
Create an Automated Structured
Mesh Generation Method for Rotor

Blades using Exclusively Open Source
Software

Bachelor Thesis

by

cand. aer. Michael Andreas Heider

Conducted at the
Institute for Aerodynamics and Gas Dynamics

at the University of Stuttgart

Stuttgart, September 2023





Universit ät Stuttgart

INSTITUT FÜR AERODYNAMIK
UND GASDYNAMIK

DIREKTOR: PROF. DR.-ING. EWALD KRÄMER

Pfaffenwaldring 21, 70550 Stuttgart, Tel (0711) 685-3401, Fax 3402, email:kraemer@iag.uni-stuttgart.de

Bachelor Thesis for Michael Heider

Create an Automated Structured Mesh Generation Method for Rotor Blades
using Exclusively Open Source Software

To conduct high fidelity fluid dynamics siumulations, it is often convenient to rely on structured
computational grids. To that end, the Wind Energy Research Group of the Institute of Aero-
dynamics and Gas Dynamics relies on commercial software that has been partly automated to
generate high quality turbine blade meshes.
The topic of the thesis is thus to develop an alternative approach to structured mesh generation

that relies solely on open source software. It will allow to complete the surface mesh part of the
tool chain without the need for licensed software and also be able to extrude this mesh into a
component of the Chimera-based distributed numerical fluid domain.
Milestones:

• create a method to build a structured surface mesh on the outer mantel of a rotor blade
or wing surface

• expand the method to allow extending the surface mesh to include the tip of the blade as
well

• verify the capability of the method to work with different blade profiles
• ensure the high quality of the generated meshes by automatically inspecting the skewness

and growth ratio and/or other quality parameters of the surface mesh and by need imple-
menting mitigation strategy using automatic blade inspection or, if necessary, simple user
input requests

• implement an extrusion method to generate a high quality 3D mesh starting from the
generated full surface mesh

• tune the extrusion method to allow setting mesh parameters such as the boundary condi-
tion at its root and the growth ratio, given a function or a list of values

• implement a verification of the resulting quality of the 3D mesh along with automatic
mitigation strategies

Date Issued: May 15th, 2023 Date Submitted: September 15th, 2023

Student: Michael Heider Advisor: Louis Gagnon

Examiner: Thorsten Lutz





Statement of Originality

Statement of Originality

This thesis has been performed independently with support of my supervisor. It contains no material
that has been accepted for the award of a degree at this or any other university. To the best of my
knowledge and belief, this thesis contains no material previously published or written by another
person except where due reference is made in the text. I further declare that I have performed this
thesis according to the existing copyright policy and the rules of good scientific practice. In case
this work contains contribution of someone else (eg. pictures, drawings, text passages etc.), I have
clearly identified the source of these contributions, and, if neccesary, have obtained approval from
the originator for making use of them in this thesis. I am aware that I have to bear the consequences
in case I have contravened theses duties.

Erklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig mit Unterstützung des Betreuers
angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Die
Arbeit oder wesentliche Bestandteile davon sind weder an dieser noch an einer anderen Bildung-
seinrichtung bereits zur Erlangung eines Abschlusses eingereicht worden. Ich erkläre weiterhin, bei
der Erstellung der Arbeit die einschlägigen Bestimmungen zum Urheberschutz fremder Beiträge
entsprechend den Regeln guter wissenschaftlicher Praxis eingehalten zu haben. Soweit meine Arbeit
fremde Beiträge (z.B. Bilder, Zeichnungen, Textpassagen etc.) enthält, habe ich diese Beiträge als
solche gekennzeichnet (Zitat, Quellenangabe) und eventuell erforderlich gewordene Zustimmungen
der Urheber zur Nutzung dieser Beiträge in meiner Arbeit eingeholt. Mir ist bekannt, dass ich im
Falle einer schuldhaften Verletzung dieser Pflichten die daraus entstehenden Konsequenzen zu tragen
habe.

. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ort, Datum, Unterschrift

v





Abstract

The generation of high-quality Computational Fluid Dynamics (CFD) meshed wings for wind energy
turbines currently requires either a very laborious process of building each wing by hand or requires
the purchase of very expensive software. With university budgets and the advantages of open-source
in mind, an open-source solution is desirable. The following thesis tackles this problem via a grid
generation code in Python with Gmsh and extrusion via Pyhyp. However, designing software that
has all of the features of commercial software with open source software leads to situations in which
the intended way of usage is not the best way for the given task. An example of another open-source
approach is the MACH-AERO framework which is an aerodynamic shape optimization tool that
creates a grid along the way and extrudes it. However, this does not cover the intended usage of
openblademesh for purely structured grid generation for predefined wings. Here we show one way
to achieve an open-source solution with Gmsh and Pyhyp. All the necessary software, the versions
needed, and installation instructions are described. Also how the wing generation process is achieved
with special concentration on the wing-tip is part of the following thesis. The thesis also describes
how to use the presented software Openblademesh and how to achieve the best results. The tool
uses various automatisms to take the workload off of the user and helps to achieve the best mesh.
Finally, the advantages and limitations of the tool are assessed and future extensions are described.

Die Erstellung von qualitativ hochwertigen Computational Fluid Dynamics (CFD)-vernetzten
Flügeln für Windenergieanlagen ist derzeit entweder ein sehr aufwändiger Prozess, bei dem jeder
Flügel von Hand gebaut wird, oder durch sehr teure software ermöglicht wird. Mit Blick auf die Uni-
versitätsbudgets ist eine Open-Source-Lösung wünschenswert. In der folgenden Arbeit wird dieses
Problem durch einen Gittergenerierungscode in Python mit Gmsh und Extrusion über Pyhyp ange-
gangen. Die Entwicklung einer Software, die alle Eigenschaften kommerzieller Software besitzt, mit
Open-Source-Software führt jedoch zu Situationen, in denen die vorhergesehene Code Struktur der
Open-source-Software nicht die beste für die gegebene Aufgabe ist. Ein Beispiel für einen anderen
Open-Source Ansatz ist das MACH-AERO-Framework, ein Werkzeug zur aerodynamischen Formop-
timierung von Flügeln generell, das unter anderem auch ein Gitter erstellt und dieses extrudiert. Dies
deckt jedoch nicht die beabsichtigte Nutzung von Openblademesh zur rein strukturierten Gittergener-
ierung für vordefinierte Tragflächen ab. Hier wird ein Weg gezeigt, wie man eine Open-Source-Lösung
mit Gmsh und Pyhyp erreichen kann. Es werden die benötigte Software, die benötigten Versionen und
die Installationsanweisungen beschrieben. Auch wie der Prozess der Flügelgenerierung mit beson-
derem Augenmerk auf die Flügelspitze erreicht wird, ist Teil der folgenden Arbeit. In der Thesis wird
auch beschrieben, wie man die vorgestellte Software Openblademesh benutzt und wie man die besten
Ergebnisse erzielt. Das Tool verwendet einige Automatismen, um den Benutzer zu entlasten und
hilft, das beste Netz zu erzielen. Obwohl es gelungen ist, ein quelloffenes Werkzeug zur Gittergener-
ierung zu entwickeln, gibt es noch Probleme, die in Zukunft behoben werden müssen. Abschließend
werden die Vorteile und Grenzen des Tools im Vergleich zu kommerzieller Software bewertet.

vii



Contents

Topic iii

Statement of originality v

Abstract vii

Content viii

Acronyms ix

Symbols 1

Introduction 1

1 Fundamentals 4
1.1 Mathematical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 Transfinite Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.5 Hyperbolic Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.6 Algebraic Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Navier Stokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 Unstructured Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.5 Structured Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Airfoils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Selig Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Induced Drag Wingtip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Open-Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Software used 14
2.1 Numpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Scipy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 GMSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

viii



2.4 Pyhyp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Way of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Openblademesh 17
3.1 Folder Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Parameter File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Section1: Setting up the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Section2: Loading files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Section3: Wingtip generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.5 Section4: Wing creation in Y direction . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.6 Section5: Finishing Gmsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.7 Section6: Pyhyp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 User Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Pyhyp Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 NREL 5MW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Summary 39
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Limitations and Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Wingtips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Step Size in Y Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Growth Rate between Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.4 Non-linear creating of Wing through Airfoils . . . . . . . . . . . . . . . . . . . 40
4.2.5 Pyhyp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References 42

Appendix 44

ix



Acronyms

CAD Computer Aided Design
CFD Computational Fluid Dynamics
DLR Deutsches Zentrum für Luft- und Raumfahrt
GUI Graphical User Interface
IAG Institute of Aerodynamics and Gas dynamics
NACA National Advisory Committee for Aeronautics
TE Trailing Edge

x



Symbols

a first step in geometric series

a1 first step on examined line

a2 first step on second section

k control variable

l1 length of first section

l3 length of last section

n1 entire nodes over wing

n2 number of nodes on entire wing, excapt last section

n3 amount of nodes at the end of section one

r coefficient of geometric series

r1 coefficient of geometric series for node distributuion

y marching direction normal to cell

1



Introduction

Climate Change Climate change affects us all and pushes the global community towards renewable
energy sources. This is because most of the consumed energy over the last century was provided
by fossil fuels. Therefore, the world needs to consider different solutions to the question of how the
increasing energy demands can be met to preserve today´s standards while still protecting the earth
from the man-made threat of climate change. To tackle one of the biggest problems of the twenty-first
century, a lot of research and development needs to be dedicated to this topic, and to harvest the free
available resources of the earth such as wind, water or tidal forces is a very convincing step towards
a climate-neutral future. One of many potential solutions to emission-free energy production that is
currently being worked on in parallel focuses on wind energy. However, since the use of this form of
energy production on such a big scale is quite new it requires constant development.

Wind Energy Historically, wind energy was used in windmills, sailing boats, or windpumps. Today
however, the majority of wind energy is used for converting kinetic energy from the wind to electric
energy via a generator installed inside the wind energy plant.

Wind turbines have gained center stage in scientific research since wind is accessible almost every-
where. The high availability and near independence of day and night cycles make them an ideal field
of research. They tend to supply a better energy conversion at night time in many regions and are
therefore, in combination with solar power, an ideal alternative [1]. To further increase its efficiency
without having to pay a lot of money for a lot of wind tunnel tests, simulations are the only solution.
With these simulations, blade outlines, the choice of airfoil used at different parts of the blade and
and many other parameters can be improved.
Another important factor to take into consideration is the constellation and place for the turbine
positionings. Usually, more than one turbine is placed and therefore they influence each other due
to the way they manipulate the wind. This can be used in advantageous situations to achieve the
highest possible yield or at least to create the least amount of losses possible.
Also, another factor to take into consideration is the position of the turbines. For example, an al-
ready widespread constellation is offshore parks which harness the great amount of oceanic winds
while still being almost invisible for the low settlement of the oceans. But how woods, hills, and
nearby mountains influence the performance of the turbine are parameters that have to be taken into
consideration when the decision for new wind turbines is made.

Simulation While the need for more efficient turbines increases, thankfully the computational power
of computers increases as well. Therefore, better simulations can be achieved and more complex
problems solved. Thereby, increasingly complex simulation tasks can be solved and therefore converge
closer to reality with better results for the blade with each new computer generation. The problem
with this is that the older data often cannot be reused because newer insiights showed that some of
the results are not precise enough and need to be redone.

However, there still is the problem with very cost-intensive software which is necessary for efficient
simulation work. With budgeting in mind, an open-source solution with the same functionality would
be the ideal solution. To get a Computational Fluid Dynamics (CFD) simulation that provides
processible results, a good grid generation is key. To achieve this, the grid generation and extrusion
are the content of this thesis.

2



Open-Source One of the benefits of open-source software is the possibility to be able to achieve
a good quality grid with software that can be developed for a possibly very specific application.
Also, the possibility to freely access it will give a lot of interested peers the possibility to work
with Computational Fluid Dynamics (CFD) software without needing to buy commercial software
which often can be very expensive. Because the Computational Fluid Dynamics (CFD) software
the Institute of Aerodynamics and Gas dynamics (IAG) uses needs to get a structured grid the
Openblademesh software gives the resulting mesh in structured form.

Structured Grid The advantage of this approach is that a structured grid uses less memory com-
pared to an unstructured grid and the distributed calculation points can be set by the user, while
the downside is that a structured grid generation is more complex because the coding and generation
needs to be precise and automated tools are not able to generate it by itself. Therefore, different
methods are used to achieve structured and partly automated grids with open source software which
will be described in the following thesis.

Goals of the Thesis The goal of this thesis is mainly to show that it is possible to achieve a mesh
generator that creates a structured grid completely on open-source software. Furthermore, several
waypoints are:

1. Enable the code to generate a wingtip from one pointcloud
2. Generate the wingtip with subsections for smooth transition
3. Create a wing with several airfoils
4. Automate wing generation for flexible pointclouds
5. Enable Pyhyp to read output from Gmsh
6. Improve node distribution in wing direction
7. Improve usability for user

Solutions from other Engineers Other approaches to this problem have been made but have their
limitatians or only achieve some of the wanted targets. For example, the free version of Chimera
Grid Tools which relies on the chimera overset grid approach, is a very promising tool, but as it
works with the National Advisory Committee for Aeronautics (NACA) chimera grid it is not open
source and most importantly only free for US-American citizens or people who qualify as such and
is therefore out of reach for any official institute outside of the USA. Another mentionable software
is MegaCads by the Deutsches Zentrum für Luft- und Raumfahrt (DLR) which creates hexahedral
structured grids. But this software is still not open source and therefore not very customizable.
Also, the documentation and support is not well continued.. The software used by the Institute of
Aerodynamics and Gas dynamics (IAG) is the automesh software which is open source. It was first
designed for wind energy blades and then extended to helicopter blades. However, it only creates
unstructured meshes and therefore still does not apply to the given tasks.

3



1 Fundamentals

1.1 Mathematical Foundations

1.1.1 Spline

Splines are mathematical functions that are smooth lines that have boundary conditions that dictate
the form of the resulting graph. Splines get used a lot in Computer Aided Design (CAD) for their
smooth adaption between specified points. Two kinds of splines will be explained in the following
from which one is used in this thesis. The B-spline or basis spline is a spline that is often used in
numerical applications due to its numerical stability. However in this thesis, only cubic splines are
used, therefore they will be explained in more detail. Cubic splines are specified by connection curves
which share one or a severall points and by ensuring that their first and second derivation at this
point are the same. This guarantees that the graph will be coherent and smooth because the same
derivations translate to the same curvature at that point [2]. The Figure 1.1 demonstrates how parts
one and two are connected at the blue highlighted point to generate a smooth curve via cubic spline.

Figure 1.1: example spline with connection point high-
lighted in blue

In this thesis, cubic splines are used for their easy implementation in the code and adequate precise-
ness.

1.1.2 Progression

Because in Computational Fluid Dynamics (CFD) computation power and consequently time is the
regulating factor, as explained later in the section of the fundamentals for Computational Fluid Dy-
namics (CFD), it is always important to save as many computations as possible. For Computational
Fluid Dynamics (CFD)simulations this means a trade between resolution and time, and is achieved
by regulating how many points (or in Computational Fluid Dynamics (CFD) often called nodes)
are computed. To achieve this on the aerodynamically interesting sections, the number of nodes is
increased.

4



Consequently, on the lesser interesting parts, the number of points is reduced. This is achieved
through different progressions on the lines. In this thesis, two different kinds of progressions are
used and therefore explained. First, the easiest one is a progression that distributes the points at a
growing rate of one. Therefore, the distance between every point is constand. In Figure 1.2 pictured
as the red points on the black line.

Figure 1.2: line with progression with a growing factor of
one

The next progression is a geometrical series, which is simpy called progression by Gmsh.

k−1∑
n=1

arn (1.1)

This series converges for |a · r| < 1 to

l = a · 1− rn

1− r
(1.2)

If the series converges, each new summation step in the calculation is smaller than before and the
series as a whole approaches the value which is calculated in the closed form of Equation 1.2. So
in terms of point distribution, the series variable a can be understood as the distance from the first
point to the second. The nvariable r is the coefficient that decides how fast or slow the series grows
and the variable k can be understood as the number of points which are distributed on an imaginary
line. In Gmsh it is only possible to change the value of r and k by adapting the progression coefficient
and the number of points used. So, to know what first step size will be created to achieve a smooth
transition from one line to the other, the series needs to be converted to

a = l · 1− r

1− rn
(1.3)

which is converted from (1.2) and will result in progression that looks like Figure 1.3

Figure 1.3: example line with point progression and a co-
efficient smaller than one

If |a · r| is > 1 the series diverges to infinity and every step is bigger than the one before. This can be
used if it is useful if the distribution goes from a small precise area to an area that needs a coarser
mesh again displayed in Figure 1.4

Figure 1.4: example line with point progression and a co-
efficient greater than one

5



1.1.3 Interpolation

In this thesis, some points are calculated through linear interpolation. This is a mathematical
equation that leads to a point before, after, or in between two other points, which is on the connecting
line of them with the following equation

y = y0 + (x− x0) ·
y1 − y0
x1 − x0

(1.4)

and can be used to achieve a point on a linear curve for which only two coordinates are known.

1.1.4 Transfinite Algorithm

The transfinite algorithm is used in this thesis to dictate the position of points on a given curve
and later on to dictate the position of nodes on planes. It is not necessary to fully understand the
mathematical underlayings of this technique regarding this thesis as it is only used as a tool for point
distribution in the code. If one wishes, the math can be inspected in [3].

The name derives from the fact that, in contrast to regular algorithms, the transfinite algorithm
matches a nondenumerable number of points. The algorithm is described, in the words of William
J. Gordon and Linda C. Thiel [3]: ”Our purpose here is to describe how the techniques of bivariate
and trivariate ”blending function” interpolation, which was originally developed for and applied to
geometric problems of computer-aided design of sculptured surfaces and 3-D solids, can be adapted
and applied to the geometric problems of grid generation”

1.1.5 Hyperbolic Extrusion

To extrude from the generated code on the wing surface in the third dimension, to allow for a
computation of the fluid surrounding it, there are several methods from which two are relevant
for this thesis, and therefore are introduced. First, the hyperbolic extrusion, as described in [4]
is the method Pyhyp uses to extrude the wing surface. It has many advantages such as creating
almost orthogonal grids which result in a better solution for the simulation and can be generated in
significantly less computational time than other methods. However, some drawbacks sometimes can
be decisive. The mesh generation methods are less robust and this often leads to no generation at
all because the input grid has to be very good in the first place. Furthermore, it tends to disperse
input discontinuities which increases the aforementioned problem. So if the input grid is too uneven
or if the sizing factor between two adjacent cells is too big, the software cannot compute the correct
extrusion without overlaying or restraining one extruded cell to the other, and therefore gives back
an error [5].

1.1.6 Algebraic Extrusion

Another approach that is used is algebraic extrusion. However, because in this thesis this is only
demonstrated as replacement when the hyperbolic extrusion of Pyhyp was not able to achieve the
desired result, it is only descibed superficially. The algebraic extrusion method is distinctly more
stable than the hyperbolic extrusion and therefore better suited for not entirely refined grids. It is,
however, less orthogonal [6].

6



1.2 CFD

1.2.1 Simulation

For many tests or applications, it is much more reasonable to run a simulation than to test it in reality.
First, it is less expensive and time consuming, second, it is often more precise and controllable because
every input and output variable can be adjusted. Additionally it would sometimes not be possible
to run an experiment comparable to the simulation. For example, it is possible to simulate the
erosion of a wind energy blade over its life span in a relatively reasonable time frame, while it would
take the life span of the blade or some adjusted parameters in real life. To work with reliable and
accurate fluid simulations, which are crucial for essentially every aspect of modern engineering, a
solid mathematical foundation is needed. Computational Fluid Dynamics (CFD) simulations are the
solution of the Navier-stokes equations for a given set of nodes.

1.2.2 Navier Stokes

The Navier-Stokes equations describe a flow field in its entirety by giving the solution for the impulse
in three cartesian dimensions aswell as the pressure, the temperature, and the density. By calculating
these values over the geometry of the model that is to be simulated, the state of the fluid is calculated
to know how the fluid in this section is behaving.

The model is specified by the positions of the equations that are placed on the surface of the model
and from there marching in the normal direction of the model. As shown in Figure 1.5 the black
wing is coated with a regular grid which is the surface mesh. From there in red and blue the grid
extrudes in the normal direction of every cell. In this picture, the extruded grid is separated into two
dimensions for a better visualization but in reality, is connected and surrounds the whole surface.
The extruded mesh around the wing is the area in which the equations are solved and therefore is
important to be set according to the needed tasks.

Figure 1.5: example wing with surface mesh and extrusion
in Y and Z direction from [7]

7



1.2.3 Parameters

A very important parameter for Computational Fluid Dynamics (CFD) simulations is the y+ value.
It describes the distance of the first step from the surface. Depending on the refinement one wants to
simulate, a very small step can lead to very precise near-wall (as the surface is called) results. Because
the fluid of the stream has a viscosity that interacts with the friction of the wall, the fluid gets more
decelerated near the wall than further away. This effect can be very important or completely obsolete,
depending on the desired results and the used calculation methods, if the friction is neglected for
example. So it is important to know and calculate the correct y value for each simulation, but there
are online applications that help with this [8].

In the current state of the art, the workflow to create a Computational Fluid Dynamics (CFD)
simulation involves several steps which can be boiled down to three big steps. First, in the
pre-processing, the model itself gets prepared to ensure that only the aerodynamically interesting
parts are in the simulation. Also, the surface is represented by a grid on which the calculations are
set. Furthermore, part of the pre-processing is the definition of the boundary values.
Next up is the solution which takes up the majority of the computation time of the simulation in
which the equations get solved on the predetermined nodes. This can take from several hours up to
days. Lastly, the results are validated to confirm that they represent the reality. This is achieved
by comparison with table values or simplified algebraic calculations. If it is determined that the
simulation was successful the solutions get visualized to achieve a faster and easier understanding of
the results.

It is also very important for the mesh to be smooth. Smooth means that between two adjacent cells,
there is no big difference in size as every cell should be as close to a square as possible. This is
because the calculation for the extrusion takes one calculation for each node and if the distance, for
example, has different sizes, the extrusions of the two adajcent cells will not fit into the next layer
of cells in the y+ direction. Every cell needs to be in a way that the extrusion software can create
another layer on top of it, and by keeping the cells as regular as possible, this is achieved. Also, big
jumps in the cell size lead to very unclean calculations for the fluid at that part of the model, giving
results in a very uneven form [6].

8



1.2.4 Unstructured Mesh

One way of meshing is that the program that is used sets the connecting points inside of defined
boundaries randomly. This is a fast approach that can be calculated by most meshing tools auto-
matically. This has the advantage that the mesh is created fast and is easy to automate. It can be
achieved by reading a Computer Aided Design (CAD) file in a meshing software and a mesh can be
generated. But with the drawback that the file is pretty large and the position of the mesh nodes
are not precise and therefore more than would be necessary, if every node would be placed exactly
where it is needed. Unstructured grids are usually triangles and randomly arranged in the mesh as
shown in Figure 1.6.

Figure 1.6: example picture of an unstructured mesh with
trihedral meshing

1.2.5 Structured Mesh

Another way to assemble the mesh is that the points needed are set manually and the code simply
connects them. By this approach, the mesh looks more regular which enables the user to control
where refinements are and because of the regular look, the mesh reminds of a grid. Therefore a
structured mesh is often called grid. More importantly, all the nodes are sorted in a cartesian way so
that each point knows its position (by i and j), which are X and Y coordinates in a relative system
(depending on each point) and the position of its neighboring points (i+-1 and j+-1). By deciding the
position of each point manually they can be exactly where the user wishes them to be thus saving all
the nodes that the computer would set. By this decrease of nodes and because each node knows the
position of its neighboring cell relative to its own position a significant amount of memory capacity
and computational power, or in Computational Fluid Dynamics (CFD) terms, computational time,
can be saved. Structured grids are always quadrangular in shape and enable high efficiency as well as
resolution. In Figure 1.7 an example of a structured grid can be seen with one node and its adjacent
nodes with their relative coordinates.

9



Figure 1.7: Structured mesh with quadrangular mesh

So it comes to the decision if the less computational extensive structured grid approach is the greater
setup time of the meshing software worth. Or as in the case of the software used in the Institute of
Aerodynamics and Gas dynamics (IAG), what kind of mesh can be read. The software of the Institute
of Aerodynamics and Gas dynamics (IAG) in the wind energy group can only read structured meshes
and therefore the meshing software needs to generate structured grids.

1.3 Aerodynamics

1.3.1 Airfoils

In aerodynamics, it is often necessary to achieve a force simply by letting an object be circulated by
a fluid. Airfoils describe the shape, a wing or a similar aerodynamical component has that is in a
fluid.
To get this, through the work of Otto Lilienthal [9], the airfoil which is based on the section of a bird’s
wing, has become the standard. By using different proportions, different effects can be achieved, from
simply creating drag to resulting in lift, the airfoil shape is a very important design factor. Therefore
a lot of research has gone into designing different airfoil forms and consequently, many standards
have evolved for engineers to communicate without having to describe the complete form. As an
example of one of the standards, the National Advisory Committee for Aeronautics (NACA) airfoil
with four digits will be described in the following. The first digit always describes the maximal airfoil
arching in percent and in relation to the airfoil chord. The second describes the arching position in
tenths of the airfoil chord and the third and fourth digits stand for the maximal airfoil thickness in
percent of the airfoil chord length. Because NACA four-digit airfoils always have the thickest point
at 30% of the airfoil, these digits describe an airfoil exhaustive.

10



Figure 1.8 shows the National Advisory Committee for Aeronautics (NACA) four-digit standard
described airfoil. The first digit describes the curvatures of the camber line, the second X Cmax,
and the third and fourth the maximal thickness of the airfoil.

Figure 1.8: visualization of the parameters described by
the NACA four-digit standard from [10]

With all of the digits known an engineer can search for the respective table and find all the data for
this profile which have been identified beforehand in experimental trials in wind or water channels.

1.3.2 Selig Format

It is usefull to have a standard to know how to describe an airfoil but still, a computer program needs
a simpler way of reading and saving data of an airfoil. To this end, the Selig format has evolved which
describes any airfoil in a list of coordinates and can therefore easily be put in any file and quickly
read by any code. The Selig format puts any airfoil between zero and one on the X-axis. Here, the
airfoil nose is at the origin and the Trailing Edge (TE) is at the x coordinate one. Beginning from
the Trailing Edge (TE) the airfoil is described by walking counterclockwise around it. Therefore,
first the upper side is defined, then the nose, and finally the lower side. This is shown in Figure 1.9

Figure 1.9: visualization on how the Selig format distributes the points

11



1.3.3 Induced Drag Wingtip

A wing has, generally speaking, one main function, which is to redirect a great portion of the
generated drag force of the wing to another wished direction. This is the case for example in an
airplane to generate lift and enable the airplane to overcome its force pulling towards the center of
the earth induced by its weight, or in a wind energy turbine to set the rotor in a circular rotation to
generate electricity. A great portion of the generated drag is simply due to the fact that something
is hindering the flow of the surrounding air and this air, generating a resistance. For the wing to
generate the desired force it creates a pressure difference between the upper and lower side of the
wing and by this, the intended usage is enabled to generate a force towards the low-pressure field.
But by this pressure difference, the fluid beneath the wing is forced towards the wingtip, for a finite
wing. There the high pressure from the lower side and the lower pressure from the upper side mix
together and together with the chordwise flow a vortex is created. So the drag which is due to the
pressure differences on the upper and lower side of the wing is responsible for the induced vortex.
These vortices can be very big, depending on the size and the weight of the wing and everything
attached to it. But they begin at a very small scale and to fully understand and consequently reduce
them a precise prediction is necessary to get meaningful data from the simulation. To achieve this
it is important to have a small grid at the wingtip to allow the simulation to generate a fine grid
and calculate the fluid movement at the necessary refinement. Refinements could be different airfoil
shapes or wingtip attachments such as winglets, for example.[4] Such a vortex is shown in Figure 1.10.

Figure 1.10: visualization of the vortex created at the
wingtip of a wing from [11]

1.4 Software

1.4.1 Python

As the programming language for openblademesh, Python was chosen for its simple code structure,
fast learnability, and its wide variety of libraries that can be implemented. It can be learned in a
relatively fast way, for the language itself is straightforward and many decisions and definitions that
other languages require (which are useful and allow them to be faster for example) are taken care of
by Python.

12



For example, it automatically detects which kind of variable is used and declares it as integer or
float, just naming an example. For the ease of usability, it is widespread in the scientific as well as
other noninformatic communities. For this reason, many programmers have implemented many very
useful tools that can be imported, such as the software that is used in this thesis.

1.4.2 Open-Source

The need to program openblademesh in open-source software is derived from many different reasons.
Open-source software first and foremost is extremely flexible due to its nature that anybody who
wants to implement or change a particular part of the code is free to do so. Therefore the code can
grow in many different directions which is especially good for specific use cases.
Also, the speed at which the software can be added is much faster than in commercial software. In
commercial software, the distributor needs to be convinced that some changes would be necessary
and then the new version is distributed, open-source can just be changed on the run when it is needed.
Further many scientific or professional software is very expensive. On that scale, it has to be taken
into consideration if some software is really needed. In contrast open-source software is free and
therefore and therefore worth it even if it is only needed once. Another key feature of open-source
software is that through the large userbase a great amount of improvement is granted.

13



2 Software used

2.1 Numpy

Numpy enables Python users, besides a simple multidimensional array, to handle efficiently imple-
mented functions for numerical calculations. In this thesis, Numpy is implemented for its array
capabilities and its mathematical functions as described in [12] on the Numpy website.

2.2 Scipy

Scipy is a Python library that enables different mathematical features. It is implemented in this code
for the Cubic Spline feature which is needed in the wingtip generation process. How Scipy is used
can also be looked up in [13].

2.3 GMSH

As a grid generation tool, GMSH (in version 4.11.1) was chosen due to its wide accessibility. GMSH
is an open-source three-dimensional finite element mesh generator with built-in Computer Aided
Design (CAD) kernel and postprocessing facilities. It is programmable either in the Graphical User
Interface (GUI), from the command line, using text files written in Gmsh’s own scripting language, or
with C, C++, Julia, Fortran, and Python. The latter (Python Version: 3.11.0) was selected for this
thesis due to its simple way of operation. GMSH is used by either defining geometric entities with
ascending dimensions beginning at points that connect to lines, etc., that work in a bottom-up way
or by directly defining bodies such as a cuboid or sphere via implemented codes. For the bottom-up
approach, one first has to define points with dimensional entities zero and then lines with dimension
one, planes with dimension two, and, if wanted, bodies with dimension three. This is the way it is
used in this thesis. It gives the user the option to create the most complex structures. Gmsh has two
implemented geometry kernels that can be used, ”geo” and ”opencascade”. ”Opencascade” offers
the possibility to more easily read through the input files which ”geo” does not and is therefore used
in this thesis. All the information and the Gmsh software are provided under an open-source license
and further information as well as the source code and pre-compiled binaries can be found in [14].

14



Installation Gmsh is installable in a Pythonic way via the

pip install --upgrade gmsh

command. This way it is installed in the current stable version. All the necessary implementations
and bindings are handled by Pip and need no further adjusting.

Gmsh is the foundation for the entire code. The whole building process for a new wing is based
upon the bottom-up approach to enable it to read point clouds from airfoil lists online. Therefore
the entire geometric building procedure uses GMSH functions to generate the airfoils through which
later on the wing will be generated [14]

2.4 Pyhyp

Pyhyp is the open-source software that is used for the extrusions of the grid created in Gmsh. It
can generate two or three-dimensional meshes around simple geometric configurations. It starts by
creating an initial layer or mesh around the surface and extrudes this gradually until it reaches its
desired distance. By this approach, the complete geometry is meshed and for complete documentation
please visit the Pyhyp website [15], on which all the options will be explained.

2.4.1 Way of Computation

An overview of the hyperbolic mesh marching method implemented in Pyhyp can be found in Section
II. A of Secco et al.,[16], Most of the theory for Pyhyp was taken from Chan and Steger, [4].

2.4.2 Installation

Pyhyp requires other modules installed to work, which are the CGNS library and PETSc. This can
either be done by downloading and installing the mdolab/public docker container on docker, which
is a container management tool, or by manually installing and linking the modules to Pyhyp. In this
thesis, the installation process via docker is recommended for convenience purposes.

Docker is a container virtualization tool that allows the isolation of applications on one computer.
With this, it is possible to work in a completely isolated environment. The other advantage and
how it is used in this thesis, is for transporting complete program packages with already linked
prerequisites. Thus, it takes away the work to download and connect the necessary implementations
but the drawback is to work in the docker software in performance losings due to the docker software.

In docker, in the container from mdolab, the provider of Pyhyp, all the prerequisites are already
connected, and Pyhyp works. The aforementioned can be downloaded and installed by the following
instructions, as presented by the [17], framework.

15



2.4.3 Implementation

The tool works in two separate parts. First, it creates the geometric grid by extruding through the
airfoils and generating the wingtip. Second, it takes the .p3d file generated by Gmsh and extrudes it
relative to the starting point normal direction with Pyhyp. All of the Pyhyp-specific attributes are
defined in the second part of the code and customization or refinement is possible in this section.

The options to change the way Pyhyp extrudes the grid are presented on the Pyhyp website, [15].

16



3 Openblademesh

Openblademesh, that is the software developed in this thesis, works by combining the way of operation
of Gmsh and Pyhyp. It begins by generating the wing through the given airfoils and then extrudes
the mesh around the generated wing. A flow diagram of the whole code is given in Figure 3.1. Here
some steps are simplified and shall only gives a quick review of how the code works. Between the
creation of the grid by Gmsh and the extrusion of Pyhyp there is the possibility to create a Graphical
User Interface (GUI) to see what grid is created and to check if everything is in order.

Figure 3.1: Graph which shows how Openblademesh works

3.1 Folder Structure

The folder structure of Openblademesh contains different folders that contain the given airfoil dataset,
the output files, and the main code itself. This way it is always a clean structure even if different
data sets are used and therefore different output files are generated.

Data In the data folder, the point clouds need to be in order for the code to work properly, i.e.:
beginning at the wingtip and moving towards the wing-root. The first airfoil folder begins with the,
in the code defined, name of the airfoil folder, by default ”Airfoil”, and a number beginning with
zero. Subfolders can be implemented for different projects but the code needs to be updated to
contain the correct path to the airfoil files. Also, the airfoil files need to be in Selig format for this
is the format with which the code is designed to run.

17



3.1.1 Parameter File

Furthermore, the parameter file is included in the data folder and enables the user to change different
parameters. This way, it is possible to change the way the grid is generated. For the parameter file,
the body-fixed coordinate system is used. Figure 3.2 demonstrates this system via an example airfoil.

Figure 3.2: Airfoil with coordinate-system by which delta
and rx/ry/rz is applied

The first parameters defined are associated with airfoil generation:

Delta The first parameter to define, while it does not matter in which order the parameters are
given, is ”delta”. This gives the distance in the three-coordinate axis from the first airfoil to the
next one. It is realized in openblademesh as a simple translation with its directions according to the
noninertial body coordinate system as seen in Figure 3.2 and works just by adding the delta value
to the according axis, as shown in Figure 3.3.

Figure 3.3: Sketch demonstrating the method of translation.

Angle The angle by which the airfoil is rotated is defined by the parameter ”angle”. It is important
that the angle is given in radians. A positive angle results in a counterclockwise rotation.

18



Pivot Point The pivot point for the rotation is not fixed and is defined by the combination of the
parameter ”rx”, ”ry” and ”rz”. It does not matter if the parameters are given in the order of the
airfoil or if first all of the ”rx” then ”ry” and then ”rz” parameters are given. The points defining
the pivot point are in Selig format for the airfoil. Figure 3.4 shows that for a rotation first the pivot
point is reached and then the whole airfoil is rotated by the predefined angle.

Figure 3.4: Sketch demonstrating the method of rotation.

Sizing Factor The aforementioned sizing factor allows the scaling of the airfoils from the standard
chord length of one, from the Selig format, to the desired airfoil chord length by multiplying it.
The following parameters refer to grid generation and node distribution.

n nodes horizontal The variable ”n nodes horizontal” is the number of points on each of the upper
parts of the airfoil. For visualization see Figure 3.2. In the picture the lines from the middle of the
airfoil to the nose and to the TE are where the here mentioned nodes are set.

By this parameter, the resolution of the grid generation is defined for the wingtip because the number
of nodes on the vertical lines on the wingtip and the number of nodes which are on the airfoil nose
result from the horizontal nodes and the used progression. How they are calculated is explained in
the corresponding part of the code.

Progression1 The parameter defining the progression for n nodes horizontal is defined by ”Pro-
gression1” and is used to calculate the distance taken between each node in the progression of the
distribution.

Progression2 Progression2 is the progression for n nodes horizontal from the middle of the airfoil
towards the Trailing Edge (TE).

19



n nodes vertical wingtip The last parameter refers to the grid generation in the Z direction. The
number of nodes in the Z direction is calculated for every new section between two airfoils. The
starting value, which is important to enable a smooth transition between the wingtip and the wing
in the Z direction, is the parameter ”n nodes vertical wingtip”.

n nodes vertical root The parameter for the number of nodes in the last section is
”n nodes vertical root”. Between these two values, the number of nodes is calculated via an ex-
ponential decrease to enable a very precise mesh at the wingtip while still achieving an acceptable
computational time by reducing the number of nodes drastically towards the less aerodynamically
interesting end of the wing. n nodes vertical root is important because even if the number of points
on the wing decreases drastically from the very fine mesh size at the wingtip towards the root, it is
very important that at the last section, there are still enough nodes to guarantee that the section
gets meshed and can be extruded sufficiently. If it would reduce to one, for example, it would not be
possible to create a sufficient mesh. To get a better idea of what the node progression is meant the
following Figure 3.5 shows an example wing extruded. From every section beginning at the wingtip
towards the root the number of nodes gets reduced and the grid gets thinner.

Figure 3.5: Airfoil which shows the point distribution

The concept for this calculation is, to take the length of the trailing edge and divide it by the number
of points on this line to get the size of the smallest step on this line. Continuing with this length, the
first and therefore smallest step of the exponential increase in the y direction is the just calculated
by dividing the TE with the number of nodes, enable the smooth transition.

length of TE

points on TE
= l ∗ r

n − 1

r − 1
(3.1)

20



For the points distribution, the ”Progression” mode is used. With this, first, the exponential
decrease over the whole wing is calculated, and trying to mimic these curves on each subsection
between two airfoils with extra ”Progression” calculations the whole wing is set. However, the
algebraic calculation takes too long to calculate and the numerical calculation was not implementable
until now. So the current code calculates on each section one value for the number of points and
sets it to this fixed value. This is equated with a negative exponential function with a fixed value for
the number of nodes on the section closest to the wing root. This equation is given in the respective
part of the code explanation.

Output The output folder contains the output files created by Gmsh. This output is the surface
created by Gmsh and will be further used by Pyhyp to extrude the wing in the y direction.

Src The main code implementation is in the src folder and contains the actual Python code. In the
following, the code is explained piece by piece and shall thereby help the user understand the best
way to work with openblademesh, or how to implement or add new features if desired.

3.1.2 Section1: Setting up the code

To operate Gmsh, it first has to be initialized, which is done in the code beneath the comment
section1 see appendix, and a new model has to be specified which is named ”wing” in this example.
This model is internal for Gmsh and does not appear in another point of Openblademesh.

Here all the needed parameters to create the grid as desired are imported from the parameter file and
saved in the dictionary ”Variables” by which they are called throughout the whole program. Also
the three developer modes ”Only wing tip generation”, ”create GUI” and ”extrude wing” exist
to to decide if only parts of the code shall be computed to simplify and speed up the computation
time. The code loops through the parameter file and searches for the line containing the name of the
parameter, replaces the name and the following equal sign, and saves what is left in the parameter of
interest. If there are several pieces of information in one line, see ”delta” for example, the letters are
separated and saved as lists in the parameter which can be a list containing information for different
airfoils. Because some of the parameters contain more than one piece of information they are set to
be lists while others need to be integers. The distinction between these two is realized by a simple if
loop which checks for the type of the called variable.

21



3.1.3 Section2: Loading files

Figure 3.6: Graph depicting how the loading part of the code works.

The above graph Figure 3.6 gives an overview of how the loading part of the code works.

The following two paragraphs in this section are done separately for every airfoil. In this section,
all the files are loaded into the code and the outlines of the airfoils, which are not the wingtip, are
connected with splines.

The first lines in section 2 of the code define a function that counts from zero until the end of the
first airfoil and then jumps to the number of the end of the second airfoil plus six. The six extra
points are added to make space for the first and last points in the inner subsection of the airfoil which
are the two generated points by the spline function in the inner airfoil at the trailing edge, the two
points on the outer airfoil at the airfoil nose that are created by the spline to be more flexible from
the points in the airfoils and finally the last two points that are on the inner airfoil at the airfoil nose.
The loop continues to count up from there. The aforementioned points are shown in the following
two pictures Figure 3.7 and Figure 3.8.

Figure 3.7: Airfoil with high-
lighted points created
with spline

22



Figure 3.8: Airfoil with highlighted points created with spline

The just created list is now sorted in a list of lists of X and Y points to simplify the accessibility.
This way, the code can work with all the points given and reach its X and Y values. Furthermore,
the points are manipulated by delta and the rotation if needed in the parameter file that just has
been defined.

It is important to note that the Gmsh function used to add points has downsides, such as, that the
points are not callable later on. Therefore all the points for the airfoils will be added to the grid,
but also a separate file will be added that includes the same points. This is important because while
Gmsh adds to every added point a tag to identify the point later on, it is not possible to access
point values from specific points for separate lists for the different airfoils for example. Therefore the
points are saved twice.

Then the code continues to sort the airfoils that are not the first one, because the first airfoil is the
wingtip, in a way that allows later on a transfinite algorithm. To this end, it counts the points that
are created in a counterclockwise direction starting from the trailing edge. This is defined by the
Selig format which is used.

Subsequently, the points in the file are rotated. This is done at this point and not earlier to achieve
consistent handling. If, for example, the airfoil would be rotated so that the leading edge is no more
the point with the smallest X value the code would create a wrong sorting.

Now all the points are connected with splines by the earlier defined sections. Also, they are given a
tag and a line is created which connects the upper and lower trailing edge. Gmsh needs to create a
surface through a closed wire of lines, a so-called curve loop, which is defined by all the just created
splines and the connecting line.

23



3.1.4 Section3: Wingtip generation

Figure 3.9: graph which shows how section 3 works

The flow diagram above Figure 3.9 shows the way the wingtip generation is realized.

The wingtip on a wing is responsible for a great amount of the induced drag. Because the importance
of the wing tip in a Computational Fluid Dynamics (CFD) simulation of a wing is very high, the
definition of the wingtip takes a great part of openblademesh and will be described in detail.

To generate a structured mesh it is necessary to have surfaces with four corners, given that the mesh
should be quadlinear. To achieve that, the first airfoil is subsectioned into eight parts. As seen in
the figures below Figure 3.12 are the results that are achieved in the following chapter.

The boundaries of the inner airfoil are generated by taking the difference between the upper and
lower airfoil and either substituting or adding a fraction of this value to the original point depending
on whether the original point is on the upper or lower airfoil. As a clarification, the code walks
from the Trailing Edge (TE) towards the nose, takes every Z coordinate, and compares it to the Z
coordinate with the same X coordinate. As seen in Figure 3.13 if the first value is positive, marked

24



Figure 3.10: Airfoiltip

Figure 3.11: Airfoil

Figure 3.12: Airfoil trailing edge

in blue, then the negative value, here in yellow, is substituted. The result is then multiplied by 1/3
and substituted from the first value, shown in green in the figure. This results in an inner airfoil that
is a third the size of the original airfoil and follows the shape of the first airfoil very precisely, even
in concave areas.

Figure 3.13: Airfoil with highlighted distances which are used to create the inner airfoil for the wingtip

By this approach, even very small and curved airfoils can be achieved and will result in the best grids
possible by this big of a size difference. An example of such a difficult airfoil is given in Figure 3.14
below which shows the TE of the NREL 5MW wind energy blade which is fully described in the
examples section.

Figure 3.14: Trailing edge section of the NREL 5MW
wingtip

The X values of the start and endpoints of the just-created splines are defined and saved in one
list. The points for the end of the splines are created so that the connection lines from these to the
outer airfoil are 45 degrees. The 45 degrees are important because they allow for the most regular
translation of cells on each side of the connecting line.

25



Next up the spline is created which defines the position of the connection points of the inner and
outer airfoils. This spline is purely to compute positions on the inner airfoil and is not seen in the
model. It is calculated with the Scipy cubic spline function. Therefore at first, the corresponding
X values are calculated to enable a 45-degree angle in the trailing edge to to yield cells as uniform
as possible. The Trailing Edge (TE) of the example airfoil is given below to give a good example of
how the Trailing Edge (TE) is created Figure 3.15.

Figure 3.15: Airfoil TE

The airfoils are sub-sectioned to achieve planes with four sides to enable the transfinite algorithm.

To subsection the outer airfoil several points are placed on the airfoil. As seen in Figure 3.20 with
with every color change a new plane occurs but also following the outline of the airfoil another part
of the outline.

Figure 3.16: Airfoil depicting the marching direction of
the points around the airfoil

Following the same idea of partitioning, the inner airfoil is sectioned. Starting from the upper point of
the endpoint of the inner airfoil, towards the airfoil nose and then, following the arrows on Figure 3.21
back to the Trailing Edge (TE).

Figure 3.17: Airfoil depicting the marching direction of
the points around the inner airfoil part

To achieve the desired planes with four edges the starting and end points as well as the middle points
on the wingtip need to be connected with lines. To enable Gmsh to create a surface from the created
splines and lines, curve loops are created in the way shown in the picture below Figure 3.22, and
planes are installed in them.

26



Figure 3.18: Airfoil depicting the curve loops and planes
created with its respective numbers

Lastly in the wingtip generation process, to achieve a structured grid, the curves that connect the
airfoil nose and the Trailing Edge (TE) and therefore represent the biggest part of the airfoil, are
defined to be transfinite and it is defined how many points are set on each curve. The transfinite
algorithm refers to the transfinite interpolation from numerical analysis which constructs functions
over a planar surface so that these functions fit to boundary conditions on the boundary. Here
the transfinite algorithm function is used to define a set number of points in a specific distribution.
This distribution is realized with the so-called ”progression” mode which is a geometrical series and
distributes the points depending on the coefficient and number of points across the given line.

Because it is crucial to have smooth transitions between every cell, the number of nodes on the airfoil
in the vertical direction and the number of nodes on the connection lines between the outer and inner
airfoil are calculated by the following formula

length vertical line

nodes on vertical line
= l · r

n − 1

r − 1
(3.2)

The vertical line is the line of the inner airfoil at the nose section divided by the nodes on this line. l
is the length of the curve on which the progression is set, r is the set coefficient and k is the number
of nodes on this curve. This equation is converted for the number of nodes on the line and derives
from

n−1∑
k=0

a ∗ rk = a0 ∗
r − 1

rn − 1
(3.3)

which is the geometrical series as described in the fundamentals section. Important to note is that
a0 is the smallest step taken.

length vertical

number of nodes
= a1 (3.4)

In this equation a1 is the smallest step on the line which is examined. The number of nodes on the
vertical line is calculated to achieve the needed smallest step.

Via the same approach, the amount of nodes on the connection lines between the inner and outer
airfoil is calculated, with the difference that the line, for which the amount of nodes is calculated is
now the connection line between the outer airfoil and the inner airfoil towards the nose section. For
clarification see the next picture Figure 3.29. In this picture the crossing between the three lines is
highlighted. The vertical line is for Figure 3.23 and the line that connects the inner and outer airfoil
is for Figure 3.29. The last curve that follows the direction of the airfoil is the curve on which the
progression is given with Progression1.

27



Figure 3.19: Airfoil with high-
lighted section by
which the point
distribution is calcu-
lated.

By this, the bordering cells on each side of the lines have the same size and enable regular cuboids
to achieve a small sizing difference between each cell.

Because computation time is a major point to consider in Computational Fluid Dynamics (CFD)
simulation it is important to save nodes where possible. So on these curves, the number of nodes
is highest towards the nose and towards the Trailing Edge (TE) to achieve a good resolution of the
important parts while simultaneously saving nodes in the less aerodynamically complicated middle.
This distribution is a geometrical progression in two different directions which is calculated by the
geometric series formula Figure 3.27 shown above.

3.1.5 Section4: Wing creation in Y direction

Here, the actual creation of the wing starts by creating a two-dimensional grid beginning at the first
airfoil and connecting the other airfoils. To achieve a structured mesh on the newly generated planes
again the transfinite algorithm is used. The corresponding curves on the newly generated airfoils to
the curves on the outer wingtip airfoil are also set to be with transfinite algorithms with the same
coefficients.

The newly created connection lines between the boundaries of the subsections between the airfoils are
also set to be handled with the transfinite algorithm and here they are defined with computational
time in mind. Because the adjacent cells need to be as similar as possible it is important to generate
cells on the wing towards the wingtip which are as similar as possible to the cells on the wingtip on
the edge. Because the wingtip will have very small cells, especially at the Trailing Edge (TE), the
cells on the wing need to be very small. However, if this cell dimension would be consistent over
the whole wing the computational load would be enormous without any major improvement to the
simulation.

28



To achieve the transition between the refined amount of points towards the wingtip and fewer points
towards the wing root, a formula is implemented which calculates the number of points in the Y
direction for every section. But the algebraic solution approach takes too long and the numerical
approach is yet to be finished so the formula is given here but is not used.

The idea behind this is to recreate one geometric series over the complete wing by geometric series
on smaller subsections.
1. This is done beginning with the formulas for the geometric series over the whole wing with the set
boundary conditions as the first step size a1, the length of the last section l3, the number of nodes
on the entire wing n1, and number of nodes over the whole wing except for the nodes on the last
section n2.

n1−1∑
k=0

a1r1k −
n2−1∑
k=0

a1r1k − l3 = 0 (3.5)

a1 =
Te

nodes− nose
(3.6)

n2 = n1−Nmin (3.7)

by defining the first sum for the complete sum and the second one without the last section to enable
the least number of nodes on the last section. This is realized via the factor that is substituted at
the end. This equation should be solved for the coefficient of the sum r1

2. With the coefficient for the complete wing r1, the first step in the first section a1, which is the
same as the whole wing and the length of the first section l1, with the equation

n1−1∑
k=0

a1r1k − l1 = 0 (3.8)

the number of nodes for the first section can be calculated.
3. With this, the first step size in the first section and the coefficient for the whole wing via the
equation

n3∑
k=0

a1r1k −
n3−1∑
k=0

a1r1k = a2 (3.9)

that takes as the first sum the geometric series until on node further than the end of the first section
n3 and as the second sum the series until the second section n3 - 1, the first step size in the second
section is equated which is a2.

29



4. Taking the number of nodes starting from the second section n3, the first step size a2, the
coefficient for the whole wing (that is the same as for the first section) r1, the number of nodes of
the whole wing n1 and the step size for the second section a2

n1−1∑
n3

a2r1k −
n1−1∑
k=0

a2r2k = 0 (3.10)

the coefficient for the second section is calculated.

repeating these steps from 2. to 4. until the last section of the wing is reached in which the number
of nodes is already known.

With this approach, a very smooth transition between a high number of nodes at the wingtip to the
less detailed section at the root can be achieved using the progression Gmsh provides.

But as this approach is not available at the current state of implementation, a second approach was
chosen which is coarser. So, every new surface, created by interpolating between two airfoils, gets a
smaller amount of points on the wing and therefore less to compute. This is realized by a negative
exponential formula.

Here n is the number of nodes on the wing root and a is calculated by dividing the length of the
Trailing Edge (TE) by the number of nodes on it. x represents the length of the wing.

n · eax (3.11)

The resulting number of nodes at the beginning of each new section is taken and therefore the quality
of the grid refines drastically for more sections but is not sufficient for the example with the NREL
5MW. So every section gets a new distance between two points and on the section.

At last, the new surfaces get set to be structured as well by the transfinite approach.

3.1.6 Section5: Finishing Gmsh

With the recombine command the grid is set to be quadrangular and with the write command, it is
specified where the output file is to be written.

The last two commands create a Graphical User Interface (GUI) so that the user can see and rate
the resulting grid.

3.1.7 Section6: Pyhyp

Here, Pyhyp begins with its extrusion of the just-created wing. Here all the options from the Pyhyp
website are implemented. Because of the problems with the node distribution calculations mentioned
earlier, Pyhyp cannot extrude the whole wing for too big step size differences between the wingtip
and the wing.

30



3.2 User Manual

To use openblademesh, the first step is to implement the researched airfoils into the data folder and
label each file with airfoil and its respective number. Also, it is important to save each airfoil in Selig
format to make sure that the program can work with it as it is supposed to.

In the parameter file, the necessary parameters to build the grid need to be updated and the Pyhyp
data needs to be set to enable openblademesh to generate a mesh of the grid. If it is wished to
first just generate the wingtip without the rest of the wing to save time while checking for an even
grid generation, the line which is at the beginning of the code before it reads the parameter file:
only wingtip generation can be set to TRUE, to skip over the rest of the wing generation and only
generate the wingtip.

3.3 Examples

3.3.1 Pyhyp Example

To demonstrate an example of how Pyhyp works, even if openblademesh has problems with extruding
due to the big difference in steps in grid size, a Pyhyp example is shown in the following. First the
necessary options are implemented to achieve a solid extrusion. In this case, 81 steps with an initial
step size of 4 · 10−6 are used, and a march distance in the normals direction of 1100. Pyhyp imports
the file, in this case, a p3d file, and starts extruding it. It automatically tries to show the result in
VSP AERO which is a visualization software and would show the extruded wing, but because the
code is used in the docker container it is not able to use the graphic card and therefore the error
arises, as seen in Figure 3.20.
Next, it shows the user the amount of nodes and faces found in the file and how many of the nodes
are unique. Through the extrusion of every cell and with a small tollerance it is possible for cells
to be generated double. To be able to create a mesh, the grid needs to have consistent normals
for every face, which is checked by Pyhyp next. Finally, before it starts to extrude, a grid ratio is
given which is an evaluation number for the grid and should be between 1 and 1.2 as the Pyhyp
documentation recommends.

31



Now Pyhyp creates a table with all the relevant information for the user. Most important is the
column that displays the Min Quality which indicates the evenness and regularity for each step and
should always be greater than zero. As seen in Figure 3.20 for this extrusion the quality is sufficient
and therefore the extrusion will be valid.

Figure 3.20: Pyhyp output example file which was given by the Pyhyp documentation

3.3.2 NREL 5MW

As an example to demonstrate how openblademesh works, the NREL 5MW wind energy wing was
chosen. Further information about this wind power plant can be seen here [18].

Therefore it is quite easy to get access to all of the necessary data [18], including which airfoils are
used and the respective data, which is the distance from the wingtip and the chord length which
is easily adapted to the sizing factor for every airfoil is in Selig format and therefore with a chord
length of one, given. The used data can be seen in Figure 3.21

32



Figure 3.21: NREL 5MW table from where the data was taken from [19]

With the adaptation of the parameter file to the needed data, all the user has to do to implement
the wing data to openblademesh is done. How it is implemented can be seen in the first appendix
by the parameter file.

The next and last step is to polish the resulting grid. The recommendation is to first only create the
wingtip with the default values for the point distribution and progressions and see what the code
presents. If problems result, such as that the grid is very uneven or does not fit the wanted fineness,
a closer inspection of the points and progression is needed. But for this example, the wingtip looks
sufficient because the progression is smooth, towards the nose and the wingtip, the nodes get refined,
and no obvious difference in cell size can be seen as shown in Figure 3.22

Figure 3.22: NREL 5MW wingtip grid

33



Now the code needs to generate the two-dimensional grid of the wing. To do so
only wingtip generation is set to FALSE and with the default values for the point distribution over
the wing the code is run again and the generated wing can be inspected as in Figure 3.23 shown.

Figure 3.23: NREL 5MW Grid

34



Figure 3.24: edge length

Figure 3.25: length ratio i

35



Figure 3.26: length ratio j

Figure 3.27: skewness

Figure 3.27 show the skewness and Figure 3.24 the edge length of the blade. Both diagnostic values
are acceptable and only on the rotor root critical values are found for the edge length because of the
coarse node distribution over the wing and the bid step towards the wing root. This is due to the
immense difference in mesh size from the airfoils to the circle of the rotor root.

36



This would be tackled by the grid size reduction algorithm Equation 3.5 for this would create a
smoother transition at the wingtip while still being able to achieve a wider grid at the root to enable
openblademesh to generate a smoother transition. Figure 3.25 and Figure 3.26 visualize the length
ratio at its most critial areas which is in both cases the transition from the wingtip to the wing. This
would be bypassed aswell with a smoother transition on the wing in y direction.

Now the code would extrude the wing in the y direction. However, because of the implementation
problems with the grid size reduction algorithm Equation 3.5, Pyhyp is not able to create a mesh
from this file. So in Figure 3.28 is only the wingtip extruded with Pyhyp, with the Pyhyp output of
Figure 3.28.

Figure 3.28: NREL 5MW Grid

For a better understanding, the whole blade was extruded in Figure 3.29 by pointwise which is a
commercial mesh generation software.

37



Figure 3.29: NREL 5MW Grid extruded by pointwise

38



4 Summary

4.1 Conclusion

The main goal of this thesis is to demonstrate the feasibility of the task to create a grid generation
tool solely on open source software which is called openblademesh. To achieve this goal, as a basis,
Gmsh was used as a grid generation tool to be programmed using Python. To extrude the mesh
provided by Gmsh, Pyhyp was chosen and implemented. The reasoning behind the choice for Gmsh,
as well as python and Pyhyp, was simply due to their easy usability and open-source easy-to-handle
nature. To enable Gmsh to create some of the more complicated calculations, scipy and numpy were
implemented because of their good documentation as well as their open source distribution.
To achieve a good quality grid, one of the first things that had to be managed was how the wingtip
generation was handled due to its nature of needing a high-quality grid as well as having big and
small cells. To this end, inside the wingtip, a second airfoil copying the form of the first airfoil
was installed, and therefore cells with quadrangular outlines were enabled due to the creation of
quadrangular planes. Furthermore, the distribution of the nodes inside the wingtip with progressions
was implemented to allow for a fine grid towards the nose and the trailing edge as well as bigger
distances in the middle of the wingtip to save computational time. This feature also extends to the
wing and creates a progression over the whole wing.
To create from the wingtip wing, the code was expanded to be able to read several airfoils. By
interpolating between adjacent airfoils the wing is created and by applying the transfinite algorithm
on each surface a structured grid is created.
For achieving a smooth transition of the grid between the wingtip and the wing a formula was
implemented that handled the distribution on the wing. This first formula was not sufficient to
achieve the smooth transition needed, so a second more complex calculation was created which was
not algebraically solvable, in a reasonable time, and therefore attempted to be solved numerically.
This approach was not available at moment of publication and therefore the extrusion with Pyhyp
was not enabled as a standalone. While the wingtip on its own can be meshed with Pyhyp the
whole wing can only be meshed by software with different extrusion methods such as pointwise.
Always changing the parameters in the code is very tedious they were put in the parameter file so
the user can change what is needed to be change in a separate file.
How Openblademesh works and with which concepts are described in this thesis, beginning with a
broad overview of the fundamentals, continuing with the code structure and ending with examples
of how openblademesh can be used and was used. Finally, suggestions on how the tool can be
extended in the future and what the limitations are.

In conclusion, openblademesh is a success in proving that it is possible to create an open-source
structured grid-generating software that is partly automated. Openblademesh realizes this and can
generate adequate grids and extrude them in its given limitations. One should be able to generate
and manipulate the grid generation as well as the extrusion process.

39



4.2 Limitations and Possible Improvements

In the future, possible supplements would be to implement the feature to give a range between which
the cell growth can vary. This would lead to a guaranteed stable extrusion but would give the possi-
bility for the code to run into impossible boundary conditions. For example, when too few cells are
combined with a very short grid in the y direction, the step for each cell could exceed the given maxi-
mum cell growth. Also, an automated extrusion would be a possible reasonable addition following the
example of the MACH-AERO software packages from which already Pyhyp was included, but works
with unstructured meshes. In the following, the code limitations and corresponding improvements
are proposed.

4.2.1 Wingtips

Because of the way the airfoils are added and then extruded it is not guaranteed that the implemen-
tation of winglets or similar wing shapes that are twisted around other axes than the Z-axis succeed.
Even though the part of the code dedicated to turning each airfoil is able without big conversions to
allow turning around any given axis and around any given point, this feature is not yet tested and
may result in unforeseen problems.

4.2.2 Step Size in Y Direction

In the current state, the step size in the Y direction is calculated for each section between two
consecutive airfoils separately and therefore does not supply the needed smooth transition between
each step. However, a calculation approach is given for points distribution in the Y direction,
Equation 3.5 that needs to be implemented in openblademesh using a computationally efficient way.

4.2.3 Growth Rate between Cells

To achieve a stable extrusion of the grid in the normal direction of the cells, it is important to have
a smooth growth rate between each cell and not to exceed a factor between 1.3 and 1.6. There is,
however, no option to set a maximum value or a range in the current version. Therefore, it is only
adjustable passively by changing the amount of nodes and progression. So in a consecutive work, it
may be one target to set a maximum cell growth rate to ensure a stable grid extrusion with any set
of data.

4.2.4 Non-linear creating of Wing through Airfoils

In Openblademesh, the two-dimensional creation of the wing in the wing direction is only possible in
a linear approach. So if a wing with curved outlines is needed, the only solution is to build it with
many airfoil sections in a short succession so that the round edge can be reconstructed with linear
edges. This might lead to longer computation time. This also could be extended in a complementing
work.

40



4.2.5 Pyhyp

Pyhyp is in its current state purely manual and every change needs to be implemented by hand.
Because there is already the automated MACH-AERO framework, [17], it might be possible to
implement Openblademesh into it to achieve a more automated code that also generates a structured
grid.

41



References

[1] Nyenah, Emmanuel, Sterl, Sebastian, and Thiery, Wim. “Pieces of a puzzle: solar-wind power
synergies on seasonal and diurnal timescales tend to be excellent worldwide”. In: Environmental
Research Communications, Volume 4, Number 5 (2022). doi: 10.1088/2515-7620/ac71fb.

[2] Boor, Carl de. A Practical Guide to Spline. Vol. Volume 27. Jan. 1978. doi: 10.2307/2006241.

[3] Gordon, William J. and Thiel, Linda C. “Transfinite mappings and their application to grid
generation”. In: Applied Mathematics and Computation 10-11 (1982), pp. 171–233. issn: 0096-
3003. doi: https://doi.org/10.1016/0096- 3003(82)90191- 6. url: https://www.

sciencedirect.com/science/article/pii/0096300382901916.

[4] William M. Chan, Joseph L. Steger. “Enhancements of a three-dimensional hyperbolic grid
generation scheme”. In: Applied Mathematics and Computation 51 (1992), pp. 181–205.

[5] Chan, William M. and Steger, Joseph L. “Enhancements of a three-dimensional hyperbolic grid
generation scheme”. In: Applied Mathematics and Computation 51.2 (1992), pp. 181–205. issn:
0096-3003. doi: 10.1016/0096-3003(92)90073-A. url: https://www.sciencedirect.com/
science/article/pii/009630039290073A.

[6] Parthan, Veena. Smooth Extrusion for Accurate Viscous Flow Simulation. url: https://

community . cadence . com / cadence _ blogs _ 8 / b / cfd / posts / smooth - extrusion - for -

accurate-viscous-flow-simulation (visited on 09/06/2023).

[7] Secco, Ney et al. “Efficient Mesh Generation and Deformation for Aerodynamic Shape Opti-
mization”. In: AIAA Journal 59 (Oct. 2020), p. 2020. doi: 10.2514/1.J059491.

[8] Y+-Calculation. url: https://www.cadence.com/en_US/home/tools/system-analysis/
computational-fluid-dynamics/y-plus.html (visited on 06/09/2023).

[9] Lilienthal, Otto. Der Vogelflug als Grundlage der Fliegekunst. 1943.

[10] Oliveira, Nı́colas, Loureiro, Eric, and Hallak, Patŕıcia. “STUDY OF MESH REFINEMENT
ON THE AERODYNAMIC COEFFICIENTS FOR NACA2412 PROFILE WITH DIFFER-
ENT ANGLE OF ATTACK AND k - w TURBULENCE MODEL”. In: Revista Mundi
Engenharia, Tecnologia e Gestão (ISSN: 2525-4782) 5 (May 2020). doi: 10 . 21575 /

25254782rmetg2020vol5n21141.

[11] url: https://code7700.com/index.htm (visited on 06/09/2023).

[12] url: https://numpy.org/ (visited on 06/09/2023).

[13] url: https://scipy.org/ (visited on 06/09/2023).

[14] Geuzaine, C. and Remacle., J.-F. Gmsh: A 3-D finite element mesh generator with built-in pre-
and post-processing facilities. 2009.

[15] url: https : / / mdolab - pyhyp . readthedocs - hosted . com / en / latest/ (visited on
06/09/2023).

[16] al., Ney R. Secco et. url: https://mdolab-pyhyp.readthedocs-hosted.com/en/latest/
(visited on 06/09/2023).

42



[17] url: https://mdolab- mach- aero.readthedocs- hosted.com/en/latest/ (visited on
06/09/2023).

[18] Feliciano, J et al. “Generalized Analytical Displacement Model for Wind Turbine Towers under
Aerodynamic Loading”. In: Journal of Wind Engineering and Industrial Aerodynamics 176
(Mar. 2018). doi: 10.1016/j.jweia.2018.03.018.

[19] Jonkman, J et al. “Definition of a 5-MW Reference Wind Turbine for Offshore System Develop-
ment”. In: (Feb. 2009). doi: 10.2172/947422. url: https://www.osti.gov/biblio/947422.

43



Appendix

Parameter file

44



# define translation of wing sections as  1 

# delta[which airfoi][delta x, delta y, delta z] 2 

delta = 0 0 0 3 

delta = 0 -8.25 0 4 

delta = 0 -15.68 0 5 

delta = 0 -21.98 0 6 

delta = 0 -27.47 0 7 

delta = 0 -32.32 0 8 

delta = 0 -36.49 0 9 

delta = 0 -40.49 0 10 

                          11 

 12 

# define rotation of wing sections as  13 

# angle[which airfoil][angle of rotation in radian, counterclockwise] 14 

angle = 0  15 

angle = 0 16 

angle = 0 17 

angle = 0 18 

angle = 0 19 

angle = 0 20 

angle = 0 21 

angle = 0 22 

 23 

# define point around which airfoil is rotated 24 

rx = -1 25 

rx = -1 26 

rx = -1 27 

rx = -1 28 

rx = -1 29 

rx = -1 30 

rx = -1 31 

rx = -1 32 



 33 

ry = 0 34 

ry = 0 35 

ry = 0 36 

ry = 0 37 

ry = 0 38 

ry = 0 39 

ry = 0 40 

ry = 0 41 

 42 

rz = 0 43 

rz = 0 44 

rz = 0 45 

rz = 0 46 

rz = 0 47 

rz = 0 48 

rz = 0 49 

rz = 0 50 

 51 

# define sizing factor by which airfoil is adjusted 52 

sf = 1.419 53 

sf = 3.256 54 

sf = 3.748 55 

sf = 4.249 56 

sf = 4.458 57 

sf = 4.652 58 

sf = 2.0 59 

sf = 2.0 60 

 61 

n_nodes_horizontal = 40                                                                    62 

Progression1 = 0.9 63 

Progression2 = 0.9                                                      64 



 65 

n_nodes_vertical_wingtip = 150 66 

n_nodes_vertical_root = 10 67 



Python Code from Openblademesh

48



#Datafile to Gmsh airfoil converter, with structured result and possibilty 1 
#to extrude wing in third dimension. 2 
#V1.1: Datafile needs to be in Selig format and without closed trailing 3 
edge 4 
 5 
# start of section 1: 6 
# setting the code up 7 
#--------------------------------------------------------------------------8 
--------------------------------- 9 
# Import modules: 10 
import gmsh 11 
import sys 12 
import math 13 
import os 14 
import numpy as np 15 
from scipy.interpolate import CubicSpline 16 
from scipy.optimize import fmin 17 
from scipy.optimize import minimize 18 
#from pyhyp import pyHyp 19 
 20 
# Initialize gmsh: 21 
gmsh.initialize() 22 
gmsh.model.add("Wing") 23 
gmsh.option.setNumber('Mesh.CgnsExportStructured', 1) 24 
 25 
# Parameter to restrict what the code creates do safe time if only specific 26 
parts shell be revised 27 
# only_wing_tip_generation disables the creation of the wing through the 28 
airfoil greater then 0 29 
# create_GUI enables that gmsh prints what it creates after it finishes. If 30 
only the extruded Pyhyp file is needed, 31 
# this can bedisabled to safe time 32 
# extrude_wing enables Pyhyp. If only the Gmsh part is looked upon, pyhyp 33 
can be disabled to safe time and compational time 34 
only_wing_tip_generation = False 35 
create_GUI = True 36 
extrude_wing = False 37 
 38 
# Scan how many files are in "Data" folder 39 
files = 0 40 
for _, dirnames, filenames in os.walk(r"../data/NREL 5MW/"): 41 
    files += len(filenames) 42 
 43 
# read and safe parameters from parameter file 44 
Variables = { 45 
    "delta" : [], 46 
    "angle" : [], 47 
    "rx" : [], 48 
    "ry" : [], 49 
    "rz" : [], 50 
    "sf" : [], 51 
    "n_nodes_horizontal" : "", 52 
    "n_nodes_vertical_wingtip" : "", 53 
    "n_nodes_vertical_root" : "", 54 
    #"Progression1" : "", 55 
    #"Progression2" : "" 56 
    } 57 
 58 
# reading Variables from parameter file to variables in code in dictionary 59 
for x in Variables: 60 
    Platzhalter = [] 61 
    # string to search in file 62 
    word = str(x) + " = " 63 



    with open(r"../data/Parameter file.txt", "r") as fp: 64 
        # read all lines in a list 65 
        lines = fp.readlines() 66 
        for line in lines: 67 
            # check if string present on a current line 68 
            if line.find(word) != -1: 69 
                line = line.replace(str(x) + " = ", "").split() 70 
                Platzhalter = [] 71 
                for entry in line: 72 
                    if type(Variables[x]) == list: 73 
                        entry = float(entry) 74 
                        Platzhalter.append(entry)              75 
                    else: 76 
                        Platzhalter = int(entry) 77 
                if type(Variables[x]) == list: 78 
                    Variables[x].append(Platzhalter) 79 
                else: 80 
                    Variables[x] = int(Platzhalter) 81 
 82 
# Start of section 2: loading files 83 
#--------------------------------------------------------------------------84 
--- 85 
# here begins gmsh to work 86 
 87 
airfoil_files = [] 88 
airfoil_list = [] 89 
file_counter = 00 90 
points = [] 91 
while file_counter < files: 92 
     93 
# get points from txt file and convert to List with strings 94 
# path to load the airfoil file 95 
    with open(r"../data/NREL 5MW/Airfoil"  96 
              + str(file_counter) + ".txt", "r") as f:                   97 
        airfoil_file = f.read() 98 
        airfoil_file = airfoil_file.replace(",", ".")  99 
        airfoil_list.append(airfoil_file.replace("\n", " ").split())   100 
         101 
# checking to see if List entry is convertible to float 102 
    def is_float(coordinates, file_counter): 103 
        if coordinates is None: 104 
            return False 105 
        try: 106 
            float(coordinates) 107 
            return True 108 
        except: 109 
            print(coordinates + " in file: " + str(file_counter) + " is not 110 
a valid entry, please enter numbers") 111 
            sys.exit(0) 112 
            return False 113 
         114 
    for coordinates in airfoil_list[file_counter]: 115 
        is_float(coordinates, file_counter) 116 
     117 
# transform points from List as gmsh points                          118 
# safe Points temporarely in airfoil_points 119 
# and generate List of points for spline sorting  120 
# containing lists of Coordinates of airfoils 121 
# also: translate points by earlier defined delta                                                           122 
    lc = 0.1                               123 
    po = 0                                       124 
    n = 1 125 
    airfoil_points = []      126 



     127 
    # Counts from 0 to end of length of first airfoil and then continues 128 
after  129 
    # the lenght of two times the first airfoil to give place for the 130 
wingtip  131 
    # generation and six extra points for the inner airfoil generation 132 
    def point_number(counter, n):                133 
        x = 0 134 
        c = len(airfoil_list[0])/2 135 
        if counter < 1: 136 
            return n 137 
        else:   138 
            while x <= counter: 139 
                 c = c + len(airfoil_list[counter -1])/2 + 6     140 
                 x += 1 141 
            return c + n                     142 
    # points get safed in airfoil_points and translated by delta from 143 
parameter file and adjusted with sf (sizing factor) 144 
    while n <= len(airfoil_list[file_counter])/2: 145 
        airfoil_points.append([ 146 
            float(airfoil_list[file_counter][po]) * 147 
float(Variables["sf"][file_counter][0]) - 148 
Variables["delta"][file_counter][0], 149 
            float(airfoil_list[file_counter][po+1]) * 150 
float(Variables["sf"][file_counter][0]) - 151 
Variables["delta"][file_counter][2], 152 
            0  * int(Variables["sf"][file_counter][0]) + 153 
Variables["delta"][file_counter][1]]) 154 
        gmsh.model.occ.add_point( 155 
            float(airfoil_list[file_counter][po]) * 156 
float(Variables["sf"][file_counter][0]) - 157 
Variables["delta"][file_counter][0], 158 
            float(airfoil_list[file_counter][po+1]) * 159 
float(Variables["sf"][file_counter][0]) - 160 
Variables["delta"][file_counter][2], 161 
            0 * float(Variables["sf"][file_counter][0]) + 162 
Variables["delta"][file_counter][1], 163 
            lc, int(point_number(file_counter, n)))              164 
        n += 1 165 
        po += 2 166 
 167 
    points.append(airfoil_points) 168 
     169 
     170 
    if file_counter > 0: 171 
    # define subsections on airfoil[>0] to enable transfinite algorythm 172 
with s0x following the airfoil. 173 
    # In counterclockwise direction, from TE (trailing edge) to the upper 174 
middle of the outer airfoil, then to the nose, 175 
    # then around the nose, then to the lower middle and finally back to 176 
the TE 177 
        s01 = []                                                              178 
        s02 = [] 179 
        s03 = [] 180 
        s04 = [] 181 
        s05 = [] 182 
 183 
        n = 0 184 
         185 
        while float(points[file_counter][n][int(0)]) >= 186 
float(points[file_counter][0][0])/2: 187 
            s01.append(point_number(file_counter, n+1)) 188 
            n += 1 189 



         190 
        while float(points[file_counter][n][int(0)]) >= 191 
float(1.4142*0.003*float(Variables["sf"][0][0])*0.5): 192 
            s02.append(point_number(file_counter, n)) 193 
            n += 1 194 
        s02.append(point_number(file_counter, n)) 195 
        X_Wert = n-1      196 
        n += 1 197 
         198 
        s03.append(point_number(file_counter, n-1)) 199 
        s03.append(point_number(file_counter, n)) 200 
        while float(points[file_counter][n][int(1)]) >= 201 
float(points[file_counter][X_Wert][int(1)]): 202 
            s03.append(point_number(file_counter, n+1)) 203 
            n += 1 204 
             205 
        s04.append(point_number(file_counter, n)) 206 
        while float(points[file_counter][n][int(0)]) < (1 * 207 
float(Variables["sf"][file_counter][0]) - 208 
Variables["delta"][file_counter][0])/2: 209 
            s04.append(point_number(file_counter, n+1)) 210 
            n += 1 211 
         212 
        s05.append(point_number(file_counter, n)) 213 
        while float(points[file_counter][n][int(0)]) < 1 * 214 
float(Variables["sf"][file_counter][0]) - 215 
Variables["delta"][file_counter][0]: 216 
            s05.append(point_number(file_counter, n+1)) 217 
            n += 1 218 
        s05.append(point_number(file_counter, n+1)) 219 
        n = 1         220 
 221 
        s02.reverse() 222 
        s05.reverse() 223 
 224 
    # rotate points from subsection on pivot point rx/ry/rz 225 
        n = 1 226 
        while point_number(file_counter, n) <= point_number(file_counter, 227 
(len(airfoil_list[file_counter])/2-1)): 228 
            gmsh.model.occ.rotate([(0, point_number(file_counter, n))],  229 
                                  -float(Variables["rx"][file_counter][0] * 230 
-Variables["sf"][file_counter][0]), 231 
                                  -float(Variables["rz"][file_counter][0] * 232 
-Variables["sf"][file_counter][0]), 233 
                                  float(Variables["ry"][file_counter][0] * 234 
-Variables["sf"][file_counter][0]), 235 
                                  0, 0, 1,  236 
                                  237 
float(Variables["angle"][file_counter][0])) 238 
            n += 1 239 
 240 
        # creating outer line for airfoils > 0 from earlier defined s0x 241 
        gmsh.model.occ.add_spline(s01, 10001 + file_counter * 10000)                                              242 
        gmsh.model.occ.add_spline(s02, 10002 + file_counter * 10000)      243 
        gmsh.model.occ.add_spline(s03, 10003 + file_counter * 10000) 244 
        gmsh.model.occ.add_spline(s04, 10004 + file_counter * 10000) 245 
        gmsh.model.occ.add_spline(s05, 10005 + file_counter * 10000) 246 
        # create line to connect TE 247 
        gmsh.model.occ.add_line(int(max(s05)), int(min(s01)), 10000 + 248 
file_counter * 10000) 249 
 250 
        gmsh.model.occ.addCurveLoop([10000 + file_counter * 10000,  251 
                                     10001 + file_counter * 10000,  252 



                                     10002 + file_counter * 10000,  253 
                                     10003 + file_counter * 10000, 254 
                                     10004 + file_counter * 10000, 255 
                                     10005 + file_counter * 10000],  256 
                                    10006 + file_counter * 10000)    257 
        gmsh.model.occ.synchronize()                                           258 
         259 
    file_counter += 1 260 
 261 
# Start of Section3: 262 
#--------------------------------------------------------------------------263 
---- 264 
 265 
# Here starts Wingtip generation! 266 
 267 
# copy and dilate original points[0]  268 
# to generate a copy for inner domain generation 269 
# with X defining the factor of the dilation and A being the Y coordinate  270 
# of the upper airfoil and B the Y coordinate of the lower airfoil 271 
 272 
X = 0.33      273 
 274 
i = 0 275 
k = 1+len(points[0]) 276 
points_inner = [] 277 
x_points = [] 278 
y1_points = [] 279 
y2_points = [] 280 
y3_points = [] 281 
y4_points = [] 282 
y_points = [] 283 
 284 
while i < len(airfoil_list[0]): 285 
    n = 0     286 
    while n < len(airfoil_list[0]): 287 
        X1 = X 288 
        if i == n: 289 
            n = n + 2    290 
        if float(airfoil_list[0][i]) == float(airfoil_list[0][n]): 291 
            # if loop is for the part where the points are on the positive 292 
Y value 293 
            if float(airfoil_list[0][i+1]) > float(airfoil_list[0][n+1]): 294 
                # here with A, B, C and E is the formula to calculate the 295 
position of the inner airfoil 296 
                A = float(airfoil_list[0][i+1]) 297 
                B = float(airfoil_list[0][n+1]) 298 
                C = A - B 299 
                E = A - X1 * C 300 
                # also y points needs to be adjusted by sf and delta to fit 301 
into place of resulting airfoil 302 
                y1_points.append(E * float(Variables["sf"][0][0]) - 303 
Variables["delta"][0][2]) 304 
                y3_points.append(float(airfoil_list[0][i+1])* 305 
float(Variables["sf"][0][0]) - Variables["delta"][0][2]) 306 
                 307 
                points_inner.append([float(airfoil_list[0][i]) * 308 
float(Variables["sf"][0][0]) 309 
                                     - Variables["delta"][0][0],E * 310 
float(Variables["sf"][0][0]) - Variables["delta"][0][2]]) 311 
                gmsh.model.occ.add_point(float(airfoil_list[0][i]) * 312 
float(Variables["sf"][0][0]) 313 
                                     - Variables["delta"][0][0],E * 314 
float(Variables["sf"][0][0]) - Variables["delta"][0][2], 315 



                    0, lc, k) 316 
                                      317 
                break 318 
            # the else section for the y section after passing through the 319 
origin 320 
            else: 321 
                A = float(airfoil_list[0][n+1]) 322 
                B = float(airfoil_list[0][i+1]) 323 
                C = A - B 324 
                D = B + X1 * C 325 
                 326 
                x_points.append(float(airfoil_list[0][i]) * 327 
float(Variables["sf"][0][0]) 328 
                                     - Variables["delta"][0][0]) 329 
                y2_points.append(D * float(Variables["sf"][0][0]) - 330 
Variables["delta"][0][2]) 331 
                y4_points.append(float(airfoil_list[0][i+1])* 332 
float(Variables["sf"][0][0]) - Variables["delta"][0][2]) 333 
                 334 
                points_inner.append([float(airfoil_list[0][i]) * 335 
float(Variables["sf"][0][0]) 336 
                                     - Variables["delta"][0][0],D * 337 
float(Variables["sf"][0][0]) - Variables["delta"][0][2]]) 338 
                gmsh.model.occ.add_point(float(airfoil_list[0][i]) * 339 
float(Variables["sf"][0][0]) 340 
                                     - Variables["delta"][0][0],D * 341 
float(Variables["sf"][0][0]) - Variables["delta"][0][2], 342 
                    0, lc, k) 343 
              344 
                  345 
                break 346 
        # lastly the airfoil tip, it is seperately added 347 
        else:           348 
            if float(airfoil_list[0][i]) == 0: 349 
                    points_inner.append([float(airfoil_list[0][i]) * 350 
float(Variables["sf"][0][0]) 351 
                                         - 352 
Variables["delta"][0][0],float(airfoil_list[0][i+1]) * 353 
float(Variables["sf"][0][0]) - Variables["delta"][0][2]]) 354 
                    gmsh.model.occ.add_point(float(airfoil_list[0][i]) * 355 
float(Variables["sf"][0][0]) 356 
                                         - 357 
Variables["delta"][0][0],float(airfoil_list[0][i+1]) * 358 
float(Variables["sf"][0][0]) - Variables["delta"][0][2], 359 
                        0, lc, k) 360 
                    break 361 
            n += 2 362 
    k += 1 363 
    i += 2 364 
    365 
     366 
# adding points for trailing edge domain generation so that the ... 367 
# ... TE domain boundaries are 45 degrees 368 
# generation lists and points for the spline generation to be ay easy as 369 
possible 370 
 371 
y_points.append(y1_points) 372 
y_points.append(y2_points) 373 
y_points.append(y3_points) 374 
y_points.append(y4_points)                                                                             375 
 376 
x_points.insert(0,0 - Variables["delta"][0][0]) 377 
y_points[0].append(0 - Variables["delta"][0][2]) 378 



y_points[1].insert(0,0 - Variables["delta"][0][2]) 379 
y_points[2].append(0 - Variables["delta"][0][2]) 380 
y_points[3].insert(0,0 - Variables["delta"][0][2]) 381 
y_points[0].reverse() 382 
y_points[2].reverse() 383 
x_points = np.array(x_points) 384 
y_points[0] = np.array(y_points[0])  385 
y_points[1] = np.array(y_points[1])   386 
y_points[2] = np.array(y_points[2]) 387 
y_points[3] = np.array(y_points[3]) 388 
 389 
# create spline for interpolatin of beginning and ending of the inner and 390 
outer airfoil between the nose 391 
# and the trailing section 392 
 393 
cs = [] 394 
n = 0 395 
while n < 4: 396 
   cs.append(CubicSpline(x_points,y_points[n],bc_type='natural')) 397 
   n += 1 398 
  399 
Inter_X = [] 400 
 401 
# adding the X values from which the spline start and end to the list 402 
Inter_X.append(float(points_inner[0][0]) - 1/4 * (float(points[0][0][1]) - 403 
float(points[0][-1][1]))) 404 
Inter_X.append(float(points_inner[-1][0]) - 1/4 * (float(points[0][0][1]) - 405 
float(points[0][-1][1]))) 406 
Inter_X.append(float(1.4142*0.003*float(Variables["sf"][0][0]))) 407 
Inter_X.append(float(0.5 * Inter_X[2]))                                          408 
 409 
n = 0 410 
i = 0 411 
k = 0 412 
# and adding points to the model from the created spline 413 
while k < 6: 414 
    if n == 2: 415 
        i = 0 416 
        points_inner.append([Inter_X[n],cs[i](Inter_X[n])]) 417 
        gmsh.model.occ.add_point(Inter_X[n],cs[i](Inter_X[n]), 418 
                                 0, lc, len(airfoil_list[0])+k+1) 419 
        k += 1 420 
        i = 1                                                              421 
   422 
    if n == 3: 423 
      points_inner.append([Inter_X[n],cs[i](Inter_X[n])]) 424 
      gmsh.model.occ.add_point(Inter_X[n],cs[i](Inter_X[n]), 425 
                               0, lc, len(airfoil_list[0])+k+1) 426 
      k += 1 427 
      i += 1 428 
       429 
    points_inner.append([Inter_X[n],cs[i](Inter_X[n])]) 430 
    gmsh.model.occ.add_point(Inter_X[n],cs[i](Inter_X[n]), 431 
                             0, lc, len(airfoil_list[0])+k+1) 432 
    n += 1 433 
    i += 1 434 
    k += 1 435 
 436 
P = [] 437 
X_value = [] 438 
Y_value = [] 439 
n = 0 440 
 441 



while n < 6: 442 
    P.append(len(airfoil_list[0])/2+n) 443 
    X_value.append(points_inner[int(P[n])][int(0)]) 444 
    Y_value.append(points_inner[int(P[n])][int(1)]) 445 
    n += 1 446 
 447 
 448 
# generate Spline from points[0] for Airfoil domain with 449 
# s5 beginning on the outer airfoil 450 
# s1 to the nose section 451 
# s15 connecting around the nose 452 
# s4 from the lower nose section 453 
# s8 from there to the trailing edge on the outer airfoil 454 
# Then continuing for the inner airfoil with 455 
# s6 and s2 for the upper half and then s3 and s7 for the lower half. 456 
s1 = [] 457 
s2 = [] 458 
s3 = [] 459 
s4 = [] 460 
s5 = [] 461 
s6 = [] 462 
s7 = [] 463 
s8 = [] 464 
s15 = [] 465 
s = [] 466 
n = 0 467 
i = 0 468 
 469 
while float(points[0][n][int(0)]) >= float(points[0][0][0])/2: 470 
    s5.append(n+1) 471 
    n += 1 472 
s5.append(n+1) 473 
half_upper_top = n+1 474 
 475 
while float(points[0][n][int(0)]) >= X_value[4]: 476 
    s1.append(n+1) 477 
    n += 1 478 
s1.append(len(airfoil_list[0])+5) 479 
 480 
s15.append(len(airfoil_list[0])+5) 481 
while float(points[0][n][int(1)]) >= Y_value[5]: 482 
    s15.append(n+1) 483 
    n += 1 484 
s15.append(len(airfoil_list[0])+6) 485 
 486 
s4.append(len(airfoil_list[0])+6) 487 
while float(points[0][n][int(0)]) < (1 * float(Variables["sf"][0][0]) - 488 
Variables["delta"][0][0])/2: 489 
    s4.append(n+1) 490 
    n += 1 491 
half_lower_low = n 492 
 493 
s8.append(n) 494 
while float(points[0][n][int(0)]) < 1 * float(Variables["sf"][0][0]) - 495 
Variables["delta"][0][0]: 496 
    s8.append(n+1) 497 
    n += 1 498 
s8.append(n+1) 499 
n = 1 500 
 501 
s6.append(len(airfoil_list[0])+1) 502 
while float(points_inner[n][int(0)]) >= float(points_inner[0][0]/2): 503 
    s6.append(n + len(points[0])+1) 504 



    n += 1 505 
s6.append(n + len(points[0])+1) 506 
half_upper_low = (n + len(points[0])+1)   507 
   508 
while float(points_inner[n][int(0)]) >= X_value[2]: 509 
    s2.append(n + len(points[0])+1) 510 
    n += 1 511 
s2.append(len(airfoil_list[0])+3) 512 
 513 
while  float(points_inner[n][int(1)]) >= Y_value[3]: 514 
    n += 1 515 
 516 
s3.append(len(airfoil_list[0])+4) 517 
while float(points_inner[n][int(0)]) < float(points_inner[0][0]/2): 518 
    s3.append(n + len(points[0])+1) 519 
    n += 1 520 
half_lower_top = n-1 + len(points[0])+1 521 
 522 
s7.append(n + len(points[0])) 523 
while float(points_inner[n][int(0)]) <= X_value[1]: 524 
    s7.append(n + len(points[0])+1) 525 
    n += 1 526 
s7.append(len(airfoil_list[0])+2) 527 
 528 
# to enable the correct arrangement of the normals, the first spline of 529 
each plan needs to be in the correkt order 530 
# so because the progression script is both ways with the same factor (for 531 
convinience reasons for the user) some splines 532 
# needs to be reversed 533 
s1.reverse() 534 
s2.reverse() 535 
s7.reverse() 536 
s8.reverse() 537 
 538 
s.append(s1)   539 
s.append(s2)                                                                     540 
s.append(s3) 541 
s.append(s4) 542 
s.append(s5) 543 
s.append(s6) 544 
s.append(s7) 545 
s.append(s8) 546 
s.append(s15) 547 
 548 
n = 0 549 
while n < 8: 550 
    gmsh.model.occ.add_spline(s[n], n + 1) 551 
    n += 1 552 
gmsh.model.occ.add_spline(s15, 15) 553 
 554 
 555 
#generate lines for domain boundaries                                           556 
gmsh.model.occ.add_line( 557 
    int(len(airfoil_list[0])+3), 558 
    int(len(airfoil_list[0])+5), 9)    559 
 560 
gmsh.model.occ.add_line( 561 
    int(len(airfoil_list[0])+1),  562 
    int(points[0].index(max(points[0][:1]))+1), 12)    563 
 564 
gmsh.model.occ.add_line( 565 
    int(len(airfoil_list[0])+4), 566 
    int(len(airfoil_list[0])+6), 10)     567 



 568 
gmsh.model.occ.add_line( 569 
    int(len(airfoil_list[0])+2), 570 
    int(points_inner.index(points_inner[-1])-5), 11)        571 
 572 
gmsh.model.occ.add_line( 573 
    int(len(airfoil_list[0])+1), 574 
    int(len(airfoil_list[0])+2), 18)    575 
 576 
gmsh.model.occ.add_line( 577 
    int(points_inner.index(points_inner[-1])-5),  578 
    int(points[0].index(max(points[0][:1]))+1), 19)   579 
 580 
gmsh.model.occ.add_line( 581 
    int(len(airfoil_list[0])+3), 582 
    int(len(airfoil_list[0])+4), 16)   583 
 584 
gmsh.model.occ.add_line( 585 
    int(half_upper_low), 586 
    int(half_upper_top), 13)  587 
 588 
gmsh.model.occ.add_line( 589 
    int(half_lower_top), 590 
    int(half_lower_low), 14)   591 
gmsh.model.occ.synchronize() 592 
 593 
gmsh.model.occ.add_line( 594 
    int(half_upper_low), 595 
    int(half_lower_top), 17)   596 
gmsh.model.occ.synchronize() 597 
 598 
# generate curved loops for domains 2, 3, 4, 5, 6, 7, 8, 9 and 10006 which 599 
indicates that this is a curve loop 600 
# that is used for the creation in y direction 601 
gmsh.model.occ.add_curve_loop([19, 5, 1, 15, 4, 8], 10006) 602 
gmsh.model.occ.add_curve_loop([12, 5, 13, 6], 2) 603 
gmsh.model.occ.add_curve_loop([13, 1, 9, 2], 3) 604 
gmsh.model.occ.add_curve_loop([9, 15, -10, -16], 4) 605 
gmsh.model.occ.add_curve_loop([10, -4, -14, -3], 5) 606 
gmsh.model.occ.add_curve_loop([-14, 8, -11, -7], 6) 607 
gmsh.model.occ.add_curve_loop([18, 11, 19, 12], 7) 608 
gmsh.model.occ.add_curve_loop([16, 3, 17, 2], 8) 609 
gmsh.model.occ.add_curve_loop([17, 7, 18, 6], 9) 610 
 611 
# add surfaces on wing_tip for structured mesh generation 612 
n = 2 613 
while n < 10 : 614 
    gmsh.model.occ.add_plane_surface([n], n) 615 
    n += 1 616 
 617 
# progression for the distribution of points around the airfoil. 618 
progression1 = 1.1 619 
progression2 = 1.1 620 
 621 
 622 
n_nodes_nose = int(((cs[0](Inter_X[2])-cs[1](Inter_X[2]))* 623 
                (progression1**(Variables["n_nodes_horizontal"]-1)-1))/( 624 
                    (float(points[0][s[0][-1]][0])-625 
float(Inter_X[3]))*(progression1-1))) 626 
                         627 
n_nodes_vertical_airfoil = int(((cs[2](Inter_X[3])-cs[0](Inter_X[2]))* 628 
                (progression1**(Variables["n_nodes_horizontal"]-1)-1))/( 629 
                    (float(points[0][s[0][-1]][0])-630 



float(Inter_X[3]))*(progression1-1))) 631 
                                               632 
# creating a structured grid through a transfinite approach                                     633 
 634 
n = 1 635 
while n <= 19 : 636 
    if n < 3 : 637 
        gmsh.model.mesh.setTransfiniteCurve( 638 
            n, Variables["n_nodes_horizontal"], meshType="Progression", 639 
coef = progression2) 640 
    elif n < 5 : 641 
        gmsh.model.mesh.setTransfiniteCurve( 642 
            n, Variables["n_nodes_horizontal"], meshType="Progression", 643 
coef = progression2)           644 
    elif n < 7: 645 
        gmsh.model.mesh.setTransfiniteCurve( 646 
            n, Variables["n_nodes_horizontal"], meshType="Progression", 647 
coef = progression1) 648 
    elif n < 9: 649 
        gmsh.model.mesh.setTransfiniteCurve( 650 
            n, Variables["n_nodes_horizontal"], meshType="Progression", 651 
coef = progression1) 652 
    elif n < 15: 653 
        gmsh.model.mesh.setTransfiniteCurve( 654 
            n, n_nodes_vertical_airfoil) 655 
    elif n < 20: 656 
        gmsh.model.mesh.setTransfiniteCurve( 657 
            n, n_nodes_nose) 658 
    n += 1  659 
 660 
gmsh.model.occ.synchronize() 661 
 662 
n = 2 663 
while n < 10 :  664 
    gmsh.model.mesh.setTransfiniteSurface(n) 665 
    n += 1 666 
 667 
gmsh.model.occ.synchronize() 668 
 669 
# start of section4: 670 
# start of wing generation in Y direction 671 
#--------------------------------------------------------------------------672 
---- 673 
# end of wing tip generation 674 
 675 
if only_wing_tip_generation == False:     676 
        677 
    n = 0 678 
    while n < files -1: 679 
    # Creating 3d model of wing through interpolation between airfoils 680 
        gmsh.model.occ.addThruSections([20006 + n * 10000,  681 
                                        10006 + n * 10000], False, False, 682 
True) 683 
        gmsh.model.occ.synchronize() 684 
        n += 1 685 
                                                                                         686 
    n = 1 687 
     688 
    while n < files: 689 
    # Setting Grid on Z-Axis to be structured... 690 
        # ...for the surface edges 691 
        gmsh.model.mesh.setTransfiniteCurve(10001 + n * 10000,  692 
                                            693 



Variables["n_nodes_horizontal"], meshType="Progression", coef = 694 
progression2) 695 
        gmsh.model.mesh.setTransfiniteCurve(10002 + n * 10000,  696 
                                            697 
Variables["n_nodes_horizontal"], meshType="Progression", coef = 698 
progression2)   699 
        gmsh.model.mesh.setTransfiniteCurve(10003 + n * 10000,  700 
                                            n_nodes_nose) 701 
        gmsh.model.mesh.setTransfiniteCurve(10004 + n * 10000,  702 
                                            703 
Variables["n_nodes_horizontal"], meshType="Progression", coef = 704 
progression1) 705 
        gmsh.model.mesh.setTransfiniteCurve(10005 + n * 10000,  706 
                                            707 
Variables["n_nodes_horizontal"], meshType="Progression", coef = 708 
progression1) 709 
        gmsh.model.mesh.setTransfiniteCurve(10000 + n * 10000,  710 
                                            n_nodes_nose)                                       711 
        n += 1 712 
            713 
    #n_nodes_vertical_wingtip = 714 
(abs(Variables["delta"][1][2])*n_nodes_vertical_airfoil*1.4142)/(2/3*(abs(p715 
oints[0][0][1]-points[0][-1][1]))) 716 
    #print(n_nodes_vertical_wingtip) 717 
 718 
# here beginns the calculation of the distribution of the nodes in y 719 
direction to achieve a very small space at the wingtip 720 
# that fits the distance of the cells at the TE and continuesly growing 721 
distances to save time 722 
    n = 0 723 
    i = files - 1                                                         724 
    while n < 6 * (files - 1):                                           725 
        # ...for the edges in wing direction 726 
        if n%6 == 0: 727 
            Variables["n_nodes_vertical_wingtip"] = 728 
Variables["n_nodes_vertical_root"]*math.exp( 729 
                730 
(np.log(Variables["n_nodes_vertical_wingtip"]/Variables["n_nodes_vertical_r731 
oot"]))/(files-1)*i) 732 
            i -= 1 733 
        gmsh.model.mesh.setTransfiniteCurve(10000 * files + 6 + n, 734 
int(Variables["n_nodes_vertical_wingtip"])) 735 
        n += 1   736 
             737 
                                                     738 
    n = 0                                                            739 
    while n < files - 1:                              740 
        n1 = 1 741 
        while n1 < 7: 742 
            # ... for the surfaces  743 
            gmsh.model.mesh.setTransfiniteSurface(9 + n1 + n * 6) 744 
            gmsh.model.occ.synchronize() 745 
            n1 += 1 746 
        n += 1  747 
     748 
# Start of section5: 749 
# finishing gmsh 750 
#--------------------------------------------------------------------------751 
-------- 752 
gmsh.model.occ.synchronize() 753 
 754 
# smoothing grid to generate a more regular grid 755 
gmsh.option.setNumber("Mesh.Smoothing", 0) 756 



 757 
# cleaning the grid if some nodes may be duplicate 758 
gmsh.model.occ.synchronize() 759 
gmsh.model.mesh.removeDuplicateNodes() 760 
gmsh.model.occ.removeAllDuplicates() 761 
 762 
# Generate a quadrangular grid: 763 
gmsh.model.mesh.generate(2) 764 
gmsh.model.mesh.recombine() 765 
         766 
# Write mesh data:     767 
gmsh.write("../output/NREL5MW.p3d") 768 
 769 
if create_GUI == True: 770 
    # Creates graphical user interface 771 
    if 'close' not in sys.argv: 772 
        gmsh.fltk.run()                                                 773 
 774 
# It finalizes the Gmsh API 775 
gmsh.finalize() 776 
 777 
# Start of section6: 778 
# Pyhyp 779 
#--------------------------------------------------------------------------780 
-------------------------------------------- 781 
 782 
# here beginns pyhyp with its parameter and where to search for the input 783 
file and how to safe it after its been created 784 
baseDir = os.path.dirname(os.path.abspath(__file__)) 785 
surfaceFile = os.path.join(baseDir, "NREL5MW.p3d") 786 
volumeFile = os.path.join(baseDir, "Wing_hyp.cgns") 787 
 788 
options = { 789 
    # --------------------------- 790 
    #        Input Parameters 791 
    # --------------------------- 792 
    "inputFile": surfaceFile, 793 
    "fileType": "PLOT3D", 794 
    "unattachedEdgesAreSymmetry": False, 795 
    "outerFaceBC": "farfield", 796 
    "autoConnect": True, 797 
    #"mode": "elliptic", 798 
    #"BC": {1: {"jlow": "zSymm"}}, 799 
    # --------------------------- 800 
    #        Grid Parameters 801 
    # --------------------------- 802 
    "N": 3, 803 
    "s0": 1e-3, 804 
    "marchDist": 500.0, 805 
    #"nConstantStart": 1, 806 
    #"coarsen": 2, 807 
    #"nConstantEnd": 1, 808 
    #"nodeTol": 1e-08, 809 
    "splay": 1e-4, 810 
    "splayEdgeOrthogonality": 0.5, 811 
    "splayCornerOrthogonality": 0.5, 812 
    "cornerAngle": 60.0, 813 
    # --------------------------- 814 
    #   Pseudo Grid Parameters 815 
    # --------------------------- 816 
    #"ps0": -1.0, 817 
    #"pGridRatio": -1.0, 818 
    "cMax": 1.0, 819 



    # --------------------------- 820 
    #   Smoothing parameters 821 
    # --------------------------- 822 
    #"epsE": 1.0,    #Explicit smoothing factor 823 
    #"epsI": 2.0,    #Implicit smoothing factor 824 
    #"theta": 3.0, 825 
    #"volCoef": 0.25, 826 
    #"volBlend": 0.0002, 827 
    #"volSmoothIter": 150, 828 
 829 
} 830 
 831 
#decide if extrusion is done 832 
if extrude_wing == True: 833 
    # rst object 834 
    hyp = pyHyp(options=options) 835 
    # rst run 836 
    hyp.run() 837 
    hyp.writePlot3D(volumeFile) 838 
 839 


