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Abstract: Fermentation processes used for producing alcoholic beverages such as beer, wine, and cider
have a long history, having been developed early on across different civilizations. In most instances,
yeast strains are used for fermentation processes, e.g., at breweries and wineries. Monitoring of yeast
viability, cell count, and growth behavior is essential to ensure a controlled fermentation process.
However, classical microbiological techniques to monitor fermentation process parameters are time-
consuming and require sampling, along with the risk of contamination. Nowadays, industries are
moving toward automation and digitalization. This necessitates state-of-the-art process analytical
technologies to ensure an efficient and controlled process to obtain high-quality product outputs.
Hence, there is a strong need for a fast, non-invasive, and generally applicable method to evaluate
the viability of yeast cells during fermentation to warrant the standardization and purity of produced
products in industrial applications. The aim of our study is to discriminate between viable and
non-viable yeast in various culture media using Raman spectroscopy (RS) followed by data analysis
with machine learning (ML) tools. These techniques allow for rapid, non-invasive analysis addressing
the limitations of traditional methods. The present work primarily focuses on the evaluation of RS
combined with predictive ML models in a non-real-time setting. Our goal is to adapt these techniques
for future application in real-time monitoring and determination of yeast viability in biotechnological
processes. We demonstrate that RS, in combination with ML, is a promising tool for non-invasive
inline monitoring of fermentation processes.

Keywords: process analytical technology (PAT); yeast viability; fermentation process; Raman
spectroscopy; machine learning

1. Introduction

Beer, wine, cider, and other alcoholic beverages have been part of our civilization for
thousands of years even before their scientific underpinnings were fully understood. It
was only in the 19th century that Louis Pasteur was able to prove that yeast is an essential
driver in alcoholic fermentation [1]. Ethanol production is primarily a consequence of
anaerobic conditions created by rapid yeast growth along with increasing nutrient and
sugar limitations; this eventually leads to active fermentation metabolism and, finally, in-
creased ethanol production [2]. In most instances, yeast strains currently used in industrial
fermentation processes at breweries and wineries belong to the Saccharomyces cerevisiae
(S. cerevisiae) species. This yeast species is highly efficient in the alcoholic fermentation
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processes due to its ability to convert sugar into ethanol, its high fermentation power, and
adaptability to changing conditions during biotechnological use [3]. After many years of
classical industrial production, where process parameters are monitored offline and re-
quire sampling as well as time-consuming analytical methods, the industry is now rapidly
moving toward digital transformation. Automated and digitalized processes allow for a
fully controlled, flexible, and highly efficient production process that ensures high-quality
products. This not only results in a standardized and cost-efficient production but also
reduces process-associated risks.

Increasingly, inline process analytical technologies (PATs) are applied for real-time and
in situ monitoring of parameters, such as pH, temperature, and dissolved oxygen. Thereby,
large amounts of data are collected that feed into the mathematical modeling of processes,
their prediction, and control. In high-value fields like biopharmaceutical production, PAT
is gradually replacing traditional standard physical sensors within reactors [4], suggesting
its potential use in other biotechnological processes, such as alcoholic fermentation.

At present, the production of alcoholic beverages requires monitoring yeast viability,
cell count, and growth behavior in order to ensure a controlled, constant, and reproducible
fermentation process [5]. State-of-the-art technologies to determine the number of viable
and non-viable cells include classical colony counting to determine the number of viable
cells. Non-viable cells are often determined by staining techniques using dyes like methy-
lene blue and slide culture procedures [6–8]. However, these microbiological techniques
are time-consuming and error-prone (e.g., they suffer from false positive results due to
long exposure times and subjective evaluations). Hence, there is a strong need for a fast,
non-invasive, and non-biased method to evaluate yeast cell viability during fermentation
processes to ensure high-quality products and prevent microbiological contamination.

Spectroscopical methods like Raman spectroscopy (RS) are very powerful tools for
the identification, quantification, and monitoring of metabolites or materials amenable
to non-invasive, real-time, and inline measurements, while avoiding sample preparation.
For example, non-invasive inline RS measurements are already being utilized in feedback
control systems to improve ethanol production, which enables the real-time quantitative
analysis of glucose and ethanol during S. cerevisiae fermentation [9–11]. Beyond that, RS
has the potential to serve as a powerful tool to identify, quantify, and monitor microbes,
representing a valuable technology for inline measurements of fermentation processes [12].
Namely, RS provides detailed information on the molecular level, a “fingerprint” that en-
ables the discrimination of closely related bacteria or the identification of bacterial contami-
nants in food products based on the analysis of Raman spectral differences [13–18]. Several
studies have been performed to evaluate the application of Raman imaging, e.g., for food
quality and safety control [19–21]. Yet, while non-destructive and highly precise [18], lim-
ited data exist for Raman-based methods for monitoring yeast in biotechnological brewing
processes. The present work, therefore, focuses on the initial evaluation of the effectiveness
of RS combined with predictive machine learning (ML) models for prospective real-time
monitoring and determination of yeast viability in biotechnological processes.

In this study, we obtained spectroscopic datasets of viable and heat-inactivated yeast
cells of different species and cultured them in different media to train ML models. Six ML
approaches were considered and their viability prediction performances were compared in
terms of the balanced accuracy (i.e., normalized values between zero and one, with the latter
representing 100% prediction accuracy). Furthermore, the influence of artificially added
noise on prediction accuracy was investigated to estimate the impact of imperfections in
actual ex vitro measurements.

2. Materials and Methods
2.1. Organisms and Growth Media

Two yeast strains used in this study, S. cerevisiae (ATCC 18824) and Dekkera bruxellensis
(Dekkera bruxellensis (D. bruxellensis)), formerly labeled as Brettanomyces bruxellensis, were
purchased from ATCC (Manassas, VA, USA) and White Labs Brewing Co. (San Diego, CA,
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USA), respectively. Yeast extract peptone dextrose (YPD) culture medium (20 g L−1 peptone,
10 g L−1 yeast extract, and 20 g L−1 glucose) were used for yeast cultivation. Yeast culture
was inoculated to a ratio of 1:500 in YPD medium followed by incubation at 32 °C and
170 rpm for 20 h or 72 h, respectively. These timespans were chosen due to laboratory
practicability and monitoring over time. For RS analysis, additional media (commercially
available beer and apple juice) were purchased and sterile-filtered (0.22 µm pore size).
Ultrapure H2O (Milli-Q) was used as the negative control.

2.2. Sample Preparation for Raman Spectroscopy

For sample preparation, grown cultures of S. cerevisiae and D. bruxellensis were pelleted
by centrifugation (5000× g, 5 min), washed with H2O, and adjusted to an optical density
(OD600) of 10 to ensure a constant amount of cells in each sample. For S. cerevisiae, 1 mL
of culture was incubated at 72 °C for 10 min followed by incubation on ice for one minute
(referred to as “heat-inactivated” in the following sections). Additionally, 1 mL of each
sample was kept at 32 °C, followed by incubation on ice for one minute (referred to as
“viable” in the following sections). For different media tested, S. cerevisiae cultures grown
in YPD were mixed with either sterile-filtered beer, apple juice, or water, and adjusted to
an optical density (OD600) of 10. For mixed samples, yeast cultures of S. cerevisiae and
D. bruxellensis (considered as artificial contamination) were adjusted to an OD600 value
of 10 in H2O followed by mixtures in different ratios, as stated in the following section.
From each sample produced, 20 µL were applied to lime soda slides (Carl Roth), followed
by air fixation for spectroscopic analysis.

2.3. Raman Spectroscopy

The RS analysis of samples was performed using an inViaTM Quontor Raman spec-
troscope (Renishaw plc, Wotton-under-Edge, United Kingdom). Raman spectra of 50 to
60 randomly selected yeast cells of several sections in each sample were obtained us-
ing a 100× dry objective (0.85 NA) with a 45 W 532 nm laser adjusted to an intensity of
10% and 1 s exposure. To reduce background noise, each measurement was accumulated
ten times for each cell. Raw data acquisition was obtained in a spectral detection range of
283 cm−1 to 2016 cm−1. The scattered radiation was passed through a notch filter, focused
onto a monochromator with 1800 lines mm−1 grating, and detected by a Peltier-cooled CCD
camera (1024 pixel × 256-pixel sensor).

2.4. Dataset Composition

Acquired datasets of S. cerevisiae were categorized into 10 different groups, depending
on the condition (viable, heat-inactivated), background media (YPD, beer, apple, juice and
H2O) and different time points of the measurements (20 h and 72 h) for the analysis, as listed
in Tables 1 and 2. In addition, two mixed-sample models were produced to simulate more
realistic conditions, as listed in Table 3. Mixed samples were composed as follows: The
first set of samples consisted of 33% viable and 33% heat-inactivated S. cerevisiae cells
mixed with 33% viable D. bruxellensis culture for equal distribution. The second set of
samples consisted of 75% viable and 20% heat-inactivated S. cerevisiae culture mixed with
5% viable D. bruxellensis culture. Since D. bruxellensis shows, to some extent, similarity to
S. cerevisiae on the sequence level [22], it is suitable to demonstrate the contamination of
a sample with a related yeast strain. With respect to S. cerevisiae, the second mixture is
mostly heat-inactivated, whereas the first mixture contains the same ratio of viable and
heat-inactivated cells. In the scope of this work, we consider the first mixture as viable and
the second as heat-inactivated.
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Table 1. Total numbers of Raman spectra obtained from S. cerevisiae samples (viable or heat-
inactivated) in water (control). The corresponding dataset H2O was used for the ML task.

Yeast Strain Media
(Background)

Viable
Samples

Heat-Inactivated
Samples

Dataset

S. cerevisiae H2O 362 360 H2O

Table 2. Total Raman spectra numbers obtained from S. cerevisiae samples in different media in
analogy to Table 1.

Yeast Strain Media (Background) Viable Samples Heat-Inactivated Samples Dataset

S.
ce

re
vi

si
ae Apple juice 120 180 Apple

Beer 120 183 Beer
YPD 20 h 1127 1194 YPD-20
YPD 72 h 120 180 YPD-72

Table 3. Total numbers of Raman spectra obtained from mixture samples in analogy to Table 1.

Yeast Strain Media
(Background)

Samples Dataset

First mixture 1 (more heat-inactivated S. cerevisiae) H2O 1004
Mix

Second mixture 2 (more viable S. cerevisiae) H2O 708
1 Composition: 33% viable S. cerevisiae, 33% heat-inactivated S. cerevisiae, and 33% viable D. bruxellensis. 2 Compo-
sition: 75% viable S. cerevisiae, 20% heat-inactivated S. cerevisiae, and 5% viable D. bruxellensis.

3. Machine Learning Methods

As presented in Tables 1–3, we considered six datasets, which were compiled from
the RS experiments: H2O, Apple, Beer, YPD-20, YPD-72, Mix. Additionally, we combined
all datasets into a joint dataset All. Each dataset consists of spectroscopic data of yeast
samples, which are either viable or inactivated by heat. For the Mix dataset, we considered
the second mixture with 708 measurements as viable (since the majority of S. cerevisiae in
the mixture is viable) and the first mixture with 1004 measurements as heat-inactivated.

To summarize, the practically relevant goal was to identify the binary viability of yeast
(viable/heat-inactivated) from the spectroscopic data by means of pattern recognition: a
well-defined classification problem. That is, the ML task was to assign a class label—either
viable or heat-inactivated—for Raman spectra obtained from each single yeast cell measured
in the samples. In other words, we searched for an algorithm that allows the mapping

Raman spectrum→ binary yeast viability (1)

such that an RS of a yeast sample is sufficient for identifying its viability.
In the following, we first describe the data-processing pipeline that has allowed us

to cast the raw measurement data into a suitable form. Since we only performed in vitro
measurements, we also included a noising process in our pipeline that allowed us to induce
artificial noise to emulate a less ideal (i.e., ex vitro) scenario. In other words, we considered
the artificially induced noise as the presumed influence of potential ex vitro measurements
on the data in contrast to data from the actually performed in vitro measurements. Our
data-processing pipeline fully defines our classification problem. Subsequently, we briefly
describe the ML models that we use to solve this problem.

3.1. Data Processing Pipeline

Each raw dataset D := {d1, . . . , dN} consists of N data points of the form dn := (Kn, In),
which are composed of a vector of wave numbers Kn ∈ R1015

+ and a vector of corresponding
intensities In ∈ R1015 for n ∈ {1, . . . , N}. Furthermore, each dataset D is associated with a
yeast viability label y ∈ {0, 1}, where 1 represents viable and 0 represents heat-inactivated
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yeast. These labels constitute the ground truth. The wave numbers were measured in the
range of 283 cm−1 to 2016 cm−1, whereas the corresponding intensities were measured in
arbitrary detector units.

First, we performed a preprocessing of the data to transform it into a unified form
that is suitable for ML applications. For each data point n, five preprocessing steps
were used. We

1. Interpolated the intensities uniformly, such that they spanned the same
wavelength domain.

2. Rescaled the intensities to the unit interval.
3. Fixed a systematic error in the measurement results by linear interpolation for wave-

lengths in the range of 830.437 cm−1 to 864.667 cm−1. This systematic error is a direct
result of the hardware used in the experimental setup.

4. Performed a baseline correction.
5. Performed a standardization of the intensities.

To simplify the notation, we omit all measurement units in the following. A de-
tailed description and formal definition of the data-processing pipeline can be found in
Appendix A. For data point n, the resulting vector of wave numbers and the corresponding
intensity vector are denoted by K̃ and Ĩn, respectively. In Appendix B, we show the mean
En Ĩn

i and standard deviation Vn Ĩn
i of each preprocessed dataset, divided into data for

y = 1 (viable) and y = 0 (heat-inactivated) to emphasize the differences.
To simulate the effects of ex vitro measurements, we also considered data, which

have been perturbed by artificially generated noise. As formally described in Appendix A,
the absolute noise level is controlled by a parameter σ > 0 that can be chosen at will.
The resulting intensity vector for data point n is denoted by Ĩn(σ). We performed a
perturbation for all datasets for different values of σ ∈ [0, 0.05]. The signal-to-noise ratio
decreases as the perturbation σ increases, as visualized in Appendix B.

3.2. Classification Models

Formally, our goal was to predict the yeast viability y ∈ {0, 1} (viable or heat-inactivated)
from the measured Raman spectrum Ĩ. This corresponds to the classification problem

M : R1015 → {0, 1} (2)

as a formal representation of (1) mapping from features Ĩ to class labels y. For this purpose,
we propose five well-known ML approaches to solve this problem and comparatively
discuss their performances.

These approaches were chosen to represent conceptually different strategies [23,24].
The first three approaches constitute different kinds of ensemble methods based on a
collection of decision trees. An ensemble method combines a set of models with the goal
of creating a new model with better performance than the individual models from the set.
In our case, the individual models are decision trees. Each decision tree consists of a set of
binary decisions (i.e., inequalities for single features) that are traversed in a tree-like fashion
to predict class labels. The fourth approach is a variant of Bayesian inference, whereas the
last two approaches are established standard methods based on the optimization of a loss
function. Specifically, we consider the following six ML approaches:

1. Random forest classifier (RF) [25]. An RF is an ensemble method based on decision
trees, where each tree is trained on a random subset of the training dataset to enable
diversification and reduce overfitting. This ensemble strategy is also known as “bag-
ging”. The average of all decision tree predictions decides the resulting class label
prediction for the random forest classifier.

2. Gradient boosting classifier (GB) [26]. A GB is an ensemble method based on decision
trees similar to an RF. However, instead of relying on randomized diversification,
an ensemble strategy known as “boosting” is used. This strategy iteratively adds
decision trees to the ensemble with the goal of improving the resulting prediction.
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This strategy can lead to better overall models but is more vulnerable to overfitting
than an RF.

3. EXtreme Gradient Boosting classifier (XGB) [27]. An XGB is an extension of a GB
that includes various improvements with the goal of pushing gradient boosting to
its limits. However, it is not guaranteed that XGB generally performs better than GB;
therefore, we consider both approaches.

4. Gaussian process classifier (GPC) [28]. A GPC is based on Bayesian inference, where a
Gaussian process is used as a prior probability distribution. Such a Gaussian process
is defined by a collection of random variables with a joint Gaussian distribution. Due
to the Bayesian premise, the resulting model allows to assign an uncertainty to each
class label prediction.

5. Support vector machine classifier (SVM) [29,30]. An SVM is determined by the
solution of an optimization problem with the goal of finding a hyperplane in the
feature space that best distinguishes the class labels. We use a (radial basis function)
kernel machine that maps the feature into a higher-dimensional space to enable
non-linear separation.

6. Neural network (NN) [31]. A NN consists of a set of layers, each of which maps its
input to an output based on a predefined functional dependency that is determined
by a set of trainable parameters. The features constitute the input for the first layer
and the output of the last layer determines the class label predictions. A gradient-
based learning algorithm is used to optimize a loss function with the goal of choosing
trainable parameters that achieve the best class label prediction for the training data.
Neural networks are highly generic models that can be customized in many ways
due to their modular structure. However, this customization capability is, at the same
time, a challenge, as good architecture (i.e., design of layers) is not always obvious.
For this reason, we use a neural architecture search (NAS) algorithm to also optimize
the architecture of the neural network in addition to its parameters. Specifically,
we consider architectures with and without one-dimensional convolutions that are
typically used for data in the form of time series.

In Appendix C, we specify the details and parameters of the presented models. For fur-
ther reading, we refer to the cited references and references therein.

4. Results

In the current section, we present our numerical results for the yeast viability classifi-
cation task. We start with a proof of concept and consider the basic in vitro scenario for
yeast in water, which only involves the H2O dataset without artificial noise. Subsequently,
we show how well the proposed ML approaches perform in other media. Next, we study
the effect of mixtures of different yeast strains representing artificial contamination within
a sample and its influence on the model performances. Finally, we present the effect of
artificially imposed noise within our data-processing pipeline on the model performances
using different media and mixtures.

4.1. Proof of Concept: Predicting Yeast Viability

As a first study, we considered the H2O dataset as described in Section 3, which is
based on Raman spectra of S. cerevisiae in water (control) and free of artificial background
noise. In total, 722 Raman spectra were available for training and analysis purposes
according to Table 1. Based on this data, we evaluated how six different ML approaches
performed on the classification problem from (2). For each approach, we trained on the
preprocessed H2O dataset with a 10-fold cross-validation setup. That is, we split the dataset
into 10 parts (further referred to as “chunks”) of approximately the same size. Here, and in
the following, we used a so-called “stratified” approach, such that approximately the same
ratio of viable and heat-inactivated samples are present in each split. The models were
then trained independently on nine out of the 10 chunks, leaving one chunk remaining
for testing purposes. Consequently, each data point was used nine times as training data
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and once as test data for each model. The ten training runs resulted in ten classifiers for
each ML approach.

In Table 4 and Figure 1, we present the balanced accuracies of all ML approaches,
evaluated on the test dataset. The balanced accuracy represents the fraction of correct
predictions over all samples weighted by the respective amount of samples for each class,
such that class imbalances are accounted for [32]. This compensates for the fact that we have
slightly fewer heat-inactivated samples than viable samples in the dataset. The balanced
accuracy can attain values between 0 (worst, i.e., all predictions are wrong) and 1 (best, i.e.,
all predictions are correct), where a value of 0.5 is the score of a random guess. For each
ML approach, we obtained ten balanced accuracies based on the ten different data splits
and could, therefore, determine the corresponding means and standard deviations.

As listed in Table 4, we found in our study that the balanced accuracy ranges from
0.76 ± 0.03 for NN to 0.84 ± 0.03 for SVM. The remaining models achieved a balanced
accuracy of 0.82 ± 0.03 and 0.81 ± 0.02, respectively.

Table 4. Test performances of classifiers with the task to predict the viability of yeast in water. All
models were trained and evaluated on the H2O dataset. We used 10-fold cross-validation for each
model and show the mean and standard deviation of the balanced accuracy. These results are also
plotted in Figure 1. The best results are highlighted in bold type.

Training Data Test Data Model Balanced Accuracy

H2
O

H2
O

RF 0.82 ± 0.03
GB 0.82 ± 0.03
XGB 0.81 ± 0.02
GPC 0.82 ± 0.03
SVM 0.84 ± 0.03
NN 0.76 ± 0.03
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N
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0.80
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Figure 1. Test performances of classifiers for yeast viability prediction on the H2O dataset in the form
of boxplots. These results are also listed in Table 4.

4.2. Yeast Viability in Different Media

In the next step, we evaluated the performance of the models trained on the H2O dataset
predicting yeast viability in other media, i.e., the Apple, Beer, YPD-20, and YPD-72 datasets.
As listed in Table 2, these datasets originate from S. cerevisiae in YPD, beer, and apple juice,
as viable or heat-inactivated samples, respectively. Additionally, for YPD, two different time
points (20 and 72 h) are used. Our ML models of interest are all classifiers that were trained
on S. cerevisiae in H2O (control) with 10-fold cross-validation, as presented in Section 4.1.
That is, we have ten trained classifiers for each ML approach.

As a first numerical experiment, we used the datasets Apple, Beer, YPD-20, and YPD-72
as inputs for each of these trained models and predicted the class labels (without retraining),
i.e., we used the models that were trained only with Raman spectra of yeast in water to
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predict the viability of yeast in other media. Based on these predictions, we evaluated
the balanced accuracy. The results are presented in Table 5 (a) and Figure 2. We found
that previously trained classifiers showed a rather poor performance on yeast in other
media, ranging from 0.49 ± 0.00 for RF, GB, XGB, and SVM on YPD-20 to 0.60 ± 0.01 for
SVM on Apple. We recall that a balanced accuracy of 0.5 corresponds to a random guess.
Hence, these results indicate that the application of ML models that have only been trained
on control samples (i.e., S. cerevisiae in water) are not suitable for the discrimination of
viable and heat-inactivated yeast cells in other media. Consequently, it seems mandatory
for practical applications to train individual ML models for each background medium
of interest.
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(a) Apple
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(b) Beer
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(d) YPD-72

Figure 2. Test performances of classifiers trained on H2O for yeast viability prediction in other media.
The results are also listed in Table 5 (a).

As a consequence of these findings, we trained new models on each dataset separately,
following the approach detailed in Section 4.1. That is, we considered the same four datasets
as before (Apple, Beer, YPD-20, and YPD-72) and trained ten classifiers on each dataset for
each ML approach using 10-fold cross-validation. With this approach, we checked if the
predictive performance could be increased with different data. The results are presented
in Table 5 (b) and Figure 3. Indeed, we found that for all datasets tested in this approach,
the performances of ML models significantly improved compared to models that were
only trained on H2O. The resulting balanced accuracy ranged from 0.73 ± 0.05 for NN
on Beer to 0.97 ± 0.03 for GPC and SVM on Apple. To enable a better comparison, we
show the balanced accuracies of classifiers trained on datasets with yeast in media as solid
boxplots in Figure 3, whereas the classifiers from Figure 2 (that were trained on H2O) are
displayed opaquely.
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Table 5. Test performance of classifiers with the task of predicting the viability of yeast in different
media. We show the mean and standard deviation in analogy to Table 4. These results are also plotted
in Figures 2 and 3, respectively. The best results are highlighted in bold type.

(a) Trained on H2O, evaluated on Apple, Beer, YPD-20 and YPD-72, respectively.

Training Data Test Data Model Balanced Accuracy

H2
O

Ap
pl

e

RF 0.59 ± 0.01
GB 0.58 ± 0.01
XGB 0.58 ± 0.02
GPC 0.57 ± 0.01
SVM 0.60 ± 0.01
NN 0.49 ± 0.00

H2
O

Be
er

RF 0.50 ± 0.00
GB 0.50 ± 0.00
XGB 0.50 ± 0.00
GPC 0.50 ± 0.00
SVM 0.50 ± 0.00
NN 0.50 ± 0.00

H2
O

YP
D-

20
RF 0.49 ± 0.00
GB 0.49 ± 0.00
XGB 0.49 ± 0.00
GPC 0.50 ± 0.00
SVM 0.49 ± 0.00
NN 0.50 ± 0.00

H2
O

YP
D-

72

RF 0.50 ± 0.00
GB 0.50 ± 0.00
XGB 0.50 ± 0.00
GPC 0.51 ± 0.01
SVM 0.50 ± 0.00
NN 0.50 ± 0.00

(b) Trained and evaluated on Apple, Beer, YPD-20, and YPD-72, respectively.

Training Data Test Data Model Balanced Accuracy

Ap
pl

e

Ap
pl

e

RF 0.91 ± 0.05
GB 0.89 ± 0.06
XGB 0.86 ± 0.05
GPC 0.97 ± 0.03
SVM 0.97 ± 0.03
NN 0.83 ± 0.08

Be
er

Be
er

RF 0.91 ± 0.05
GB 0.88 ± 0.06
XGB 0.86 ± 0.06
GPC 0.89 ± 0.06
SVM 0.94 ± 0.05
NN 0.73 ± 0.05

YP
D-

20

YP
D-

20

RF 0.94 ± 0.01
GB 0.94 ± 0.01
XGB 0.93 ± 0.02
GPC 0.96 ± 0.01
SVM 0.94 ± 0.01
NN 0.83 ± 0.11

YP
D-

72

YP
D-

72

RF 0.88 ± 0.08
GB 0.90 ± 0.06
XGB 0.89 ± 0.07
GPC 0.90 ± 0.06
SVM 0.86 ± 0.08
NN 0.81 ± 0.12
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Figure 3. Test performances of classifiers with the task to predict the viability of yeast in different
media. The solid boxplots show the test performances of all models of the respective datasets for
10-fold cross-validation. These results are also listed in Table 5 (b). For comparison, the opaque
boxplots show the performances of the 10-fold models trained on H2O for the respective datasets, i.e.,
the results plotted in Figure 2.

4.3. Viability of Mixed Strains

The previously obtained results raise the question as to whether ML approaches are
also able to discriminate viable from heat-inactivated S. cerevisiae if other yeast strains
are present in the sample. To study this question, cultures of D. bruxellensis—which is
known as an undesired organism in wine production—were cultivated in YPD, followed
by resuspension in water. Samples containing additional amounts of viable and heat-
inactivated S. cerevisiae lead to the dataset Mix, as listed in Table 3.

In analogy to Section 4.2, we pursued two approaches. First, we used the classifiers
that were trained on H2O and use Mix as input. Based on the predictions, we evaluated the
balanced accuracy to determine if the classification also works for mixtures without having
appropriate data in the training dataset. Second, we directly trained classifiers on Mix using
10-fold cross-validation in analogy to Section 4.1 and evaluated the balanced accuracy.
The results are presented in Table 6 and Figure 4. In both cases, ML approaches led to
a relatively low balanced accuracy for the mixed samples. In the first case, the balanced
accuracy ranged from 0.47 ± 0.01 for NN to 0.50 ± 0.01 for RF, whereas in the second case,
it ranged from 0.54 ± 0.04 for NN to 0.56 ± 0.03 for GPC.
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Table 6. Test performances of classifiers with the task to predict the viability of yeast in a mixture of
different yeast strains. We show the mean and standard deviation in analogy to Table 4. These results
are also plotted in Figure 4. The best results are highlighted in bold type.

(a) Trained on H2O, evaluated on Mix.

Training Data Test Data Model Balanced Accuracy

H2
O

Mi
x

RF 0.50 ± 0.01
GB 0.49 ± 0.01
XGB 0.49 ± 0.01
GPC 0.48 ± 0.01
SVM 0.49 ± 0.01
NN 0.47 ± 0.01

(b) Trained and evaluated on Mix.

Training Data Test Data Model Balanced Accuracy

Mi
x

Mi
x

RF 0.50 ± 0.01
GB 0.55 ± 0.03
XGB 0.55 ± 0.04
GPC 0.56 ± 0.03
SVM 0.55 ± 0.03
NN 0.54 ± 0.04
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Figure 4. Test performances of classifiers for yeast viability prediction given mixtures of yeast strains.
The solid boxplots show the test performances of all models for 10-fold cross-validation that were trained
and evaluated on Mix. These results are also listed in Table 6 (b). For comparison, the opaque boxplots
show the performances of the 10-fold models trained on H2O, i.e., the results listed in Table 6 (a).

As an alternative approach, we combined all datasets from this study into a new
dataset: All. Again, in analogy to Section 4.1, we trained and evaluated all ML approaches
on this dataset using 10-fold cross-validation. The results are shown in Table 7 and Figure 5.
We found that this approach revealed slightly increased balanced accuracy in comparison
to the results from Table 6 and Figure 4, but a decreased score in comparison to the results
from Table 5 (b) and Figure 3. The balanced accuracy ranges from 0.70 ± 0.02 for NN to
0.73 ± 0.01 for GPC and 0.73 ± 0.02 for SVM.
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Table 7. Test performances of classifiers with the task to predict the viability of yeast for different
media or mixtures. All models were trained and evaluated on the All dataset. We show the mean
and standard deviation in analogy to Table 4. These results are also plotted in Figure 5. The best
results are highlighted in bold type.

Training Data Test Data Model Balanced Accuracy

Al
l

Al
l

RF 0.71 ± 0.02
GB 0.72 ± 0.02
XGB 0.72 ± 0.03
GPC 0.73 ± 0.01
SVM 0.73 ± 0.02
NN 0.70 ± 0.02

R
F

G
B

X
G
B

G
P
C

S
V
M

N
N

0.65

0.70

0.75

b
al
an

ce
d
ac
cu
ra
cy

Figure 5. Test performances of classifiers for yeast viability prediction given different media and
mixtures using the All dataset. The results are also listed in Table 7.

4.4. Yeast Viability under Artificial Noise

In a final study, we compare the model performance using all datasets with artificially
imposed noise, as defined in Section 3. To summarize, we presume that, in our simple
approach, the noise represents the imperfections of an ex vitro measurement. The abso-
lute noise level is controlled by a parameter σ > 0, i.e., the larger the σ, the noisier the
ex vitro environment in which the measurements take place, as visualized in Appendix B.
The results are shown in Figure 6.
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Figure 6. Cont.
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(g) All
Figure 6. Test performances of all models of the respective datasets for 10-fold cross-validation. We
show markers at mean values; the error bars represent one standard deviation. The results for σ = 0
are also listed in Table 5 (b).

4.5. Comparison of Machine Learning Models

In the previous sections, we trained and tested our ML models of interest on vari-
ous datasets and have found that the resulting balanced accuracies are mostly in similar
ranges. To obtain a better understanding of the competitive performance of the models,
we performed a pairwise statistical comparison [33]. For this purpose, we performed
Welch’s t-test [34] of the score of every model versus every other for each test and training
dataset combination (without artificially imposed noise, i.e., σ = 0). That is, for each
test and training dataset combination, we evaluated (6

2) = 15 statistical tests using the
respective 10 balanced accuracies that have been obtained from the 10-fold cross-validation
for every model. We considered a model superior to another in a statistically significant
way if its mean balanced accuracy is larger and the p-value from the corresponding test is
smaller than 0.05. For larger p-values, no statistically significant superiority relation can
be established. Our test can be considered as an indicator of superiority but might not be
statistically conclusive because of the limited amount of data considered in this experiment.
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Since we are only interested in models that perform reasonably well, we limit the
comparison to models with a mean balanced accuracy of at least 0.7. This rule excludes
all models from Tables 5 (a) and 6. The result is presented in Table 8, where we list the
superior models (and their respective inferior models) for each test and training dataset
combination from Tables 4, 5 (b), and 7. To summarize, we find that GPC is a superior
model for every listed test and training dataset combination. Hence, we consider it as the
best overall model for our use case. On the other hand, NN was inferior in all cases and
can, therefore, be considered as a less-suited model.

Table 8. Model comparison of the results from Tables 4, 5 (b) and 7. A model is superior to another if
its mean balanced accuracy is larger and Welch’s t-test (with respect to the balanced accuracies from
the 10-fold cross-validation) yields a p-value larger than 0.05. The list is limited to models with a
mean balanced accuracy of at least 0.7. The best results are highlighted in bold type.

Training
Data

Test
Data

Superior
Model

Inferior
Models

Superior Model
Balanced Accuracy

H2
O

H2
O

RF NN 0.82 ± 0.03
GB NN 0.82 ± 0.03

XGB NN 0.81 ± 0.02
GPC NN 0.82 ± 0.03
SVM NN 0.84 ± 0.03

Ap
pl

e

Ap
pl

e RF XGB, NN 0.91 ± 0.05
GPC RF, GB, XGB, NN 0.97 ± 0.03
SVM RF, GB, XGB, NN 0.97 ± 0.03

Be
er

Be
er

RF NN 0.91 ± 0.05
GB NN 0.88 ± 0.06

XGB NN 0.86 ± 0.06
GPC NN 0.89 ± 0.06
SVM GB, XGB, NN 0.94 ± 0.05

YP
D-

20

YP
D-

20

RF NN 0.94 ± 0.01
GB NN 0.94 ± 0.01

XGB NN 0.93 ± 0.02
GPC RF, GB, XGB, SVM, NN 0.96 ± 0.01
SVM NN 0.94 ± 0.01

YPD-72 YPD-72 GPC NN 0.90 ± 0.06

Al
l

Al
l

GB NN 0.72 ± 0.02
XGB NN 0.72 ± 0.03
GPC RF, NN 0.73 ± 0.01
SVM NN 0.73 ± 0.02

5. Discussion

In this study, we combined RS with predictive ML models to evaluate the prospective
real-time monitoring of yeast viability in a biotechnological setting. To this end, six ML
approaches (RF, GB, XGB, GPC, SVM, and NN—for a detailed description, see Section 3.2)
were trained and tested on various datasets obtained from in vitro RS measurements with
the goal of evaluating their performances. The measurements were performed on yeast
in different background media and a mixed setting. As summarized in the following, our
study is divided into four parts.

In the first part of the study, we considered a viability prediction for yeast in wa-
ter (control). The resulting mean balanced accuracies (higher is better) are similar for
five ML approaches, ranging from 0.81 for XGB to 0.84 for SVM, where only NN per-
formed significantly worse with 0.76. Despite the small dataset of only 722 spectra to
analyze, the reasonably good predictive performances of most approaches validate our
proof-of-concept for the prediction of yeast viability in an in vitro scenario.
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In the second part of the study, we considered yeast that was prepared in background
media other than water. Our results revealed that ML models trained on water samples
showed comparatively low performance when applied to datasets obtained from yeast in
different media. With balanced accuracy values around 0.5, which corresponds to a random
guess, the transfer of models trained on water to other media and mixtures is considered
not applicable. However, the direct training of ML models on the respective datasets of
yeast in media revealed a highly improved balanced accuracy that is comparable to a water
medium. Furthermore, combining all datasets for ML training did not yield good, balanced
accuracy scores as separate training and prediction for each medium. These findings clearly
show the great influence of the background media used for yeast cultivation, reflecting
more realistic conditions in biotechnological processes.

In the third part of the study, we considered the contamination with an undesired
strain, such as D. bruxellensis yeast that occurs during wine production. For this purpose,
samples were spiked with this artificial contaminant. The analysis yielded poor results for
the predictive capabilities of ML models on such data, showing a balanced accuracy that is
only slightly above 0.5. However, we cannot rule out that the poor performance is due to
the experimental setup, as the spiked samples were made in the H2O background.

Finally, in the fourth part of the study, we considered artificially imposed noise on the
data. As expected, such noise led to a decrease in model performance for all datasets. For the
Beer, Apple, YPD-20, and YPD-72 datasets, the performance drops (almost) immediately,
whereas for the H2O, Mix, and All datasets, a slower decline was observed. For Apple, Beer,
YPD-20, and YPD-72, NN is the most resilient ML approach that can—in some very noisy
cases—lead to a model with reasonably good performance. Similarly, for Mix and All,
the three approaches—GPC, SVM, and NN—are the most resilient ones. Finally, the most
resilient approaches for H2O are GPC and SVM. In summary, a small amount of noise
(σ� 0.01) can be mitigated by the models, but with larger noise (σ ' 0.01), the predictions
become highly unreliable. Since the evaluation of more “realistic samples” (e.g., acquired
from the production process of a brewery) were not the subject of this work, we could not
verify if the artificially generated noise used in this study corresponds to a real process
setting. Consequently, we have no information about the magnitude of σ either. However,
such knowledge is considered mandatory to assess the practical implications of our findings
and will be evaluated in future experiments. This will further facilitate the understanding
of uncertainties and their impacts on collected datasets. However, the relative robustness of
certain ML models to a small amount of artificial noise indicates that it is possible to transfer
classifiers trained in a less noisy environment to a somewhat more noisy environment.
Monitoring models using RS combined with various other ML models has already proven
to be reasonable for the accurate monitoring of the yeast fermentation process [35].

A conclusive comparison of the considered ML approaches for different datasets
revealed that GPC is the best overall ML approach, whereas NN is the worst. The relatively
poor performance of NN may be the result of the chosen network architecture for the NAS.
With a different architecture, the results could, in principle, differ significantly. However,
in regard to artificial noise, we found that the NN can lead to very noise-resilient models in
a noise regime where other approaches fail.

6. Conclusions

In this study, we evaluated the potential of RS and predictive ML models for the
discrimination of viable and heat-inactivated S. cerevisiae cells in different background
media and a mixed setting. To this end, limited amounts of in vitro measurement data were
used to train a total of six different types of models: RF, GB, GPC, SVM, XGB, and NN. We
demonstrate that the viability of yeast in a water medium can be predicted with a balanced
accuracy of up to 0.84 using SVM with suitable preprocessing of RS data. Similar results
could also be achieved for other media. It was only for the mixed setting—where other
yeast strains were also present in the sample—that the best-balanced accuracy reached 0.56
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using GPC. From statistical tests, GPC has proven to be the best overall ML approach in a
direct comparison with the other approaches.

We also discovered that a model trained exclusively with data from yeast in water
performs poorly when predicting yeast in other media than water. Thus, we demonstrated
that the background medium has a significant influence on the composition of the spectra.
Moreover, these observations clearly show that the robustness of model predictions is
closely related to the sample composition used for training. We expect a more accurate and
robust prediction when the training of ML models is performed on larger datasets from an
experimental environment reflecting “real world” conditions.

In summary, our results demonstrate that RS, in combination with ML, is a promising
tool for non-invasive inline monitoring of fermentation processes. We were able to demon-
strate a working proof-of-concept for our in vitro scenario. Optionally, RS can be used in
combination with already established analytical methods, such as for CO2, turbidity, or
temperature. Furthermore, RS allows measuring sugar consumption and ethanol produc-
tion, providing an even more detailed analytic view of ongoing fermentation processes.
On the other hand, the prediction performances of the presented ML models still need to be
improved, which could be achieved with a larger set of Raman spectra or special-purpose
models that have been optimized for this particular task. The realization of such models
could serve as a possible starting point for further research.
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NN Neural network
PAT Process analytical technology
RS Raman spectroscopy
RF Random forest classifier
S. cerevisiae Saccharomyces cerevisiae
SVM Support vector machine classifier
YPD Yeast extract peptone dextrose

Appendix A. Formal Data-Processing Pipeline

In this appendix section, we formally describe our data-processing pipeline from
Section 3. As indicated in Section 3, we omit all measurement units to simplify the notation.
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Appendix A.1. Data Processing

We preprocessed the data into a unified form that is suitable for ML applications.
For each data point n, five preprocessing steps were used:

1. Interpolate the vectors uniformly with a linear transformation U(Kn, In) by choosing
a constant vector of wave numbers

U : Kn 7→ K̃ (A1)

with K̃ := [Kmin, Kmin + Kδ . . . , Kmin + 1014Kδ], such that the corresponding interpo-
lated intensity vector reads

U : In 7→ I′n. (A2)

Here, Kmin ≈ 282.770 and Kδ ≈ 1.711.
2. Rescale the intensity vector to the interval [0, 1] with

R1 : I′n 7→ I′′n ∈ [0, 1]1015 (A3)

by applying

R1(I′ni ) :=
I′ni −minm I′mi

maxm I′mi −minm I′mi
(A4)

to each element i.
3. Fix a systematic error in the measurement results with

G : I′′n 7→ I′′′n (A5)

by applying

G(I′′ni ) :=

{
(i− 320) I′′n340−I′′n320

20 + I′′n320 if 320 ≤ i ≤ 340
I′′ni otherwise

(A6)

to each element i.
4. Perform a baseline correction

B : I′′′n 7→ I′′′′n. (A7)

based on asymmetrically reweighted penalized least squares smoothing (arPLS) [36]
with the smoothness parameter λ := 1× 105, termination condition ratio r := 1× 10−6,
and maximum number of iterations τ := 10 after the internal loop is stopped.

5. Perform standardization of the intensity vector

R2 : I′′′′n 7→ Ĩn, (A8)

by applying

R2(I′′′′ni ) :=
I′′′′ni − µi

σi
(A9)

to each element i, with a mean of

µi :=
1
N ∑

n
I′′′′ni (A10)

and standard deviation

σi :=

√
1
N ∑

n

(
I′′′′ni − µR

)2, (A11)

respectively.
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Summarized, the effective preprocessing transformation

R2 ◦ B ◦ G ◦ R1 ◦U : (Kn, In) 7→ (K̃, Ĩn) (A12)

leads to the data shown in Appendix B.

Appendix A.2. Artificial Noise

We also considered data that have been perturbed by artificially generated noise.
For this purpose, we extended the preprocessing transformation, (A12), by an additional
step after the first rescaling, (A3), i.e., between steps two and three. In this additional step,
we performed a perturbation

V(σ) : I′n 7→ I′′n(σ) ∈ R1015 (A13)

by applying
V(I′′ni ; σ) := I′′ni + vn

i (σ), (A14)

where vn
i (σ) denotes random variables drawn from a normal distribution with the van-

ishing mean and standard deviation σ > 0. For the noiseless case σ = 0, we set the
constant value vn

i (σ = 0) := 0. To summarize„ the perturbed preprocessing transformation
is given by

R2 ◦ B ◦ G ◦V(σ) ◦ R1 ◦U : (Kn, In) 7→ (K̃, Ĩn(σ)) (A15)

instead of (A12).

Appendix B. Data Visualization

In this appendix section, we visualize the datasets that resulted from our preprocessing
method, which is explained in Appendix A. In Figures A1–A3, we show the mean En Ĩn

i
and standard deviation Vn Ĩn

i of each preprocessed dataset, divided into data for y = 1
(yeast viable) and y = 0 (yeast heat-inactivated). As indicated in Section 3, we omit all
measurement units. To demonstrate the effects of different values of σ from artificial noise,
we additionally plot the expected standard deviation over all wavelengths Ei Vn Ĩn

i (σ)
in Figure A4, where we also show the corresponding standard deviation Vi Vn Ĩn

i (σ).
As expected, the signal-to-noise ratio decreases as the perturbation increases.
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Figure A1. Mean and standard deviation of all datasets from Table 1 after the preprocessing.
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Figure A2. Mean and standard deviation of all datasets from Table 2 in analogy to Figure A1.
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Figure A3. Mean and standard deviation of all datasets from Table 3 in analogy to Figure A1.
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Figure A4. Mean and standard deviation for artificially perturbed data as defined in Section 3.
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Appendix C. Machine Learning Model Specifications

In this appendix section, we list the details of the chosen ML approaches from Section 3:

1. RF: We used the implementation RandomForestClassifier from scikit-learn [32] with
the parameter n_estimators = 250.

2. GB: We used the implementation HistGradientBoostingClassifier from scikit-
learn [32] with the parameter max_iter = 250.

3. XGB: We used the implementation XGBClassifier from [37].
4. GPC: We used the implementation GaussianProcessClassifier from scikit-learn [32]

with the parameters kernel = 1.0 ∗ RBF(1.0) and n_restarts_optimizer = 25.
5. SVM: We used the implementation SVC from scikit-learn [32] with the parameter

gamma = 'auto'.
6. NN: We used PyTorch [38] with Keras [39] and Optuna [40] to realize the neural net-

work. To this end, we utilized NAS to determine the structure of the network. In total,
we specified nine NAS parameters that are all defined within the Optuna framework:

(a) n_conv_layers ∈ {0, . . . , 4},
(b) filters ∈ {2, . . . , 16},
(c) kernel_size ∈ {2, . . . , 32},
(d) strides ∈ {2, 4, 6, . . . , 32},
(e) n_dense_layers ∈ {0, . . . , 4},
(f) dense_size ∈ {2, . . . , 32},
(g) dropout_active ∈ {0, 1},
(h) dropout_rate ∈ [0, 0.75] and
(i) learning_rate ∈ [1× 10−4, 1× 10−2].

Based on these parameters, the neural network was created as follows:

(a) An input layer keras.layers.Input is followed by
(b) n_conv_layers layers keras.layers.Conv1D with the following options:

i. filters, kernel_size, and strides, according to the respective NAS
parameter,

ii. padding = 'same',
iii. kernel_initializer = 'glorot_uniform',
iv. activation = 'relu', and
v. bias_initializer = 'zeros'.

Each layer is followed by keras.layers.BatchNormalization.
(c) If n_conv_layers is non-zero, the convolutional layers are finalized with

keras.layers.GlobalAveragePooling1D, otherwise, keras.layers.Flatten
is used.

(d) Next, n_dense_layers layers keras.layers.Dense are added with the follow-
ing options:

i. dense_size according to the respective NAS parameter,
ii. activation = 'relu',
iii. kernel_initializer = 'glorot_uniform', and
iv. bias_initializer = 'zeros'.

(e) If dropout_active is one, each dense layer is supplemented by keras.layers.
Dropout(dropout_rate).

(f) Finally, the output layer keras.layers.Dense is added with the following op-
tions:

i. units = 2,
ii. activation = 'softmax',
iii. kernel_initializer = 'glorot_uniform', and
iv. bias_initializer = 'zeros'.

The neural networks were trained with keras.optimizers.Adam with the follow-
ing options:
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(a) learning_rate according to the respective NAS parameter and
(b) A validation split of 0.1 on the sparse categorical cross-entropy loss function.

In addition, we made use of the callback functions keras.callbacks.ReduceLROn
Plateau and keras.callbacks.EarlyStopping, respectively, during the training pro-
cedure. The neural network test accuracy score averaged over all stratified 10-folds
was chosen as the NAS goal function.

For all unspecified parameters, the default values of the respective implementations
were used.
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