
output, consumption, labor productivity, and others (each in terms of deviations from a
deterministic trend) and founds that all spectral densities look similar, showing a sharp
increase as the frequency approaches zero.88 It follows from (2.6) and (2.7) that a peak at
(or near) the zero frequency is associated with a high value of accumulated autocovariances
and a high level of persistence, respectively.

2.1.5 ARMA Processes

In this subsection, an important family of stationary stochastic processes, namely ARMA
processes, is described briefly. Besides their statistical relevance, they frequently occur
as the source of stochastic shocks in various economic models.89 As to be shown later
in the thesis, their properties differ mainly from them of long memory processes that
build the focus of this thesis. Thus, ARMA processes will serve as a benchmark for
further considerations. Additionally, fractionally integrated ARMA processes, as a vital
representative of discrete-time long memory processes (considered in more detail in
Section 2.4), are easily constructed from ARMA processes. In this regard, restating some
necessary notations and properties of ARMA processes seems convenient. The following
definition is adapted from Brockwell and Davis (1987).90

Definition 2.1.8
Let p and q be non-negative integers. Then (Xt)t∈Z is called ARMA(p, q) process if (Xt)t∈Z

is stationary and if for all t ∈ Z,

Xt − φ1Xt−1 − · · · − φpXt−p = εt + θ1εt−1 + · · · + θqεt−q, (2.8)

where (εt)t∈Z is a white noise process with variance σ2
ε . o

Equation (2.8) may also be written in terms of the lag or backshift operator B defined as
BXt = Xt−1, i.e., (2.8) becomes

φ(B)Xt = θ(B)εt, (2.9)

where φ(z) = 1 − φ1z − · · · − φpz
p denotes the autoregressive polynomial and θ(z) =

87 Granger (1966, p. 150).
88 See Adelman (1965, Figure 4-11 on pp. 457f.).
89 See, for example, the DSGE models of Chapter 4.
90 See Brockwell and Davis (1987, Definition 3.1.2 on p. 78).
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1+θ1z+ · · ·+θqz
q the moving average polynomial. Thus, ARMA processes are represented

(at each instant of time) by linear combinations of their own past values and the present
and past values of an exogenous white noise process. ARMA processes reveal a high
empirical relevance as each given autocovariance function (e.g., from an observed time
series) can be approximated arbitrarily well by the autocovariance function of a certain
ARMA process.91

Assuming that φ(·) and θ(·) do not have common roots, and further, that all (possibly
complex-valued) roots of φ(·) lie outside the unit circle, i.e., φ(z) 6= 0, |z| ≤ 1, ensures the
existence of an infinite moving average representation as in (2.2) where the coefficients
(ψk)∞

k=0 are obtained from a time series expansion of the function ψ(z) = θ(z)φ(z)−1.92 In
this case, the ARMA process is called causal, as it can be expressed as a linear combination
of the past values of (εt)t∈Z.93 On the contrary, if the roots of θ(·) lie outside the unit
circle, the white noise process (εt)t∈Z can be expressed as a linear combination of past
values of (Xt)t∈Z. In such a case, the ARMA process is called invertible.94 Commonly (and
throughout this thesis), it is assumed that an ARMA process is causal and invertible.95

Without moving average terms, the corresponding ARMA(p, 0) process is simply an
autoregressive process of order p for which the shorthand notation AR(p) is used in the
following.

2.1.5.1 ACF, Spectral Density and CIR

The derivation of closed-form expressions of the autocovariance function of a general
ARMA process involves the solution of possibly high-order linear difference equations. The
derivation of these equations is beyond the scope of this thesis.96

In order to gain some intuition for the autocovariance function of an ARMA process, the
closed-form expressions are, however, not needed since the autocovariance function for all
ARMA processes is geometrically bounded. To be more precise, let X be an ARMA(p, q)
process with autocovariance function γX , then, there are constants 0 < C and 0 < β < 1
91 See Brockwell and Davis (1987, p. 77).
92 See Brockwell and Davis (1987, Theorem 3.1.1 on p. 85).
93 See Brockwell and Davis (1987, Definition 3.1.3 on p. 83).
94 See Brockwell and Davis (1987, Definition 3.1.4 on p. 86 and Theorem 3.1.2 on pp. 86f.).
95 It seems reasonable to make this assumption, as one can find a similar representation of (2.9) if φ(·)

and θ(·) have common roots such that the corresponding process (Xt)t∈Z is causal and invertible
as long as the roots of θ(·) and φ(·) lie not on the unit disk, i.e., φ(z) 6= 0 6= θ(z) for |z| = 1, see
Brockwell and Davis (1987, Remark 5 on p. 88). If φ(z) = 0 for |z| = 1, then X is not stationary, see
Brockwell and Davis (1987, Remark 3 on p. 86).

96 See Brockwell and Davis (1987, Section 3.3 on pp. 91ff.) for details. The special case of an AR(1)
process is treated separately in Section 2.1.5.3.
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such that97

|γX(k)| ≤ Cβk., (2.10)

Consequently, the autocovariance function and, thus the ACF, decays exponentially fast
in absolute terms. The values of C and β depend on the parameters of the polynomials
φ(·) and θ(·) in (2.9).98

The corresponding spectral density is given by

fX(λ) = σ2
ε

2π

∣∣∣θ(e−iλ)
∣∣∣2

|φ(e−iλ)|2
, (2.11)

provided that φ(z) 6= 0 for |z| = 1.99 Equations (2.7) and (2.11) imply that

CIR =
√

2π
σ2

ε

fX(0) = |θ(1)|
|φ(1)| =

∣∣∣∣1 +
q∑

k=1
θk

∣∣∣∣∣∣∣∣1 −
p∑

k=1
φk

∣∣∣∣ . (2.12)

It follows from (2.12) that the CIR of all ARMA processes is finite since
p∑

k=1
φk 6= 1 due to

stationarity reasons.100 In general, an ARMA process can be anti-persistent, i.e., CIR = 0
if ∑q

k=1 θk = −1. In this case, however, θ(1) = 0, and the corresponding ARMA process is
not invertible. Thus, it follows from (2.12) that all causal and invertible ARMA processes
are moderately persistent. The magnitude of the CIR depends on the autoregressive and
moving average parameters, but they cannot be chosen to meet the other persistence
regimes mentioned in Definition 2.1.6.

2.1.5.2 A Note on Persistence

Note that there is not one uniform definition of the term “persistence” in the literature.
Generally, the notion of persistence in terms of the CIR used in this thesis is rather general
and comes along with some drawbacks already mentioned in Section 2.1.3. In the context
of ARMA processes, which are all moderately persistent in the sense of this thesis, there
are additional measures of persistence that allow for further persistence comparison. Some
are related to the CIR, and some carve out the relationship between the autoregressive
and moving average coefficients and the IRF in more detail. In order to fit the CIR in the
97 See Hassler (2019, Proposition 3.5 on pp. 49f.).
98 Note that (2.10) does not rule out a cyclical decay of the ACF. If the ACF decays cyclically, (2.10)

states that the amplitudes decay exponentially.
99 See Brockwell and Davis (1987, Theorem 4.4.2 on p. 121).
100 If

∑p
k=1 φk = 1, it follows that φ(1) = 0 and thus the process is not stationary, see Footnote 95.
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persistence measures discussed in the literature, a brief review of commonly used measures
is provided. Again, the CIR applies to general processes of the form (2.2), while some of
the other measures presented below assume less general representations as, e.g., (2.8).

In the context of purely autoregressive models, the sum of the autoregressive coefficients
is used as a measure of persistence in the empirical literature.101 Indicated by (2.12), the
higher this sum is, the higher the CIR, and thus, the more persistent the process. Without
moving average terms, both measures contain the same information. However, the sum of
the autoregressive coefficients may underestimate the degree of persistence (in the sense of
the CIR) in the presence of moving average terms, see (2.12).

Another measure of persistence in the context of purely autoregressive models is the
largest root of the autoregressive polynomial ϕ(·).102 The autoregressive polynomial can
be written as ϕ(z) = (1 − b1z) · · · (1 − bpz). Let b = max

i=1,...,k
{|bi|}, then b is called the

largest autoregressive root.103,104 Since b determines the decay of the IRF of an AR(p)
process, it is often used as a measure of persistence.105 On the other hand, it may be
criticized that the largest autoregressive root neglects (by definition) the effect of the other
autoregressive roots on the IRF.106

Instead of referring to the properties of the autoregressive polynomial, the half-life is an
additional indicator of persistence. It is equal to the number of periods needed for the
IRF to reach a value of 1/2 after a shock of size one.107 Some drawbacks of this measure
arise if the IRF is characterized by up-and-down swings or a fast drop of the IRF with a
slow decay afterward.108 The latter can be observed in Section 2.4.2 (more specifically in
Figure 2.7), where the IRFs of some strongly persistent processes, i.e., CIR2 = ∞, show
a smaller half-life than the one of an AR(1) process which is moderately persistent, i.e.,
CIR2 < ∞.

A related measure of persistence is the number of periods needed for the IRF to reach

101 See Paya et al. (2007, p. 1523f.).
102 See Paya et al. (2007, p. 1524) and Pivetta and Reis (2007, p. 1329).
103 See Pivetta and Reis (2007, p. 1329).
104 Formally, 1/b is a root of ϕ(·) and not b, but this notation seems to be well-established in the literature,

see, besides Pivetta and Reis (2007, p. 1329), DeJong and Whiteman (1991, p. 226) and Stock (1991,
p. 437). However, the causality and invertibility conditions mentioned above refer to the “true” roots
1/b1, . . . , 1/bk instead.

105 See Pivetta and Reis (2007, p. 1329).
106 See Paya et al. (2007, p. 1524). D. W. K. Andrews and H.-Y. Chen (1994) show that the roots other

than the largest have too much influence on the shape of the IRF. For this reason, they advocate the
CIR as a better measure of persistence than b.

107 See Paya et al. (2007, p. 1524).
108 See Pivetta and Reis (2007, p. 1330).
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50% of the CIR.109 This measure is, however, only applicable as long as 0 < CIR2 < ∞.

An additional measure of persistence, completely independent from a certain model, is
determined by how often a process crosses its mean value or, to be more precise, by the
“unconditional probability of a stationary stochastic process [. . . ] not crossing its mean in
period t”.110 Assume that a shock pushes a process far from its mean value, then a more
persistent process is expected to return to its mean value slower than a less persistent
process. This low degree of mean reversion causes the process not to cross its mean value
very often overall. Hence, the number of mean crossings can be seen as a measure of
persistence.111 As with the other measures, this one has some drawbacks. It can be shown
that a purely white noise process is indicated to have the same persistence as an AR(2)
process with parameters ϕ1 = 0 and ϕ2 = 0.8.112 If the CIR is used instead, it follows
from (2.12) that a white noise process has a CIR of one, while the AR(2) process has a
CIR of five. Thus, according to the CIR, the AR(2) process would be more persistent
than a white noise process, but they would be equally persistent if the number of mean
crossings were used.

In summary, there are several measures of persistence, each with advantages and disadvan-
tages. Sometimes the way one measure indicates persistence is contrary to what another
measure suggests. Overall, the rather coarse distinction between anti, intermediate, and
strong persistence made in Section 2.1.3 still seems appropriate since the scope of this
thesis is to compare processes with infinite CIR and finite CIR and not between the
nuances of two moderately persistent processes. There is, however, one process for which
all of the mentioned persistence measures lead to equivalent results, namely the AR(1)
process with parameter ϕ1 = %.113 A higher value of % is associated with a higher degree
of persistence by all measures mentioned above. This property may be why the parameter
% is called the parameter of persistence in the context of DSGE models.114

It seems appealing to control the persistence of a process with a single parameter. However,
stationary AR(1) processes are moderately persistent and, thus, unsuitable for modeling
the other persistence scenarios mentioned in Definition 2.1.6. Additional properties of the
AR(1) process are discussed in the next section.

109 See Paya et al. (2007, p. 1524).
110 Dias and Marques (2010, p. 264).
111 See Dias and Marques (2010, p. 264).
112 See Dias and Marques (2010, p. 266).
113 See Dias and Marques (2010, p. 265f.).
114 See, e.g., Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 565).
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2.1.5.3 The AR(1) Process: A Closer Look

This section concludes with a specific example relevant to DSGE models. In DSGE models,
exogenous variables are often assumed to follow an AR(1) process X = (Xt)t∈Z that may
be viewed as the percentage deviation from a variable’s steady state value. The white noise
process in the corresponding AR(1) representation specifies shocks pushing the variable
away from its steady state value.115 Thus, it seems reasonable to consider the properties
of an AR(1) process in more detail.

Let (Xt)t∈Z be a zero-mean AR(1) process given by

(1 − %B)Xt = εt or Xt = %Xt−1 + εt, (2.13)

where (εt)t∈Z is assumed to be a Gaussian white noise process.

The IRF of the process defined in (2.13) can be derived along two approaches. As the IRF
shows the effect of a unit shock on the process, it can be derived recursively from (2.13)
by setting ε0 = 1 and εt = 0, for t 6= 0. Inserting this into (2.13) and replacing Xt with ψt,
one finds the IRF of (Xt)t∈Z to be the solution of the deterministic first-order difference
equation

ψj = %ψj−1 with initial value ψ0 = 1. (2.14)

As can be seen easily, the solution to (2.14) is given by ψj = %j. In addition,
∞∑

k=0
ψ2

k < ∞
as long as |%| < 1.

On the other hand, the autoregressive polynomial φ(z) = 1 − %z of (2.13) has no roots
inside the unit circle as long as |%| < 1. In this case, (Xt)t∈Z is stationary and the infinite
moving average representation of (Xt)t∈Z exists and is given by

Xt = 1
1 − %B

εt =
∞∑

j=0
%jεt−j, (2.15)

leading to the same result (ψj = %j). Thus, assuming an AR(1) process with |%| < 1
implies a shock to have an impact on all subsequent observations of the process, but
the impact decays exponentially fast. If −1 < % < 0, the IRF decays cyclically to zero.

115 See Section 4.1.3.1 for details on the specification of the productivity processes in the context of the
DSGE models of Chapter 4. See Section 4.3 for a discussion about which processes are typically used
in DSGE models.
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Figure 2.1 illustrates the IRFs of four different AR(1) processes.116,117

a) % = −0.4 b) % = 0

c) % = 0.4 d) % = 0.9

Figure 2.1: Impulse-response functions of various AR(1) processes. The shock occurs at period 20. The
corresponding autoregressive parameter % is set to −0.4, 0, 0.4 and 0.9 in Panels a)-d), respectively. See

further Footnote 116.

The higher the parameter %, the slower the decay of the IRF (maybe cyclically if % < 0),
and the more substantial the impact of the shock on following periods, thus the higher
the persistence of the process. Additionally, (2.12) specifies the CIR of an AR(1) process,
given by

CIR = 1
|1 − %|

. (2.16)

116 Note that the functions plotted in Figure 2.1 do not solve (2.14). As stated before, the IRF does not
depend on the time of the shock occurrence, i.e., (2.14) describes the evolution of the response in
the aftermath of the shock. In order to highlight the impulse, the date of the shock was set to 20 in
Figure 2.1. Correspondingly, the functions plotted in Figure 2.1 satisfy ψ20+j = %j with ψ20 = 1 and
ψj = 0, for j ≤ 20, i.e. the IRF is shifted by 20 periods ahead.

117 All figures in this chapter were computed using Matlab code written by the author.
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Thus the CIR is a monotone increasing function in % for |%| < 1.

In order to calculate the ACF of (Xt)t∈Z, a recursive method can also be applied. Multi-
plying (2.13) by Xt−k and taking expectations results in

E(Xt−kXt) = %E(Xt−kXt−1) + E(εtXt−k). (2.17)

Out of (2.15), Xt−k depends only on values εj for j < t − k. As (εt)t∈Z is a white noise
process, εt and Xt−k are uncorrelated if k ≥ 1. Thus, (2.17) becomes

γX(k) = %γX(k − 1) for k ≥ 1. (2.18)

For k = 0, (2.17) becomes

γX(0) = %γX(1) + E(εtXt)
= %2γX(0) + E(%εtXt−1) + E(ε2

t ), (2.19)

where the last line uses (2.13) and (2.18). Again, εt and Xt−1 are uncorrelated. Conse-
quently, (2.19) pins down the variance of (Xt)t∈Z, i.e.,

var(Xt) = γX(0) = σ2
ε/(1 − %2), (2.20)

where σ2
ε is the variance of the white noise process (εt)t∈Z. In summary, (2.20) determines

the initial value for the deterministic first-order difference equation (2.18). Dividing (2.18)
by γX(0) finally results in a first-order difference equation that describes the evolution of
the ACF of (Xt)t∈Z

ρX(k) = %ρX(k − 1) with initial value ρX(0) = 1

It is evident that the ACF and IRF of an AR(1) process solve the same first-order difference
equation; hence both functions coincide. Consequently, the parameter % determines not
only the impact of a unit shock on future periods but also the degree of correlation within
the process. A positive value of % implies positive autocorrelations between all process
observations. As outlined above, this translates into an overall smoother path of the
process as it tends to lie on the same side of the mean for several periods. The higher the
degree of autocorrelation, and thus, the higher the value of %, the greater the smoothing
effect. Conversely, if −1 < % < 0, the autocorrelations decay cyclically to zero, so that the
paths appear coarser, i.e. the paths are characterized by a zigzag behavior. Again, the
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smaller the value of %, the greater the effect. Figure 2.2 illustrates this on the basis of four
paths of AR(1) processes. In the presence of high-order positive autocorrelations (Panel
d)), the overall smoother path is evident compared to Panels a)-c).118

a) % = −0.4 b) % = 0

c) % = 0.4 d) % = 0.9

Figure 2.2: Paths of various AR(1) processes. The underlying white noise process (εt)t∈Z is assumed to
be Gaussian with zero mean and variance 1 and is shown in Panel b) as Xt = εt for % = 0. Furthermore,
the realization of the white noise process is identical for all panels. The autoregressive parameter is set to

−0.4 in Panel a) and 0.4 and 0.9 in Panels c) and d), respectively.

The same conclusions can be drawn from Figure 2.3 which illustrates the corresponding
normalized spectral densities of the AR(1) processes of Figure 2.2.119 Equation (2.11)

118 Note that the range of the path in Panel d) is larger than in the other panels. This is due to the
higher overall variance given in (2.20).

119 Recall Footnote 80 for the definition of the normalized spectral density .
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indicates the spectral density of X to be120

fX(λ) = σ2
ε

2π
1

|1 − e−iλ|2
= σ2

ε

2π(1 − 2% cos(λ) + %2) . (2.21)

Dividing (2.21) by (2.20) leads to the normalized spectral density

f̄X(λ) = 1 − %2

2π(1 − 2% cos(λ) + %2) .

In the case of a white noise process, the spectral density is equal for all frequencies,
i.e., each frequency contributes equally to the process’s variance (see the light-blue line
in Figure 2.3). In the case of negative autocorrelations, there is a higher mass of the
density on the cycles with shorter periods (i.e., higher frequencies), highlighting that the
process’s variance is mainly explained by short cycles. Contrary, positive autocorrelations
correspond to a high mass of the spectral density on low frequencies. As expected from
(2.7), the higher the parameter %, the higher the value of fX at the zero frequency, again
pointing to a higher degree of persistence.

Figure 2.3: Normalized spectral densities of various AR(1) processes. The considered values of % are
−0.4, 0, 0.4 and 0.9. In order to equalize the area under the spectral density, normalization is performed
by dividing the spectral density by the process’s variance. Due to the symmetry of the spectral density,

f̄X(λ) is only plotted only over the interval [0, π].

120 The second equality follows from eiλ = cos(λ) + i sin(λ).
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2.2 Mandelbrot’s Joseph Effect

2.2.1 The Hurst Phenomenon: A Brief Review

This section briefly reviews the observations made by Harold Edwin Hurst in the 1950s
that eventually inspired Mandelbrot to his seminal works on the Joseph and Noah effect,
self-similar processes, and fractional Brownian motion. This thesis focuses on the Joseph
effect, which will be defined shortly. In Section 2.5, fractional Brownian motion will be
picked up again.

Hurst was working on the optimal size of a water reservoir for the Nile River. A reservoir
is optimal if it is the smallest reservoir that satisfies the following three properties: the
reservoir’s outflow is uniform, the reservoir’s level at the end of a period is as high as at
the beginning of the period, and the reservoir never floods.121 More precisely, assume that
a time series of annual water discharges of a lake or river is given. How much capacity
must a water reservoir have had to enable a maximal steady outflow over the recorded
period?122 Hurst relates the ideal size of a water reservoir to the adjusted range statistic,
which is given by123

R(n) = max
0≤k≤n

{
k∑

i=1
(Xi − X̄n)

}
− min

0≤k≤n

{
k∑

i=1
(Xi − X̄n)

}
,

where X̄n := 1
n

n∑
k=1

Xk denotes the sample mean of the process X up to period n. In the
context of water reservoirs, Xn describes the outflow of a river or lake in period n. If
the value of R is divided by the root of the sample variance S2

n = 1
n−1

n∑
k=1

(Xk − X̄n), one
obtains the so-called rescaled adjusted range statistic defined by124,125

R/S(n) := R(n)√
S2

n

= R(n)
Sn

.

By evaluating the rescaled adjusted range statistic on Nile river data, Hurst founds, by

121 See Mandelbrot and Wallis (1968/2002, p. 239).
122 See Hurst (1951, pp. 772f.).
123 Hurst (1951) does not provide a formula for the adjusted range statistic R. Instead, he describes the

calculation of R. The formula was taken from Beran et al. (2013, p. 410) and Graves et al. (2017, p.
4). This formula is a slightly simplified version of the R/S statistic used in Mandelbrot (1972, pp.
281f.).

124 See Beran et al. (2013, p. 410).
125 Note that other authors as Mandelbrot (1972, p. 282) and Graves et al. (2017, p. 4) and Beran (1994,

p. 33) define S2
n as 1

n

∑n
k=1(Xk − X̄n). The different scaling may not affect the derivations made in

this section.
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applying a linear regression of log(R/S(n)) against log(n), that this relationship is nearly
linear for large values of n, and further, that the slope of the resulting regression line
(denoted by H as an abbreviation for “Hurst exponent”) is greater than 1/2.126 Strikingly,
this behavior holds not only for river statistics or rainfalls but also for the size of tree
rings, the number of sunspots, and wheat prices.127 Hurst claimed that

although in random events groups of high or low values do occur, their tendency
to occur in natural events is greater. This is the main difference between natural
and random events, an example of which is the discharge of the Nile River
at Aswan. The long series of records of flood levels at Cairo shows the same
phenomenon. There is no obvious periodicity, but there are long stretches
when the floods are generally high, and others when they are generally low.
These stretches occur without any regularity either in their time of occurrence
or duration.128

These empirical observations are often called “Hurst’s Law” or “Hurst phenomenon” in
the sense of a stylized fact.129 That these observations are indeed remarkable, and thus
justify the term “phenomenon”, can be seen from the fact that a wide range of stochastic
processes show a scaling of the R/S statistic at the rate 1/2, i.e., they are incompatible
with Hurst’s observations.130

To be more specific, it can be shown for a stationary Gaussian process X with spectral
density fX(·) satisfying 0 < fX(0) < ∞ that131,132

E (R/S(n)) ∼ C

(
fX(0)
σ2

X

)1/2

n1/2 as n → ∞, (2.22)

where σ2
X is the variance of X. That is, such a process is incompatible with Hurst’s law. In

contrast, processes that behave as in (2.22) are sometimes said to follow the “
√
n-law”133.

To give a concrete example of a class of processes that satisfy the
√
n law and thus do not

satisfy Hurst’s law, consider the infinite moving average process (Xt)t∈Z as in Section 2.1.2,
where the innovations (εt)t∈Z are normally distributed. Recall from (2.7) that the spectral
126 See Hurst (1951, Figure 4 on p. 787). Hurst uses the variable K instead of H.
127 See Hurst (1951, Figure 4 on p. 787).
128 Hurst (1951, p. 783).
129 See Mandelbrot and Wallis (1968/2002, p. 247) and Graves et al. (2017, p. 5).
130 See Hurst (1956, p. 14).
131 See Siddiqui (1976, pp. 1274f.), Mandelbrot (1975/2002, p. 524) or Beran et al. (2013, p. 410).
132 The notation f(x) ∼ g(x), x → a means that limx→a f(x)/g(x) = 1, i.e., both functions show the

same asymptotic behavior as x → a.
133 Mandelbrot and Wallis (1968/2002, p. 246).
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density of a moderately persistent process (0 < CIR2 < ∞) yields 0 < fX(0) < ∞.

Consequently, all moderately persistent processes fail to satisfy Hurst’s law. Especially
(as derived in Section 2.1.5) all ARMA processes do so. By noting that σ2

X = γX(0), it
follows from (2.22) and (2.6) that

E (R/S(n)) ∼ C

(
1 + 2

∞∑
k=1

ρX(k)
)
n1/2, n → ∞. (2.23)

Thus, all Gaussian processes with a summable ACF also fail to satisfy Hurst’s law. This
observation suggests that substantial autocorrelation is required to reproduce Hurst’s law.

In general, the results found by Hurst can be formalized as134

E (R/S(n)) ∼ CnH as n → ∞, (2.24)

with H > 1/2. The letter H is a shorthand notation for “Hurst exponent” and is sometimes
referred to as the intensity of the R/S statistic.135

In 1968, Mandelbrot and van Ness (1968) introduced a continuous-time stochastic process
called fBm (BH

t )t≥0 that generalizes the well-known Brownian motion.136 In addition, if
one considers the discrete-time increment process of an fBm called fractional Gaussian
noise (fGn), i.e., XH

t = BH
t+1 −BH

t for t = 1, 2, 3, . . ., Mandelbrot and Wallis (1968/2002)
showed that this increment process is stationary and Gaussian, and it is able to replicate
Hurst’s law.137 To be more precise, the parameter H of the fBm or fGn turned out to
be identical to the intensity of the R/S statistic in (2.24).138 This was the first time a
stationary process satisfying Hurst’s law was presented.139

Due to (2.23), the question of satisfying Hurst’s law is immediately linked to another
property, namely the summability of the ACF. That is, (2.23) indicates that processes
with a non-summable ACF, i.e., ∑∞

k=0 ρX(k) = ∞, may be able to replicate Hurst’s law.
Indeed, it can be shown that the ACF of an fGn process is not summable in the case of
H > 1/2.140

134 See Beran (1994, p. 34).
135 Mandelbrot (2002, p. 157) preferred the letter J (as a shorthand notation for “Joseph-Exponent”)

instead of H to disentangle the empirical findings of Hurst from the more general asymptotic behavior
of the R/S statistic.

136 A rigorous treatment of fractional Brownian motion is given in Section 2.5.
137 Mandelbrot and Wallis (1968/2002, p. 250).
138 Mandelbrot and Wallis (1968/2002, p. 250).
139 See Graves et al. (2017, p. 9).
140 In Lemma 2.5.3 below, it is shown that γXH (k) ∼ H(2H−1)k2H−2. Consequently, the autocovariance
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In the end, an ACF exists only for stationary processes, but also non-stationary processes
can show Hurst’s law. For this reason, Mandelbrot introduced a more general concept of
“global statistical dependence” and “local statistical dependence” that should apply to all
stochastic processes. Ultimately, the presence of global dependence in a stochastic process
is why the

√
n-law fails to hold.141 On the other hand, if a process satisfies the

√
n-law it

is called to be locally dependent.

For stationary processes, global dependence may manifest in a non-summable ACF or
a spectral density f with f(λ) → ∞, as λ → 0. For non-stationary processes, global
dependence can be manifested by the behavior of the R/S statistic (2.24). Mandelbrot
used (2.24) to define global statistical dependence (in the R/S sense): If H = 1/2, i.e.,
the

√
n law holds, the process shows local dependence. If H > 1/2, Hurst’s law can

be replicated, and the process exhibits global persistent dependence (in the R/S sense).
Finally, if H < 1/2, the process exhibits global anti-persistent dependence (in the R/S
sense).142 Mandelbrot preferred the R/S statistic to the ACF or spectral density because
of its robustness to non-Gaussian distributions and infinite variance processes.143 Since
the latter are not stationary, the ACF cannot be applied to such processes. On the other
hand, there may be processes for which an asymptotic relationship, as stated in (2.24),
does not exist at all. In such a case, the R/S statistic seems inappropriate to determine
the presence of global or local dependence.144

However, processes may be labeled as locally dependent according to the R/S statistic,
but at the same time, they may be globally dependent in a wider sense.145 Thus in 2002,
Mandelbrot claimed that “the exponent of R/S does not suffice to discriminate between
local and global dependence.”146

Dating back to 1968, Mandelbrot and Wallis introduced the colorful name “Joseph Effect”
for global dependence in the R/S sense.147 All processes with H 6= 1/2 show the Joseph
effect, and the intensity of the R/S statistic may measure how strong the Joseph effect
is.148 The intention for the naming was derived from the biblical story of Joseph, son
of Jacob, and especially from Genesis 41, 29-30: “Seven years of great abundance are

function and the autocorrelations are not summable if H > 1/2.
141 See Mandelbrot (2002, pp. 156f.).
142 See Mandelbrot (2002, pp. 160 and 167).
143 See Mandelbrot (1972, pp. 286ff.) and Mandelbrot (1975/2002, p. 521).
144 See Mandelbrot (1972, p. 283).
145 See Mandelbrot (2002, pp. 170f.).
146 Mandelbrot (2002, p. 483).
147 See Mandelbrot and Wallis (1968/2002, p. 246).
148 See Mandelbrot (2002, p. 159f) Mandelbrot and Wallis (1969/2002, p. 488).
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coming throughout the land of Egypt, but seven years of famine will follow them”149. This
metaphor nicely describes Hurst’s empirical findings cited above. The reasons for the
naming are also illustrated in the next section since “the presence of global dependence
can often be suspected visually”150.

2.2.2 A Visual Insight

This section illustrates the differences between a time series showing a type of global
dependence and one showing local dependence. Figure 2.4 shows two realizations of
stochastic processes X and Y plotted over 3000 periods. Both processes are stationary
and have zero means. The process Y depicted in Panel b) shows the tendency to grow for
a while, followed by a sudden stop and a reversion of this tendency, which is again followed
by expanding periods. The path of X (see Panel a) of Figure 2.4) crosses the zero line
more often than the path of Y and seems to show an intensive zigzag behavior. Overall,
the path of Y is characterized by longer periods of up- and downswings than the path of
X. This observation inspired Mandelbrot to say that Y shows the Joseph effect.151 This
non-period cyclical behavior is typical for processes with global dependence, and indeed,
Y in Figure 2.4 is the path of a globally dependent process (in the sense that its ACF is
not summable), whereas X is the path of an AR(1) process which is a locally dependent
process (having a summable ACF).152

However, the seven fat years followed by seven lean years may indicate some periodicity in
the cyclicality described, although Mandelbrot construed the behavior as follows

clear-cut but not periodic ‘cycles’ of all conceivable ‘periods,’ short, medium,
and long, where the latter means ‘comparable to the length of the total available
sample,’ and where the distinction between ‘long cycles’ and ‘trends’ is very
fuzzy.153

This behavior is visible in Panel b) of Figure 2.4. There, it seems that the cycles are longer
in the first half of the sample and shorter in the second half. In contrast, the cyclical
behavior of the process X in Panel a) seems to be more regular throughout the sample.

The difficulty in distinguishing longer cycles and trends is illustrated on the left-hand sides
149 This passage was taken from the new international version of the Bible, see Biblica (2021), URL in

list of references.
150 Mandelbrot (2002, p. 158).
151 The term Joseph effect was introduced in Mandelbrot and Wallis (1968/2002).
152 In Figure 2.4, the length of “one period” is not specified, so the reference to the biblical story of

Joseph should be treated just in a metaphorical sense.
153 Mandelbrot (1972, p. 260).
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a) Locally dependent process

b) Globally dependent process

Figure 2.4: Paths of a locally and globally dependent process. Panels a) and b) show the path of a locally
and globally dependent process, respectively. The left-hand side shows an extraction from the full sample
shown on the right-hand side of each panel. The globally dependent process is represented by a fractionally
integrated white noise process (i.e., an ARFIMA(0, d, 0) process) with parameter d = 0.4; see Section 2.4
for details. The locally dependent process corresponds to an AR(1) process with parameter % = 0.719.
The parameter % was chosen to equate the theoretical total process variances (see (A.12) and (2.20)). The
underlying white noise process (εt)t∈Z is assumed to be Gaussian with zero mean and variance 1, and its

realization is identical in both panels.

of Figure 2.4. In these panels, an extraction of the corresponding long time series displayed
on the right-hand panels from periods 550 to period 750 is plotted. If this extraction is
considered solely, one may find that the globally dependent time series shows an upward
trend and looks non-stationary. When considering the extracted periods as a part of the
whole sample, there is no trending behavior overall, i.e., the trend disappears and is now
part of a longer fluctuation.154 The process is sometimes called to show “local trends”155.
The tendency for showing local trends is less pronounced in the locally dependent time
series of Panel a). Further, the length of these local trends seems random, and the resulting
cyclicity is non-periodic.

154 See Mandelbrot (2002, p. 158).
155 Beran (1994, p. 141).
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Figure 2.5 shows linear regressions of the corresponding R/S statistics. As one would
expect from (2.24), the slope of the regression line is 0.426 and thus nearly 1/2 in the
case of the locally dependent process. The corresponding slope of the globally dependent
process is 0.774 and thus clearly larger than 1/2. The theoretical value is 0.9.156

Therefore, the paths shown in Figure 2.4 belong to classes of stochastic processes for which
the global dependence in the R/S sense coincides with the global dependence induced by
a non-summable ACF.

a) Locally dependent process b) Globally dependent process

Figure 2.5: Linear regression of log(R/S). The regression was performed on the simulated paths shown in
Figure 2.4. The R/S statistic is evaluated on a grid with a range of 1, 2, . . . , 3000 and a step size of 100;
log(R/S) is regressed on log(n). Panels a) and b) refer to the locally and globally dependent samples of

Figure 2.4, respectively.

The behavior described so far, i.e., the non-periodic cyclicality and the local trending,
refer in fact to the case of H > 1/2 or

∞∑
k=0

ρX(k) = ∞.157 If H < 1/2 or
∞∑

k=0
ρX(k) = 0,

positive and negative correlations will be compensated, meaning that positive values will
be followed by negative values, resulting in a more jagged path overall.158 Although the
process is globally dependent if H < 1/2 or

∞∑
k=0

ρX(k) = 0, the name Joseph effect seems
to be derived from the path properties of a time series with H > 1/2. This suggestion
may be reasonable since H > 1/2 is consistent with Hurst’s original findings and thus
seems more empirically relevant.

Ultimately, neither the term Joseph effect nor global dependence, nor the analysis of the
R/S statistic was entirely adopted by the economics and econometrics profession. The
156 The precision of the estimated values may be increased by Monte Carlo simulations and or by involving

more than 3000 periods in each sample. This study is not carried out here, as the aim of Figure 2.5 is
to illustrate Hurst’s phenomenon and not to give an exact estimator of H.

157 See Mandelbrot (1972, pp. 273ff.).
158 See Mandelbrot (1972, p. 275).
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term “Joseph effect” has been translated as “long memory”, “extensive dependence” or
“strong dependence”. Nowadays, the R/S statistic serves only as a heuristic estimator of
the Hurst exponent H.

The reason for this can be found in the R/S statistic, which comes along with several
problems seeming unsatisfactorily from an econometric point of view. So, for example, the
R/S statistic cannot distinguish between long memory and a non-stationary stochastic
process with a slowly decaying trend.159 Further, as already mentioned by Mandelbrot,
the Hurst phenomenon can be mimicked by locally dependent processes at least over
some periods (he called this transient region), i.e., the R/S statistic would indicate a
value of H > 1/2 in this transient region but values of H = 1/2 after this region.160

When considering real-world data sets with limited length, it may be impossible to decide
between a true globally dependent process or a locally dependent process whose transient
region corresponds to the whole sample size. In order to exclude such a transient region
(given that it does not correspond to the total sample size) from the estimation of H, one
may have to drop some values at the beginning of the regression. However, it is difficult
to accomplish this task objectively.161

Furthermore, an important advantage emphasized by Mandelbrot, namely the robustness
of the R/S statistic to infinite variance processes, may be less advantageous from a time
series analysis perspective, since it is common practice to explain the data with stationary
models.

Therefore, the following section looks at today’s more commonly used definitions of long
memory.

2.3 On the Definition of Long Memory

As noted at the end of the last section, the R/S statistic hardly defines long memory
anymore. However, it follows from (2.23) that stationary processes with a non-summable
ACF may be able to replicate Hurst’s law. From this perspective, it is not surprising that
long memory is defined in terms of the ACF or related conditions.

Before discussing different ways of defining long memory, the definition assumed in this
thesis is provided162

159 See Beran (1994, pp. 85ff.).
160 See Mandelbrot and Wallis (1968/2002, p. 248).
161 See Beran et al. (2013, p. 412).
162 Definition 2.3.1 is taken from Hassler (2019, Definition 2.4 on p. 22). Definition 2.3.1 is in accordance
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Definition 2.3.1
Let X = (Xt)t∈Z be a stationary stochastic process. Then X is called a long memory
process if its autocovariance function is not absolutely summable, i.e.,

∞∑
k=0

|γX(k)| = ∞. (2.25)

Otherwise, X is called a short memory process, i.e., if its autocovariance function satisfies
∞∑

k=0
|γX(k)| < ∞. o

Definition 2.3.1 states that decay of the autocovariance is so slow that the sum of its
absolute values fails to converge. Obviously, due to Definition 2.1.3, γX in Definition 2.3.1
can be replaced with ρX , which denotes the ACF of the process X.

Note that Definition 2.3.1 refers to the absolute value of the autocovariance function. From
(2.23) one could refer to the values γX(·) or ρX(·) itself.163

The reason for referring to the absolute values is as follows. Note that, by (2.6) and (2.7),
it yields

fX(0) = 1
2π

(
γX(0) + 2

∞∑
k=1

γX(k)
)

= σ2
ε

2πCIR2. (2.26)

If long memory were defined based on the values of γX instead of its absolute values,
(2.26) and Definition 2.1.6 would imply that long memory and persistence are the same
concepts. That is one would equate strong persistence with long memory and moderate
persistence with short memory. However, the dichotomic distinction between short and
long memory cannot adequately capture the third case of anti-persistence. Ultimately,
one is left with two opportunities: One encloses short memory with anti-persistence or
distinguishes between anti-persistence, short and long memory. The former case is not
preferable as it is less differentiated.164 The latter seems less intuitive from a semantic
perspective. For these reasons, the concepts of persistence (basically motivated by the
cumulative IRF) and memory are considered distinctively.165 Before the interrelationships
between long memory and persistence are considered in more detail, some other definitions

with Guégan (2005, Definition 3.1 on p. 117) and Palma (2007, Equation (3.1) on p. 40).
163 This is done, for example, by Graves et al. (2017, p. 1).
164 From a practical point of view, it seems reasonable to distinguish between anti-persistence and

moderate persistence as the former cannot be replicated by traditional time series models such as
causal and invertible ARMA processes; see (2.12). This case should be (as for long memory or strongly
persistent processes) paid attention to separately.

165 Note that Definition 2.3.1 defines a dichotomy, since the case of
∑∞

k=0 |γX(k)| = 0 would imply that
var(X) = γ(0) = 0 and thus Xt ≡ const. A constant process, however, seems less attractive from a
probabilistic point of view.
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of long memory in the literature are discussed briefly.

It is worth noting that a specific form or rate of decay of the ACF’s absolute values is not
mentioned in Definition 2.3.1. To circumvent this lack in the specification of γX (or ρX) in
(2.25), some authors propose a definition of long memory by imposing a specific structure
on the ACF. On the other hand, (2.26) motivates the definition of long memory along the
properties of the spectral density at the zero frequency. For these reasons, two alternative
definitions of long memory and their relationships to Definition 2.3.1 are considered in the
following.

Beran (1994) specifies a law of how the ACF decays. In his sense, a stationary stochastic
process (Xt)t∈Z is a long memory process if its ACF satisfies

ρX(k) ∼ cρk
2d−1 as k → ∞, (2.27)

where cρ > 0 and 0 < d < 1/2 are certain constants.166,167

It is important to note that (2.27) is an asymptotic property of the ACF, i.e., it states
that ρX decays asymptotically like k1−2d, but no information about the value of ρX can
be deduced from this expression. Therefore, the values of ρX(k) for small values of k are
left unexplained by (2.27), and in addition, the concrete values of ρX(k) may be quite
small.168 The important parameter is d as it specifies the rate of the ACF’s decay.

One can show that if a process’s ACF satisfies (2.27), then its absolute values are not
summable; hence, it is a long memory process in the sense of Definition 2.3.1.169 Thus,
(2.27) may be seen as a sufficient condition for a process to show long memory in the sense
of Definition 2.3.1.170

Due to (2.26), some authors propose a definition of long memory based on a process’s
spectral density.171 A stationary stochastic process (Xt)t∈Z may be called a long memory

166 See Beran (1994, Definition 2.1 on p. 42) and replace his parameter α with 1 − 2d. See also Brockwell
and Davis (1987, p. 456) and Guégan (2005, Definition 3.6 on p. 119).

167 The notation f(x) ∼ g(x), x → a means that limx→a f(x)/g(x) = 1, i.e., both functions show the
same asymptotic behavior as x → a.

168 See Beran (1994, p. 43).
169 See Palma (2007, p. 40, especially Theorem 3.1. (b)).
170 There are various expressions such as “long range dependence”, or “strong dependence” in the

literature to describe processes with a slowly decaying ACF, see, e.g., Beran (1994, Definition 2.1 on
p. 42). Apart from the mentioned nuances in the definition of long memory (that have to be treated
individually), these terms may thus be used interchangeably. The terms of “a process shows long
memory” or “a process is a long memory process” are used synonymously in this thesis.

171 As will turn out in Section 3.1.2, (2.28) is frequently used for estimating the long memory parameter.
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process if its spectral density fX satisfies

fX(λ) ∼ cf |λ|−2d as λ → 0, (2.28)

where cf > 0 is a certain constant and 0 < d < 1/2.172 Equation (2.28) states that the
spectral density has a pole at frequency λ = 0, i.e., fX(λ) → ∞ as λ → 0.

There are further generalizations of (2.27) and (2.28), replacing the constants cρ and cf

by functions of k and λ with specific asymptotic properties.173,174

The two alternative definitions of long memory stated in (2.27) and (2.28) are, however,
equivalent, i.e., a process satisfying (2.27) meets further (2.28) and vice versa.175,176 Thus,
(2.28) may also be seen as a sufficient condition for a process to be a long memory process
in the sense of Definition 2.3.1.

To summarize, Definition 2.3.1 is a well-established and quite general definition of long
memory. It provides, however, no information about how the autocovariance function or
ACF has to decay besides that the decay has to be sufficiently slow.

Furthermore, it is possible to derive closed-form expressions of the ACF or spectral density
(at least for its asymptotic behavior) for many stochastic processes, especially those
revealing a high empirical relevance.177 In such a case, (2.27) and (2.28) may be verifiable
immediately. Further, the parameter d in these equations offers a more sophisticated way
to characterize long memory. To see this, imagine two processes X and Y satisfying (2.27)
with corresponding parameters 0 < dX < dY < 1/2. Concerning Definition 2.3.1, both
processes are long memory processes. Regarding (2.27), the decay of the ACF of Y is even
slower than that of X; thus, one can say that Y shows long memory in a more pronounced
fashion than X. That is, the definition according to (2.27) or (2.28) allows, in contrast to
Definition 2.3.1, to distinguish the degree of long memory.

172 See Beran (1994, Definition 2.2) and replace his parameter β with 2d.
173 To be more precise, such functions are called “slowly varying at infinity”, see Palma (2007, Section

3.1 on pp. 40ff.) or Giraitis et al. (2012, Section 2.3 on pp. 18ff. and Sections 3.1 on pp. 33ff.) for
more details.

174 There are further generalizations that allow the pole of the spectral density stated in (2.28) to be at
another frequency then zero, see, for example Guégan (2005, Definition 3.5 on p. 119). In addition,
Guégan (2005, Section 3 on pp. 116ff.) gives an overview of a variety of long memory characteristics
and the relationships among them.

175 See Beran (1994, Theorem 2.1 on p. 43).
176 Note that this equivalence must not hold in the case of non-constant values cρ and cf mentioned above.

Then, equivalence may be proofed under additional assumptions about cρ and cf , see Footnote 173
and Palma (2007, Theorem 3.1 on p. 40).

177 See, e.g., the class of fractionally integrated ARMA processes introduced in Section 2.4.
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On the other hand, the hyperbolic decay of the ACF stated in (2.27) may be too special.
It is conceivable that the absolute values of the ACF are not summable, but the decay is
not given to be of this specific form.

The following lemma summarizes the relationships between the Definition 2.3.1, (2.27),
(2.28), and the concept of persistence.

Lemma 2.3.2
Let X = (Xt)t∈Z be an infinite moving average process as in (2.2), then it yields

i) If X is strongly persistent, it is a long memory process.

ii) If X is a short memory process, it is either anti or moderately persistent. Thus, a
short memory process cannot be strongly persistent.

iii) If X satisfies (2.27) or (2.28), it is strongly persistent.

iv) There are long memory processes not satisfying (2.27).

v) There are anti, moderately, and strongly persistent long memory processes.

Proof
See Appendix A.1.1

If long memory were defined by (2.28), the process would also show strong persistence,
i.e., (2.28) does not allow to distinguish between strong persistence and long memory.
Instead, by using Definition 2.3.1, the concepts of persistence and long memory can be
considered separately, see v) of Lemma 2.3.2. At the same time, iv) of the preceding
lemma states that Definition 2.3.1 is indeed more general than (2.27) since some long
memory processes are ruled out by (2.27) indicating that the law of decay stated in (2.27)
may be too restrictive.

The main class of long memory processes considered in the following section (namely
fractionally integrated ARMA processes) are highly relevant from an empirical point of
view. As will be shown in the following section, they satisfy the conditions (2.27) and
(2.28).178 Thus, Lemma 2.3.2 indicates that these processes are also strongly persistent.
This property may be why the distinction between strong persistence and long memory is
not rigorous in the literature. However, it should be kept in mind that the two concepts
generally refer to different properties of a stochastic process.
178 Particularly, the parameter d, as a measure to which extend the process shows long memory, builds

the focus of many empirical investigations in the literature, see Chapter 3.
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2.4 Discrete-Time Long Memory Models: ARFIMA
Processes

As seen in Section 2.1.5.1, all causal and invertible ARMA processes are moderately
persistent, and it follows directly from (2.10) that

∞∑
k=0

|γX(k)| ≤ C
∞∑

k=0
βk = C

1 − β
< ∞.

Consequently, ARMA processes are short memory processes and thus cannot replicate
Mandelbrot’s Joseph effect mentioned in Section 2.2. Granger and Joyeux (1980/2001) and
Hosking (1981) propose a generalization of the ARMA setting to encompass long memory
dynamics in the framework of ARMA processes. The resulting fractionally integrated
ARMA (ARFIMA) processes are intensively applied in the econometric literature.179 After
the formal definition is provided, the persistence and memory properties of these processes
are analyzed in more detail.180

Definition 2.4.1
Let p and q be non-negative integers, d ∈ R and (εt)t∈Z a white noise process with variance
σ2

ε . Then (Xt)t∈Z is called ARFIMA(p, d, q) process if for all t ∈ Z,

φ(B)Xt = θ(B)(1 −B)−dεt, (2.29)

where the polynomials ϕ(·) and θ(·) are as in Definition 2.1.8 and the fractional integrating
operator (1 −B)−d is defined by

(1 −B)−d =
∞∑

k=0
αkB

k with αk =
(
k + d− 1

k

)
=


(k + d− 1)!
(d− 1)!k! , if d ∈ Z \ {0}

Γ(k + d)
Γ(k + 1)Γ(d) , if d ∈ R \ Z,

(2.30)

and Γ(x) denotes the gamma function.181,182 For convenience, let (1 −B)0 ≡ 1. o

179 See Chapter 3.
180 Definition 2.4.1 is adapted from Palma (2007, p. 43), Hosking (1981, p. 170), Beran (1994, p. 60),

Granger and Joyeux (1980/2001, p. 324f.) and Hassler (2019, p. 95f.).
181 For details on the gamma function, see Appendix A.2.
182 Palma (2007, p. 43) uses the term “differencing operator” for (1−B)−d, but it seems more appropriate

to reserve this term for the inverse operator (1 −B)d as carried out, e.g., in Beran (1994, p. 61) or
Hosking (1981, p. 166). The expression “integrating operator” for (1 −B)−d is in accordance with
Granger and Joyeux (1980/2001, p. 324).
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In the case of d = 0 in Definition 2.4.1, the term (1 −B)−d disappears, and the resulting
equation is as in Definition 2.1.8. Thus, ARFIMA processes generalize the class of ARMA
processes. If the corresponding ARMA process is stationary and causal, the ARFIMA
process is likewise stationary and causal as long as d < 1/2.183 If the corresponding ARMA
process is invertible, so is the ARFIMA process as long as d > −1.184 For this reason, the
parameter range of d is assumed to be within these two values, i.e., −1 < d < 1/2.185 The
corresponding infinite moving average representation (2.2) can be calculated from a time
series expansion of the function ψ(z) = (1 − z)−dθ(z)/φ(z).186

As can be seen from Definition 2.4.1, ARFIMA processes can also be defined for values
d > 1/2. However, these processes are not stationary anymore. A well-known process that
falls within this class of non-stationary processes is an integrated ARMA process (often
denoted by ARFIMA(p, 1, q) or ARIMA(p, 1, q)), where d = 1. Let Y be such a process;
then by Definition 2.4.1, one knows that the process (1 −B)Yt = Yt − Yt−1 is a stationary
ARMA process, i.e., by taking first-order differences the process becomes stationary.187

Since ARMA processes are moderately persistent, their spectral density is positive and
bounded at zero, see (2.12). Therefore, ARMA processes are sometimes called I(0) (i.e.,
integrated of order 0) processes.188 In the case of Y , a full difference is needed to obtain
a stationary ARMA process. Thus, Y is often called I(1) process, unit-root process, or
difference stationary.189 ARFIMA processes with d /∈ {0, 1} generalize this notion and are
called I(d) processes, i.e., one has to apply the fractional difference operator (1 −B)d to
the process in order to obtain a stationary time series with bounded spectral density at
the zero frequency.190

Unit-root (I(1)) processes are often called to be permanent as their IRF does not decay
to zero. To see this, consider the integrated white noise process Xt = ∑t

k=0 εk. Clearly,
∂Xt/∂εt ≡ 1, i.e., the shock εt does not dissipate and, thus, affects the evolution of X
permanently.191

183 See Hassler (2019, Definition 6.1 on p. 104 and p. 104f.) and Palma (2007, Theorem 3.4 on p. 44).
184 Palma (2007, Theorem 3.4 on p. 44).
185 Hosking (1981, Theorem 2 on pp. 170f.) and Beran (1994, Definition 2.7 on p. 60) restrict the

parameter d to the interval (−1/2, 1/2) in order to ensure stationarity, causality and invertibility. As
stated by Hassler (2019, p. 105f. and Proposition 6.2 on p. 106), the condition d > −1/2 is, however,
not necessary to ensure invertibility. See further Palma (2007, Theorem 3.4 on p. 44 and Remark 3.1
on p. 46).

186 See Palma (2007, Theorem 3.4 on p. 44).
187 See Hamilton (1994, pp. 436f. and p. 444).
188 See Candelon and Gil-Alaña (2004, p. 344).
189 See Hamilton (1994, p. 436).
190 See Candelon and Gil-Alaña (2004, p. 344f.).
191 See, e.g., Hamilton (1994, p. 443).
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Often, it is enough to consider stationary ARFIMA processes with −1 < d < 1/2, since
by applying the difference operator (1 − B), one can shift the order of integration into
the stationary region (−1, 0.5).192 More specifically, let Xt be an ARFIMA(p, 1.3, q), then,
the process (1 − B)Xt is a stationary ARFIMA(p, 0.3, q) process.193 The focus of the
remaining chapter lies, therefore, on stationary ARFIMA processes.

2.4.1 Spectral Density, ACF and Persistence

The spectral density of an ARFIMA(p, d, q) process X is given by

fX(λ) = fARMA(λ) [2 sin(λ/2)]−2d , (2.31)

where fARMA is the spectral density of an ARMA process with the same polynomials φ(·)
and θ(·) as for X given in (2.29).194 It follows from (2.31) and (2.11) that195

fX(λ) ∼ fARMA(0)|λ|−2d = σ2
ε

2π
|θ(1)|2

|φ(1)|2
|λ|−2d as |λ| → 0. (2.32)

Thus, the spectral density of an ARFIMA process satisfies the sufficient condition (2.28)
for the process to show long memory if 0 < d < 1/2. Moreover, by Lemma 2.3.2, the
process is also strongly persistent, i.e., the CIR is infinite.

If d = 0, the basic ARMA process (a moderately persistent short memory process) is
obtained. If −1 < d < 0, (2.32) implies that fX(0) = 0. Consequently, according to (2.26)
and Definition 2.1.6, the process is anti-persistent as long as −1 < d < 0.

To determine the memory properties for an ARFIMA process with −1 < d < 0, a closer
look at the autocovariance function has to be taken. As with ARMA processes, closed-form
expressions of the ACF or autocovariance function of general ARFIMA processes are
complicated.196 For this purpose, an expression analogous to (2.10) is given, which specifies
the asymptotic behavior of the autocovariance function of an ARFIMA process as follows.

192 See Beran (1994, p. 61).
193 See Beran (1994, p. 61).
194 See Palma (2007, p. 47).
195 Note that the sinus function disappears due to a first-order Taylor approximation at zero. More

precisely, sin(x) ≈ x for small values of x.
196 Palma (2007, Section 3.2.4 on pp. 47f.) for a derivation of the ACF of a general ARFIMA(p, d, q)

process.
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The autocovariance function of ARFIMA process X satisfies197

|γX(k)| ∼ Ck2d−1 as k → ∞, (2.33)

where C ∈ R and d ∈ (−1, 0) ∪ (0, 1/2).198 It follows immediately from (2.33) that
∞∑

k=0
|γX(k)| < ∞ for −1 < d < 0, i.e., ARFIMA processes are short memory processes if

−1 < d < 0.199

Equation (2.33) highlights that the long-run correlation properties are mainly determined
by the parameter d. The parameters p and q and the corresponding autoregressive and
moving average coefficients may be used to model the short-term correlation structure
of a time series.200 Table 2.1 summarizes the memory and persistence properties of
ARFIMA processes. As this thesis focuses on long memory processes, the parameter range
0 < d < 1/2 is highly relevant for the considerations of the following sections and chapters.

Values of d
−1 < d < 0 d = 0 0 < d < 1/2

anti-persistence moderate persistence strong persistence
short memory long memory

Table 2.1: Persistence and memory properties of ARFIMA processes.

Some authors say that ARFIMA processes with 1/2 < d < 1 also have long memory, since
their IRF still converges to zero.201 However, since these processes are no longer stationary,
Definition 2.3.1 is no longer applicable to such processes. Consequently, the considerations
of this thesis, especially those of Chapter 4, concentrate on the stationary long memory
parameter range 0 < d < 1/2.

As mentioned in Section 2.1.5, ARMA processes can approximate every stationary process
arbitrarily well. This property contradicts not the need for ARFIMA processes as the
order of the polynomials φ(·) and θ(·) of the corresponding ARMA model need to be
extraordinarily high to mimic the slow decay of an ACF over certain periods.202 Thus,
197 See, Hassler (2019, Corollary 6.1 on p. 107 and Proposition 6.3 on p. 108) and Palma (2007, p. 48).
198 In case of 0 < d < 1/2, this results follows directly from the equivalence of (2.27) and (2.28) in

Section 2.3 together with (2.32). Note that the stated expression also yields if −1 < d < 0. The
constant C depends on the parameters of the autoregressive and moving average polynomials, the
white noise variance, and the parameter d, see, e.g., Palma (2007, p. 48).

199 Note that
∑∞

k=1 1/kp < ∞ if and only if p > 1, see Hassler (2019, Lemma 3.1(c) on p. 29). For
p = 1 − 2d, this corresponds to d < 0.

200 See Hosking (1981, p. 170) and Beran (1994, p. 61).
201 See, e.g., P. C. B. Phillips and Xiao (1998, p. 450) or Caporale, Gil-Alaña, and Lovcha (2016, p. 99).
202 See Brockwell and Davis (1987, p. 465).
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from an estimation perspective, the class of ARFIMA processes offers the advantage that
the long-run properties of the model can be captured by the single parameter d instead of
estimating many possible worse identifiable coefficients of a high-order ARMA process. In
practice, however, it seems impossible to decide whether a given finite time series with a
slowly decaying ACF is “best” described by a long memory or a possibly high-order short
memory process.

2.4.2 The ARFIMA(1,d,0) Process: A Closer Look

This section sheds light on a fractionally integrated AR(1) process. As one target of this
thesis is to investigate how model dynamics in a DSGE model change under long memory
dynamics, it seems reasonable to consider the ARFIMA(1, d, 0) model as it generalizes
directly the standard AR(1) setting which is itself contained as a special case if d = 0.203

By handling the two parameters % and d, different persistence regimes and their impact on
the model dynamics can be analyzed by keeping a tractable and quite simple structure of
the process contemporaneously. Therefore, the parameter % controls the exponentially fast
decaying short-run correlations, whereas the parameter d controls the long-run correlations.

Let (Xt)t∈Z be a zero-mean ARFIMA(1, d, 0) process given by

(1 − %B)Xt = (1 −B)−dεt or Xt = %Xt−1 + νt with νt = (1 −B)−dεt (2.34)

with |%| < 1 and −1 < d < 1/2. Again, (εt)t∈Z is assumed to be a Gaussian white noise
process with variance σ2

ε . The right-hand side of (2.34) states that an ARFIMA(1, d, 0)
process can be interpreted as an AR(1) process with respect to the ARFIMA(0, d, 0) process
ν = (νt)t∈Z instead to the white noise process (εt)t∈Z. The long memory properties are,
thus, captured fully by ν.204 The closed-form expressions of the autocovariance function
and the ACF are given in (A.10) and (A.11) of Appendix A.3, respectively. They are not
stated here, as their representation in terms of the Gaussian hypergeometric function is
rather complicated and not enlightening from the perspective of this section.

Instead, Figure 2.6 provides some insights into the autocorrelation structure and the
interrelation between the parameters % and d. Panel a) of Figure 2.6 shows how the first-
order autocorrelation of X may be determined by the short memory parameter % and the
long memory parameter d. In contrast to the AR(1) process considered in Section 2.1.5.3,
the first-order autocorrelation of an ARFIMA(1, d, 0) process depends on both parameters,
203 See Chapter 4 for the implications of an ARFIMA(1, d, 0) technology shock in the context of a DSGE

model.
204 An analogous deduction can be made from (2.29) for the general ARFIMA(p, d, q) process.
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i.e., although the parameter d controls for the asymptotic behavior of the ACF, it has an
impact on the ACF at small lags as well.

For small values of d (d < 0.2), ρX(1) depend almost linearly on % and d, i.e., by keeping
the value of ρX(1) constant, a reduction in the parameter % leads to an almost proportional
increase of d. For higher values of ρX(1), a strong increase in one parameter is needed to
keep ρX(1) constant, while, at the same time, the other parameter is reduced by a small
amount.

a) Contour plot of ρX(1) b) ACFs of various
ARFIMA(1, d, 0) processes

Figure 2.6: Autocorrelations of various ARFIMA(1, d, 0) processes. Panel a) shows a contour plot of the
first-order autocorrelation ρX(1). The red line divides the parameter space according to %+ d = 1, i.e., all
combinations of % and d to the left (right) of the red line yield %+ d < 1(> 1). Panel b) shows four ACFs
of various ARFIMA(1, d, 0) specifications. The values of % and d are chosen to yield ρX(1) = 0.75. The
AR(1) process thus has the persistence parameter % = 0.75. The pure long memory process has the long
memory parameter d = 0.4286. The light-blue line refers to an ARFIMA(1, d, 0) specification with % = 0.6
and d = 0.1586, and the red line refers to an ARFIMA(1, d, 0) specification with % = 0.1 and d = 0.4078.
These combinations of % and d are derived from a numerical solution of (A.13). Note the different scaling

of the axes.

The corresponding ACF plotted over time can be seen in Panel b) of Figure 2.6. There, four
ACFs of ARFIMA(1, d, 0) processes with ρX(1) = 0.75 are plotted for various combinations
of % and d. The slow decay of the ACF is present in all long memory cases, i.e., for all
processes with d > 0.

As can be seen from the light-blue line in Panel b) of Figure 2.6, the ACF of an
ARFIMA(1, d, 0) process with a low value of d mirrors the exponential decay of an
AR(1) process in the first (roughly) 10 periods, but decays much slower afterward. A
higher value of d increases the autocorrelations at smaller and higher lags sharply; see
the red line in Panel b) of Figure 2.6. The highest autocorrelation at all lags is obtained
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without the exponentially fast decaying short memory component, see the green line in
Panel b) of Figure 2.6.

Thus, combining short and long memory can reproduce various dependence structures
between a purely short memory AR(1) process and a purely long memory ARFIMA(0, d, 0)
process. This property may corroborate the usefulness of long memory processes. On the
other hand, it may be difficult to distinguish between short and long memory from an
empirical perspective. Especially for small values of d, the autocorrelations at higher lags
may appear insignificant as they are relatively small, see the light-blue line in Panel b) of
Figure 2.6.

As for the ACF, the IRF of an ARFIMA(1, d, 0) depends on both parameters. The
closed-form expression of the IRF is derived in the following lemma.

Lemma 2.4.2
Let (Xt)t∈Z be an ARFIMA(1, d, 0) process, as defined in (2.34). Then X has the infinite
moving average representation Xt =

∞∑
k=0

ψkεt−k with coefficients

ψk =
k∑

i=0
%i Γ(k − i+ d)

Γ(k − i+ 1)Γ(d) =
k∑

i=0
%k−i Γ(i+ d)

Γ(i+ 1)Γ(d) .

Proof
See Appendix A.1.2

By setting % = 0 in Lemma 2.4.2, the IRF of an ARFIMA(0, d, 0) process is simply given
by the sequence (αk)∞

k=0 given in (2.30).

Figure 2.7 illustrates the shape of various IRFs. Panel a) of Figure 2.7 shows the IRF
of various ARFIMA(0, d, 0) processes. Again, in the long run, a rather slow decay can
be observed. Compared to an AR(1) process with parameter % = 0.95, the decay of the
ARFIMA process’s IRF is faster in the first periods following the shock (roughly 60 periods
after the shock, depending on the concrete value of d). Similar to the AR(1) process, for
which a higher value of % increases the shock impact on all subsequent periods, a higher
value of d is associated with a more substantial shock impact on all subsequent periods.
Recall that, in contrast to an AR(1) process, the CIR of ARFIMA(0, d, 0) process with
d < 1/2 is infinite. Thus, the main proportion of the IRF is located at higher lags of the
IRF. Consequently, the IRF of the AR(1) process in Panel a) of Figure 2.7 eventually dies
out faster than the four IRFs of the other four ARFIMA(0, d, 0) processes.
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a) ARFIMA(0, d, 0) b) d = 0.1

c) d = 0.4 d) % = 0.95

Figure 2.7: Impulse-response functions of various ARFIMA(1, d, 0) processes. The shock occurs at period
20 in panels a) to c), see further Footnote 116. Panel a) shows the IRFs of an ARFIMA(0, d, 0) process
for various values of d. Panels b) and c) show IRFs of ARFIMA(1, d, 0) processes for various values of %
and d = 0.1 in panel b) and d = 0.4 in panel c). The legend of panel c) is the same as in panel b) and has
been omitted in panel c) for better readability. The yellow lines in panels a) to c) serve as a reference
and show the IRF of an AR(1) process with % = 0.95. Panel d) shows a three-dimensional plot of the
ARFIMA(1, d, 0) process with % = 0.95 over a grid of d values, where d takes values from 0 to 0.49 with a

step size of 0.01. Note the different scaling of the axes.
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Considering short and long memory in combination, see Panels b) and c) of Figure 2.7, in
some cases, one can see a hump-shaped IRF, i.e., the impact of a shock increases before it
slowly dies out. In other cases, the IRF decreases monotonically, similar to the one of an
AR(1) process. However, in the presence of long memory, the decline is slower in the long
run than for an AR(1) process.

The larger the value of d, the slower the long-run decay of the IRF for a fixed value of %.
The same holds for an increasing % while keeping the parameter d fixed. If a hump shape
occurs, it is more distinctive the higher the parameters % and d. The same can be seen in
Panel d), where there is no initial increase in the IRF for small values of d, but an even
steeper rise with growing values of d.

The graphically illustrated interdependence between the parameters % and d and the
relation to the IRF is pinned down more theoretically in the following lemma.

Lemma 2.4.3
Let |%| < 1 be the first-order autoregressive parameter and d ∈ (−1, 1/2) be the fractional
order of integration of the ARFIMA(1, d, 0) process X = (Xt)t∈Z. Then,

i) the IRF satisfies ψk = %ψk−1 + αk, with initial value ψ0 = 1 and αk = Γ(d+ k)
Γ(k + 1)Γ(d) .

ii) it yields, ψ1 = %+ d.

iii) for d 6= 0, ψk ∼ 1
(1 − %)Γ(d)k

d−1 as k → ∞.

iv) the IRF is positive if 0 < % < 1 and 0 < d < 1/2. In addition, if %+ d > 1, the IRF
is hump-shaped 205, and if %+ d < 1, the IRF decays monotonically.

Proof
See Appendix A.1.3

Lemma 2.4.3 and (2.33) highlight that the IRF of an ARFIMA(1, d, 0) process decays
asymptotically faster than its ACF. This observation further implies that in contrast to
AR(1) processes, the IRF and ACF are generally different. The preceding lemma further
highlights that the long memory parameter d controls not only the rate of decay of the
ACF and IRF. It has crucial short-run implications worth considering: If there is a unit
shock at time zero, Lemma 2.4.3 shows that this shock has an impact of % + d in the
following period compared to % in the reference AR(1) case.

205 In this thesis, a hump-shaped curve or function is characterized by at least one period of increasing
values at the beginning, followed by a monotonic decrease after the peak has been reached.
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However, as can be seen from Panel a) of Figure 2.6, the condition %+ d > 1 is associated
with a high first-order autocorrelation. In fact, if the first-order autocorrelation is assumed
to be less than or equal to 0.9, there is no combination of % and d that satisfies %+ d > 1.

a) Maximum value of the IRF b) Number of periods to reach the maximum value

Figure 2.8: Maximum value of an ARFIMA(1, d, 0) process’s IRF and the number of periods needed to
reach this maximum as a function of d and %. Panel a) shows the maximum value of the IRF, and Panel b)
shows the number of periods needed to reach this maximum value, each as a function of the parameters %
and d. These values are computed numerically over a grid with a step size of 0.01 and values of d ranging

from 0 to 0.49 and % ranging from 0.51 to 0.99.

Panel a) of Figure 2.8 shows that the maximum value of the IRF increases with increasing
d and %.206 The same yields for the number of periods to reach this maximum value, see
Panel b) of Figure 2.8. As one would expect from Lemma 2.4.3, the maximum value
corresponds to the initial value of ψ0 = 1 until the condition % + d > 1 is satisfied.
Correspondingly, the number of periods to reach the maximum value is equal to zero as
long as %+ d < 1.207 The cascaded shape seen in Panel b) implies that an increase in the
parameters % and d is not always associated with an extended rise of the corresponding
IRF. However, the IRF may reach a higher maximum value, as can be seen from Panel a)
of Figure 2.8. Considering the highest parameter constellation on the grid, i.e., d = 0.49
and % = 0.99, there is a shock amplification up to almost six times higher than the initial
shock, and it takes about 80 periods to reach this value.

Figure 2.9 summarizes the persistence properties of an ARFIMA(1, d, 0) process and the
findings of Lemma 2.4.3. The dotted right-upper corner is the parameter region with
a corresponding hump-shaped IRF. The diagonal red line in Figure 2.9 represents all
combinations of % and d for which %+ d = 1.

In summary, the extension of the short memory and moderately persistent AR(1) process
206 For the coloring of the three-dimensional bar diagrams shown in Figure 2.8, a Matlab code from

Struyf (2014), URL in list of references, was used.
207 This follows immediately from the IRF’s monotonic decrease in the case of %+d < 1; see Lemma 2.4.3.
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with long memory (and strong persistence) by an ARFIMA(1, d, 0) process can significantly
change the shape of the corresponding IRF and ACF. Although the long memory parameter
d determines the long-run properties of the process dynamics, it also has impacts on the
short-run correlations of the process. In the context of DSGE models, persistence mainly
refers to the parameter % and not to d. By including the long memory parameter d into
the existing DSGE framework, a more comprehensive range of persistence regimes within
the common stationarity assumption can be exploited; see the light-blue area of Figure 2.9.
The considerations of this section underline that the parameter d (as %) is a parameter of
persistence.208

long memory and
strong persistence

short memory and
anti-persistence

%+d<1

%+d>1

%+d=1

invertible, causal
and stationary region

d

%
short memory and
moderate persistence

−1 1/2

1/2

0

1

Figure 2.9: Characterization of the persistence and memory properties of an ARFIMA(1, d, 0) process in
the d-% plane.

Finally, Figure 2.10 shows some realizations of ARFIMA(1, d, 0) processes for various
values of d, keeping the autoregressive parameter constant and equal to % = 0.75 in all
panels. As the long memory parameter increases, the presence of stronger cyclicality and
local trends can be clearly seen from Figure 2.10.209

The following section introduces fractional Brownian motion (fBm) as a continuous-time
stochastic process with long memory. Some relations to ARFIMA processes are also
presented.

208 Hassler (2016, pp. 104 and 108) also refers to d as a measure of persistence, i.e., the larger the value
of d, the stronger the persistence (or memory) of the process.

209 The reason why the panels shown in Figure 2.10 are plotted over 1000 periods instead of 100 as in
Figure 2.2 is that the long memory features such as local trends and the non-periodic cyclicality are
better seen in longer time series.
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a) d = 0.1 b) d = 0.2

c) d = 0.3 d) d = 0.4

Figure 2.10: Paths of various ARFIMA(1, d, 0) processes. The underlying white noise process (εt)t∈Z is
assumed to be Gaussian with zero mean and variance 1. Furthermore, the realization of the white noise
process is identical for all panels. The autoregressive parameter is set to 0.75 in all panels and the long

memory parameter is set to d = 0.1, 0.2, 0.3, 0.4 in Panels a) to d), respectively.

2.5 From Discrete-Time to Continuous-Time: Frac-
tional Brownian Motion

In Chapter 3, it is illustrated that ARFIMA processes are widely applied in the econometric
literature and in time series analysis. Roughly twenty years before ARFIMA processes
were introduced by Granger and Joyeux (1980/2001) and Hosking (1981), Mandelbrot
and van Ness (1968) had initially proposed a continuous-time stochastic process called
fractional Brownian motion (fBm) to replicate the Joseph effect and Hurst phenomenon
mentioned in Section 2.2.210 In Section 2.2.1, fractional Brownian motion (fBm) was

210 See Mandelbrot and van Ness (1968, pp. 422f.).
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already mentioned, but this section is dedicated to providing an exact definition of fBm
and describing its properties more rigorously. Additionally, some relations to ARFIMA
processes mentioned in Section 2.4 are provided. This section further builds the basis for
the considerations of Chapter 5.

Before the formal definition of fBm is given, recall the definition of a standard Brownian
motion211,212

Definition 2.5.1
Let T = [0,∞) and (Ω,F ,P) be a probability space. A stochastic process W = (Wt)t∈T is
called standard Brownian motion or Wiener process if i) W0 = 0 almost surely, ii) the
increments Wt1 −Wt0, Wt2 −Wt1 , . . .Wtn −Wtn−1 are stochastically independent for all
t0, t1, t2, . . . , tn ∈ T with 0 = t0 < t1 < t2 < · · · < tn, iii) each increment Wt − Ws with
0 < s < t is normally distributed with zero expected value and variance t− s iv) almost all
paths of W are continuous. o

The restriction to T = [0,∞) in Definition 2.5.1 is common in the literature since the index
t is often interpreted as time for which it seems natural to start at zero, but sometimes
Brownian motions are defined over another index set such as T = (−∞,∞).213 The
increments of a Brownian motion are stationary as their distribution depends only on the
time-difference and t− s but not on t and s.214

There exist many definitions of a Brownian motion equivalent to Definition 2.5.1.215

Another yet useful definition refers to the class of Gaussian processes to which the
standard Brownian motion belongs.216 Gaussian processes are well-defined through their
expected value function and covariance function.217 Thus, a Gaussian process X = (Xt)t≥0

is a Brownian motion if and only if EXt ≡ 0 for all t ≥ 0 and γX(s, t) = min{s, t} for all
s, t ≥ 0.218

211 Definition 2.5.1 is adapted from Shreve (2004, Definition 3.3.1 on p. 94).
212 The term “W0 = 0 almost surely” used in the definition means that the complementary event (i.e.,

W0 6= 0) is contained in a set with probability zero, see Klenke (2013, p. 32). Ultimately, it states
that P(W0 = 0) = 1. Similarly, the term “almost all” means that the probability of the set containing
the non-continuous paths has again probability zero.

213 See, e.g., Mandelbrot and van Ness (1968, p. 423) or Doob (1953, p. 392).
214 See Shreve (2004, p. 466).
215 See, e.g., Shreve (2004, Theorem 3.3.2 on pp. 96f.) for different characterizations of a Brownian

motion.
216 A process X = (Xt)t≥0 is said to be a Gaussian process if the vector (Xt1 , . . . , Xtn) has a multivariate

Normal distribution for all 0 < t1 < t2 < · · · < tn for every finite n ∈ N, see Shreve (2004, Definition
4.7.1 on p. 172).

217 See Klenke (2013, Bemerkung 21.10 on p. 475).
218 See Klenke (2013, p. 475).
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Fractional Brownian motion appears to be a direct generalization of the standard Brownian
motion defined in Definition 2.5.1 and also belongs to the class of Gaussian processes.
A definition of fBm, again in terms of the expected value and covariance function, is as
follows.219

Definition 2.5.2
The continuous and real-valued Gaussian process BH = (BH

t )t≥0 defined on the probability
space (Ω,F ,P) is called fractional Brownian motion with Hurst index H ∈ (0, 1) if EBH

t = 0
for all t ≥ 0 and

γBH (s, t) = E(BH
s B

H
t ) = 1

2
(
s2H + t2H − |s− t|2H

)
for all s, t ≥ 0. (2.35)

o

The following lemma shows how fBm generalizes the standard Brownian motion defined
in Definition 2.5.1. Recall from Section 2.2.1 that the increment process of fBm is called
fractional Gaussian noise.

Lemma 2.5.3
Let BH = (BH

t )t≥0 a fractional Brownian motion in accordance with Definition 2.5.2.
Define the increment process XH

n =
(
XH

n

)
n∈N0

as XH
n = BH

n+1 − BH
n for n = 0, 1, 2, . . .,

then,

i) if H = 1/2, BH is a standard Brownian motion.

ii) if H 6= 1/2, γXH (k) ∼ H(2H − 1)k2H−2 as k → ∞. Thus, XH is a long memory
process if H > 1/2 and a short memory process if H ≤ 1/2.

Proof
See Appendix A.1.4

Lemma 2.5.3 illustrates that forH > 1/2, the increments of an fBm are positively correlated,
showing long memory, whereas the increments are negatively correlated, showing short
memory if H < 1/2. Furthermore, it follows from Part ii) of Lemma 2.5.3 that in the
case of H > 1/2, the increment process satisfies (2.27) with d = H − 1/2 ∈ (0, 1/2). This
relation hints at how an ARFIMA process with long memory parameter d and fBm with
parameter H are interrelated. There is, however, a more elaborate connection between
discrete-time ARFIMA processes and a continuous-time fractional Brownian motion in
the sense of the following convergence result.

219 This definition is adapted from Biagini et al. (2008, Definition 1.1.1. on p. 5).
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Let (Xt)t∈Z be an ARFIMA(p, d, q) process with d = H − 1/2 ∈ (−1/2, 1/2) and let
0 < r ≤ 1 and [N · r] be the integer part of N · r. Let c be a certain constant; then, it
yields

c−1/2N−H
[N ·r]∑
t=1

Xt ⇒ BH
r , (2.36)

as N → ∞.220,221

Equation (2.36) states that an appropriately scaled sum of an ARFIMA process converges
weakly to a fractional Brownian motion.222

To gain some further intuition of (2.36), Figure 2.11 depicts the left-hand side of (2.36) (let
it denoted by Y N

r ) as a function of r. From Panels a) and b) of Figure 2.11, it can be seen
clearly that Y N

r is a step function whose levels depend on an underlying ARFIMA(0, d, 0)
process with d = 0.25 that is not depicted. The intervals over which each step is constant
have length 1/N .223 Consequently, the intervals show a decreasing length with increasing
N . From Panel d) of Figure 2.11, it is easily imaginable that the limiting process is indeed
continuous and that it resembles visual path properties of an fBm with H = 0.75.224

Roughly speaking, it follows from (2.36) that fBm may be seen as an integrated ARFIMA
process. Thus, an ARFIMA process with long memory parameter d ∈ (−1/2, 1/2) may be
associated with the increments of an fBm with H = d+ 1/2.

Another perspective on fBm and its relationship to ARFIMA processes offers the following
integral representation of fBm originally proposed by Mandelbrot and van Ness (1968)225

BH
t = 1

Γ (H + 1/2)

(∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dWs + ZH

t

)
, (2.37)

220 See Marinucci and Robinson (1999, p. 115).
221 This convergence result is intended to give the reader an intuition of the relationship between

ARFIMA processes and fractional Brownian motion. Therefore, some mathematical details are
omitted for convenience. To be more precise, the arrow “⇒” means weak convergence in the space of
right-continuous functions whose left-limits exist. For details on this type of convergence, see, e.g.,
Marinucci and Robinson (1999, pp. 111f.) or Hassler (2019, pp. 132f.). The precise value of c depends
on d and can be found in Hassler (2019, p. 133).

222 Note that there are various extensions and variants of this convergence result. For an overview of
similar functional central limit theorems in this context, see Marinucci and Robinson (1999, pp. 115f.)
and Hassler (2019, pp. 132ff.).

223 See Hassler (2019, p. 132).
224 Due to space limitations, a figure showing some realizations of an fBm is omitted here but can

be found, e.g., in Enriquez (2004, pp. 221f.) or Rostek (2009, pp. 8ff.). Since the increments are
negatively correlated for H < 1/2, the path of a corresponding fBm appears to be jagged, as it is
characterized by quick changes in its direction. The greater the value of H, the smoother appears the
path of a corresponding fBm as the process tends to keep its direction for a while.

225 See Mandelbrot and van Ness (1968, Definition 2.1 on p. 423).
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a) N = 10 b) N = 20

c) N = 100 d) N = 1000

Figure 2.11: Convergence of appropriately scaled sums of an ARFIMA process to fractional Brownian
motion. Panels a) to d) show the left-hand side of (2.36) as a function of r for values of N = 10, 20, 100, 1000,
respectively. The underlying ARFIMA(0, d, 0) process has the long memory parameter d = 0.25 and is

not shown. For the sake of simplicity, the constant c given in (2.36) is set to 1.
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where
ZH

t =
∫ t

0
(t− s)H−1/2 dWs, (2.38)

(Wt)t∈R is a Brownian motion and Γ(·) refers again to the gamma function. Sometimes,
the process ZH given in (2.38) is called fractional Brownian motion instead of BH .226

Following the notation of Marinucci and Robinson (1999), the process BH is called type I
fractional Brownian motion and ZH type II fractional Brownian motion.227 As further
pointed out by Marinucci and Robinson (1999), the usage of the process ZH is more
common in the econometric literature, while BH is often in the focus of the probabilistic
literature.228

The properties of a type I and II fractional Brownian motion are similar since both
processes coincide with a standard Brownian motion if H = 1/2. In addition, both
processes have zero expected value, and their variances at time t are equal to |t|H .229

However, the increments of ZH are, in contrast to the one of BH , not stationary.230

As will turn out in Chapter 5, where long memory is analyzed in the context of a continuous-
time macro-financial model, the definition of stochastic differential equations with respect
to BH has drawbacks that seem difficult to overcome. Therefore, Chapter 5 uses an
approximation of the process ZH instead of using BH directly.231 Therefore, the rest
of this section outlines some properties of the processZH and its relations to ARFIMA
processes.

Another relation between the two processes BH and ZH can be deduced from the following
observation. From (2.37), it follows immediately for t2 > t1 > 0 that232

BH
t2 −BH

t1 = 1
Γ (H + 1/2)

(∫ t2

−∞
(t2 − s)H−1/2 dWs −

∫ t1

−∞
(t1 − s)H−1/2 dWs

)
. (2.39)

Each integral in (2.39) may be seen as a continuous-time infinite moving average repre-
sentation.233,234 A similar reasoning yields for (2.38), but, the continuous-time moving

226 See, e.g., Sowell (1990, p. 498) or Comte and Renault (1996, Definition 1 on p. 105). The process ZH is
also mentioned in Mandelbrot and Wallis (1968/2002, p. 424) and named Holmgren-Riemann-Liouville
fractional integral.

227 See Marinucci and Robinson (1999, pp. 113 and 116).
228 See Marinucci and Robinson (1999, pp. 118f.).
229 See Marinucci and Robinson (1999, pp. 144 and 116).
230 See Marinucci and Robinson (1999, p. 117).
231 See Section 5.1 for details.
232 See Mandelbrot and van Ness (1968, Footnote 8 on p. 424).
233 See Comte and Renault (1996, p. 103).
234 The similarities between (2.39) and a discrete-time infinite moving average representation (2.2) become
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average representation is truncated at zero (compare the lower integral bounds of (2.39)
and (2.38)). Interestingly, a close relationship exists between a truncated discrete-time
moving average representation of an ARFIMA process and the process ZH , as outlined in
the following.

Consider an ARFIMA(0, d, 0) process X with its infinite moving average representation
and the corresponding truncated-at-zero version X∗, i.e.,

Xt =
∞∑

k=0
αkεt−k and X∗

t =
t−1∑
k=0

αkεt−k, (2.40)

where the αk’s are given in Lemma 2.4.3. By (2.36), an appropriately scaled sum of the
full discrete moving average process X converges to BH . A similar result holds for the
truncated version ZH : Let X∗ be as in (2.40), and let H = d+ 1/2 and 0 ≤ r ≤ 1, then,
it yields235

c−1/2N−H
[N ·r]∑
t=1

X∗
t ⇒ ZH

r as N → ∞,

where c is a certain constant different from the one given in (2.36).236,237

Overall, there is a strong relationship between the discrete-time ARFIMA processes on
the one hand and the continuous-time fractional Brownian motion (either type I or II) on
the other hand. The parameters d and H are also closely related, since H = d+ 1/2. A
major difference between fBm and ARFIMA processes is that the increments of an fBm
are stationary, but the process itself is not. Therefore, an ARFIMA process may rather be
associated with the increments of fBm. On the other hand, ARFIMA processes appear to
be more flexible than fBm, since they can capture extended short memory dynamics with
their additional autoregressive and moving average parameters.

In Chapter 4, the implications of an ARFIMA technology shock in the context of a
discrete-time DSGE model are considered in more detail. Fractional Brownian motion is
used in Chapter 5 to introduce long memory (technology) shocks in a continuous-time
macro-financial model. Before these theoretical implications are derived, Chapter 3 is

apparent.
235 See Marinucci and Robinson (1999, p. 118) or Hassler (2019, Proposition 7.3 on p. 133).
236 The precise value of c can be found in Marinucci and Robinson (1999, p. 118) or Hassler (2019,

Proposition 7.3 on p. 133).
237 Note that the convergence results holds not only for ARFIMA(0, d, 0) processes but also for general

ARFIMA(p, d, q) processes as can be seen from Hassler (2019, Proposition 7.3 on p. 133). In the
case of an ARFIMA(p, d, q) process, one has to replace the white noise process ε in moving average
representation of X∗ given in (2.40) with the corresponding ARMA(p, q) process as outlined in Hassler
(2016, p. 114).
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devoted to underlining that long memory processes and ARFIMA processes are highly
relevant from an empirical perspective.





3
Long Memory in Economics and Econometrics

After the more theoretical perspective of the last chapter, the focus now shifts to an
empirical perspective. The purpose of this chapter is twofold. First, Section 3.1 briefly
discusses some estimation methods used in the empirical literature with their strengths and
weaknesses. This review of estimation methods makes it possible to evaluate and compare
different empirical findings in the literature. Second, the results of various empirical
investigations of long memory for selected economic variables are reviewed in Section 3.2.
More specifically, Section 3.2 reviews empirical findings of long memory in gross domestic
product (GDP) and related time series. Section 3.2.2 then gives three examples of strands
of literature that also deal with the presence of long memory.

The final part of the chapter, Section 3.3, provides a rationale for the existence of long
memory in economic time series.

This chapter illustrates that fractional integration and long memory are common in some
economic time series. Together with plausible mechanisms for why fractional integration
and long memory seem reasonable from a macroeconomic perspective, this paves the way
for introducing long memory dynamics into a theoretical macroeconomic model in the
next chapter.

3.1 On Estimating Long Memory

That long memory may be difficult to be detected in empirical investigations can already
be seen from its definition (see Definition 2.3.1). Given a limited data set, the number

65
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of calculable lags of the autocorrelation function (ACF) is also limited by the number of
observations. Hence, the defining condition of long memory,

∞∑
k=0

|γX(k)| = ∞, may not
be provable by simply calculating an estimator of the ACF and plugging this estimator
into the definition of long memory. Showing the series of the ACF’s absolute values to
be divergent may, thus, not be possible with any empirical methods at all. Ultimately,
an asymptotic property must be estimated along a finite data set. That this is, in
general, a challenging task from an empirical point of view seems obvious. For this
reason, the estimation techniques discussed in the literature focus on the estimation of a
long memory parameter as in (2.27), (2.28) or on the parameter d of an autoregressive
fractionally integrated moving average (ARFIMA) or related processes, instead of proving
the mentioned long memory definition.238 Nevertheless, the difficulties in distinguishing
clearly from an empirical perspective between various time series concepts such as trends,
structural breaks, strong short memory, and long memory remain.

There is a sizeable econometric literature that proposes new methods or evaluates, improves,
or revises existing methods for estimating long memory. A detailed review of all of these
techniques is beyond the scope of this thesis as the focus lies on the modeling perspective
carried out in Chapter 4 and Chapter 5. For this purpose, a general overview of some
frequently used estimation techniques in the literature is provided in the following. This
brief survey aims to allow for better classification and questioning of the empirical results
that will subsequently be presented in Section 3.2. The available estimation techniques can
roughly be grouped into heuristic approaches, semiparametric and parametric estimators.

3.1.1 The R/S Statistic as a Heuristic Estimator

The advantage of heuristic approaches is that they, besides stationarity, rarely make
additional assumptions regarding the data-generating process. In addition, they can be
calculated easily, and often serve as a rough indicator for the presence or absence of long
memory. However, as it is already evident from their name, they are less appropriate to
derive hard empirical facts from their results. A heuristic approach already mentioned is
the R/S statistic of Section 2.2. A value of H > 1/2 indicates the presence of long memory,
and the value of the long memory parameter d is then given by d = H − 1/2. Besides
the already mentioned weaknesses of the R/S statistic, Davies and Harte (1987) show
that the R/S statistic is very sensitive regarding the presence of short memory. Hence,

238 In the light of Lemma 2.3.2, this outlines that there is often no clear-cut distinction between strong
persistence and long memory in the literature, because the estimation techniques refer to conditions
that are sufficient for both strong persistence and long memory.
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it is unsuitable for discerning between long and short memory.239 Lo (1991) suggested
the replacement of the denominator (the S part) of the R/S statistic by a statistic that
incorporates a sum of weighted autocovariances in order to account for possibly present
short memory dynamics.240

However, as stated by Teverovsky et al. (1999), the method of Lo (1991) cannot distinguish
between short and long memory reliably.241 They carried out a Monte Carlo analysis and
showed that the method of Lo (1991) is systematically biased to indicate short memory,
even if the synthetic time series is a “true” long memory process with a high long memory
parameter of d = 0.4.242 Further, they argue that with the original R/S statistic, they
would have been able to carve out the short and long memory characteristics of the
considered processes more appropriately than with Lo’s method.243,244 Ultimately, they
advocate not using Lo’s method as the sole criterion for determining the presence or
absence of long memory.245 Overall, the suggestions proposed by Lo (1991) turned out not
to remedy the weaknesses of the R/S statistic. Contemporaneously, more sophisticated
estimation routines have been developed.246,247

3.1.2 Semiparametric Approaches: GPH, Local Whittle and
Related Estimators

In contrast to heuristic approaches, semiparametric long memory estimators assume a
little more structure behind the data-generating process, but they do not estimate a full
parametric model.248 The most discussed semiparametric estimators are the estimator of
Geweke and Porter-Hudak (1983) (GPH henceforth) and the Gaussian semiparametric
estimator, also called the local Whittle estimator.249 Both use (2.28) to estimate the long
memory parameter of a time series. Hence, only the properties of the spectral density
239 See Davies and Harte (1987, p. 96) and Lo (1991, p. 1288).
240 See Lo (1991, p. 1290).
241 See Teverovsky et al. (1999, Section 3.2 on pp. 219ff.).
242 See Teverovsky et al. (1999, p. 224).
243 See Teverovsky et al. (1999, p. 225).
244 The reason why the original R/S statistic delivers good results in the context of Teverovsky et al.

(1999) may be due to the length of the generated processes, which with 105 observations is longer
than usual economic time series.

245 See Teverovsky et al. (1999, pp. 225f.).
246 A more detailed discussion of the R/S statistic can also be found in Baillie (1996, Section 4.1 on

pp. 27f.). There, the Baillie (1996) claims that the R/S statistic does not seem to be a favorable
approach for estimating long memory.

247 There are several other heuristic approaches. A comprehensive overview can be found, e.g., in Beran
et al. (2013, Section 5.4 on pp. 409ff.).

248 See Diebolt and Guiraud (2005, p. 830).
249 See Diebolt and Guiraud (2005, p. 831) and Beran et al. (2013, Section 5.6.2 and 5.6.3 on pp. 441ff.).



68 Chapter 3. Long Memory in Economics and Econometrics

around the zero frequency are used in the estimation. Instead, a parametric approach
aims to estimate all parameters of an assumed model (e.g., an ARFIMA(p, d, q) process)
based on the data. Therefore, parametric estimators aim to estimate the whole spectral
density of the assumed model.

The advantage of the semiparametric estimators is that one obtains an estimator of the
long memory parameter without the need for specifying a possibly present complex short
memory structure. At the same time, not considering the dynamics of short memory is a
drawback, which will be illustrated in the following together with the Geweke-Porter-Hudak
(GPH) estimator.

The GPH estimator can be motivated from (2.28). By taking logarithms of both sides,
one obtains the asymptotic linear relationship

log (fX(λ)) ∼ log (cf ) − 2d log(λ), as λ → 0. (3.1)

The idea behind the GPH estimator is to replace the spectral density in (3.1) with its
empirical counterpart the so-called periodogram. For a stationary time series with values
X1, . . . , Xn, the periodogram In,X is defined by

In,X(λ) := 1
2πn

∣∣∣∣∣
n∑

t=1
Xte

−itλ

∣∣∣∣∣
2

, (3.2)

and can be used as an empirical estimator of the spectral density.250 If the periodogram
is evaluated at the Fourier frequencies λj = 2πj/n with j = 1, . . . , [(n− 1)/2], one can
derive the following linear regression equation out of (3.1) and (3.2)251

log(In,X(λj)) = β0 + d̂GP H(−2 log(λj)) + ξj for j = 1, . . . ,m, (3.3)

where the disturbances (ξj)j=1,...,n are independent and identically distributed (i.i.d.).252

250 See Beran et al. (2013, p. 441).
251 See Beran et al. (2013, p. 441).
252 Note that Geweke and Porter-Hudak (1983) used an equation similar to (2.31) instead of (2.28)

to motivate their estimator. Evidently, by taking logarithms of both sides of (2.31) and letting
λ → 0, one obtains log(fX(λ)) = C(−2d) log(2 sin(λ/2)), where C is a constant. For this reason,
the regression equation originally used in Geweke and Porter-Hudak (1983, Equation 2) is slightly
different from (3.3). However, since sin(x) ≈ x for small values of x (see Footnote 195), (3.1) follows
immediately. For calculating the GPH estimator in this thesis, (3.3) is used throughout. Doing so is
in line with D. W. K. Andrews and Guggenberger (2003, p. 680), Beran et al. (2013, p. 441) and
Hassler (2019, p. 172). As pointed out by D. W. K. Andrews and Guggenberger (2003, p. 680) and
Hassler (2019, p. 172), the main properties of the estimator remain unchanged whether the original
regression equation of Geweke and Porter-Hudak (1983) or (3.3) is used.
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The GPH estimator (d̂GP H) is then given as the slope of the regression line when
log(In,X(λj)) is regressed on (−2 log(λj)). The parameter m refers to the smallest m
Fourier frequencies that enter the regression and is called bandwidth parameter.253 Since
long memory refers to the property of the spectral density near the origin, it seems
reasonable to choose small values of m in order to exclude short memory contamination of
the higher frequencies in the regression (3.3).254

If one imposes additional regularity conditions as the Gaussianity of the data-generating
process and the restriction of the true parameter value d0 to the interval (−1/2, 1/2), there
is a limiting theory for the GPH estimator and the following can be proven to hold.255,256

If
m

n4/5 + (log(n))2

m
→ 0, n → ∞, (3.4)

then, it holds
√
m(d̂GP H − d0) −→D N

(
0, π

2

24

)
as n → ∞, (3.5)

where N(µ, σ2) refers to the normal distribution with mean µ and variance σ2. Note that
(3.4) states that m has to grow faster than (log(n))2 as n tends to infinity, but at the same
time, m must not grow faster than n4/5.257 Equations (3.4) and (3.5) together with (3.3)
uncover a major disadvantage of the GPH estimator: From (3.5), it seems desirable to
choose large values of m in order to decrease the variance of the estimator, however, as
stated above, it seems desirable to keep the value of m small in order to avoid short term
contamination of the regression equation.

Figure 3.1 illustrates this trade-off using a simulated ARFIMA(1, d, 0) process of length
n = 200 with long and short memory parameters equal to 0.3 and several values of
the bandwidth parameter m.258,259 Unsurprisingly, as the parameter m increases, more
frequencies enter the linear regression. Thus, an intensified scatter around the left-hand
end of the regression line due to the increasing short memory contamination can be
253 See Beran et al. (2013, p. 442) and Hassler (2019, p. 170).
254 See Geweke and Porter-Hudak (1983, p. 231).
255 See Hurvich, Deo, et al. (1998, Theorem 2 on p. 26) and Hassler (2019, Proposition 9.1 on pp. 170f.).
256 This result holds under a far more general model than fX(λ) ∼ cf |λ|−2d. Following D. W. K. Andrews

and Guggenberger (2003, p.675 and pp. 679f.), the constant cf can be replaced with an even function
g : [−π, π] → R, λ 7→ g(λ) covering the short memory properties of the process and it is assumed that
g is three times differentiable near zero with g′(0) = 0.

257 As stated by Geweke and Porter-Hudak (1983, p. 226), the condition (log(n))2/m → 0 is satisfied,
e.g., by m = Cnα, where C is a constant and 0 < α < 1. Overall, (3.4) is satisfied, e.g., by values of
m = Cnα with 0 < α < 4/5.

258 The value n = 200 was chosen as it is roughly the magnitude of available macroeconomic time series.
In quarterly steps, such a time series would cover fifty years.

259 All figures in this chapter were computed using Matlab code written by the author.
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observed, resulting in a biased estimator.260 This bias in the estimator is even stronger
the higher the short memory parameter is.261 The mentioned trade-off can be seen from
the lengths of the presented confidence intervals, which show a decreasing length with
increasing m, i.e., higher values of m lead to a smaller variance of an increasingly biased
estimator.262 Although the lower limits of all confidence intervals are greater than zero,
pointing towards significant long memory, they rarely provide convincing results since all
upper bounds exceed the long memory parameter’s threshold of 1/2. In addition, selecting
the bandwidth parameter m is challenging, and unfortunately, it affects the estimation
results in a non-negligible way.

The estimator with the smallest deviation from the true parameter value in Figure 3.1
is the one of Panel c). This value is optimal because it minimizes the mean squared
error of the GPH estimator.263 Note that this value is generally unknown as the whole
spectral density of the data-generating process and its second derivative is needed for its
calculation.264 In the end, the selection of m is a priori unclear and, to a certain degree,
arbitrary. Hence, the GPH estimator faces similar problems as the R/S analysis.

In order to gain some intuition for plausible values of m from an economic perspective, it
may be enlightening to consider which cycle lengths are included in the GPH regression.
If one assumes that the ARFIMA realization that is the basis of Figure 3.1 (not depicted)
represents an economic time series in quarterly frequency, the value of m = 14 in Panel a)
of Figure 3.1 is associated with the fourteenth frequency λ14 = 2π(14)/200, corresponding
to cycles of length 2π/λ14 ≈ 14.3 quarters or 3.6 years. Thus, by fixing m = 14, all cycles
longer than 3.6 years enter the calculation of the GPH estimator. By doing this, it is
assumed that there are no short-run influences on the estimator from all cycles longer
than 3.6 years.265 However, business cycle frequencies discussed in the literature cover
time spans ranging from 1.5-2 years up to 8 years.266 Thus, it may be hard to argue for

260 The values of m in Panels a),b) and d) are the same as in Geweke and Porter-Hudak (1983, Table 2
on p. 230).

261 See Hurvich, Deo, et al. (1998, Table 1 and 2 on pp. 32f.).
262 See Beran et al. (2013, p. 442).
263 The value of m = 30 was taken from Hurvich, Deo, et al. (1998, Equation 9 on p. 24 and Table 1 on

p. 32).
264 See Hurvich, Deo, et al. (1998, Equation 9 on p. 24 and p. 33). In Figure 3.1, the theoretical spectral

density of an ARFIMA(1, d, 0) process is known from (2.31).
265 Note that increasing values of m accompany the inclusion of cycles with shorter lengths in the GPH

regression. The estimators, postulated in Panels b) to d) in Figure 3.1, hold under the assumption of
no short-run influences of even shorter cycles than 3.6 years.

266 Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 647 and Fig. 21 on p. 647) consider
frequencies ranging from π/16 ≈ 0.196 to π/4 ≈ 0.785 corresponding to cycle lengths of 8 and 2 years,
respectively. Schüler (2018, p. 14) considers the extended region from 1.5 to 8 years, where a cycle
length of 1.5 years corresponds to a frequency of π/3 ≈ 1.047.
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a) m =
[
2000.5] = 14;

CI for d̂GP H : [0.04, 0.72]

b) m =
[
2000.6] = 24;

CI for d̂GP H : [0.12, 0.63]

c) m = [200α] = 30, with α = log(30)
log(200) ;

CI for d̂GP H : [0.11, 0.57]

d) m =
[
2000.7] = 40;

CI for d̂GP H : [0.2, 0.6]

Figure 3.1: Geweke, Porter-Hudak estimator of an ARFIMA(1, d, 0) process with autoregressive parameter
% = 0.3 and long memory parameter d = 0.3 for various values of the bandwidth parameter m. These
values are m = 14, 24, 30, 40 in panels a) to d), respectively. The length of the simulated ARFIMA process
is n = 200 periods, and the corresponding realization is the same in all panels. The value of the GPH
estimator is given as the slope of the regression line. The confidence intervals (CI) are at the 95% level

and were calculated from (3.5).
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neglecting any short-run influence of cycles longer than 3.6 years.267 In addition, it may
be critical that the estimation of the long memory parameter includes only 14 out of 200
data points.268 However, to take only cycles longer than 8 years into account, an even
smaller number of ordinates has to be used.

There is vast literature suggesting improvements of the GPH estimator, including i)
dropping some low frequencies from the regression equation269, ii) a data-driven choice
of the bandwidth parameter270 or iii) methods of bias reduction.271,272 Undeniably, these
results lead to improvements in the estimation of the long memory parameter; however, a
closer look reveals that the advantageous properties of the proposed improvements often
only come into play with large sample sizes (at least 500 observations), which are usually
not available in macroeconomic contexts.273 Thus, the difficulties of the GPH estimator
arise when it is applied to relatively short time series rather than being inherent in the
methodology. For macroeconomic purposes, however, the GPH estimator seems unsuitable.

Another semiparametric estimator proposed by Robinson (1995b) is the so-called Gaussian
semiparametric estimator or local Whittle estimator.274 Like the GPH estimator, the local
Whittle estimator uses the smallest m Fourier frequencies for the estimation. However,
instead of doing a linear regression, the Whittle estimator minimizes an objective function,
which approximates the maximum likelihood function in the frequency domain. To be
more precise, the local Whittle estimator d̂LW is defined by275

d̂LW := arg min
d∈Θ

log
 1
m

m∑
j=1

In,X(λj)
λ−2d

j

− 2d
m

m∑
j=1

log(λj)
 , (3.6)

267 A similar deduction was made by Sowell (1992b, p. 298) when discussing the empirical findings of
Diebold and Rudebusch (1989), see Section 3.2.1 for more details. See also Baillie (1996, p. 33).

268 See Beran (1994, p. 98).
269 See, e.g., Robinson (1995a).
270 See, e.g., Hurvich and Beltrao (1994).
271 See, e.g., D. W. K. Andrews and Guggenberger (2003).
272 Note that this list is not exhaustive. Further improvements suggested by Velasco (1999a) extend

the interval of the true parameter d to the non-stationary area, i.e., d > 1/2. A rich list of related
literature can also be found in Beran et al. (2013, p. 440).

273 The results of Hurvich and Beltrao (1994, Table II on p. 298) indicate that the original GPH estimator
performs best in terms of a small mean squared error when the true long memory parameter is 0.49
and if there are only minor short memory contaminations, i.e., the autoregressive parameter is 0 or 0.3.
Further, their approach outperforms the GPH estimator if the sample size contains 3000 observations,
see Hurvich and Beltrao (1994, p. 295). The results of D. W. K. Andrews and Guggenberger (2003,
pp. 697f.) indicate that their estimator has a smaller root-mean-square error compared to the GPH
estimator for samples of sizes 512 and 2048; the reverse is true for samples of sizes 128.

274 The notion “local Whittle estimator” seems to be more common nowadays.
275 See Robinson (1995b, p. 1632f.) but replace the parameter H in his formulas with d+ 1/2, Hassler

(2019, p. 176), and Beran et al. (2013, p. 445f.).
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where Θ =⊂ (−1/2, 1/2) is the range of admissible values of d over which the minimum
is taken, and m is the bandwidth parameter with the same meaning as for the GPH
estimator. Note that there is no closed-form representation of the local Whittle estimator;
thus, the minimization must be done numerically.276 However, as for the GPH estimator, an
asymptotic theory can be derived for d̂LW . Especially, given certain regularity conditions,
it holds that277

√
m(d̂LW − d0) −→D N

(
0, 1

4

)
as n → ∞. (3.7)

By a direct comparison between (3.5) and (3.7), the smaller asymptotic variance and,
hence, the higher efficiency of d̂LW compared to d̂GP H becomes evident. However, since the
choice of the bandwidth parameter m is again to a large extent arbitrary, and the value of
the estimator is quite sensitive to this choice, it is unclear whether d̂LW is preferable to
d̂GP H .278

Similarly, as for the GPH estimator, a vast literature suggests generalizations and im-
provements of the local Whittle estimator. The range of admissible values of the true
long memory parameter can be extended to the interval (−1/2, 3/4) yielding the same
limiting distribution as in (3.7).279 This interval can further be extended to (−1/2, 1], but
the limiting distribution changes at values 3/4 and 1.280 Furthermore, knowledge of the
true parameter value is required before applying the aforementioned Whittle estimators,
which is overall rather disadvantageous as the estimation aims to carry out knowledge
about the true parameter value.281

By modifying (3.6), Shimotsu and P. C. B. Phillips (2005) suggested a slightly different

276 See Robinson (1995b, p. 1632).
277 See Robinson (1995b, Theorem 2 on p. 1641). For details on the necessary regularity conditions, see

Robinson (1995b, Assumption A1’ to A4’ on pp. 1640f.).
278 By carrying out a Monte Carlo analysis, Robinson (1995b) compared his estimator with the GPH

estimator. Overall the results are mixed. Dependent on the choice of m, he found his estimator to be
more biased than the GPH estimator when applied to a purely long memory process, see Robinson
(1995b, p. 1654). On the other hand, he found his estimator to be superior if the true parameter
value is near the admissible borders of H = 0.1 or d = −0.4 or H = 0.9 or d = 0.4, see Robinson
(1995b, p. 1654). He further considered the possibility of short-term contamination and found the
GPH estimator to be less biased than his estimator in the long memory region (d > 0 or H > 1/2),
see Robinson (1995b, p. 1659).

279 See Velasco (1999b, Theorem 3 on p. 94). He further suggested a modified estimator applicable to
all values of d > −1/2. In this modified version, the periodogram In,X in (3.6) is replaced with a
tapered periodogram, see Velasco (1999b, Sections 5 and 6 on pp. 94ff.) for details.

280 See P. C. B. Phillips and Shimotsu (2004, Theorems 4.1 and 4.2 on pp. 662f.).
281 Prior knowledge is needed as it is commonly assumed in the derivations of the estimators that the

true parameter d0 belongs to the interval of admissible values Θ, see Robinson (1995b, Assumption
A1 on p. 1633 and Assumption A1’ on p. 1640),Velasco (1999b, Theorem 2 and 3 on pp. 93f.) and
P. C. B. Phillips and Shimotsu (2004, Theorems 3.1 and 3.2 on p. 660 and Theorems 4.1 and 4.2 on
pp. 662f.).
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estimator and called it exact local Whittle estimator (ELW). For this estimator, the
asymptotic relationship (3.7) remains true as long as the interval of admissible values for
d has a length smaller than 9/2.282 An interval satisfying this condition is for example
Θ = [−1, 3.5].283 As this interval is rather long and seems to cover the most relevant cases
from an empirical perspective, the prior knowledge regarding the true parameter d0 seems
less demanding for the ELW than for the local Whittle estimator. Based on a Monte Carlo
simulation, the authors showed that their exact local Whittle estimator outperforms the
local Whittle estimator and the tapered version suggested by Velasco (1999b) mentioned
in Footnote 279.284

On the other hand, applying the ELW requires that the mean of the time series is known,
an assumption that is rarely fulfilled in an empirical application.285 A remedy for this
drawback was proposed by Shimotsu (2010). He suggested replacing the ELW with a
two-step estimation approach that is able to account for unknown mean and polynomial
trends in the time series as well. However, the burden of this higher flexibility is a reduced
range of admissible parameter values.286

An estimator with a similar mean squared error as the ELW was proposed by Abadir,
Distaso, et al. (2007). Their fully extended local Whittle estimator (FELW) is based
on a modified periodogram incorporating a certain correction term.287 Under certain
regularity condition, they showed (3.7) to hold as long as the range of admissible values
Θ ⊂ [−3/2,∞) and the true parameter d0 is not a so-called “halfpoint”288, i.e., d0 6= p−1/2,
for p = −1, 0, 1, 2, . . .289 In contrast to the ELW, the length of Θ is not restricted when
using the FELW. Consequently, the FELW allows to cover a wide range of admissible
values. However, the exclusion of the half-points again requires prior knowledge of the
true parameter value, which is generally not available a priori.

Abadir, Distaso, et al. (2007) carried out a Monte Carlo simulation and proposed a value
for the bandwidth parameter of m = n0.65 for large (n ≥ 500) sample sizes.290 This value
282 See Shimotsu and P. C. B. Phillips (2005, Theorem 2.2 on p. 1897).
283 See Shimotsu and P. C. B. Phillips (2005, p. 1894).
284 See Shimotsu and P. C. B. Phillips (2005, Section 3 on pp. 1897ff.). Especially, the ELW outperforms

the competing estimators in terms of a significantly lower mean squared error for true parameter
values smaller than −1/2 and greater than 1, see Shimotsu and P. C. B. Phillips (2005, Tables 1 and
2 on p. 1898).

285 See Shimotsu and P. C. B. Phillips (2005, Remark 2 on p. 1895).
286 The range of admissible values is given by Θ = (−1/2, 2) \ ((−ε, ε) ∪ (1 − ε, ε)) for arbitrarily small

values of ε, see Shimotsu (2010, Assumption 6c, Theorem 5a and 5b on p. 514).
287 See Abadir, Distaso, et al. (2007, Section 2.1 on pp. 1355ff.) for details.
288 Abadir, Distaso, et al. (2007, p. 1366).
289 See Abadir, Distaso, et al. (2007, Theorem 2.4 and Corollary 2.1 on pp. 1360f.).
290 See Abadir, Distaso, et al. (2007, p. 1363).
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seems to be acceptable for small samples (n = 125), too, as it overall produces a smaller
mean square error than the value of m = n0.5.291 They further give a warning not to
choose the bandwidth parameter too high. More specifically, they do not recommend a
value of m = n0.8 for the estimation of d.292 Overall, a suitable region for the bandwidth
parameter seems to be [n0.65, n0.8). However, this region is again incompatible with the
economic perspective for small sample sizes stated above. This problem arises for the
FELW, all semiparametric Whittle-based estimators, and the GPH estimator. Recently,
Cheung and Hassler (2020) revealed another weakness of the FELW estimator. A Monte
Carlo simulation showed that the objective function used by Abadir, Distaso, et al. (2007)
is not continuous at the half-point d0 = 1/2, i.e., the estimator is not reliable if the true
parameter is near 1/2. Neither are confidence intervals constructed from the estimator
reliable if the true parameter is between 1/4 and 3/4.293,294 The value d = 1/2 is of
particular interest from an econometric perspective, as it marks the edge point between a
stationary process with a high degree of long memory and a non-stationary process.295

Overall, the authors found tests based on the local Whittle estimator and the two-step
ELW not reliable if the true parameter is in a neighborhood of 1/2.296

In summary, both estimators, the GPH estimator, and the semiparametric Whittle esti-
mator, with their various extensions and modifications, have significant drawbacks. The
undesirable effects of the choice of the bandwidth parameter accompany the advantage
of neglecting the short-range influences in the estimation. The choice of the bandwidth
parameter seems hardly consistent with the economic perspective of which cycle lengths
contribute to long-range effects in time series, especially in short ones common in macroe-
conomic contexts. Furthermore, not taking the short-range influences into account is a
double-edged sword. On the one hand, it simplifies the estimation, but on the other hand,
it introduces a substantial bias in the estimated long memory parameter if (substantial)
short memory components are present. One possible solution to this problem is to specify

291 See the column “MSE” of Tables 1 and 2 of Abadir, Distaso, et al. (2007, pp. 1362f.).
292 See Abadir, Distaso, et al. (2007, p. 1364).
293 See Cheung and Hassler (2020, pp. 371f. and p.376).
294 A remedy for this weakness of the FELW is provided by Cheung (2020). There, the author proposes

to shift the discontinuity of the objective function by fractional differencing the time series away from
the minimizer of the objective function, see Cheung (2020, p. 3). Doing so has a major effect on the
value of the estimator. As illustrated by Cheung (2020), the point estimators of the five-year treasury
yield spread over the federal funds rate and the Chicago Board Options Exchange Standard & Poor’s
100 volatility index increase from 0.4999 to 0.6812 and 0.7118, respectively, if the discontinuity is
taken into account, see Cheung (2020, p. 3).

295 See Section 2.4.
296 See Cheung and Hassler (2020, p. 381). Further, tests based on the tapered estimator mentioned

in Footnote 279 seems to be more reliable in larger sample sizes (n > 200), see again Cheung and
Hassler (2020, p. 381).
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and estimate the process’s entire short and long-range components, i.e., to estimate a
complete parametric model. Such estimators are called parametric estimators; two of them
are discussed in the following section.

3.1.3 Parametric Maximum-Likelihood and Whittle Estimators

A commonly used estimation technique in statistics is maximum likelihood (ML) estimation,
which can also be applied in the context of long memory processes. Doing so implies the
assumption of a specific parametric model behind the data-generating process. This section
discusses the properties of two parametric (ML-based) estimators along with the estimation
of an ARFIMA(p, d, q) process. Let X1, . . . , Xn be values of a stationary Gaussian time
series with zero mean.297 The target of ML estimation is to estimate an ARFIMA(p, d, q)
model with given values p and q, i.e., the order of the autoregressive and moving average
polynomial, respectively.298 Overall, it follows that p+q+2 parameters have to be estimated:
the parameters of the autoregressive and moving average polynomials φ1, . . . , φp, θ1, . . . , θq,
the order of fractional integration d and the variance of the innovations σ2

ε . To simplify
notation, the (p + q + 1)-dimensional vector ϑ is defined ϑ := (φ1, . . . , φp, θ1, . . . , θq, d).
Due to the assumed Gaussianity, the vector X = (X1, . . . , Xn) has a common probability
density given by299

pX,n

(
ϑ, σ2

ε

)
= (2π)−n/2det

(
ΣX

(
ϑ, σ2

ε

))−1/2
exp

{
−1

2X
T ΣX

(
ϑ, σ2

ε

)−1
X
}
, (3.8)

where ΣX (ϑ, σ2
ε) refers to the covariance matrix depending on the parameters of the

assumed model. The ML estimator, denoted by ϑ̂ML and σ̂2
ε ML, is the parameter vector

that maximizes (3.8). Equivalently, one often minimizes the negative logarithm of (3.8)
instead, i.e., (

ϑ̂ML, σ̂
2
ε ML

)
:= arg min

ϑ,σ2
ε∈Θ

Ln

(
ϑ, σ2

ε

)
,

where Ln (ϑ, σ2
ε) = − log (pX,n (ϑ, σ2

ε)) is the negative log-likelihood function and the
minimum is taken over a certain parameters space Θ ⊂ Rp+q+2.300 As for the local
Whittle-based estimators mentioned in the previous section, this optimization exercise is
carried out numerically. Further, the ML estimator has desirable properties. Given the

297 The values X1, . . . , Xn may be seen as the data, and a possible existing mean can be removed by
subtracting the sample mean from each observation.

298 In practice, the values p and q are unknown a priori. Below, commonly used information criteria are
discussed for an objective choice of p and q.

299 See Beran et al. (2013, p. 417).
300 One can further drop the constant term n/2 log(2π) in − log

(
pX,n

(
ϑ, σ2

ε

))
, see Beran et al. (2013, p.

417).
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stationarity, Gaussianity, and additional regularity conditions, the estimator converges
almost surely to the true parameter value and is asymptotically normally distributed.301,302

The ML estimator has been shown to be superior to other semi-parametric estimators,
including the GPH and the local Whittle estimator discussed in Section 3.1.2.303 Major
drawbacks of the ML estimator are the restriction of the parameter range of d to the
interval (−1/2, 1/2), i.e., in contrast to already discussed local Whittle-based estimators,
it covers not the non-stationarity region with d > 1/2. Additionally, the demanding
computational calculation of the covariance matrix and its inverse in (3.8) and the possible
misspecification of the assumed model appear to be rather disadvantageous. Concerning
the covariance matrix, (A.10) in Appendix A.3 may underline that the autocovariance
function of a quite simple ARFIMA(1, d, 0) process is a rather complex expression. Thus,
it is easily imaginable that this is true for higher-order ARFIMA processes as well.304

The problem of misspecification arises when the parameters of the “wrong” model are
estimated. For example, assume that the data is generated from an ARFIMA(1, d, 1)
process, but the ML estimator is applied to estimate an ARFIMA(1, d, 0) process. The
obtained estimators of the ARFIMA(1, d, 0) process may be substantially biased compared
to the true parameters of the underlying ARFIMA(1, d, 1) process. In order to avoid
misspecification of the model in practice, the ML estimator is applied to the data for
various combinations of p and q. Then, a score value or information criteria can be
calculated for each model, which allows picking out the “best” model according to this
value. Two frequently used criteria are the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) (or Schwarz information criteria). Such a criterion is
needed since, in general, one would expect that a model with more parameters outperforms

301 This result was proven for the case of 0 < d < 1/2 by Dahlhaus (1989, Theorem 3.2 on p. 1756) and
for the case of −1/2 < d < 1/2 by Lieberman et al. (2012, Theorem 1 on pp. 461f.). Note that the
results of Lieberman et al. (2012) are proved under more general assumptions. For ARFIMA(p, d, q)
processes, Assumption 5 of Lieberman et al. (2012, p. 460) holds only for the case of −1/2 < d < 1/2
if the data is demeaned with the sample average. This was stressed by Hassler (2019, p. 152). Details
on the regularity conditions can be found in Dahlhaus (1989, pp. 1750f.), Dahlhaus (2006, p. 1045)
and Lieberman et al. (2012, pp. 459ff.).

302 Recall Footnote 212 for a definition of the term “almost surely”.
303 J. Smith et al. (1997, pp. 510ff.) carried out a Monte Carlo simulation and found the ML estimator

superior to the GPH estimator for various ARFIMA specifications and under the condition of a known
and unknown mean. Baillie and Kapetanios (2016, pp. 371f.) shows the superiority of the ML to the
local Whittle estimator.

304 Sowell (1992a, Section 4 on pp. 173ff.) provided closed-form expressions of the autocovariance function
of an ARFIMA(p, d, q) process for his ML estimatior. Hassler (2019, p.110), however, deemed them
erroneous as they failed to replicate the formulas for an ARFIMA(0, d, 1) process. Whether this
criticism is justified will not be examined in the context of this thesis. Closed-form expressions of
moments of ARFIMA processes can additionally be found in Palma (2007, pp. 47f.).



78 Chapter 3. Long Memory in Economics and Econometrics

a model with fewer parameters.305 To be more precise, it is expected that the ML estimator
of the innovations’ variance (σ̂2

ε ML) tends to be smaller the more parameters (degrees of
freedom) are available in the model to be estimated.306 Consequently, one can think of
information criteria as introducing punishment terms for models containing too many
parameters.307 Consider, for example, the AIC and BIC, which are defined by308,309

AIC := n log
(
σ̂2

ε ML

)
+ 2(p+ q + 1) and BIC := n log

(
σ̂2

ε ML

)
+ (p+ q + 1) log(n),

where p and q refer to the orders of the corresponding autoregressive and moving av-
erage polynomials, respectively. Thus, model identification is done by estimating an
ARFIMA(p, d, q) model for different values of p and q with their corresponding information
criteria. The best model from this battery of models is the one with the smallest infor-
mation criterion.310 A disadvantage of this procedure is that both criteria may identify
different models to be “best”.311 By carrying out a Monte Carlo simulation Bisaglia
(2002) founds that in the context of ARFIMA models, the BIC criterion works better in
identifying the correct model than the AIC.312

Nevertheless, the disadvantageous properties of the ML estimator, such as not covering the
non-stationarity region and the difficulties in calculating the covariance matrix ΣX (ϑ, σ2

ε)
and its inverse matrix in (3.8) remain.313 Therefore, approximations to (3.8) are proposed
in the literature. Such an estimator is the so-called (parametric) Whittle estimator.314

The idea behind the Whittle estimator is to switch from the time domain of a process
expressed in terms of covariances to the spectral domain expressed in terms of the spectral
density. The local Whittle estimator discussed in Section 3.1.2 uses only the asymptotic
property of the spectral density (2.28) for the m lowest frequencies. Instead, the objective
function to be minimized by the parametric Whittle estimator includes the entire spectral
density of a fully specified parametric model, thus allowing the simultaneous estimation of
any short memory dynamics that may be present.315 The parametric Whittle estimator
305 See Brockwell and Davis (1987, p. 280).
306 See Brockwell and Davis (1987, p. 280).
307 See Brockwell and Davis (1987, p. 280).
308 See Bisaglia (2002, pp. 40f.).
309 There are different formulations of the AIC and BIC in the literature. For example, Silverberg and

Verspagen (2003, Footnote 1 on p. 273) use a formulation regarding the likelihood function.
310 See Bisaglia (2002, p. 40).
311 Examples can be found in the empirical review given in the next section.
312 See Bisaglia (2002, pp. 42f.). This result seems to be in line with a vast literature dealing with model

selection criteria in the presence of long memory; a brief literature review on this topic can be found
in Bisaglia (2002, p. 34).

313 Hassler (2019, pp. 153f.) lists additional rather disadvantageous properties of the ML estimator.
314 See Beran (1994, p. 109) and Palma (2007, pp. 78f.).
315 The details of the objective function are omitted here. Several variants of Whittle approximations to
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shares the nice asymptotic and distributional properties of the ML estimator but can be
extended easily to the non-stationary region d > 1/2.316 Thus, the Whittle estimator
remedies the major disadvantages of the ML estimator.317

3.2 Empirical Findings

3.2.1 Output, GDP and Related Time Series

There has been an intense debate in the macroeconomic literature as to whether macroeco-
nomic time series are best described as stationary time series varying around a deterministic
trend or as a unit-root (I(1)) process. Fractionally integrated (I(d)) processes allow for a
more nuanced view of this issue. By estimating the fractional order of integration, one
can further draw insights into which model may be appropriate for an economic time
series. More specifically, let Xt be the logarithm of a quarterly time series of the GDP
and Yt = (1 − B)Xt = Xt − Xt−1 the corresponding first-order difference process. Note
that Y can be regarded as the GDP growth rate series.318 By estimating the order dY of
integration of Y , one can draw some insights about the properties of X: If dY is about zero
this would indicate that X is well-described by a unit-root or I(1) process.319 Contrary,
if dY is near −1, Xt is rather a trend-stationary process.320 In addition, if the order of
integration of X, dX is between 1 and 1.5, the process Y is likely to have long memory,
since dY = dX − 1. In such a case, Y would be an I(d) process with 0 < d < 1/2.

The empirical investigations in the literature are heterogeneous regarding the employed
methods and investigated time series. Therefore, the review is not sorted chronologically
but according to the considered time series. From the perspective of a dynamic stochastic
general equilibrium (DSGE) model, which is usually estimated with quarterly data, it
seems reasonable to start considering the results of empirical investigations based on
quarterly data sets. There is also a vast literature investigating annual data, so these will
be considered afterward.

Diebold and Rudebusch (1989) focus on data of the United States (of America) (US) and

the likelihood function can be found in ,e.g., Palma (2007, p. 80).
316 See Palma (2007, Theorem 4.5 on p. 80) for the asymptotic properties of the Whittle estimator and

Hassler (2019, p. 157ff.) for a discussion of various extensions of the Whittle estimator and admissible
values of d.

317 See Hassler (2019, p. 160).
318 Let GDPt be GDP at time t. Then, by definition of X and Y , one has Xt = log(GDPt) and

Yt = log(GDPt) − log(GDPt−1) = log(GDPt/GDPt−1) ≈ (GDPt − GDPt−1)/GDPt−1.
319 See Sowell (1992b, p. 282).
320 See Sowell (1992b, p. 282).
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analyze the quarterly series of the logarithm of the gross national product (GNP) and
the corresponding per capita (p.c.) series. Both series are seasonally adjusted and cover
the postwar period 1947Q1-1987Q2.321 Diebold and Rudebusch (1989) use a two-step
approach. In the first step, they estimate the parameter d by the methodology of Geweke-
Porter-Hudak. For the per capita series, they report an estimator of d ≈ 0.7.322 The
exact value varies with the number of ordinates incorporated (bandwidth parameter) in
the spectral regression of the GPH estimator. If the GPH regression contains m = n0.5

ordinates, where n is the total sample size, the GPH estimator is given as d = 0.68. The
corresponding 95% confidence interval can be calculated from the standard errors reported
in Diebold and Rudebusch (1989) and is given as (0.21, 1.15).323,324 For the per capita
series, after estimating d to be about 0.7, the authors take first differences of the series
and then apply the operator (1 − B)−0.3 in order to obtain an I(0) series. Then, they
specify the short memory dynamics by fitting an autoregressive moving average (ARMA)
process to this series. Based on the BIC, they identify an ARFIMA(1, 0.7, 0) model as a
parsimonious model among various ARMA specifications.325 However, as indicated by the
authors, the confidence intervals are rather long, and thus, the alternative of a unit root
cannot be rejected. Diebold and Rudebusch (1989) also investigated the level series of
real GNP. As with the per capita series, the estimated value of d depends on the number
of ordinates in the GPH regression. Overall, they found d ≈ 0.9.326 By including n0.5

ordinates, the estimator of d is exactly 0.9, and the corresponding 95% confidence interval
is given as (0.43, 1.37), implying that a unit-root in the GNP series cannot be rejected at
the 5% significance level.327 However, the trend-stationary model for the GNP series lies
outside this interval.

Sowell (1992b) uses maximum likelihood estimators to specify various ARFIMA(p, d, q)
processes for the same GNP series as in Diebold and Rudebusch (1989) (but extended to
1987Q4). He founds that the differenced series of the log of quarterly seasonally adjusted
GNP is best described by an ARFIMA(3, d, 2) process with d = −0.59.328 The provided
asymptotic standard error implies a 95% confidence interval of (−1.27, 0.09). Note that
Sowell considers first differences; hence the value of the corresponding level series (as
321 The expression 1947Q1 refers to the first quarter of 1947. This notation is used similarly for other

years throughout this thesis.
322 See Diebold and Rudebusch (1989, Table 2 on p. 200 and p. 201).
323 See Diebold and Rudebusch (1989, Table 2 on p. 200 and p. 201).
324 The confidence interval is given by d̂± z1−α/2 times the standard error, where z1−α/2 is the 1 − α/2

quantile of the standard normal distribution which is 1.96 if α = 0.05.
325 See Diebold and Rudebusch (1989, Table 3 on p. 203 and p. 203).
326 See Diebold and Rudebusch (1989, Table 2 on p. 200).
327 See Diebold and Rudebusch (1989, Table 2 on p. 200 and p. 201).
328 See Sowell (1992b, p. 287).
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considered in Diebold and Rudebusch (1989)) is 0.41 with the shifted confidence interval
(−0.27, 1.09). This point estimator is smaller than the one reported by Diebold and
Rudebusch (1989). In contrast to Diebold and Rudebusch (1989), the results of Sowell
(1992b) indicate that neither the alternative of a trend-stationary nor a unit-root process
can be rejected from this analysis.329 Sowell (1992b) points out that these differences
between his results and the ones of Diebold and Rudebusch (1989) are due to the bad
performance of GPH-estimator in the presence of short memory terms.330 Further, the
chosen number of periodogram ordinates in the analysis of Diebold and Rudebusch (1989)
seems restrictive. This choice ruled out short memory effects for cycles longer than 3.1
years.331 Further, the results obtained by Sowell (1992b) are roughly confirmed from a
Bayesian estimation approach of Koop et al. (1997).332

The main difference between the maximum likelihood estimator employed by Sowell
(1992b), in contrast to the approach followed by Diebold and Rudebusch (1989), is that
the former estimates short and long memory parameters simultaneously. In the stepwise
approach followed by Diebold and Rudebusch (1989), they first estimate the long memory
parameter, which is likely to be biased due to the restrictive choice of ordinates in the
regression and the overall sensitivity of the GPH estimator to short memory components.
After determining the long memory parameter, they estimate the short memory coefficients
based on the filtered time series. Another difficulty of both investigations is the relatively
small sample size which implies rather large confidence intervals. If the confidence interval
spreads over the range [0, 1] as reported by Sowell (1992b) above, clear support for fractional
integration and, in the end, for long memory cannot be drawn.

By considering the logarithm of quarterly seasonally adjusted GDP data for the US
and United Kingdom (UK) ranging from 1961Q1 till 2000Q1, Candelon and Gil-Alaña
(2004) carried out a similar investigation as Sowell (1992b). By applying a maximum
likelihood estimation, they found an ARFIMA(0, 1.36, 0) model for the US GDP series
and an ARFIMA(1, 1.38, 2) model for the UK series to best fit the data according to the
BIC.333 They also carried out various integration tests and found that the alternatives
of d = 1 and d = 2 could be rejected.334 Note that these results would indicate that the
quarterly GDP growth rates for both countries would exhibit long memory with d = 0.36
and d = 0.38 for the US series and for the UK series, respectively. An interesting part of

329 See Sowell (1992b, pp. 292ff.).
330 See Sowell (1992b, pp. 299f.).
331 See Sowell (1992b, p. 298).
332 See Koop et al. (1997, p. 160).
333 See Candelon and Gil-Alaña (2004, p. 354).
334 See Candelon and Gil-Alaña (2004, Table 6 and p. 355).



82 Chapter 3. Long Memory in Economics and Econometrics

their analysis is comparing the ability to replicate specific business cycle characteristics of
various time series models. They conclude that, in general, ARFIMA processes perform
better in replicating business cycle characteristics such as the number of peaks, lengths,
and amplitudes of recessions and expansions than their ARIMA counterparts.335

More recently, a similar investigation was carried out by Caporale and Gil-Alaña (2013).
By investigating quarterly US GDP per capita series ranging from 1948Q1 till 2008Q3
with various semi-parametric and parametric estimation procedures, the authors confirm
the already mentioned dependence of the results on the chosen estimation procedure.336

The non-parametric methods employed by Caporale and Gil-Alaña (2013) induce no
evidence of fractional integration in the level series and growth rates.337 Further, the
results indicated by the semi-parametric local Whittle estimator depend to a large extent
on the bandwidth parameter that controls the number of frequencies of the periodogram
used in the estimation.338 In addition, the authors also consider the possibility of a linear
trend in the GDP per capita and the corresponding growth rate series. By applying a
parametric estimation method, they found that the detrended GDP per capita series is best
described by an ARFIMA(1, d, 0) process with parameters d = 0.312 (the 95%-confidence
interval is (0.196, 0.489)) and % = 0.913.339 These results indicate that the detrended series
is well-described by a long memory process with a strong short memory component. For
the US GDP per capita growth rate series, they propose an ARFIMA(1, d, 0) model with
parameters d = −0.622 and % = 0.887.340 They also identified a structural break in both
series at 1978Q2.341 By repeating their model estimation procedure to the resulting two
subsamples (one before and one after the break), they found the long memory parameter
d of the GDP per capita series to be 0.49 in the first subsample and d = 0.314 in
the second one.342 The corresponding short memory parameters % are 0.774 and 0.875,
respectively.343,344 For the GDP per capita growth series, the parameters in the first
subsample are d = −0.416 and % = 0.742, and for the second subsample d = −0.666 and
% = 0.876.345

335 See Candelon and Gil-Alaña (2004, Section 5 on pp. 356ff.).
336 See Caporale and Gil-Alaña (2013, p. 608).
337 See Caporale and Gil-Alaña (2013, Table 1 on p. 599 and p. 600).
338 See Caporale and Gil-Alaña (2013, Figure 2 and pp. 600ff.).
339 See Caporale and Gil-Alaña (2013, Table 2 on p. 603 and pp. 603f.).
340 See Caporale and Gil-Alaña (2013, Table 2 on p. 603 and p. 604).
341 See Caporale and Gil-Alaña (2013, p. 605).
342 See Caporale and Gil-Alaña (2013, Table 3 on p. 606 and pp. 605ff.).
343 See Caporale and Gil-Alaña (2013, Table 3 on p. 606 and pp. 605f.).
344 Note that the corresponding impulse-response function (IRF) would be expected to be hump-shaped

according to Lemma 2.4.3 since %+ d > 1. This is confirmed by Figure 4 in Caporale and Gil-Alaña
(2013).

345 See Caporale and Gil-Alaña (2013, Table 3 on p. 606 and p. 606).
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Table 3.1 summarizes the mentioned empirical results. The estimated values of d depend
on the used estimation method. As outlined in Section 3.1.2, the sensitivity of the GPH
estimator regarding the incorporated regression ordinates seems problematic. Thus, the
parametric approaches used by the other authors seem to be more appropriate. However,
there is another lack in the comparability of the results as the considered time series are
inconsistent in all studies. Some authors focus on GNP while others analyze GDP, and in
addition, the time periods considered differ in almost all studies.

However, not all estimates of d given in Table 3.1 can be used directly to calibrate a
linearized DSGE model. Typically, the model variables represent percentage deviations
from their steady state values or a balanced growth path. Thus, non-stationary time series
have to be made stationary first.346 This may be done by removing a (linear) trend or
seasonal components.347 Additionally, for a representative agent model such as the one of
Chapter 4, a per capita series seems appropriate.348

Putting all these aspects together, the results of Caporale and Gil-Alaña (2013) seem best
suited in the context of a representative agent DSGE model to describe the evolution
of GDP. Therefore, the cyclical component of US GDP per capita that remains after
removing a linear trend may be well-described by a long memory process or, more precisely,
by an ARFIMA(1, d, 0) process with parameters % ≈ 0.9 and d ∈ (0.2, 0.49).349

346 See Section 4.1.4 for details.
347 See, e.g., Brockwell and Davis (1987, p. 15).
348 See, e.g., Cooley and Prescott (1995, p. 20) or Lindé et al. (2016, p. 2256).
349 See Caporale and Gil-Alaña (2013, Table 2 on p. 603 and p. 604).
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The empirical investigations so far have been concentrated on quarterly GDP data and
related variables in the post-war period. However, a large strand of the empirical literature
also focuses on annual data starting in the 19th century. This literature, governing a rather
cliometric perspective, may be less attractive from a quarterly DSGE model perspective.
However, it seems reasonable to consider these long-spanning time series as long memory
itself is an asymptotic property that would be expected to materialize in the long run.
On the other hand, it should be noted that the length of the time series that enters the
estimation (which is one limiting factor when calculating, e.g., confidence intervals) need
not be longer than their quarterly counterparts due to the lower granularity of the data.

By investigating annual series of GDP per capita growth rates for various countries from
1870 to 2001, Silverberg and Verspagen (2003) found ambiguous results regarding the
presence of long memory. By applying a fractional Gaussian noise test, they found strong
evidence of long memory for more than half of the considered countries.351 Contrarily,
by applying the maximum likelihood estimator to the data, they found no evidence of
long memory for any country.352 For the US, the best ARFIMA model according to the
AIC is given by an ARFIMA(2,−0.707, 4) process.353 This model would be equivalent
to an ARFIMA(2, 0.293, 4) model for the log of GDP per capita series and would induce
long memory, at least in the level series, but not in the growth rates.354 These results
are roughly confirmed by the investigation of Gil-Alaña (2020). By analyzing an annual
data set ranging from 1870 to 2000 containing the same countries as in Silverberg and
Verspagen (2003), Gil-Alaña (2020) found that, for the overwhelming number of countries,
the unit-root hypothesis of the log of GDP per capita cannot be rejected.355 Except for
Germany and the US, for which Silverberg and Verspagen (2003) reported values of d
significantly different from zero (for the growth rate series), the results are not consistent
with those reported by Gil-Alaña (2020). This inconsistency might be due to the different
estimation techniques employed by the authors.

The study of Silverberg and Verspagen (2003) and the others mentioned earlier illustrate
that the determination of long memory depends crucially on the estimation methods applied.

351 See Silverberg and Verspagen (2003, Table 1 on p. 278).
352 See Silverberg and Verspagen (2003, Table 3 on p. 281 and pp. 280f.).
353 See Silverberg and Verspagen (2003, Table 3 on p. 281).
354 They further investigated various fractionally integrated autoregressive models, i.e., ruling out any

moving average terms. They found the best models for the log of US GDP per capita series according
to the BIC and AIC to be an ARFIMA(1, 0.466, 0) and ARFIMA(2, 0.061, 0), respectively; see again
Silverberg and Verspagen (2003, Table 3 on p. 281).

355 See Gil-Alaña (2020, Table 3 on pp. 86f.). For better comparability between Silverberg and Verspagen
(2003) who do not consider the possibility of a trend in the data. The first column of Table 3 in
Gil-Alaña (2020, pp. 86f.) should be used.



86 Chapter 3. Long Memory in Economics and Econometrics

Consequently, various methods applied to the same series may produce contradictory
results. Another problem outlined by Silverberg and Verspagen (2003) is the length of the
available data sets in macroeconomic contexts. Their time series contain 133 observations,
which is quite short compared to data available in natural sciences. Simultaneously, these
time series cover over 100 years, which might be too long for deriving economic insights
from stationary time series models.356 In an earlier study, Silverberg and Verspagen
(1999) found (based on the fractional Gaussian noise test) evidence of long memory in the
post-war period but weaker evidence of long memory in the pre-war period.357

A data set of similar length as the one of Silverberg and Verspagen (2003) and Gil-Alaña
(2020) is analyzed by Mayoral (2006). By analyzing annual data of US GNP and GNP
per capita (both in logs) dating from 1869 to 2001, she found evidence that both time
series are neither trend-stationary nor difference stationary.358 The maximum likelihood
estimator of d ranges between 0.65 and 0.68 for the GNP series and between 0.63 to
0.65 for the GNP per capita series.359 Compared to the investigations of Silverberg and
Verspagen (2003) whose investigations imply a value of d = 0.293 for the log of US GDP
per capita, the estimator of Mayoral (2006) is larger. This difference may be due to
the differences between the GDP and GNP series and the quality of the considered data
set, especially for the pre-war periods. The corresponding confidence intervals for the
maximum likelihood estimator at the 95%-level provided by Mayoral (2006) lie fully in the
interval (0, 1), supporting that GDP and GNP are not unit-root processes.360 In addition,
most point estimators of the employed estimation routines by Mayoral (2006) lie between
1/2 and 1 for both the per capita and the level series.361 These results are in line with the
one derived in Michelacci and Zaffaroni (2000) who analyzed GDP per capita series for
various OECD countries.362 They found values of d between 1/2 and 1 to be typical over
their whole set of countries. This observation is in contrast to Mayoral (2006), who only
analyzed the US series. However, Silverberg and Verspagen (2000) criticized the results
of Michelacci and Zaffaroni (2000) to be an artifact of a non reasonable data filtering.363

356 See Silverberg and Verspagen (2003, p. 283).
357 See Silverberg and Verspagen (1999, p. 10).
358 This was carried out by applying various unit-root tests, see Mayoral (2006, Table 1 on p. 906).
359 These results are in line with the one derived by Diebold and Rudebusch (1989, Table 2 on p. 200)

who analyze the same annual data set ranging from 1869 to 1987, in addition to the quarterly data
set already mentioned.

360 She further carried out various tests in order to distinguish between structural breaks in the data and
fractional integration. Overall, she concludes that fractional integration models seem preferable to
models with structural breaks, see Mayoral (2006, Section 5.1 on pp. 914ff.).

361 See Mayoral (2006, Table 3 on p. 910).
362 See Michelacci and Zaffaroni (2000, Table 2 on p. 147).
363 See Silverberg and Verspagen (2000, pp. 1ff. and p. 6).
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Further, they state that the GPH estimation scheme employed by Michelacci and Zaffaroni
(2000) is sensitive to the number of ordinates included in the regression and to the presence
of short memory components.364 This criticism is not justified against the methods used
by Mayoral (2006). However, since she does not consider countries other than the US, her
results may not be generalizable to other countries.

Another investigation covering fourteen European countries was carried out by Caporale,
Gil-Alaña, and Monge (2020). Their results may, however, not be directly comparable to
the already discussed ones as the logarithms of the GDP per capita series considered by
Caporale, Gil-Alaña, and Monge (2020) ranges from 1960 to 2016 only. A significant time
trend is detected for the overwhelming part of the countries. However, the values of d
depend crucially on the specified parametric model.365 The estimated values of d obtained
from the local Whittle estimator range from 0.959 to 1.242 among the countries, whereby
the values of 12 countries lie above 1.366 These results may indicate weak evidence of long
memory in the growth rate series. Interestingly, they found that, among all estimated
models, there is a significant negative correlation between the height of GDP per capita
and the order of integration.367 This implies that countries with a high GDP per capita
are associated with lower orders of integration.368 This is argued because the institutional
weaknesses in less developed (European) countries reduce the resilience of their economy
to shocks by preventing an adequate shock response. Hence, a shock’s effects become more
persistent in less developed countries.369 However, this explanation may oversimplify the
complexity of the notion of persistence mentioned in Chapter 2. In a similar investigation
carried out by Gil-Alaña et al. (2015), the estimates of d for the log of GDP per capita of
various African countries ranging from 1960 till 2006 turned out not to be systematically
higher than for the European countries as one would expect from a systematic negative
correlation between GDP per capita and the order of fractional integration.370

A study conducted by Diebolt and Guiraud (2000) examined the GDP growth rates of
Germany and France. The data set for Germany was from 1820 to 1989, while France’s

364 See Silverberg and Verspagen (2000, p. 7).
365 See Caporale, Gil-Alaña, and Monge (2020, Tables 1 to 4 on pp. 2ff.).
366 See Caporale, Gil-Alaña, and Monge (2020, Table 5 on p. 4). The values given in the text are averages

over several bandwidth parameters reported by the authors; see the column “AVG” in the authors’
table.

367 See Caporale, Gil-Alaña, and Monge (2020, p. 8).
368 See Caporale, Gil-Alaña, and Monge (2020, p. 8).
369 See Caporale, Gil-Alaña, and Monge (2020, p. 8).
370 This can be seen from a comparison between Caporale, Gil-Alaña, and Monge (2020, Table 1 on

p. 2 and Table 3 on p. 3) and Gil-Alaña et al. (2015, Table 1 on p. 227 and Table 3 on p. 229),
respectively.
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data set ranged from 1820 to 1996.371 The study found that an ARFIMA(3, 0.45, 0) model
was the best fit for Germany’s growth rate series, and an ARFIMA(1, 0.27, 0) model was
suitable for France.372 These results suggest that both countries’ GDP growth rates exhibit
long memory. The GPH estimator was also employed, and it yielded the same results for
France.373 However, the GPH estimator reported for Germany was smaller (0.21) than
the maximum likelihood estimation.374

For the United Kingdom, Caporale and Škare (2014) investigated a time series spanning
from 1851 to 2013. Based on a maximum likelihood estimation of various ARFIMA models,
they found the order of fractional integration d to vary between 0.24 and 1.09 for the real
GDP growth rates.375 The exact values depend on the specification of the ARMA terms,
which turned out to be insignificant in all models.376

3.2.2 Other Macroeconomic Indicators and Financial Time Series

Besides GDP and the corresponding growth rate series, extensive empirical literature deals
with long memory in other macroeconomic and financial time series.377 This section aims
to provide a summary of a part of the existing literature to illustrate that long memory is,
indeed, relevant in various economic contexts. More specifically, this section deals with
long memory in unemployment rates, inflation rates, and financial time series such as
stock market returns and volatility. In these three contexts, long memory is associated
with hysteresis, inflation targeting, and the efficiency of financial markets, respectively.
The details are considered in the following sections.

3.2.2.1 Unemployment Rates

When analyzing unemployment rates, long memory models are useful for discriminating
between different unemployment theories. Following the natural rate theory, one would
expect that the unemployment rate fluctuates stationary around a natural rate.378 In
contrast, the hysteresis hypothesis states that the natural rate is not constant but rather
time and path dependent.379 Therefore, past values of the unemployment rate keep
371 See Diebolt and Guiraud (2000, p. 12).
372 See Diebolt and Guiraud (2000, Table 1 on p. 14).
373 See Diebolt and Guiraud (2000, Table 1 on p. 14).
374 See Diebolt and Guiraud (2000, Table 1 on p. 14).
375 See Caporale and Škare (2014, Table 3 on p. 6 and p. 6).
376 See Caporale and Škare (2014, Table 3 on p. 6 and p. 6).
377 An early contribution reviewing various applications of long memory processes in macroeconomics

and finance can be found in Baillie (1996, Section 6 on pp. 43ff.).
378 See Caporale, Gil-Alaña, and Lovcha (2016, pp. 96f.).
379 See Hassler and Wolters (2009, p. 119).
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influencing the unemployment rate’s current “steady state” value.380 Therefore, shocks
to the unemployment rate have a permanent or long-lasting effect given the hysteresis
hypothesis, whereas shocks are assumed to die out quickly given the natural rate assump-
tion.381 Consequently, the natural rate hypothesis is associated with an unemployment
rate described by an I(0) process whereas hysteresis assumes the unemployment rate to
be a unit-root (I(1)) process.382 Caporale, Gil-Alaña, and Lovcha (2016) even go beyond
this sharp distinction between I(0) and I(1) and find the hysteresis hypothesis already
confirmed if the unemployment rate is an I(d) process with d > 0.383

Applying various tests and estimators to a monthly US and German unemployment series,
Hassler and Wolters (2009) found evidence that the persistence in US unemployment rates
is lower than in Germany.384 In their setting, the I(1) hypothesis cannot be rejected for
Germany, while for the US, it can be rejected at a 95% significance level.385 Therefore,
their results support the hysteresis hypothesis for Germany.

Caporale, Gil-Alaña, and Lovcha (2016) investigated quarterly unemployment series of the
United Kingdom, the US, and Japan from 1971Q1-2011Q3 in a univariate and multivariate
ARFIMA setting. In a univariate setting, they found that the assumption of a unit root in
all employment rates cannot be rejected at a 5% significance level.386 The point estimators
lie, dependent on the employed estimation method, either above or close to 1, where the
estimator of the US is lower than the other two.387 Therefore, supporting the hysteresis
hypothesis for all countries.

In addition, the authors employ a multivariate approach where the parameter d of the three
time series is estimated jointly in a fractionally integrated vector autoregression.388 They
found that all parameters are smaller than in the univariate approach.389 For the US series,
the point estimator is 0.086 with corresponding 95% confidence interval [−0.347, 0.519].390

The point estimators with corresponding 95% confidence intervals for the UK and Japan
are 0.615 ([0.28, 0.95]) and 0.568([−0.034, 1.17]), respectively.391 Given these results, the
380 See Hassler and Wolters (2009, p. 119).
381 See Hassler and Wolters (2009, p. 120) and Caporale, Gil-Alaña, and Lovcha (2016, p. 97).
382 See Hassler and Wolters (2009, p. 120).
383 See Caporale, Gil-Alaña, and Lovcha (2016, p. 99).
384 See Hassler and Wolters (2009, p. 127).
385 See Hassler and Wolters (2009, p. 127).
386 See Caporale, Gil-Alaña, and Lovcha (2016, p. 104).
387 See Caporale, Gil-Alaña, and Lovcha (2016, Table 1 on p. 104).
388 See Caporale, Gil-Alaña, and Lovcha (2016, pp. 14f.).
389 See Caporale, Gil-Alaña, and Lovcha (2016, Table 1 and 2 on pp. 104f.).
390 See Caporale, Gil-Alaña, and Lovcha (2016, Table 2 on p. 104). The confidence interval was calculated

based on the reported standard errors.
391 See Caporale, Gil-Alaña, and Lovcha (2016, Table 2 on p. 104).
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authors claim that the natural rate hypothesis appears appropriate for the US, while the
hysteresis hypothesis seems appropriate for the UK and Japan.392

In an earlier study, Gil-Alaña (2001) investigated quarterly unemployment rates of the
US and four European countries from the 1960s/1970s to 1998. He used the maxi-
mum likelihood estimator to specify a full ARFIMA model for each series and found
an ARFIMA(3, 0.37, 3) model best suited for US unemployment rates.393 Therefore, US
unemployment rates would be well-described by a stationary long memory process. Con-
sistent with the results already mentioned, he found the long memory parameter of the
US unemployment rates to be lower than that of all other countries in his sample. More
specifically, the parameters are 0.67, 0.95, 1.32 and 1.83 for Germany, Italy, France and
UK, respectively.394

In all of the mentioned works, the parameter d of the US appears to be lower than that of
the other countries in the respective study. This evidence may be interpreted in a way that
the labor market is more flexible in the US than in other countries.395 Overall, this short
discussion highlights that fractional integration and ARFIMA processes are appropriate
tools to uncover various dynamics in the unemployment rate. Additionally, they allow
for a more differentiated classification of such series than simply deciding between the
presence of a pure hysteresis (I(1)) or a natural rate (I(0)). However, in the context
of unemployment rates, the non-stationary parameter range d > 1/2 also seems to be
important.

3.2.2.2 Inflation Rates

Another frequently investigated macroeconomic indicator is inflation. Whether inflation
rates are persistent is of major interest for monetary policy. If inflation is strongly persistent,
it requires more time for inflation to adjust in response to a shock. Consequently, the
monetary authority (e.g., a central bank) is forced to bring inflation back to its target
level by a strong monetary policy.396 If inflation is less persistent, shocks to inflation
will die out quickly. Consequently, inflation will reach its target value quickly, making
(strong) monetary policy interventions unnecessary.397 Therefore, given a positive shock

392 See Caporale, Gil-Alaña, and Lovcha (2016, p. 106).
393 See Gil-Alaña (2001, Table 7 on p. 1268).
394 See Gil-Alaña (2001, Table 7 on p. 1268). This table summarizes each country’s best-suited

ARFIMA(p, d, q) model.
395 See Koustas and Veloce (1996, p. 827) for such reasoning in the context of a comparison between

USA and Canada. Additionally, see Hassler and Wolters (2009, pp. 119f.).
396 See Fuhrer (1995, p. 3) and Canarella and S. M. Miller (2017, p. 78).
397 See Canarella and S. M. Miller (2017, p. 78).
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to inflation, the economic costs of disinflation are expected to be higher if inflation is
persistent.398

On the other hand, it is reasonable that monetary policy itself impacts inflation persis-
tence.399 More specifically, suppose there is a positive inflation shock to which the central
bank responds with a policy intervention that quickly brings inflation back to its target
level. Then, along with the policy response, the effect of the shock dissipates fast, inducing
less persistence in inflation. Therefore, differences in inflation persistence may be caused
by different monetary policy regimes, and an evaluation of inflation persistence allows for
conclusions on the effectiveness of monetary policy.400

In recent years, the fractional order of integration d became a popular measure for inflation
persistence. Early results of Hassler and Wolters (1995) indicate that monthly inflation
rates spanning from 1969M1 to 1992M9 for Germany, the US, the UK, France, and Italy
have a substantial degree of long memory as their point estimators based on the parametric
Whittle estimator lie in the interval [0.35, 0.5].401

Kumar and Okimoto (2007) considered monthly inflation rates of the US and the remaining
G7 countries from 1960M4 to 2003M4.402 They used the GPH, ELW, and FELW estimators
for three subsamples 1960M5-1975M4, 1974M5-1989M4, and 1988M5-2003M4. The corre-
sponding estimators for the US are d ≈ 0.49, 0.55, 0.27, respectively.403 The authors claim
that US inflation was strongly persistent during 1960M5 and 1989M4, and that the level
of persistence remained almost unchanged during this time.404 However, the sharp drop in
the parameter d in the subsample 1988M5 onward indicates a drop in inflation persistence
since then.405 Additionally, the authors compared their results with the outcomes of short
memory persistence models (some of them are mentioned in Section 2.1.5.2) such as the
largest autoregressive root or the sum of the autoregressive coefficients. They show that
the largest autoregressive root is unable to detect the decline in US inflation persistence
adequately.406 Interestingly, the sum of the autoregressive coefficients shows a similar
drop as the parameter d.407 This illustrates that some persistence measures mentioned

398 See Fuhrer (1995, p. 3).
399 See Fuhrer (2010, p. 450) and Andersson and Li (2020, p.534).
400 See Andersson and Li (2020, p.534).
401 See Hassler and Wolters (1995, Table 7 on p. 42).
402 See Kumar and Okimoto (2007, p. 1461).
403 See Kumar and Okimoto (2007, Table 3 on p. 1468). The values in the text correspond to the means

of the three estimators for each subsample.
404 See Kumar and Okimoto (2007, p. 1467).
405 See Kumar and Okimoto (2007, pp. 1467f.).
406 See Kumar and Okimoto (2007, Figure 5 on p. 1473 and p. 1473).
407 See Kumar and Okimoto (2007, Figure 5 on p. 1473 and p. 1473).
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in Section 2.1.5.2 lead to contradictory results. Regarding their results for the remaining
G7 countries, the authors showed that Germany, Japan, and Canada have lower inflation
persistence in terms of the parameter d than the US over the period 1975-2002.408 The
corresponding long memory parameters lie fully in the interval [0, 0.5] for the overwhelming
part of the sample.409 For France, a similar drop in d than for the US can be observed,
while Italy’s inflation is characterized by a parameter d fluctuating around 0.5.410 For the
UK, there is a slight decline in d from approximately 0.5 in 1978 to approximately 0.3 in
2002.411

Canarella and S. M. Miller (2017) investigated inflation persistence of thirteen OECD
countries.412 They focused on whether and how inflation persistence, as measured by
the parameter d, has changed following a change in the monetary policy regime. More
specifically, the authors address the question of whether an inflation targeting policy
affects the parameter d. For their analysis, the authors use a modified version of the GPH
estimator.413 Consequently, the estimators vary strongly with the choice of the bandwidth
parameter.414 However, their results suggest that inflation persistence is lower (i.e., a lower
value of d) in the post-inflation targeting period than in the pre-inflation targeting period
for most countries in their sample.415 These results may highlight that monetary policy
impacts inflation persistence and that an inflation-targeting policy is associated with lower
inflation persistence.

Andersson and Li (2020) go a step beyond this point of view and argue that the parameter
d can be regarded as a measure of the inflation target’s flexibility.416 In the authors’
opinion, monetary policy controls for the long run persistence.417 Thus, if a central bank
follows a strict inflation target, deviations of inflation from its target are brief and small,
indicating a small value of d.418 Contrary, a more flexible inflation target is associated with
higher values of d since the central bank’s monetary policy allows for longer deviations of
inflation from its target.419 Given an ARFIMA specification of inflation, Andersson and

408 See Kumar and Okimoto (2007, Figure 6 on p. 1475).
409 See Kumar and Okimoto (2007, Figure 6 on p. 1475).
410 See Kumar and Okimoto (2007, Figure 6 on p. 1475).
411 See Kumar and Okimoto (2007, Figure 6 on p. 1475).
412 A complete list of all countries can be found in Canarella and S. M. Miller (2017, Figure 1 on p. 81).

However, the list of countries does not contain any country in the Euro area or the US.
413 See Canarella and S. M. Miller (2017, p. 85).
414 See Canarella and S. M. Miller (2017, Tables 6 and 7 on pp. 92f.).
415 See Canarella and S. M. Miller (2017, p. 93).
416 See Andersson and Li (2020, p. 534).
417 See Andersson and Li (2020, p. 534).
418 See Andersson and Li (2020, p. 534).
419 See Andersson and Li (2020, p. 534).
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Li (2020) argue that the short memory parameters are unsuitable for an inflation target’s
flexibility since the central bank cannot fully control inflation in the medium and short
run.420 They propose a new Bayesian estimator of the parameter d and concentrate on
the monthly inflation rates of Canada, the Euro area, Germany, Norway, Sweden, the UK,
and the US from 1993 to 2017 (1999-2017 for the Euro area).421 Interestingly, they report
values of d ranging between 0.59 for Sweden and 1.09 for UK.422 The remaining countries
have an estimator between 0.74 and 0.83.423 In the concept of Andersson and Li (2020), it
can be argued that Sweden has the strictest inflation targeting policy among all countries
in the sample, while the UK’s inflation target is rather flexible.424 These results contradict
partly the findings of Kumar and Okimoto (2007) mentioned above who report values of d
near or below to 0.5 for the US and the G7 countries.

Evidence of long memory in US inflation rates is also provided by Boubaker et al. (2021).
By analyzing a historical time series of monthly inflation rates ranging from 1871M1 to
2018M4 with various estimators, Boubaker et al. (2021) found evidence of long memory
with corresponding parameter d ≈ 0.24.425 Additionally, Boubaker et al. (2021) allow for
a time-varying long memory parameter. More precisely, they estimate a model allowing
for two possible regimes, each associated with its own long memory parameter.426 For
the US series, the authors report significant (at the 1% level) estimators d1 = 0.2589 and
d2 = 0.2641 for the two regimes, and the null hypothesis of d1 = d2 can be rejected.427

They further show that their time-varying long memory approach outperforms several
other time-varying and not time-varying long memory models in terms of the model’s
forecasting performance.428 In addition, they divide their time series into five subsamples
covering distinct exchange rate regimes (ranging from the gold standard period (1871-1914)
to the period of flexible exchange rates (1972-2018)).429 Overall, their results suggest that
inflation became more persistent the more flexible the exchange rate.430 They further show
that the parameter d has become smaller over the period 1983-2018, which is associated
with an inflation targeting policy in the US.431 These results confirm the ones of Canarella

420 See Andersson and Li (2020, p. 534).
421 See Andersson and Li (2020, p. 541).
422 See Andersson and Li (2020, p. 545).
423 See Andersson and Li (2020, p. 544 and Table 8 on p. 545).
424 See Andersson and Li (2020, p. 545).
425 See Boubaker et al. (2021, Table 2 on p. 302).
426 See Boubaker et al. (2021, p. 303).
427 See Boubaker et al. (2021, p. 303 and Table 3 on p. 303).
428 See Boubaker et al. (2021, pp. 304f.).
429 See Boubaker et al. (2021, pp. 305f.).
430 See Boubaker et al. (2021, p. 306).
431 See Boubaker et al. (2021, p. 306).
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and S. M. Miller (2017) mentioned above, who show that the adoption of an inflation
target is associated with a smaller value of d.

This brief discussion shows that long memory is also interesting from a monetary pol-
icy’s perspective. Inflation appears to be well-described by long memory processes, and
inflation’s persistence, in terms of d, may be closely related to the monetary policy and
exchange rate regime. The work of Andersson and Li (2020) interprets d as the flexibility
of the inflation target. Such a point of view appears to be interesting from a theoretical
perspective as it may offer a path for endogenizing long memory in models with inflation.
Concerning the ECB’s inflation target, which refers to the Euro area’s inflation rate, there
appears to be a need for a refinement of Andersson and Li (2020) interpretation. This
need can be derived from the work of Kumar and Okimoto (2007), who suggest that the
countries of the Euro area are characterized by country-specific long memory parameters.
Given Andersson and Li’s interpretation of the parameter d, it seems unclear how to
interpret the country-specific values of d, since the ECB’s inflation target only addresses
the Euro area’s inflation rate. Additionally, Andersson and Li (2020)’s interpretation does
not apply in cases without an inflating targeting monetary policy regime.

3.2.2.3 Stock Market Returns and Volatility

In the context of macroeconomic variables, the availability of long time series is limited
since many macro indicators are only available quarterly or annually. This data limitation
makes it hard to estimate reliable time series models and to sharply decide whether
a process has features such as a unit root, structural breaks, time-varying means, etc.
Financial data, e.g., stock prices, are available on a daily or even finer granularity. Not
surprisingly, there is also extensive literature dealing with long memory in financial time
series. The presence of long memory in financial time series may, additionally, motivate
the considerations made in Chapter 5, where a continuous-time macro-financial model
is considered. There, it is outlined that the evolution of capital in these models is quite
similar to the evolution of stock prices in traditional finance models such as the model of
Black and Scholes.

Although various stock prices and stock market indices behave differently, there is a set of
stylized facts applying to a wide range of financial assets.432 Two of these stylized facts
state that there is almost no autocorrelation in financial assets’ return over various time
scales (daily, weekly, monthly, etc.).433,434 At the same time, another stylized fact states
432 See Cont (2001, p. 224).
433 See Cont (2001, p. 224).
434 Following Cont (2001, p. 223), let St the price of a financial asset (i.e., a stock or an exchange
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the presence of long memory in the absolute values of asset returns with corresponding long
memory parameter d ∈ [0.3, 0.4].435,436 That the absolute values of the returns show long
memory is often interpreted as an indicator for long memory in asset price volatility.437

However, the evidence for the absence of long memory in the returns is not pervasive,
as the empirical results appear to be mixed.438 Some authors claim that the presence of
long memory in stock market returns contradicts the weak form of the efficient market
hypothesis, since the efficient market hypothesis implies that asset returns are stochastically
independent.439

Cajueiro and Tabak (2004a) suggest using the Hurst exponent of the return series to rank
various countries along their market efficiency. More precisely, they consider the return of
representative stock market indices from eleven emerging economies, the US and Japan.440

Then, they employ the R/S statistic on their returns time series to obtain estimators of
the Hurst index H = d+ 1/2. The obtained Hurst estimators serve as a measure of the
market efficiency, i.e., a Hurst index H > 1/2 indicates market inefficiency, and the closer
H to 1/2, the more efficient the market.441 For all countries, the reported estimators are
higher than 1/2, indicating long memory in the returns of the representative stock market
indices. The most efficient markets appear to be the US and Japan, with an estimated H
close to 1/2.442 The least efficient market is the one of the Philippines with an estimator
H = 0.64 (d = 0.14).443 Additionally, the authors show that their estimators are positively
correlated with market capitalization and negatively correlated with the average trading
costs.444 This may indicate that larger financial markets tend to be more efficient.

In Cajueiro and Tabak (2005), the authors carried out a similar analysis on the stock
market volatility instead of the returns. The authors consider the squared log returns and

rate) or the value of a market index at time t. Then the corresponding return of S is given by
Rt,∆t = log(St+∆t) − log(St), where ∆t is a given time scale. More specifically, if ∆t is equal to one
day, one week, one month, then the series Rt,∆t for t = 1, 2, 3, . . . would correspond to the daily,
weekly, monthly log returns of S, respectively.

435 See Cont (2001, p. 224 and p. 230).
436 Note that Cont (2001)’s parameter β is equal to 1 − 2d due to (2.27). Consequently, d = 1/2(1 − β).
437 See Cont (2001, p. 230).
438 A detailed empirical literature review is beyond the scope of this section but can be found in Lim and

Brooks (2011, Section 3.4 on pp. 79f.) and Sewell (2012, Section 6 on pp. 170ff.). A rather rough
review is given by Caporale, Gil-Alaña, and Plastun (2019, p. 1763).

439 See Hull and McGroarty (2014, p. 45), Sewell (2012, p. 170) or Lim and Brooks (2011, p. 70).
440 See Cajueiro and Tabak (2004a, p. 350).
441 See Cajueiro and Tabak (2004a, p. 351).
442 See Cajueiro and Tabak (2004a, Table 1 on p. 351).
443 See Cajueiro and Tabak (2004a, Table 1 on p. 351).
444 See Cajueiro and Tabak (2004a, p. 351).
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the absolute returns as a measure of volatility.445 Overall, the estimated Hurst indices
vary between 0.68 (d = 0.18) and 0.75 (d = 0.25) for the squared returns and between
0.7 (d = 0.2) and 0.8 (d = 0.3) for the absolute returns.446 Compared to the results of
Cajueiro and Tabak (2004a), the Hurst indices of the volatility measures are higher than
the ones of the returns series, indicating that there is more evidence of long memory in
the returns’ volatility than in the returns themselves. Again, the Hurst index of the US
volatility measure is lower than that of the other countries in the sample.447 These results
are consistent with Cont (2001)’s stylized facts mentioned above, saying that there is more
evidence of long memory in the volatility of stock market returns than in the returns
themselves.

In a related paper, the authors carry out a similar study. The authors split their daily
data set from 1992 to 2002 into windows of 1008 observations. By shifting this window
through the whole data set and calculating the Hurst index for each window, the authors
obtain a series of Hurst indices for each country.448 The authors illustrated that the Hurst
index varies over time.449 For the US and Japan, the Hurst index fluctuates around 1/2.450

This result confirms the authors’ previous reasoning that the US and Japanese markets
appear to be more efficient. Additionally, the authors find some negative trends in the
Hurst indices for some countries. In their view, this indicates that the financial market
has become more efficient in these countries.451 Again, more developed countries (US and
Japan) appear to be more efficient than less developed countries.452

A similar investigation of rather developed countries was carried out by Onali and Goddard
(2011). The authors investigated returns series from stock market indices of the US
and seven European countries. Similar to the works of Cajueiro and Tabak (2004a) and
Cajueiro and Tabak (2004b), they calculate Hurst indices for each country and found that
larger stock markets appear to be more efficient than smaller ones.453 Overall, they found
strong evidence of long memory (and thus for stock market inefficiency) in the Czech
stock market and less evidence of long memory in the Spanish and Swiss stock markets.454

For the remaining countries containing Germany, Italy, Netherlands, the UK, and the

445 See Cajueiro and Tabak (2005, p. 672).
446 See Cajueiro and Tabak (2005, p. 672).
447 See Cajueiro and Tabak (2005, Table 5 on p. 674).
448 See Cajueiro and Tabak (2004b, pp. 530f.).
449 See Cajueiro and Tabak (2004b, pp. 531f. ).
450 See Cajueiro and Tabak (2004b, p. 535).
451 See Cajueiro and Tabak (2004b, pp. 535f.).
452 See Cajueiro and Tabak (2004b, p. 535).
453 See Onali and Goddard (2011, p. 64).
454 See Onali and Goddard (2011, p. 66).
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US, there is no evidence of long memory and, consequently, these markets have to be
deemed efficient.455 These results are in line with the ones of Cajueiro and Tabak (2004a)
as smaller capital markets appear less efficient than bigger markets.

In a recent investigation of seven cryptocurrency markets, Assaf et al. (2022) found
evidence of long memory in the returns and the volatility of six cryptocurrencies under their
consideration.456 These results point to a high inefficiency in cryptocurrency markets.457

By estimating the parameter d, they found a higher degree of long memory in the volatility
measures than in the returns series.458

In a recent study, Vera-Valdés (2022) applied the GPH and ELW to a battery of volatility
measures of various stock market indices containing Standard & Poor’s 500, Deutscher
Aktienindex, Nasdaq 100, and others.459 The author’s focus was to illustrate the impact
of the Covid 19 pandemic on stock market volatility. Therefore, he compares estimators of
d for a sample before the pandemic (ranging from January 1, 2018, to January 30, 2020)
and after the pandemic (ranging from January 31, 2020, to January 15, 2021).460 His
results indicate that almost all stock market volatility measures are characterized by a
long memory parameter 0 < d < 0.5 in the pre-Covid subsample while the parameter d is
higher than 0.5 in the post-Covid subsample.461 Vera-Valdés (2022) claims that the Covid
19 pandemic has a more persistent effect on financial market volatility than other crises
before.462,463

455 See Onali and Goddard (2011, p. 66).
456 See Assaf et al. (2022, p. 1552).
457 See Assaf et al. (2022, pp. 1559f.).
458 See Assaf et al. (2022, Tables 6 and 7 on pp. 1561f. and pp. 1563f.).
459 See Vera-Valdés (2022, Table 1 on p. 2) for a complete list of all indices investigated by the author.
460 See Vera-Valdés (2022, pp. 2f.) for a description of the data.
461 See Vera-Valdés (2022, Table 2 on p. 4 and p.5).
462 See Vera-Valdés (2022, p. 5).
463 As one would expect from Section 3.1.2, the point estimators reported by Vera-Valdés (2022) depend

strongly on the choice of the bandwidth parameter. This can be seen from a comparison of his Table
2 and his Table A4 on p. 4 and pp. 6f., respectively. His main conclusion, that the parameter d is
higher in the post-Covid period than in the pre-Covid period, remains valid.
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3.3 Possible Explanations for Long Memory in Eco-
nomic Time Series

On the one hand, empirical evidence of long memory provides convincing arguments for
its existence. However, there remains a need for economic intuition where long memory in
economic time series comes from. This section is devoted to this question and summarizes
various reasons discussed in the literature that provide some theoretical underpinnings
for the prevalence of long memory in economic and financial time series. The most
frequently mentioned theoretical reason for long memory is cross-sectional aggregation,
which will be considered in more detail in the next section. In addition, the following
section highlights the unequal implications of cross-sectional and temporal aggregation
regarding the aggregate time series’s long memory properties. The second subsection
summarizes additional rationales for long memory mentioned in the literature.

3.3.1 Cross-Sectional and Temporal Aggregation

From a macroeconomic perspective, the view that aggregation may induce long memory
seems appealing as it can be argued that many macroeconomic time series occur as the
aggregate of underlying subordinated variables. For example, a consumer price index is
measured via a representative basket containing many goods, or an economy’s gross value
added appears to be an aggregate over various sectors or firms.464

A stylized and early explanation of how aggregation induces long memory was given by
Granger (1980). He considers N components zj, for j = 1, . . . , N , each assumed to follow
a (short memory) AR(1) process, i.e.,

zj,t = %jzj,t−1 + εj,t with |%j| < 1 for j = 1, . . . , N, (3.9)

where (εj,t)t∈Z for j = 1, . . . , N are Gaussian white noise processes that are assumed to be
independent of each other.465 The linearly aggregated series zt is given by

zt :=
N∑

j=1
zj,t. (3.10)

Granger’s result can be summarized as follows. If the %2
j follow a beta distribution on

464 For example Hassler and Wolters (1995, p. 43) use such an aggregation mechanism to argue for long
memory in inflation rates.

465 See Granger (1980, pp. 230f.).
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(0, 1) with parameters p, q > 0, then, for large N , the ACF of zt satisfies for large N
approximately

γzt(k) ∼ Ck1−q, as k → ∞, (3.11)

where C is a certain constant.466,467 Clearly, (3.11) implies (2.27); hence, zt is a long
memory process due to Lemma 2.3.2, and its parameter d is given by d = 1 − q/2.468 Thus,
the aggregate series is stationary and shows long memory if q ∈ (1, 2).

This result of Granger (1980) has been generalized in various ways in the literature. For
example, Linden (1999) assumes that the εj’s in (3.9) are idiosyncratic shocks specific to
each micro-unit; in addition, he adds a shock to (3.9) that is common to all micro-units.469

He then considers the mean of N independent versions of the resulting processes and
assumes that the %j’s are uniformly distributed over (0, 1). His aggregated process then
again shows long memory.470,471

Zaffaroni (2004) goes even beyond the results of Linden (1999). He showed that the sample
averages of the idiosyncratic and common components show long memory under far less
restrictive assumptions compared to Granger (1980) and Linden (1999). For example, his
results hold for more general distributions than the beta or uniform distribution, and the
AR(1) process in (3.9) can be replaced with a general ARMA process.472,473 He further

466 See Granger (1980, p. 233).
467 The density of the beta distribution is given by

f(x) =


(

Γ(p)Γ(q)
Γ(p+ q)

)−1
xp−1(1 − x)q−1, 0 ≤ x ≤ 1

0, otherwise

with p, q > 0, see, e.g., Czado and Schmidt (2011, p. 14 and Definition 1.17 on p. 18). The distribution
is called beta distribution since the factor Γ(p)Γ(q)/Γ(p+ q) is also known as the beta function. A
figure showing the density of the beta distribution for various parameter combinations of p and q can
be found in Czado and Schmidt (2011, p. 18). Note that Granger (1980, Equation (11) on p. 232)
states the density of the squared %j ’s.

468 This follows immediately from (2.27) by solving 1 − q = 2d− 1 for d. Additionally, see Granger (1980,
p. 233).

469 See Linden (1999, Equation (2.2) on p. 32).
470 See Linden (1999, p. 34).
471 Note that the aggregated process of Linden (1999) has an infinite moving average representation

with coefficients ψj = 1/(j + 1), see Linden (1999, Equation (3.4) on p. 33). The same process is
considered in Hassler (2019, Example 3.5 on pp. 43ff.), who showed that this process is also strongly
persistent.

472 See Zaffaroni (2004, Assumption II on p. 78) for the assumption regarding the distribution of the %′
js,

Zaffaroni (2004, pp. 84f.) for his result concerning the idiosyncratic component, Zaffaroni (2004, pp.
86ff.) for the corresponding results concerning the common component. The extension to general
ARMA processes is treated in Zaffaroni (2004, pp. 89f.).

473 A similar analysis considering the aggregation of general AR(p) processes with extensions to continuous-
time Ornstein-Uhlenbeck processes is carried out in Oppenheim and Viano (2004).
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points out that the mass around 1 of the %j’s distribution determines the degree of long
memory in the aggregate.474 This confirms the results found by Granger (1980) since the
mass of the beta distribution increases the closer the parameter q is to 1.475

In a theoretical model framework, Haubrich and Lo (2001) use the aggregation argument
of Granger (1980) to generate long memory in a model economy’s aggregate output. To be
more precise, Haubrich and Lo (2001) consider a multi-sector economy with a linear input-
output production function, where each sector is assumed to use only its own produced
output as input factors.476 The model economy may be seen as some independent islands
producing independently from each other. However, the utility-maximizing agent can
consume the output of each island and is resource-constrained by the total output produced
by all islands.477 Given a quadratic utility function and a fully depreciating capital stock,
Haubrich and Lo (2001) show that the output of each sector (island) can be described
as an AR(1) process, whose autoregressive parameter depends on the island’s coefficient
of the input-output matrix and the parameters of the utility function.478 The aggregate
output over all islands is then given as the sum of AR(1) processes similarly to (3.10).479

They finally employ Granger’s result by supposing a beta distribution over the island’s
autoregressive parameters. They show that aggregate output is a long memory process
with parameter d = 1 − q/2, where q is again the parameter of the beta distribution that
shapes its density near 1.480

Another model-based approach to illustrate the effect of how aggregating may alter
important time series properties was carried out by Abadir and Talmain (2002). The
authors argue that aggregation in economic models is unlike (3.11) to a large extent
nonlinear.481 Therefore, the authors set up a more elaborate model than the model of
Haubrich and Lo (2001) containing a nonlinear aggregation over AR(1) productivity
processes. To be more precise, the authors consider a model containing a monopolistic
competitive intermediate goods-producing sector with N firms, each employing a Cobb-
Douglas production function with heterogeneous technical efficiency across firms.482 The
economy’s aggregate output is then produced by a perfectly competitive final goods-

474 See Zaffaroni (2004, p. 85).
475 See Haldrup and Vera-Valdés (2017, p. 3).
476 See Haubrich and Lo (2001, p. 18).
477 See Haubrich and Lo (2001, p. 18).
478 See Haubrich and Lo (2001, p. 19).
479 See Haubrich and Lo (2001, Equation (17) on p. 19).
480 See Haubrich and Lo (2001, p. 20).
481 See Abadir and Talmain (2002, p. 757).
482 See Abadir and Talmain (2002, p. 751).
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producing sector employing a constant-elasticity-of-substitution aggregator.483 After
solving the representative agent’s maximization problem, the authors derive a dynamic
equation for the economy’s GDP per capita (yt). It is given by484

yt = θtC
γyγ

t−1, (3.12)

where C is a constant equal to the economy’s steady state savings rate and γ ∈ (0, 1) is
the capital share of the intermediate good producers’ production function.485 A striking
feature of (3.12) is the technology process θ, which is given by486

θt =
 1
N

N∑
j=1

θj,t

1/ν

, (3.13)

where ν depends on the parameter of the employed constant-elasticity-of-substitution
aggregator, and θj,t, for j = 1, . . . , N are the firm-specific intermediate goods producers’
technology processes.487 In order to derive the time series properties of GDP per capita,
Abadir and Talmain (2002) assume the firm-specific technology processes (θj) to follow
AR(1) processes containing common-shock and idiosyncratic-shock components with firm-
specific persistence parameters.488 By supposing concrete probability distributions for
the productivity processes’ parameters across firms (again a beta distribution for the
autoregressive parameters), the authors show that GDP per capita given in (3.12) shows
long memory.489 A major contribution of Abadir and Talmain (2002) may be seen in the
nonlinear aggregation mechanism used by the authors. They illustrated that the type of
aggregation (linear or nonlinear) mainly affects the time series properties of the aggregate
series. Unfortunately, the authors do not define the concept of long memory in their paper.
Since they state, at the same time, that the GDP per capita process is not stationary,
one can deduce that their notion of long memory differs from the one of Definition 2.3.1
as an autocovariance function is only well-defined for stationary processes.490 Instead,
the authors consider asymptotic laws for the covariances between two instances of time
while not making their notion of long memory explicit. Nevertheless, Abadir and Talmain
(2002) highlight the role of the aggregation mechanisms and how it shapes the time series

483 See Abadir and Talmain (2002, p. 752).
484 See Abadir and Talmain (2002, Equation (18) on p. 756).
485 See Abadir and Talmain (2002, pp. 751 and 756).
486 See Abadir and Talmain (2002, Equation (10) on p. 754).
487 See Abadir and Talmain (2002, pp. 751 and 754). To be more precise, ν−1 may be regarded as a

measure for monopoly power in the intermediate goods sector, see Abadir and Talmain (2002, p. 754).
488 See Abadir and Talmain (2002, Equations (20) and (24) on p. 758f.).
489 See Abadir and Talmain (2002, p. 762).
490 For the statement of the non-stationarity of GDP per capita, see Abadir and Talmain (2002, p. 762).
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properties of the aggregate variable, especially in the presence of nonlinear aggregation.
In doing so, they confirm existing literature that aggregation leads to more persistent
processes.491

Furthermore, it should be noted that long memory arising from the aggregation is generally
not of the same type as for the ARFIMA processes considered in Section 2.4.492 However,
as illustrated by Vera-Valdés (2020), ARFIMA processes have been shown to deliver good
forecasting performances independent of the underlying long memory generating process,
especially for long memory caused by (linear) cross-sectional aggregation.493 Additionally,
by carrying out a simulation study, Vera-Valdés (2021) has shown that key properties
such as the periodogram, ACF, and the process’s realization of an ARFIMA process and
a cross-sectional aggregated process like the one in (3.10) (weighted with

√
N) are quite

similar as long as d = 1 − q/2 ∈ (0, 1/2), where q refers again to the parameter of the beta
distribution.494 That is, ARFIMA processes with long memory (0 < d < 1/2) appear to
be good time series models to mimic the behavior of aggregated processes. Conversely, the
differences between both classes of processes are large if −1/2 < d < 0, i.e., if the process is
an anti-persistent short memory process according to Table 2.1.495 Although long memory
stemming from linear aggregation differs from long memory implied by ARFIMA processes,
Vera-Valdés’ results may serve as an argument for using ARFIMA processes.496

Furthermore, the literature discussed so far has concentrated on aggregating N AR(1)
processes with a random autoregressive parameter drawn from a beta distribution. This
assumption appears to be less founded from an empirical perspective but provides manage-
able closed-form expressions in the first place.497 Albeit the results remain stable under a

491 See Abadir and Talmain (2002, p. 757).
492 In the case of the nonlinear aggregation carried out by Abadir and Talmain (2002) in (3.13), this

was already mentioned in the text. Nevertheless, also in the case of linear aggregation of the form
(3.10), this fact can be seen clearly from the results of Linden (1999, Equation (3.4) on p. 33) who
derived the moving average coefficients of his aggregated process by assuming a uniform distribution.
He illustrates that they differ from the ones of ARFIMA processes (see further Footnote 471). More
recently, Haldrup and Vera-Valdés (2017, Lemma 1 on p. 3) show a similar result for beta distributed
autoregressive coefficients (%j). To be more precise, they show that the moving average coefficients of
the process defined in (3.10) (scaled by

√
N) are different from those of an ARFIMA process stated in

Lemma 2.4.2. However, both types of processes share the same asymptotic (hyperbolic) rate of decay.
493 See Vera-Valdés (2020, p. 817).
494 See Vera-Valdés (2021, pp. 9 and 13).
495 See Vera-Valdés (2021, pp. 8ff.).
496 For example, if 0 < d < 1/2, ARFIMA processes may be appropriate in a representative agent

model context that is aimed to account for long memory without specifying a possibly underlying
cross-sectional heterogeneity in the given model context. In such a context, long memory has to be
regarded as exogenous to the representative agent.

497 See Haldrup and Vera-Valdés (2017, p. 3). Especially for their Lemma 1, where the authors derive the
coefficients of the aggregated process’s IRF, they relate strongly to the assumption of beta distributed
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generalized class of distributions containing the beta and uniform distribution as outlined
by Zaffaroni (2004), the concrete choice of such a distribution seems overall to be critical.498

At the same time, the memory properties of the aggregate process depends mainly on
the choice of such a distribution. Haubrich and Lo (2001) point out that choosing, for
example, a discrete distribution taking on m < N values of the autoregressive parameters
implies that the process defined in (3.10) is just an ARMA(m,m− 1) process entailing
short memory.499 By assuming N independent AR(1) processes, the aggregated process
is an ARMA(N,N − 1) process.500 This result is further generalized to the aggregation
of a finite number of discrete stationary processes by Chambers (1998). He showed that
the long memory parameter of the aggregate time series corresponds to the largest long
memory parameter among all individual time series.501 Consequently, long memory in
an aggregated time series can only occur if at least one individual time series shows long
memory.502 This short discussion illustrates that the aggregation argument for generating
long memory appears to be valid only under specific circumstances. A key ingredient is
that there is a large number of short memory micro-units over which the aggregation is
taken and that the corresponding micro-units’ short memory parameters follow a kind of
beta distribution.503 The specification of such a distribution may be one reason why such
aggregation mechanisms are often not considered in dynamic macroeconomic models.504

A different path for explaining long memory, especially in aggregate output, was taken
by Michelacci (2004). The author considers a vintage model with infinitely many firms
that move away from the economy’s technological frontier as time goes by.505 Firms in
Michelacci’s model can decide in each period either to invest in new technologies that
bring them back to the economy’s technological frontier, or not to do so and move one step
away from the frontier in the next period.506 Thus, the economy’s firms are employing
different technologies at various distances from the actual technological frontier. Suppose a
firm wants to invest in the technology at the frontier. In this case, it faces costs containing
a deterministic part dependent on the state of the technology employed and a random

%j ’s, see Haldrup and Vera-Valdés (2017, Proof of Lemma 1 on p. 9).
498 See Zaffaroni (2004, Assumption II on p. 78) for the details on the class of possible distribution under

which his aggregation results stay valid.
499 See Haubrich and Lo (2001, p. 20).
500 See Granger (1980, p. 231) or Haubrich and Lo (2001, p. 19).
501 See Chambers (1998, Proposition 3 on p. 1061).
502 See Chambers (1998, p. 1061).
503 Many micro-units may be present if one aggregates, e.g., all consumption expenditures of households

or the output of all firms in an economy, see Chambers (1998, p. 1060). Fewer micro-units may be
given in aggregating, e.g., a price index.

504 See Zaffaroni (2004, p. 77).
505 See Michelacci (2004, p. 1326).
506 See Michelacci (2004, p. 1326).
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component independently distributed over all firms reflecting firm-specific opportunity
costs of the possible investment.507 By deriving a Bellmann equation, Michelacci (2004)
illustrates that a firm would only invest in the new technology if the expected benefits
outweigh the cost of adopting the new technology.508 Since the cost of adoption is uncertain,
one has to specify the probability that a firm employing a certain technology adopts the
new technology or not.509 Michelacci (2004) then analyzes the effect of an exogenous shock
to firms’ costs of adopting the new technology.

In his setting, aggregate output increases as more firms employ technologies near the
frontier.510 He shows that if the probability of adopting the new technology is increasing
in the distance from the actual technological frontier, i.e., firms far apart from the frontier
are more likely to adopt the new technology, then, the economy’s aggregate output is
a short memory process.511 On the contrary, if the probability depends negatively on
the distance from the economy’s technological frontier, aggregate output exhibits long
memory.512

However, it should be noted that Michelacci’s notion of long memory differs from the one
of Definition 2.3.1. He defines long memory based on the impulse-response function, i.e.,
in his notation, a process is a long memory process if its IRF decays at a hyperbolic rate
similar to iii) of Lemma 2.4.3 with d > 0.513 Conversely, a process is a short memory
process if its IRF decays exponentially fast, i.e., if d = 0.514 The definition of Michelacci
(2004), thus, covers in contrast to Definition 2.3.1 also non-stationary time series and
random walks.515

Michelacci (2004) argues that if the probability of adopting the new technology is low for
firms far away from the frontier, the propagation of the initial shock is slow, leading to
long memory in the aggregated output.516 This seems reasonable since, in this case, more
firms keep producing with obsolete technologies, thereby contributing less to the economy’s
aggregate output. Instead, suppose it is likely for a low-technology firm to adopt new

507 See Michelacci (2004, p. 1326).
508 See Michelacci (2004, p. 1327).
509 See Michelacci (2004, pp. 1327f.).
510 This follows from Michelacci (2004, Equation (3) on p. 1326). Consequently, the aggregate output

would be maximal if all firms produce at the technological frontier.
511 See Michelacci (2004, Proposition 2 on p. 1332).
512 See Michelacci (2004, p. 1332).
513 See Michelacci (2004, p. 1324).
514 See Michelacci (2004, p. 1324).
515 Michelacci’s notion of short and long memory can be associated with moderate and strong persistence

in the sense of this thesis.
516 See Michelacci (2004, p. 1332).
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technologies rapidly. In this case, the shock is absorbed quickly, implying short memory in
the aggregate output as more firms tend to employ more productive technologies, thereby
increasing aggregate output.517 He further relates his results to the growth rate of firms.
He states that long memory occurs as long as small firms (i.e., firms employing an old
technology) grow faster than big firms (i.e., firms already employing a technology near the
frontier).518,519

To summarize, the model of Michelacci (2004) offers a new perspective on the underlying
mechanisms that generate long memory. Specifically, firm heterogeneity and the proba-
bilities of firms investing in state-of-the-art technologies appear to play an essential role
in explaining long memory in an economy’s aggregate output. On the other hand, the
mechanism proposed by Michelacci (2004) depends crucially on how a firm’s probability
of investing in the new technology evolves with the distance from the economy’s frontier.
As outlined in Footnote 519, the probabilities have to decrease quite slowly. Furthermore,
and as stated by Michelacci (2004) himself, there is a need for firms producing far away
from the technological frontier in order to generate long memory.520 To be more precise,
if the distance to the economy’s technological frontier is bounded, then the economy’s
aggregate output is a short memory process.521

Moreover, he further illustrates how his approach is related to the aggregation mechanism
proposed by Granger (1980) mentioned above. Michelacci (2004) shows that the evolution
of a firm with distance i from the technological frontier can be described as an AR(1)
process whose autoregressive parameter is equal to the probability of investing in the
new technology.522 Instead of assuming a certain distribution across these autoregressive
parameters as done in the papers discussed so far, Michelacci (2004) imposes slowly decaying
probabilities along an increasing distance from the economy’s technological frontier. These
probabilities generate sufficient firms producing far away from the technological frontier
needed to generate long memory in the aggregate output.523

517 See Michelacci (2004, p. 1332).
518 See Michelacci (2004, p. 1333).
519 To be more precise, let i denote the distance to the economy’s technological frontier. Then, Michelacci

(2004) requires the probabilities of a firm with distance i to adopt the new technology pi to be
pi = h/(i+ 1) for sufficiently large i, see Michelacci (2004, Equation (A4) on p. 1332). The parameter
h > 0 is the growth rate of a small firm growing faster than the remaining big firms as long as h > 1,
see Michelacci (2004, p. 1333). The order of integration of the aggregate output is equal to 2 − h,
implying long memory if h ∈ (1.5, 2), see Michelacci (2004, Proposition 3 on p. 1333).

520 See Michelacci (2004, p. 1335).
521 See Michelacci (2004, p. 1335).
522 See Michelacci (2004, p. 1339).
523 See Michelacci (2004, pp. 1339f.).
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Overall, to put the cross-sectional aggregation argument for producing long memory
(in aggregate output) in a nutshell, Michelacci (2004), identifies three key ingredients:
heterogeneity of the micro-units under consideration, a linkage between actual production
and future production for each micro unit, e.g., in the form of an AR(1) process, and
a mechanism producing that a sufficiently large amount of the micro-units are highly
persistent.524 The latter can be done by imposing a distribution on the AR(1) coefficients
directly as was carried out in the mentioned works by Granger (1980), Haubrich and Lo
(2001), Abadir and Talmain (2002) and Haldrup and Vera-Valdés (2017) or by assuming
sufficiently slow decreasing probabilities of adopting new technologies in the vintage model
of Michelacci (2004).

Another possible path for explaining long memory in an aggregate macroeconomic series
resembling some ideas of Michelacci (2004) but, interestingly, not mentioned by him,
can be attributed to Parke (1999). He sets up an error-duration model, where the
aggregate time series represents the sum of identically, independently distributed white
noise errors featuring a stochastic duration.525 By specifying the survival probabilities,
i.e., the probability that a white noise error lasts for k periods, he can precisely recover
the autocorrelation function of a long memory ARFIMA(0, d, 0) process.526 To do so, he
requires slowly decaying survival probabilities of order k2(1 −d).527 Within a simple model
framework, Parke (1999) interprets the errors as a firm’s impact on total employment that
is assumed to be constant as long as the firm is in business.528 Thus, the errors’ survival
probability corresponds to the whole firm’s survival probability. Slowly decaying survival
probabilities of firms needed for the presence of long memory would then induce that
there are some firms lasting for many periods in the market.529 Explaining long memory
in aggregate employment along Parke’s approach is then closely related to how long a
specific firm acts in the market and how likely it is that the firm will be in the market in
the next period. However, Parke’s approach cannot be generalized to ARFIMA(p, d, q)
processes since, in general, these processes do not satisfy the requirements for the survival
probabilities.530

Clearly, Parke’s approach can also be applied in other contexts. So, it is imaginable that a
similar mechanism applies to, e.g., technology. In an economy, many technologies are likely

524 See Michelacci (2004, pp. 1339f.).
525 See Parke (1999, p. 632).
526 See Parke (1999, Proposition 3 on pp. 633f.).
527 See Parke (1999, p. 633).
528 See Parke (1999, p. 634).
529 See Parke (1999, p. 635).
530 See Parke (1999, p. 636).
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used for production. The life spans of such technologies may be regarded as stochastic
since permanent research and development bring out new technologies that may supersede
old technologies. At the same time, it seems reasonable that if a firm invests in a specific
technology, it will use these investments in production for several periods. Consequently,
once the technology is applied, the survival probability of whether the technology is used
in the next period will decay quite slowly.

A short note on temporal aggregation is given at the end of this section. As illustrated in
Section 3.2.1, the estimated parameters of a time series’s long memory parameter vary not
only across the employed estimators but also across the granularity of the data, especially
whether, e.g., GDP is measured quarterly or annually. This dependence on the granularity
of a time series may raise the question of to which extent a macroeconomic variable’s
memory properties also depend on its measurement frequency. For example, consider
a time series of a flow variable, say, a quarterly time series of an economy’s GDP. The
corresponding annual GDP values appear to be the sum of four quarters’ GDP values.
Is the long memory parameter of the aggregated annual series different from that of the
quarterly series from which the annual series was derived? In general, this is not the case,
i.e., temporal aggregation leaves the long memory parameter unaltered.531,532 A similar
result is given by Souza (2008) who showed that both estimators, the GPH estimator
and Robinson (1995b)’s Gaussian semiparametric estimator discussed in Section 3.1.2 are
asymptotically equivalent for the original and the temporally aggregated time series.533

The reason for the contradicting results presented in Section 3.2.1 may be due to a
small sample bias caused by temporal aggregation.534,535 As outlined in Section 3.1.2,
the semiparametric estimators become unreliable if the sample sizes decrease, i.e., the
estimator may be reliable for the original series but the aggregated time series appears to
be too short for a reliable estimation. This view may be supported by a recent survey of
Shi and Sun (2016), who consider daily squared returns of the S& P 500 index from 1928
to 2011 (overall 22,000 observations).536 They employ the GPH estimator and show that
the weekly, biweekly, and monthly series, each aggregated from the daily series, lead to

531 See Chambers (1998, Proposition 1 on p. 1057).
532 Chambers (1998, Equations (5) and (7) on pp. 1056f.) further provides closed-form expressions for

the spectral density of the aggregate time series. These are corrected in Souza (2005, Equation (3)
and (4) on p. 1060). Nevertheless, the main result of Chambers (1998) that long memory is invariant
under temporal aggregation remains valid, see Souza (2005, p. 1062).

533 See Souza (2008, Proposition 1 and 2 on pp. 303f.).
534 See Hassler (2011, p. 343) and Souza (2005, p. 1062).
535 Clearly, aggregating a quarterly time series to an annual time series results in an overall shorter time

series.
536 See Shi and Sun (2016, p. 474).
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nearly the same long memory estimators as for the daily series.537 Thus, given this rather
long time series, there is empirical evidence that in some cases long memory is invariant
under temporal aggregation.

3.3.2 Other Reasons

This section summarizes possible explanations for long memory different from the cross-
sectional aggregation mentioned in the previous section. As these arguments are sometimes
context-dependent and forced by single authors, the considerations are done without a
finer subdivision of this section.

Economic activity sometimes depends on environmental circumstances, e.g., the agricultural
production within a year depends on the amount of rain or certain temperatures. As many
of these geophysical processes show long memory, it may be conclusive that there is long
memory in the corresponding economic data as well.538,539 Thus, the introduction of long
memory shocks in a real business cycle (RBC) model as carried out in Chapter 4 appears
to be a practical approach to mimic existing long memory in the data.540

Schennach (2018a) proposes a long memory generating mechanism based on networks.
To be more precise, she considers a network containing infinitely many agents connected
via an input-output relation.541 She then considers an agent of the network facing a
short memory shock. She asks under which conditions the output of another network’s
participant (or the aggregate output of a group of other participants) shows long memory.
She shows that the spectral density of a network participant’s output depends on the
probability that a certain point in the network is reached after n steps (the sequence cn

in her notation).542 To be more precise, if the mentioned probabilities decay as cn = n−γ

then the spectral density of the destination point’s output (or the destination points
aggregate output) satisfies (2.28) with d = 1 − γ.543 In the next step, Schennach (2018a)
relates the parameter γ to the geometric structure of the network. To be more precise,

537 See Shi and Sun (2016, Table 1 on p. 474). Note that the bandwidth parameters for estimating the
original and aggregated series’s long memory parameters must be the same size, see Shi and Sun
(2016, p. 474).

538 See Henry and Zaffaroni (2003, p. 421).
539 This may have been true in ancient Egypt in the time of Joseph, where crop production was highly

dependent on the flooding of the Nile. If rainfall has long memory, as Hurst showed (see Section 2.2.1),
then crop production is likely to show long memory, too.

540 See Henry and Zaffaroni (2003, p. 421).
541 See Schennach (2018a, pp. 2223f.).
542 See Schennach (2018a, Theorem 1 on p. 2227) and Schennach (2018a, pp. 2227f.) for an interpretation

of the coefficients cn.
543 See Schennach (2018a, Theorem 1 on p. 2227).
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she uses a result of fractal geometry, saying that the parameter γ corresponds to half
of the network’s fractal dimension.544 Overall, the order of fractional integration d of a
destination point’s output falls within the range of long memory (0 < d < 1/2) as long
as the fractal dimension of the network is between one and two.545 As pointed out by
Schennach (2018a), this property is true for hierarchical star-networks.546

To summarize, Schennach’s results highlight that long memory in a firm’s or economy’s
output series may result from the input-output relations and the interconnectedness
between the economy’s firms or agents. There is further a one-to-one mapping between
the geometrical structure of the underlying network and the long memory parameter.547

The question of whether and how rational expectations and long memory are interrelated
is addressed by Chevillon and Mavroeidis (2017). Their contribution is discussed in more
detail at the end of Section 4.2.2 as there are additional linkages to discrete-time rational
expectations models to which the class of DSGE models considered in Chapter 4 belong. In
short, they consider a univariate model that includes expectations about the future values
of the variable. They show that the solution of the model exhibits short memory when
expectations are formed rationally, and long memory when a specific learning algorithm is
used.548

Another approach for explaining long memory is due to J. I. Miller and Park (2010).
They consider a nonlinear transformation of a linear stochastic process exposed to fat-tail
distributed shocks.549,550 Given the properties of the nonlinear function that enters the
transformation and the parameters of the shock distribution, their process can mimic
the hyperbolic decay (2.27) of the autocorrelation function for 0 < d < 1/4.551 Hence, a
small degree of long memory might be attributed to existing nonlinearities and exogenous
fat-tailed distributed shocks.
544 See Schennach (2018a, p. 2229).
545 This is just a summary of the already mentioned results of Schennach (2018a), i.e., d = 1 − γ and γ

corresponds to one half of the network’s fractal dimension.
546 See Schennach (2018a, p. 2230) and Schennach (2018a, Figure 2 on p. 2230) for a graphical illustration

of such a network.
547 In the supplementary material, Schennach (2018b, Section S2.2 on pp. 8f.) provides an empirical

application of her approach. By constructing a network between sectors of the US economy based
on input-output accounts, she finds evidence of long memory in the US primary sector. To be more
precise, she takes all firms of the primary sector as starting and destination points of the network,
i.e., she considers a common shock to this sector. Then, she analyzes this sector’s aggregate effect of
this shock. The corresponding long memory parameter is d = 0.42, see Schennach (2018b, p. 8).

548 See the end of Section 4.2.2 for a more extended discussion and references.
549 See J. I. Miller and Park (2010, p. 84) for the definition of their data-generating process.
550 That such nonlinear transformations may induce long memory behavior was already mentioned by

Granger and Ding (1996, Section 6 on pp. 75f.).
551 See J. I. Miller and Park (2010, p. 86).
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As illustrated in Section 2.2.2 (especially in Figure 2.4), Mandelbrot mentioned the presence
of “local trends” as a striking feature of a long memory process’s realization. From this
perspective, it seems not surprising that a large literature postulates that a time series’s
long memory is caused by a short memory process contaminated by structural breaks,
level shifts, a time-varying mean, or regime switches rather than fractional integration. For
example, Diebold and Inoue (2001) consider (among other models) a Markov-switching
model, where the time series is given by a Gaussian white noise process with a time-varying
mean depending on the value of an underlying two-state Markov chain.552 By allowing
the staying probabilities to be dependent on the sample size, they show that the model
resembles properties of a long memory process if the Markov chain’s staying probabilities
increase slowly with the sample size.553 That is, long memory can be mimicked if the
probability of a mean shift decreases with sample size, ensuring that there are few regime
switches in the process.554 By evaluating a Monte Carlo simulation, they show that the
GPH estimator leads to positive values of d if the Markov chain’s staying probabilities are
near unity (about 0.999), i.e., if the probabilities for a regime-switch are low.555,556

In a related study, Jensen and Liu (2006) consider a two-state duration-dependent switching
model similar to the one of Diebold and Inoue (2001). However, instead of choosing the
transition probabilities to depend on the sample size, they assume the lengths of the
corresponding regimes to be random.557 The two regimes they consider are a regime of an
expanding economy and a recession regime.558 They show that if the regime’s duration times
are drawn from fat-tailed distributions, the process’s autocorrelation function satisfies a
generalized version of (2.27), and hence, mimics the correlation structure of a long memory
process.559,560 Additionally, the corresponding long memory parameter depends linearly
on the tail-index of the underlying fat-tail distribution.561,562

552 See Diebold and Inoue (2001, p. 139).
553 See Diebold and Inoue (2001, Proposition 3 on p. 139).
554 See Diebold and Inoue (2001, p. 155).
555 See Diebold and Inoue (2001, p. 152).
556 Note that Diebold and Inoue (2001, p. 133) use the same definition of long memory as Chevillon and

Mavroeidis (2017) given in Footnote 696 below. As stated in Footnote 696, this definition deviates
from the one considered in this thesis.

557 See Jensen and Liu (2006, pp. 600f.).
558 See Jensen and Liu (2006, pp. 600f.).
559 See Jensen and Liu (2006, Theorem 3.1 on p. 601).
560 Davidson and Sibbertsen (2005, Section 2 on pp. 256ff.) consider the same theoretical model as Jensen

and Liu (2006) and derive the same result in Davidson and Sibbertsen (2005, Theorem 2.1 on p. 258).
561 See Jensen and Liu (2006, Theorem 3.1 on p. 601).
562 By analyzing data on the length of boom and bust cycles in the US economy, Jensen and Liu (2006,

Section 4 on pp. 602ff.) found evidence for their approach. The corresponding estimated long memory
parameter is consistent with the estimated values of Sowell (1992b) and Diebold and Rudebusch
(1989) already mentioned in Section 3.2.1, see Jensen and Liu (2006, p. 603).



Chapter 3. Long Memory in Economics and Econometrics 111

The investigation, carried out by Ashley and Patterson (2010), goes beyond a regime-
switching model. They argue that long memory in the data is caused by a deterministically
and smoothly varying behavior of a time series’s mean.563 Similar to Diebold and Inoue
(2001), they employ the GPH estimator to a battery of time series models containing such
a trending behavior and structural breaks.564 They illustrate that the GPH estimator
detects long memory for all of these models.565 Afterward, they propose and apply a
detrending mechanism to the considered time series models for which the GPH estimator
provides no more evidence of long memory.566 Overall, their results imply that a time
series’s long memory may rather be founded in a prevailing smooth varying mean instead
of a stationary fractionally integrated process.

In the literature, processes mimicking the autocorrelation function of a long memory
process are often labeled as “spurious long memory”567 processes as they do not appear
as a stationary time series showing slowly decaying autocorrelations but rather as short
memory processes contaminated by the mentioned level-shifts, regime-switches or smooth
trends.568 It is easily imaginable that from an econometric perspective, it seems difficult to
differentiate between these various possible specifications.569 Empirical implications such
as forecasts may, however, differ substantially across a true long memory process such as an
ARFIMA process with 0 < d < 1/2 and a regime-switching or break-contaminated short
memory process.570 Nevertheless, as outlined by Diebold and Inoue (2001), a true long
memory process may be a valuable shorthand description of a time series’s dependence
structure if the true model is given by a break-contaminated short memory process.571

They further point out that long memory and structural breaks are different concepts but
indeed describe the same phenomenon; hence, denoting one concept as “true” and the
other as spurious seems doubtful.572

This section has presented many possible explanations for the phenomenon of long memory.
From an economic perspective, the aggregation mechanisms discussed in Section 3.3.1 and

563 See Ashley and Patterson (2010, p. 60).
564 See Ashley and Patterson (2010, Table 1 on p. 67) for an overview of the considered time series

models.
565 See Ashley and Patterson (2010, Table 2 on p. 75 and p. 68) for the postulated evidence of long

memory.
566 See Ashley and Patterson (2010, Table 3 on p. 77 and p. 76) for corresponding results after the trend

elimination.
567 Ohanissian et al. (2008, p. 161).
568 See Ohanissian et al. (2008, p. 161).
569 See Ohanissian et al. (2008, p. 161).
570 See Ohanissian et al. (2008, p. 162) and A. Smith (2005, p. 321).
571 See Diebold and Inoue (2001, p. 157).
572 See Diebold and Inoue (2001, p. 157).
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the network approach of Schennach (2018a) discussed above seem the most attractive,
as they refer to the existing heterogeneity in the real economy. On the other hand,
when analyzing theoretical models that abstract from this heterogeneity, for example in a
representative agent model, it seems reasonable to treat the phenomenon of long memory
exogenously. This approach is taken in the following section, where a stationary ARFIMA
process with long memory is used in a DSGE model with rational expectations.



4
Modeling Aggregate Fluctuations in a DSGE-RBC
Framework

Dynamic stochastic general equilibrium (DSGE) models have become a commonly used
tool in macroeconomics to predict and explain aggregate movements over the business
cycle and to analyze monetary and fiscal policy.573 In addition, they are frequently used
as a policy tool by institutions such as central banks or the European Commission.574

DSGE models combine economic equations derived from agents’ or firms’ optimization
problems, utility functions, and preferences with stochastic shocks such as technology or
monetary policy shocks. These shocks are often incorporated into the model via stationary
AR(1) processes or small order autoregressive moving average (ARMA)processes575, where
the corresponding autoregressive parameters are often referred to be the persistence
parameters.576

As mentioned in Section 2.1.5.1 and Section 2.1.5.2, this persistence has to be deemed as
moderate persistence according to Definition 2.1.6. In addition, the stochastic processes
typically involved are short memory processes. This chapter aims to analyze deviations
from the assumption of moderate persistence in the context of a DSGE model by allowing
for strong persistence and long memory on the basis of a standard real business cycle
(RBC) model. As illustrated in the previous chapter, there is vast literature dealing with
573 See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 530).
574 See Lindé et al. (2016, pp. 2189f.).
575 For example, Smets and Wouters (2007, p. 590) use an ARMA(1, 1) process for a price mark-up

shock.
576 See, e.g., Cantore, Gabriel, et al. (2013a, p. 427).
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long memory in an economic context. Moreover, there is evidence that long memory
models perform better in resembling business cycle characteristics than their short memory
counterparts.577 Moreover, there are arguments why aggregate data is likely to show long
memory.578

These observations motivate this chapter, whose line of reasoning is as follows. To provide
the reader with a concrete model structure for what follows, Section 4.1 specifies the model
setup. Section 4.2 summarizes the general structure of linear DSGE models. Especially,
it illustrates that the solution of a standard linear DSGE model obeys a state-transition
equation, which implies that all variables in such a standard DSGE model are short memory
processes. This observation provides the basis for including long memory exogenously
into the model through fractionally integrated processes. Moreover, this section addresses
the concept of stability in linear DSGE models and outlines some relationships with
deterministic systems of difference equations.

Section 4.3 provides additional justification for the author’s approach by briefly reviewing
the existing literature dealing with deviations from the standard AR(1) assumption.
Furthermore, it illustrates how the research carried out in this thesis contributes to that
literature. In Section 4.4, the results of various model specifications are presented in the
form of an impulse-response analysis, including a comparison between the effects of a
short memory, long memory, and trend shock to the economy’s total factor productivity.
An accompanying appendix, Appendix B, provides additional material such as the model
summaries and details of the solution method.

The author presented parts of the content in this chapter at the “CIMS DSGE Modelling
Conference 2020” during the CIMS Summer School on DSGE Macroeconomic Modelling
(Advanced Course) organized by the Center for International Macroeconomic Studies
(CIMS) at the University of Surrey.

4.1 The Prototypical DSGE-RBC Economy

4.1.1 General Modeling Assumptions

Before the following section outlines the underlying models for the remaining sections
of this chapter, introducing remarks are made, and general modeling assumptions are
discussed in this section.
577 Recall the work of Candelon and Gil-Alaña (2004) mentioned in Section 3.2.1.
578 Recall the arguments mentioned in Section 3.3.1.
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The focus of the research agenda of this thesis lies on long memory in the context of
macroeconomic models. Chapter 3 outlines that long memory processes are frequently
used in the empirical literature. Despite various shortcomings in the employed estimation
methods, they have their justification for being part of the economist’s toolbox in their
own right. Further, Chapter 3 underlines that long memory is a phenomenon that likely
arises in aggregate time series that are often available in macroeconomic contexts.

On the other hand, when stochasticity enters the models, short memory processes (pre-
dominantly AR(1) processes) seem to be the method of choice; especially in the context of
DSGE models, which are an intensively used class of models in the literature.579,580

Further, as the class of DSGE models is well-established with well-known theory and
solution methods, it seems appropriate to consider long memory dynamics in this particular
class of models, thereby preserving comparability to a vast literature.

In RBC models, economic fluctuations are mainly explained by exogenous technology
shocks represented in fluctuations of the Solow residual.581 On the one hand, these
technology shocks appear unsound. Since the Solow residual as a measure of technology
is strongly procyclical (with output growth), economic recessions are the consequence of
technological decline if technology is the driving force of economic activity.582,583 However,
it may be doubtful that technological decline is a major cause of economic recessions.584

On the other hand, these technology shocks have to be strongly persistent to resemble the
data.585,586 In short, RBC models appear to be highly stylized and weakly justified from
an economic perspective.

579 Again referring to the state of the art DSGE model, e.g., Smets and Wouters (2007), they introduce
seven shocks each described by an AR(1) or small order ARMA process, see Smets and Wouters
(2007, Section 1 on pp. 588ff.). Additional examples can be found in, e.g., Cantore, Gabriel, et al.
(2013a, Equations (18.14) and (18.15) on p. 416 and p. 424), Galí (2008, pp. 22, 30, 50, 54), Aguiar
and Gopinath (2007, p. 80).

580 In addition, Blanchard (2009, Footnote 11 on p. 224) states that the assumed shock dynamics are
typically left unexplained and are thus not derived from “first principles” (Blanchard (2009, p. 224)).

581 See Mankiw (1989, pp. 82ff.) and Hartley et al. (1997, p. 38).
582 See Mankiw (1989, pp. 83f.), Hartley et al. (1997, p. 45) and Rebelo (2005, pp. 222f.).
583 Additionally, the Solow residual appears to be an inadequate measure of technological movements as

its cyclical movement may be explained by labor hoarding (see Mankiw (1989, p. 84) and Hartley
et al. (1997, p. 45)) or a varying capital utilization (see Hartley et al. (1997, p. 45)). Following Rebelo
(2005, p. 222), this may be a sign that the Solow residual may contain endogenous components. Thus,
treating it as an exogenous process may be inadequate.

584 See Rebelo (2005, p. 223).
585 See King, Plosser, et al. (1988, pp. 197f. and p. 231).
586 In addition, Cogley and Nason (1995, pp. 500f.) point out that the dynamics of the shock process

determine the dynamics of the model’s output; thus, RBC models have weak endogenous propagation
mechanisms.



116 Chapter 4. Modeling Aggregate Fluctuations in a DSGE-RBC Framework

It is well-documented that New Keynesian DSGE models, which unlike RBC models
incorporate nominal rigidities such as price and wage stickiness, improve the empirical
fit of the model and help explaining the main driving forces of the business cycle.587

Furthermore, as illustrated by Ireland (2004b), the questionable technology shocks play just
a minor role in New Keynesian models to explain the variability of economic variables.588

The model in the following section abstracts from the market frictions and rigidities that
are present in the literature on New Keynesian DSGE models. Given the growing literature
on New Keynesian DSGE models, which seem to be the workhorse models in the DSGE
context today, the reader may wonder why the author focuses on an RBC model.

Ultimately, the New Keynesian DSGE models consist of an RBC model as the core
around which the New Keynesian framework with market imperfections and rigidities is
implemented.589 Thus, this chapter’s model focuses on the core of a wide range of applied
DSGE models in the literature.

This focus is in line with the research agenda of this thesis that does not seek to construct
and estimate a large-scale DSGE model which explains the data sufficiently well. Instead,
as will become clear soon, the introduction of long memory into a DSGE model framework
raises various fundamental questions regarding the structure and solvability of the model
and the implementation of an impulse-response analysis. To answer these questions, it seems
suitable to resort to a prototypical DSGE model, avoiding model-induced complexities
such as heterogeneous agents, policy institutions such as governments or central banks,
or certain rigidities that may impede the answering of these questions.590 In addition,
the model considered below allows one to derive a recursive algorithm for computing the
model’s solution, which may not be the case in a more complicated model.591

Moreover, it seems common in the literature to use well-understood and relatively simple
models for illustrating novel solutions, approximations, or related methods and algo-
rithms.592 As it is one contribution of this thesis to illustrate how a DSGE model can be
solved under wider persistence and memory assumptions, it seems reasonable to do this
587 For example, Smets and Wouters (2007, p. 597) outline the empirical importance of price and wage

stickiness.
588 See Ireland (2004b, p. 931).
589 See Cantore, Gabriel, et al. (2013a, p. 411) and Ireland (2004b, p. 923).
590 The consideration of long memory in more elaborate DSGE model is left for future research. See also

the discussion below of arising research questions in the context of a New Keynesian DSGE model.
591 Many researchers use the software package Dynare to solve and estimate their DSGE models. To

the best of the author’s knowledge, this is, however, not yet possible for the presented long memory
model. Thus, these closed-form expressions facilitate the calculations carried out in this chapter.

592 For example, Meyer-Gohde and Neuhoff (2018, Section 4 on pp. 14ff.) (discussed in detail in
Section 4.3) consider such a RBC model to illustrate their novel testing procedure.
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along a simplified RBC-DSGE model. Further, as the effects of long memory are a priori
not clear, it seems reasonable to consider an RBC model first. If possibly existing effects
due to the implementation of long memory dynamics are not apparent in the RBC model,
further considerations in an extended New Keynesian DSGE model may be obsolete.593

Overall, it seems justified to focus on the RBC core of many DSGE models as a first step,
which is carried out in this thesis. The requirement to account for long memory in an New
Keynesian DSGE model is warranted. In particular, questions of whether central banks
should respond differently to a long memory inflation shock than to a short memory shock
appear to be essential from both an empirical and a policymaker’s perspective. These
issues are left for future research.594

Many economic models (including DSGE models) are inherently nonlinear and (possibly)
difficult to solve. Therefore, perturbation methods are frequently used to approximate the
original model around a specific point. That is, instead of solving the underlying nonlinear
model, its Taylor series expansion at a specific point is considered.595 The specific point is
usually the non-stochastic steady state of the underlying nonlinear model.596 The models
presented in this chapter have a unique steady state around which such an approximation
can be made.597 Within the scope of this thesis, the models considered in this chapter
are expressed in percentage deviations from their corresponding steady state. Then, a
first-order (i.e., a linear) approximation around the steady state is made.598 The resulting
linear system is then solved along the method of Klein (2000).

In light of the growing literature dealing with higher-order approximations, the restriction
to a first-order approximation seems restrictive. However, the order of the approximation is
closely related to the aim of the model. As, for example, outlined by Fernández-Villaverde,
Rubio-Ramírez, and Schorfheide (2016), for a DSGE model including stochastic shocks
with time-varying volatility, at least a third-order approximation is necessary.599 If such
elements are not part of the model, a first- or second-order approximation may be sufficient
for modeling purposes. Moreover, in some circumstances, higher-order approximations need
not be advantageous over first-order approximations, as they may be more computationally

593 The resulting effects of introducing a long memory technology shock are discussed in Sections 4.4.2
and 4.4.3.

594 Clearly, the solution method described in Appendix B appears to be useful to answer these questions.
595 See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 540).
596 See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 549).
597 For details regarding the steady state value, see Section 4.1.4.
598 To be more precise, the second model with Cobb-Douglas preferences is able to account for growth;

thus, there is no steady state in this model. For this reason, the model is made stationary first. The
stationarized variables then have a steady state around which the linearization is made.

599 See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 560).
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demanding and may lead to explosive paths even though the steady state is deemed stable
in a first-order approximation.600,601 On the other hand, linear approximations appear
only as good approximations in a vicinity of the considered steady state, i.e., the dynamics
induced by the linearized model outside of the steady state are only a good approximation
for the underlying nonlinear model if the deviations from the steady state (shocks) are not
too large.602 However, the quality of a first-order approximation depends on the extent of
the nonlinearity of the original model to be linearized.603 In general, the error implied
by the first-order approximation is small if the nonlinearities stem from concave (e.g.,
utility functions) or convex (e.g., production functions) functions typically used in DSGE
models.604 Conversely, a linear approximation may perform worse if the underlying model
has, e.g., a kink such as that in the Taylor rule nearby the zero lower bound.605 Since the
nonlinearities in this chapter’s models come primarily from applied utility and production
functions, a first-order approximation seems reasonable. Moreover, a linearized DSGE
model seems to be sufficient as the introduction of long memory does not increase the
magnitude of the shock per se; instead, long memory primarily refers to a property of
the process’s autocorrelation function, and thus, long memory primarily controls how
quickly the shock dissipates.606,607 The notion “DSGE model” in this thesis is reserved for
models formulated in discrete time. There are, of course, stochastic general equilibrium
models incorporating dynamics formulated in continuous-time.608 These are, however, not
addressed in this chapter.609 The motivation to consider a long memory DSGE model

600 See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, pp. 560 and 567).
601 The concept of stability in the context of DSGE models is discussed in more detail in Section 4.2.3.
602 This is, among others, one critique against DSGE models stated, for example, by Stiglitz (2018, p.

75).
603 See Brzoza-Brzezina and Suda (2021, p. 242).
604 See Brzoza-Brzezina and Suda (2021, p. 242).
605 See Brzoza-Brzezina and Suda (2021, p. 242).
606 See Definition 2.3.1 and Lemma 2.3.2.
607 Of course, the consideration of long memory shocks in higher-order approximated DSGE models, may

be interesting from the perspective of certainty equivalence to which one is restricted by a first-order
approximation, see Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 555). Following
Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 555), certainty equivalence refers to
the property that a shock’s standard deviation does not enter the households’ decision rule, although
the realization of the shock does. Hence, e.g., time-varying volatility or risk shocks cannot be captured
by a first-order approximation. Related problems, whether, for example, households change their
precautionary behavior when they face a long memory shock to another shock’s volatility, appear to
be interesting and are left to future research.

608 An example for an RBC-DSGE model formulated in continuous-time is given in Parra-Alvarez (2018,
Section 3 on pp. 1565ff.). In his paper, Parra-Alvarez (2018) compares various solution methods,
their computational costs, and their accuracy. A continuous-time New Keynesian DSGE model is
considered, e.g., in Fernández-Villaverde, Posch, et al. (2012, Section 2 on pp. 3ff.). General solution
methods for continuous-time rational expectations models can be found, e.g., in Sims (2002, Section 3
and 4 on pp. 5ff.) and Buiter (1984).

609 Note that in Chapter 5, long memory is also discussed in a continuous-time macro-financial model.
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formulated in discrete time is the class of autoregressive fractionally integrated moving
average (ARFIMA) processes described in Section 2.4. Since ARFIMA processes are
formulated in discrete time and arise as a generalization of ARMA processes, which, as
mentioned above, are incorporated quite frequently in discrete-time DSGE models, the
extension of DSGE models with ARFIMA processes lies at hand. Furthermore, ARFIMA
processes have shown their empirical importance, which motivates their consideration in
the context of a discrete-time DSGE model.610

4.1.2 The Structure of the Model

In the following, the prototypical DSGE-RBC model framework is described. The following
sections aim to derive the solution of the model under the assumption of a long memory
technology shock and to examine the extent to which the presence of long memory changes
the decisions of households and their induced effects on the economy compared to a
short-memory shock and a trend shock. The model economy is similar to the one discussed
in Hansen (1985, Section 3.1 on pp. 313ff.), King, Plosser, et al. (1988, Section 2 on pp.
198ff.) and Aguiar and Gopinath (2007, Section 3 on pp. 78ff.).

There is a closed economy populated by private households and firms. There is no
government, no financial sector, and no (central) banks or other financial intermediaries.
The households are the owners of the factors of production, namely labor, and capital.
They supply labor on the labor market and rent capital to the firms on the market for
capital. The firms demand factors of production on these markets and pay wages to
the households for the hired labor and a rental rate on the used capital. In contrast to
households, firms have access to a production technology that enables them to produce
output goods from capital and labor inputs. Firms sell their output on the final goods
market to households. Households can use them to satisfy their consumption needs or
to invest in capital. An investment in capital increases the stock of capital available for
rent to firms in subsequent periods and may (depending on the rental rate) increase the
households’ income.

Overall, there are three markets: the labor market, the market for capital, and the final
goods market. All markets are assumed to be perfectly competitive. The firms’ and
households’ decision problems are outlined in the following.

Firms. Firms produce output goods according to the constant-returns-to-scale Cobb-

610 See the discussion in Section 3.2.
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Douglas production function611

Yt = AtK
α
t (ĀtHt)1−α, with α ∈ (0, 1), (4.1)

where Yt refers to the number of final goods produced, Kt to the amount of capital used
in the production, and Ht to labor inputs. The parameter α refers to the output elasticity
with respect to capital. There are two sources of technological progress. Purely labor
augmenting technological progress is represented by Āt, whereas productivity affecting
both factors is given by At.

The reason for including two different types of productivity processes will become apparent
soon. The underlying idea is as follows. Below, both productivity processes are specified to
follow exogenous stochastic processes exhibiting different properties. Stochastic fluctuations
with a transitory character are associated with At. To be more precise, At will be specified
as a stationary stochastic process implying that the linearized model’s solution turns out
to be stationary as well, i.e., all model variables are stationary processes fluctuating around
their non-stochastic steady state values. Thus, there is no growth in either variable. This
structure allows one to compare the model’s response to short and long memory processes.

In order to incorporate technological growth, Āt comes into play. However, introducing
growth leads to a non-stationary model. In the absence of any stochastic shocks, Āt is
assumed to grow at a constant rate.612 Stochastic shocks are then assumed to alter the
growth rate of Āt. That is, a positive shock to the growth rate will permanently increase
Āt. In order to solve the model, the variables are made stationary by dividing the growing
variables by Āt. However, a balanced growth path is only compatible with purely labor
augmenting technological progress.613,614

Overall, Āt is interpreted as a growing component of technological progress, whereas At

is associated with a transitory productivity component that fluctuates around its steady
state value. This specification offers the possibility for comparing the model’s response
to shocks with a permanent character and shocks with a transitory (either short or long
memory) character. As the model with productivity growth contains the stationary model
(by setting Āt ≡ 1 or the growth rate of Āt to zero) as a special case, it seems parsimonious

611 The specification of the production function is adapted from King, Plosser, et al. (1988, Equation
(2.6) on p. 200) and Aguiar and Gopinath (2007, Equation (1) on p. 78).

612 As outlined below, some other variables also grow at the same rate implying the existence of a
balanced growth path.

613 See King, Plosser, et al. (1988, p. 200).
614 To ensure a balanced growth path, there have to be imposed additional restrictions on the households’

utility function, which are discussed below.
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to formulate the production function as in (4.1) to cover both cases simultaneously.

Firms demand labor and capital as factors of production. They have to pay (nominal)
wages W n

t and a (nominal) rental rate on capital Rn
t to the households for hiring workforce

and renting capital units, respectively. The final goods are sold to households at a price
of Pt. Thus, the firm has to decide how much work and capital to demand in order to
maximize its profits; thus, they face the following maximization problem

max
Ht,Kt

PtYt −W n
t Ht −Rn

t Kt = max
Ht,Kt

PtAtK
α
t (ĀtHt)1−α −W n

t Ht −Rn
t Kt. (4.2)

Households. Households are confronted with various decisions. First, they face an
investment-consumption decision, i.e., they have to decide how much of the final goods
are purchased for consumption Ct or investment purposes It. Second, they have to decide
how much time they supply on the labor market, how much time to devote to leisure Lt,
and how much capital to rent to firms. The households’ preferences are expressed by a
utility function U(Ct, Ht), i.e., households are assumed to gain utility from consumption
and suffer from the disutility of supplying labor. Special forms of the utility function are
expressed below, but it is assumed that U is twice differentiable satisfying615

∂U

∂Ct

> 0, − ∂U

∂Ht

> 0, ∂2U

∂2Ct

≤ 0, − ∂2U

∂2Ht

≥ 0, ∂2U

∂2Ht

∂2U

∂2Ct

−
(

∂2U

∂Ct∂Ht

)2

> 0.

These conditions state that households’ utility is concave and increasing in consumption,
but at a decreasing rate, and that the marginal disutility of labor, given by −∂U/∂Ht, is
positive and non-decreasing.616

In addition, households are assumed to make their consumption, investment, labor, and
capital supply decisions to maximize their expected discounted future utility. Thus, the
households solve the following utility maximization problem

max
Ct,Ht,Kt+1

Et

∞∑
s=t

βs−tU (Cs, Hs) , (4.3)

where 0 < β < 1 refers to the households’ discount rate or time preference rate. Due
to the stochastic processes to be specified for the productivity processes, the future
paths of consumption and leisure are uncertain, implying the need for households to
form expectations. This need is expressed in the operator Et, which is a shorthand

615 See Greenwood et al. (1988, p. 404) or Galí (2008, p. 16).
616 See, e.g., Galí (2008, p. 16).
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notation for the mathematical expectation operator E (·|Ft), where Ft refers to the
information set available to households at time t. That is, households are assumed to
form their expectations rationally.617 As will turn out in Section 4.2.3 (see (4.33)), the
model’s solution depends to a large extent on the expectations of the exogenous stochastic
processes. Thus, an interesting question to be addressed is whether the households change
their consumption and labor supply decision in light of a long memory technology shock.
One might expect that the households know the persistence properties of the exogenous
process. Thus, it seems likely that they take the slowly dissipating effect of a long memory
shock into account and change their behavior accordingly. Such questions are answered in
Section 4.4.

Moreover, households face various restrictions and constraints. First, households cannot go
into debt; thus, they face a budget restriction limiting their consumption and investment
expenditures to the wage and capital income, i.e.,

Pt (Ct + It) = W n
t Ht +Rn

t Kt. (4.4)

Second, since households rent their capital goods to firms, it is assumed that there is some
wear and tear on the capital goods used in the production process. Thus, households
depreciate the capital goods with a constant depreciation rate δ > 0. Depreciated capital
cannot be used in the production process of the following periods. However, investment
spending increases the available capital goods for rent in the next periods; thus, the
accumulation equation of capital is given by

Kt+1 = (1 − δ)Kt + It. (4.5)

Third, households are time-constraint. They cannot supply arbitrary amounts of labor
or consume arbitrary amounts of leisure. Each household has a time endowment that is
normalized to one. Time not spent for work is assumed to be spent for leisure, i.e.,

Ht = 1 − Lt. (4.6)

Although Ht is just proportional to the hours worked by the households (see Footnote 619),
during this thesis, it is referred to Ht as hours worked or working hours.618,619

617 For more details on the information set and its role in the solution method of Blanchard and Kahn,
see Footnote 659.

618 This is in line with, e.g., Lindé (2009, p. 601).
619 To gain some intuition for plausible values of Ht, consider a year with 365 days containing 220 working

days (after subtracting weekends, public holidays, etc.). If a household works eight hours daily, this
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Market clearing. It is assumed that all three markets, the labor market, the market for
capital, and the final goods market, clear at each instance of time. The latter implies

Yt = Ct + It. (4.7)

The equilibrium wage and the rental rate on capital equate labor and capital demands
with their respective supplies.

Equilibrium. In order to consider the equilibrium of the model economy, the price level
of final goods Pt is eliminated, and the model’s variables are expressed in real terms. Thus,
dividing the nominal wage and the nominal rental rate on capital by the price level leads
to the definition of the real wage (Wt) and the real rental rate on capital (Rt), i.e.,

Wt := W n
t

Pt

, Rt := Rn
t

Pt

. (4.8)

An equilibrium of the economy is then defined as the set of real factor price processes, the
households consumption, investment, and labor plan, the levels of production and capital,

{(Wt)t∈Z, (Rt)t∈Z, (Ct)t∈Z, (It)t∈Z, (Lt)t∈Z, (Ht)t∈Z, (Yt)t∈Z, (Kt)t∈Z} , (4.9)

such that households maximize their discounted future utility, firms maximize their profits,
and the markets for goods, labor, and capital clear, given the exogenous productivity
processes (At)t∈Z and (Āt)t∈Z.

Summary of the equilibrium. The stated model economy satisfies the second welfare
theorem; thus, as all assumed households and firms are assumed to be homogeneous and
to operate equally on fully competitive markets, the economy’s equilibrium can be derived
by focusing on a representative household and firm.620

Applying a Lagrangian, the solution to the representative household’s maximization
problem can be summarized by the following two equations. A detailed derivation of
the following equations can be found in Appendix B.1. Let ∂U(Ct, Ht)/∂X = UX,t, then

will correspond to Ht = 220 · 8/(365 · 24) ≈ 0.2. Under the assumption that working and leisure
days are equally distributed over a year, this value is also valid if time is measured in quarters. A
value of Ht = 0.2 was also considered plausible by King, Plosser, et al. (1988, Footnote 28 on p. 215).
However, other values are discussed in the literature ranging from 0.2 up to nearly 0.6 depending
on how the time endowment is measured and how time for sleep and housework is handled, see,
for example, Gomme and Lkhagvasuren (2013, p. 583). If the total amount of hours supplied by a
household is restricted to 220 · 24, then a reasonable value seems to be Ht = 220 · 8/(220 · 24) = 1/3.

620 See King, Plosser, et al. (1988, p. 200) and Hansen (1985, p. 313 and p. 314).
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optimal labor supply is given by

UC,t Wt = −UH,t. (4.10)

The Euler equation is given by

UC,t = βEt [UC,t+1((1 − δ) +Rt+1)] (4.11)

Solving the profit maximization problem of the representative firm leads to the following
equations. Demand for labor is determined by

Wt = (1 − α) Yt

Ht

(4.12)

and demand for capital by
Rt = α

Yt

Kt

. (4.13)

Both equations yield the well-known fact that in competitive markets, marginal factor
products equal real factor prices. Equations (4.1), (4.5) to (4.7) and (4.10) to (4.13)
correspond to the eight unknowns of the model given in (4.9). To complete the model, the
exogenous productivity processes and the specific form of the household’s utility function
need to be specified.

4.1.3 Functional Forms of the Productivity Processes and Pref-
erences

This section specifies the functional forms of the two exogenous productivity processes At

and Āt as well as the utility function of the representative household.

4.1.3.1 Functional Forms of the Productivity Processes

As already mentioned, exogenous transitory changes of total factor productivity are often
described by a stationary AR(1) process with a positive persistence coefficient.621 As
outlined in Section 2.1.5 and Section 2.3, this assumption corresponds to a short memory
process and a moderately persistent process. Here, an ARFIMA(1, d, 0) process is used

621 See, among many others, Hansen (1985, Equation (4) on p. 313), King, Plosser, et al. (1988, Equation
(4.1) on p. 212), Aguiar and Gopinath (2007, Equation (2) on p. 78), Smets and Wouters (2007, p.
589), Cantore, Gabriel, et al. (2013a, Equation (18.14) on p. 416), Lindé et al. (2016, Equation (5) on
p. 2193).
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instead to introduce a long memory and strongly persistent productivity process.622,623

Recall that the motivation for using an ARFIMA process is twofold. First, as outlined in
Chapter 3, ARFIMA processes are relevant from an empirical perspective. This empirical
relevance may facilitate the estimation of a long memory DSGE model in the future, as
the methods available for ARFIMA processes may be applicable to the estimation of
such a model. Second, since ARFIMA processes include ARMA processes as a special
case, one obtains an extension of the existing DSGE model that further allows for better
comparability than if this nesting is not preserved.

To be more precise, it is assumed that the transitory component of productivity satisfies

(1 − %AB) (log(At) − log(Ass)) = (1 −B)−dεA
t , (4.14)

where |%A| < 1 is the short memory parameter and 0 ≤ d < 1/2 is the long memory
parameter.624 The process εA is assumed to be a Gaussian white noise process with
standard deviation σεA .625 The expected value or steady state value of log(At) is denoted
by log(Ass) and is an exogenously given constant.

Similar to (2.34), (4.14) can be expressed as

(1 − %AB) (log(At) − log(Ass)) = νA
t , (4.15)

where νA
t := (1−B)−dεA

t is a fractionally integrated white noise process of order 0 < d < 1/2.
This rearrangement provides some advantages that materialize during the model solution
stated in Appendix B.5. It states that one can interpret log(At) as an AR(1) process with

622 Recall from Table 2.1 that an ARFIMA process is a strongly persistent long memory process only if
0 < d < 1/2.

623 It would further be possible to consider a more complicated structure of short memory components,
i.e., to consider an ARFIMA(p, d, q) process with p > 1 and q > 0. This thesis does not consider such
alternatives as they seem uncommon in the literature, where transitory productivity shocks are widely
assumed to follow an AR(1) process. Are more detailed discussion regarding this issue is given in
Section 4.3. There, it is shown that some authors propose to use more general short memory processes
for the exogenous processes in the context of DSGE models. As this thesis aims to investigate the
impact of long memory on the model’s outcomes, additional investigations of interactions between
long memory and a richer short memory structure are left for future research. In addition, a more
complex short memory structure of the variables may be implemented endogenously by considering a
richer model structure generating persistence such as consumption habits or investment adjustment
costs, etc. (see, e.g., Cantore, Gabriel, et al. (2013a, p. 425)). The short memory structure implied
by the model contrasts sharply with long memory, which does not appear to be endogenizable in a
standard linearized DSGE model. Details on this are carried out in Section 4.2.2.

624 In order to avoid negative values of productivity, (4.14) is written in terms of the logarithm of At

instead of At directly. Doing so is in line with, e.g., Lindé et al. (2016, Equation (5) on p. 2391).
625 Recall Footnote 53 for the definition of a Gaussian white noise process.
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respect to the process νA instead of εA.

The growing component of technological progress is assumed to follow626

Āt = (1 + gt)Āt−1 = Ā0

t∏
u=1

(1 + gu), with initial value Ā0, (4.16)

where the growth factor bt := (1 + gt) evolves according to627

(1 − %gB) (log(bt) − log(bss)) = εg
t . (4.17)

Similar to (4.14), εg is a Gaussian white noise process with standard deviation σεg inde-
pendent from εA.628 Again, bss := log(1 + gss) refers to the expected value of log(1 + gt),
i.e., according to Footnote 628, gss is approximately the expected value of the growth rate
gt. As the shocks εg

t affect the logarithm of the growth factor of Āt, they are called growth
shocks in this thesis.629

Lemma 2.4.3 implies that the impulse-response function (IRF) of an ARFIMA(1, d, 0)
process given in (4.14) converges to zero. Hence, shocks to At have to be deemed transitory.
The same holds for the IRF of the AR(1) process specified in (4.17). Concerning the
growth factor bt, the shocks εg are also transitory. The growth shocks, however, alter the
level of productivity Āt given in (4.16) permanently, i.e., for the level of productivity, the
shock εg has to be deemed permanent.630

4.1.3.2 Functional Forms of the Utility Functions

As can be seen from (4.3), all future periods enter into the household’s decision problem
raising the presumption that shocks altering the level of productivity permanently will
influence the household’s decision differently than a quickly decaying shock. That this
is indeed the case is already well documented for the comparison between short memory
and permanent productivity shocks.631 In this thesis, the third case, namely long memory
626 This specification is inspired by Aguiar and Gopinath (2004, p. 10) and Aguiar and Gopinath (2007,

p. 80).
627 Again, the formulation in logarithms is used to avoid negative values of the growth factor 1 + gt.

However, doing so does not rule out negative values of the growth rate gt itself. In order to simplify
notation and phrasing, the term “growth” is also used in cases of negative growth rates that are
associated with a decay of Āt.

628 Note that log(1 + x) ≈ x for small values of x. Thus, (4.17) states that the growth rate gt follows
approximately an AR(1) process.

629 This is in accordance with Aguiar and Gopinath (2007, p. 80).
630 See Aguiar and Gopinath (2007, p. 80).
631 See, for example, Aguiar and Gopinath (2007, Figure 3 on pp. 88ff.). Part b of Figure 3 in Aguiar

and Gopinath (2007) illustrates the different responses of the consumption-to-GDP ratio to a one
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productivity shocks to the transitory component At, is added to this discussion. It may
also be apparent that the household’s decision also depends on its preferences. To account
for this dependence, two different functional forms of the household’s utility function are
considered in the following.

In the first scenario, it is abstracted from growth in the model, i.e., Āt ≡ 1, and the single
source of uncertainty in total factor productivity (TFP) is the transitory component At

specified in (4.14). In this setting, the utility function is assumed to be additive separable
in consumption and hours worked, i.e.,632

U(Ct, Ht) = C1−ς
t

1 − ς
− κ

H1+ϕ
t

1 + ϕ
, ς,κ, ϕ > 0. (4.18)

The specification (4.18) states that the representative household gets utility from con-
sumption but suffers from the disutility of supplying labor. Utility from consumption is
given as a standard constant relative risk aversion utility function, where the relative risk
aversion (by simultaneously holding Ht constant) is given by the parameter ς.633

Additionally, 1/ς is the intertemporal elasticity of substitution.634 The same functional
form is assumed for the disutility of labor. Moreover, utility function (4.18) belongs to
the family of utility functions with a constant Frisch elasticity of labor supply which can
be pinned down by the parameter ϕ.635 To be more precise, the Frisch elasticity of labor
supply is defined as the real wage elasticity of labor supply by keeping the marginal utility

percent growth and transitory technology shock. Lindé (2009, Section 3 on pp. 600ff.) analyzes the
effect of permanent and transitory short memory AR(1) technology shocks in a standard RBC model.

632 This specification is also common in New Keynesian DSGE models, see, e.g., Clarida et al. (2002,
Equation (6) on p. 882), Christoffel and Kuester (2008, Equation (2) on p. 867) or Galí (2008, p. 17).

633 Following Chetty (2006, p. 1822), the constant relative risk aversion by holding the labor supply fixed,
is given by −C UCC(C,H)/UC(C,H), where UC and UCC are the first-order and second-order partial
derivatives of U with respect to C. Plugging (4.18) into the mentioned definition, it is easy to see
that the relative risk aversion is constant and given by ς. However, the risk aversion of the household
is smaller than ς if labor supply is assumed to be variable such as in the model considered here, see
Chetty (2006, p. 1822 and Appendix A on p. 1831). This point is also highlighted by Swanson (2012,
Example 2 on pp. 1675ff.). He showed that the risk aversion of the household with utility function
(4.18) is ς (1/(1 + ς/ϕ)) given the additional assumption that consumption is equal to the household’s
entire labor earnings. This expression is clearly smaller than ς, see Swanson (2012, p. 1676). That a
variable labor supply reduces the relative risk aversion of the household seems plausible since the
reduction or increase of labor supply provides an additional channel for the household to react to
wealth shocks. This additional possibility reduces the household’s relative risk aversion; see Chetty
(2006, pp. 1823ff.).

634 See, e.g., Swanson (2012, Footnote 1 on p. 1664). It follows from the discussion in Footnote 633
that for the utility function (4.18), the relative risk aversion is not reciprocal to the intertemporal
elasticity of substitution when the household’s labor supply is variable, see Swanson (2012, Footnote
1 on p. 1664).

635 See R. W. Evans and K. L. Phillips (2018, Section 2.3 on pp. 517f.).
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of consumption constant.636 It is shown in Appendix B.2 that the parameter ϕ > 0 is
equal to the inverse of the Frisch elasticity of labor supply. Thus, a higher value of ϕ
corresponds to a smaller value of the Frisch elasticity, implying that the household adjusts
its labor supply less elastically to an increase in real wages given the assumption of a
constant level of consumption.637,638

The scaling parameter κ may be seen as a relative measure for the distaste of supplying
labor relative to the taste for consumption.639

The presence of growing technological progress induces the model to have a balanced growth
path. Consequently, utility function (4.18) cannot be used because it is incompatible with
such a balanced growth path.640 Thus, in the second scenario, where growth is considered,
it is assumed that the household’s utility function is of Cobb-Douglas type, i.e.,641

U(Ct, Ht) = (C1−γ
t (1 −Ht)γ)1−τ

1 − τ
, 0 < γ < 1, τ > 0. (4.19)

The parameter γ represents the weight of leisure in the utility function.642 The parameter
1/τ is the elasticity of intertemporal substitution of the composite good C1−γ

t (1−Ht)γ .643,644

The Frisch elasticity of labor supply depends, in contrast to the utility function (4.18), on
the actual amount of labor supplied by the household.645

636 See R. W. Evans and K. L. Phillips (2018, p. 521) and Christiano et al. (2010, p. 299).
637 Since UC,t(Ct,Ht) = C−ς

t , one can equally assume that the level of consumption is constant instead
of the marginal utility of consumption. Doing so is in line with Christiano et al. (2010, Footnote 6 on
p. 299).

638 In light of Footnote 633, it seems not surprising that Swanson’s formula for the relative risk aversion
depends on the Frisch elasticity 1/ϕ as well.

639 See Heathcote et al. (2008, p. 511). Note that this parameter is sometimes normalized to unity as in
Heathcote et al. (2008, p. 511) or Galí (2008, p. 17). However, in Section 4.4.1, the parameter is used
for calibrating the steady state value of hours worked in the model. Hence, it seems useful to keep
this additional degree of freedom.

640 To be more precise, King, Plosser, et al. (1988, Equations (2.8a) and (2.8b) on p. 202) show that the
utility function has to be of the following form in order to be compatible with a balanced growth path

U(Ct,Ht) =


1

1 − ς
C1−ς

t v(Ht) if 0 < ς < 1 or ς > 1

log(Ct) + v(Ht) if ς = 1
,

where some additional restrictions on the function v(·) has to be imposed, King, Plosser, et al. (1988,
Footnote 11 on p. 202).

641 See Aguiar and Gopinath (2007, Equation (3) p. 80), Lindé (2009, Equation (7) on p. 600) and
Cantore, Gabriel, et al. (2013a, Equation (18.16) on p. 416).

642 See Cooley and Prescott (1995, p. 16).
643 See, e.g., Bechlioulis and Brissimis (2021, p. 107).
644 Note that for the utility function (4.19), τ further refers to the relative risk aversion, see Swanson

(2012, p. 1675).
645 To be more precise, the Frisch elasticity is given by −((1−γ)(1−τ)−1)/τ)(1−Ht)/Ht, see Bechlioulis
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4.1.4 The Non-Stochastic Steady State and Balanced Growth
Path

The model’s non-stochastic or deterministic steady state described in the previous section is
defined as the model’s equilibrium under the assumption that the agents do not anticipate
future shocks.646 Thus, all exogenous stochastic shocks and their expectations are set to
zero.647 Further, the steady state (SS) of the resulting deterministic model can be found
by setting Xt+1 = Xt = Xss for each variable Xt, where Xt is a representative for any of
the model’s variable. The variable subscript ss refers then to its steady state value.

If technological growth is considered, it follows from (4.17) that labor augmenting techno-
logical progress Āt will grow at the constant rate gss implying a balanced growth path,
where output Yt, the capital stock Kt, consumption Ct, investment It grow at rate gss as
well.648 Note that hours worked Ht are bounded by 1, implying that they cannot grow
over time; hence their growth rate is zero.649. In addition, (4.13) and (4.12) imply that the
real rental rate on capital is constant in the steady state, but the real wage Wt grows at
rate gss. Since the condition for a steady state value Xt+1 = Xt = Xss cannot be satisfied
in the presence of growth, the variables have to be rescaled to establish a constant steady
state of the rescaled variables.650

As the growth in the model comes from the labor augmenting technology process Āt, the
model is made stationary by dividing through Āt.651 Let the stationarized variables be
denoted by lowercase letters. They are given as652

yt := Yt

Āt

, ct := Ct

Āt

, it := It

Āt

, wt := Wt

Āt

, kt+1 := Kt+1

Āt

. (4.20)

As illustrated in Appendix B.4.2, these stationarized variables have then a constant steady
state value.

After the steady state is determined, both models are log-linearized around their deter-
ministic steady state values. Thus, the model equations are expressed in terms of the

and Brissimis (2021, p. 107).
646 See Coeurdacier et al. (2011, p. 398).
647 In the model, this is equal to νA

t ≡ 0 and εg
t ≡ 0 in (4.15) and (4.17), respectively.

648 See King, Plosser, et al. (1988, p. 201) and, for more details, the derivation in their technical appendix
King, Plosser, et al. (2002, p. 92).

649 See King, Plosser, et al. (1988, p. 201).
650 See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 544).
651 See Aguiar and Gopinath (2007, p. 80) or Cantore, Gabriel, et al. (2013a, p. 418).
652 Note that the capital stock in period t+ 1, Kt+1, is rescaled by Āt instead of Āt+1 as it is already

determined in period t due to (4.5). Doing so is in line with Lindé (2009, p. 600).
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variables’ percentage deviation from their respective steady state, i.e., a variable Xt is
replaced with X̃t, where the latter is defined as653

X̃t := log(Xt) − log(Xss). (4.21)

The linearization was done using the method of Uhlig (1999).654

Appendix B.3 summarizes the model without growth and additive separable utility func-
tion. More specifically, Appendix B.3.1 contains the nonlinear model equations and Ap-
pendix B.3.2 the corresponding steady state values of the model’s variables. Appendix B.3.3
summarizes the linearized equations, and Appendix B.3.4 provides the matrices for the
model’s canonical form needed for solving the model. Similarly, Appendix B.4 summarizes
the model with labor augmenting technological growth and Cobb-Douglas (CD) utility
function. More specifically, Appendix B.4.1 illustrates the stationarized nonlinear model
equations and Appendix B.4.2 the corresponding steady state values of the stationarized
variables. Appendix B.4.3 summarizes the linearized equations, and Appendix B.4.4
provides the matrices for the model’s canonical form needed for solving the model.

The log-linearized models are solved with the method of Klein (2000) described in Ap-
pendix B.5. Before the models’ solutions are considered in terms of an impulse-response
analysis, the following section summarizes some facts about the solution methodology of
linearized DSGE models containing notes on the memory property of a model’s solution
and its stability.

4.2 On the Structure of Linearized DSGE Models

This section delineates the underlying theoretical background containing the general model
structure, the solution’s form and memory properties of conventional linear DSGE models,
and the concept of stability. This section’s character is rather descriptive, illustrating some
key concepts of linearized DSGE models. A more rigorous and mathematical consideration
is given in Appendix B.5. There, the arguments of this section are seized and reinforced
with the necessary equations again.

653 Note that X̃t is approximately the percentage deviation of Xt from its steady state value due to
X̃t = log(Xt/Xss) = log((Xt −Xss)/Xss + 1) ≈ (Xt −Xss)/Xss.

654 The method is described in Uhlig (1999, Section 3.3 on pp. 32ff.).
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4.2.1 The Solution Methodology of Blanchard and Kahn

In the end, the equations of a linearized or linear DSGE model form a set of stochastic
difference equations. In order to solve this system, various solution methods are proposed
in the literature.655 A common feature of the solution methods suggested in the literature
is that they require the model to be in a particular form, called the canonical form of the
DSGE model. This canonical form summarizes the model in a single equation involving
specific matrices.

A well-established solution method of linear DSGE models is the one proposed by Blanchard
and Kahn (1980). Their method requires the model to fit the following canonical form656,657

Etxt+1 = A0xt + G0zt, (4.22)

where the vector xt is of size n× 1 and contains all model variables, and n is the number of
variables in the model. The matrix A0 is of size n× n and the matrix G0 is of size n× nz,
where nz is the number of exogenous stochastic shocks specified in the nz × 1 vector zt.
The elements of the matrices A0 and G0 are functions of the model parameters and the
variables’ steady state values.658 Again, Etxt+1 = E(Xt+1|Ft) refers to the conditional
expectation of xt+1 formed at time t given the information set Ft available at time t.659

655 A non-exhaustive list of frequently used methods is given in the following. McCallum (1983, Section 3
on pp. 145ff.) and Uhlig (1999, Section 3.4 on pp. 35ff.) use the method of undetermined coefficients.
Moreover, McCallum (1983) uses a set of minimal state variables to determine a unique solution.
Binder and Pesaran (1995, Section 2.3 on pp. 149ff.) use a quadratic determinantal equation method.
Meyer-Gohde (2010, Section 3 on pp. 986ff.) derives a system of difference equation in the model’s
infinite moving average coefficients, including models with many expectational lags. The method of
Klein (2000) generalizes the method of Blanchard and Kahn (1980) and is discussed in Appendix B.5.
The method of Sims (2002, Section 3 and 4 on pp. 5ff.) seems to be more general than the ones of
Blanchard and Kahn (1980) and Klein (2000) and applies to continuous-time models as well. Buiter
(1984)’s method is an extension of Blanchard and Kahn’s solution method to continuous-time rational
expectations models.

656 See Blanchard and Kahn (1980, Equation (1a) on p. 1305).
657 Other solution methods discussed in the literature may require different but possibly more general

canonical forms of the DSGE model, see for example Klein (2000, p. 1408), Sims (2002, p. 1) or
Binder and Pesaran (1995, pp. 141f.).

658 See the examples given by Blanchard and Kahn (1980, pp. 1036f.).
659 The model includes exogenous stochastic processes, defined on a probability space (Ω,F ,P) as

described in Definition 2.1.1. These processes are stored in the vector zt. Consequently, the model
solution is generally also a stochastic process. The information set Ft at time t can be formally
defined as a sigma algebra or sigma field over Ω generated by xt (and possibly zt), as described
by Binder and Pesaran (1995, p. 140 and Footnote 3) or Bårdsen and Fanelli (2015, p. 309). As
time progresses, there is a sequence of sigma algebras (Ft)t∈Z, also called a filtration, which satisfies
Ft ⊂ Ft+1. Common solution methods require that the exogenous stochastic process be adapted to
this filtration, meaning that zt has to be Ft-measurable, as outlined in Binder and Pesaran (1995, p.
140) or Klein (2000, p. 1408). This condition is satisfied if the information set under consideration is
generated by the processes xt and zt.
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A vector xt satisfying (4.22) at each instance of time is called a solution to the model.
Later, it is shown that the models presented in the previous section cannot be cast in
the canonical form (4.22). Therefore, the method of Blanchard and Kahn (1980) is not
suitable for the purposes of this thesis. Instead, the solution method of Klein (2000) is
used and described in more detail in Appendix B.5. However, for the illustrative purpose
of this section, it seems appropriate to discuss the key aspects along the simpler structure
(4.22) rather than the more general approach of Klein (2000).660

Blanchard and Kahn (1980) divide the variables of the model dichotomously in the groups
of predetermined and non-predetermined variables.661 Predetermined variables have an
exogenously given initial value xp

0 and, at time t+ 1, they can be expressed as a function
of variables “known” at time t, i.e., Etx

p
t+1 = xp

t+1, where xp
t refers to the part of the vector

xt containing the predetermined variables.662,663

Let xnp
t the part of the vector xt containing the non-predetermined variables, then (4.22)

can equally be written as  xp
t+1

Etx
np
t+1

 = A0

 xp
t

xnp
t

+ G0zt. (4.23)

Linear rational expectations models have, in general, many solutions.664 In order to restrict
the set of possible solutions, some additional restrictions on the exogenous stochastic
process zt and the solution of the model have to be imposed to pin down a unique solution
process.665

Blanchard and Kahn assume that the expectations of a solution xt and the exogenous
stochastic process zt do not grow without bounds.666 To be more precise, they impose
that for each t ∈ Z, there are constants θζ

t ∈ R and M ζ
t ∈ Rnζ , where nζ is the length of

660 As will turn out in Appendix B.5, the method of Klein (2000) is a direct generalization of the method
of Blanchard and Kahn (1980), see Klein (2000, pp. 1406f.).

661 See Blanchard and Kahn (1980, p. 1305).
662 See Blanchard and Kahn (1980, p. 1305).
663 An example of a predetermined variable in the model of the previous section is the capital stock

specified in (4.5) or its linearized version given in Table B.3. Given an exogenous initial value, e.g.,
the steady state value K̃0 = 0, one has EtK̃t+1 = Et

(
(1 − δ)K̃t + δĨt

)
= (1 − δ)K̃t + δĨt = K̃t+1.

664 This is illustrated in Gourieroux, Laffont, et al. (1982) along a simple univariate linear rational
expectations model. The authors classify the complete set of solutions in their framework, see
Gourieroux, Laffont, et al. (1982, p. 416).

665 See Gourieroux, Laffont, et al. (1982, p. 416) and Gourieroux, Laffont, et al. (1982, Section 3 on
pp. 416ff.) for a discussion of various selection criteria in the context of linear univariate rational
expectations models.

666 See Blanchard and Kahn (1980, p. 1305).
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the vector ζt, such that667

|Etζt+j| ≤ (1 + j)θζ
tM ζ

t , for all j ≥ 0 and ζ ∈ {x, z}. (4.24)

Equation (4.24) may be considered a kind of stability condition for the model’s solu-
tion.668,669 To be more precise, Blanchard and Kahn decouple the system (4.23) into
two subsystems. The first subsystem is associated with the stable eigenvalues (i.e., the
eigenvalues smaller than one in modulus) of A0, and the second is associated with the
unstable eigenvalues (i.e., the eigenvalues greater than one in modulus) of A0.670 Condition
(4.24) then enables the determination of a unique solution to the unstable subsystem that
satisfies (4.24) again.671

It remains is to find a unique solution to the stable subsystem. From a deterministic
system of difference equations, one would expect the unique stable solution to be pinned
down by certain initial values. The same holds true in this context, but the initial values
of the stable subsystem are not given directly. They have to be determined from the
given initial values of the predetermined variables. In order to find them, the initial values
of the stable subsystem are linked by a system of equations to the initial values of the
predetermined variables.672 It depends on this system of equations whether or not the
initial values of the stable subsystem are uniquely determined. In the end, if there are
“too many” predetermined variables, the system for determining the initial values of the
stable subsystem is overdetermined; thus, it has (in most cases) no solution.673 On the
other hand, if there are “not enough” predetermined variables, the system for determining
the initial values of the stable subsystem is underdetermined, and many solutions will
exist.674 If both stable and unstable subsystems are uniquely solved, there is a unique
solution to the whole system (4.23).675

To be more precise regarding the notion of “too many” or “not enough” predetermined
variables, Blanchard and Kahn state that the model (4.22) has a unique solution if
667 See Blanchard and Kahn (1980, Equation (1c) on p. 1305 and p. 1307).
668 See King and Watson (1998, p. 1020).
669 This point will become clear in the context of Klein’s solution method discussed in Appendix B.5.1.

Klein explicitly defines the notion of a stable solution, and it can be shown that each process satisfying
Klein’s stability condition also satisfies (4.24).

670 See Blanchard and Kahn (1980, p. 1307).
671 See Blanchard and Kahn (1980, p. 1310 and especially Equation (A4)).
672 This is equation (A5) of Blanchard and Kahn (1980, p. 1310).
673 See Blanchard and Kahn (1980, p. 1310).
674 See Blanchard and Kahn (1980, p. 1310).
675 Note, that in either case, it is (4.24) that allows Blanchard and Kahn to pin down the unique solution

to the unstable system, see Blanchard and Kahn (1980, p. 1310).
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the number of unstable eigenvalues of A0 is equal to the number of non-predetermined
variables.676 On the other hand, the model is indeterminate, i.e., there is an infinite number
of model solutions if there are more non-predetermined variables than unstable eigenvalues
of A0.677 Finally, there is no solution to the model satisfying (4.24) if the number of
unstable eigenvalues of A0 exceeds the number of non-predetermined variables.678 These
conditions ensuring the circumstances for which there is a unique solution to the linear
DSGE model are sometimes called “Blanchard-Kahn conditions”679.680

Since the matrix A0 and its eigenvalues depend on the model parameters, the question of
the existence of a unique solution is also parameter dependent. Moreover, the existence
of the solution is typically proofed numerically for a given set of parameters, as it is, in
general, computationally demanding to calculate the eigenvalues of A0 analytically.681

4.2.2 Memory Properties of the DSGE Model’s Solution

Assuming a unique solution of the model, the solution depends to a large extent on the
conditional expectations of the exogenous stochastic process.682 The exogenous stochastic
process zt is, however, commonly assumed to be an nz dimensional white noise process,
i.e., zt = εt with Eεt = 0nz×1, Eεtε

T
t = Σε and Eεtε

T
s = 0nz×nz , or a first-order multivariate

autoregressive process, i.e., zt = Λzzt−1 + εt.683,684

In such cases, the solutions of a wide range of DSGE models can be cast into a state-

676 See Blanchard and Kahn (1980, Proposition 1 on p. 1308). This condition is equivalent to saying
that there are as many predetermined variables as stable eigenvalues. In this case, the model is called
saddle-path stable, see Gandolfo (1997, p. 403). A detailed exposition of stability in the context of
linearized DSGE models is given in Section 4.2.3.

677 See Blanchard and Kahn (1980, Proposition 3 on p. 1308). This condition is equivalent to saying
that there are fewer predetermined variables than stable eigenvalues.

678 See Blanchard and Kahn (1980, Proposition 2 on p. 1308). This condition is equivalent to saying
that there are more predetermined variables than stable eigenvalues.

679 Miao (2020, p. 23).
680 The Blanchard-Kahn conditions should not be confused with the stability condition (4.24).
681 See Blanchard and Kahn (1980, p. 1309).
682 See Blanchard and Kahn (1980, Equations (2) and (3) on p. 1308) or (B.31) in the context of Klein

(2000)’s solution method.
683 In the context of the models in the previous section, the exogenous process zt is simply εA

t in the
model without growth and long memory, i.e., zt is a one-dimensional white noise process. In the
model with growth but without long memory, one has zt = (εa

t , ε
g
t )T , i.e., it is a two-dimensional white

noise process. It is also common to specify zt as a first-order vector autoregressive (VAR(1)) process,
see e.g., Klein (2000, p. 1409 and p. 1412), Ravenna (2007, p. 2050) or Chib and Ramamurthy (2014,
pp. 154f.).

684 Note that the restriction to VAR(1) seems not to be restrictive since many processes e.g., vector
autoregressive moving average (VARMA) processes can be rewritten as a VAR(1) process, see, e.g.,
Lütkepohl (2005, pp. 426ff.).
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transition equation of the following form685

xt = Mxt−1 + Nεt, (4.25)

where Nεt is again a white noise process with covariance matrix NΣεNT . In the end, as
can be seen from (4.25), the solution to the model can be represented as a stationary
first-order vector autoregressive process similar to the univariate process considered in
(2.13). The difference is that the autoregressive parameter is now replaced with the n× n

dimensional matrix M whose entries are functions of the model’s parameters.686

Further, the result stated in (2.10) can be generalized to multivariate time series, i.e.,
the autocovariance function of each component of the DSGE model’s solution xt given
in (4.25) is again geometrically bounded and thus absolutely summable.687 Overall, and
similar to a univariate AR(1) or ARMA process, the solution to a standard DSGE model
is again a short memory process.688,689

The reason why the model solution is a short memory process may lie in the specification of
the exogenous processes rather than in the model equations themselves. As already stated
and outlined by Blanchard and Kahn (1980) (and in the context of Klein’s solution method
in Appendix B.5.2), the solution to the model depends on the conditional expectations of
the exogenous stochastic process zt. If this process is assumed to be the VAR(1) process
mentioned above, then the conditional expectation of zt+j, given the information set at
time t, can be expressed as a linear function of zt, i.e.,

Et(zt+j) = Et(Λzzt+j−1 + εt+j) = ΛzEt(zt+j−1) = Λj
zzt. (4.26)

This recursive dependence of the conditional expectations on the previous values of the

685 See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 632, especially Equation (76)),
Iskrev (2010, p. 191), Giacomini (2013, p. 6) or Chib and Ramamurthy (2014, pp. 154f.).

686 This form is also derived from Klein’s solution method discussed in Appendix B.5.3.
687 See Brockwell and Davis (1987, p. 410).
688 This reasoning holds in a wider context as well. In order to estimate a DSGE model, (4.25) is

complemented with a so-called observation or measurement equation which relates the observable
variables to the model’s variables, see Iskrev (2010, p. 191). The DSGE model’s solution can then
be written as a state space system that is commonly referred to as the ABCD-representation of the
DSGE model, see Fernández-Villaverde, Rubio-Ramírez, Sargent, et al. (2007, p. 1021) or Morris
(2016, p. 30). This representation can, however, be cast into a multivariate ARMA process (see
Morris (2016, p. 31) or Ravenna (2007, p. 2052)) whose autocovariances and autocorrelations of
each component are again geometrically bounded, see Brockwell and Davis (1987, p. 410). Hence,
even if (4.25) is augmented with a measurement equation, the solution remains to be a short memory
process.

689 Similarly, Davidson and Sibbertsen (2005, p. 254) claim that finite-order difference equations cannot
replicate long memory.
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process allows the whole solution to be cast into the recursive form stated in (4.25).

If exogenous short memory processes combined with rational expectations lead to a short
memory solution of the linearized DSGE model, there seem to be two possible ways to
include long memory behavior in the model solution. The first way, considered in this
thesis, is to allow for long memory in the exogenous process. This way is carried out
in (4.15) where the exogenous shock on technological progress is assumed to follow an
ARFIMA(1, d, 0) process.690

The second way is to go beyond the rational expectations hypothesis and to allow for
other rules on how expectations are built in the model. This path was taken by Chevillon
and Mavroeidis (2017). They consider the univariate model691,692

xt = β̄xe
t+1 + zt with β̄ ∈ R, (4.27)

where zt is an exogenous stochastic process, xt is an endogenous variable and xe
t+1 denotes

expectations of xt+1 conditional on information available at time t.693 The authors show
two things: First, if the exogenous process zt is a short memory process,

∣∣∣β̄∣∣∣ < 1 and
expectations are built rationally, i.e., xe

t+1 = Etxt+1, then the solution to (4.27) is a short
memory process.694 Second, if expectations are built according to the following learning
algorithm,

xe
t+1 = at, with at = at−1 + ḡt(xt − at−1), ḡt = θ/t+ ft, and |ft| ≤ Mt−1−ζ ,

where M, θ, ζ > 0, then the solution to (4.27) shows long memory if β̄ > 1 − 1
2θ .695,696

Although the results of Chevillon and Mavroeidis (2017) do not apply directly to the
690 The details on the solution method in the long memory setting and the conditions under which a

unique solution exists are discussed in more detail in Appendices B.5.4 and B.5.5.
691 See Chevillon and Mavroeidis (2017, Equation (1) on p. 2).
692 For convenience, the notation of Chevillon and Mavroeidis (2017) is adopted for the rest of this

subsection. Therefore, the symbols used here do not correspond to the meaning introduced in the
previous section. Since the formulas stated in this section have only an illustrative character and
Chevillon and Mavroedis’s formulas are not referred to outside of this section, it seems reasonable not
to introduce a specific notation to keep the overall notation in the thesis tractable.

693 See Chevillon and Mavroeidis (2017, p. 2).
694 See Chevillon and Mavroeidis (2017, p. 4, especially Proposition 1).
695 See Chevillon and Mavroeidis (2017, p. 4, especially Theorem 2).
696 Here, it should be highlighted that Chevillon and Mavroeidis (2017) define long memory in a different

manner to Definition 2.3.1. In their context a process xt shows long memory if [T−1var(
∑T

t=1 xt)]1/2 ∼
T d as T → ∞ and d > 0, see Chevillon and Mavroeidis (2017, p. 3). This definition also applies to
non-stationary processes in contrast to Definition 2.3.1, see Chevillon and Mavroeidis (2017, p. 3).
Hence, there is a lack of direct comparability between the notions of long memory in this thesis and
the one of Chevillon and Mavroeidis (2017).



Chapter 4. Modeling Aggregate Fluctuations in a DSGE-RBC Framework 137

multivariate models considered in the previous section, they indicate that it may be the
combination of short memory in the exogenous process and the assumption of rational
expectations that generates short memory in the solution of the considered model. Overall,
their results support the procedure followed in this thesis: Generating long memory in a
widely applied and well-established DSGE model framework, where expectations are built
rationally, calls for long memory in the exogenous stochastic processes.697

4.2.3 A Note on Stability

A linearized DSGE model in the canonical form (4.22) forms a set of linear expectational
difference equations. This subsection aims to describe the notion of stability in such
a context and how it relates to other stability concepts in the context of deterministic
models. The discussion builds on the solution method of Blanchard and Kahn (1980)
briefly described in Section 4.2.1 but references to the solution method of Klein (2000)
outlined in Appendix B.5 are given when they appear appropriate.

In order to develop relations between different notions of stability in deterministic and
stochastic model contexts, it seems suitable to consider the corresponding deterministic
system to (4.22) first; it is of the following form698

xt+1 = A0xt +Gt, (4.28)

where the sequence (Gt)t∈Z is assumed to be an exogenous (non-stochastic) sequence not
depending on xt.699 Such a system is called autonomous if Gt does not depend on t, i.e., if
Gt ≡ G for a constant G ∈ R; otherwise it is called non-autonomous.700 A solution to this
system is again a sequence (xt)t∈Z that satisfies (4.28) at each instant of time.701

Stability generally refers to a property of equilibrium or steady state points of a dynamical
system. Steady states are time-invariant points where the system stays once such a point
has been reached, and no additional exogenous shocks pushing the system out of the
equilibrium occur.702 Let In×n be the n-dimensional identity matrix, then, with Gt ≡ G,
the unique steady state of (4.28) is clearly given by xss = (In×n − A0)−1G if the matrix

697 This is in line with the statement of Chevillon and Mavroeidis (2017, p. 6) that in case of rational
expectations, the memory of the endogenous variables is determined exogenously.

698 Note that the expectational operator can be omitted if the model is assumed to be deterministic.
699 The matrix G0 is omitted here for convenience, but it may be implicitly present in the definition of

the exogenous sequence (Gt)t∈Z.
700 See, e.g., Galor (2007, p. 112).
701 See, e.g., Galor (2007, p. 16).
702 See Galor (2007, p. 30).
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(In×n − A0)−1 is invertible.703

Let ‖·‖ denote the Euclidean norm. A steady state point xss is called locally stable if for
every ε > 0, one can find δε > 0, such that ‖x0 − xss‖ < δε implies that ‖xt − xss‖ < ε for
all t ≥ 0; otherwise the steady state is called unstable.704 Roughly speaking, a steady state
value is said to be stable if the solution stays near the steady state whenever the initial
value was chosen close enough to the steady state. A more demanding concept of stability
is the one of local asymptotic stability. A steady state value is called locally asymptotically
stable if it is stable and, in addition, if there is µ > 0 such that if ‖x0 − xss‖ < µ, then
lim
t→∞

xt = xss.705 If the convergence to the steady state holds for all initial values x0 ∈ Rn,
the steady state is said to be globally asymptotically stable.706,707

Whether the stability is global or local also depends on the domain over which the system
is defined. Of course, a steady state of (4.28) (if existent) can be globally asymptotically
stable under certain circumstances. In the context of the DSGE model, however, the linear
system was obtained from a linearization around a steady state of an underlying nonlinear
system. Thus, the global asymptotic stability of the linear system is merely sufficient for
the local asymptotic stability of the corresponding steady state of the nonlinear system.708

Again, consider the deterministic autonomous system xt+1 = A0xt +G and assume that
the conditions for a unique steady state xss are met. Then, the stability of the steady state
depends solely on the eigenvalues of the matrix A0, i.e., if the moduli of all eigenvalues
are strictly less than one, xss is globally asymptotically stable.709 If there is at least one
eigenvalue of A0 with modulus greater than one (i.e., an unstable eigenvalue), the steady
state value should be labeled as unstable, as this unstable eigenvalue makes the whole
solution explosive.710 However, if A0 has stable and unstable eigenvalues, the steady state
may also be labeled as “not-wholly-unstable”711 as there are solutions that converge to
the steady state, while other solutions are divergent. Such steady state values are then

703 See Galor (2007, Proposition 2.3 on p. 31).
704 This definition is inspired by Elaydi (2005, Definition 4.2. on p. 176), who provides additional nuances

of stability such as uniform stability which are not given here as they go beyond the scope of this
section.

705 This definition is again inspired by Elaydi (2005, Definition 4.2. on p. 176) and Galor (2007, Definition
4.2. on p. 95).

706 See Elaydi (2005, p. 177) and Galor (2007, Definition 4.2. on p. 95).
707 Note that there are additional concepts of stability in the context of linear and nonlinear dynamical

systems, such as exponential stability, orbital stability, or bounded-input/bounded-output stability,
which are far beyond the scope of this section. A short overview can be found in G. Chen (2005).

708 See Galor (2007, p. 98 and Theorem 4.8 on p. 103).
709 See Galor (2007, Corollary 3.6 on p. 86).
710 See Gandolfo (1997, p. 118).
711 Gandolfo (1997, p. 118).
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often referred to as “saddle points”, or as being “saddle-path stable”.712,713

If the steady state is a saddle point, one is often interested in finding a solution that
converges to the steady state. If A0 has stable and unstable eigenvalues, such a solution
can be found by decoupling the system with certain matrix decomposition in two parts,
each associated with the stable and unstable eigenvalues, respectively.714,715

After the decoupling, there are two subsystems of the form (4.28) where the corresponding
matrices have only stable or unstable eigenvalues, respectively. For the subsystem contain-
ing the stable eigenvalues, a solution may be found, e.g., by backward iteration, and for
the unstable subsystem, the forward iteration may be appropriate.716 Furthermore, if the
stable subsystem has a steady state, it is globally asymptotically stable.717

Since the solution to the stable subsystem appears straightforward, the focus now lies on
the unstable subsystem. Let xu

t+1 = Au
0x

u
t +G the system associated with the unstable

eigenvalues, i.e., the matrix Au
0 contains all eigenvalues of A0 that are greater than one

in modulus. Moreover, assume that this system has a unique steady state given by
xu

ss = (Inu×nu − Au
0)−1G. Then, a solution to the unstable subsystem can be found by

forward iteration.718 After k forward iterations, one obtains

xu
t = (Au

0)−k xu
t+k −

k∑
n=1

(Au
0)−n G. (4.29)

Since Au
0 contains only eigenvalues greater than one in modulus, (Au

0)−k vanishes as
k → ∞.719 Since one is interested in non-explosive and thus bounded solutions of the
unstable subsystem, one has that

∥∥∥xu
t+k

∥∥∥ is bounded. Hence, as t → ∞, the first term in

712 See Gandolfo (1997, p. 373).
713 Such a situation is likely to occur in DSGE models. As outlined in Section 4.2.1, the Blanchard-Kahn

conditions pin down a unique solution when there are as many unstable eigenvalues of A0 as there
are non-predetermined variables.

714 This was already mentioned in Section 4.2.1. In the context of the solution method of Klein (2000),
the concrete decoupling is carried out in Appendix B.5.2.

715 For example, Blanchard and Kahn (1980, p. 1307) use a Jordan decomposition. In Appendix B.5.2, a
generalized Schur decomposition is used to decouple the system. Both methods can also be applied in
a deterministic setting as illustrated by Miao (2020, Section 1.71. on pp. 20ff. and Section 1.72. on pp.
26ff.). If all eigenvalues of A0 are distinct, A0 is diagonalizable, and a rather simple decomposition
exists; for details, see Gandolfo (1997, p. 123).

716 See Gandolfo (1997, p. 123).
717 See Galor (2007, Corollary 3.6 on p. 86).
718 See Gandolfo (1997, p. 123).
719 The eigenvalues of (Au

0 )−1 correspond to the inverse eigenvalues of A0, see, e.g., Gandolfo (1997, p.
123).
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(4.29) vanishes, and the solution to the unstable system is given by720

xu
t = −

∞∑
n=1

(Au
0)−n G =

[
−
(
Inu×nu − (Au

0)−1
)−1

+ Inu×nu

]
G = Au

0x
u
ss +G = xu

ss. (4.30)

Equation (4.30) states that the unique and bounded solution to the wholly unstable system
is precisely the one that is equal to the system’s steady state value at each instant of time.
Thus, roughly speaking, a convergent solution to the entire system can be found as long
as the unstable system is at its steady state value. In contrast, the initial values of the
stable system can be chosen freely.721

Until now, a saddle-path-stable steady state of a deterministic autonomous system was
considered. But how does this saddle-path stability relate to the non-autonomous system
and the linearized DSGE models discussed in this chapter? At first glance, one might
expect an exogenous shock to push the unstable subsystem out of its steady state, causing
the solution to explode. However, this is not the case.

If Gt is not constant but an arbitrary non-stochastic sequence of numbers, the corresponding
non-autonomous system does, in general, not have a steady state value.722,723 Hence, the
notion of stability outlined above is not apparent, or instead, it is not applicable in these
contexts.724 However, by focusing on bounded solutions, the forward iteration method
still applies and delivers725

xu
t = −

∞∑
n=1

(Au
0)−n Gt+n−1, (4.31)

where the sequence (Gt)t∈Z has to be chosen such that the limit of the series exists.726,727

720 The second equality follows from an application of the Neumann series (see, e.g., Elaydi (2005,
Equation (3.5.19) on p. 167)). The third equality uses some (basic) matrix algebra and the last
equality is implied by the definition of a steady state.

721 An two-dimensional example is given, e.g., in Galor (2007, Example 2.4 and 2.5 on pp. 34ff.).
722 See Galor (2007, p. 112f.).
723 A simple univariate example is, e.g., xt+1 = %xt + (−1)t. When |%| < 1, a solution by backward

iteration can easily be found to be xt = %k [x0 + 1/(1 + %)] − (−1)t/(1 + %). The solution has no
limit for all initial values x0, i.e., no steady state exists. For the corresponding homogeneous system,
however, xt+1 = %xt, the unique and globally asymptotically stable steady state is given by xss = 0.

724 See Galor (2007, p. 113).
725 Here, the focus lies again on the system associated with the unstable eigenvalues of A0. Of course,

the backward solution also applies to the system associated with the stable eigenvalues. If the
stable subsystem is given by xs

t+1 = As
0x

s
t +Gs

t , then the backward solution delivers xs
t = (As

0)txs
0 +∑t−1

n=0 At
0G

s
t−n−1.

726 The existence of the limit is satisfied if, e.g., the sequence (Gt)t∈Z is bounded.
727 Recall the univariate example stated in Footnote 723. When |%| > 1 the forward solution delivers a

bounded solution given by xu
t = −(−1)t/(1 + %). Thus, by choosing xu

0 = −1/(1 + %), the solution
remains bounded, but again, it neither converges to a steady state nor is it explosive. The solution
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Obviously, if one is only interested in bounded solutions to the non-autonomous system,
the corresponding steady state of the autonomous system (Gt ≡ G) or homogeneous
system (Gt ≡ 0) is saddle-path stable by construction, as (4.31) eventually becomes (4.30).

The same methodology applies to the linearized DSGE models considered in this chapter.
In the context of the stochastic model (4.22), the forward solution becomes728

xu
t =

[
(Au

0)−1
]k
Etx

u
t+k −

k−1∑
j=0

[
(Au

0)−1
]j+1

GuEtzt+j, (4.32)

where Gu is a certain matrix. The first part of (4.32) on the right-hand side is often referred
to as the “bubble solution” and the second term to as the “fundamental solution”.729

The difference between (4.29) and the stochastic version (4.32) is that the solution to
the stochastic model contains expectations about future values of the solution (Etx

u
t+k)

instead of future values (xt+k) themselves. Thus, to ensure the solution’s boundedness,
the expectations of xu

t+k have to be bounded. Here condition (4.24) comes into play. If
one is interested in a solution that satisfies (4.24), one obtains

[
(Au

0)−1
]k
Etx

u
t+k ≤

[
(Au

0)−1
]k

(1 + k)θxu

t Mxu

t .

As for the deterministic system, the right-hand side goes to zero as k → ∞. Thus, the
bubble solution vanishes, and there is a single expectationally bounded solution given by

xu
t = −

∞∑
j=0

[
(Au

0)−1
]j+1

GuEtzt+j. (4.33)

Overall, by imposing (4.24), one finds a solution to the unstable subsystem whose con-
ditional expectations do not explode. This is the reason why the author called (4.24) a
stability condition.

As can be seen from (4.33), the model solution depends to a large extent on the conditional
expectations of the exogenous stochastic process. If they are of the recursive type mentioned
in (4.26), the solution (4.33) can be simplified dramatically, and it depends linearly on zt.
In the case of an exogenous long memory process, the conditional expectations are not
of this recursive type. Much more effort has to be undertaken to evaluate the series in
(4.33). As for the exogenous sequence (Gt)t∈Z of the deterministic model, the stochastic

fluctuates symmetrically around the steady state of the corresponding homogeneous system.
728 See the derivation of (B.29) in Appendix B.5.2.
729 See Blanchard and Fischer (1993, p. 221), Miao (2020, pp. 7f.) and Turnovsky (2000, pp. 91f.).
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process (zt)t∈Z has to be chosen such that the series (4.33) is well defined. For this reason,
Blanchard and Kahn (1980) assume the boundedness restriction (4.24) to hold for the
exogenous process as well.730

As outlined in Appendix B.5.1, Klein (2000) uses a slightly different condition to pin down
a non-explosive solution. He defines a stochastic process to be stable if the unconditional
mean of a stochastic process is uniformly bounded, see (B.21).731 The difference between
Klein’s condition and Blanchard and Kahn’s condition is that Blanchard and Kahn (1980)
refer to the conditional expectations which are allowed to grow at a polynomial rate by
(4.24), whereas Klein (2000) refers to the unconditional mean that must not grow at all.

However, it should be noted that stability in the sense of Klein (2000) or Blanchard
and Kahn (1980) is a property of the model’s solution, i.e., it is a property of the whole
trajectory of the solution (xt)t∈Z. In contrast, the stability concept in the deterministic
setup is a property of a steady state.

The idea of exogenous shocks pushing the unstable system on an explosive path appears to
be misleading. The key ingredient in all considered models (deterministic autonomous and
non-autonomous or stochastic) of this section is the solution’s boundedness (in a certain
sense). In the presence of exogenous shocks, the system (4.22) does, in general, not have
a steady state. However, focusing on the solution that rules out the bubble term keeps
the solution bounded in a sense that the expectations do not explode.732 In the end, the
paths of a bounded solution of a DSGE model behave similarly to the ones of an AR(1)
(or ARFIMA(1, d, 0)) process depicted in Figure 2.2 (or Figure 2.10), i.e., the solution
fluctuates regularly around its mean value and shows no explosive behavior. However, if
the exogenous shocks are chosen such that the system has a steady state, e.g., zt ≡ G,
then this steady state is by construction saddle-path stable in the sense mentioned above.
Moreover, the derived solution is on the stable arm and converges to the steady steady
state value.

These similarities may be why linearized DSGE models are often said to be saddle-path
stable.733 Given the arguments of this section, one might rather say that the steady state
of the corresponding deterministic system is saddle-path stable and that the solution to
the DSGE model is bounded in mean.
730 See Blanchard and Kahn (1980, p. 1305 and p. 1307).
731 See Klein (2000, Definition 4.1 on p. 1411).
732 The reason for focusing on only bounded solutions of an economic model may be justified with certain

transversality conditions that the solution must fulfill, see Fernández-Villaverde, Rubio-Ramírez, and
Schorfheide (2016, p. 553 and p. 604).

733 See Gandolfo (1997, p. 403) or Cantore, Gabriel, et al. (2013b, p. 452).
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Two remarks are made at the end of this section. The first concerns the first-order
approximation of the underlying nonlinear system, and the second concerns the rational
expectations hypothesis and determinacy.

The linearized DSGE models considered in this chapter are first-order approximations of an
underlying nonlinear model. Hence, only minor conclusions on the dynamic properties of
the nonlinear model can be drawn from the linear approximation. To be more precise and
as outlined by Galizia (2021), deriving a bounded solution along Blanchard and Kahn’s or
Klein’s solution method may be inappropriate if the underlying nonlinear model features
a limit cycle.734 In such cases, these methods may indicate that there is no solution
(because the Blanchard and Kahn conditions are not satisfied), even though there may
be a limit cycle in the nonlinear model.735 Since the method of Klein (2000) described in
Appendix B.5 delivers a unique and bounded solution to the models considered in this
chapter, the phenomena described by Galizia (2021) are not present in the context of this
thesis.

The posited saddle-path property of linearized DSGE models may be due to the assumption
of rational expectations, as many models in which expectations are built rationally exhibit
such a saddle-point property.736 Another concept of stability in the context of stochastic
models is the one of expectational stability or E-stability, which addresses the question
of whether, given small deviations from the rational expectations hypothesis, e.g., when
expectations are built based on a learning algorithm, the system eventually converges
to a rational expectation equilibrium.737 The solution method of Blanchard and Kahn
mentioned in Section 4.2.1 and the method of Klein (2000) presented in Appendix B.5
are designed to find the unique (bounded) solution in the case of model determinacy, i.e.,
if a unique solution actually exists. In this case, the solution is stable in the sense that
the conditional expectations do not explode. Unfortunately, this may not imply that the

734 See Galizia (2021, p. 871).
735 See Galizia (2021, pp. 871 and 877).
736 See Burmeister (1980, p. 804) or Turnovsky (2000, p. 187).
737 See G. W. Evans (1985, p. 1218). By investigating E-stability, to be more precise, the model’s agents

are supposed not to know the true parameter values of the model’s rational expectations solutions;
instead, they try to estimate these parameters, see G. W. Evans and Honkapohja (2001, p. 40).
E-stability then investigates whether these estimated parameters converge (in a certain sense) to
the parameters of the rational expectations solution, G. W. Evans and Honkapohja (2001, p. 40).
Formally, a (deterministic) map between the perceived and true model’s solution law of motion is
constructed that contains the rational expectations solution as a fixpoint, see G. W. Evans and
Honkapohja (2001, pp. 40f.). The rational expectations solution is then called E-stable if the fixpoint
of this mapping is locally asymptotically stable in a sense mentioned at the beginning of the section,
see G. W. Evans and Honkapohja (2001, pp. 41). For details and additional refinements of the
concept of E-stability, see G. W. Evans and Honkapohja (2001, Section 2.9 on pp. 39ff. and pp.
140f.).
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solution is also expectationally stable.738 On the other hand, if the model is indeterminate,
i.e., if many solutions exit, some solutions may appear to be expectationally stable.739

This chapter focuses on models in which expectations are built rationally. Thus, deviations
from the rational expectations hypothesis go beyond the scope of this thesis. Therefore,
whether the solutions to the models treated in this chapter are expectationally stable is left
for future research. Instead, for all parameter constellations considered in this thesis, the
method of Klein (2000) delivers a unique, stable solution in the sense that its unconditional
mean is bounded.740,741 The analysis of this thesis focuses on this particular solution.

4.3 Rationales for Long Memory in a DSGE Context

Before considering the implications of long memory technology shocks in the next section,
this section is devoted to justifying the author’s approach to considering long memory
technology shocks in the context of a DSGE model.

Chapter 3 highlights that long memory processes are frequently analyzed in the economics
and econometrics literature, and there is a large and still growing literature dealing with
the presence of long memory in economic time series, or proposing refined estimation and
testing techniques to detect or reject the long memory hypothesis. The empirical evidence
of long memory in macroeconomic time series, especially for GDP and related variables,
given in Section 3.2.1 is mixed and highly dependent on the estimation method employed.
However, the results indicate that long memory can contribute to explaining the data as it
covers richer dynamics regarding the autocorrelations and impulse-response functions than
traditional ARMA processes often used in DSGE models for the specification of exogenous
processes. As pointed out by Schorfheide (2011), the choice of the frequently used AR(1)
specification for the exogenous processes in the model is more or less arbitrary.742 He
further points out that incorporating richer dynamics in the exogenous process may increase
the models’ empirical fit and help to prevent misspecification.743

Allowing for a more elaborate correlation and dependence structure in the model that
goes beyond the AR(1) assumption is not new. Ireland (2004a) argues that there might
738 See Bullard and Eusepi (2014, p. 8).
739 See G. W. Evans (1985, p. 1218).
740 See Appendix B.5.1 for details. As outlined there, the boundedness of the unconditional mean further

implies condition (4.24).
741 Theorem B.5.2 summarizes all conditions that ensure the existence of a unique and stable solution of

the models in this thesis.
742 See Schorfheide (2011, p. 22) and, additionally, Cúrdia and Reis (2010, p. 3).
743 See Schorfheide (2011, p. 22).
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be correlations in the data that cannot be captured by the simple structure of the DSGE
model.744 He argues that incorporating correlated measurement errors may improve the
model fit when bringing the DSGE model to the data.745 Contrary to the approach in this
thesis, he assumes an exogenous AR(1) process for technology, solves the model, and then
adds measurement errors for the estimation.746 Since these errors are added after the model
is solved, they cannot enter the agents’ expectations and behavioral responses in the model,
thereby neglecting the effects on the model’s endogenous propagation mechanisms.747

For this reason, Cúrdia and Reis (2010) proposes to incorporate correlated disturbances
directly into the model equations by allowing the exogenous processes to follow a VAR(k)
process.748 To be more precise, Cúrdia and Reis (2010) consider a government expenditure
shock and a technology shock and allow them to follow a VAR(k) process.749 In the
context of the model given in the previous sections, this assumption would be equivalent
to specifying the transitory technology process log(At) given in (4.14) as an AR(k) process.
By doing so, Cúrdia and Reis (2010) preserve the state space representation of the model
that allows the estimation of the model.750 Overall, they show that correlated disturbances
can help explain/resolve existing puzzles in the RBC theory as the model’s responses
change qualitatively given the more general correlation structure.751

Another related work to the approach followed in this thesis is Meyer-Gohde and Neuhoff
(2018). They generalize the AR(1) assumption to allow for a general ARMA specification
of the technology shock in a neoclassical growth model.752 Interestingly, they do not
specify the order of the ARMA process a priori but rather let the data decide which order
fits the data best.753 Although there is some uncertainty regarding the exact ARMA
specification, their approach identifies an ARMA(3, 0) model for the technology process
to fit the data best, thereby clearly rejecting the commonly used AR(1) assumption.754

Furthermore, by taking the model uncertainty into account, they derive IRFs of the model
and found evidence that the technology’s IRF is hump-shaped.755

744 See Ireland (2004a, p. 1210).
745 See Ireland (2004a, p. 1210).
746 See Ireland (2004a, Equation (3) on p. 1208 and Equations (8)-(11) on pp. 1208f.).
747 See Cúrdia and Reis (2010, p. 5).
748 See Cúrdia and Reis (2010, Equation (4) on p. 10).
749 See Cúrdia and Reis (2010, Equation (4) on p. 10).
750 See Cúrdia and Reis (2010, p. 12).
751 See Cúrdia and Reis (2010, p. 18f.). Cúrdia and Reis (2010, Figure 2) further illustrates how the

model’s IRF changes under the more general correlation structure.
752 See Meyer-Gohde and Neuhoff (2018, p. 15).
753 See Meyer-Gohde and Neuhoff (2018, p. 18).
754 See Meyer-Gohde and Neuhoff (2018, p. 18).
755 See Meyer-Gohde and Neuhoff (2018, p. 22 and Figure 10 and 11 on pp. 23 and 26, respectively).
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Therefore, the approach followed in this thesis is a direct generalization of the work of
Meyer-Gohde and Neuhoff (2018) and Cúrdia and Reis (2010), as both consider only
generalized short memory processes as alternatives for the technology shock. Instead, as
outlined in (4.14), the transitory technology shock is allowed to follow a long memory
ARFIMA process in this thesis.

The cost of this generality is the loss of the model’s state space representation. Chan and
Palma (1998) show that an ARFIMA process with d 6= 0 has no such finite-dimensional
state space representation.756 Since the transitory technology shock given in (4.15) is
such a process and part of the model, the model does not have a finite-dimensional state
space representation neither. However, this may become an issue primarily when trying to
estimate the corresponding model, not when solving the model.757

In the study of Meyer-Gohde and Neuhoff (2018), they used a fully calibrated neoclassical
growth model. They concentrated on estimating the order and the parameters of the
ARMA process.758 A desirable procedure would, instead, simultaneously estimate the deep
model parameters and the exogenous processes. To the best of the author’s knowledge,
such a procedure is not available yet.

The inclusion of long memory dynamics in a DSGE framework seems empirically reasonable
and necessary and is further illustrated in the work of Moretti and Nicoletti (2010). To
the best of the author’s knowledge, this is the only study that pays attention to long
memory dynamics in a DSGE framework. Their simulation study shows that standard
estimation techniques produce a substantial bias in the model’s deep parameters if the
data-generating process has long memory.759

To be more precise, they consider a simple RBC-DSGE model and solve it given the
assumption that technology follows an AR(1) process.760 Then, they simulate the model by
feeding ARFIMA(0, d, 0) shocks into the AR(1) process.761 From the simulated model, they
then try to re-estimate the true parameter values originally used for the simulation.762 The
reported bias in the estimates occurs as the model tries to replicate the strong persistence
in the data-generating process via its endogenous propagation mechanisms.763 Since the
DSGE model produces indeed only short memory dynamics (see Section 4.2.2), the deep
756 See Chan and Palma (1998, Corollary 2.1. on p. 722).
757 Some promising ways to estimate a long memory DSGE model are pointed out in Chapter 6.
758 See Meyer-Gohde and Neuhoff (2018, p. 15).
759 See Moretti and Nicoletti (2010, pp. 21f.).
760 See Moretti and Nicoletti (2010, Equation (49) on p. 18).
761 See Moretti and Nicoletti (2010, p. 17).
762 See Moretti and Nicoletti (2010, p. 17).
763 See Moretti and Nicoletti (2010, p. 22).
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model parameters show bias towards more persistent endogenous dynamics.764

However, instead of incorporating long memory into the model equation as carried out in
this thesis (see again (4.14)), they propose a generalized version of the Kalman filter to
remove the persistence from the data before the estimation.765 Essentially, they remove
the persistence from the data that cannot be explained by their DSGE model.766 By
applying their generalized estimation routine, the formerly reported bias disappears, and
the estimated values are quite close to the true model parameters.767 Furthermore, they
applied their generalized estimation procedure to US data. They found parameter estimates
closer to parameter values consistent with those implied by national accounts such as the
capital share or the depreciation rate.768

Overall, their approach looks similar to the one of Ireland (2004a) mentioned above, as
they try to specify an exogenous process outside of the actual model to capture the data
features that remain unexplained by the model. By doing so, they neglect the effects
that long memory in the exogenous process can have on the endogenous propagation
mechanisms of the model.769 On the other hand, Moretti and Nicoletti (2010) argue in
favor of their approach against the usage of more general exogenous processes in the model
itself precisely because they affect the endogenous propagation mechanisms.770 In their
opinion, when specifying data-dependent exogenous stochastic processes as it is done, e.g.,
by Meyer-Gohde and Neuhoff (2018), the way of how agents build their expectations is
also data-dependent.771 Thus, different data sets would imply different ways of forming
expectations (albeit expectations are built rationally) and thus opens the door for a type
of Lucas critique.772 Furthermore, they question a lack of economic interpretation and
parameter inflation when higher-order exogenous processes are specified in the model.773

Similarly, Cúrdia and Reis (2010) point to the trade-off between exogenous shock’s
simplicity and interpretability and the model’s produced biases and misspecifications.774

From this perspective, low-order exogenous processes providing convincing parameter
interpretations seem overall to be preferable to a fully flexible approach such as the one of

764 See Moretti and Nicoletti (2010, p. 22).
765 See Moretti and Nicoletti (2010, p. 21).
766 See Moretti and Nicoletti (2010, p. 21).
767 See Moretti and Nicoletti (2010, Table 3 on p. 23).
768 See Moretti and Nicoletti (2010, p. 27).
769 In the end, this is the same argument from Cúrdia and Reis (2010, p. 5) mentioned above.
770 See Moretti and Nicoletti (2010, pp. 9f.).
771 See Moretti and Nicoletti (2010, pp. 9f.).
772 See Moretti and Nicoletti (2010, pp. 9f.).
773 See Moretti and Nicoletti (2010, p. 6).
774 See Cúrdia and Reis (2010, p. 7).
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Meyer-Gohde and Neuhoff (2018). Considering an ARFIMA(1, d, 0) as a two-parameter
process, where one parameter deals with the short memory dynamics while the other tackles
the long memory dynamics, may provide a reasonable contribution to the approaches
discussed so far. The long memory parameter may then absorb excess persistence possibly
present in the data that cannot be explained with the remaining short memory structure
of the model while keeping the number of parameters small.

Additionally, in the light of the discussion in Section 3.3, there are convincing arguments
for the presence of long memory in the data that further call for taking long memory
into account in economic models as well. In the model introduced in Section 4.1, total
factor productivity is the single source of uncertainty. Consequently, to include long
memory dynamics in the model, TFP is the single possible way to do so. Nevertheless, the
arguments given in Section 3.3 apply directly to TFP and provide, besides the mechanical
introduction of long memory in an RBC model, some TFP-related rationales for introducing
long memory this way. To illustrate this point intuitively recall the error-duration model
of Parke (1999) mentioned in Section 3.3.1, which might be interpreted in a technological
context as well: It is easily imaginable that there are various technologies employed in the
economy each contributing to the economy’s level of technology that may be measured by
TFP. In Parke’s error duration model, TFP can be viewed as the aggregate value over
all technologies used in the economy with stochastic lifetimes. Thus, long memory in
TFP is likely to occur if the single technologies have slowly decaying survival probabilities,
i.e., if the probability that a technology exists for k periods decays slowly to zero as k
tends to infinity. Following Parke (1999), this would imply that there are many short-lived
technologies, but at the same time, some technologies have survived over a long time.775

This may be plausible with many concurring technologies, where some are successful and
widely accepted in the economy, whereas others are driven out. Once a technology is
established, it may be reasonable that it is employed for a while since it might be costly
for firms to change production technologies frequently.

This section has provided convincing arguments for introducing long memory in DSGE
models and has shown how this thesis contributes to an ongoing discussion in the literature.
The following section provides a detailed analysis of the model-implied impulse-response
functions and shows the effect of introducing long memory in TFP.

775 See Parke (1999, Exmaple A on pp. 635f.) in the context of his model for aggregate employment. To
build the bridge to TFP, replace “employment” and “firm” in his context with “TFP” and “technology”,
respectively.
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4.4 Model Comparison and Impulse-Response Analy-
sis

4.4.1 Model Parameters

In order to carry out an impulse-response analysis of the models presented in Section 4.1,
the models’ parameters have to be pinned down. In order to do so, it is resorted to common
values in the literature. An overview of the parameters used in the following section is
given in Table 4.1. Recall that time is measured in quarters.

Param. Description add. sep.
utility

CD
utility

Ass steady state transitory TFP 1 1

gss steady state growth rate 0 0.005

β time preference rate 0.98 0.98

δ depreciation rate 0.025 0.025

α output elasticity with respect to capital 0.33 0.33

ϕ inverse of the Frisch elasticity of labor supply 2 –

ς inverse of the intertemporal elasticity of substitution 2 –

κ relative distaste of supplying labor 31.76 –

γ exponent of leisure – 0.6243

τ
inverse of the intertemporal elasticity of substitution
for the composite good C1−γ

t (1 −Ht)γ – 2

Table 4.1: Benchmark parameter values. The table reports the benchmark parameters for the models with
additive separable utility function (4.18) and Cobb-Douglas utility function (4.19). These parameters
are used for the impulse-response analysis in the next section. The values of the remaining parameters
%A, d, %g, σεA , and σεg will vary throughout the analysis and are reported in the corresponding figure

captions.

The steady state value of the exogenous transitory productivity process is normalized to
1.776 In addition, it is assumed that the steady state growth rate gss = 0.005 of the labor
776 This is in line with Aguiar and Gopinath (2007, Equation (2) on p. 78) or Lindé (2009, p. 600). It is

common in the literature to model log deviations of transitory productivity processes as zero-mean
AR(1) processes. Normalizing Ass to 1 ensures that the process in (4.14) has a zero mean. See
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augmenting technological progress corresponds to an annual growth rate of approximately
2%.777 Recall from (4.20) that the model is assumed to have a balanced growth path, i.e.,
the variables given (4.20) such as GDP and consumption expenditures grow at the same
rate.

For the time preference rate β, a value of 0.98 is assigned.778 The quarterly depreciation
rate is assumed to be δ = 0.025.779 A value of α = 0.33 is assumed for the output elasticity
of capital.780

For both utility functions, the inverses of the intertemporal elasticities of substitution are
set to τ = ς = 2.781 For the inverse of the Frisch elasticity a value of ϕ = 2 is assigned.782

A value of ϕ = 2 corresponds to a Frisch elasticity of 0.5. However, empirical estimates of
the Frisch elasticity are inconclusive. As stressed by Fiorito and Zanella (2012), microdata-
based estimates of the Frisch elasticity may, in general, not be taken for the calibration of
macroeconomic models since aggregation increases the estimates of the Frisch elasticity
substantially.783 Fiorito and Zanella (2012) report values of an aggregate Frisch elasticity
between 0.6 and 1.7.784 Peterman (2016) reports even higher estimates of the macro
Frisch elasticity in the range of 2.9 and 3.1.785 Chetty et al. (2011), on the other hand,

Appendix B.3.2 for more details.
777 This is in line with recent empirical findings that the annual US GDP per capita growth rate is about

2%. This value seems relatively stable over time, see Kohlscheen and Nakajima (2021, Table 4 on
p. 49). Lindé (2009, p. 600) and Cantore, Levine, et al. (2015, Table 2 on p. 141), instead, assume
slightly higher steady state growth rates of about 2.5% p.a. and 3% p.a., respectively.

778 This is in line with Aguiar and Gopinath (2007, Table 3 on p. 86). Note that Cantore, Gabriel, et al.
(2013a, Table 18.2 on p. 432) and Cooley and Prescott (1995, p. 22) use a slightly higher value of
0.987. Lindé (2009, p. 600) and Cantore, Levine, et al. (2015, Table 2 on p. 141) specify β = 0.99.

779 This is in line with Smets and Wouters (2007, p. 592), Lindé (2009, p. 600), Cantore, Gabriel,
et al. (2013a, Table 18.2 on p. 432), Cantore, Levine, et al. (2015, Table 2 on p. 141). For the
annual depreciation rate, one arrives at approximately 10%. Also common values of the quarterly
depreciation rate are δ = 0.012 or δ = 0.005, see Cooley and Prescott (1995, p. 22) and Aguiar and
Gopinath (2007, Table 3 on p. 86), respectively.

780 This value is in line with Brzoza-Brzezina, Kolasa, et al. (2013, Table 1 on p. 40) and Mitra et al.
(2013, p. 1953). A value of α = 0.33 is further in the range for this parameter frequently used in the
literature, e.g., Aguiar and Gopinath (2007, Table 2 on p. 86) specify α = 0.32, Lindé (2009, p. 600)
uses a value of α = 0.36, and Cooley and Prescott (1995, p. 22) set α = 0.4.

781 This is in line with, e.g., Lindé (2009, p. 600), Aguiar and Gopinath (2007, Table 3 on p. 86),
Brzoza-Brzezina, Kolasa, et al. (2013, Table 1 on p. 40) and Gomme and Lkhagvasuren (2013, Table
24.2 on p. 586).

782 This value is in accordance with Domeij and Flodén (2006, p.250), Christoffel and Kuester (2008, p.
872) and Brzoza-Brzezina, Kolasa, et al. (2013, Table 1 on p. 40).

783 See Fiorito and Zanella (2012, p. 185).
784 See Fiorito and Zanella (2012, p. 185). They also indicate that the corresponding micro estimates

based on panel data are between 0.08 and 0.12.
785 See Peterman (2016, Table 3 on p. 108). These estimates are higher than the values of Fiorito and

Zanella (2012), see also the discussion in Peterman (2016, pp. 110ff.).
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recommend a value for the Frisch elasticity in a representative agent model as the ones
considered in this thesis, of 0.75.786 In stark contrast to Peterman (2016), Chetty et al.
(2011) underlines that values above 1 are inconsistent with the data.787

Furthermore, as pointed out by Gomme and Lkhagvasuren (2013), micro-founded estimates
of the Frisch elasticity may lead to unrealistic steady state values of hours worked in
the model under consideration.788 For this reason, the suggestion made by Gomme and
Lkhagvasuren (2013) is followed, and the parameter κ is calibrated to match a steady
state of hours worked Hss = 0.33, i.e., the representative household supplies roughly a
third of its discretionary time on the labor market in the steady state.789 Using the steady
state values in Table B.2, one arrives at a value of κ = 31.76.790

In order to keep both models comparable, the remaining parameter γ in the model with
Cobb-Douglas preferences is chosen such that the steady state values of both models
coincide. Since the model with CD preferences has a balanced growth path, in contrast
to the model with additive separable utility, this is done by assuming that the steady
state growth rate is zero (gss = 0). Overall, γ = 0.6243 ensures that both models without
growth have the same steady state values.791

4.4.2 Short and Long Memory Technology Shocks in the Model
with Additive Separable Utility

Before the model’s response to a long memory technology shock is analyzed, the model’s
response to the standard transitory AR(1) technology shock is illustrated. The methodology
how to derive the impulse-response functions is outlined in the context of the model with
Cobb-Douglas utility in Appendix B.5.5.792

Recall that in this section it is abstracted from growth of the economy, i.e., Āt ≡ 1 and
786 See Chetty et al. (2011, p. 474).
787 See Chetty et al. (2011, p. 474).
788 See Gomme and Lkhagvasuren (2013, p. 583).
789 See Gomme and Lkhagvasuren (2013, p. 583), Domeij and Flodén (2006, p. 246) and Christoffel and

Kuester (2008, p. 872).
790 This value is roughly of the same magnitude as in Domeij and Flodén (2006, Table 1 on p. 246) who

report a value of 30 in their model.
791 This value is of the same magnitude as those used in the literature. Lindé (2009, p. 600), for example,

uses a value of 0.67, Aguiar and Gopinath (2007, Table 3 on p. 86) choose a value of 0.64 and Cantore,
Gabriel, et al. (2013a, Table 18.1 on p. 420) choose a value of 0.69.

792 The procedure for deriving the IRFs in the model with additive utility (but without growth) is quite
similar to the one for the model with CD utility. The procedure is illustrated along the model with
CD utility since the CD model involves two shocks and is, thus, more complex than the model with
additive separable utility. The derivation of the IRF to the transitory TFP shock and the growth
shock is given in Section B.5.5.1 and Section B.5.5.2, respectively.
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gss ≡ 0. In addition, TFP is equal to the transitory productivity component At.

Figure 4.1 illustrates the IRFs of the model’s variables for various values of the autoregres-
sive parameter %A over 140 quarters. The IRF of the total factor productivity is depicted
in the upper-left-hand panel of Figure 4.1. These are just the IRFs of an AR(1) process
similar to Figure 2.1. In all cases, the shock dissipates at an exponential rate, more slowly
the higher the parameter %A.

Figure 4.1: Responses of the model with additive separable utility function to a 1% transitory short
memory technology shock for various values of %A. The vertical axes report percentage deviations from the
respective steady state value. The horizontal axes report quarters. The dark gray line in each subfigure
marks the zero line where the variables are at their steady state values. Note the different scaling of the

vertical axis.

An initial increase in total factor productivity increases the marginal productivities of labor
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and capital. Thus, the representative firm demands more factors of production, see (4.13)
and (4.12).793 Since the capital stock is predetermined, it cannot respond immediately to
the positive technology shock; hence the rental rate on capital raises initially as can be
seen from the left-hand panel in the second row of Figure 4.1.794

In the labor market, both the demand and supply sides are affected. By plugging
the production function (4.1) into (4.12) or by considering their respective linearized
counterparts stated in Table B.3, the labor demand curve is given by

W̃t = Ãt + αK̃t − αH̃t. (4.34)

Clearly, a positive technology shock shifts (4.34) upwards. The linearized version of labor
supply curve (4.10) is given by

W̃t = ςC̃t + ϕH̃t, (4.35)

see again Table B.3. Since consumption rises initially, as illustrated in the upper-right-hand
panel of Figure 4.1, the labor supply curve (4.35) is also shifted upwards. Therefore, the
real wage increases, but the effect on employment is ambiguous. It can be seen from the
center panel of Figure 4.1 that the initial response of employment depends (among others)
on %A. A high value of the autoregressive parameter provokes a large initial response of
consumption that shifts the labor supply curve substantially upwards, leading to an overall

793 Note that by Table B.3, one has that R̃t = Ỹt − K̃t and W̃t = Ỹt − H̃t. Thus, the panels of the rental
rate on capital Rt and the real wage Wt in Figure 4.1 additionally show the responses of the capital
and labor productivity from their corresponding steady state values, respectively.

794 All figures in this chapter were computed using Matlab code written by the author on the basis of the
solution methodology described in detail in Appendix B. In practice, DSGE models are often solved
numerically with the Matlab software package Dynare; see Adjemian et al. (2022, Sections 1 and 2)
for a short introduction and technical description of Dynare. To the best of the author’s knowledge,
Dynare cannot be applied to the long memory model yet. For the pure short memory case, i.e.,
when TFP is an AR(1) process, Dynare can be applied, and the author’s code delivers (fortunately)
concurrent results to Dynare’s ones. The presentation of the IRFs of the capital stock in this and
the following section differs slightly from the one of Dynare. The reason is that Dynare computes
IRFs of predetermined variables with a “stock at the end of the period”-concept, i.e., Dynare’s IRF
of the capital stock shows the response of the capital stock that is used in the following production
period, see Adjemian et al. (2022, pp. 22f.). In this thesis, the author decides to follow a “stock at the
beginning of the period”-concept, i.e., the IRF of the capital stock in this thesis shows the response of
the capital stock used in the current production period. Assume, for example, that the economy is in
its steady state at period 0, i.e., K̃0, Ĩ0 = 0. With the “stock at the beginning of the period”-concept
followed by the author, one has K̃1 = (1 − δ)K̃0 + δĨ0 = 0. By following the “stock at the end of the
period”-concept like Dynare, one has K̃1 = (1 − δ)K̃0 + δĨ1 = δĨ1 which reflects the capital stock
used for production in period 2. This differing concept is why the capital stock’s IRF computed by
Dynare jumps initially, although the capital stock is actually a predetermined variable, see Adjemian
et al. (2022, p. 22). In the end, one can recover the “stock at the end of the period”-concept from the
“stock at the beginning of the period”-concept by shifting the capital stock’s IRF calculated by the
author one period backward.
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negative initial response of employment. Obviously, the opposite behavior is mirrored in
the response of leisure; see the right-hand panel in the second row of Figure 4.1

For all values of %A, labor income W̃t+H̃t increases initially, and consequently, total income
has to rise as illustrated in the lower-right-hand panel of Figure 4.1.795 Since the initial
response of employment depends negatively on %A, the positive response of Y is smaller
for higher values of %A. Since consumption does not increase as much as total income,
investment expenditures have to rise, too.

In the periods following the shock, consumption rises for some periods for all values of
%A. The length of this rising period further depends positively on %A. Additionally, the
capital stock increases as long as investment expenditures compensate for depreciation,
and it declines if investment expenditures are smaller than the depreciation of the capital
stock.796 The capital stock expands in the periods following the shock due to the initial
positive response of investment expenditures. The increasing capital stock and consumption
expenditures affect the labor market adversely. It follows directly from (4.34) that the
increasing capital stock shifts the labor demand curve upward due to its positive effect on
labor productivity. However, at the same time, the initial TFP shock dissipates, which
has a dampening effect on the labor demand.

On the other hand, the labor supply curve is also pushed upwards as long as consumption
expenditures are rising, see (4.35), i.e., the effects on employment and the real wage depend
on the relative shifts in the labor supply and demand curves. In the case of %A = 0.99,
the labor demand curve is shifted upwards for some periods following the shock, i.e., the
positive effect of the expanding capital stock outweighs the dampening effect of dissipating
TFP. Together with the upward shifted labor supply curve, this leads to increasing wages;
see the lower-left-hand panel of Figure 4.3. In contrast, the labor demand curve shifts
downwards in the cases of %A = 0.75 and %A = 0.95. This shift unambiguously reduces
employment and, given the parameters in Figure 4.3, lets the real wage fall.

The effect on employment could thus be either positive or negative. Given the parameters

795 It follows from the Cobb-Douglas production function that the share of labor income in total income
WtHt/Yt is constant, see (4.12). Thus the percentage deviation of total income from its steady state
is equal to the one of labor income, i.e., Ỹ = W̃ + H̃, see Table B.3.

796 Note that investment expenditures need not fall below their steady value to induce a decline in the
capital stock. If investment expenditures are equal to their steady state value, they compensate for
the depreciation of the steady state capital stock, i.e., Iss = δKss. Consequently, if the capital stock
is much larger than its steady state value, a small positive deviation of investment expenditures from
their steady state cannot compensate for the large depreciation associated with the high capital stock.
That is, investment expenditures are positive and may be above their steady state value, but the
capital stock is already beginning to depreciate.
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in Table 4.1, employment decreases in the periods following the shock for all depicted
values of %A. Again, the behavior of leisure is opposite to the behavior of employment.
Overall, decreasing wages and employment imply a falling labor income and thus falling
total income or output, as can be seen from the lower-right-hand panel of Figure 4.1. In
the case of % = 0.99, the initial wage increase can compensate for the reduced employment
by keeping the labor income nearly constant for about ten periods.

Since consumption expenditures grow for some periods after the shock and total income
decreases, investment expenditures must also decrease. Since consumption increases at a
decreasing rate, it follows from the Euler equation (4.11) that the rental rate on capital
decreases. Note that the rental rate on capital crosses its steady state line at the same
time as consumption peaks.

After the peak, consumption returns to its steady state value, and thus the labor supply
curves shift downwards. So does the labor demand curve, at least after the capital stock
has peaked. This downward shift implies falling real wages. The effect on employment
depends again on the relative shifts in the demand and supply curves. Figure 4.1 shows that
employment returns to its steady state level after reaching a negative peak. Overall, output
and investment converge steadily to their steady state levels; the higher the autoregressive
parameter, the slower the convergence. The rental rate on capital converges back to its
steady state value from below. This behavior follows again from the Euler equation as the
rate at which consumption expenditures decrease becomes less negative with time.

That income Y and consumption expenditures C are above their respective steady state
values even if the initial shock has dissipated illustrates how the household manages the
positive productivity shock intertemporally and how the household smooths its consumption
path.797

As the labor market is adversely affected during the dissipation of the technology shock,
Figure 4.2 illustrates how the labor market equilibrium, i.e., wages and employment behave
while the TFP shock dies out. There, the percentage deviation of the real wage from the
steady state is plotted against the percentage deviation of hours worked, each divided by
the initial shock size, i.e., the vertical and horizontal axes in Figure 4.2 show the normalized
percentage deviation of the real wage Wt and hours worked Ht from their steady states,
respectively.798 The resulting graphs are wage-employment loci that illustrate how wages
797 Consider, for example, the case of %A = 0.75 in Figure 4.1. At period 20, the initial shock is almost

fully dissipated, but income and consumption are clearly above their respective steady state values.
798 Figure 4.2 is derived from Figure 4.1 by plotting the IRF of Wt against the IRF of Ht each divided

by the initial shock size 0.01. To be more precise, each panel of Figure 4.2 show the pairs of
100((log(Wt) − log(Wss))/0.01) and 100((log(Ht) − log(Hss))/0.01) for t = 1, . . . , 140. Figure 4.2 was
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and the hours worked interact in response to an initial transitory short memory TFP shock.
The filled dot in each panel of Figure 4.2 marks the combination at the period of shock
occurrence (t = 1) and the filled square marks the variable combination at period t = 140,
which is equal to the last period in Figure 4.1. As can be seen from the lower-left-hand
and the center panel of Figure 4.1, the initial shock is almost fully dissipated at t = 140
for the cases of %A = 0.75 and %A = 0.95. Thus, the square in the left-hand and middle
panel of Figure 4.2 are close to the point (0, 0), where the real wage and hours worked
equal their steady state values. In the case of %A = 0.99, the square is far from this point
as the initial shock still has a substantial effect at t = 140 due to a higher autoregressive
parameter.799

The solid lines in Figure 4.2 indicate that wages and employment move in the same
direction, i.e., either are both increasing or decreasing. Correspondingly, dashed lines in
Figure 4.2 refer to periods where employment and the real wage behave unequally, i.e.,
employment rises with falling wages or vice versa. An asterisk marks an inflection point,
where the behavior of the real wage or employment changes. As already mentioned, the
response of consumption pushes the labor supply curve upwards. The labor demand curve
is initially pushed upwards as the technology shock positively affects labor’s marginal
productivity. Then, the labor demand curve’s movement depends on whether the capital
stock grows faster than the technology shock dissipates. As already mentioned, in the
cases of %A = 0.75 and %A = 0.95, the decay of the technology shock is faster than the
accumulation of capital; thus, the labor demand curve is shifted downwards in all periods
following the shock. As shown in the left-hand and middle panels of Figure 4.2, this leads
to falling wages and employment immediately after the shock until employment reaches
its minimum value. Afterward, wages continue to decrease, but employment begins to
rise again. Overall, a higher value of the autoregressive parameter slows down the fading
out of the technology shock; hence, by (4.34), the downward shift in the labor demand
curve is also slowed down and the inflection point in the left-hand and middle panels of
Figure 4.2 is pushed upwards. In the case of %A = 0.99, the fading out of the technology
shock is so slow that the labor demand curve shifts upwards right after the shock. This
leads to periods of rising wages by keeping employment decreasing; see the right-hand
panel of Figure 4.2.

The rate %A at which the initial shock dissipates affects the household’s consumption
decision, labor supply, and (among others) labor demand. The technology shock is,

inspired by Costa Junior (2016, Figure 2.14 on p. 54).
799 Of course, the endpoint of the locus can be brought closer to (0, 0) by plotting the locus over more

periods. This has not been done here to keep Figure 4.1 and Figure 4.2 comparable.
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Figure 4.2: Wage-employment loci for various values of %A. The vertical and horizontal axes report
percentage deviations of the real wage and hours worked from their respective steady states divided by the
initial shock size. The filled dot marks the variables’ combination at the period of shock occurrence (t = 1)
and the filled square at (t = 140). Solid lines indicate periods in which wages and employment behave in
the same way, either increasing or decreasing; dashed lines indicate periods in which employment and the
real wage behave in different ways, i.e., employment is rising with falling wages or vice versa. An asterisk
marks inflection points where the behavior of the real wage or employment changes. Note the different

scaling of the horizontal axis.

however, for all values of %A in Figure 4.1 and Figure 4.2 a short memory process whose
cumulative impulse response (CIR) is given by (2.16). According to Definition 2.1.6, these
processes are also moderately persistent. The question immediately arising is whether a
long memory technology shock affects the model economy differently than a short memory
shock. Therefore, Figure 4.3 illustrates the model responses to a 1% transitory pure long
memory shock for various values of d. At the same time, %A is set to 0 for all panels
in Figure 4.3 to illustrate the effects that stem from the long memory parameter alone.
The technology process is thus an ARFIMA(0, d, 0) process and hence by Table 2.1 also
strongly persistent.

As above, the upper-left-hand panel of Figure 4.3 shows just the IRF of an ARFIMA(0, d, 0)
process such as the ones in Panel a) of Figure 2.7. For all values of d, there is a significant
drop in the IRF in the periods following the shock before the slow decay sets in. Not
surprisingly, the decay is slower the higher the parameter d is. In contrast to Figure 4.1,
the decay is now at a hypergeometric rate, i.e., the decay is described by Ckd−1 as
k → ∞, a constant C > 0, and k is the number of periods after the shock; for details see
Lemma 2.4.3.800

However, the main mechanisms are similar to the ones already described around Figure 4.1.
The positive technology shock increases marginal productivities of labor and capital and

800 Recall that the decay is simply %k
A in Figure 4.1.
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Figure 4.3: Responses of the model with additive separable utility function to a 1% transitory long
memory technology shock for various values of d. The vertical axes report percentage deviations from the
respective steady state value. The horizontal axes report quarters. The dark gray line in each subfigure
marks the zero line where the variables are at their steady state values. Note the different scaling of the

vertical axis.
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thus increases the demand for production factors. The rental rate on capital rises initially.
Similar to the response to a short memory AR(1) process, the initial response of the rental
rate on capital depends negatively on the value of d, i.e., an increasing value of d leads to
a less pronounced positive response of Rt. This negative dependence seems overall to be
less distinctive than in Figure 4.1. The initial response is roughly 1.2% for all values of d,
but the initial response of Rt varies between 1% and 1.2% in Figure 4.1.

Similar to Figure 4.1, consumption’s initial response depends positively on d. For all
values of d, however, the magnitude of the initial response is smaller than the one in
Figure 4.1 with %A = 0.75. For this reason, the labor supply curve is shifted less upwards
than in all cases depicted in Figure 4.1. Thus, the real wage increases in all cases and
the effect on employment is still ambiguous. However, in all cases shown in Figure 4.3
employment initially rises. This increase indicates that the shift in the labor supply curve
is too small to generate an initial negative response in hours worked, even in the case
of strong long memory (d = 0.45), see the center panel of Figure 4.3. The effect on
output is again positive as factor prices and inputs increase initially. Due to the small
response of consumption, investment expenditures increase at a similar magnitude as in
Figure 4.1 with %A = 0.75. The initial response of investment expenditures decreases with
an increasing value of d but to a much lesser extent than in Figure 4.1 with an increasing
value of %A.

Due to the positive response of investment expenditures, the capital stock begins to
accumulate, which in turn has a positive effect on labor demand. However, this positive
effect on the labor demand does not materialize due to the significant drop in TFP, which
affects labor demand negatively and, thus, outweighs the capital’s positive effect. Overall,
there is a large downward shift in the labor demand curve. On the other hand, the labor
supply curve shifts upwards by a small amount when d is equal to 0.25 and 0.45, due to
rising consumption expenditures, and downwards when d is equal to 0.1 Compared to
the shift in the labor demand curve, these shifts are negligible as the overall response of
consumption is of a small magnitude. Therefore, the labor market’s response is mainly
determined by the significant downward shift in the demand curve, resulting in decreasing
wages and employment as seen from the center and the lower-left-hand panel of Figure 4.3.

The effect of a pure long memory TFP shock can also be seen from Figure 4.4, which
shows the wage-employment loci for the model responses of Figure 4.3. The shape of all
loci is essentially the same. In each case, there is one inflection point that marks the
transition between an equal behavior of wages and employment (both either increasing
or decreasing) to an unequal behavior (in all panels of Figure 4.4 employment begins to
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rise at the inflection point, and wages keep falling). Overall, the loci are similarly shaped
as the ones in Figure 4.2 with %A = 0.75. Furthermore, an increase in the parameter d
shifts the inflection points upwards, similar to how an increase in the value of %A does in
Figure 4.2, but to a much lesser extent. In contrast to Figure 4.2, where there is a period
of increasing wages with %A = 0.99, there is no such period in Figure 4.4, even for large
values of d since TFP drops faster than the capital stock expands.

Figure 4.4: Wage-employment loci for various values of d. The vertical and horizontal axes report
percentage deviations of the real wage and hours worked from their respective steady states divided by the
initial shock size. The filled dot marks the variables’ combination at the period of shock occurrence (t = 1)
and the filled square at (t = 140). Solid lines indicate periods in which wages and employment behave in
the same way, either increasing or decreasing; dashed lines indicate periods in which employment and the
real wage behave in different ways, i.e., employment is rising with falling wages or vice versa. An asterisk

marks inflection points where the behavior of the real wage or employment changes.

In summary, increasing values of d shifts the IRFs in the same direction as increasing
values of %A in Figure 4.1. Consequently, increasing the degree of persistence (either
moderate or strong persistence) has similar effects regarding the direction of the shifts,
but the magnitude may differ substantially. Not surprisingly, long memory is a property
that determines the asymptotic behavior of the dynamics. For all variables in Figure 4.3,
there is a slow return to the steady state values. Compare, for example, the response of
consumption with d = 0.45 in Figure 4.3 with the one of in Figure 4.1 with %A = 0.75.
The initial response is comparable in magnitude, but the value of consumption at period
140 is higher in the long memory case than that in the short memory case, reflecting the
hypergeometric decay of the initial TFP shock.

By comparing the upper-right-hand panels of Figure 4.1 and Figure 4.3, it seems surprising
that a pure long memory shock is not able to change the consumption decision of the
household to the same extent as a short memory shock. Recall from Table 2.1 that
technology in Figure 4.3 is not only a long memory process but also a strongly persistent
process, i.e., according to Definition 2.1.7 the cumulative sum of the IRF (CIR) is infinitely
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large. In Figure 4.1, however, the cumulative effect of the shock is given as 1/(1 − %A),
see (2.16). Thus, the cumulative impulse response of the technology shock in Figure 4.1
ranges between 4 (%A = 0.75) and 100 (%A = 0.99) and is thus negligible compared to
that in Figure 4.3 which are all infinite. By the assumption of rational expectations, the
household knows the stochastic nature of the shock, i.e., the household knows that its
income will be above its steady state value for very long periods following a positive long
memory technology shock. Due to an intertemporal income effect, i.e., a higher income
tomorrow already increases consumption expenditures today, one might have expected
a more significant initial response of consumption in the long memory case than in the
short memory case. So why is the household so unaffected while facing such a massive
cumulative effect on TFP and on its income?

The reason may be found in the permanent income hypothesis, which states that households
make their consumption decisions based on their permanent income, where the permanent
income at time t is defined as the sum of total income at time t, net capital assets at time
t and expected discounted labor income, i.e.,801

Y p
t := (Rt + (1 − δ))Kt +WtHt + Et

 ∞∑
j=1

j∏
i=1

(Rt+i + (1 − δ))−1 Wt+jHt+j


= Yt + (1 − δ)Kt + (1 − α)Et

 ∞∑
j=1

j∏
i=1

(Rt+i + (1 − δ))−1 Yt+j

 , (4.36)

where Y p
t refers to the household’s permanent income.802 The effects of the long memory

shock on income and the capital stock can be seen from the lower-right-hand and the
middle panel in the first row of Figure 4.3, respectively. Since labor income is a fixed
fraction of total income due to (4.12), the percentage deviation of labor income from its
steady state is equal to that of total income Y .803

The difference between the IRFs of Y in Figure 4.1 and Figure 4.3 is the distribution of
the “mass” of the IRF over the periods. In the short memory case, a substantial part
of the cumulative IRF is allocated to the first 140 periods (roughly 74% with %A = 0.99
and more than 99% with %A = 0.95) while the substantial part of the IRF in the long
memory case is allocated to the periods after period 140.804 These long-run effects of
the technology shock affect the household’s consumption decision at period t through the
future income Yt+j in (4.36). The effect of a positive technology shock on the household’s
801 See Wen (2001, pp. 1224f.).
802 The second line uses (4.4), (4.7) and (4.12).
803 Recall from Table B.3 that Ỹt = H̃t + W̃t.
804 The mass after period 140 is infinite, like the whole cumulative impulse-response.
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permanent income, however, cannot be assessed easily from (4.36), the IRF depicted in
Figure 4.1 and Figure 4.3 since a technology shock affects the return on capital, income,
wages and hours worked simultaneously.

To gain some intuition, assume, for the moment, a constant rental rate on capital in (4.36),
which is used by the household to discount its future income. Then, the discount factor on
future labor income decreases exponentially. Related to the long memory case, this implies
that the periods in which the mass of the IRF lies are associated with such small discount
factors that the present value of the household’s future labor income, and consequently its
consumption expenditures at time t, are barely affected. Conversely, in the short memory
case, the periods with a significant mass of the IRF correspond to those with high discount
factors, resulting in an overall higher present value of future labor income.

That this mechanism also holds in the case of a time-varying rental rate on capital can be
seen from Figure 4.5, which shows the percentage deviation of the household’s permanent
income and the respective contributions of the current income, current capital stock, and
the discounted labor income in response to a 1% transitory TFP shock. For a precise
definition of these shares and their calculation, see Appendix B.3.5. Panels a) and b)
of Figure 4.5 refer to the IRF of permanent income with the same parameters as in the
light-blue lines of Figure 4.1 and Figure 4.3. As expected from Figure 4.1 and Figure 4.3,
the contribution of current income and capital stock to the percentage deviation of the
household’s permanent income is smaller in the pure long memory case than in the
short memory case. It is further illustrated that in both cases, permanent income is
primarily influenced by the discounted future labor income. In the pure long memory
case, the contribution of the discounted labor income is substantially smaller than in
the short memory case. This observation confirms the reasoning drawn from above, i.e.,
the household discounts away the sizable cumulative effect of a long memory technology
shock. Thus its consumption decision in the periods after the shock occurrence is relatively
unaffected by the pure long memory shock.

Overall, the considerations so far illustrate that a pure long memory technology shock leads
to qualitatively similar model responses as a pure short memory shock, but quantitatively
they differ substantially. Furthermore, for the household’s consumption and labor supply
decision, the dynamics immediately after the shock seem more decisive than the long-run
asymptotic behavior of the technology shock’s IRF. From this perspective, one is tempted
to say that long memory, which primarily determines the asymptotic behavior of the IRF
and the autocorrelation function (ACF), plays at least a minor role in linear DSGE models.
Instead, the focus should be on the correct specification of the short term dynamics of the
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a) %A = 0.95, d = 0 b) %A = 0, d = 0.25

Figure 4.5: Response of the household’s permanent income to a 1% transitory long and short memory
technology shock in the model with additive separable utility function. The colored areas highlight how
the three components, current income, current capital stock, and discounted labor income contribute
to the percentage deviation of the permanent income. Panels a) and b) correspond to the parameter
constellation of the light-blue line in Figure 4.1 and Figure 4.3, respectively. For a precise definition of

these shares, see Appendix B.3.5.

exogenous processes.

However, as illustrated in Section 2.4.2, long memory may also affect the response to a
shock in the short run, especially in the presence of additional short memory dynamics.
To be more precise, in Panels b) and c) of Figure 2.7, it is illustrated that the IRF of an
ARFIMA(1, d, 0) process depends on both the short memory and long memory parameter.
This can be seen from a visual comparison between the red and yellow lines in Panels
b) and c) in Figure 2.7, the introduction of an additional long memory component to an
AR(1) process does not only affect the long-run behavior of the IRF. Long memory also
has an effect on the periods right after the shock. Lemma 2.4.3 tries to formalize this.
There, it is illustrated that the TFP’s IRF is hump-shaped if %A + d > 1, see part iv) of
Lemma 2.4.3. That the long memory parameter affects the periods immediately after the
shock can further be seen from part ii) of Lemma 2.4.3, which states that, given a 1%
transitory TFP shock, TFP deviates about (%A + d) % from its steady state in the first
period following the shock.

However, the reverse is also true, i.e., the short memory part of the ARFIMA(1, d, 0)
process has long-run effects on the IRF of the whole process as illustrated in part iii)
of Lemma 2.4.3. This part states that the higher %A, the higher the impulse-response
function for a given value of d. Thus, the autoregressive parameter does not affect the rate
at which the IRF converges to zero but affects the level from which the hypergeometric



164 Chapter 4. Modeling Aggregate Fluctuations in a DSGE-RBC Framework

decay sets in. From the findings above, the short-run implications of the long memory
component seem to be more relevant for the household’s decision than the long-run effects
of the short memory component.

Figure 4.6 seizes on some parameter combinations of %A and d depicted in Figure 2.7 and
illustrates the model’s response to the corresponding TFP shock. In the case of %A = 0.75
and d = 0.1, the model responses are qualitatively similar to the dark-blue lines (%A = 0.75
and d = 0) in Figure 4.1. The IRF of TFP is dominated by a quick decay of similar order
as the purely exponential one. The quantitative outcomes differ slightly since the decay
immediately after the shock is less pronounced than in the pure AR(1) case with %A = 0.75.
This can also be seen from the left-hand panel of Figure 4.7, where the wage-employment
locus along the dissipating TFP shock is depicted. Overall, the locus is quite similar to
that shown in the left-hand panel of Figure 4.2.

By increasing the degree of long memory to d = 0.4 and leaving %A = 0.75 unchanged,
there is the expected hump shape in the IRF of TFP. As stated above, the rental rate
on capital rises initially due to the positive effect on the marginal productivity of capital.
Consumption increases about 0.4 %, which is quite similar to the initial response of
consumption in Figure 4.1 with %A = 0.95. Thus, the labor supply curve is shifted upwards.
The initial positive response of the real wage results from the upward shift in the labor
demand curve caused by the increase in the marginal productivity of labor. The effect
on employment is still positive given the parameters in Figure 4.6. As the capital stock
begins to accumulate and there are some periods of increasing TFP, the labor demand
curve is shifted upwards for some periods following the shock. The same holds true for
the labor supply curve due to increasing consumption expenditures. As can be seen from
the center panel of Figure 4.6, the shift in the demand curve seems to be more prominent
in the first periods, resulting in periods of rising employment and wages. After these
periods of increasing wages and employment, there is one period with still increasing wages
but falling employment. This period of increasing wages and employment is reflected in
the short distance between the two asterisks at the point (10, 120) in the middle panel
of Figure 4.7. Overall, there are three inflection points in the wage-employment locus
depicted in the middle panel of Figure 4.7, two of them separated by one period.

In Figure 4.6, output responds positively and shows a small hump shape comparable in
size with the one of TFP; see the lower-right-hand panel of Figure 4.6. Since output
or total income increases more rapidly than consumption, investment expenditures also
have to rise during some periods. These investment expenditures then accelerate capital
accumulation.
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Figure 4.6: Responses of the model with additive separable utility function to a 1% transitory long memory
technology shock for various values of %A and d. The vertical axes report percentage deviations from the
respective steady state value. The horizontal axes report quarters. The dark gray line in each subfigure
marks the zero line where the variables are at their steady state values. Note the different scaling of the

vertical axis.
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Figure 4.7: Wage-employment loci for various values of %A and d. The vertical and horizontal axes report
percentage deviations of the real wage and hours worked from their respective steady states divided by the
initial shock size. The filled dot marks the variables’ combination at the period of shock occurrence (t = 1)
and the filled square at (t = 140). Solid lines indicate periods in which wages and employment behave in
the same way, either increasing or decreasing; dashed lines indicate periods in which employment and the
real wage behave in different ways, i.e., employment is rising with falling wages or vice versa. An asterisk

marks inflection points where the behavior of the real wage or employment changes.

In the end, the small initial increase of TFP is mirrored in the rental rate on capital, wages,
employment, investment, and income. Consumption expenditures and the capital shock,
whose responses were already hump-shaped in the cases before, show a more distinctive
hump shape. All variables show the slow decay in later periods that characterizes the
presence of long memory.

In the last case, the model responses are somewhat more extreme, i.e., by keeping the long
memory parameter at d = 0.4 but raising the short memory parameter %A to 0.95. As
expected from the condition %A + d > 1, there is a massive hump in TFP which roughly
doubles over the first twelve periods following the shock. Afterward, the shock dissipates
slowly.

Consequently, a massive initial positive response of consumption pushes the labor supply
curve substantially upwards. Similar to the case of %A = 0.99 in Figure 4.1, the shift in the
supply curve outweighs the upward shift in the labor demand curve, and employment falls
initially. Due to the significant adverse effect on employment, the initial response of output
is still positive but smaller than in the other two cases. Furthermore, and in contrast to all
other cases considered so far, the response of consumption is greater than the one of total
income, i.e., the consumption-to-income ratio rises initially.805 Consequently, investment
expenditures drop initially, and they cannot compensate for capital depreciation anymore,
805 Note that the percentage deviation of the consumption to income ratio from its steady state value is

C̃t − Ỹt. Therefore, its IRF is obtained by simply subtracting the IRF of total income from that of
consumption.
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pushing the capital stock below its steady state value. As household income rises faster
than consumption expenditures, investment expenditures rise rapidly after the initial
decline. This increase in investment then leads to accelerated capital accumulation.

Overall, the initial shock is still significant after 140 periods. At t = 140, it is about half
its initial size and thus higher than in the case of %A = 0.99 of Figure 4.1.

Again, the large response of consumption may be explained by the response of the
household’s permanent income. Panel b) of Figure 4.8 shows the IRF of the household’s
permanent income for the same parameters as for the red line in Figure 4.6. It can be
seen that through the large response of wages and income, the discounted future labor
income is substantial. At each instant of time, the percentage deviation of the household’s
permanent income is larger than the maximum value for the parameter constellation
%A = 0.75 and d = 0.4, illustrated in Panel a) of Figure 4.8. In the end, the substantial
effect on permanent income causes a large positive response in consumption, which in turn
triggers a large negative response in labor supply, and thus in employment.

The effects on the labor market and the net effects on the simultaneously shifted labor
demand and supply curves during the TFP shock’s dissipation are given in the right-hand
panel of Figure 4.7. As already mentioned, strong persistence indicates a negative response
of employment similar to the case of %A = 0.99 in Figure 4.1. As illustrated in the
right-hand panel of Figure 4.7, the relative shifts in the labor demand and supply curves
generate periods of rising wages and employment before employment begins to fall. Similar
to the case of %A = 0.75 and d = 0.4, there are three inflection points in the right-hand
panel of Figure 4.7 caused by the hump-shaped IRF of TFP.

Note that the condition %A + d > 1 is not sufficient to create such a cyclical structure with
three inflection points. To understand this, recall that the periods of increasing wages
and employment right after the shock (t = 2, 3, . . .) are caused by upward shifting labor
demand and supply curves. From the considerations made so far, an increasing labor
supply curve will likely occur due to expanding consumption expenditures right after the
shock occurrence.806 To generate periods of increasing wages and employment, the labor
demand curve has to shift upwards by a sufficiently large amount, at least in periods 2 and
3. From (4.34), it follows that the intercept of the labor demand curve (Ãt +αK̃t) depends
to a large extent on the evolution of TFP. Hence, if %A + d > 1, TFP increases to the level
of (%A + d)% in period 2. However, if %A + d is just slightly above 1, it can be seen from
Panel b) of Figure 2.8 that %A + d is the maximum value of TFP’s IRF. Thus, there is no
806 Increasing consumption expenditures at the beginning were obtained in all cases of Figure 4.1,

Figure 4.3 and Figure 4.7 except for a pure low level (d = 0.1) long memory technology shock.
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a) %A = 0.75, d = 0.4 b) %A = 0.95, d = 0.4

Figure 4.8: Responses of the household’s permanent income to a 1% transitory long memory technology
shock in the model with additive separable utility function for various values of %A. The colored areas
highlight how the three components, current income, current capital stock, and discounted labor income
contribute to the percentage deviation of the permanent income. Panels a) and b) correspond to the
parameter constellation of the light-blue and red lines in Figure 4.6, respectively. For a precise definition
of these shares, see Appendix B.3.5. The legend of Panel b) is the same as in Panel a). Note the different

scaling of the vertical axis.

additional upward shift in the labor demand curve for such combinations of %A and d.807

In short, the hump in the IRF of TFP must be sufficiently large to generate a cyclical
response in the labor market as the one shown in the right-hand panel of Figure 4.7. Panel
b) of Figure 2.8 shows that such a pronounced hump occurs if %A + d is well above 1.

Evidently, the response of the labor market depends crucially on the parameters of the
utility function. From (4.35) follows that ϕ (the inverse of the Frisch elasticity) governs
the slope of the labor supply curve and ς (the inverse of the intertemporal elasticity of
substitution) governs the impact of consumption on the labor supply. If labor supply
were independent of consumption expenditures, a positive technology shock would shift
the labor demand curve upwards by keeping the labor supply curve unchanged. Hence,
effects on employment and wages would unambiguously be positive.808 Following Aguiar
and Gopinath (2004), these positive employment effects are damped by the income effect
on labor supply, which is reflected in the dependence of labor supply on consumption

807 To be more precise, the intercept of the labor demand curve is given by Ãt + αK̃t. Suppose TFP’s
IRF reaches its maximum in periods 2, i.e., Ã2. In this case, it further depends on the response of
the capital stock whether there is an additional upward shift in the labor demand curve in periods 3,
i.e., whether Ã3 + αK̃3 > Ã2 + αK̃2. In the middle panel of Figure 4.7, TFP’s IRF peaks at period 2,
but the response of the capital stock is large enough to induce an additional upward shift in the labor
demand curve. This, however, need not be true for all combinations of %A and d with %A + d > 1.

808 See Aguiar and Gopinath (2004, p. 14).
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expenditure.809 Thus, the strong negative response of employment with %A = 0.95 and
d = 0.4 seen in Figure 4.8, reflects the predominance of a strong income effect on labor
supply.

The following section considers the Cobb-Douglas utility specified in (4.19). It turns out
that the dependence of the labor supply on consumption is reduced and that negative
effects on employment are not apparent or less pronounced given these preferences.

4.4.3 Short Memory, Long Memory, and Growth Shocks in the
Model with Cobb-Douglas Utility

This section compares the model’s responses to short memory, long memory, and trend
shocks. Positive trend shocks as specified in (4.17) alter the level of labor augmenting
technology Āt permanently by inducing a new balanced growth path. This impact contrasts
short and long memory technology shocks that fade out with time; thus, the model returns
to its steady state value. The findings from Section 4.4.2 indicate that for the household,
the behavior of TFP in the periods immediately after the shock seems decisive. This
reasoning is founded in the permanent income hypothesis, indicating that the household’s
consumption decision is based on its permanent income. In Section 4.4.2, it is further
illustrated that the response of the permanent income is dominated by the discounted future
labor income, which (by nature of discounting) values a higher labor income immediately
after the shock to a larger extent than a higher labor income in the long run. Especially
the comparison between a trend shock and a transitory long memory shock with %A + d

sufficiently larger than one seems interesting, as in both cases, technology increases for
some periods while attaining a new balanced growth path in the former case and returning
to the old steady state/balanced growth in the latter case.

Before the effects of trend shocks are analyzed in more detail, it is shortly highlighted
which effects on the model’s responses to transitory shocks are induced by the change of the
utility function. Recall, from Section 4.1.3.2, that the additive separable utility function
considered in Section 4.4.2 is not compatible with a balanced growth path. Therefore, a
Cobb-Douglas utility function specified in (4.19) is considered to analyze trend shocks.

To analyze the effects of the change in the utility function, both models have to be
comparable, i.e., as there is no growth (for the moment) in the model with additive
separable utility, there should also be abstracted from growth in the model with CD utility.
Consequently, the steady state growth rate in the model with Cobb-Douglas utility gss

809 See Aguiar and Gopinath (2004, p. 13).
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should be set to zero. In the absence of growth shocks, the purely labor augmenting
technological progress is Āt ≡ 1, see (4.16). Thus, there is no balanced growth path in
the model with CD utility and due to (4.20) the meaning of the variables is the same in
both models, i.e., the stationarized variables defined in (4.20) equal their non-stationarized
counterparts.810

It seems intuitive that the main model responses should be similar in sign and magnitude
in both models, as there are the same channels through which the technology shocks
affect the economy. Thus, the focus lies on the household’s consumption and labor supply
decision which depend to a large extent on the assumed utility function. For example, in
the model with CD preferences, the linearized version of the labor supply curve is given
by811

w̃t = c̃t + Hss

Lss

H̃t. (4.37)

The labor demand curves are equal in both models.812 Evidently, the labor supply curve
(4.37) is less sensitive to an increase in consumption compared to the model with additive
utility function specified in (4.35). Hence, given the identical upward shift in the labor
demand curve due to a positive technology shock, the same increase in consumption shifts
the labor supply curve (4.37) less upwards than in the model with additive separable
utility. Thus, negative effects on total employment, i.e., employment falls below its steady
state value, seem less likely in the model with CD preferences.813

Furthermore, the slope of the labor supply curve (4.37) is roughly 1/2 and thus smaller
than in the model with additive separable utility, where the slope is given by ϕ = 2 for
the standard parameters.814

The overall response of the labor market to a transitory long memory technology shock
is illustrated in Figure 4.9, which is the analogous figure to Figure 4.7 with CD utility
function. The gray lines in Figure 4.9 correspond to the respective loci of Figure 4.7
and are plotted for better comparability. The movement of employment and wages along
the technology shock have similar shapes for both utility functions. For the CD utility
function, they appear to be shifted rightwards, indicating that negative employment effects

810 Recall from Section 4.4.1 that the model parameters of the model with CD utility were calibrated
such that both models without growth have the same steady state values.

811 The equation for the labor supply curve follows directly from the first and fourth row of Table B.6.
812 See (4.34), the fifth and seventh row of Table B.6. Note that in the absence of growth b̃t ≡ 0.
813 Of course, falling employment depends on the response of consumption, which is generally different in

the two models.
814 Recall from Section 4.4.1, that steady state hours worked were calibrated to Hss = 0.33, thus steady

state leisure is given by Lss = 0.67.
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are indeed less pronounced in the model with CD utility. Especially this can be seen from
the right-hand panel of Figure 4.9, where the main part of the locus is located above the
steady state value of hours worked. However, the range of wages is nearly identical in all
panels of Figure 4.9, indicating that the wage response is quite similar for both models.815

Figure 4.9: Wage-employment loci in the model with CD utility without growth for various values of %A

and d. The vertical and horizontal axes report percentage deviations of the real wage and hours worked
from their respective steady states divided by the initial shock size. The filled dot marks the variables’
combination at the period of shock occurrence (t = 1) and the filled square at (t = 140). Solid lines indicate
periods in which wages and employment behave in the same way, either increasing or decreasing; dashed
lines indicate periods in which employment and the real wage behave in different ways, i.e., employment
is rising with falling wages or vice versa. An asterisk marks inflection points where the behavior of the
real wage or employment changes. Gray lines refer to the loci arising from the additive separable utility
function given the same values with %A and d, see Figure 4.7. Note the different scaling of the horizontal

axis.

Since the responses of the other variables are indeed quite similar in sign and magnitude
to those in the additive separable utility function model, a detailed graphical comparison
of the models’ responses to a transitory short or long memory technology shock for
various values of %A and d is given in Appendix B.6. There, Figures B.1 to B.3 compare
the model responses of both models to purely short memory, purely long memory and
ARFIMA(1, d, 0) transitory TFP shocks.

Overall, the differences in the models’ responses due to the two different utility functions
can be summarized as follows. In the CD utility model, the household’s labor supply is
not as negatively affected by an increase in consumption expenditures as in the additive
separable utility model. On the other hand, consumption and income initially increase
more in the CD utility model than in the additive separable utility model. Overall, negative
815 The analogous figures to Figure 4.2 and Figure 4.4 show a similar pattern, i.e., the locus with CD

utility appears to be shifted rightwards compared to the model with additive separable utility. For
this reason, these figures are not given in the text.
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effects on total employment are not apparent or less pronounced in the model with CD
utility than in the one with additive separable utility. This depends, however, on the
persistence of the shock. The models’ responses to the remaining variables are quite similar
in sign and magnitude in both models. The differences in the responses for each variable
in the model seem to be larger the more persistent the initial shock was. This observation
highlights that the results presented in the previous section are, to a certain degree, robust
against the choice of a specific utility function.816

After comparing the models’ responses without growth, the focus is now on the model
with CD utility function incorporating growth. At first, comparing the effects of short
memory and long memory transitory technology shocks in the model with CD utility
seems plausible. That is, instead of transitory deviations from a steady state, transitory
deviations from the balanced growth path have to be considered. Formally this can be
achieved by plotting the respective IRFs of the stationarized variables specified in (4.20)
with gss = 0 and gss = 0.005, which is the calibrated standard parameter for the expected
growth rate, see Table 4.1.817

The IRFs with gss = 0 are already part of the figures in Appendix B.6. It appears that
an increase in the growth rate from gss = 0 to gss = 0.005 has negligible effects on the
IRFs of a transitory technology shock over all considered combinations of the persistence
parameters %A and d. Therefore, a comprehensive graphical comparison such as the one
of Section 4.4.2 is omitted here. Instead, Figure 4.10 compares the wage-employment
loci for the two cases gss = 0 and gss = 0.005 given the same parameters of %A and gss

as in Figure 4.9. The loci from Figure 4.9 appear as gray lines in Figure 4.10 for better
comparability of the two cases. The overall small deviations are apparent. Compared
to the loci with a growth rate of zero (gray lines), the loci appear to be slightly shifted
leftwards in the model with a small positive growth rate gss = 0.005.

816 As already mentioned, qualitative differences between both models are obtained in employment’s
response to a technology shock caused by the extent to which the labor supply depends on the
household’s consumption expenditures. Thus, a natural generalization would be to consider a utility
function that removes the dependence of the labor supply on consumption. Such a class of utility
function would be, for example, the class of GHH preferences, see Greenwood et al. (1988, p. 404)
and Aguiar and Gopinath (2004, p. 13). Such considerations go beyond the scope of this thesis and
are, therefore, left for future research.

817 Recall that the stationarized model given in Table B.4 is further linearized around its steady state value
and that the linearized model equations are given in Table B.6. Further, recall that variables with a tilde
refer to the variable’s percentage deviation from its steady state value; see (4.21). Thus, for a trending
variable (e.g., output Yt) it yields, ỹt = log (yt/yss) = log

(
Yt/

(
Ātyss

))
≈
(
Yt − Ātyss

)
/
(
Ātyss

)
. In

the absence of growth shocks it follows from (4.16) that Āt = (1 + gss)t. Hence, Ātyss refers to the
balanced growth path of Yt, and evidently, ỹt refers to the percentage deviation of output from its
balanced growth path.
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Figure 4.10: Wage-employment loci in the model with CD utility for various values of %A, d and gss. The
vertical and horizontal axes report percentage deviations of the real wage and hours worked from their
respective steady states divided by the initial shock size. The filled dot marks the variables’ combination
at the period of shock occurrence (t = 1) and the filled square at (t = 140). Solid lines indicate periods
in which wages and employment behave in the same way, either increasing or decreasing; dashed lines
indicate periods in which employment and the real wage behave in different ways, i.e., employment is
rising with falling wages or vice versa. An asterisk marks inflection points where the behavior of the real
wage or employment changes. Gray lines refer to the loci arising from the model without growth given

the same values of %A and d, see Figure 4.9. Note the different scaling of the horizontal axis.

So far, it was illustrated that the change from the additive separable utility function
defined in (4.18) to the CD utility function specified in (4.19) reduces the dependence
of the household’s labor supply decision on the household’s consumption expenditures.
Furthermore, introducing a small positive growth rate leaves the model responses to a
transitory technology shock qualitatively and quantitatively unchanged. What remains
to compare are the model responses to a trend shock specified in (4.17) and the model’s
responses to a transitory technology shock.

Recall that the growing component of technology Āt is assumed to be labor augmenting,
thereby ensuring the existence of a balanced growth path. In contrast, the transitory
component of technology At was assumed to make the capital stock and hours worked
more productive. From the production function (4.1) follows that

Yt = AtK
α
t (ĀtHt)1−α = AtĀ

1−α
t Kα

t H
1−α
t .

Thus, one can define TFP as the product of both productivity processes, i.e., TFPt :=
AtĀ

1−α
t . Instead of considering impulse-response functions of At or Āt, the impulse-

response function of TFP is considered to ensure better comparability between both kinds
of shocks.818 Thus, a growth shock of εg

t = 0.01 is not sufficient to ensure a one percent
818 Note that this procedure is in line with the one carried out in Section 4.4.2, where Āt ≡ 1 due to the
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increase in TFP.819

Before the effects of growth and transitory shocks are contrasted, the model response to a
one percent increase in TFP stemming from a growth shock is illustrated. Figure 4.11
shows the model responses for various values of %g, which is the short memory parameter
of the growth shock. For the trending variables, the IRFs in Figure 4.11 show percentage
deviations from the “old” balanced growth path, i.e., deviations are expressed from
the balanced growth path on which the variable would grow if there were no growth
shocks.820,821

Given the trend shock, TFP initially rises by one percent and positively affects the marginal
productivities of capital and labor. Along the fading out of the trend shock, TFP reaches
its new balanced growth path from below as illustrated in the upper-left-hand panel
of Figure 4.11. The higher the value of %g, i.e., the slower the dissipation of the trend
shock, the higher the level of the new balanced growth path.822 As for the transitory
technology shock considered in Section 4.4.2 and Appendix B.6, consumption expenditures
rise. These higher consumption expenditures again shift the labor supply curve upwards.
With increasing TFP and the implied push of labor demand, the real wage increases
initially; see the lower-left-hand panel of Figure 4.11. The response of hours worked is
again ambiguous, but given the parameter values of Figure 4.11, the initial response of
hours worked appears to be negative in all cases, as can be seen from the center panel

absence of growth. In Section 4.4.2, a one percent increase in the transitory technology component
corresponds to a one percent increase in TFP.

819 Total factor productivity grows along (1 + gss)(1−α)t in absence of growth shocks. Thus the percent-
age deviation of TFP from its old balanced growth path is given by log

(
TFPt/(1 + gss)(1−α)t

)
=

log(At) + (1 − α)
∑t

s=1 b̃s. Correspondingly, for the period of shock occurrence t = 1, it yields
log
(
TFP1/(1 + gss)(1−α)) = log(A1) + (1 − α)b̃1 = (1 − α)εg

1. The latter equation holds since At is
not affected by a growth shock, hence At ≡ A = 1. Evidently, a growth shock of size εg

1 = 0.01 is not
sufficient to increase TFP by one percent. Instead, the growth shock has to be of size εg

1 = 0.01/(1−α).
Therefore, Figure 4.11 shows the IRFs of a growth shock of size εg

1 = 0.01/(1 − α) ≈ 0.0149.
820 For the trending variables Yt, Ct, It,Wt,Kt+1, the old balanced growth path is given by (1 + gss)t,

where gss is the steady state growth rate, see (4.20).
821 Note that not all curves plotted in Figure 4.11 are, strictly speaking, IRFs in the sense of Definition 2.1.5.

The trending variables are not stationary, but Definition 2.1.5 refers only to stationary processes.
However, the functions shown Figure 4.11 are computed from the IRFs of the stationarized variables
specified in (4.20); these are in accordance with Definition 2.1.5 as they are stationary. The percentage
deviation for, say, consumption from its old balanced growth path follows directly from (4.20), (4.16)
and (4.17); it is given by log (Ct/(css(1 + gss)t)) = c̃t +

∑t
s=1 b̃s. For better comparability between

the figures of this chapter and between the trending and non-trending variables, the author finds it
helpful to plot the percentage deviation from the old balanced growth path instead of the IRFs of the
stationarized variables.

822 Given an initial trend shock of size εg
1 = σεg , it follows from Footnote 819 that the long run

percentage deviation of TFP from its old balanced growth path is given by σεg (1 − α)
∑∞

s=1 %
s−1
g =

σεg (1 − α)/(1 − %g). For the other trending variables, the long run percentage deviation corresponds
to σεg/(1 − %g).
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Figure 4.11: Responses of the model with CD utility function to a 1% TFP trend shock for various values
of %g. The vertical axes report percentage deviations from the variables’ old balanced growth path or
steady state value. The horizontal axes report quarters. The dark gray line in each subfigure marks the
zero line where the variables are at their old balanced growth path (if existing) or steady state values.
Dashed lines refer to the new balanced growth path (if existing). Note the different scaling of the vertical

axis.
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of Figure 4.11.823 Correspondingly, with decreasing employment, the household’s leisure
consumption rises initially; see the right-hand panel in the second row of Figure 4.11.

The capital stock is again a predetermined variable and does not initially respond to the
TFP shock. On the other hand, capital demand is negatively affected by the drop in
employment. With %g = 0.85, the positive effect on capital demand due to higher TFP is
outweighed by the negative response of employment. As a consequence, the rental rate on
capital initially falls below its steady state value in this case; see the left-hand panel in
the second row of Figure 4.11. The reverse is true for the other values of %g.

Furthermore, consumption rises more than the household’s income or output, leading
to an overall positive initial response of the consumption-to-income ratio. Thus, the
household’s investment expenditures fall initially and cannot compensate for the capital
stock’s depreciation. Consequently, the capital stock falls below its old balanced growth
path for some periods; see the center panel in the first row of Figure 4.11. With growing
TFP, consumption expenditures and output grow. Since the latter grows faster than the
former, investment expenditures depicted in the center panel of the third row in Figure 4.11
rise quickly, and the accumulation of the capital stock sets in.

The increasing consumption expenditures continuously shift the labor supply curve upwards.
At the same time, positive TFP and the beginning accumulation of the capital stock shift
the labor demand curve upwards. The resulting steadily increasing real wage rate can be
seen from the lower-left-hand panel of Figure 4.11. For several periods, the shift in the
labor demand curve seems to exceed the shift in the supply curve resulting in periods of
increasing employment. Afterward, the shift in the supply curve outweighs the shift in
the demand curve, and employment decreases steadily and reaches its steady state value.
Capital demand is continuously pushed upwards with increasing TFP and employment.
Together with the decreasing capital stock, this causes a steep increase in the rental rate on
capital in the first periods. The accumulation of the capital stock then gradually enlarges
the capital supply in the economy, and the rental rate on capital returns to its steady
state value, as can be seen from the left-hand panel in the second row of Figure 4.11.

Overall, the mechanisms driving the model responses are similar to those described in
Section 4.4.2 and Appendix B.6. However, the initial consumption expenditures of the
household (with all of their implied consequences for the other model variables) react more
strongly to the trend shocks depicted in Figure 4.11 than to the short memory transitory
shock shown for example in Appendix B.6. Before these differences in the household’s
823 For smaller values of %g, an initial positive response of hours worked is possible by leaving the other

parameters unchanged.
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consumption decision are considered in more detail, Figure 4.12 finally compares the model
responses to a one percent short memory, long memory, and trend TFP shock.824

Figure 4.12: Comparison of the model’s response to a 1% TFP short memory, long memory, and trend
shock. The vertical axes report percentage deviations from the variables’ old balanced growth path (if
existing) or steady state value. The horizontal axes report quarters. The dark gray line in each subfigure
marks the zero line where the variables are at their old balanced growth path (if existing) or steady state

values. Note the different scaling of the vertical axis.

A direct comparison between a trend shock and transitory short memory TFP shock
with %A = 0.95 (dark-blue and red lines in Figure 4.12) reveal significant differences.
As can be seen from the upper-right-hand panel of Figure 4.12, the initial response
of consumption expenditures to a trend shock is nearly twice as high as the one to
824 Recall that the trend shock ε1

g has to be of size 0.01/(1 − α) to ensure an increase in TFP of 0.01,
while a transitory TFP shock of size εA

1 = 0.01 is sufficient to do so.
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a transitory short memory technology shock. Consequently, the upward shift in the
household’s labor supply curve induced by its consumption decision is more pronounced
for a trend shock than for a transitory short memory technology shock. Given the same
initial upward shift in the labor demand curve, employment reacts positively to a short
memory technology shock and negatively to a trend technology shock. Hence, income and
investment expenditures increase more in response to a transitory technology shock than
to a trend shock. Accordingly, the consumption-to-income ratio drops initially in response
to a trend shock but rises in response to a transitory technology shock.

These different responses in consumption are again typically explained by the permanent
income hypothesis. For example, Aguiar and Gopinath (2007) compare the effects of a
trend and transitory short memory technology shock and ascertain:

As a trend shock implies a greater increase in permanent income, consump-
tion will respond more to such shocks. [. . .] In response to a growth shock,
consumption responds more than income given the anticipation of even higher
income in the future. The higher future income follows from the fact that
the innovation to productivity is not expected to die out and capital adjusts
gradually.825

Figure 4.12 highlights how a transitory long memory TFP shock with %A = 0.95 and
d = 0.4 affects the economy in comparison to the other two kinds of shocks already
discussed. TFP rises for about 12 periods and peaks roughly at the level of the new
balanced growth path induced by the reference trend shock. Afterward, the shock dies
out slowly, and TFP returns to its old balanced growth path. The response of TFP to
the long memory shock is very similar to the response to the trend shock in the first ten
periods. Interestingly, the responses of the household’s consumption expenditures to both
shocks are also quantitatively and qualitatively similar in the first periods. The same is
true for the responses of the remaining variables, which are very similar to the response to
a trend shock in the first periods, even though the household anticipates the long memory
technology shock to die out.826

825 Aguiar and Gopinath (2007, p. 87).
826 Clearly, the concrete model responses depend on the values of %g, %A and d. For Figure 4.12, it needs

high values of %A = 0.95 and d = 0.4 to mimic the response of a trend shock with %g = 0.5. By
considering panel a) of Figure 2.8, it appears that even with %A = 0.99 and d = 0.49, the maximal
value of an ARFIMA(1, d, 0) process’s IRF is roughly 6, i.e., a one percent TFP shock accelerates to a
level of six percent, before it returns to the old balanced growth path. On the other hand, given a one
percent trend shock with %g = 0.84, TFP reaches a new balanced growth path that lies 6.25% above
the old one. For higher values of %g, the new balanced growth path reaches even higher values. Thus,
the possibilities of ARFIMA processes to mimic the responses of a trend shock seem to be bounded.
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Ultimately, these findings confirm the ones made in Section 4.4.2. For the household, the
long-run effects of a technology shock are less important for its consumption decision in
the period of the shock occurrence, i.e., whether a higher balanced growth path of TFP is
reached or whether TFP finally returns to its old balanced growth path is secondary. The
household increases its consumption expenditures when it expects TFP to rise, at least
for some periods. Later, when the responses of TFP start to diverge due to the different
sources of the shock, the household adjusts its consumption expenditures accordingly.
Some periods after the shock, the shape of the impulse-response functions of the long
memory technology shock looks similar to those of a transitory short memory shock.
Compare, for example, the hump in the IRF of the capital stock or the overshooting of
the rental rate on capital and hours worked, which are not visible for the growth shock.
Overall, the relationship between the three considered kinds of shocks may be summarized
as follows.

Whenever %A +d > 1, a transitory long memory technology shock has an increasing impact
for some periods similar to those of a dissipating trend shock. While the trending variables
reach a new balanced growth path with the dissipating trend shock, they eventually
return to their old balanced growth path in response to a transitory short or long memory
technology shock. Therefore, the model’s IRF to a short memory technology shock with
d = 0 and an ARFIMA(1, d, 0) technology shock with %A + d > 1 share similar shapes
after the peak of TFP’s response has been reached. Instead, when %A + d < 1, the
qualitative model responses are similar to those of an AR(1) process since the asymptotic
characteristics of the long memory shock materialize outside the household’s decision-
making horizon. Although the slow decay in the IRF is visible, it does not cause a
significant change in the household’s consumption behavior at the time of shock occurrence.
On the one hand, the household is assumed to be infinitely-lived and to incorporate all
future periods in its utility maximization decision (see (4.3)). On the other hand, however,
the household discounts the future at an exponential rate, making an infinite cumulative
technology shock negligibly small.





5
Continuous-Time Macro-Financial Model

In Chapter 4, long memory in a discrete-time dynamic stochastic general equilibrium
(DSGE) model has been considered. Given the canonical form of a DSGE model, it can
be clearly seen that these models are, in the end, systems of difference equations involving
expectations of certain variables.827

Similar to the deterministic dichotomous distinction between difference and differential
equations, there are, besides the stochastic difference equations treated in Chapter 4,
continuous-time stochastic models called stochastic differential equations. In this chapter,
a similar question as in Chapter 4 is addressed, i.e., whether and how can long memory
be introduced in a continuous-time stochastic framework and if it can, how sensitive are
the model’s implications regarding the presence of long memory. The context of these
considerations builds a model from the emerging literature on continuous-time macro-
financial models. To be more precise, the model considered in this chapter is taken from
Brunnermeier and Sannikov (2016, Section 2 on pp. 1504ff.).

The following section introduces the shock-generating process to incorporate long memory
dynamics into the model. This process is then considered in more detail in the following
sections. Section 5.2 introduces the model setup, and in Section 5.3, the model’s equilibrium
is defined, and its solution is derived. Section 5.4 contains the results, and a comparison
with the benchmark model is carried out. The corresponding Appendix C contains in
Appendix C.1 a summary of the Itô calculus for dealing with stochastic integrals and
827 Recall the DSGE model’s canonical form (4.22) in the context of Blanchard and Kahn (1980)’s

solution method and (B.20) in the context of Klein (2000)’s solution method.
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stochastic differential equations. Appendix C.2 contains the proofs of the lemmas and
propositions stated in this chapter, and Appendix C.3 is a note on the derivation of the
model’s equilibrium price.

An earlier version of the content in this chapter is available as a working paper titled “The
Impact of Long-Range Dependence in the Capital Stock on Interest Rates and Wealth
Distribution”. This paper is also included in the conference paper series “Beiträge zur
Jahrestagung des Vereins für Socialpolitik 2019 - 30 Jahre Mauerfall - Demokratie und
Marktwirtschaft” under the session titled “A01 Macroeconomics - Financial Markets”. A
revised version of this working paper was also presented at the World Congress of the
Econometric Society in 2020.

5.1 Definition of the Shock-Generating Process

A milestone in financial modeling was built by Black and Scholes in 1973 with their
financial market model in which the stock’s price is given by a geometric Brownian motion
whose dynamics are described by the stochastic differential equation:

dSt = µSt dt+ σSt dWt, (5.1)

where µ ∈ R and σ > 0 are given constants and (Wt)t≥0 is a Brownian motion on a
given probability space (Ω,F ,P).828,829 Note that Wt is a Brownian motion within this
chapter, not the real wage Wt as in the previous chapter. Since the two model contexts
are unambiguously different, the excessive use of the letter W should not cause much
confusion. Instead, it allows for a standard notation in both research areas.

Not only in finance but also in macroeconomics, modeling in a continuous-time stochastic
framework became more popular. There have been arising classes of macroeconomic
models based on stochastic differential equations in the recent literature.830

These types of models combine two concepts. The first is the idea of stochastic modeling,
which is already realized and well-understood in discrete-time settings via DSGE models,
to consider the effects of random shocks on the economy.831 The second concept is to
828 Recall Definition 2.5.1 for the definition of a Brownian motion.
829 Black and Scholes (1973) describe the stochastic properties of the underlying stock price more verbally.

Merton provides in Merton (1973, Section 6 on pp. 162ff.) a derivation of Black’s and Scholes’s model
based on (5.1), see Merton (1973, Equation (23) on p. 162).

830 See Brunnermeier and Sannikov (2016, Section 1.3 on pp. 1502ff.). Additional literature is mentioned
later in this chapter.

831 Brunnermeier and Sannikov (2016, Figure 1 on p. 1500) illustrates nicely how the continuous-time
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model in continuous-time frameworks to describe the whole dynamics of a variable instead
of linear approximations around a deterministic steady state.832

So the idea behind these new macro models is to apply the well-developed continuous-
time stochastic framework from financial mathematics and finance to macroeconomic
problems.833 For example, Brunnermeier and Sannikov investigate in Brunnermeier and
Sannikov (2016) the effects of financial frictions on the wealth distribution within the
economy and go thereby further than classical finance issues such as option pricing.834 To
realize this, Brunnermeier and Sannikov describe the evolution of capital in the economy
with the following stochastic differential equation

dkt

kt

= (Φ(ιt) − δ) dt+ σ dWt. (5.2)

where capital grows with investment minus depreciation (Φ(ιt) − δ).835 The term dWt is
interpreted as a macroeconomic shock with volatility σ modeled as stochastic disturbance
generated by a Brownian motion W = (Wt)t≥0.836 This stochastic differential equation is
very similar to (5.1), which Black, Scholes, and Merton used to describe the evolution of
stock prices.

From the empirical side, there is evidence that (5.1) is unsuitable for modeling the dynamics
of stock prices since some stylized facts about stock prices cannot be captured by (5.1).837

As outlined in Section 3.2.2.3, there is empirical evidence that log returns of stocks are
correlated, also suggesting a failure of the efficient market hypothesis. However, they
appear stochastically independent in (5.1) since the increments of Brownian motions are
stochastically independent. In the light of Section 2.5, fractional Brownian motion (fBm)
appears to be a natural generalization of a Brownian motion. Thus, it seems natural to
replace (5.1) with

dSt = µSt dt+ σSt dB
H
t , (5.3)

where H ∈ (0, 1) denotes the Hurst index.838

macro-financial literature combines the two strands of macroeconomics and finance.
832 See Brunnermeier and Sannikov (2016, pp. 1498 and 1502).
833 See Brunnermeier and Sannikov (2016, p. 1501).
834 See Brunnermeier and Sannikov (2016, p. 1516) for the introduction of financial frictions in their

extended model and Brunnermeier and Sannikov (2016, Section 3.4.2 on pp. 1523) for a discussion of
the frictions’ implications.

835 See Section 5.2 for more details.
836 The term σdWt is also referred to as aggregate risk in Brunnermeier and Sannikov (2016, p. 1534).
837 See Section 3.2.2.3.
838 Recall the definition of fBm, Definition 2.5.2.
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Admittedly, this idea is not entirely new. There was a detailed discussion in the financial
mathematics literature in the 2000s about whether or not it is helpful to replace the
Brownian motion in (5.1) with a fractional Brownian motion. On the one hand, using fBm
instead of Brownian motion opens up the possibility to model autocorrelation in stock
returns since the parameter H controls for the correlation of the increment process. On
the other hand, the generalization from (5.1) to (5.3) appears not as straightforward as it
seems.

From a mathematical perspective, the stochastic differential equation (5.3) has to be well-
defined before any implications for stock prices or other variables can be derived. In the
end, each stochastic differential equation is always a shorthand notation of a corresponding
integral equation, i.e., (5.3) essentially stands for839

St = S0 +
∫ t

0
µSs ds+

∫ t

0
σSs dB

H
s . (5.4)

Thus, for a stochastic differential equation like (5.3) to be well-defined, the corresponding
integral equation (5.4) has to be well-defined. To be more precise, the critical part of (5.4)
is the stochastic integral with respect to the fractional Brownian motion, i.e., a stochastic
integral of the form ∫ t

0
λs dB

H
s , (5.5)

where (λt)t≥0 is a given deterministic function or a stochastic process. With H = 1/2, it
yields that B1/2

t = Wt is a Brownian motion. In this case, the corresponding stochastic
integral (5.5) is often interpreted in the Itô sense that offers nice analytic tools to deal with
the corresponding stochastic differential equations.840,841 Extensions of the Itô integral
also exist when the integrator is replaced with a combination of a Brownian motion
and a jump process such as a Poisson process.842 The most general class of stochastic
processes for which the Itô integral (5.5) is well-defined appears to be the group of so-called
semimartingales.843 Due to its technicality, a precise definition of a semimartingale is
not given in this thesis, but it can be found, e.g., in Rogers and Williams (1987, p. 23).
Important processes that are indeed semimartingales are Brownian motions, Poisson

839 For the case of a Brownian motion, i.e., H = 1/2, see Øksendal (2013, p. 65).
840 Appendix C.1 provides a brief review of the Itô calculus.
841 Another possible way to interpret stochastic integrals with respect to Browinan motion is the so-called

Stratonovich integral. Without going much into the details, the Stratonovich integral seems to be
unsuitable for applications in finance. A brief discussion of this issue can be found, e.g., in Shreve
(2004, p. 136). For this reason, a detailed discussion of the Stratonovich integral is omitted here.

842 See Shreve (2004, Definition 11.4.3 on pp. 475f.).
843 See Rogers and Williams (1987, p. 391) and Rogers and Williams (1987, p. 394) for Itô’s formula if

X is a semimartingale.
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processes, or, more generally, so-called Lévy processes i.e., processes with stationary and
independent increments, and diffusion processes, i.e., solutions to stochastic differential
equations with respect to a Brownian motion.844

Unfortunately, fBm is not a semimartingale for H 6= 1/2.845 Thus, the Itô integration
calculus cannot be applied to the stochastic integral in (5.3).846 Therefore, other attempts
(mainly in the financial mathematics literature) have been made to define stochastic
integrals and related stochastic differential equations such as (5.3).

Early approaches attempted to interpret a stochastic integral like the one in (5.5) in a
pathwise sense.847 With such an interpretation of (5.5), the corresponding Black-Scholes
model (5.4) is not free of arbitrage.848 However, the absence of arbitrage appears to
be a necessary equilibrium condition in a financial market.849 These problems with the
pathwise definition of the integral can be solved if additional assumptions on the model are
proposed, e.g., if transaction costs are introduced.850 Overall, using an integral calculus
that introduces arbitrage possibilities into the financial market seems questionable, and a
carryover to a macro-financial model seems, thus, less promising.

In order to remedy the drawbacks of the pathwise integration calculus, various authors
have proposed another mathematical setting to introduce fBm in a Black-Scholes model.
Biagini et al. (2008) consider a model based on the so-called Wick-Itô-Skorohod integration
844 See Rogers and Williams (1987, p. 24).
845 See, e.g., Biagini et al. (2008, Section 1.8 on pp. 12f.).
846 See Biagini et al. (2008, p.13).
847 Recall that for each fixed ω ∈ Ω, the map t 7→ BH

t (ω) is called the path of the fractional Brownian
motion, i.e., the path is a function of t; see also Section 2.1.1. Without going much into the details,
the idea behind a pathwise integration is the following. Consider two deterministic functions g and F
defined on an interval [a, b]. The Riemann-Stieltjes integral

∫ b

a
g(s) dF (s) can be defined given some

regularity conditions for the functions g and F , see, e.g., Salopek (1998, Section 2 on pp. 218ff.) for a
summary of properties of the Riemann-Stieltjes integration calculus. If, for example, F is differentiable
with derivative f , the mentioned integral simply corresponds to

∫ b

a
g(s)f(s) ds, see, e.g., Salopek

(1998, Proposition 2.1 on p. 221). The integral, however, may exist even if F is not differentiable.
The idea for defining a pathwise integral with respect to fractional Brownian motion is to replace the
function F with the path of a fractional Brownian motion, which is indeed not differentiable, see, e.g.,
Biagini et al. (2008, Proposition 1.7.1 on p. 12).

848 This result was proven in various contexts. An argument in a general framework is given by Rogers
(1997, pp. 100f.). Salopek (1998, pp. 225 and 228) showed that there is an arbitrage opportunity if
H > 1/2 and Biagini et al. (2008, Section 7.1 on p. 170f.) constructs a concrete arbitrage strategy
in a fractional Black-Scholes market when stochastic integrals with respect to fBm are defined in a
pathwise sense.

849 See, e.g., Øksendal (2013, p. 273), Biagini et al. (2008, Remark 7.1.2. on p. 171) or Karatzas and
Shreve (1998, pp. 11f.).

850 Guasoni (2006, Proposition 5.1 on p. 578) proves that a model incorporating transaction costs is free
of arbitrage in a setting with pathwise defined integrals. Wang (2010, Equation (2.19) on p. 442)
derives the pricing formula for a European call option in the presence of transaction costs under the
additional assumption that trading is allowed only at discrete instances of time.
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calculus.851 The approach of Biagini et al. (2008) covers the whole range of H ∈ (0, 1)
and, thus, extends the approach of Hu and Øksendal (2003), who considered the Wick-Itô-
Skorohod integration calculus only for H ∈ (1/2, 1).852.

The resulting Black-Scholes model in the context of the Wick-Itô-Skorohod calculus is
arbitrage-free but suffers from a lack of adequate economic interpretation.853 As outlined
by Björk and Hult (2005), the model introduced in Hu and Øksendal (2003) is indeed
free of arbitrage in a mathematical manner, but the definition of self-financing portfolios
in the model has no relation to economic reality.854 They construct a portfolio in the
Wick-Itô-Skohorod based Black-Scholes model of Hu and Øksendal (2003), which has a
positive amount of shares of the risky asset and zero amount of the risk-free asset.855

Clearly, the value of this portfolio should be non-negative in reality. However, this portfolio
indeed has a negative value on a set with positive probability in the context of Hu and
Øksendal (2003).856

In addition, within the Wick-Itô-Skorohod integration framework, the value of a European
call option at time t = 0 is derived by Hu and Øksendal (2003).857 Based on a preprint
version of Hu and Øksendal (2003), Necula (2002) extends this formula for arbitrary
instances of time.858 In contrast to the original Black-Scholes formula for the valuation of a
European call option, the formula of Necula (2002) depends not only on the time difference
between the time of valuation and maturity-time but also on the valuation-time itself.859

This was strongly criticized as being counter-intuitive by Rostek and Schöbel (2013).860

Additionally, the authors show that by correcting for the economic misinterpretation that
comes along with the Wick-Itô-Skorohod calculus, the resulting value of a European call
option no longer depends on the stock’s volatility, and the price of a call option eventually
shows a deterministic character.861

The reasons for these differences between a Black-Scholes model driven by fBm and
a Brownian motion may be caused by the correlation of an fBm’s increments. These
851 See, especially, Biagini et al. (2008, Chapter 4 on pp. 99ff.) for a formal definition and Biagini et al.

(2008, Section 7.2 on pp. 172ff.) for an application in a fractional Black-Scholes setting.
852 See Hu and Øksendal (2003, p. 2).
853 See Biagini et al. (2008, Theorem 7.2.6 on p. 176) for the statement that the Black-Scholes market is

arbitrage-free.
854 See Björk and Hult (2005, p. 200).
855 See Björk and Hult (2005, p. 208).
856 See Björk and Hult (2005, p. 208).
857 See Hu and Øksendal (2003, Corollary 5.5 on pp. 27f.).
858 See Necula (2002, Theorem 4.2 on p.13), URL in list of references.
859 See Necula (2002, Theorem 4.2 on p.13), URL in list of references.
860 See Rostek and Schöbel (2013, p. 34).
861 See Rostek and Schöbel (2013, p. 34).
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correlations allow for a certain degree of predictability as the history enters into the
forecasts of the future, thus, removing the random character from a call option’s price.862

Thus, both approaches of Biagini et al. (2008) and Hu and Øksendal (2003) appear
unsatisfactory from an economic perspective. Biagini et al. (2008) suggest interpreting St

in (5.4) as a total-company value that is not directly observed by the market participants
rather than the actual price of a company’s stock, but this point of view seems to be far
from the spirit of the original Black-Scholes model.863

This short discussion raises doubts that implementing fractional Brownian motion along
pathwise defined integrals or the Wick-Itô-Skorohod calculus into a macro-financial model
delivers promising results. This discussion further illustrates that changing the underlying
mathematical framework may introduce difficulties in the interpretation and comparability
of existing models. Thus, a desirable approach would be to combine long memory and the
existing Itô integration calculus. Although such a path cannot be taken directly with fBm,
a solution was proposed by Rogers (1997):

Formally, the fractional Brownian motion is the convolution of Brownian
increments with a power-law kernel, and the arbitrage is happening because
of the behavior of that kernel near zero. Long-range dependence [i.e, long
memory] is happening because of the behavior of the kernel at infinity, so the
remedy is clear; we convolute the Brownian increments with some kernel which
has the same behavior at infinity but a more orderly behavior at zero, and
everyone will be happy!864

The convolution mentioned in the quotation refers to the continuous-time moving average
representation of a type I and II fBm given in (2.39) and (2.38), respectively. While Rogers
(1997) proposes an adjusted kernel for a type I fBm, Thao and Thomas-Agnan (2003)
propose the usage of a type II fBm.865

Thao and Thomas-Agnan (2003) argue that the process ZH is appropriate to model the
noise in financial markets.866 Since, again, ZH is not a semimartingale, they proposed an
approximation of this process which is defined as follows.867

Definition 5.1.1
862 See Rostek and Schöbel (2013, pp. 30 and 34).
863 See Biagini et al. (2008, p. 172).
864 Rogers (1997, p. 95).
865 See Rogers (1997, Section 5 on p. 104) and Thao and Thomas-Agnan (2003, p. 109), respectively.
866 See Thao and Thomas-Agnan (2003, p. 109).
867 See Thao (2003, p. 256) for the statement that ZH

t is not a semimartingale.
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For H ∈ (0, 1) and ε > 0, let the stochastic process ZH,ε = (ZH,ε
t )t≥0 on the probability

space (Ω,F ,P) be defined by

ZH,ε
t =

∫ t

0
(t− s+ ε)H−1/2 dWs, (5.6)

where (Wt)t≥0 denotes a standard Brownian motion defined on (Ω,F ,P). o

Definition 5.1.1 is more general than in Thao and Thomas-Agnan (2003), since they
consider only the case of H > 1/2. The more general case of H ∈ (0, 1) is considered in
Thao (2006).868 From Definition 5.1.1 the suggestion of Rogers (1997) cited above becomes
clear. The process ZH,ε can be regarded as an aggregation of Brownian shocks weighted
by the integral kernel K(t+ ε, s), which is given by K(t, s) = (t− s)H−1/2. By introducing
the parameter ε, the behavior of this kernel at zero is influenced by keeping the structure
of the kernel in the long run almost unchanged.869

The process defined in Definition 5.1.1 generalizes a Brownian motion in a similar fashion
than an fBm. More specifically, with H = 1/2, the process Z1/2,ε is again a Brownian
motion for every ε > 0. Another striking feature of the process ZH,ε is that as ε → 0, it
converges in the mean-square sense to the process ZH defined in (2.38).870,871 Thus, for
small values of ε, ZH,ε can be viewed as an approximation of ZH .

In the following, some properties of the process ZH,ε are considered. Ultimately, The
aim is to define a stochastic differential equation with respect to the process ZH,ε. As
mentioned above, this leads to difficulties whenever the underlying stochastic process is
not a semimartingale; since then, the Itô integration calculus cannot be applied. Both
processes, BH and ZH , are not semimartingales, but the process ZH,ε is indeed one.872

Lemma 5.1.2
The process ZH,ε defined by (5.6) is a semimartingale and has the following decomposition

ZH,ε
t =

∫ t

0

∫ s

0
(H − 1/2)(s− u+ ε)H−3/2 dWu ds+ εH−1/2Wt =

∫ t

0
ϕH,ε

s ds+ εH−1/2Wt

868 See Thao (2006, Equation (2.1) on p. 125).
869 A similar approach based on a slightly different integral representation is given by Rogers (1997,

Section 5 on p. 104). He also imposes sufficient conditions on his integral kernel for which the
corresponding process becomes a semimartingale.

870 See Thao (2006, Theorem 2.1 on p. 126). This result is extended for another weighting kernel by
Dung (2011, Proposition 2.1 on p. 1846).

871 Mean-square convergence means that, E(|ZH,ε
t − HH

t |2) → 0, as ε → 0. Additionally, Dung (2011,
Proposition 2.1 on p. 1846) showed that E(|ZH,ε

t −HH
t |p) → 0 as ε → 0, for all p > 0. That is, all

moments of ZH,ε converge to those of ZH as ε → 0.
872 This result, stated in the following lemma, was also proved by Dung (2011, Proposition 2.1 on p.

1846) in a more general setting.
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with ϕH,ε
s =

∫ s

0
(H − 1/2)(s− u+ ε)H−3/2 dWu. Thus, one can write

dZH,ε
t = ϕH,ε

t dt+ εH−1/2 dWt.

Proof
See Thao (2006, Lemma 2.1 on p. 125).

With Lemma 5.1.2, it is possible to consider a stochastic differential equation with respect
to the process ZH,ε in the classical Itô sense. For this reason, the process ZH,ε

t seems
appropriate as stochastic noise in a financial model.873 Consequently, the process ZH,ε

t is
used in the context of a macro-financial model in the following sections.

The main reason for considering a model driven by the process ZH,ε is the property of
long memory. Recall from Definition 2.3.1 that long memory is a property of stationary
processes, i.e., a process is a long memory process if the sum of the absolute values of its
autocorrelation (or autocovariance) function diverges. Unfortunately, the increments of
the process ZH,ε are unlike the one of fBm, not stationary.874,875

Nevertheless, it may be reasonable to call the increment process a long memory process in
the following sense. Dung (2013), defines the autovariance function of ZH,ε as876

ρH,ε(n) := E
(
ZH,ε

1 (ZH,ε
n+1 − ZH,ε

n )
)

for n ∈ N. (5.7)

In addition, he proved the following proposition.

Proposition 5.1.3
The autovariance function defined in (5.7) satisfies

∞∑
n=1

ρH,ε(n) = ∞, if H > 1/2 and
∞∑

n=1
ρH,ε(n) < ∞, if H < 1/2.

Proof
See Dung (2013, Proposition 4.1 on p. 343)

873 Dung (2011, Remark 4.1 on p. 1854) derives a pricing formula for a European call option in the
corresponding Black-Scholes model. Mrázek et al. (2016, p. 1038) and Yang et al. (2016, p. 7), URL
in list of references, use this process as stochastic disturbance in a stochastic volatility model.

874 See Dung (2013, p. 343).
875 Recall from Section 2.5 that the process ZH has non-stationary increments as well.
876 See Dung (2013, p. 342).



190 Chapter 5. Continuous-Time Macro-Financial Model

Proposition 5.1.3 states that the process ZH,ε can be viewed as a long memory process in
terms of the autovariance function instead of the autocovariance function.877 Obviously,
the non-stationarity of the increment process is disadvantageous. However, compared to
the drawbacks of another integration calculus as described above, this drawback seems
bearable. Moreover, as will turn out in the next section (especially Figure 5.1), the
sample ACF of the economy’s output shows similarities to the theoretical ACF of an
ARFIMA(0, d, 0) process. Consequently, the non-stationarity of the increments may not
be seen as a major drawback.

The aim of this section was manifold. It was highlighted that there was (and still is)
a discussion in the literature dealing with incorporating long memory dynamics into a
continuous-time financial model, especially into models similar to the seminal one of Black
and Scholes. Then, some appearing challenges in the definition of stochastic differential
equations with respect to an fBm were discussed, and a possible solution (the process
ZH,ε) was provided. Since continuous-time macro-financial models connect both strands of
literature (macroeconomics and finance), the following sections are devoted to analyzing
the effects when the process ZH,ε is plugged into a macro-financial model.

5.2 The Model Setup

This section introduces the model setup. The model is mainly based on Brunnermeier
and Sannikov (2016, Section 2 on pp. 1504ff.), which in turn is an extension of the model
presented by Basak and Cuoco (1998).878 In the latter model, Basak and Cuoco (1998)
suppose a finite time horizon and consider a financial market with two assets, a risky asset
(namely a stock depending on an exogenous dividend process) and a riskless bond in zero
net supply.879

Brunnermeier and Sannikov (2016) link the risky asset in the model of Basak and Cuoco
(1998) to a production function in the sense that the risky asset of Basak and Cuoco
(1998) is explicitly employed in this production function and produces output goods.880

This output corresponds to the dividend payment of the stock in the setting of Basak and

877 The autocovariance functions of ZH,ε measures the covariance between the first increment ZH,ε
1 −ZH,ε

0
and the increment n periods later, i.e., ZH,ε

n+1 −ZH,ε
n . If the increment process were stationary like the

increment process XH of an fBm (see Lemma 2.5.3), the autovariance function would correspond to
the autocovariance function since cov

(
XH

1 , X
H
n

)
= cov

(
XH

t+1, X
H
t+n

)
= γXH (n). Thus, the condition∑∞

n=1 ρ
H,ε(n) = ∞ generalizes Definition 2.3.1 correspondingly.

878 See Brunnermeier and Sannikov (2016, p. 1504).
879 See Basak and Cuoco (1998, p. 310).
880 See the next section for details.
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Cuoco (1998).

As outlined in (5.2), Brunnermeier and Sannikov (2016) use a Brownian motion for
generating their macro shock. Here, this approach is generalized, and it is assumed that
the macro shocks are generated by the process given in Definition 5.1.1 to account for long
memory in the dynamics of the risky asset. Since the risky asset is employed with a linear
production technology, the assumption of correlated macro shocks corresponds to long
memory in the growth rates of output in the model. As in Brunnermeier and Sannikov
(2016), an infinite time horizon is assumed, and their notation is adapted.

The economy is assumed to be populated by two kinds of agents called experts and
households. Experts are allowed to hold (risky) capital to produce output. Furthermore,
they can lend or borrow money at a risk-free interest rate rt, which is determined in
equilibrium. The financial friction for experts comes into effect as they only have the
possibility to borrow money from households to finance their capital investments, i.e.,
experts have to issue a risk-free asset at an interest rate rt. They cannot issue equity.
Households are constrained as they cannot invest in the risky asset, i.e., they can only
hold the risk-free asset, which is in zero net supply in the economy. As in the original
model, it is assumed that all agents are small and behave as price-takers. In the following,
the economy is characterized in more detail.

5.2.1 The Production Technology

Assume that there is an infinite number of experts and households, each with a total mass
of one. To be more precise, let I = [0, 1] and J = (1, 2] denote the index set of experts and
households, respectively. Each expert i produces output yi

t by using his capital holdings ki
t

in the production function
yi

t = aki
t, (5.8)

where a > 0 is a productivity parameter that is assumed to be equal among all experts,
and ki

t is the amount of capital at time t held by expert i.881 As in the discrete-time DSGE
model treated in Chapter 4, the price of output is normalized to one and is treated as the
numeraire.

Capital is held by experts, and it is assumed that capital evolves according to the stochastic
differential equation:

dki
t

ki
t

=
(
Φ(ιit) − δ

)
dt+ σ dZH,ε

t , (5.9)

881 See Brunnermeier and Sannikov (2016, p. 1504).
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where (ιit)t≥0 is expert i’s re-investment rate process. That is, ιit describes the amount of
output that is re-invested by expert i into his capital stock expressed as investment rate per
unit of capital.882,883 After re-investment into capital, there are (a− ιit)ki

t units of output
left for consumption. As in the original model the function Φ : [0, 1] −→ [0,∞), x 7→ Φ(x)
is assumed to be twice differentiable and strictly concave with Φ(0) = 0,Φ′(0) = 1,Φ′ > 0
and Φ′′ < 0. The function Φ represents the investment adjustment costs of transforming
output into capital.884,885 The formulas derived in the following section hold for general
functions Φ satisfying the mentioned assumptions. For the derivation of the equilibrium
processes, the concrete form of Φ is assumed to be886

Φ(ι) = log(κι+ 1)
κ

,

where, κ refers to the adjustment cost parameter.887 Note that κ controls for the concavity
of Φ, i.e., larger values of κ make Φ more concave while Φ(ι) → ι as κ → 0.888 Therefore,
the smaller κ, the smaller the investment adjustment costs.889 The depreciation rate of
capital is given by δ and is assumed to be non-negative. The volatility parameter σ is
assumed to be positive. As can be seen from (5.9), the function Φ, the depreciation rate δ
and the volatility parameter σ are equal among all experts i ∈ I.

Following Brunnermeier and Sannikov (2014), capital ki
t may be understood as capital in

efficiency units rather than physical capital.890 In their view, capital measures the future
production potential of capital instead of today’s physical capital.891 Therefore, the notion
of capital is rather broad in this chapter’s model context and broader than in the previous
chapter. There is, however, an alternative interpretation of (5.9) that illustrates some
similarities between the model of this chapter and the discrete-time model of Chapter 4.
To be more precise, the shocks dWt or dZH,ε

t may be interpreted as aggregate shocks to
total factor productivity (TFP) as outlined in the sequel.892

882 See Brunnermeier and Sannikov (2016, p. 1504).
883 Throughout it is assumed that all stated stochastic processes are restrictedly progressively measurable,

see Karatzas and Shreve (1998, Definition 1.7.1 on p. 28), to ensure that they are adapted to the
filtration generated by the Brownian motion. This is rather a technical standard assumption, which
is also imposed on the consumption process in the model of Basak and Cuoco (1998, Section 1.2 on p.
312). For technical details on the filtration, see Karatzas and Shreve (1998, p. 2).

884 See Brunnermeier and Sannikov (2016, p. 1504) and Brunnermeier and Sannikov (2014, p. 384).
885 Here, Φ′(·) and Φ′′(·) refer to the first and second derivatives of Φ, respectively.
886 This is in line with Brunnermeier and Sannikov (2016, p. 1507).
887 See Brunnermeier and Sannikov (2016, p. 1507).
888 See Brunnermeier and Sannikov (2016, p. 1507).
889 See Brunnermeier and Sannikov (2016, p. 1507).
890 See Brunnermeier and Sannikov (2014, p. 385).
891 See Brunnermeier and Sannikov (2014, p. 385).
892 See Di Tella (2017, p. 2044) and Brunnermeier and Sannikov (2014, Footnote 2 on p. 385).
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Let TFPt be TFP at time t which is assumed to evolve according to

dTFPt = σTFPt dZ
H,ε
t with TFP0 = a.

Then one may rewrite expert i’s capital holdings as capital in efficiency units. More
specifically, let ki,p

t denote expert i’s capital holdings measured in physical capital. Then,
ki

t = TFPtk
i,p
t corresponds to expert i’s capital holdings measured in efficiency units.

Instead of imposing (5.9) for the evolution of capital in efficiency units, one can equally
assume that physical capital evolves according to dki,p

t =
(
Φ(ιi,pt /TFPt) − δ

)
ki,p

t dt and ιi,pt

denotes the re-investment-rate per unit of physical capital.893 Therefore, one can interpret
the stochastic shocks in (5.9) as TFP shocks, i.e., positive shocks increase the effective
capital stock while negative shocks erode the effective capital stock.894

Overall, the approach followed in this chapter is similar to the one of Chapter 4: Instead
of assuming uncorrelated macro or TFP shocks dWt as in (5.2), correlated shocks dZH,ε

t

are involved in the dynamics of the capital stock (5.9).895

By Lemma 5.1.2, one can rewrite (5.9) and obtains

dki
t

ki
t

=
(
Φ(ιit) − δ + σϕH,ε

t

)
dt+ σεH−1/2 dWt (5.10)

with ϕH,ε
t =

∫ t

0
(H − 1/2)(t− u+ ε)H−3/2 dWu and (H, ε) ∈ (0, 1) × (0,∞).

Before introducing the rest of the model structure in more detail, it seems helpful to clarify
the main differences (5.2) and (5.9) or (5.10) and their implications for the economy’s
aggregate capital stock and output given these two different specifications of the law of
motion of experts’ capital stocks.

For the sake of simplicity, assume a constant re-investment rate ιt ≡ ι for the moment.896

Since the re-investment rates are then equal among all experts, (5.9) and (5.8) hold for
the economy’s aggregate capital stock Kt and output Yt as well. Formally, the economy’s

893 See Brunnermeier and Sannikov (2014, Footnote 2 on p. 385) and Di Tella (2017, Footnote 7 on p.
2044).

894 Another related specification is considered in Adrian and Boyarchenko (2012). The authors propose
a continuous-time model in which productivity evolves according to a geometric Brownian motion.
Rather than directly specifying the evolution of capital in efficiency units, they specify the evolution
of physical capital and productivity. For more details, see Adrian and Boyarchenko (2012, p. 5).

895 Recall that in Chapter 4, the white noise process εA
t in the evolution of the transitory TFP component

was replaced with the fractionally integrated white noise process νA
t , see (4.15). A similar replacement

is made here, as the uncorrelated increments dWt are replaced with the increments of the dZH,ε
t .

896 It will turn out in Section 5.3, that ιt is indeed constant in equilibrium.
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aggregate capital stock and output are given by aggregating over all experts, i.e.,

Kt =
∫
I
ki

t di, Yt =
∫
I
yi

t di.

To distinguish the two capital processes of the benchmark model and the one considered
here, let KBS

t be the aggregate value of the capital stock of Brunnermeier and Sannikov
(2016) given in (5.2) and Kt be the capital process specified in (5.10). The solutions to
the corresponding stochastic differential equations are given in the following lemma.

Lemma 5.2.1
Let ιt ≡ ι, then the solution to (5.9) and (5.10) in terms of the aggregate capital stock is
given by

Kt = K0exp
((

Φ(ι) − δ − (εH−1/2σ)2

2

)
t+ σZH,ε

t

)
. (5.11)

Consequently, the capital stock in the benchmark model is given by

KBS
t = KBS

0 exp
((

Φ(ι) − δ − σ2

2

)
t+ σWt

)
. (5.12)

Proof
See Appendix C.2.1

Assume that one can observe the amount of output Yt at N + 1 discrete points in time,
i.e., one observes Y0, . . . , YN . Then, the log differenced times series (or the growth rates of
output and capital) in the setting of Brunnermeier and Sannikov (2016) are given by

RBS
Y,n := log

(
Y BS

n

Y BS
n−1

)
= log

(
KBS

n

KBS
n−1

)
= Φ(ι) − δ − σ2

2 + σ(Wn −Wn−1).

Instead, by assuming the capital dynamics (5.11), output’s and capital’s growth rates
become

RY,n := log
(
Yn

Yn−1

)
= log

(
Kn

Kn−1

)
= Φ(ι) − δ − (εH−1/2σ)2

2 + σ
(
ZH,ε

n − ZH,ε
n−1

)
. (5.13)

From a time series perspective, one can argue that Brunnermeier and Sannikov (2016) the
log output series is modeled as a unit root process, since its first difference behaves as
white noise with expected value Φ(ι)−δ−σ2/2.897 By (5.13), one assumes that the growth

897 Recall from Definition 2.5.1 that the increments of a Brownian motion are independent and identically
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rates of output behave like a fractionally integrated white noise or an ARFIMA(0, d, 0)
process of order d = H − 1/2.898

The implications of these different approaches can be seen in Figure 5.1.899 In Panel a),
there is a white noise behavior of the autocorrelation function of the output’s growth rates
series. In contrast, one can observe in Panel b) a slowly decaying autocorrelation function
similar to the one of an ARFIMA(0, d, 0) process indicating long memory.900

a) ACF of RBS
Y,n

b) ACF of RY,n with
H = 0.75 and ε = 10−3

Figure 5.1: Average sample autocorrelation function of the model-implied output growth rates. Pan-
els a) and b) show the average sample autocorrelation function of the sequences (RBS

Y,n)n=1,...,360 and
(RY,n)n=1,...,360, respectively. In Panel b), the light-blue line refers to the theoretical autocorrelation
function (ACF) of an ARFIMA(0, 0.25, 0) process. The average was taken over 100 seeds of each series. The
corresponding Brownian shocks coincide in both cases. The parameters are ι = 0.04, Φ(ι) = κ−1 log(κι+ 1)

with κ = 10, σ = 0.1, δ = 0, and ε = 10−3.

Note that the single source of randomness in both cases is the Brownian motion (Wt)t≥0.
The autocorrelation enters the model via a different aggregation approach of past Brownian
shocks. To be more illustrative, consider the following identities

Wt =
∫ t

0
1 dWS and ZH,ε

t =
∫ t

0
(t− s+ ε)H−1/2 dWs.

distributed (i.i.d.). Therefore, the sequence RBS
Y,n, for n = 1, . . . , N is also i.i.d.

898 Note that, in contrast to Chapter 4, the Hurst index H is used instead of d to measure long memory
in the exogenous process. This notation helps to get not confused about d with the differential terms
such as dt, dWt and dZH,ε

t . Moreover, the usage of H seems to be more common in a finance context.
However, it should be kept in mind that both values are related to each other by d = H − 1/2, see
Section 2.5.

899 As in the previous chapters, all figures in this chapter were computed using Matlab code written by
the author.

900 At the end of Section 5.4 the evolution of the economy’s aggregate capital stock is considered in more
detail. More specifically, Lemma 5.4.1 derives the evolution of the capital stock’s expected value.
Some implications of long memory for this value are also discussed there.
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Hence, Brunnermeier and Sannikov (2016) assume through (5.12) that all Brownian shocks
enter into the development of the capital stock with a constant weight of 1. Instead,
when assuming (5.11), one imposes that the weight of the Brownian shock depends on the
time when it happened. That is, if one considers the impact of the Brownian shock that
happened at time s < t, it is weighted with (t− s+ ε)H−1/2. The impact of the past shock
is, thus, mainly determined by the time difference (t− s) between the points of time t and
s. Figure 5.2 shows the weighting kernel K(t, s) = (t− s+ ε)H−1/2 as a function of the
time difference (t−s) for various values of H. If H > 1/2, it can be seen that the weight of
a shock increases with the amount of time that has passed since the shock occurred. Here,
Rogers (1997)’s quotation given in Section 5.1 becomes clear again. He states that the
long-run behavior of the weighting kernel determines long memory. Figure 5.2 illustrates
that the higher the value of H, the larger the weighting kernel for long time differences
and, thus, the higher the degree of long memory.

Figure 5.2: Weighting kernel of ZH,ε for various values of H. The plot shows the kernel K(t, s) =
(t− s+ ε)H−1/2 as function of the time difference (t− s) for different values of H with ε = 10−3.

Consequently, including the exogenous shock process ZH,ε in the dynamics of the experts’
capital holdings introduces long memory in the economy’s GDP growth rates. A fact
supported by empirical evidence outlined in Section 3.2.1. As shown in (5.10), the
correlation of the ZH,ε shocks expressed by the parameters ε and H affects the dynamics
of experts’ capital holdings in two ways: First, there is the additional drift component
σϕH,ε

t (drift effect), which represents the weighted influence of past Brownian shocks. If
there is a sequence of negative (positive) shocks, these negative (positive) shocks will be
accumulated in ϕH,ε

t and keep influencing the evolution of capital negatively (positively).
Second, there is an additional risk component εH−1/2 occurring as a multiplier of the
volatility σ (volatility effect). If ε < 1, this multiplier is smaller than one in the presence of
long memory (H > 1/2). Therefore, introducing the process ZH,ε reduces aggregate risk.
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Note that the capital dynamics proposed in the original model neglect those effects.
However, it is possible to recover the original setting by setting H = 1/2 in (5.10).
Therefore, the dynamics given in (5.9) or (5.10) are more general than those in the original
model.

The following sections provide more details on the model economy and examine the
implications of a long memory TFP shock on the wealth distribution between households
and experts and the equilibrium interest rate. Before the agents are introduced in more
detail, let the price process of the capital be denoted by q = (qt)t≥0, i.e., qt represents the
price of one unit of capital at time t. Furthermore, assume that the price process is given
by901,902

dqt

qt

= µq
tdt+ σq

t dWt. (5.14)

5.2.2 Agents and Preferences

Assume that there is an infinite number of experts and households, each with a total mass
of one. To be more precise, let I = [0, 1] and J = (1, 2] denote the index set of experts and
households, respectively. The consumption process of expert i ∈ I is given by (ci

t)t≥0 and
the consumption process of household j ∈ J is denoted by (c̃j

t)t≥0.903

Both types of agents are assumed to have logarithmic utility and a constant time preference
rate of ρ > 0. Both types of agents are assumed to maximize the expected present value
of total utility given by

E
[∫ ∞

0
e−ρt log

(
ci

t

)
dt
]

and E
[∫ ∞

0
e−ρt log

(
c̃j

t

)
dt
]

for expert i ∈ I and household j ∈ J, respectively.904

The following section treats the agents’ utility maximization problems in more detail.

901 At first glance, this may seem arbitrary because one might expect that the dynamics of q are affected
by the same macro shocks dZH,ε

t as the capital. If one assumes that dqt/qt = µ̂q
tdt + σ̂q

t dZ
H,ε for

some processes (µ̂q
t )t≥0 and (σ̂q

t )t≥0, one obtains dqt/qt = (µ̂q
t + σ̂q

tϕ
H,ε
t )dt+ εH−1/2σ̂q

t dZ
H,ε by using

Lemma 5.1.2. By defining µq
t = (µ̂q

t + σ̂q
tϕ

H,ε
t ) and σq

t = εH−1/2σ̂q
t , one obtains the stated expression.

Hence µq
t and σq

t can depend on H and ε. As will be demonstrated in the following sections, this
issue does not matter in equilibrium.

902 This assumption is in accordance with Brunnermeier and Sannikov (2016, Equation (2) on p. 1505).
903 In the following, all individual specific processes for households are additionally marked with ∼ to

distinguish them from the individual processes of experts.
904 It is assumed that these expected values exist.
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5.2.2.1 Experts

Let ki
t denote the capital holdings of expert i ∈ I. Applying Lemma 5.1.2, one can rewrite

(5.9) to obtain the evolution of the capital holdings of an individual expert i ∈ I, i.e.,

dki
t

ki
t

=
(
Φ(ιit) − δ

)
dt+ σ dZH,ε

t =
(
Φ(ιit) − δ + σϕH,ε

t

)
dt+ σεH−1/2 dWt with ki

0 = k̄i
0,

(5.15)

where k̄i
0 is the initial amount of capital held by expert i which is assumed to be given as

a non-negative constant, and (ιit)t≥0 is the process of re-investment rates chosen by expert
i ∈ I.

At time t, expert i has to decide how much of the generated output he should re-invest into
the risky capital, i.e., he has to choose ιt and how much he wants to consume. Furthermore,
he has to decide how much of his wealth is invested in capital or is held/lent at the interest
rate rt, i.e., he has to make the portfolio choice between capital and the risk-free asset.
Let ni = (ni

t)t≥0 be the wealth process of expert i and πi
t the amount of risk-free assets

held by expert i at time t. Thus, the wealth of expert i is given by

ni
t = qtk

i
t + πi

tBt, (5.16)

where dBt = rtBtdt describes the dynamics of the risk-free asset Bt with interest rate
process r = (rt)t≥0. The initial wealth is given by ni

0 = q0k̄
i
0. The evolution of the wealth

of expert i is affected by four sources:

• After choosing ιit the capital produces (a− ιit)ki
t units of output, see Section 5.2.1.

• The capital’s value varies with an amount of d(qtk
i
t).

• The expert earns (or has to pay) the interest rate on risk-free assets, i.e., πi
t dBt =

πi
tBtrt dt.

• The expert has consumption expenditures of ci
t.

Thus, one can express the dynamics of the wealth process ni by

dni
t = ki

t(a− ιit) dt+ d(qtk
i
t) + πi

tBtrt dt− ci
t dt. (5.17)

Moreover, one can express capital holdings and holdings of risk-free assets as shares of
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wealth, i.e., define the part of the wealth of expert i invested in capital as

xi
t := qtk

i
t

ni
t

. (5.18)

Combining (5.16) and (5.18), one can rewrite (5.17) yielding in905

dni
t = xi

tn
i
t

(a− ιit)
qt

dt+ d(qtk
i
t) + (1 − xi

t)ni
trt dt− ci

t dt. (5.19)

The differential d(qtk
i
t) can be calculated by using Itô product formula (see (C.6) in

Appendix C.1). The dynamics of the price process q are given in (5.14) and the dynamics
of the capital holdings in (5.15). Overall, one obtains

d(qtk
i
t)

qtki
t

=
(
Φ(ιit) − δ + σϕH,ε

t + µq
t + εH−1/2σσq

t

)
dt+ (σεH−1/2 + σq

t ) dWt. (5.20)

Plugging this into (5.19), one obtains the dynamics of the wealth process

dni
t = xi

tn
i
t

(a− ιit)
qt

dt+
[(

Φ(ιit) − δ + σϕH,ε
t + µq

t + εH−1/2σσq
t

)
dt

+(σεH−1/2 + σq
t ) dWt

]
qtk

i
t + (1 − xi

t)ni
trt dt− ci

t dt.

After some rearrangements, one finally has

dni
t =

[
(a− ιit)
qt

+
(
Φ(ιit) − δ + σϕH,ε

t + µq
t + εH−1/2σσq

t

)]
xi

tn
i
t dt

+ (1 − xi
t)rtn

i
t dt− ci

t dt+ (σεH−1/2 + σq
t )xi

tn
i
t dWt. (5.21)

Given the price process (qt)t≥0 and the risk-free rate (rt)t≥0, one is now able to state the
utility maximization problem of expert i given by

max
xi,ci,ιi

E
[∫ ∞

0
e−ρt log

(
ci

t

)
dt
]

such that



xi
t ≥ 0 for t ≥ 0

ci
t ≥ 0 for t ≥ 0

ni follows (5.21) with ni
0 = q0k̄

i
0

ni
t ≥ 0 for t ≥ 0

. (5.22)

This maximization problem is solved in Section 5.3.

905 Here it is assumed that there are no other sources of income or expenditures, i.e., the share of wealth
invested into the risk-free assets corresponds to one minus the wealth share invested into capital.
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5.2.2.2 Households

This section derives the maximization problem of an individual household j ∈ J. His
wealth process is denoted by ñj = (ñj

t)t≥0. Since households can hold risk-free assets only,
the wealth process is given by

ñj
t = π̃j

tBt, (5.23)

where π̃j
t denotes the amount of risk-free assets held by household j at time t. The

household earns the interest rate from holding the risk-free asset and has expenditures for
consumption.906 Therefore, the wealth dynamics of household j is given by

dñj
t = π̃j

t dBt − c̃j
t dt =

(
π̃j

tBtrt − c̃j
t

)
dt. (5.24)

Inserting (5.23) in (5.24) leads to

dñj
t =

(
ñj

trt − c̃j
t

)
dt. (5.25)

Assume that the initial wealth ñj
0 of household j is given by ¯̃nj

0 > 0. As the risk-free asset
is in zero net supply in the economy, the economy’s total wealth is given by qtKt, i.e.,
total wealth is equal to the value of the aggregate capital stock.907 Consequently, in order
to ensure a positive initial wealth of households, they have to hold a certain amount of
capital at t = 0. Since households are not allowed to hold capital in this model economy,
it is assumed that they sell their initial capital holdings immediately to experts.908 That
is, the initial wealth of household j can equally be written as ¯̃nj

0 = q0
¯̃kj

0, where ¯̃kj
0 refers to

the household j’s initial capital holdings. The utility maximization problem of household
j ∈ J can now be formally stated as

max
c̃j

E
[∫ ∞

0
e−ρt log

(
c̃j

t

)
dt
]

such that


c̃j

t ≥ 0 for t ≥ 0

ñj follows (5.25) with ñj
0 = ¯̃nj

0

ñi
t ≥ 0 for t ≥ 0

. (5.26)

The following section provides a formal definition of the equilibrium in the economy, and
the solution to the agents’ maximization problem is derived.

906 Like the experts, households are assumed to have non-negative wealth. So (5.23) implies that
households hold a non-negative amount of risk-free assets.

907 See Brunnermeier and Sannikov (2016, p. 1504).
908 This view is in line with Di Tella (2017, p. 2046).
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5.3 Definition and Solution of the Equilibrium

The formal definition of the economy’s equilibrium reads as follows909

Definition 5.3.1
Let (Kt)t≥0 be the aggregate capital stock in the economy given by

Kt =
∫
I
ki

t di with initial value K0 =
∫
I
k̄i

0 di+
∫
J

¯̃kj
0 dj.

An equilibrium is defined as the following families of stochastic processes. Price of capital
and the risk-free rate {(qt)t≥0, (rt)t≥0}; experts’ investment and consumption decisions,
capital holdings and wealth processes {(ιit)t≥0, (ci

t)t≥0, (ki
t)t≥0, (ni

t)t≥0}i∈I; households’ con-
sumption decisions and wealth processes {(c̃j

t)t≥0, (ñj
t)t≥0}j∈J; such that i) experts solve

their maximization problem (5.22), ii) households solve their maximization problem (5.26),
iii) the market of consumption goods clears, i.e.,

∫
I
ci

t di+
∫
J
c̃j

tdj =
∫
I
(a− ιit)ki

t di for all t ≥ 0,

and iv) the risk-free asset is in zero net supply, i.e.,
∫
I
πi

t di+
∫
J
π̃j

tdj = 0 for all t ≥ 0.
o

Before the maximization problem of expert i ∈ I is solved, the market price of risk process
of expert i, (ϑi

t)t≥0, is introduced as follows910

ϑi
t :=

a− ιit
qt

+ Φ(ιit) − δ + σϕH,ε
t + µq

t + εH−1/2σσq
t − rt

εH−1/2σ + σq
t

. (5.27)

The market price of risk process describes the quotient of the excess return of capital over
the risk-free rate divided by the volatility of capital.911 The numerator can be interpreted
as the expected excess return of (the value of) capital qtk

i
t over the interest rate rt, see

(5.20), since (a − ιit)/qt is the output left after investment expressed in qtk
i
t units, see

909 Definition 5.3.1 is adapted from Brunnermeier and Sannikov (2014, pp. 388f.) and Di Tella (2017, p.
2048).

910 This market price of risk process corresponds to the Sharpe ratio of Brunnermeier and Sannikov
(2016, p. 1508).

911 See Brunnermeier and Sannikov (2016, p. 1507), Karatzas and Shreve (1998, p. 27) or Shreve (2004,
p. 216).



202 Chapter 5. Continuous-Time Macro-Financial Model

(5.21). Thus it can be interpreted as an additional dividend of the capital.912,913

Proposition 5.3.2
Consider the problem stated in (5.22) and define the stochastic process ξi = (ξi

t)t≥0 as

ξi
t = exp

(
−
∫ t

0
rs ds−

∫ t

0
ϑi

s dWs − 1
2

∫ t

0
(ϑi

s)2 ds
)

(5.28)

which follows the dynamics

dξi
t = −rtξ

i
t dt− ϑi

tξ
i
t dWt with ξi

0 = 1. (5.29)

Then,

i) the optimal re-investment rate process (ι̂it)t≥0 satisfies Φ′(ι̂it) = 1
qt

for all t ≥ 0 as

long as ϑ̂i
t > 0, where ϑ̂i = (ϑ̂i

t)t≥0 is the market price of risk process corresponding
to (ι̂it)t≥0.

ii) the optimal consumption process is given by ĉi
t = ρe−ρt 1

ξ̂i
t

, where ξ̂i
t is given by (5.28)

corresponding to ϑ̂i.

iii) the optimal wealth process is given by n̂i
t = e−ρt 1

ξ̂i
t

.

iv) The optimal fraction of wealth to invest into capital is given by x̂i
t = ϑ̂i

t

εH−1/2σ + σq
t

.

Proof
See Appendix C.2.2

The choice of the optimal re-investment rate ι̂it which satisfies Φ′(ι̂it) = 1/qt if ϑ̂i
t > 0 states

that experts do not re-invest into capital if there is a negative excess return of capital over
the interest rate rt. Equation (C.20) in Appendix C.2.2 highlights that experts have to
claim a positive excess return over the risk-free rate to invest at least a positive amount of
wealth into capital. Since experts have to hold all the capital in the economy, (C.20) in
Appendix C.2.2 implies that the market price of risk is indeed positive.

The following proposition solves the households’ maximization problem.

912 Brunnermeier and Sannikov (2016, p. 1506) name the expression (a− ιit)/qt “dividend yield” of the
capital.

913 In the following, all variables marked withˆ indicate optimal values, i.e., values that solve agents’
maximization problems.
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Proposition 5.3.3
Consider the maximization problem stated in (5.26). The optimal wealth process (ˆ̃nj

t)t≥0 of
household j ∈ J is given by

ˆ̃nj
t = ¯̃nj

0e
−ρtexp

(∫ t

0
ru du

)

and the corresponding consumption process (c̃j
t)t≥0 is given by ˆ̃cj

t = ρˆ̃nj
t .

Proof
See Appendix C.2.3

Now one can solve for the model equilibrium and find the equilibrium risk-free rate rt as
well as the equilibrium price of capital qt.

Optimal re-investment rate. From Proposition 5.3.2, one knows that each expert i ∈ I
chooses the re-investment rate process (ι̂it)t≥0 such that

Φ′(ι̂it) = 1
qt

or ι̂it = Ψ
(

1
qt

)
for all t ≥ 0, (5.30)

as long as ϑ̂i
t is positive. Note that Ψ is the inverse function of Φ′. As stated above, the

market price of risk ϑ̂i
t is indeed positive. The optimal re-investment rate does not depend

on i, so one can drop the index i, i.e., ι̂t ≡ ι̂it. That is, all experts choose the identical
re-investment rate. The same holds true for the market price of risk defined in (5.27), i.e.,
ϑ̂t ≡ ϑ̂i

t.

Experts’ and households’ optimal wealth and consumption. The optimal wealth
and consumption processes of experts are given by

dn̂i
t =

[
(ϑ̂t)2 + rt − ρ

]
n̂i

t dt+ ϑ̂tn̂
i
t dWt with n̂i

0 = q0k̄
i
0

and ĉi
t = ρn̂i

t, respectively.914 By inserting ι̂t into (5.15), one obtains the equilibrium
process of capital holdings (ki

t)t≥0 as

dki
t

ki
t

=
(
Φ(ι̂t) − δ + σϕH,ε

t

)
dt+ σεH−1/2 dWt with ki

0 = k̄i
0.

914 It follows directly from ii) and iii) of Proposition 5.3.2 that experts consume a fixed fraction of their
wealth.
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This implies that the aggregate capital stock Kt follows the dynamics

dKt

Kt

=
(
Φ(ι̂t) − δ + σϕH,ε

t

)
dt+ σεH−1/2 dWt with K0 =

∫
I
k̄i

0 di. (5.31)

For household j ∈ J, the equilibrium wealth and consumption processes are given by
Proposition 5.3.3.

Goods market clearing. Since the risk-free asset is in zero net supply in the economy,
the economy’s net worth is given by the total value of capital, i.e., qtKt. Plugging this
into the goods market clearing condition, see iii) of Definition 5.3.1, one obtains

∫
I
ĉi

t di+
∫
J

ˆ̃cj
tdj =

∫
I
(a− ι̂t)ki

t di and thus ρ
(∫

I
n̂i

t di+
∫
J

ˆ̃nj
tdj
)

= (a− ι̂t)Kt.

This implies915

ρqt = (a− ι̂t) or ρqt =
(
a− Ψ

(
1
qt

))
. (5.32)

By the monotonicity of Ψ, recall that Φ′′ < 0, and since a, ρ > 0, the intermediate
value theorem implies that the price qt ≡ q is uniquely determined by this equation.916

Additionally, the price qt has to be constant, implying that µq
t = σq

t ≡ 0.917 Moreover, the
re-investment rate process ι̂t must also be constant due to (5.30) and the constant price of
capital, i.e., ι̂t ≡ ι̂.

With Φ(ι̂) = log(κι̂+ 1)/κ, the equilibrium value of q can be derived as follows. From
Φ′(ι̂) = (κι̂ + 1)−1, follows that Ψ(x) = κ−1 (x−1 − 1). Plugging these expressions into
(5.32), leads to

ρq = a− 1
κ

(q − 1)

and, thus, q = aκ+ 1
ρκ+ 1.918

In addition, the consumption rate ρ can also be expressed as

ρ = a− ι̂

q
= a− Ψ(1/q)

q
,

915 Recall that
∫
I n̂

i
t di+

∫
J

ˆ̃nj
tdj = qtKt, i.e., the aggregate wealth in the economy is equal to the value of

the aggregate capital stock qtKt.
916 The idea behind this statement is as follows. Since, Φ′′ < 0 one knows that Φ′ is monotonically

decreasing. Since Ψ is the inverse function of Φ′, it is also monotonically decreasing. Therefore, the
left-hand side of (5.32) is monotonically increasing in qt, while the right-hand side is monotonically
decreasing in qt, thus, establishing a unique intersection point. A more rigorous argument is given in
Appendix C.3.

917 This is similar to the benchmark model, see Brunnermeier and Sannikov (2016, p. 1507).
918 See Brunnermeier and Sannikov (2016, p. 1507).



Chapter 5. Continuous-Time Macro-Financial Model 205

where the second equality uses (5.30). Inserting this into ϑ̂t, leads to

ϑ̂t = ρ+ Φ(Ψ(1/q)) − δ + σϕH,ε
t − rt

εH−1/2σ
.

The optimal fraction of wealth that expert i invests into capital is given by iv) of Propo-
sition 5.3.2 and does not depend on i in the equilibrium. Thus, it follows from (5.18)
that

qKt

Nt

= ϑ̂t

εH−1/2σ
, (5.33)

where Nt =
∫
J
nj

t dj denotes the aggregate wealth of experts.919 Then,

ηt := Nt

qKt

∈ [0, 1] (5.34)

denotes the wealth share of experts. Thus, ηt is a measure of the wealth distribution
within the economy. The higher ηt, the higher the wealth share of experts, and the lower
the wealth share of households.

By inserting the definition of ηt into (5.33), one obtains

1
ηt

= ϑ̂t

εH−1/2σ
= ρ+ Φ(Ψ(1/q)) − δ + σϕH,ε

t − rt

(εH−1/2σ)2 . (5.35)

Equation (5.35) finally determines the equilibrium risk-free rate

rt = ρ+ Φ(Ψ(1/q)) − δ + σϕH,ε
t − (σεH−1/2)2

ηt

. (5.36)

As in the original model, one can determine a law of motion of ηt given in the next lemma.

Lemma 5.3.4
The law of motion of η is given by

dηt

ηt

=
(

1 − ηt

ηt

)2

(εH−1/2σ)2 dt+ (1 − ηt)
ηt

εH−1/2σ dWt.

Proof
See Appendix C.2.4

919 See Brunnermeier and Sannikov (2016, p. 1504).



206 Chapter 5. Continuous-Time Macro-Financial Model

Equation (5.33) clarifies that ϑ̂t is positive if and only if ηt > 0. The corresponding equation
for an individual expert i ∈ I is (C.20) in Appendix C.2.2 or iv) of Proposition 5.3.2, i.e.,
an expert holds capital only if he expects a positive excess return over the risk-free rate. If
the risk of capital investments is not compensated with positive expected returns, experts
will not be incentivized to invest or hold capital. Interestingly, the market price of risk
tends to infinity as ηt → 0. This behavior seems degenerative, but it is rather founded
in the restrictive structure of the model. Since experts are imposed on holding the total
capital stock (they cannot sell capital to households), they must be convinced to hold
it by even higher risk premia. From an economic perspective, it seems, thus, reasonable
to assume that ηt > 1/C > 0 for a constant C in order to ensure that ϑ̂t < CεH−1/2σ.
Clearly, since ηt refers to expert’s wealth share, reasonable values of ηt would be smaller
than or equal to 1, implying that ϑ̂t ≥ σεH−1/2.

5.4 Results and Comparison with the Benchmark
Model

This section presents the results of introducing long memory shocks into the continuous-
time macro-financial model given in the previous section and highlights the differences to
the benchmark model. It turns out that different variables are affected in different ways by
long memory of experts’ capital dynamics and hence by long memory of the growth rates
of the economy’s output and the aggregate capital stock. Since the approach outlined
in the preceding sections generalizes the original model, the focus lies on the effects of
changes in the parameters H and ε. Recall that the original model corresponds to H = 1/2
independent of the value of ε. Values of H < 1/2 indicate negatively correlated shocks
with short memory, whereas values of H > 1/2 indicate positively correlated shocks with
long memory in the sense of Proposition 5.1.3.

Let the drift and the volatility of ηt be denoted by µH,ε
η ηt and σH,ε

η ηt, respectively.920

Regarding Lemma 5.3.4, it yields

dηt = µH,ε
η ηt dt+ σH,ε

η ηt dWt

= (1 − ηt)2

ηt

(εH−1/2σ)2 dt+ (1 − ηt)εH−1/2σ dWt. (5.37)

Note that ηt does not depend on the history of shocks, i.e., the experts’ wealth share is

920 This is in accordance with Brunnermeier and Sannikov (2016, Figure 2 on p. 1510).
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independent of the drift effect, expressed by the term ϕH,ε
t . This is because the net worth

Nt and the value of the capital stock qtKt depend in the same way on the drift effect.
Consequently, the drift effect cancels in ηt, which is simply the fraction of Nt and qtKt,
see (5.34).921 However, ηt depends on the correlation of shocks expressed by the volatility
effect εH−1/2. The interest rate depends on both the volatility and the drift effect.

Let ηBS and rBS be the processes of experts’ wealth share and the interest rate in the
model of Brunnermeier and Sannikov (2016), respectively. They are given by922

dηBS
t = (1 − ηBS

t )2

ηBS
t

σ2 dt+ (1 − ηBS
t )σ dWt (5.38)

and
rBS

t = ρ+ Φ(Ψ(1/q)) − δ − σ2

ηBS
t

. (5.39)

A direct comparison between (5.38) and (5.37) reveals how the correlations of shocks
impact the dynamics of experts’ wealth share. The dynamics of η and ηBS coincide for
H = 1/2 or ε = 1. In the case of H = 1/2, both models are identical. In the case of ε = 1,
the interest rate differs from the one in the original model since it depends on the drift
effect ϕH,ε (compare (5.36) with (5.39)).

To illustrate the results and to obtain good comparability, the same parameter values as in
the original model are chosen. The effect of a variation of H on the drift and the volatility
of η are presented in Figure 5.3 for a fixed value of ε = 10−3. The effects of a variation of
ε on η is shown in Figure 5.4.

From Figure 5.3, it can be seen that the positive correlation of shocks and long memory
(H > 1/2) implies a lower drift and a lower volatility of the wealth share of experts. This
observation appear plausible, since as aggregate shocks have long memory, shocks tend
to be followed by shocks of the same sign, implying that the behavior of the exogenous
process is to certain degree predictable. This predictability has a risk reducing effect
(volatility effect, see Section 5.2.1). As a consequence, the experts’ sector grows more
slowly, on average, than in the benchmark model.

The reverse is true in the case of H < 1/2. In this case, the volatility is higher than
in the original model, which reflects the negative correlations indicating less predicable
movements in the exogenous process. In this case, the drift is higher as well. So, on average,
921 Recall from (C.11) of Appendix C.1 that the drift of a quotient of two Itô processes depends on the

difference of the two corresponding drift processes.
922 See Brunnermeier and Sannikov (2016, Equations (9) and (11) on pp. 1508f.).
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a) Drift of η b) Volatility of η

Figure 5.3: Drift and volatility of η as functions of ηt for various values of H. The remaining parameters
in (5.37) are σ = 0.1 and ε = 10−3. The legend is the same in both panels.

the experts’ sector grows faster if the shocks to the economy are negatively correlated
than if the shocks are positively correlated.

From Panels a) and b) of Figure 5.4, it can be seen that in the case of H < 1/2, an
increase in ε leads to a decline in both the drift and the volatility of η. The reverse is true
for H > 1/2 as can be seen from Panels c) and d) of Figure 5.4, i.e., an increase in ε also
rises the drift and the volatility of η if H > 1/2. Although the choice of the parameter
ε seems to be arbitrary, recall from Section 5.1 that the process ZH,ε was motivated by
an approximation argument, i.e., ZH,ε converges to a type II fBm as ε → 0. From this
perspective, “small” values of ε seem preferable.

As in the original model, the experts’ sector tends to overwhelm the households’ sector
since the drift rate is positive for all values of ηt, see (5.37), Figure 5.3 and Figure 5.4.923

Brunnermeier and Sannikov (2016) argue that this is because experts have an advantage
over households because they can hold capital, which allows them to earn risk premia.924

In addition, it follows from Lemma 5.3.4 that if the experts’ wealth share reaches 1, it
remains at this level.925 Hence, the state ηt = 1 may be regarded as a steady state value
of η.

To illustrate the convergence to the steady state of η = 1, Figure 5.5 shows six sample
paths of η plotted over time.926

923 See Brunnermeier and Sannikov (2016, pp. 1509f.).
924 See Brunnermeier and Sannikov (2016, p. 1510).
925 Note that dηt ≡ 0 for η ≡ 1.
926 It is assumed that time is measured in years and that there is one Brownian shock each day, i.e.,

dt = 1/360. Doing so is in line with Di Tella (2017, p. 2079) with the difference that the Brownian
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a) Drift of η with H = 0.25 b) Volatility of η with H = 0.25

c) Drift of η with H = 0.75 d) Volatility of η with H = 0.75

Figure 5.4: Drift and volatility of η as functions of ηt for various values of ε. The remaining parameters
in (5.37) are σ = 0.1 and H = 0.75 in Panels a) and b) and H = 0.25 in Panels c) and d). The legend is

the same in all panels.
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As one would expect from Figure 5.3, all paths of η show a growing tendency due to the
overall positive drift. From Panel a) of Figure 5.3, one can see that with H < 1/2, the
specific path reaches the steady state more quickly than if H > 1/2. This mirrors the
situation of Figure 5.3, where small values of H are associated with a large positive drift.
By comparing Panels a) and b) of Figure 5.5, one can see that higher values of ε speed
up the convergence to the steady state if H > 1/2 and slows down the convergence if
H < 1/2, whereas the path of η is unaffected by changes of ε in the case of H = 1/2.

a) ε = 10−3 b) ε = 10−1

Figure 5.5: Sample paths of η for various values of H and ε. The paths of η are plotted over one hundred
years, assuming that there is one daily shock, i.e., dt = 1/360. The remaining parameters are σ = 0.1,
initial value η0 = 0.5 and ε = 10−3 in Panel a) and ε = 10−1 in Panel b). In order to highlight the effects
of parameter variation and, therefore, to exclude random effects, all six paths are generated by the same

Brownian shock.

Regarding η, i.e., the wealth distribution of this model economy, one can see that long
memory in the growth rates of output does not change the model outcomes qualitatively
compared to the benchmark model with uncorrelated growth rates. In both cases, the
steady state of η is equal to 1. However, in the case of positively correlated shocks, the
tendency to the steady state is slowed down, i.e., the time needed for the experts to
overwhelm the economy is increased.927

The reason for a more slowly growing experts’ sector in the presence of long memory is that
long memory appears to be risk-reducing. This property follows immediately from (5.10),
where one can see that aggregate risk (σεH−1/2) is smaller than in the Benchmark model
(σ). Furthermore, if ε → 0, i.e., the closer the process ZH,ε is a type II fBm, aggregate

shocks dWt are drawn from a centered normal distribution with variance dt instead of a binomial
distribution.

927 This can also be seen in Panel a) of Figure 5.6 (below) that plots the average of 105 paths of η over
time. There, it can be seen clearly that η grows much slower on average if H > 1/2.
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risk vanishes and, according to (5.37), experts’ wealth share would remain constant.

Such behavior is obtained in various continuous-time model contexts involving long memory
shocks stemming from fractional Brownian motion or related processes. For example,
Dung (2013) considers a Black-Scholes market in which the stock price evolves like (5.9).
In his fractional Black-Scholes model, he derives the pricing formula for a European call
option. He shows that it corresponds to the original formula when the volatility σ is
replaced with σεH−1/2.928 The same result was derived by Cheridito (2001), who uses a
mixed process of a Brownian motion and a fractional Brownian motion in his Black-Scholes
model.929 To be more precise, he uses the process σ(BH

t + εWt) as noise in his model,
where BH

t is a type I fractional Brownian motion and Wt is an ordinary Brownian motion
independent of BH

t . Like the process ZH,ε, Cheridito’s process is closer to a fractional
Brownian motion the closer ε is to zero.930 A reason for this risk-reducing behavior may be
that through the correlations of the shocks, the evolution of the capital stock (or the stock
price in the mentioned Black-Scholes model) becomes predictable to a certain degree.931

By exploiting this predictability, experts face smaller risks from holding the capital stock,
thereby reducing the risk premia they can earn from their capital holdings.932

By rearranging (5.35), one obtains

(
εH−1/2σ

)2

ηt

= ρ+ Φ(Ψ(1/q)) − δ + σϕH,ε
t − rt. (5.40)

The right-hand side of (5.40) is the excess return of capital over the risk-free rate, which
is, for each value of η, smaller than in the benchmark model if there is long memory in
the growth rates of the output. Consequently, the rewards from holding capital decrease
in the presence of long memory, and experts’ wealth share η tends to 1 much slower than
in the benchmark model.

One might expect that the price of capital depresses when its excess return goes down.
However, in this simple model, where experts hold the complete capital stock, capital is
not traded; thus, the price of capital remains constant. Therefore, the risk-free rate has to
rise to generate a decreasing excess return on capital.

928 See Dung (2013, Theorem 4.1 on pp. 343f.).
929 See Cheridito (2001, p. 933).
930 See Cheridito (2001, p. 933) for more details.
931 See Rostek and Schöbel (2013, p. 30).
932 See Rostek and Schöbel (2013, p. 31).
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In the benchmark model where H = 1/2, (5.40) becomes

σ2

ηBS
t

= ρ+ Φ(Ψ(1/q)) − δ − rBS
t . (5.41)

Thus, as in the long memory model, a reduced excess return can only be achieved by
increasing the interest rate, since the price of capital and thus the optimal re-investment
rate and the return on capital are constant.

With H 6= 1/2, the drift of capital depends directly on t and on the shocks up to time t
through ϕH,ε

t . That is, the value of the risk-free rate depends on the concrete realization
of the stochastic shocks. So, for example, assume that a sequence of positive shocks hit
the economy. These shocks induce a rising wealth share of experts ηt. An increase in ηt,
in turn, has an increasing effect on the interest rate rt as can be seen from (5.36). At the
same time, the positive shocks accumulate in ϕH,ε and raise the drift and the return of
capital that, in turn, affects the interest rate positively. Overall, there has to be a decline
in the excess return since η increases through the series of positive shocks.

Given the sequence of positive shocks, one might expect the risk-free rate to be higher
than in the benchmark model to compensate for the increasing return on capital caused
by an increase in ϕH,ε. However, the concrete value of the risk-free rate depends on the
concrete realization of the shocks, i.e., even if two different shock realizations would lead to
the same value of ηt, the corresponding value of the risk-free rate may be different because
the history of shocks accumulates differently in ϕH,ε. Thus, in contrast to the benchmark
model, an increasing risk-free rate cannot be deduced from an increasing η.

Since EϕH,ε
t = 0, one obtains from (5.36) that the expected value of rt is given by933

Ert = ρ+ Φ(Ψ(1/q)) − δ − (σεH−1/2)2 E (1/ηt) . (5.42)

From Panel a) of Figure 5.5, one would expect that in the presence of long memory, η is
smaller on average than in the benchmark model. On the one hand, one would expect
the term E (1/ηt) in (5.42) to be higher in the long memory model. However, due to
σεH−1/2 < σ in the case of H > 1/2, η only slightly affects the expected interest rate
in (5.42). That is, the smaller multiplier σεH−1/2 tends to increase the interest rate in
(5.42).934 In addition, for the same reason, one would expect the interest rate to be less

933 Note that EϕH,ε
t = 0 from the properties of the Itô integral. A similar argument is used for EZH,ε

t = 0
in Appendix C.2.5.

934 More precisely, given the parameters of Figure 5.6, the term σεH−1/2 is approximately equal to
3 × 10−4, and thus rather small.
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volatile on average in the long memory model since the expected value of rt is less affected
by variations in η.

Figure 5.6 shows the results of a Monte Carlo simulation illustrating that the interest
rate increasing effect of the lower multiplier outweighs the interest rate reducing effect of
an overall lower value of ηt. Panel a) of Figure 5.6 shows an approximation of Eηt as a
function of time. As one would expect from the single realization of Panel a) of Figure 5.5
and the overall depressed drift shown in Panel a) of Figure 5.3, η reaches its steady state
value more slowly in the presence of long memory. Furthermore, the reduced variability of
the risk-free rate rt can be seen clearly in Panel b) of Figure 5.6, which shows that the
volatility effect σεH−1/2 eliminates almost all of the variation in the expected interest rate
caused by η.

a) Approximation of Eηt b) Approximation of Ert

Figure 5.6: Average of ηt and rt as function of t. In order to approximate E1/ηt, the average of 105

simulations of (5.37) over 1000 years was taken. Then, by averaging over the 1/η and plugging it into
(5.42), one obtains an approximation of Ert. Some outlier realizations for which η became negative (36 in
the case of H = 0.5 and 3 in the case of H = 0.75) were dropped from the averaging. The initial value
η0 = 0.5 is identical for all realizations and ε = 10−3. The remaining parameters are σ = 0.1, ρ = 0.05,
Φ(ι) = log(κι+ 1)/κ with κ = 10. For the optimal re-investment rate yields ι = Ψ(1/q) = 0.04, since
q = (aκ+ 1)/(ρκ+ 1) with productivity parameter a = 0.11. Note the different scaling of the vertical axis.

The differences between the benchmark model and the model entailing long memory in
the growth rates of output may further be seen in the special case of ε = 1.935 In this case,
the evolution of η and ηBS coincide, and the excess return from holding capital in both
models is the same for each value of η.936 Equating (5.40) with (5.41) yields

rt = rBS
t + σϕH,ε

t or Ert = ErBS
t , (5.43)

935 Recall that this case is far from choosing small values of ε in order to view ZH,ε as an approximation
of a type II fBm.

936 This follows from (5.35), which states that ϑ̂t = σ/ηt in both models.
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i.e., the risk-free interest rate of the model with long memory fluctuates around that of
the benchmark model while maintaining the mean value. Equation (5.43) underlines that,
even in the case of identical wealth distribution, the interest rates between the two models
can be different. Ultimately, these differences are caused by the different evolution of
aggregate capital stocks in the two models.

The differences in the evolution of the aggregate capital stock are not present in the
evolution of the wealth distribution but affect the evolution of the interest rate as it
depends closely on the return on capital. At the end of this section, the evolution of the
aggregate capital stock is considered in more detail. As will turn out, introducing long
memory into the growth rates of the capital stock leads, on average, to a more rapidly
accumulating capital stock. Moreover, it follows from Lemma 5.2.1 that the aggregate
capital stock in the equilibrium evolves according to

Kt = K0 exp
((

Φ (Ψ(1/q)) − δ − (εH−1/2σ)2

2

)
t+ σZH,ε

t

)
. (5.44)

The following lemma derives the expected value of the aggregate capital stock.

Lemma 5.4.1
Let the aggregate capital stock be given by (5.44), where K0 is its given and positive initial
value, then

EKt = K0 exp
((

Φ (Ψ(1/q)) − δ − (εH−1/2σ)2

2

)
t+ σ2

4H
(
(t+ ε)2H − ε2H

))
(5.45)

Proof
See Appendix C.2.5

With H = 1/2, (5.45) reduces to EKBS
t = KBS

0 exp ((Φ (Ψ(1/q)) − δ) t), i.e., the capital
stocks’ expected value grows at rate (Φ (Ψ(1/q)) − δ) which is the net investment rate
minus the depreciation rate. In the case of long memory (H > 1/2), the capital stock
grows faster on average, implying that the total wealth in the economy qKt also grows
faster on average.

Furthermore, in the case of H < 1/2, the asymptotic properties of (5.45) as t → ∞ are
determined by the term

Φ (Ψ(1/q)) − δ − (εH−1/2σ)2

2 . (5.46)

That is, with H < 1/2, the expected value of the capital stock will grow as long as (5.46)
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is positive. On the other hand, EKt → 0 as t → ∞ if (5.46) is negative.

One can argue that shocks can erode the capital stock and output and, thus, create
(temporarily) a decreasing total wealth in the economy. However, the evolution of capital
and production should, from an economic perspective, not be constructed as having a
decreasing tendency on average. Therefore, by imposing a non-negative condition on
(5.46), one obtains

H ≥
log

(
σ−1

√
2 (Φ (Ψ(1/q)) − δ)

)
log(ε) + 1

2 . (5.47)

Given the parameter values of Figure 5.5, (5.47) implies that H ≥ 0.36 in the case of
ε = 10−3 and H ≥ 0.09 in the case of ε = 10−1, i.e., condition (5.47) is not satisfied in
Panel a) of Figure 5.5 for the case of H = 0.25.

In the case of H < 1/2, the excess return on capital would be higher for each value of
η as can be seen from (5.40), and, as Panel a) of Figure 5.5 suggests, the wealth share
of η reaches its steady state value very quickly. However, since (5.47) is not satisfied in
this case, one arrives at a somewhat counter-intuitive situation: On the one hand, experts
receive high risk premia for their capital holdings, thereby capturing the whole economy
quickly, but on the other hand, the capital stock tends to erode over time. At the end of
this process, one has a situation where experts own everything, but everything is equal
to nothing since, on average, the capital stock and the economy’s total wealth erode
completely. Figure 5.7 illustrates this result. The expected values of the corresponding
capital stocks given the same parameters as in Panel a) of Figure 5.5 are plotted over time.
It can be seen that the capital stock grows faster on average in the case of long memory
(H > 1/2) and erodes completely if H = 0.25 and ε = 10−3 not satisfying (5.47).

The faster increase of the capital stock in the case of long memory is indeed substantial.
From Figure 5.7, it can be seen that after fifty years, the final value of the capital stock
with H = 0.75 is nearly three times higher than the corresponding value with H = 1/2.

Additionally, by letting ε → 0, (5.47) implies that H ≥ 1/2. That is, with H < 1/2,
the capital stock decreases on average the closer the process ZH,ε is to a type II fBm.
This relationship does not only hold in the context of this model but also, e.g., in
a fractional Black-Scholes model, where the stock price dynamics are described by a
stochastic differential equation similar to (5.9).937 This raises concerns about whether

937 Dung (2013, Theorem 4.1 on pp. 343f.) considers a Black-Scholes market in which the stock evolves
like (5.9). Additionally, he derives the pricing formula for a European call option in his fractional
Black-Scholes model. He shows that it corresponds to the original formula when the volatility σ is
replaced with σεH−1/2. This appears plausible as the original pricing formula does not depend on
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Figure 5.7: Expected value of the aggregate capital stock as a function of t for various values of H. The
figure plots (5.45) as a function of time over 50 years for various values of H. The initial value K0 is set

to 100, the remaining parameters are as in Figure 5.6.

the process ZH,ε with H < 1/2 leads to meaningful results when used to model noise in
economic variables that are typically assumed to grow on average. However, the parameter
range of H > 1/2 appears to be more relevant than H < 1/2. In this case, the expected
capital stock grows over time.

In summary, it was shown that long memory in the growth rates of output affects the
variables in the model economy differently. Long memory affects the return on capital
via the term ϕH,ε

t (drift effect). In addition, long memory reduces the aggregate risk in
the economy since for small values of ε and H > 1/2, σεH−1/2 < σ (volatility effect).
The wealth distribution in the economy depends only on the latter. Consequently, the
benchmark model with volatility σ̃ = σεH−1/2 leads to the same wealth dynamics as
in the model with H 6= 1/2, but, the evolution of the economy’s total wealth may
differ substantially. In the extreme case with H < 1/2 not satisfying (5.47) mentioned
above, total wealth is expected to erode ultimately. In contrast, the expected value of the
economy’s total wealth does not depend on σ in the benchmark model, i.e., simply replacing
σ with σεH−1/2 leaves, on average, the evolution of the capital stock unchanged.938 In
the model with long memory (H > 1/2), the aggregate risk is reduced, but, at the same
time, the economy’s total wealth grows faster on average than in the benchmark model.
Interestingly, this faster growing capital stock does not affect the wealth distribution.
Instead, a different risk-free rate reflects the differing returns on capital. The reason for
this may be found in the simple structure of the model. Since households cannot hold

the stock’s drift. Nevertheless, if a corresponding condition such as (5.47) is not satisfied in such a
setting, the stock’s expected value is assumed to decrease over time.

938 Recall that EKBS
t = KBS

0 exp ((Φ (Ψ(1/q)) − δ) t).
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capital, they must finance the expert’s capital holdings by lending them at the risk-free
rate. Therefore, the price of capital remains constant. In a more general setting, where
capital trading between households and experts is permitted, the price of capital might
also depend on ϕH,ε

t .939

As a result, the long memory model allows the evolution of aggregate wealth in the
economy to be decoupled from the distribution of wealth. From an empirical point of
view, this seems to be an interesting feature, since it is likely that inequality can be of
the same (or similar) magnitude in both developing and developed countries. However,
such a decoupling seems to contradict the structure of macro-financial models, as they
typically focus on so-called Markov equilibria, where all model variables can be expressed
as functions of a state variable (η).940 These functional relationships are not preserved
even in the rather simple model considered in this chapter. This can be seen, for example,
by comparing the interest rates given in (5.39) and (5.36). In the former, the interest rate
is a deterministic function of η, while in the latter it is not, since the drift effect ϕH,ε

t

prevents such a relationship.

Consequently, it seems questionable whether a Markov equilibrium in which all variables
are functions of the state variable η can be established in a more general setting. Instead,
the property of long memory seems to contradict Markov models.941 Since the literature on
continuous-time macro-financial models is overwhelmingly focused on Markov equilibria,
further generalizations seem difficult and need to be brought out in future research. The
following conclusive chapter elaborates on these arguments in a little more detail and
suggests some possible avenues for future research.

939 Such a model is considered for example in Brunnermeier and Sannikov (2016, Section 3.2 on pp.
1515ff.).

940 See, e.g., Brunnermeier and Sannikov (2016, pp. 1519ff.).
941 This is noted by Bollerslev et al. (2012, Footnote 19 on p. 47).
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Conclusion

Die Wege zur Erkenntnis sind interessanter als die Erkenntnis selbst.
(Gottfried Wilhelm Leibniz)

This study was motivated by the following observation. On the one hand, there is empirical
evidence of long memory in many economic time series. On the other hand, modern
economic research builds strongly on stochastic models that involve, to a large extent,
exogenous short memory stochastic processes to cover the uncertainty in the model. So
this thesis aimed to integrate these two observations by allowing for long memory in the
exogenous stochastic dynamics of the model. This was carried out in two representative
models. The first model treated in Chapter 4 is a discrete-time real business cycle (RBC)
dynamic stochastic general equilibrium (DSGE) model, and the second model, treated
in Chapter 5, is a continuous-time macro-financial model. In the former, long memory
was introduced by replacing the commonly used AR(1) shock to total factor productivity
(TFP) with an ARFIMA(1, d, 0) process. In the context of the continuous-time model, the
exogenous driving process was assumed to be an approximation of Mandelbrot’s fractional
Brownian motion (fBm) in order to keep the model structure comparable to the benchmark
model and to ensure the applicability of the Itô calculus. Following the solution of both
models, the implications of long memory on the model outcomes were discussed and
compared with the outcomes of the respective benchmark models.

Since both models, the discrete-time and the continuous-time model, have different
implications and offer different paths for future research, this conclusion discusses the
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discrete-time and continuous-time framework separately, beginning with the discrete-time
DSGE model.

The findings of Chapter 4 may be summarized as follows. Since autoregressive fractionally
integrated moving average (ARFIMA) processes are not only long memory processes but
also strongly persistent, they show an infinite cumulative impulse response (CIR), i.e., the
cumulative impact of a shock is infinitely large. From a first point of view, one would have
expected that the decisions of an infinitely-lived representative agent, who incorporates
the underlying stochastic framework in his decision process by building his expectations
rationally, are mostly affected by the presence of long memory. This reasoning is, in
general, not valid. By considering a pure long memory ARFIMA(0, d, 0) TFP shock, it
turned out that the shapes of the model’s impulse-response functions (IRFs) are quite
similar to those of an AR(1) process with a small autoregressive parameter which is
reasoned in the exponentially discounting behavior of the household. Since most of the
IRF’s “mass” is allocated at far distant periods, a substantial part of the cumulative effect
is “discounted away” by the household before it emerges fully. This observation is in line
with the permanent income hypothesis. It was shown that the response of the permanent
income is much smaller in the presence of pure long memory than in the presence of short
memory.

ARFIMA processes are characterized by a slowly decaying autocorrelation function (ACF),
and the long memory parameter d controls the hyperbolic decay of both the ACF and
IRF. A second critical remark was given in Lemma 2.4.3, illustrating that a long memory
process might also have important short-term implications. More precisely, it was shown
that the IRF of an ARFIMA(1, d, 0) with parameters % and d is equal to %+ d in the first
period after the shock. Therefore, the long memory parameter affects the model’s response
in the periods immediately after the shock in the same way as the short memory parameter
%. Consequently, when % + d > 1, the TFP’s IRF shows a hump shape, representing a
technology shock with increasing impact in the periods following the shock.

As the household in the model expects this increasing shock impact, it adjusts its con-
sumption and labor supply decisions accordingly. The model shows similar responses in
the periods immediately after the shock, regardless of considering a TFP shock having a
high % and d or a permanent shock that pushes the economy on a new balanced growth
path. As a consequence, it is less important for the household’s initial response to know
whether its income reaches a new long run equilibrium growth path or decays back to
its old steady state value. In order to ensure a similar initial response, the income must
increase at least for some periods.
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Overall these considerations indicate that the asymptotic properties of long memory play
a minor role in determining the model outcomes. Nevertheless, these results show that it
is crucial to account for long memory as interesting short-term dynamics also result from
long memory effects. From this perspective, it seems reasonable to put more effort into
specifying the short-run dynamics, i.e., to consider higher-order autoregressive moving
average (ARMA) specifications for rebuilding short-run dynamics adequately. However, as
pointed out by Schorfheide (2011), including higher-order ARMA lags may increase the
model fit, but this is somewhat arbitrary and raises questions regarding identification and
interpretation.942 From this perspective, fractionally integrated AR(1) processes offer the
advantage of having only one additional parameter d to estimate, which further controls
the long term dynamics of the process.

It may be owed to the simple model structure and the exogenous character of the long
memory process that deeper insights into the functioning of the economy or policy
implications cannot be drawn from the results derived in this thesis. Thus, this thesis has
to be regarded as the first step to involve long memory dynamics in the context of stochastic
economic models revealing various paths for future research. Two major directions that
need further attention are estimation and generalization. This thesis aimed to show
that one can solve a linearized DSGE model with an exogenous long memory process.
Consequently, the thesis focused on how such a model can be solved. Whether such a model
could be estimated was of secondary concern. Now, it is evident that the price for solving
the long memory model is high. More specifically, the state space representation that is
typically the starting point for estimating DSGE models no longer exists when the model
is solved using the method described in Appendix B.5.943 Consequently, the standard
procedure for estimating DSGE models seems not directly applicable. Additionally, the
state space representation allows for calculating the model-implied theoretical ACF of each
model variable and the model variables’ covariances.944 Both the estimation of the model
and the calculation of theoretical moments appear to be challenging in the presence of long
memory. A possible path for accessing the moments implied by the long memory DSGE
model is to run a Monte Carlo simulation of the model, i.e., one has to generate various
trajectories of the model, then compute the moments of interest and average over the
number of simulated trajectories. However, such a Monte Carlo analysis would introduce
a kind of simulation bias.945

942 See Schorfheide (2011, p. 22).
943 See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 633).
944 See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 635).
945 See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, pp. 642f.).
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The estimation of a long memory DSGE model is of major empirical interest and can
be motivated by the considerations made by Moretti and Nicoletti (2010). As outlined
in Section 4.3, they show that long memory in the data-generating process can bias the
estimates of a DSGE model’s deep parameters.946 Therefore, incorporating long memory
into a DSGE model is likely to reduce this estimation bias. The pre-filtering of the data
proposed by Moretti and Nicoletti (2010) implies that the agents in the model do not take
into account the shock persistence that is removed by the filter. This is in contrast to
the approach taken in this thesis. By incorporating long memory directly into the model
structure, the household was able to account for the different types of persistence leading
in some cases to different model responses.

A promising approach to estimating long memory, which might also be applicable in the
context of a long memory DSGE model as the one discussed in Chapter 4, is due to Chan
and Palma (1998). Chan and Palma (1998) show that an ARFIMA process with d 6= 0 has
no finite-dimensional state space representation.947 However, they show that given a finite
sample of an ARFIMA(p, d, q) process, the corresponding likelihood function depends
only on the first n entries of the state vector, where n refers to the sample size.948 Since
this may be computationally costly, they alternatively propose truncating the infinite
moving average representation of an ARFIMA process. The resulting truncated process
then has a finite-dimensional state space representation to which a maximum-likelihood
estimator can be applied.949 Grassi and Santucci de Magistris (2014) found, by carrying
out a Monte Carlo analysis, an overall good performance of this estimation technique.950

Andersson and Li (2020) extend the results of Chan and Palma (1998) and Grassi and
Santucci de Magistris (2014) in order to allow the parameter d also spanning into the
non-stationary region d > 1/2 and, additionally, they combine the state space estimator
with a Bayesian approach.951 However, all these approaches refer to the estimation of a
univariate ARFIMA(p, d, q) model. To the best of the author’s knowledge, whether and
how these approaches can be generalized to a multivariate case such as the long memory
DSGE model of Chapter 4 is an open question.

Another possible path for estimating a long memory DSGE model may be given by
estimation techniques developed for vector-valued ARFIMA processes (so-called VARFIMA

946 See Moretti and Nicoletti (2010, p. 22). Recall that Moretti and Nicoletti (2010) was already discussed
in Section 4.3.

947 See Chan and Palma (1998, Corollary 2.1. on p. 722).
948 See Chan and Palma (1998, p. 725).
949 See Chan and Palma (1998, p. 726).
950 See Grassi and Santucci de Magistris (2014, p. 307).
951 See Andersson and Li (2020, p. 539).
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processes) as the one considered, e.g., by Abbritti et al. (2016, Section 2.2 and 3 on pp.
339ff.). Also, the approach proposed by Meyer-Gohde and Neuhoff (2015) seems promising.
They solve a DSGE model given a general exogenous vector autoregressive moving average
(VARMA) process without inflating the state space representation.952 By considering the
model in the frequency domain, they are able to calculate the model-implied correlation
functions. Future research may generalize this approach to include exogenous ARFIMA or
VARFIMA processes with long memory dynamics.

Additionally, this thesis paved the way for various generalizations. A first, rather technical
question to be addressed in future research is the generalization to ARFIMA(1, d, 0)
processes with d > 1/2 and the incorporation of additional short memory components. In
the following, some preliminary ideas and challenges appearing for d > 1/2 are outlined.
Let X = (Xt)t∈Z be an ARFIMA(p, d, q) process with 1/2 < d < 1, then,

Xt =
t∑

k=1
Yk, (6.1)

where Y = (Yt)t∈Z is an ARFIMA(p, d− 1, q) process.953 If the corresponding ARMA(p, q)
process is stationary, so is Y ; consequently, X is difference-stationary. The process X
itself is no longer stationary and has infinite variance, but it can be shown that their
corresponding IRF still converges to zero.954 However, the solution method of Klein (2000)
only requires the stability, not stationarity, of the exogenous process, i.e., the unconditional
mean of the exogenous process has to be uniformly bounded.955 That is, non-stationarity
does not appear to be a problem at first glance. From (6.1), one would expect, though,
that the unconditional mean of X is growing linearly over time, thereby violating Klein’s
stability condition.956

Nevertheless, by deriving the model’s solution, the necessary condition to establish a
unique solution was that the bubble solution vanishes, i.e., that (B.30) (restated in the
following for convenience) holds957

lim
k→∞

(
T−1

22 S22
)k

Etut+k = 0. (B.30)

952 See Meyer-Gohde and Neuhoff (2015, p. 91).
953 See Hassler (2019, p. 115).
954 See P. C. B. Phillips and Xiao (1998, p. 450).
955 See (B.21) in Appendix B.5.
956 An intuition for this may be seen from E|Xt| ≤

∑t
k=1 E|Yk| = tE|Y1|, where the latter equality follows

from the stationarity of Y .
957 Recall that the vector ut contains the auxiliary variables associated with the unstable subsystem. See

Appendix B.5 for more details.
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Clearly, Klein’s stability condition appears to be a sufficient condition to ensure (B.30),
but it doesn’t appear to be necessary. More precisely, given that the eigenvalues of T−1

22 S22

are smaller than one in modulus, the conditional expectations Etut+k could grow at a
polynomial rate in order to ensure (B.30) to hold. A hint that Klein’s stability condition
is too strong may also be deduced from the growth condition of Blanchard and Kahn
(1980) given in (4.24). This condition allows the conditional expectations to grow at
a polynomial rate which might be satisfied for ARFIMA processes with d > 1/2. In
summary, to generalize the solution method proposed in this thesis to the non-stationary
parameter range of d > 1/2, one has to check whether such an ARFIMA process satisfies
Klein’s stability condition. If Klein’s stability condition holds for these processes, one shall
be able to use the formulas derived in this thesis directly. If this condition is not satisfied,
one may check if the weaker growth restriction (4.24) of Blanchard and Kahn (1980) is
satisfied. If so, one has to check whether Klein’s solution method leads to a well-defined
solution given this weaker condition.

Obviously, to gain further economic insights, one has to consider a richer DSGE model
involving more structure such as market imperfections and institutions such as a central
bank controlling the nominal interest rate, etc. Such models involve various stochastic
shocks, so extending the approach proposed in this thesis to models involving various long
memory shocks with different long memory parameters would be interesting. Additionally, a
New Keynesian setup would also allow for investigating more elaborate economic questions.
For example, Andersson and Li (2020) propose the long memory parameter of the inflation
rate as a measure of the flexibility of a central bank’s inflation target (see Section 3.2.2.2).
In a theoretical New Keynesian long memory DSGE model, one would, for example, be
able to investigate the costs of disinflation in the presence of a more flexible inflation
target.

Turning to the continuous-time model of Chapter 5, the implications are mixed. In order
to preserve the applicability of the Itô calculus, fBm could not be used directly as the
driving exogenous stochastic process in the model. Instead, an approximation of fBm was
used. It turned out that the benchmark model could be solved accordingly, given the more
general shock process. The reason for this was found in the structure of the exogenous
shock that could be split into a drift effect and a volatility effect such that the evolution
of the capital stock became

dKt

Kt

=
(
Φ(Ψ(1/q)) − δ + σϕH,ε

t

)
dt+ σεH−1/2 dWt.
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Compared to the benchmark model, the drift effect is the additional term σϕH,ε
t and

the volatility effect is the multiplier εH−1/2 of σ. It may not appear surprising that all
model variables independent of the capital stock’s drift in the benchmark model were
also independent of the drift effect induced by the long memory exogenous shock process.
Exemplarily this can be seen, for example, in the law of motion of the state variable
η that depends only on the volatility effect. In contrast, the equilibrium interest rate
also depends on the drift effect. The reduced aggregate risk (σ reduces to σεH−1/2 in
the presence of long memory) arises as autocorrelations make the evolution of the risky
capital more predictable and reduce thereby the risk premium experts can earn from their
capital holdings. Consequently, it was shown that long memory in the growth rates of the
capital stock and output induces η to reach its steady state value more slowly compared
to the benchmark model. However, long memory does not change the model outcomes
qualitatively, i.e., the steady state remains unchanged, and the fact that the experts’ sector
overwhelms the economy also remains true.

In addition, it was shown that the presence of long memory in the growth rates of the
capital stock induces an, on average, faster growing total wealth in the economy than in
the benchmark model. This is an interesting result as it allows to some extent, to decouple
the evolution of an economy’s total wealth from the wealth distribution. More precisely,
both the benchmark model and the model with long memory can have the same dynamics
of the wealth distribution. However, the corresponding macroeconomic evolution in terms
of the evolution of the economy’s total wealth may differ substantially. Such a feature
may be interesting from an empirical point of view as large inequality may arise in both
developing and industrial countries. This feature appears, however, to be a double-edged
sword as it seems to be the core of more general models to express all variables in terms
of certain state variables.958 That is, macro-financial models focus on so-called Markov
equilibria.959 By expressing all variables as functions of a single state, the stochastic
shocks are mapped into the evolution of the state variable, and then subsequently into the
other variables through the posited functional relationship between the variable and the
state variable.960 Consequently, the remaining model variables depend on the exogenous
stochastic shocks only through the state variable.

Even in the simple model considered in Chapter 5, such a structure cannot be obtained as
the interest rate rt depends on the additional drift component ϕH,ε

t =
∫ t

0(H − 1/2)(t− u+
ε)H−3/2 dWu and not solely on η as in the benchmark model. This simple model turned out

958 See Brunnermeier and Sannikov (2016, p. 1519) or Brunnermeier and Sannikov (2014, p. 394).
959 See Brunnermeier and Sannikov (2014, p. 394).
960 See Brunnermeier and Sannikov (2014, p. 394).
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to be solvable because the price of capital remained constant. In a more general setting,
when for example, households are also allowed to hold capital, the price of the capital
would not be constant any longer, and the drift of the assumed price process is likely to
depend also on ϕH,ε

t .961 Consequently, ηt is no longer the single channel through which the
exogenous shocks can affect the model variables. At first glance, such a second channel
does not seem problematic, since one could simply treat ϕH,ε

t as a second state variable.
Models with two state variables are not uncommon in the literature; see, e.g., Di Tella
(2017). However, both state variables of Di Tella (2017) are described by Itô diffusions.962

More specifically, recall from Appendix C.1 that an Itô process can be described by the
following stochastic differential equation

dXt = µX
t dt+ σX

t dWt,

where µX
t and σX

t are stochastic processes. Then, X is called Itô diffusion if µX
t and σX

t

are functions of Xt, i.e., µX
t = µX(Xt) and σX

t = σX(Xt). Additionally, both functions
depend on time only through Xt.963 This reflects the Markov structure of such models
again. If one assumes instead that ϕH,ε

t is a second state variable, it is not described as an
Itô diffusion but rather as a time-weighted average of past Brownian shocks. Consequently,
the applicability of this thesis’s approach in more general models appears to be difficult as
the Markov structure is not preserved given the more general shock process used in this
thesis. In fact, this Markov structure seems to contradict the existence of long memory.964

However, an interesting part for future research may provide the aggregation results of
Granger (1980) (and others) discussed in Section 3.3.1. More sophisticated continuous-time
macro-financial models assume an infinite number of agents, each facing idiosyncratic
risks and shocks.965 However, when it comes to aggregation, these idiosyncratic risks are
assumed to cancel out in the aggregate.966 Given the results of Granger (1980), one would
expect that aggregating over many micro units will affect the aggregate dynamics. So it
may be reasonable to generate long memory endogenously in such a model by introducing
a certain aggregation mechanism. At first glance, however, this seems to be at odds with

961 A hint for this can be found in Brunnermeier and Sannikov (2014, p. 395), where the drift µq
t of the

capital’s price qt is derived in a richer model. Since µq
t depends in this setting on the drift of the

capital stock, likely, it will also depend on ϕH,ε
t if one would have introduced long memory in the

same way as carried out in Chapter 5.
962 See Di Tella (2017, pp. 2044 and 2051) for the specification of the laws of motion of his state variables.
963 See Øksendal (2013, Definition 7.1.1 on p. 116).
964 Such reasoning was drawn by Bollerslev et al. (2012, p. 47) in the context of a stochastic volatility

model.
965 See, e.g., Brunnermeier and Sannikov (2014, p. 409) or Di Tella (2017, p. 2051).
966 See, e.g., Brunnermeier and Sannikov (2016, p. 1534) or Di Tella (2017, p. 2045).
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the often assumed elimination of idiosyncratic risk.

The approach followed by the author also reveals some drawbacks of using the shock-
generating process ZH,ε. For example, apparently, the parameter ε that measures how
closely the shock-generating process is to a type II fBm is missing an economic interpretation.
In order to mimic an fBm, small values of ε should be chosen. However, the effect of a
variation in ε seems not negligible. An alternative specification may be the continuous-time
processes proposed by Comte and Renault (1996), although these processes can preserve
the Markov structure neither.

As this dissertation comes to an end, one has to say that the considered classes of well-
established economic models seem not very receptive to stochastic long memory dynamics.
The assumption of short memory processes in the DSGE literature and the assumption
of independent-increment processes or Markov structures in the continuous-time macro-
financial literature appears to be strong and restrictive.
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Appendix to Chapter 2

A.1 Proofs

A.1.1 Proof of Lemma 2.3.2

Let Xt =
∞∑

k=0
ψkεt−k.

Part i): As
n∑

k=0
ψk tends to infinity as n → ∞, it follows from (2.26) that

n∑
k=0

γX(k) also
tends to infinity as n → ∞. Since

n∑
k=0

|γX(k)| ≥
n∑

k=0
γX(k) → ∞, as n → ∞,

X is a long memory process.

Part ii): This is the contraposition of i). It can be deduced directly from

∞∑
k=0

γX(k) ≤
∞∑

k=0
|γX(k)| < ∞.

Since ∑∞
k=0 γX(k) ≥ 0 (see Footnote 86) and σ > 0, it follows from (2.26) that X is either

anti-persistent or moderately persistent.

Part iii): Without loss of generality, assume (2.28) to hold. Then, it follows again from
(2.26) that

n∑
k=0

ψk tends to infinity as n → ∞.
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Part iv): Consider the moving average coefficients ψk = 1/(1 + k). Then, it can be shown
that

n∑
k=0

ψk tends to infinity as n → ∞. At the same time, the autocovariances are not
summable and decay asymptotically with γX(k) ∼ log(k)/k as k → ∞.967 Hence, X is
strongly persistent and by i) a long memory process. Assume that there exist a constant
C > 0 and 0 < d < 1/2 such that γX(k) ∼ Ck2d−1 as k → ∞. Then, Ck2d−1/(log(k)/k)
has to tend to 1 as k → ∞. However, by the rule of l’Hospital, it yields

lim
k→∞

Ck2d−1

log(k)/k = lim
k→∞

Ck2d

log(k) = lim
k→∞

2Cdk2d = ∞.

Thus, (2.27) cannot hold. The autocovariances finally decay faster than Ck2d−1 but slow
enough to meet the long memory condition.

Part v): See Hassler (2019, Example 3.3, Example 3.4, Example 3.5 on pp. 41ff.)

A.1.2 Proof of Lemma 2.4.2

In order to calculate the impulse-response function (IRF) of Y , one has to derive its infinite
moving average representation, i.e., one has to find a series (ψn)n∈N0 such that

Xt =
∞∑

n=0
ψnεt−n.

Out of (2.34), one can rewrite

Xt = 1
(1 − %B)(1 −B)−dεt.

Regarding the autoregressive part, the time series expansion is given by

f(x) = 1
1 − %x

=
∞∑

k=0
%kxk,

if |x| < 1. Using the binomial series leads to the time series expansion968

g(x) = (1 − x)−d =
∞∑

k=0

(
k + d− 1

k

)
xk =

∞∑
k=0

Γ(k + d)
Γ(k + 1)Γ(d)x

k,

967 See Hassler (2019, Example 3.5 on pp. 43ff.).
968 See, e.g., Granger and Joyeux (1980/2001, p. 324).
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if |x| < 1. Calculating the Cauchy-product of f and g leads to

f(x)g(x) = 1
1 − %x

(1 − x)−d =
∞∑

n=0

(
n∑

i=0
%i Γ(n− i+ d)

Γ(n− i+ 1)Γ(d)

)
xn. (A.1)

This implies,

Xt = 1
1 − %B

(1 −B)−dεt =
∞∑

n=0

(
n∑

i=0
%i Γ(n− i+ d)

Γ(n− i+ 1)Γ(d)

)
Bnεt

=
∞∑

n=0

(
n∑

i=0
%i Γ(n− i+ d)

Γ(n− i+ 1)Γ(d)

)
εt−n

=
∞∑

n=0
ψnεt−n.

The second identity stated in the lemma follows directly by repeating the steps for g(x)f(x)
in (A.1) onward.

A.1.3 Proof of Lemma 2.4.3

Part i): By Lemma 2.4.2, one knows that ψ0 = 1 and

ψk =
k∑

i=0
αi%

k−i = αk +
k−1∑
i=0

αi%
k−i = αk + %

k−1∑
i=0

αi%
k−1−i = αk + %ψk−1

Part ii): It follows directly from part i) that

ψ1 = %ψ0 + α1 = %+ Γ(1 + d)
Γ(2)Γ(d) = %+ d,

where the second equality uses ψ0 = 1 and the third equality uses Γ(1 + d) = dΓ(d) and
Γ(2) = 1.

Part iii): This follows from Hassler and Kokoszka (2010, Proposition 2.1 on p. 1857), since
%nn1−d → 0, as n → ∞.

Part iv): From Hassler and Kokoszka (2010, Equation (1.1) on p. 1856), it yields

αk = k − 1 + d

k
αk−1 for k ≥ 1 and α0 = 1. (A.2)

Thus, α1 = d > 0. By (A.2), it follows αk > 0 for all k ≥ 0. The same holds true for ψk as,
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according to Lemma 2.4.2, it is the sum of non-negative numbers (recall that 0 < % < 1
by assumption). This proves the IRF to be positive.

If %+ d > 1, it follows from part i) and ii) that ψ1 > ψ0, i.e., the IRF is initially increasing.
Further, from part iii), it is evident that lim

k→∞
ψk = 0. This ensures that the IRF falls below

its initial value in the long run. In order to establish the hump shape of the IRF, possibly
prevailing up and downswings have to be ruled out. Thus, it remains to show that the
IRF decreases monotonically once the decline has set in. This is shown subsequently.

From lim
k→∞

ψk = 0 follows that there has to be an integer N such that ψN ≥ ψN+1.969 It
remains to show that ψk ≥ ψk+1 for all k ≥ N . This is done inductively. By definition
of N , it yields ψN ≥ ψN+1. Assume that ψk−1 ≥ ψk holds true for an arbitrary value of
k > N . It remains to show that ψk ≥ ψk+1.

Part i) implies
ψk+1 = %ψk + αk.

Subtracting ψk from both sides and applying part i) again leads to

ψk+1 − ψk = % (ψk − ψk−1) + αk − αk−1.

By (A.2), one has
ψk+1 − ψk = % (ψk − ψk−1) + d− 1

k
αk−1

The right-hand side of the latter equation is non-positive, i.e., it implies ψk+1 ≤ ψk. This
is true since % > 0, d− 1 < 0 by assumption, ψk − ψk−1 ≤ 0 by induction hypothesis and
αk−1 > 0.

Altogether, if %+ d > 1, the IRF increases at the beginning and decreases monotonically
to zero after at least one period, implying a hump shape.

A.1.4 Proof of Lemma 2.5.3

Part i): It is enough to show that (2.35) is equal to min{s, t} for H = 1/2 due to the
equivalent characterization of the Brownian motion mentioned after Definition 2.5.1. With
H = 1/2, (2.35) becomes

γB1/2(s, t) = 1
2 (s+ t− |s− t|) . (A.3)

969 The value N is the period when the decline of the IRF sets in. Such a value exists as otherwise, it
yields ψk+1 > ψk for all k ∈ N and thus ψk > ψ0 = 1. Obviously, this is a contradiction to ψk → 0,
k → ∞.
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Let t ≤ s, then γB1/2(s, t) = 1/2(s + t − s + t) = t. For t ≥ s, it yields γB1/2(s, t) =
1/2(s+ t− t+ s) = s. Consequently, (A.3) becomes

γB1/2(s, t) =

t if t ≤ s

s if t ≥ s
= min{s, t}.

Part ii): Recall the definition of γXH

γXH (k) = cov
(
XH

n , X
H
n+k

)
= E

(
XH

n X
H
n+k

)
− E

(
XH

n

)
E
(
XH

n+k

)
(A.4)

Plugging the definition of XH
n into (A.4) and using E

(
XH

n

)
= 0, leads to

γXH (k) = E
[(
BH

n −BH
n−1

) (
BH

n+k −BH
n+k−1

)]
= E

(
BH

n B
H
n+k

)
− E

(
BH

n B
H
n+k−1

)
− E

(
BH

n−1B
H
n+k

)
+ E

(
BH

n−1B
H
n+k−1

)
Applying (2.35) implies

γXH (k) = 1
2
(
n2H + (k + n)2H − k2H

)
− 1

2
(
n2H + (k + n− 1)2H − |k − 1|2H

)
− 1

2
(
|n− 1|2H + (n+ k)2H − (k + 1)2H

)
+ 1

2
(
|n− 1|2H + (k + n− 1)2H − k2H

)
.

After reshuffling, one finally arrives at

γXH (k) = 1
2
(
|k − 1|2H + (k + 1)2H − 2k2H

)
(A.5)

Since γXH (k) in (A.5) depends only on k but not on n, it is further emphasized that the
increment process XH is stationary according to Definition 2.1.2.

For k > 1 one can rewrite (A.5) and obtains970

γXH (k) = 1
2k

2H

((
1 − 1

k

)2H

+
(

1 + 1
k

)2H

− 2
)
.

Consider now the function g(x) = (1 − x)2H + (1 + x)2H − 2. Obviously, g(1/k) =
2k−2HγXH (k). Therefore, the limiting behavior of 2k−2HγXH (k) as k → ∞ is similar to
the limiting behavior of g(x) as x → 0. By carrying out a second-order Taylor expansion

970 The following part of the proof is partly inspired by Beran (1994, p. 52).
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of g(·) at the origin, one obtains

g(x) ∼ 2H(2H − 1)x2, as x → 0.

Thus, it yields
2k−2HγXH (k) ∼ 2H(2H − 1)k−2, as k → ∞. (A.6)

The first part of the statement follows immediately from (A.6), i.e., as k → ∞, it yields

γXH (k) ∼ H(2H − 1)k2H−2.

Since the series
∞∑

k=1
k2H−2 converges if and only if 2 − 2H > 1 or H < 1/2, the increment

process XH is a short memory process if H < 1/2 and a long memory process if H > 1/2.971

With H = 1/2, the process is a short memory process as well. This follows from Part i)
and Definition 2.5.1, since B1/2 is a Brownian motion whose increments are stochastically
independent. Consequently, γX1/2(k) = 0 for all k > 1 and, thus,

∞∑
k=0

|γX1/2(k)| < ∞.

A.2 On the Gamma and Gaussian Hypergeometric
Function

This section briefly reviews the definitions of the gamma function and the Gaussian hyper-
geometric function. Both functions are needed, e.g., for the definition of the autoregressive
fractionally integrated moving average (ARFIMA) processes in (2.29) or for expressing the
key moments of an ARFIMA(1, d, 0) process in Appendix A.3. Additionally, the Gaussian
hypergeometric function is used for the derivation of the long memory dynamic stochastic
general equilibrium (DSGE) model’s solution in Appendix B.5.4.

A.2.1 The Gamma Function

The gamma function extends the well-known factorial n! of a natural number n to general
complex numbers. Let z be a complex number with z 6= 0,−1,−2, . . ., then the gamma
function Γ(·) can be defined by972

Γ(z) = lim
k→∞

k!kz−1

z(z + 1) · · · (z + k − 1) .

971 Hassler (2016, pp. 119f.) proves the convergence properties of
∑∞

k=1 k
−p.

972 See G. E. Andrews et al. (1999, Definition 1.1.1 on p. 3).
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This rather abstract formulation can be accessed better by considering the essential
properties of the gamma function. The generalization of the factorial follows from the
identity973

Γ(z + 1) = zΓ(z) (A.7)
Γ(0) = 1.

For z = n ∈ N it follows from an iterative application of (A.7), that Γ(n + 1) = n!974

This generalization of the factorial is used in (2.30) to define the binomial coefficient for
non-integer values.

A.2.2 The Gaussian Hypergeometric Function

Let a, b, c, z ∈ C with |z| < 1. The Gaussian hypergeometric function 2F1(a, b; c; z) is
defined by975

2F1(a, b; c; z) =
∞∑

k=0

a(a+ 1) · · · (a+ n− 1)b(b+ 1) · · · (b+ n− 1)
c(c+ 1) · · · (c+ n− 1)n! zn

= 1 + ab

c
z + a(a+ 1)b(b+ 1)

c(c+ 1)2! z2 + a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)
c(c+ 1)(c+ 2)3! z3 + · · · .

(A.8)

Due to a(a+ 1) · · · (a+ n− 1) = Γ(a+ n)/Γ(a), the Gaussian hypergeometric function
can alternatively be expressed in terms of the gamma function, i.e.,976

2F1(a, b; c; z) =
∞∑

k=0

Γ(a+ k)Γ(b+ k)Γ(c)
Γ(a)Γ(b)Γ(c+ k)

zk

Γ(k + 1) .

As will turn out in the derivation of the IRFs of the long memory DSGE model, the
following identity is useful to simplify some expressions.977 Let λ ∈ R with |λ| < 1 and
αk = Γ(k + d)/(Γ(k + 1)Γ(d)). Then,

∞∑
k=0

λkαt+k−1 =
∞∑

k=0
λk Γ(t+ k − 1 + d)

Γ(t+ k)Γ(d)

973 See G. E. Andrews et al. (1999, p. 3).
974 See G. E. Andrews et al. (1999, p. 3).
975 See G. E. Andrews et al. (1999, Definition 2.1.5 on p. 64).
976 This follows from G. E. Andrews et al. (1999, p. 2) together with (A.7).
977 See the derivation of (B.48) in Appendix B.
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= Γ(t− 1 + d)
Γ(t)Γ(d)

∞∑
k=0

Γ(k + 1)Γ(t+ k − 1 + d)Γ(t)
Γ(1)Γ(t− 1 + d)Γ(t+ k)

λk

Γ(k + 1)

= αt−1 2F1(1, t− 1 + d; t;λ), (A.9)

where the second line uses Γ(1) = 1.

For the calculations made in this thesis, the Gaussian hypergeometric function is computed
numerically by using the series expansion (A.8) instead of using the inbuilt Matlab function
hypergeom. The Matlab function appeared to be unstable and slow for large values of t
in (A.9).978 Therefore, Pearson et al. (2017) investigate various methods to calculate the
Gaussian hypergeometric function and found an overall good performance of the series
approximation (A.8).979,980

For the purposes of this thesis, the series approximation of (A.8) mentioned in Pearson et al.
(2017) seems satisfactory. In order to give an example, a value like 2F1(1, d+n; 1 +n; 0.93)
has to be calculated for n = 1, 2, . . . , 140 in order to derive the IRF of the long memory
DSGE model over 140 periods.981 The inbuilt Matlab function computes these values in
2.715 seconds and the code used by the author needs just 0.0134 seconds. Furthermore,
the maximum absolute deviation between both methods is of size 3.6 × 10−14 that appears
to be sufficiently small. Additionally, the more periods are simulated, the more striking
the computational advantages of the procedure followed by the author compared to the
inbuilt Matlab function.

978 That the inbuilt Matlab function may not be reliable for all parameter values is also stated in Pearson
et al. (2017, p. 824).

979 See Pearson et al. (2017, pp. 841ff.).
980 The code used for the calculation of the Gaussian hypergeometric function in this thesis is inspired

by the one of Garcia (2023), URL in list of references. The code of Garcia (2023), URL in list of
references, was rewritten and augmented by an additional stopping criterion proposed by Pearson
et al. (2017, p. 841) that breaks the approximation if the absolute value of the next summand in
(A.8) divided by the already calculated sum is smaller than 10−16. Moreover, as in the original code,
the user can specify a total number of summands to which the approximation should be made. For all
calculations within this thesis, the maximal number of summands was chosen to be 10.000. However,
this boundary was never reached for the parameter values considered in this thesis as the additionally
implemented stopping criterion was binding.

981 See (B.48).
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A.3 Some Moments of the ARFIMA(1,d,0) Process

This section provides the closed-form expressions of an ARFIMA(1, d, 0) process’s second-
order moments considered in Section 2.4.2. Let X = (Xt)t∈Z be an ARFIMA(1, d, 0)
process as in Section 2.4.2. Then, the autocovariance function is given by982

γX(k) = σ2
ε

(−1)kΓ(1 − 2d)
Γ(k − d+ 1)Γ(1 − k − d)

× 2F1(1, d+ k; 1 − d+ k; %) + 2F1(1, d− k; 1 − d− k; %) − 1
1 − %2 . (A.10)

The corresponding autocorrelation function (ACF) is given by983

ρX(k) = Γ(1 − d)Γ(k + d)
Γ(d)Γ(k + 1 − d)

2F1(1, d+ k; 1 − d+ k; %) + 2F1(1, d− k; 1 − d− k; %) − 1
(1 − %) 2F1(1, 1 + d; 1 − d; %) .

(A.11)

From these two equations, the variance of X and the first order autocorrelation of X is
found to be984,985

γX(0) = σ2
εΓ(1 − 2d)
Γ(1 − d)2

2F1(1, 1 + d; 1 − d; %)
(1 + %) (A.12)

and

ρX(1) = (1 + %2) 2F1(1, d; 1 − d; %) − 1
%(2 2F1(1, d; 1 − d; %) − 1) . (A.13)

982 See Hosking (1981, Lemma 1 on p. 172).
983 See Hosking (1981, Lemma 1 on p. 172).
984 See Hosking (1981, Lemma 1 on p. 172).
985 Note that these equations can be proven to be equivalent to the ones given in Palma (2007, p. 47)

if % = 0. These are just different representations induced by the properties of the gamma function.
Note that these equations are equivalent to (A.10) and (A.11) for k = 0. The different forms are
induced by the properties of the Gaussian hypergeometric function and the gamma function.
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B.1 Derivation of the Model’s Equilibrium

Equations (4.10) to (4.13) are derived from the household’s and firm’s maximization
problem (4.3) and (4.2), respectively. The Lagrangian of the household’s maximization
problem is given by

L = Et

∞∑
s=t

βs−t {U (Cs, Hs) − λs [Cs +Ks+1 − (1 − δ)Ks −WsHs −RsKs]} ,

where λt is the Lagrange multiplier. Then, the first-order conditions are

∂L
∂Ct

= UC,t − λt ≡ 0 (B.1)

∂L
∂Ht

= UH,t + λtWt ≡ 0 (B.2)

∂L
∂Kt+1

= −λt + βEt [λt+1 (1 − δ +Rt+1)] ≡ 0. (B.3)

Now, (4.10) follows directly from (B.1) and (B.2). The Euler equation (4.11) follows
directly from (B.1) and (B.3).

By maximizing the firm’s objective function Πt = PtYt −WtHt −RtKt with respect to Kt

239



240 Appendix B. Appendix to Chapter 4

and Ht, the first order conditions are given by

∂Πt

∂Ht

= Pt
∂Yt

∂Ht

−Wt ≡ 0 (B.4)

∂Πt

∂Kt

= Pt
∂Yt

∂Kt

−Rt ≡ 0. (B.5)

By the production function (4.1), the marginal products of labor and capital are given by

∂Yt

∂Ht

= (1 − α) Yt

Ht

,
∂Yt

∂Kt

= α
Yt

Kt

,

respectively. Equation (4.12) and (4.13) follow directly from (B.4), (B.5) and (4.8).

B.2 Frisch Elasticity of the Additive Separable Utility
Function

Here, it is derived that the Frisch elasticity of the utility function specified in (4.18) is
given by 1/ϕ. Recall the definition of the Frisch elasticity mentioned below of (4.18). The
Frisch elasticity given the level ŪC of the marginal utility of consumption is given by986

∂Ht

∂Wt

Wt

Ht

∣∣∣
UC,t=ŪC

. (B.6)

From (4.10), one can derive labor supply in the equilibrium, i.e.,

C−ς
t Wt = κHϕ

t or Ht =
(
C−ς

t Wt

κ

)1/ϕ

. (B.7)

It follows directly from (B.7) that

∂Ht

∂Wt

∣∣∣
UC,t=ŪC

= ŪC

κϕ

(
ŪCWt

κ

)−1+1/ϕ

= 1
ϕ

Ht

Wt

. (B.8)

Inserting (B.8) into (B.6) illustrates that the Frisch elasticity is given by 1/ϕ.

986 This is adapted from Furlanetto and Seneca (2014, p. 115).
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B.3 Summary of the Model with Additive Utility
Function

B.3.1 The Nonlinear Model Equations

The model with additive separable utility function specified in (4.18) is summarized in
Table B.1. As the utility function is incompatible with a balanced growth path, it is
abstracted from labor augmenting technical progress, i.e., Āt ≡ 1. The exogenous process
(εA

t )t∈Z is a zero mean independent and identically distributed (i.i.d.) sequence.

Model equation equation

κCς
tH

ϕ
t = Wt labor supply (4.10)

1 = βEt

[(
Ct+1

Ct

)−ς

((1 − δ) +Rt+1)
]

Euler equation (4.11)

Kt+1 = (1 − δ)Kt + It capital accumulation (4.5)

Lt = 1 −Ht leisure choice (4.6)

Yt = AtK
α
t H

1−α
t production function (4.1)

Kt = α
Yt

Rt

capital demand (4.13)

Ht = (1 − α) Yt

Wt

labor demand (4.12)

Yt = Ct + It goods market clearing (4.7)

(1 − %AB) (log(At) − log(Ass)) = (1 −B)−dεA
t transitory TFP (4.14)

Table B.1: Model equations of the nonlinear model with additive utility function. The right column shows
the related equation in the text from which the model equations are derived. Some model equations
are the same as their corresponding equation in the text; they are restated here to provide a complete

overview of the model.

B.3.2 The Model’s Steady State

Due to the simple model structure, closed-form expressions can be derived for the variables’
steady state values. For the model summarized in Table B.1, they are given recursively in
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Table B.2.

variable steady state variable steady state

Ass = exogenous parameter Iss = δKss

Rss = 1
β

− (1 − δ) Hss = (1 − α) Yss

Wss

Wss = A1/(1−α)
ss

(
α

Rss

)α/(1−α)
(1 − α) Lss = 1 −Hss

Yss =
[

1
κ

(
Rss

Rss − δα

)ς

(1 − α)−ϕWϕ+1
ss

]1/(ϕ+ς)

Css = Yss − Iss

Kss = α
Yss

Rss

Table B.2: Steady state of the nonlinear model with additive utility function. The values are sorted
recursively from top to bottom, starting from the left column.

Note that the steady state value of At is not determined by (4.14) and has to be set
exogenously. To be more precise, (4.14) specifies how the deviation of the logarithm of At

from its steady state value evolves over time without determining the steady state value
itself. It is often implicitly assumed that Ass = 1 in the literature. For example, Aguiar
and Gopinath (2007) specify the transitory component of total factor productivity (TFP)
according to987

At = exp(zt), zt = %zt−1 + εA
t . (B.9)

Equation (B.9) implies
log(At) = zt = %zt−1 + εA

t . (B.10)

In contrast to (4.14), (B.10), however, pins down the steady state value of log(Ass) = 0 or
Ass = 1.

B.3.3 The Linearized Model Equations

Table B.3 shows the linearized model equations. The linearization was taken around the
steady state values of the model given in Table B.2.

987 See, e.g., Aguiar and Gopinath (2007, Equations (1) and (2) on p. 78).
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linearized Model equation equation

ςC̃t + ϕH̃t = W̃t labor supply (4.10)

ς

β

(
EtC̃t+1 − C̃t

)
= RssEtR̃t+1 Euler equation (4.11)

K̃t+1 = (1 − δ)K̃t + δĨt capital accumulation (4.5)

LssL̃t = −HssH̃t leisure choice (4.6)

Ỹt = Ãt + αK̃t + (1 − α)H̃t production function (4.1)

K̃t = Ỹt − R̃t capital demand (4.13)

H̃t = Ỹt − W̃t labor demand (4.12)

YssỸt = CssC̃t + IssĨt goods market clearing (4.7)

(1 − %AB)Ãt = (1 −B)−dεA
t transitory TFP (4.14)

Table B.3: Linearized model equations of the model with additive utility function. The right column gives
the corresponding equation in the text. The order of the equations is the same as in Table B.1. The

involved steady state values are given in Table B.2.

B.3.4 Matrices of the Model’s Canonical Form

Before the canonical form of the model can be given, the predetermined (or backward-
looking) and non-predetermined (forward-looking) variables have to be specified. Out
of Table B.3, there are two predetermined variables, namely the capital stock and the
transitory TFP process, and two forward-looking variables, namely consumption and the
real rental rate on capital. The other five variables are so-called static variables, which are
linear combinations of predetermined and forward-looking variables. The static variables
can be seen from Table B.3 as these variables occur only with time index t but without
any lead or lag.988

Therefore, the first step is to eliminate them from the system, leaving only the prede-
termined and forward-looking variables. Then the model can be cast into the canonical
988 See, for example, Adjemian et al. (2022, p. 72). Some models may also contain mixed variables that

appear in the model equations at time t, t+ 1 and t− 1. There are no such variables in the models
considered in this thesis.
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form needed for the solution method of Klein (2000), and the model can be solved. After-
ward, the static variables are recovered from the formerly found model’s solution and the
postulated linear relationship between static and non-static variables.

To proceed as described, the model stated in Table B.3 can be written in the following
matrix equation:



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 ς/β −Rss 0 0 0 0 0

−1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



Et



Ãt

K̃t+1

C̃t+1

R̃t+1

H̃t+1

L̃t+1

W̃t+1

Ĩt+1

Ỹt+1



=



%A 0 0 0 0 0 0 0 0
0 1 − δ 0 0 0 0 0 δ 0
0 0 ς/β 0 0 0 0 0 0
0 α 0 0 1 − α 0 0 0 −1
0 0 ς 0 ϕ 0 −1 0 0
0 0 0 0 Hss Lss 0 0 0
0 1 0 1 0 0 0 0 −1
0 0 0 0 1 0 1 0 −1
0 0 −Css 0 0 0 0 −Iss Yss





Ãt−1

K̃t

C̃t

R̃t

H̃t

L̃t

W̃t

Ĩt

Ỹt



+



1
0
0
0
0
0
0
0
0



νA
t (B.11)

This system can be partitioned according to the number of non-static (i.e., predetermined
and forward-looking) and static variables. Let the non-static variables be collected in the
vector xt+1 =

(
Ãt, K̃t+1, C̃t+1, R̃t+1

)T
∈ R4×1 and the remaining static variables in the

vector yt+1 ∈ R5×1. Then (B.11) can be written as
 A 04×5

05×4 05×5

Et

xt+1

yt+1

 =
D11 D12

D21 D22

xt

yt

+
 G

05×1

 νA
t , (B.12)

where A,D11 ∈ R4×4,D12 ∈ R4×5,D21 ∈ R5×4,D22 ∈ R5×5 and G ∈ R4×1. Considering
the last five rows of the system (B.12), one obtains

D21xt + D22yt = 05×1. (B.13)
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If D22 is invertible, (B.13) can be solved for yt, i.e.,989

yt = −D−1
22 D21xt. (B.14)

Equation (B.14) states that the static variables stored in the vector yt depend linearly on
the predetermined and non-predetermined variables stored in the vector xt.

What remains to do is to solve the first four rows of the system (B.12) in order to find an
appropriate solution for the non-static variables. Plugging (B.14) back in (B.13) leads to

AEtxt+1 =
(
D11 − D12D−1

22 D21
)
xt + GνA

t . (B.15)

Equation (B.15) defines a system with predetermined and non-predetermined variables
stored in the vector xt. Further, this system can now be solved with the method of Klein
(2000) as it fits the required canonical form stated in (B.20) with B =

(
D11 − D12D−1

22 D21
)

and zt = νA
t .990

After the solution to (B.15) has been found, the solution to the whole system (B.11) is
then found by solving for the static variables with (B.14).

B.3.5 On the Permanent Income

By linearizing (4.36), one obtains

Y p
ssỸ

p
t = YssỸt + (1 − δ)KssK̃t

+WssHssEt

∞∑
j=1

(Rss + (1 − δ))−j

Ỹt+j − Rss

Rss + (1 − δ)

j∑
i=1

(R̃t+i + (1 − δ))


= YssỸt + (1 − δ)KssK̃t +WssHssEt

∞∑
j=1

βj

Ỹt+j − βRss

j∑
i=1

(R̃t+i + (1 − δ))
 ,
(B.16)

where Y P
ss = Yss + (1 − δ)Kss +WssHss

∞∑
j=1

βj = Yss + (1 − δ)Kss +WssHssβ/(1 − β) refers
to the steady state value of the permanent income around which the linearization was
taken. Note that Rss + (1 − δ) = β−1 by the steady state relationships mentioned in
989 As can be seen easily from (B.11), one has that det (D22) = IssLss(1 + ϕ). Since the inverse of the

Frisch elasticity ϕ is assumed to be positive, D22 is invertible as long as the steady state investments
and the steady state time devoted to leisure are different from zero. From an economic point of view,
these requirements seem not demanding.

990 Since the first and the last row of A are linearly dependent (see (B.11)), A is not invertible and thus
the method of Blanchard and Kahn (1980) is indeed not applicable to the system (B.15).
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Table B.2. Further, dividing (B.16) by Y p
ss results in

Ỹ p
t = Yss

Y p
ss
Ỹt + (1 − δ)Kss

Y p
ss

K̃t + WssHss

Y p
ss

Et

∞∑
j=1

βj

Ỹt+j − βRss

j∑
i=1

R̃t+i

 . (B.17)

From (B.17), the three contributions to the percentage deviation of the permanent income
depicted in Figure 4.5 become evident. The contribution of current income is given by
YssỸt/Y

p
ss, the contribution of the current capital stock is given by (1 − δ)KssK̃t/Y

p
ss and

the remaining term in (B.17) is the contribution of the discounted future labor income.

The IRF of Ỹ p
t is then calculated by replacing Ỹt, K̃t, R̃t by their corresponding IRFs.

Furthermore, the expectation operator in (B.17) can be dropped along the IRF, as all
future shocks are equal to zero, see (B.51) below. The calculation of the discounted labor
income for Figure 4.5 is more demanding as for each instant of time t = 1, . . . , 140 (the
time range of Figure 4.5) the limit of a series has to be determined.991 As the whole
model and thus the IRFs of the other variables are solved numerically and not analytically,
the series in (B.17) has to be approximated numerically as well. In order to do so, the
IRFs of the whole model are calculated for 10.000 + 140 periods. Then at each instant
of time t = 1, . . . , 140, the discounted future labor income is calculated along (B.17) by
incorporating the periods t+ 1, t+ 2, . . . , t+ 10.000.992

B.4 Summary of the Model with Cobb-Douglas Util-
ity

B.4.1 The Stationarized (Nonlinear) Model Equations

A summary of the model with growth and Cobb-Douglas preferences can be found in
Table B.4. Note that the model is expressed in the stationarized variables given in (4.20).
Since the growing variables were divided by Āt, Āt canceled out from the model equations.
The remaining model is driven by the two exogenous processes specifying the transitory
TFP component At and the growth rate of the labor augmenting technological progress gt.
991 Note that the limit of the series is well-defined due to the boundedness of the IRFs of Ỹt and R̃t and

0 < β < 1.
992 To cut off the series after 10.000 periods seems arbitrary. From the permanent income hypothesis,

however, it follows that consumption is a fixed fraction of permanent income if the intertemporal
elasticity of substitution is equal to one, i.e., it yields Ỹ p

t ≡ C̃t if ς = 1, see Wen (2001, Equation (5)
on p. 1226). Given the 1% transitory technology shock and using ς = 1 instead of ς = 2, Figure 4.5
results in an absolute deviation between Ỹ p

t and C̃t of order 10−15, which seems acceptable from a
numerical point of view. Note that the conclusions drawn from Figure 4.5 are essentially the same for
ς = 1 as for ς = 2.
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B.4.2 The Model’s Steady State

As in the case of the model with additive utility function, closed-form expressions can be
derived for the variables’ steady state values. For the model summarized in Table B.4,
they are given recursively in Table B.5. The composite parameter γ̄ = (1 − γ)(1 − τ) − 1
is as in Appendix B.4.1.

variable steady state variable steady state

Ass = exogenous parameter iss =
(

1 − 1 − δ

bss

)
kss

bss = (1 + gss) = exogenous parameter Hss = (1 − α) yss

wss

Rss = 1
β
b−γ̄

ss − (1 − δ) Lss = 1 −Hss

wss = A1/(1−α)
ss

(
α

Rss

)α/(1−α)
(1 − α) css = yss − iss

yss = 1 − γ

γ
wss

[
1 + (1 − γ)(1 − α)

γ
− (gss + δ) α

Rss

]−1

kss = αbss
yss

Rss

Table B.5: Steady state of the stationarized nonlinear model with Cobb-Douglas utility function. The values
are sorted recursively from top to bottom, starting from the left column. Note that γ̄ = (1 − γ)(1 − τ) − 1.
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B.4.3 The Linearized Model Equations

Table B.6 shows the linearized model equations. The linearization was taken around the
steady state values of the model given in Table B.5.

linearized Model equation equation

w̃t = c̃t − L̃t labor supply (4.10)

γ(1 − τ)L̃t + γ̄c̃t = βbγ̄
ssRssEtR̃t+1

+γ(1 − τ)EtL̃t+1 + γ̄Etc̃t+1 + γ̄Etb̃t+1

Euler equation (4.11)

k̃t+1 = (1 − δ)
bss

(
k̃t − b̃t

)
+
(

1 − 1 − δ

bss

)
ĩt capital accumulation (4.5)

LssL̃t = −HssH̃t leisure choice (4.6)

ỹt = Ãt + αk̃t + (1 − α)H̃t − αb̃t production function (4.1)

k̃t = ỹt − R̃t + b̃t capital demand (4.13)

H̃t = ỹt − w̃t labor demand (4.12)

yssỹt = cssc̃t + issĩt goods market clearing (4.7)

(1 − %AB)Ãt = (1 −B)−dεA
t transitory TFP (4.14)

b̃t = %g b̃t−1 + εg
t growth factor (4.16)

Table B.6: Linearized model equations of the model with Cobb-Douglas utility function. The right column
gives the corresponding equation in the text. The order of the equations is the same as in Table B.1. The

involved steady state values are given in Table B.5.

B.4.4 Matrices of the Model’s Canonical Form

There are three predetermined (the capital stock, transitory TFP process, and the growth
factor) and three forward-looking variables (consumption, the rental rate on capital and
leisure) in the model given in Table B.6. The other variables are static again. The
procedure is similar to the one considered in Appendix B.3.4. The model can be written
in the following matrix equation
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

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 (1 − δ)/bss 1 0 0 0 0 0 0 0
0 γ̄%g 0 γ(1 − τ) γ̄ βbγ̄

ssRss 0 0 0 0
−1 α 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



Et



Ãt

b̃t

k̃t+1

L̃t+1

c̃t+1

R̃t+1

H̃t+1

w̃t+1

ĩt+1

ỹt+1



=



%A 0 0 0 0 0 0 0 0 0
0 %g 0 0 0 0 0 0 0 0
0 0 (1 − δ)/bss 0 0 0 0 0 1 − (1 − δ)/bss 0
0 0 0 γ(1 − τ) γ̄ 0 0 0 0 0
0 0 α 0 0 0 1 − α 0 0 −1
0 0 1 0 0 1 0 0 0 −1
0 0 0 −1 1 0 0 −1 0 0
0 0 0 Lss 0 0 Hss 0 0 0
0 0 0 0 0 0 −1 −1 0 1
0 0 0 0 css 0 0 0 iss −yss





Ãt−1

b̃t−1

k̃t

L̃t

c̃t

R̃t

H̃t

w̃t

ĩt

ỹt



+



1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0



νA
t

εg
t

 (B.18)

Similar to Appendix B.3.4, this system can be partitioned according to the number of
non-static (i.e., predetermined and forward-looking) and static variables. The non-static
(i.e., the predetermined and non-predetermined) variables are collected in the vector
xt+1 =

(
Ãt, b̃t, k̃t+1, L̃t+1, c̃t+1, R̃t+1

)T
∈ R6×1 and the remaining static variables in the
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vector yt+1 ∈ R4×1. Then (B.18) can be written as
 A 06×4

04×6 04×4

Et

xt+1

yt+1

 =
D11 D12

D21 D22

xt

yt

+
 G

04×2

 νA
t , (B.19)

where A,D11 ∈ R6×6,D12 ∈ R6×4,D21 ∈ R4×6,D22 ∈ R4×4 and G ∈ R6×2.

The steps to solve the model are essentially the same as those described after (B.13). The
difference is that the matrices A and B of the model’s canonical form are now of size
6 × 6 instead of 4 × 4 due to more predetermined and forward-looking variables in the
model with Cobb-Douglas preferences. Furthermore, the exogenous stochastic process
zt =

(
νA

t , ε
g
t

)T
turns out to be two-dimensional, in contrast to the model with additive

preferences, which includes only the transitory shock component. Thus, the corresponding
matrix G has to be of size 6 × 2 instead of 4 × 1.

Again, if D22 is invertible, (B.13) can be solved, and the static variables yt are determined
by an analogous equation to (B.14).993,994

The matrices of the DSGE model’s canonical form (See (B.20) below) are then again given
by (B.15) with the matrices A,D11,D22,D21 and G as in (B.19).

B.5 The Method of Klein

In this thesis, the solution method proposed by Klein (2000) is generalized and applied
to a model with long memory. Here, the solution procedure and how it is applied
in the two models presented in Chapter 4 are described. Before the details on the
solution methodology are outlined, some introducing remarks and relations to the solution
methodology of Blanchard and Kahn (1980) treated in Section 4.2.1 are stated in the next
section.

993 As can be seen easily from (B.18), one has that det (D22) = −Hssiss. Thus, D22 is invertible as long
as the steady state investments and the steady state time devoted to work differ from zero. These
conditions are quite similar to the one in the model with additive separable utility function, see
Footnote 989.

994 Since, e.g., the last two columns of A are linearly dependent (see (B.18)), A is indeed not invertible
and thus the method of Blanchard and Kahn (1980) is again not applicable here, see Footnote 990.
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B.5.1 Introducing Remarks and Relations to Blanchard and
Kahn

Klein’s method requires the canonical form of the linearized DSGE model to be995

AEtxt+1 = Bxt + Gzt, (B.20)

where the vector xt is of size n× 1 and n corresponds to the number of variables in the
model. The matrices A and B are of size n× n and the matrix G is of size n× nz, where
nz is the number of exogenous stochastic shocks specified in the nz × 1 vector zt. The
elements of these matrices are functions of the model parameters and variables’ steady
state values.996

It can be seen easily that (B.20) can be transformed into the form required for Blanchard
and Kahn’s solution method only if the matrix A is invertible.997 On the other hand,
(4.22) always satisfies (B.20). However, in both models (the one without growth and
additive separable utility and the one with growth and Cobb-Douglas utility), matrix A is
not invertible, and the solution method of Blanchard and Kahn (1980) is not applicable.998

Furthermore, the vector xt in (B.20) contains variables of different types, namely predeter-
mined or backward-looking and non-predetermined or forward-looking variables.999 This
division into two types of variables is common to both methods. However, the definition
of a predetermined or backward-looking variable is slightly different.1000

A backward-looking variable in Klein’s sense generalizes Blanchard and Kahn’s concept
of predetermined variables in the sense that there may be additional (exogenously given)
prediction errors in the method of Klein (2000). To be more precise, a variable is backward-
looking in the sense of Klein if Etx

b
t+1 = xb

t+1 +ξt+1, where xb
t refers to the part of the vector

xt containing the backward-looking variables and ξt is an exogenous stochastic process
(prediction error) satisfying Etξt+1 = 0.1001 It is now easy to see that a predetermined
995 See Klein (2000, Equation (2.1) on p. 1408).
996 The derivation of (B.20) for the non-growing DSGE model with additive separable utility and the

stationarized model with Cobb-Douglas preferences are given in Appendix B.3.4 and Appendix B.4.4,
respectively.

997 In this case multiply (B.20) with A−1 from left, then define A0 = A−1B and G0 = A−1G in (4.22).
998 See Footnote 990 and Footnote 994.
999 Recall from the derivation of (B.20) for the two linearized DSGE models considered in this thesis, the

so-called static variables that turn out be linear combinations of predetermined and non-predetermined
were already eliminated from the system.

1000 There are other solution methods for linear DSGE models that need no distinction between these two
kinds of variables, see Sims (2002, pp. 1f.). Such a method is outlined in Sims (2002).

1001 See Klein (2000, Definition 4.3 on p. 1412).
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variable in the sense of Blanchard and Kahn is also a backward-looking variable in the sense
of Klein.1002 Since there are no exogenous prediction errors specified in the models stated
in Section 4.1 (see, e.g., the example in Footnote 663), both concepts of predetermined and
backward-looking variables coincide in the context of this thesis. Note that all variables
that are not predetermined are non-predetermined or forward-looking.

A process x = (xt)t∈Z satisfying (B.20) is called a solution to the model. This solution is
called stable if there is a constant M such that1003

max
1≤i≤n

(E|xi,t|)1/2 ≤ M for all t ≥ 0, (B.21)

where xi,t refers to the ith entry of the vector xt.1004 Equation (B.21) states that the
unconditional expectations of the process (xt)t∈Z are uniformly bounded, and thus, the
unconditional expectations cannot grow without bounds.1005 The solution method of Klein
focuses on finding a unique stable solution similar to the method of Blanchard and Kahn
presented in Section 4.2. They restrict possible solutions to the set of processes that satisfy
condition (4.24). However, condition (B.21) is stronger than (4.24) as the latter is implied
by the former.1006 The reverse, however, does not need to hold.1007 A class of processes
satisfying (B.21) is, for example, the set of stationary processes.1008 It is further assumed
that the exogenous process is stable as well.1009

Recall that the corresponding condition (4.24) of Blanchard and Kahn ensures that
the bubble term of the solutions vanishes.1010 The same holds for (B.21) in Klein’s
solution methodology.1011 However, as stressed by Gourieroux, Jasiak, et al. (2020),
the model becomes indeterminate, i.e., there are many solutions to the model, if one
relaxes (B.21).1012,1013 The authors show that then there is an infinite number of solutions
containing a strictly stationary bubble term.1014 More precisely, recall from the text after

1002 Simply let ξt ≡ 0, see Klein (2000, p. 1412).
1003 See Klein (2000, Definition 4.1 on p. 1412).
1004 This definition of stability is in line with Binder and Pesaran (1995, p. 151 and Footnote 22 on p.

151/180).
1005 See Klein (2000, p. 1411).
1006 This follows from G. W. Evans and McGough (2005, p. 621) who showed that for a process with

uniformly bounded expectations, the conditional expectations are uniformly bounded as well.
1007 See G. W. Evans and McGough (2005, pp. 621f.).
1008 See G. W. Evans and McGough (2005, p. 622).
1009 See Klein (2000, Assumption 4.1 on p. 1412).
1010 See Section 4.2.3 for details.
1011 See (B.30) below.
1012 See Gourieroux, Jasiak, et al. (2020, pp. 717 and 722f.).
1013 Note that Gourieroux, Jasiak, et al. (2020) consider only univariate models.
1014 See Gourieroux, Jasiak, et al. (2020, p. 722).
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Definition 2.1.2 that strict stationarity means a process has time-consistent distributions.
The processes considered by Gourieroux, Jasiak, et al. (2020) have no finite second
moments; hence these processes cannot be covariance stationary as the first condition in
Definition 2.1.2 is not satisfied by these processes nor do they satisfy (B.21).1015 Such
processes are, for example, processes with fat-tailed distributions.1016 The overall (infinitely
many) model solutions can then be described as the sum of the forward solution plus a
strictly stationary bubble term.1017

This short discussion illustrates that condition (B.21) is rather sharp and rules out many
possibly economically meaningful model solutions. However, the occurring indeterminacy
when one allows for solutions not satisfying (B.21) raises the question of whether and
how a specific solution should be selected. For this reason, the approach followed in this
thesis is the one followed by a large strand of the DSGE literature, i.e., the focus lies on
stable (in the sense of (B.21)) solutions. Nevertheless, it should be kept in mind that the
procedure described in the sequel finds a unique solution only under all stable solutions.
Whether there are additional unstable solutions (in a sense not satisfying (B.21)) goes
beyond the capabilities of the methods discussed in this thesis.

B.5.2 The Solution Methodology

Here, the solution methodology of Klein (2000) is summarized for general exogenous
processes zt. This is done because some essential equations in Klein (2000) are only given
when zt is a VAR(1). However, the exogenous process in the long memory model cannot
be described as a VAR(1) process. The subsequent sections build on this general case and
derive the solutions to the models in Chapter 4.

Consider the model given in (B.20) and divide the vector xt =
(
xb

t , x
f
t

)T
into two sub-

vectors containing the backward- and forward-looking variables, respectively. Assume the
dimension of xb

t and xf
t to be nb × 1 and nf × 1, respectively, with nb + nf = n. Then,

(B.20) can be written as

AEt

xb
t+1

xf
t+1

 = B

xb
t

xf
t

+ Gzt. (B.22)

In the following, consider the generalized Schur (or QZ) decomposition of the matrices A

1015 See Gourieroux, Jasiak, et al. (2020, p. 717).
1016 See Gourieroux, Jasiak, et al. (2020, p. 722).
1017 See Gourieroux, Jasiak, et al. (2020, p. 722).
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and B, i.e., there are n× n unitary matrices Q,Z satisfying

QQ′ = Q′Q = I = Z ′Z = Z ′Z,

and n× n upper triangular matrices S and T such that the following equations hold

QAZ = S or A = Q′SZ ′

QBZ = T or B = Q′TZ ′.

(B.23)

Note that X ′ is the Hermitian transpose of the matrix X.1018

The generalized eigenvalues of the matrices A and B can then be calculated by taking
quotients of the diagonal entries of the matrices T and S.1019 That is, the generalized
eigenvalues are given by λi = T (i, i)/S(i, i) for i = 1, . . . , n, where T (i, i) is the element of
matrix T contained in the i-th row and i-th column (and similar for S). An eigenvalue
λi is called stable if |λi| < 1 and unstable if |λi| > 1. It is assumed that |λi| 6= 1 for all
i = 1, . . . , n. Thus, let ns be the number of stable and nu = n − ns be the number of
unstable eigenvalues. One can assume further that the generalized Schur decomposition is
sorted in a way that |λi| < 1 for i = 1, . . . , ns and |λi| > 1 for i = ns + 1, . . . , n.1020

Inserting (B.23) into (B.22) and multiplying with Q from left results in

SZ ′ Et

xb
t+1

xf
t+1

 = TZ ′

xb
t

xf
t

+QGzt. (B.24)

Then, decompose the matrices S, Z, Z ′, T,Q, and G such that all stable eigenvalues are
contained in the upper ns rows of the system. As in Klein (2000), define the two auxiliary
variables st and ut associated with the stable and unstable subsystem, respectively. Overall,
(B.24) then becomes1021

 S11 S12

0nu×ns S22

Et

st+1

ut+1

 =
 T11 T12

0nu×ns T22

st

ut

+
Ĝ1

Ĝ2

 zt, (B.25)

1018 Note that the matrices Q and Z are generally complex-valued. The Hermitian transpose of a complex-
valued matrix X is built by first taking the complex conjugate of each element of X and then building
the transpose of the resulting matrix.

1019 A generalized eigenvalue λ of the matrices A and B with (generalized) eigenvector xλ satisfies
Bxλ = λAxλ, see Klein (2000, p. 1410).

1020 See Klein (2000, Theorem 3.3. on p. 1410).
1021 The matrix dimensions are as follows: T11, S11 ∈ Rns×ns , T12, S12 ∈ Rns×nu , T22, S22 ∈ Rnu×nu ,

Ĝ1 ∈ Rns×nz , Ĝ2 ∈ Rnu×nz , Z ′
11, Q11 ∈ Rns×nb , Z ′

12, Q12 ∈ Rns×nf , Z ′
21, Q21 ∈ Rnu×nb , Z ′

22, Q22 ∈
Rnu×nf , G1 ∈ Rnb×nz and G2 ∈ Rnf ×nz .
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where1022

st

ut

 := Z ′

xb
t

xf
t

 =
Z ′

11 Z ′
12

Z ′
21 Z ′

22

xb
t

xf
t

 (B.26)

and Ĝ1

Ĝ2

 := Q

G1

G2

 =
Q11 Q12

Q21 Q22

G1

G2

 .

Until now, the initial problem stated in (B.20) has been transformed into the triangular
system (B.25). This system allows to consider the subsystems associated with the stable
and unstable eigenvalues of the system separately.

Consider first the second row of (B.25), i.e., the subsystem associated with the unstable
eigenvalues. It follows directly that1023

ut = T−1
22 S22Etut+1 − T−1

22 Ĝ2zt. (B.27)

Equation (B.27) can be solved by forward iteration. By shifting (B.27) one period ahead
and taking expectations at time t, one obtains

Etut+1 = T−1
22 S22Et (Et+1ut+2) − T−1

22 Ĝ2Etzt+1. (B.28)

By the law of iterated expectations, it yields that Et (Et+1ut+2) = Etut+2.1024 Thus, by
plugging (B.28) back in (B.27), one obtains

ut =
(
T−1

22 S22
)2

Etut+2 − T−1
22 S22T

−1
22 Ĝ2Etzt+1 − T−1

22 Ĝ2zt.

By repeating these steps k-times, one finally arrives at

ut =
(
T−1

22 S22
)k

Etut+k −
k−1∑
j=0

(
T−1

22 S22
)j
T−1

22 Ĝ2Etzt+j, (B.29)

where the first term on the right-hand side of (B.29) is often called bubble and the second

1022 To avoid confusion regarding the notation, note that Z11 refers to the first block of the partitioned
matrix Z and Z ′

11 to the first block of Z ′ and not to the transpose of Z11. The latter would be
denoted by (Z11)′.

1023 Note, that the matrix T22 is invertible by the construction of the generalized Schur decomposition,
see Klein (2000, p. 1415).

1024 See, e.g., Klenke (2013, p. 178).
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term fundamental solution.1025 As one is interested in a stable solution to the model, i.e., a
solution that satisfies (B.21), the unconditional expectations of ut have to be bounded.1026

Since ut has to be stable, one can deduce that Etut+k is uniformly bounded in k as well.1027

Further, note that all eigenvalues of T−1
22 S22 are by construction less than one in modulus.1028

Overall, it follows that
lim

k→∞

(
T−1

22 S22
)k

Etut+k = 0. (B.30)

By letting k → ∞ and by plugging (B.30) back into (B.29), one obtains the unique and
stable solution for ut given by 1029,1030

ut = −
∞∑

j=0

(
T−1

22 S22
)j
T−1

22 Ĝ2Etzt+j. (B.31)

Further, one can show inductively that (B.31) can equally be written as

ut = −T−1
22

∞∑
j=0

(
S22T

−1
22

)j
Ĝ2Etzt+j. (B.32)

Now, consider the upper row of (B.25), i.e., the subsystem associated with the stable
eigenvalues. It follows directly that

S11Etst+1 + S12Etut+1 = T11st + T12ut + Ĝ1zt,

or equivalently

Etst+1 = S−1
11 T11st + S−1

11 T12ut − S−1
11 S12Etut+1 + S−1

11 Ĝ1zt. (B.33)

Further, it follows from (B.26) that

xb
t+1 = Z11st+1 + Z12ut+1 (B.34)

1025 See Blanchard and Fischer (1993, p. 221) and Section 4.2.3.
1026 Recall that the vector (st, ut)T is just a linear transformation of xt = (xb

t , x
f
t )T , see (B.26). Thus, if

the stability condition is imposed on xt, the vector ut is also stable.
1027 See Appendix B.5.1 and especially Footnote 1006.
1028 Since T22 and S22 are upper triangular matrices, the same holds true for T−1

22 S22. Thus, the diagonal
elements of T−1

22 S22 are equal to the eigenvalues of T−1
22 S22 and they are given by S22(i, i)/T22(i, i) for

i = 1, . . . , nu. Recall that the Schur decomposition was sorted in a way that |λi| = |T (i, i)/S(i, i)| > 1
for i = ns + 1, . . . , n or equivalently |T22(i, i)/S22(i, i)| > 1 for i = 1, . . . , nu. Hence, the eigenvalues
of T−1

22 S22 are smaller than one in modulus.
1029 Note that (B.31) does not correspond to Equation (5.5) in Klein (2000) due to a typo in the published

version of Klein (2000). A corrected version of Klein’s Equation (5.5) can be found in Klein (no date),
URL in list of references. The corrected versions coincides with (B.31).

1030 Equation (B.31) corresponds to (4.33) in Section 4.2.3.
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Since all variables in xb
t are predetermined by definition, one has that Etx

b
t+1 −xb

t+1 = 0.1031

Thus, (B.34) becomes

0 = Z11 (Etst+1 − st+1) + Z12 (Etut+1 − ut+1) ,

from where one can derive

Etst+1 = st+1 − Z−1
11 Z12 (Etut+1 − ut+1) . (B.35)

Plugging (B.35) back into (B.33) leads to

st+1 = S−1
11 T11st + S−1

11 T12ut − S−1
11 S12Etut+1

+ Z−1
11 Z12 (Etut+1 − ut+1) + S−1

11 Ĝ1zt. (B.36)

In summary, with (B.32) one can calculate the values for ut, ut+1 and Etut+1. These can
then be plugged in (B.36) that defines a recursive law on determining st+1 from st and
these values. It remains to find the initial value s0 to start the recursion. From (B.34), it
follows, however, that

s0 = Z−1
11

(
xb

0 − Z12u0
)
, (B.37)

where xb
0 contains the initial values of the predetermined variables, which are assumed

to be exogenously given. Now, the solution to (B.22) is given in terms of the auxiliary
variables ut and st. With (B.26), the solution in terms of xb

t and xf
t can be recovered by

multiplying (st, ut)T from left with Z.

Note that (B.37) requires the matrix Z11 to be invertible. By Footnote 1021 the dimension of
Z11 is ns×nb. Thus, a necessary condition for Z11 to be invertible is ns = nb, i.e., the number
of backward-looking variables has to equal the number of stable eigenvalues. This condition
corresponds to the Blanchard-Kahn condition for the existence of a unique solution
mentioned in Section 4.2.1. For the method of Klein (2000), however, the Blanchard-Kahn
condition is not sufficient to pin down the unique solution.1032 Nevertheless, common to
both solution strategies is that the initial values of the stable subsystem have to be uniquely
determined by the initial values of the predetermined or backward-looking variables xb

0

and by the initial values of the forward solution to the unstable part of the system u0 in
order to find a unique solution (see (B.37)).

1031 This is precisely the definition of a predetermined variable.
1032 See Klein (2000, pp. 1418ff.). Clearly, nb = ns implies the matrix Z11 to be square but nothing can

be said about its invertibility.
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B.5.3 The Standard Case

Evidently, the solution to the DSGE model depends on the expectations of the exogenous
process (zt)t∈Z, see (B.32) and (B.36). Here it is illustrated shortly that in the case of a
normally distributed white noise exogenous shock process (zt)t∈Z, the model’s solution is
again a short memory process.1033 To do so, observe that in this case

Etzt+j =

zt if j = 0

0 otherwise
. (B.38)

Plugging (B.38) back in (B.32), one obtains

ut = −T−1
22 Ĝ2zt. (B.39)

Further, it follows from (B.39), that Etut+1 = 0. Plugging this back in (B.36), the recursive
law of motion for st is given by

st+1 = S−1
11 T11st + S−1

11 T12ut − Z−1
11 Z12ut+1 + S−1

11 Ĝ1zt (B.40)

Now, (B.39) and (B.40) can be rewritten as
st

ut

 = U

st−1

ut−1

+ Vžt−1 + Wžt, (B.41)

with matrices

U :=
 P 0ns×nu

0nu×ns 0nu×nu

 , V :=
 Q 0ns×(n−nz)

0nu×nz 0nu×(n−nz)

 , W :=
R 0ns×(n−nz)

S 0nu×(n−nz)


and P = S−1

11 T11 ∈ Rns×ns ,Q = −S−1
11 T12T

−1
22 Ĝ2 + S−1

11 Ĝ1 ∈ Rns×nz ,R = Z−1
11 Z12T

−1
22 Ĝ2 ∈

Rns×nz ,S = −T−1
22 Ĝ2 ∈ Rnu×nz . The process žt is obtained by augmenting zeros to zt, i.e.,

žt =
(
zt, 01×(n−nz)

)T
∈ Rn×1.

By appending žt to the state vector (st, ut), (B.41) can equally be written as

vt = Mvt−1 + Nεt (B.42)

1033 Regarding the models stated in Table B.3 and Table B.6, this corresponds to the situation where d = 0,
i.e., both the transitory productivity process and the productivity growth processes are assumed to
be AR(1) processes.
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with

vt :=


st

ut

žt

 ∈ R2n×1, M :=
 U V

0n×n 0n×n

 ∈ R2n×2n and

N :=
 W 0n×n

In×n 0n×n

 Σz 0nz×(2n−nz)

0(2n−nz)×nz 0(2n−nz)×(2n−nz)

 ∈ R2n×2n.

The process εt is a standard normally distributed random vector of size 2n × 1 and
Σz ∈ Rnz×nz is the covariance matrix of the white process (zt)t∈Z.

Equation (B.42) is exactly the already mentioned representation (4.25) and illustrates
that the solution to a DSGE model in the standard case of exogenous normally distributed
white noise shocks, can be represented as a multivariate AR(1) process.1034 Further, all
eigenvalues of M are less than one in modulus by construction.1035

For the multivariate case, a similar equation to (2.10) exists. To be more precise, one
can show that each component process vi

t of vt has a geometrically bounded ACF, i.e.,
there are constants 0 < C and 0 < β < 1 such that γvi(k) < Cβk.1036,1037 Hence, each
component of vt is again a short memory process.

This result illustrates that a linearized DSGE model with canonical form (B.22) cannot
generate long memory endogenously if the exogenous shock process is assumed to be a
normally distributed white noise process. Thus, this result strongly supports introducing
long memory exogenously into the model, i.e., the approach followed in this thesis. The
procedure for solving the model with exogenous long memory is outlined in the next
section.
1034 Note that (B.42) is written in terms of the auxiliary variables st and ut. To recover the original

variables xt = (xb, xf )T from (B.42), one can use xt = (Z, 0n×n) vt, see (B.26).
1035 It can easily be seen from the definition of M that det(M − λIn×n) = (−λ)n+nudet(P − λIns×ns

).
Hence, the eigenvalues of M are just zero and the ones of P. Recall the definiton of P = S−1

11 T11. An
analogous argument to Footnote 1028 establishes that all eigenvalues of P are smaller than one in
modulus. The eigenvalues of P are essentially the ns stable eigenvalues of the initial system.

1036 See Brockwell and Davis (1987, p. 410).
1037 Note that this result does not only hold for the autocorrelation of each component of vt but also

for the cross-correlations between the components of vt. The condition that all eigenvalues of M
are less than one in modulus is required for the process to be causal, which is a requirement for
the geometrical boundedness of the ACF, see again Brockwell and Davis (1987, p. 410). Note
that there are closed-form expressions for calculating the autocovariance matrix for the process vt,
see Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 635) for the VAR(1) case and
Brockwell and Davis (1987, Equation (11.3.15) on p. 410) for causal vector autoregressive moving
average (VARMA) processes. They are not stated here since the geometrical boundedness is enough
for the purposes of this section.
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B.5.4 The Solution to the Model with CD Preferences

This section illustrates how to derive the solution to the model given in Table B.6. The
procedure for solving the model stated in Table B.3 is quite similar to the one presented
here since it just involves zt = νA

t as a one-dimensional exogenous stochastic process
instead of zt =

(
νA

t , ε
g
t

)T
as a two-dimensional stochastic process.

Recall that (B.22) for the model given in Table B.6 was derived in Appendix B.4.4. Here,
the focus lies on (B.32) and (B.36). More precisely, the expectation operators in these
equations are eliminated in the following by plugging the definition of the exogenous
process zt =

(
νA

t , ε
g
t

)T
into these equations.

Recall, that νA
t is a fractional white noise process with infinite moving average representa-

tion1038

νA
t =

∞∑
i=0

αi ε
A
t−i, (B.43)

where αi = Γ(i+ d)
Γ(i+ 1)Γ(d) .

Since (εA
t )t∈Z and (εg

t )t∈Z are independent Gaussian white noise processes, one can further
make use of the following identity

Etε
x
t+k =

ε
x
t+k if k ≤ 0

0 if k > 0
for k ∈ Z, x ∈ {A, g}. (B.44)

Especially, by using (B.43) and (B.44), it yields

Etν
A
t+k = Et

( ∞∑
i=0

αiε
A
t+k−i

)
=

∞∑
i=0

αiEtε
A
t+k−i =

∞∑
i=k

αi ε
A
t+k−i =

∞∑
i=0

αi+k ε
A
t−i. (B.45)

By inserting this into (B.32) and defining Λ := S22T
−1
22 , one further obtains

ut = −T−1
22

∞∑
k=0

ΛkĜ2Et

νA
t+k

εg
t+k


= −T−1

22 Ĝ2ε
g
t e2 − T−1

22

∞∑
k=0

∞∑
i=0

Λkαi+kĜ2e1 ε
A
t−i, (B.46)

where e1 =
1

0

 and e2 =
0

1

.

1038 See (4.15), Definition 2.4.1 and Lemma 2.4.2.
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Remark B.5.1
Note that the term in (B.46) that involves the two sums can equally be written as1039

−T−1
22

∞∑
k=0

∞∑
j=0

Λkαj+kĜ2e1 ε
A
t−j = −T−1

22

∞∑
j=0

∞∑
k=0

Λkαj+kĜ2e1 ε
A
t−j = −T−1

22

∞∑
j=0

bj ε
A
t−j (B.47)

with bj :=
∞∑

k=0
Λkαj+kĜ2e1 ∈ Rnu×1. The right-hand side illustrates that the part of ut

associated with the long memory process can again be interpreted as an infinite moving
average process with coefficients bj. Unfortunately, each moving average coefficient occurs
as the limit of a (complicated) series. This limit is well defined since from (A.2), it follows
that αk ≤ 1 for all k ≥ 0 and all eigenvalues of Λ are smaller than one in modulus by
construction. Thus, the series

∞∑
k=0

Λk = (Inu×nu − Λ)−1 converges and the values of bj

are finite for all j.1040 The limit of the series involved in the definition of the bj’s can
be calculated by the use of the Gaussian hypergeometric function given the additional
assumption that the matrix Λ = S22T

−1
22 is diagonalizable, i.e., there exists nu ×nu matrices

P and D so that1041

Λ = PDP−1 where D =


λ−1

ns+1
. . .

λ−1
n

 .

Note that Λk = PDkP−1. Using this decomposition leads to

bj =
∞∑

k=0
PDkP−1αk+jĜ2e1

= P

( ∞∑
k=0

Dkαk+j

)
P−1Ĝ2e1

= αjP 2F1(1, j + d; j + 1;D)P−1Ĝ2e1, (B.48)

1039 This follows from Palma (2007, Theorem 1.5 on p. 7).
1040 See Olver and Shakiban (2018, p. 499).
1041 The assumption that Λ is of this form is made due to simplification issues. A sufficient condition for

Λ to be diagonalizable is that Λ has nu distinct eigenvalues, see Olver and Shakiban (2018, Theorem
8.23 and Theorem 8.25). This property is equivalent to saying that all unstable generalized eigenvalues
of A and B have to be different. This condition is satisfied for the models considered in this thesis
and the considered parameter values. If this condition is not met, it may be useful to consider the
Jordan canonical form of Λ that provides a decomposition of Λ as the sum of a diagonal matrix and a
nilpotent matrix that offers another path for calculating the limit of this series. Such generalizations
need, however, deeper considerations and are left for future research.
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where

2F1(a, b; c;D) :=


2F1(a, b; c;λ−1

ns+1)
. . .

2F1(a, b; c;λ−1
n )

 . (B.49)

Note that the derivation of (B.48) involves the already mentioned useful identity (A.9).
Equation (B.49) further illustrates the usefulness of assuming Λ to be diagonalizable.
Essentially, the limit of the series can then be calculated by applying the Gaussian
hypergeometric function to the eigenvalues of the matrix Λ. If Λ is not diagonalizable, an
alternative effort must be made to calculate this limit.

Note that (B.49) is well-defined as |λi| > 1 for all i = ns + 1, . . . , n, see Appendix A.2.2.
1042 o

Now, (B.46) expresses the auxiliary variable ut as function of the exogenous processes
(εg

t )t∈Z and (εA
t )t∈Z. To do the same for st+1, one has to find similar expressions for ut+1

and Etut+1 and then one has to plug these values into (B.36) to get the model’s solution.
The expression for ut+1 is obtained by shifting (B.46) one period ahead. Using the law of
iterated expectations and doing a similar calculation as for ut, one can show that

Etut+1 = −T−1
22

∞∑
k=0

ΛkĜ2Etν
A
t+1+k

= −T−1
22

∞∑
k=0

∞∑
i=0

Λkαi+k+1Ĝ2e1 ε
A
t−i

= −T−1
22

∞∑
i=0

bi+1 ε
A
t−i, (B.50)

where the last line uses the infinite moving average coefficients introduced in Remark B.5.1.
Inserting (B.46), (B.50) and zt = (νA

t , ε
g
t )T into (B.36) leads then to the desired expression

for st+1.1043 Since this expression is rather long and complicated and provides no further
insights, it is not stated here.1044

The analytical difficulty of introducing long memory into a linearized DSGE model can be
seen from a comparison between (B.39) and (B.46). In the former case, ut depends linearly
on the instantaneous shock zt. This is also the case for the white noise trend shock εg

t in

1042 To calculate the Gaussian hypergeometric function in a tractable numerical way, a Taylor series
expansion is recommended and realized during in this thesis, see Appendix A.2.2 for details.

1043 To recover the original variables from the auxiliary variables ut and st one has to use (B.26) again.
1044 The formula for the particular case of no long memory, i.e., d = 0, is given in (B.40).
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(B.46). However, in the case of a transitory long memory TFP shock, ut depends, on the
history of all past shocks εA

t . This dependence comes essentially from (B.45), i.e., since
the expectations on the exogenous process depend on the whole history of past shocks, so
does the whole model solution.

Overall, in this section, a solution to the model with Cobb-Douglas (CD) preferences and
long memory was derived along the method of Klein (2000). As outlined earlier, similar
calculations can be carried out to derive a solution to the model with additive utility. The
following theorem summarizes the necessary assumptions made for deriving the model’s
solution.

Theorem B.5.2
Given the canonical form (B.22) where the matrices A,B and G are specified in Ap-
pendix B.4.4 and given the (stable) exogenous stochastic process zt =

(
νA

t , ε
g
t

)T
, then under

the following assumptions a unique and stable solution to (B.22) exists:

• The generalized Schur-decomposition of the matrices A and B exists

• There is no complex number λ with |λ| = 1 and det (λA − B) = 0, i.e., there is no
generalized eigenvalue with modulus 1

• The ns × nb matrix Z11 is invertible, i.e., necessarily ns = nb

• The matrix Λ = S22T
−1
22 is diagonalizable.

Proof
See the derivation of the solution above.

In the next section, a recursive law of motion for the IRFs of the model is derived from
the formulas above.

B.5.5 Deriving IRFs of the Model with CD Preferences

Impulse-response functions show the effects of an initial shock in t = 1 on future outcomes of
the model’s variables. Definition 2.1.4 defines an Impulse-Response function as the sequence
of coefficients of an infinite moving average process. Meyer-Gohde (2010) states that
whenever the exogenous stochastic process has an infinite moving average representation, so
does the solution of the linear rational expectations model (if it exists).1045 Equations (B.47)
and (B.50) state such infinite moving average representations for the auxiliary variable
1045 See Meyer-Gohde (2010, p. 986), and also Taylor (1986, p. 2046) and Taylor (1986, Section 2.2. on

pp. 2016ff.) for bivariate models.
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ut and its expectations. Instead of deriving the infinite moving average representation
of the solution process directly, the infinite moving average representation of ut and its
expectations together with (B.36) is used to derive a recursion to compute the model’s
IRFs.

However, as outlined by Meyer-Gohde (2010), the reverse approach is also possible, i.e.,
one can set up a system of difference equations in the infinite moving average coefficients
instead of the model’s variables itself.1046 Since Meyer-Gohde (2010) uses then again Klein
(2000)’s method to solve for the infinite moving average coefficients, the approach followed
in this thesis and by Meyer-Gohde (2010), appear to be quite similar.

To summarize, the model solution has an infinite moving average representation; thus,
Definition 2.1.4 still holds in the context of the linearized DSGE models considered in this
thesis, although the solution’s moving average representation is not stated explicitly.

The following section derives the model’s IRF of the analytically more demanding transitory
TFP shock process εA

t and the second subsection outlines the procedure for the shock εg
t .

B.5.5.1 IRF of the Transitory Productivity Process

In order to calculate the IRF of a one standard deviation long memory shock, one has to
set εg

t ≡ 0 and

εA
t =


σεA if t = 1

0 else
(B.51)

The IRF is calculated by assuming that the economy is in the steady state before the
shock materializes. Since all variables are expressed in percentage deviations from the
steady state, the initial values of the backward-looking variables are equal to zero, i.e.,
xb

0 = 0. Further, (B.46) involves for t = 0 only values of εA
t for t < 0. Due to (B.51), these

values are also assumed to be zero. Hence, u0 = 0. By (B.37), the initial value s0 is also
equal to zero. Moreover, inserting (B.51) into (B.50) leads to E0(u1) = 0.

For t > 0, plugging (B.51) into (B.47) results in

ut = −σεAT−1
22 bt−1 = −σεAαt−1T

−1
22 P 2F1(1, t− 1 + d; t;D)P−1Ĝ2e1, (B.52)

where the second identity follows from (B.48). Similarly, plugging (B.51) into (B.50) leads

1046 See Meyer-Gohde (2010, pp. 986f.).
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to

Et(ut+1) =

0 if t = 0

−σεAαtT
−1
22 P 2F1(1, t+ d; t+ 1;D)P−1Ĝ2e1 if t ≥ 1

. (B.53)

Given the already calculated values of ut, st and Et(ut+1), the next iteration step for the
auxiliary variable st+1 in accordance with (B.36) is given by

st+1 = S−1
11 T11st + S−1

11 T12ut − S−1
11 S12Et(ut+1)

+ Z−1
11 Z12(Et(ut+1) − ut+1) +

0 if t = 0

σεAS−1
11 αt−1Ĝ1e1 if t ≥ 1

(B.54)

Along the shock process, (B.51) one further has that Et(ut+1) − ut+1 = 0 for t > 0. Thus,
(B.54) simplifies to

st+1 =

−Z−1
11 Z12u1 if t = 0

S−1
11 T11st + S−1

11 T12ut − S−1
11 S12Et(ut+1) + σεAS−1

11 αt−1Ĝ1e1 if t ≥ 1
. (B.55)

In summary, the recursion starts with computing ut from (B.52) and Etut+1 from (B.53).
Then st+1 is computed from these values with (B.55). These steps are then repeated for
each instant of time t. To get the IRF of the original model variables, one has to transform
the auxiliary variables st and ut back into the model’s variables with (B.26), i.e.,

xb
t = Z11st + Z12ut

xf
t = Z21st + Z22ut.

Finally, in order to get the IRFs of the static variables, one has to apply (B.14) with the
matrices given in (B.19).



Appendix B. Appendix to Chapter 4 267

B.5.5.2 IRF of the Growth Process

A recursive law of motion of the growth process’s IRF can be obtained similarly to the
one illustrated in the previous subsection. However, these expressions are computationally
simpler because the growth shock was assumed to be a white noise process. In order to
calculate the IRF of a one standard deviation growth shock, one has to set νA

t ≡ 0 and

εg
t =


σεg if t = 1

0 else
. (B.56)

As above, the IRF is calculated assuming the economy to be in the steady state before
the shock materializes. Since all variables are expressed in percentage deviations from the
steady state, the initial values of the backward-looking variables are equal to zero, i.e.,
xb

0 = 0. Plugging (B.56) in (B.46) leads to u0 = 0. Further, (B.50) does not depend on
any value of εg

t , i.e., Et(ut+1) = 0 for all t > 0. By (B.37), the initial value s0 is also equal
to zero.

For t > 0, plugging (B.56) into (B.46) results in

ut =


−σεgT−1

22 Ĝ2e2 if t = 1

0 else
. (B.57)

Given the values of ut from (B.57), st and Et(ut+1) = 0, the next iteration step for the
auxiliary variable st+1 in accordance with (B.36) is given by

st+1 =


−Z−1

11 Z12u1 if t = 0

S−1
11 T11st + S−1

11 T12ut + σεgS−1
11 Ĝ2e2 if t = 1

S−1
11 T11st if t > 1

.

To obtain the response of the original model variables to a one standard deviation shock
in the growth process, one has to use (B.26) again.
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B.6 Comparison of Both Models without Growth

Figure B.1 compares the responses of both models to a 1% transitory short memory
technology shock. The dashed lines refer to the responses of the model with additive
separable utility of Figure 4.1. As mentioned in Section 4.4.3, consumption rises initially
stronger in the case of CD utility than in the case of additive separable utility. However,
the negative effect on employment is smaller because the dependence of labor supply on
consumption expenditures is less pronounced in the model with CD utility. For all values
of %A, the initial response of hours worked is positive in the model with CD utility. Overall,
the responses of factor prices are quite similar in both models. Furthermore, due to the
overall higher employment in the case of CD utility, the effect on output is also more
pronounced and allows for additional investment expenditures in addition to expanded
consumption expenditures, which lead to an intensified capital accumulation.

The same pattern can be observed in Figure B.2, which compares the models’ responses
to a pure long memory shock. An increase in the long memory parameter leads to smaller
differences between the two models compared to an increase in the short memory parameter
%A. Interestingly, the shape of consumption’s response is characterized by the initial drop
of TFP in the model with CD utility but remains stronger compared to the model with
additive separable utility function.

Figure B.3 finally compares the responses to an ARFIMA(1, d, 0) TFP shock. The reduced
negative employment effects in the model with CD utility become apparent. The initial
response of employment keeps to be negative in the model with CD utility for %A = 0.95
and d = 0.4, but afterward, employment overshoots its steady state value quickly. This
behavior indicates that the upward shift in the labor demand curve induced by the
increasing TFP in the first periods outweighs the upward shift in the labor supply curve
caused by increasing consumption expenditures. In the model with additive separable
utility function, the shift in the labor supply curve is stronger, yielding an overall negative
effect on employment.
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Figure B.1: Comparison of the responses of both models to a 1% transitory short memory technology
shock for various values of %A. The vertical axes report percentage deviations from the respective steady
state value. The horizontal axes report quarters. The dark gray line in each subfigure marks the zero
line where the variables are at their steady state values. Dashed lines belong to the model with additive
separable utility function, and solid lines to the model with CD utility. Note the different axis scaling of

the vertical axis.
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Figure B.2: Comparison of the responses of both models to a 1% transitory long memory technology
shock for various values of d. The vertical axes report percentage deviations from the respective steady
state value. The horizontal axes report quarters. The dark gray line in each subfigure marks the zero
line where the variables are at their steady state values. Dashed lines belong to the model with additive
separable utility function, and solid lines to the model with CD utility. Note the different axis scaling of

the vertical axis.
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Figure B.3: Comparison of the responses of both models to a 1% transitory long memory technology
shock for various values of %A and d. The vertical axes report percentage deviations from the respective
steady state value. The horizontal axes report quarters. The dark gray line in each subfigure marks the
zero line where the variables are at their steady state values. Dashed lines belong to the model with
additive separable utility function, and solid lines to the model with CD utility. Note the different axis

scaling of the vertical axis.





C
Appendix to Chapter 5

C.1 On the Itô Calculus

In this appendix, some useful formulas for handling stochastic differential equations are
stated and partly derived. Some of them are used in the text; others are needed for the
proofs of Chapter 5’s lemmas and propositions given in Appendix C.2.

Before some forms of the Itô formula are outlined, recall the definition of a so-called
Itô process. A continuous-time stochastic process X = (Xt)t≥0 is called Itô process, if X
can be written as

Xt −X0 =
∫ t

0
µX

s ds+
∫ t

0
σX

s dWs, (C.1)

where (Wt)t≥0 is a Brownian motion as defined in Definition 2.5.1 and (µX
s )s≥0 and (σX

s )s≥0

are certain stochastic processes.1047 The integral with respect to the Brownian motion W ,
is called Itô integral. Equation (C.1) can equally be written in the shorthand differential
notation, i.e.,1048

dXt = µX
t dt+ σX

t dWt.

The Itô calculus offers nice analytic tools to deal with Itô processes. As outlined in the
following, it can be shown that stochastic integrals with respect to Itô processes can easily
1047 See Shreve (2004, Definition 4.4.3. on p. 143). In order to be well-defined, the stochastic processes

involved in (C.1) have to satisfy some regularity and integrability conditions. For example, they have
to be adapted to the filtration generated by the Brownian motion (Wt)t≥0. The details can be found
in the mentioned definition of Shreve (2004).

1048 See Shreve (2004, Equation (4.4.18) on p. 144).
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be defined and that functions of Itô processes are again Itô processes. To see this, let
(λs)s≥0 be a stochastic process and X as in (C.1), then the integral

∫ t
0 λs dXs is defined

by1049 ∫ t

0
λs dXs :=

∫ t

0
λsµ

X
s ds+

∫ t

0
λsσ

X
s dWs. (C.2)

For an Itô process X of the form (C.1), let 〈X〉t :=
∫ t

0
(σX

s )2 ds be the so-called quadratic
variation process of X.1050

The Itô formula says that if X is an Itô process as in (C.1) and if f : [0,∞) × R → R is a
time-dependent function whose first-order derivative with respect to t (∂f/∂t) and whose
first-order and second-order derivatives with respect to x (∂f/∂x, ∂2f/∂2x) exist, then the
process Yt = f(t,Xt) is again an Itô process and it yields1051

f(t,Xt) − f(0, X0) =
∫ t

0

∂

∂t
f(s,Xs) ds+

∫ t

0

∂

∂x
f(s,Xs) dXs + 1

2

∫ t

0

∂2

∂2x
f(s,Xs) d〈X〉s.

(C.3)
By using the definition of the quadratic variation process and (C.2) to evaluate the integral
with respect to X, (C.3) becomes

f(t,Xt) − f(0, X0) =
∫ t

0

(
∂

∂t
f(s,Xs) + ∂

∂x
f(s,Xs)µX

s + 1
2
∂2

∂2x
f(s,Xs)(σX

s )2
)
ds

+
∫ t

0

∂

∂x
f(s,Xs)σX

s dWs.

Consequently, Yt = f(t,Xt) is again an Itô process and an expression like (C.1) can be
derived easily from (C.3), i.e.,

Yt − Y0 =
∫ t

0
µY

s ds+
∫ t

0
σY

s dWs,

where µY
s = ∂

∂t
f(s,Xs) + ∂

∂x
f(s,Xs)µX

s + 1
2
∂2

∂2x
f(s,Xs)(σX

s )2 and σY
s = ∂

∂x
f(s,Xs)σX

s .

Note that (C.3) can also be applied if f does not depend on t. Then, one can omit the
first argument of f and set ∂

∂t
≡ 0.

The one-dimensional Itô formula (C.3) can be generalized to higher dimensions. For
1049 See Shreve (2004, Definition 4.4.5. on p. 145).
1050 This definition is made for the sake of simplicity. In general, it follows from Itô’s integration calculus

that the quadratic variation of X has this form, see Shreve (2004, Lemma 4.4.4. on p. 143). The
quadratic variation can be defined for general time-dependent functions; see Shreve (2004, Definition
3.4.1. on p. 101). However, such generality is not needed for the context of this thesis.

1051 See Shreve (2004, Theorem 4.4.6. on p. 146).
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this thesis, a simplified two-dimensional Itô formula appears to be sufficient. Let X and
Y be general Itô processes as in (C.1) with corresponding drift and volatility processes
µX

t , µ
Y
t and σX

t , σ
X
t , respectively. Additionally, assume that the Brownian motion in their

respective Itô integrals is the same and f : R2 → R2 is a function such that all partial
derivatives up to the second order exist, then, the process f(Xt, Yt) is again an Itô process
and it yields1052

f(Xt, Yt) − f(X0, Y0) =
∫ t

0

∂

∂x
f(Xs, Ys) dXs +

∫ t

0

∂

∂y
f(Xs, Ys) dYs

+1
2

(∫ t

0

∂2

∂2x
f(Xs, Ys) d〈X〉s + 2

∫ t

0

∂2

∂x∂y
f(Xs, Ys) d〈X,Y 〉s +

∫ t

0

∂2

∂2y
f(Xs, Ys) d〈Y 〉s

)
,

(C.4)

where 〈X,Y 〉s :=
∫ t

0
σX

s σ
Y
s ds is the cross-variation of X and Y . The reason why the

integral associated with ∂2f/∂x∂y is multiplied with two in (C.4) is the symmetry of
∂2f/∂x∂y = ∂2f/∂y∂x and 〈X,Y 〉t = 〈Y,X〉t.1053

By plugging the definitions of the quadratic variation, the cross-variation process, and (C.2)
into (C.4), one can deduce that f(Xt, Yt) is again an Itô process. This step is not carried
out here, but instead, (C.4) is applied to two examples frequently used in Chapter 5.

In the following, let X and Y be given by

dXt

Xt

= µ̄X
t dt+ σ̄X

t dWt and dYt

Yt

= µ̄Y
t dt+ σ̄Y

t dWt,

i.e., µA
t = Atµ̄

A
t and σA

t = Atσ̄
A
t for A ∈ {X,Y }. Consider the function f(x, y) = xy, then

(C.4) becomes
XtYt −X0Y0 =

∫ t

0
Ys dXs +

∫ t

0
Xs dYs + 〈X,Y 〉t.

Using (C.2) to replace the integrals with respect to X and Y and the definition of the
cross-variation process leads to

XtYt −X0Y0 =
∫ t

0
XsYsµ̄

X
s ds+

∫ t

0
XsYsσ̄

X
s dWs +

∫ t

0
XsYsµ̄

Y
s ds

+
∫ t

0
XsYsσ̄

Y
s dWs +

∫ t

0
XsYsσ̄

X
s σ̄

Y
s ds.

1052 See Lamberton and Lapeyre (2008, Proposition 3.4.18 on pp. 71f.).
1053 See Lamberton and Lapeyre (2008, Remark 3.4.19 on p. 72).
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Rearranging implies,

XtYt −X0Y0 =
∫ t

0
XsYs

(
µ̄X

s + µ̄Y
s + σ̄X

s σ̄
Y
s

)
ds+

∫ t

0
XsYs

(
σ̄X

s + σ̄Y
s

)
dWs. (C.5)

Rewriting (C.5) in differential notation leads to

d(XtYt) = XtYt

(
µ̄X

t + µ̄Y
t + σ̄X

t σ̄
Y
t

)
dt+XtYt

(
σ̄X

t + σ̄Y
t

)
dWt

or
d(XtYt)
XtYt

=
(
µ̄X

t + µ̄Y
t + σ̄X

t σ̄
Y
t

)
dt+

(
σ̄X

t + σ̄Y
t

)
dWt. (C.6)

Brunnermeier and Sannikov (2016) refer to (C.6) as “Itô’s formula for products”1054.

Now, let f(x, y) = x/y, then (C.4) becomes

Xt

Yt

− X0

Y0
=
∫ t

0

1
Ys

dXs −
∫ t

0

Xs

Y 2
s

dYs + 1
2

(
−2

∫ t

0

1
Y 2

s

d〈X,Y 〉s + 2
∫ t

0

Xs

Y 3
s

d〈Y 〉s

)
.

Again, using (C.2) to replace the integrals with respect to X and Y and the definitions of
the variation processes, leads to

∫ t

0

Xs

Ys

(
µ̄X

s − µ̄Y
s − σ̄X

s σ̄
Y
s +

(
σ̄Y

s

)2
)
ds+

∫ t

0

Xs

Ys

(
σ̄X

s − σ̄Y
s

)
dWs. (C.7)

By rewriting (C.7) in differential form, one obtains “Itô’s formula for ratios”1055.

d(Xt/Yt)
Xt/Yt

=
(
µ̄X

t − µ̄Y
t − σ̄X

t σ̄
Y
t +

(
σ̄Y

t

)2
)
dt+

(
σ̄X

t − σ̄Y
t

)
dWt. (C.8)

C.2 Proofs

C.2.1 Proof of Lemma 5.2.1

Since dKt =
(
Φ(ι) − δ + σϕH,ε

t

)
Kt dt + σεH−1/2Kt dWt, an application of Itô’s formula

(see (C.3) in Appendix C.1) to f(x) = log(x) implies

log(Kt) − log(K0) =
∫ t

0

1
Ks

dKs + 1
2

∫ t

0
− 1
K2

s

(σεH−1/2)2K2
s ds. (C.9)

1054 See Brunnermeier and Sannikov (2016, p. 1506).
1055 See Brunnermeier and Sannikov (2016, p. 1508).
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Rearranging (C.9) leads to

log
(
Kt

K0

)
=
∫ t

0

(
Φ(ι) − δ + σϕH,ε

s − (σεH−1/2)2

2

)
ds+

∫ t

0
(σεH−1/2) dWs. (C.10)

By applying the exponential on both sides of (C.10) and using
∫ t

0 dWs = Wt, one obtains

Kt = K0 exp
((

Φ(ι) − δ − (σεH−1/2)2

2

)
t+

∫ t

0
σϕH,ε

s ds+ σεH−1/2Wt

)
. (C.11)

The stated expression for Kt follows from Lemma 5.1.2, since
∫ t

0 σϕ
H,ε
s ds+ σεH−1/2Wt =

σZH,ε
t . The corresponding expression for KBS

t follows from (C.11) by setting H = 1/2.

C.2.2 Proof of Proposition 5.3.2

To solve the utility maximization problem of the expert i, the analogy of this problem to
classical problems in finance is used.1056 Especially the finance results given in Karatzas
and Shreve (1998, Chapter 1 and 3) are applied to the to model context of Chapter 5. Let
initially (ιit)t≥0 be a given process of re-investment rates. Then the utility maximization
problem of expert i is the same as for an investor in a financial market with the following
investment possibilities:

A risk-free bond S0 with price process given by

dS0
t = S0

t rt dt

and a risky stock S1 whose price process is given by

dS1
t = µS

t S
1
t dt+ σS

t S
1
t dWt,

with

µS
t =

[
(a− ιit)
qt

+
(
Φ(ιit) − δ + σϕH,ε

t + µq
t + εH−1/2σσq

t

)]
and σS

t = (σεH−1/2 + σq
t ).

Consider, in the following, a portfolio process πt = (π0
t , π

1
t ), where π0

t and π1
t denote the

1056 According to Karatzas and Shreve (1998, Definition 7.2 on p. 28), certain technical integrability
assumptions are required to solve the maximization problems of experts (and households). Specifically,
for any finite time horizon T > 0, it is necessary that

∫ T

0 |rt|, dt < ∞,
∫ T

0 |µq
t |, dt < ∞,

∫ T

0
∣∣ιit∣∣, dt < ∞,

and
∫ T

0 (σq
t )2, dt < ∞ almost surely. These assumptions ensure that the relevant quantities are all

well-behaved.
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value of bonds and stocks held by the investor, respectively. Following Karatzas and
Shreve (1998), the wealth process of the investor with consumption process (ct)t≥0 is given
by1057

dnt = ntrt dt+ π1
t (µS

t − rt) dt+ π1
t σ

S
t dWt − ct.

Let xt = π1
t /nt be the share of wealth invested into the stock. Then, one has

dnt = ntrt dt+ (µS
t − rt)xtnt dt+ σS

t xtnt dWt − ct,

which corresponds exactly to (5.21). Therefore, the maximization problem of an investor
in the financial market described by the bond process S0 and the stock process S1 is the
same as for expert i in the model economy of Chapter 5.

Hence, one can apply Theorem 3.9.11 of Karatzas and Shreve (1998) to obtain experts
i’s optimal consumption process (ĉi

t)t≥0 and optimal wealth process (n̂i
t)t≥0. Recall that

ni
0 = q0k̄

i
0 is expert i’s initial wealth, then

ĉi
t = ρe−ρtni

0
1
ξi

t

(C.12)

and1058

n̂i
t = 1

ξi
t

E
[∫ ∞

t
ξi

uĉ
i
u du

∣∣∣∣∣Ft

]
. (C.13)

Plugging the expression of optimal consumption (C.12) into the expression of optimal
wealth (C.13) results in

n̂i
t = 1

ξi
t

∫ ∞

t
ni

0ρe
−ρu du = e−ρtni

0
1
ξi

t

. (C.14)

Comparing (C.14) and (C.12), one can see that it is optimal for expert i to consume the
fraction ρ of his wealth, i.e.,

ĉi
t = ρn̂i

t. (C.15)

Applying Itô’s formula (see (C.3) in Appendix C.1) to (C.14) and using (5.29) leads to

1057 This follows from Karatzas and Shreve (1998, Equation (3.3) on p. 11) if one replaces their dΓ(t)
with −ct dt. This replacement is carried out by Karatzas and Shreve (1998, p. 137) as well.

1058 Here, Ft again refers to a sigma algebra over Ω. More precisely, the filtration F = (Ft)t≥0 is generated
by the Brownian motion (Wt)t≥0, augmented by the null-sets of the probability measure P. For
technical details, see Karatzas and Shreve (1998, p. 2).
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the dynamics of optimal wealth1059

dn̂i
t = −ρn̂i

t dt− e−ρtni
0

(
1
ξi

t

)2

dξi
t + 1

2e
−ρtni

0
2

(ξi
t)3 d〈ξ

i〉t

= −ρn̂i
t dt− e−ρtni

0

(
1
ξi

t

)2 [
−rtξ

i
t dt− ϑi

tξ
i
t dWt

]
+ e−ρtni

0
1

(ξi
t)3 (ϑi

t)2(ξi
t)2 dt

=
[
(ϑi

t)2 + rt − ρ
]
n̂i

t dt+ ϑi
tn̂

i
t dWt. (C.16)

All expressions above yield for arbitrary re-investment rate processes (ιit)t≥0. Expert i
chooses the optimal re-investment rate process (ι̂it)t≥0 that maximizes

E
[∫ ∞

0
e−ρt log

(
ĉi

t

)
dt
]

under the conditions stated in (5.22). Since ρ does not depend on ι and consumption is
proportional to wealth, see (C.15), this is equivalent to maximize

E
[∫ ∞

0
e−ρt log

(
n̂i

t

)
dt
]
. (C.17)

Using (C.16) and applying Itô’s formula (see (C.3) in Appendix C.1) to log(n̂i
t), one obtains

log
(
n̂i

t

)
= log

(
n̂i

0

)
+
∫ t

0

(1
2(ϑi

s)2 + rs − ρ
)
ds+

∫ t

0
ϑi

s dWs.

Inserting this back in (C.17), neglecting some constants and applying Fubini’s Theorem
to switch expectation and integration, one obtains1060

∫ ∞

0
e−ρt

∫ t

0
E
[1
2(ϑi

s)2 + rs − ρ
]
ds dt.

Since all experts are assumed to be price-takers, the interest rate rt is independent of ιit.
Therefore, one has to maximize

E
[1
2(ϑi

t)2
]
.

An ω-wise maximization leads to the first-order condition

ϑi
t

(
Φ′(ι̂it) − 1

qt

)
= 0.

1059 More specifically, Itô’s formula is applied to the function f(t, x) = ni
0e

−ρt/x.
1060 See Hassler (2016, Proposition 8.2 on p. 182).
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By the concavity of Φ, it can easily be verified that the maximum is attained if

Φ′(ι̂it) = 1
qt

or ι̂it = Ψ
(

1
qt

)
as long as ϑ̂i

t > 0 (C.18)

where Ψ is the inverse function of Φ′. Inserting the optimal re-investment rate process in
(C.16) and (C.12) leads to the optimal wealth and consumption process of expert i. It
remains to determine the optimal fraction of wealth invested into capital. On the one
hand, the dynamics of the optimal wealth process is given by (C.16) if one replaces ϑi

t

with ϑ̂i
t. On the other hand, inserting (C.15) and (C.18) into the dynamics of the wealth

process given by (5.21), one obtains

dni
t =

[
(a− ι̂it)
qt

+
(
Φ(ι̂it) − δ + σϕH,ε

t + µq
t + εH−1/2σσq

t

)]
xi

tn
i
t dt

+ (1 − xi
t)rtn

i
t dt− ρni

t dt+ (σεH−1/2 + σq
t )xi

tn
i
t dWt. (C.19)

A comparison of (C.16) with (C.19) leads to the equations

[
(ϑ̂i

t)2 + rt − ρ
]
ni

t =
[

(a− ι̂it)
qt

+
(
Φ(ι̂it) − δ + σϕH,ε

t + µq
t + εH−1/2σσq

t

)]
xi

tn
i
t

+ (1 − xi
t)rtn

i
t − ρni

t

and ϑ̂i
tn

i
t = (σεH−1/2 + σq

t )xi
tn

i
t. Solving both equations for xi

t leads to the optimal fraction
of wealth to be invested in capital

xi
t = ϑ̂i

t

(σεH−1/2 + σq
t ) if ϑ̂i

t > 0 and xi
t = 0 otherwise. (C.20)

C.2.3 Proof of Proposition 5.3.3

Recall that the wealth process follows (5.25). Let the discounted wealth process be defined
by

˜̃nj
t := exp

(
−
∫ t

0
rs ds

)
ñj

t . (C.21)

By applying Itô’s formula (see (C.3) in Appendix C.1) to f(t, x) = exp
(
−
∫ t

0 rs ds
)
x, one

obtains

d˜̃nj
t = −rt

˜̃nj
t dt+ exp

(
−
∫ t

0
rs ds

)
(ñj

trt − c̃j
t) dt = −exp

(
−
∫ t

0
rs ds

)
c̃j

t dt. (C.22)
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This implies

¯̃nj
0 = E

[
˜̃nj

t +
∫ t

0
exp

(
−
∫ s

0
ru du

)
c̃j

s ds
]

≥ E
[∫ t

0
exp

(
−
∫ s

0
ru du

)
c̃j

s ds
]
,

since ˜̃nj
0 = ñj

0 = ¯̃nj
0 and ˜̃nj

t ≥ 0. Applying the monotone convergence theorem, one
obtains1061

E
[∫ ∞

0
exp

(
−
∫ s

0
rs du

)
c̃j

s ds
]

≤ ¯̃nj
0.

This equation can be interpreted as a budget constraint in the sense that total expected
discounted future consumption expenditures cannot be larger than the initial wealth. It is
clear that for the optimal consumption process, this constraint is binding. One can now
set up a Lagrangian function with corresponding multiplier λ to solve the maximization
problem:

E
[∫ ∞

0
e−ρt log

(
c̃j

t

)
dt
]

− λ
(

¯̃nj
0 − E

[∫ ∞

0
exp

(
−
∫ t

0
rs ds

)
c̃j

t dt
])
.

Again, an ω-wise maximization leads to the first-order condition

e−ρt 1
ˆ̃cj

t

+ λexp
(

−
∫ t

0
rs ds

)
= 0

and thus
ˆ̃cj

t = − 1
λ
e−ρtexp

(∫ t

0
rs ds

)
= ¯̃nj

0ρe
−ρtexp

(∫ t

0
rs ds

)
, (C.23)

where the last line uses the budget constraint to solve for λ = −1/(¯̃nj
0ρ). Inserting (C.23)

in (C.22), leads to

˜̃nj
t = ˜̃nj

0 −
∫ t

0
exp

(
−
∫ s

0
ru du

)
ˆ̃cj

s ds = ˜̃nj
0 −

∫ t

0
¯̃nj

0ρe
−ρs ds = ¯̃nj

0e
−ρt,

and finally with (C.21), one obtains

ˆ̃nj
t = ¯̃nj

0e
−ρtexp

(∫ t

0
rs ds

)
.

The latter equation implies that ˆ̃cj
t = ρˆ̃nj

t .

1061 See, e.g., Klenke (2013, Satz 5.3 on p. 104).
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C.2.4 Proof of Lemma 5.3.4

The optimal aggregate wealth of experts follows the dynamics

dNt =
[
ϑ̂2

t + rt − ρ
]
Nt dt+ ϑ̂tNt dWt

=
(εH−1/2σ

ηt

)2

+ rt − ρ

Nt dt+ εH−1/2σ

ηt

Nt dWt,

see (C.16). It follows from (5.31) that the value of the capital stock qKt evolves according
to

d(qKt) =
(
Φ(Ψ(1/q)) − δ + σϕH,ε

t

)
qKt dt+ σεH−1/2qKt dWt

=
(
rt − ρ+ (εH−1/2σ)2

ηt

)
qKt dt+ σεH−1/2qKt dWt.

Applying Itô’s formula for ratios (see (C.8) in Appendix C.1) leads to

dηt

ηt

=
(εH−1/2σ

ηt

)2

+ rt − ρ−
(
rt − ρ+ (εH−1/2σ)2

ηt

)
+ (εH−1/2σ)2 − (εH−1/2σ)2

ηt

 dt
+
[
εH−1/2σ

ηt

− εH−1/2σ

]
dWt.

Rearranging terms proves the statement.

C.2.5 Proof of Lemma 5.4.1

It follows directly from (5.44), that

EKt = K0 exp
((

Φ (Ψ(1/q)) − δ − (εH−1/2σ)2

2

)
t

)
E
(
exp

(
σZH,ε

t

))
, (C.24)

i.e., it suffice to calculate E
(
exp

(
σZH,ε

t

))
.

Recall the definition of ZH,ε from (5.6), i.e., ZH,ε
t =

∫ t

0
(t − s + ε)H−1/2 dWs. It follows

from the properties of the Itô integral that ZH,ε is normally distributed with mean zero
and variance

∫ t
0(t− s+ ε)2H−1 ds.1062 Thus, it yields

var(ZH,ε
t ) =

∫ t

0
(t− s+ ε)2H−1 ds = 1

2H
(
(t+ ε)2H − ε2H

)
.

1062 See Shreve (2004, p. 173).
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Consequently, the variable exp
(
σZH,ε

t

)
is log-normally distributed with mean1063

exp
(
σ2

4H
(
(t+ ε)2H − ε2H

))
.

Plugging this back into (C.24) proofs the stated result.

C.3 A Note on the Equilibrium Price

This appendix briefly outlines why (5.32) determines the model’s equilibrium price uniquely.
To see this, let within this section, f(x) = a− Ψ(1/x) and g(x) = ρx, i.e., f(qt) and g(qt)
correspond to the right-hand and left-hand side of (5.32), respectively. The equilibrium
price qt is the solution to f(qt) = g(qt).

Before the solution is established, one can see from the monotonicity of both functions f
and g that it has to be unique if a solution exists. More specifically, assume that there are
two solutions x1 and x2 to f(x) = g(x) with x1 6= x2. Without loss of generality, assume
that x1 < x2, then

g(x1) = f(x1) > f(x2) = g(x2),

since f is monotonically decreasing. By the definition of g, however, the latter equation
corresponds to ρx1 > ρx2, which contradicts the assumption of x1 < x2.

The existence of a solution is given in the following. Since Ψ is the inverse function of
Φ′ and Φ′′ < 0 by assumption, one knows that Ψ′ < 0.1064 Consequently, f ′ < 0 and,
since ρ > 0, g′ > 0. Recall, from Section 5.2.1 that Φ′(0) = 1. Therefore, one knows that
Ψ(1) = 0 and, thus, f(1) = a and g(1) = ρ.

Obviously, if a = ρ, a solution is given by qt ≡ 1. If a < ρ, then f(1) = a < ρ = g(1).
By the monotonicity of f , one thus knows that f(x) > a for all x < 1. One has to find a
value of x = x∗ < 1, such that g(x∗) > f(x∗). By assumption x∗ = a/ρ < 1 and by the
definition of g, g(x∗) = a. Since f(x) > a for all x < 1, it follows that g(x∗) < f(x∗). In
summary, one has that

f(1) − g(1) < 0 and f(x∗) − g(x∗) > 0.

Since both functions f and g are continuous in x, the intermediate value theorem implies
1063 See Hassler (2016, p. 166).
1064 Essentially, this follows from the fact that the inverse function shares the same monotonicity properties

as the original function, see Ovchinnikov (2021, p. 81).
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that there has to be x̂ ∈ [x∗, 1] with f(x̂) − g(x̂) = 0, i.e., x̂ is the unique solution and
the corresponding equilibrium price satisfies qt ≡ x̂.1065 An analogous argument can be
established in the case of a > ρ.

Moreover, if a < ρ, the equilibrium price is smaller than 1; on the contrary, if a > ρ, the
equilibrium price is larger than one.

1065 See Ovchinnikov (2021, Theorem 3.18 on p. 77) for a statement of the intermediate value theorem.
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