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Abstract: Collective systems self-organize to form globally ordered spatiotemporal patterns. Finding
appropriate measures to characterize the order in these patterns will contribute to our understanding
of the principles of self-organization in all collective systems. Here we examine a new measure based
on the entropy of the neighbor distance distributions in the characterization of collective patterns. We
study three types of systems: a simulated self-propelled boid system, two active colloidal systems,
and one centimeter-scale robotic swarm system. In all these systems, the new measure proves
sensitive in revealing active phase transitions and in distinguishing steady states. We envision that
the entropy by neighbor distance could be useful for characterizing biological swarms such as bird
flocks and for designing robotic swarms.

Keywords: active matter; collective behavior; phase transition; order parameter

1. Introduction

Active matter systems consisting of self-propelled or driven individuals can self-
organize and form large-scale ordered spatiotemporal structures [1,2]. They serve as model
systems for non-equilibrium mechanics as their individual units break the time-reversal
symmetry [3] and local detailed balance [4]. They are ubiquitous across many scales, from
bird flocks [5], fish schools [6], and ant colonies [7] to bacteria colonies [8,9], artificial micro-
nano machines [10–17], and molecular motors [18,19]. Though these collective systems
differ widely in the sizes and levels of intelligence of their individual units, they share the
common characteristics of self-organization, i.e., local rules and behaviors determining
global properties and functions. Therefore, one of the fundamental challenges in the
study of collective systems is constructing appropriate measures based on local parameters
that reflect global properties or functions. Addressing this challenge will contribute to
our understanding of the principles of self-organization in all collective systems and is
meaningful for both understanding the living systems and designing artificial systems.

Collective systems are often analyzed from the perspective of the statistical mechanics
of particles. In this approach, the change in the spatiotemporal patterns of a collective
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system can be characterized by an order parameter, akin to the characterization of phase
transition in equilibrium systems. In the seminal work of Vicsek, the average velocity was
used as the order parameter to study the phase transition of collectives of self-propelled
particles [20]. This average velocity is the vectorial mean of individual self-propelled
particles and thus reflects the degree of alignment of the whole collective. This average
velocity, however, does not reflect the degree of order based on the positions of individual
units. Positional orders of static structures are mostly analyzed according to the symmetries
of point groups, a typical example being crystal structures. Analyzing dynamic spatiotem-
poral patterns of collective systems poses challenges for this approach because the relative
positions between individual units vary over time.

An alternative approach is to analyze the spatiotemporal patterns from the perspec-
tives of information. This approach has a long history but is under resurgence recently.
The connection between structure and information can be traced back to the idea of an
“aperiodic crystal” in living systems by Erwin Schrödinger, which foretold the discovery of
DNA [21]. Following the ideas of Kolmogorov–Chaitin (KC) complexity, proposed in the
1960s to quantify the amount of information that one computer program carries, Martiniani
et al. recently proposed computable information density (CID) to measure the information
contents contained in the structures of non-equilibrium systems [22]. Following the spirit
of KC complexity, Mackay and Cartwright noted that structures also have repetition and
redundancy, just the same as computer programs, and they proposed assembly complexity
to measure the amount of information a structure carries [23]. Other researchers seek to
apply the formalism of Shannon entropy to characterize structures. For example, Frenkel
et al. proposed Voronoi entropy (VE) to quantify the symmetry and orderliness of two-
dimensional microdroplet clusters and compared it with continuous symmetry measure
(CSM) [24]. As another example, the Shannon entropy could be used to quantify the
degree of order in crystallography and the complexity of the inorganic crystal [25,26]. In
addition, information theory has been widely applied to crystallography and has given
rise to chaotic crystallography [27]. Building on these ideas, we recently proposed the
entropy by neighbor distance HNDist as a measure of the order of the collective pattern
generated by micron-scale spinning rafts driven by magnetic fields [28]. This measure
can distinguish various patterns of hundreds of units at different rotating frequencies of
magnetic fields and is even sensitive to different local symmetries of individual rafts. As a
natural extension, we want to ask the following question: How well does this new measure
generalize to other collective systems?

Here, we extend the new measure entropy by neighbor distance HNDist to three types
of systems: a simulated self-propelled boid system, two active colloidal systems, and one
centimeter-scale robotic swarm system. In the simulated boid system, we compare HNDist
with the average velocity va in characterizing the change in spatiotemporal patterns. We
compare the situation where neighbors are defined by metric pairwise distances with the
situation where neighbors are defined by topology and find that HNDist is more sensitive
for the latter case. In active colloidal systems, we demonstrate that HNDist correlates well
with the system’s response to external stimuli and can also distinguish different steady-
state patterns. We analyze the impact of bin size in the calculation of HNDist. In the
centimeter-scale robotic swarm system, we show that HNDist can track the overall progress
of self-organization and distinguish different steady-state patterns. Moreover, the analysis
of circular agents assembled into the configuration of the 26 letters in the alphabet shows
the shape dependence of HNDist. We expect that these results will further stimulate efforts
to apply HNDist in other areas, particularly in biological systems and microrobotic systems.

2. Results and Discussion
2.1. Simulated Boid System

We adopt a discrete-agent model with point-like boids whose dynamics are governed
by three rules: cohesion, separation, and alignment [29]. Cohesion and separation cause
the attractive and repulsive interactions between neighboring boids, respectively, and the



Micromachines 2023, 14, 1503 3 of 12

alignment rule causes a boid to align its heading direction with the average of its neighbors.
The sum of these interactions is scaled by a coefficient S, the steering factor, and then
added to the velocity of the boid in order to get the new velocity of the boid at the next
time step. The steering factor S adjusts the relative weight between the influence of the
neighbors and the inertial of the boid. We use two methods to define neighbors in our
simulation. The first one is through metric distance: If two boids are within a certain
threshold distance, they are neighbors. The second one is through topology: We construct
Voronoi tessellations to determine neighboring pairs. The initial position and velocity
direction of all boids are random (assuming uniform distribution throughout the entire
interval), and the amplitude of the velocity is kept constant. At each step of the update
on velocity, we introduce noise in the direction of velocity to investigate the effect on the
collective patterns. A detailed description of the model of the simulation is included in the
method section. Two representative videos are included in the Supplementary Video S1.

First, we use the result of a representative single simulation run to demonstrate the
temporal evolution of the collective patterns (Figure 1). This run is performed with the
condition of zero noise, and the neighbors are defined by topology. Figure 1a shows
the patterns of boids at several key time steps. In the beginning, the positions and the
directions of velocities of boids are random. As the simulation progresses, the directions of
the boids are gradually aligned. Figure 1b,c show the quantification of these patterns of
boids. Figure 1c shows that va starts at zero in the initial state and continues to increase
until reaching near the maximum value of 1 after ~40,000 steps, while the topological
structures revealed by HNDist do not appear to change much before 40,000 steps, and the
value of HNDist only starts to decrease after 40,000 steps, and then reaches a plateau after
80,000 steps (Figure 1b). This change in HNDist is reflected by the increase in uniformity
of the distribution of boids in the patterns. The comparison of Figure 1b,c shows that the
velocity alignment is faster than the change in topology structures in the patterns of the
boids model. It demonstrates that the order of the velocity direction and the topological
structure are not equivalent, so these two measures characterize different aspects of the
collective patterns.

Next, we explore the effect of noise in boid velocity updates and the effect of two
different methods of defining neighbors on the characterization of collective patterns by
HNDist and va (Figure 2). Noise is added to the angle component of the velocity update at
each time step, vi(t + ∆t) = Vv̂ + (θi + ∆θ)θ̂, where V is the constant speed of all boids,
and a random variable ∆θ is added to the angular component of the velocity. Then, ∆θ is
drawn from a uniform distribution [−η, η], and η is the noise factor that is varied from
0 to 7◦. We run the simulations with different noise factors and take the data of the last
1000 steps when the simulations reach steady states.

In the situation where the neighbors are defined by topology (Figure 2a), after the
final steady-states are reached, the magnitude of the averaged velocity va decreases as
the noise factor η increases, whereas entropy by neighbor distance HNDist increases as η
increases. The onset of the change in va and HNDist also differ: HNDist is sensitive to the
initial small noise, whereas va is robust to the small noise and only decreases appreciably
when η reaches 3◦ ∼ 4◦. Intuitively, noise influences the velocity direction directly, but the
small noise does not greatly change the velocity alignment, so va is relatively stable with
the small noise. However, because HNDist is based on the topological structure, a small
fluctuation may cause the change of the topology. For example, the number of neighbors in
a hexagonal lattice could change from 6 to 5 or 7 because of a small shift in the position
of one vertex. This sensitivity explains why HNDist increase dramatically at the beginning.
Therefore, these two measures are again complementary: one for the topological order and
the other for the alignment order.

In situations where neighbors are defined by metric distances (Figure 2b), va still
exhibits a significant decrease as the noise factor η increases, whereas HNDist shows little
changes as η increases. We suspect that the reason for the negligible change in HNDist is
that boids may interact with a lot more neighbors when the neighbors are defined by metric
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distances than when the neighbors are defined by topological structures, and hence they
tend to form big clusters in the final steady state. This tendency of cluster formation is
relatively robust to the disturbance of noise. Therefore, HNDist shows negligible changes.
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Figure 1. The analysis of one representative simulation run of the boid system (S = 0.1, topological
neighbors), using entropy by neighbor distance HNDist and magnitude of the averaged velocity va

(a) representative patterns at several key timesteps: arrows represent the velocity directions of boids.
(b) the evolution of va, (c) the evolution of HNDist.

2.2. Active Colloids

Active colloidal systems include self-propelled microparticles [30–32] and external
field-driven microparticles [33–35]. They not only serve as model systems for research
on non-equilibrium physics [36–38] but also are used as microrobots for biomedical and
environmental applications [39–41]. One of the striking phenomena in active self-propelled
particles is that they could experience so-called motility-induced phase separation (MIPS)
with purely repulsive interactions, which is impossible for passive colloidal particles
without attraction. This phenomenon has been observed in both simulations and experi-
ments [7,42,43].

One of the representative models for MIPS is the light-activated colloidal particles. For
example, Palacci et al. used a suspension of synthetic photoactivated colloidal particles [44],
and they observed that when the blue light is on, homogeneously distributed particles
began to assemble into clusters with an average size of 35 particles (~10 µm). They claim
that the osmotically driven motion and steric hindrances (collisions) are necessary for the
formation of “living crystals”. We tracked the particles in a video of living crystals and
performed analysis using HNDist (Figure 3a and Supplementary Video S2). HNDist captures
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the three stages of the whole process: clustering (light on), dispersed (light off), and again
clustering (light on). Turning on the light causes the particles to move, which induces MIPS,
making the structure more ordered and clustered, and thus causing HNDist to decrease, and
the reverse is true for the dispersed phase.
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steering factor S is 0.001 in all cases. The error bars indicate the standard deviations obtained in at
least three independent runs. (a) Neighbors are defined by topology. (b) Neighbors are defined by
metric distance.

Further, we explore the influence of bin sizes on calculating HNDist. Figure 3b shows
that the trends differ when the bin sizes are smaller or larger than the radius R of the
particles (3 px). For example, at 23 s (light off) the HNDist increases or decreases for the bin
sizes smaller or larger than R, respectively. In addition, the downward trend that appeared
in 34 s (light on) is not well reflected in the three curves whose bin sizes are larger than R.
The analysis of HNDist,norm also shows that the trend in the three curves whose bin sizes
are smaller than R is similar (Figure 3c).

To explain the effect of the bin sizes on HNDist, we check the histograms. When the
bin size is too large, small changes in separation distances are not accounted for, resulting
in HNDist being not sensitive enough, such as the comparison before and after 23 s (light
off). Figure 3d shows that after 23 s, the distribution near the first peak increases when
the bin size is 1 px, which contributes to the increase of HNDist, whereas it is difficult to
capture these small changes in distributions when the bin size is 10 px. Furthermore,
by comparing the histograms at the beginning and at the end, we find that the initial
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neighbor distance distribution is concentrated in the range below 100 px. If the bin size is
too large, the corresponding HNDist of the initial dispersed state will be smaller than the
final aggregated state, which is inconsistent with our intuition. Therefore, we think that
bin sizes smaller than the radius of particles are good choices for the analysis of collective
microscopic patterns.
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Figure 3. The analysis of light-activated colloidal surfers system using entropies by neighbor distances.
(a) Temporal evolution of HNDist (bin size = 1 px). (b) HNDist of different bin sizes (px). (c) Temporal
evolution of HNDist,norm with different bin sizes (px). (d) Histogram of neighbor distance distribution
at four critical moments with bin size 1 and 10 px. The original video is from the Ref. [44].

Another typical type of experimental model of active colloids is the electric-field-
activated colloidal particles. Snezhko et al. used pear-shaped dielectric particles confined
inside a cylindrical cell to introduce chiral rollers with activity-controlled curvatures of
their trajectories and spontaneous handedness of their motion [45]. By controlling activity
through variations of the static (DC) electric field applied perpendicular to the bottom
surface of the cell, they showed emergent dynamic phases, ranging from a gas of spinners
to aster-like vortices. We tracked the particles in two of their published videos and demon-
strate that HNDist could distinguish a gas-like steady state and an aggregated steady state
easily (Figure 4a and Supplementary Video S3).

Furthermore, the two states remain distinguishable as long as the bin sizes are smaller
than the radius of the particles (R = 10 px), which reflects the robustness of HNDist,norm in
distinguishing patterns with large differences in their orders (Figure 4b). In examining the
non-normalized HNDist, we find that HNDist decreases with increasing bin sizes (Figure 4c).
Different bin sizes cause the overlapping of curves of the two states, and the fluctuation
of non-normalized HNDist of the gas state is greater than that of the aggregated state.
Figure 4d shows that the standard deviation (std) of the gas state is nearly three times that
of aggregated state. In addition, the values of standard deviations are stable under different
bin sizes, which provide additional support for choosing the bin size smaller than R, as the
previous case suggests.
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reference [45].

2.3. Robotic Swarm

Swarm robotics is the study of a large number of robots that can spontaneously
determine their next move by exchanging information, such as their position and speed,
with neighboring individuals, and self-organize into the desired configuration without
sending and receiving direct control commands from external supervisors such as a base
station or a human overseer [46]. This bionic intelligent control system takes inspiration
from the self-organized behaviors of social animals and has important applications in
many fields ranging from farming and food management, to military defense and space
systems [47].

Nagpal et al. demonstrate a thousand-robot swarm (dubbed kilobots) capable of large-
scale, flexible self-assembly of two-dimensional shapes entirely through programmable
local interactions and local sensing [48]. Specifically, they developed a collective algorithm
that enables 1024 robots, each with limited capabilities, to cooperatively assemble into some
pre-designed shapes. We picked two of their published videos: the assembly of the letter
K-shape and starfish shape, and we tracked the robots during the self-assembly process
(Figure 5a,b and Supplementary Video S4). HNDist show a continuous gradual increase
in both self-assembly processes and thus can be a sensitive measure for the progress of
the programmable self-assembly. Moreover, the final values of HNDist for the two shapes
differ, which suggests HNDist may be used as an indicator for reconfigurable kilobot self-
assemblies as well.

To further demonstrate that HNDist is shape-dependent, we simulate robot swarms
assembled into configurations of 26 letters in the alphabet. We first create a densely
packed lattice composed of circles of equal diameter, and then obtain the configurations of
letters by masking the lattices with corresponding shapes (Figure 5c). These letters show
different entropy values (Figure 5d). These differences are due to the circles along the edges:
Even though the configurations are all based on the square lattice, their edge profiles are
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quite different, and the units on edges can show significantly different neighbor distances,
resulting in different neighbor distance distributions. This finding may be useful for the
design of control algorithms for robotic swarms.
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Figure 5. The analysis of the self-assembly process in the kilobot swarm using HNDist. (a) K-shape.
(b) Starfish shape. The original videos are from the Ref. [48] (c) simulated robot swarm assembled
into shapes of letters. (d) HNDist of 26 letters in the alphabet.

3. Conclusions and Discussion

In summary, we extend HNDist into three types of active systems and prove its useful-
ness in characterizing the spatiotemporal patterns of these systems. In the active colloid
systems and robotic swarm systems, we have analyzed published videos of experiments
and showed HNDist as a useful indicator of pattern changes and a measure to distinguish
different steady states. In the simulated boid system, we showed that HNDist is a sensitive
measure of phase transitions and can reveal the existence of noise. We further found that
HNDist is more sensitive to situations where neighbors are defined by the topological struc-
tures instead of metric distances. Field studies of starling flocks show that the interactions
of birds depend on topological distance rather than metric distance, and each bird only
interacts with six to seven neighbors on average [49]. Accordingly, we surmise that HNDist
could be a sensitive measure for biological systems, including bird flocks.

We think that the reason why HNDist could accurately reveal the changes of patterns in
a variety of systems relates to the dominance of pairwise contribution to the configuration
entropy in a system. The configuration entropy of a system contains contributions from
multi-body correlation functions, and Duane Wallace et al. have shown that in simple
liquids the two-body excess entropy, which only involves the pair correlation function,
accounts for more than 90% of the configuration entropy [50–52]. We are currently inves-
tigating the fundamental relation between HNDist and two-body excess entropy, and the
results will be published in the future.

We also anticipate useful applications of HNDist in swarm robotics because a local
measure such as HNDist should in principle be very sensitive to the self-organization of
robots who only interact locally. For example, in recent years researchers have been
developing decentralized algorithms for robotic control so that they could self-organize
into certain patterns through local perception and communication between individuals to
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reduce the data transmission and communication cost between individuals and a central
control station [46,53,54]. HNDist could be used as an important measure for characterizing
the overall configuration and for fine-tuning local interaction to achieve specific functions.

4. Methods
4.1. Boids Simulation

We adopted a simplified discrete-agent model with point-like boids whose dynamics
are governed by the three rules: cohesion, separation, and alignment. Specifically, cohesion
means each boid will tend to gather together and move to the center of its neighbors.
Separation means if two boids get too close, they will tend to stay away from each other.
The alignment refers to boids will move along the same direction as their neighbors. The
size of the simulation box is 1000 × 1000 pixels. We employ a periodic boundary condition.

â Algorithm

The interaction between boids includes separation, alignment and cohesion force:
Fi,sep = ∑

j∈ϕ

(ri−rj)

|rij|2

Fi,alg =
∑j∈ϕ vj

ni
− vi

Fi,coh =
∑j∈ϕ rj

ni
− ri

(1)

where ϕ is the set containing all neighbors of ith boid.
To eliminate the influence of the absolute value of three kinds of interaction, we

normalized these three parameters to obtain the total force:

Fi =
Fi,sep∣∣Fi,sep

∣∣ + Fi,alg∣∣∣Fi,alg

∣∣∣ + Fi,coh

|Fi,coh|
(2)

Thus, we define the direction of movement at the moment t + ∆t as:

θi(t + ∆t) = arctan
(

vi(t) + S · Fi
|vi(t) + S · Fi|

)
(3)

where S is the steering factor, which controls the relative weight between the influence
from neighbors and the influence from the velocity of the boid. We tune S in the range from
0.001 to 0.1.

The velocity at moment t + ∆t has contributions from v̂ and θ̂,which represent the
radial and angular components separately:

vi(t + ∆t) = Vv̂ + (θi + ∆θ)θ̂ ∆θ ∈ [−η, η] (4)

where V is the constant speed, ∆θ is a random variable drawn from a uniform distribution,
and η is the noise factor in degree.

Then we could get the exact position of ith agent for the next moment by:

xi(t + ∆t) = xi(t) + vi(t + ∆t)∆t (5)

â Definition of neighbors who has mutual interaction

We defined neighbors who have influence on each other in two different ways. For
metric distance standard in two-dimension, the set of neighbors ϕ includes all units within
the circle whose radius is R center at particle i. The second way is defined by topology
structure. Particularly, we perform Voronoi tessellation, and the neighbors are defined by a
convex polygon.
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4.2. Data Analysis

â Calculation of average velocity va

The average velocity is the sum of the velocity of all boids:

va =
1

NV

∣∣∣∑i∈S vi

∣∣∣ (6)

where S is the set of all boids.

â Calculation of Entropy by neighbor distance HNDist

In calculating HNDist, the neighbor always refers to topological neighbors. After
determining neighbors by Voronoi tessellation, we obtain the distance between each agent
and its neighboring agents. Then we count the neighbor distances of all agents to obtain
the neighbor distance distribution of the overall configuration. We apply the formular of
the Shannon entropy to calculate the entropy by neighbor distance

HNDist = −∑i pilog2(pi) (7)

where pi = Xi/X is the probability of a neighbor distance that falls within a distance
interval (a bin) labeled by index i, X is the total count of all neighbor distances of all agents,
and Xi is the count of the neighbor distances in bin i.

For the convenience of comparison, the normalized HNDist was introduced as:

HNDist,norm =
−∑i pilog2

(
pi
wi

)
−log2(∑i wi)

(8)

where wi is the bin size.

â Particle tracking

The image sequences were analyzed to investigate the structure and dynamics of the
self-propelled active colloidal particles and robotic swarm. Particle tracking was performed
by Python package Deeptrack (https://github.com/softmatterlab/DeepTrack2 (accessed
on 23 July 2023)) [55] and Trackpy (https://soft-matter.github.io/trackpy/dev/index.html
(accessed on 23 July 2023)) to identify the 2D location of each agent. The xy coordinates of
the agents were used to calculate HNDist and characterize the structural order in the systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi14081503/s1, Video S1. Boid simulation. Video S2. HNDist
analysis of a video of “living crystals”. Video S3. HNDist analysis of a video of active chiral spinners.
Video S4. HNDist analysis of two videos of kilobots self-organization.
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