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Executive Abstract

Satellite technologies have rapidly become integral to modern life, used for broadcasting, navi-
gation, communication, and Earth observation. As technology advances, satellites generate in-
creasingly large volumes of data, presenting hardware challenges in terms of data storage and
transmission due to limited power sources. To meet the escalating demand for high-capacity chan-
nels with high data rates, the EIVE project was initiated to explore the feasibility of using E-band
frequencies (71−76 GHz) for satellite communication. EIVE, led by the University of Stuttgart in
collaboration with various partners, aims to test data transfer capabilities in this uncharted fre-
quency range. A key challenge is the establishment of a communication link between a ground
station antenna and the LEO satellite in the EIVE project. This task is compounded by the ground
station’s Cassegrain antenna with a narrow HPBW of 0.23° and a low achieved scanning area
because of the LEO.

To address these challenges, this research thesis introduces a CONSCAN based search algorithm,
which expands the antenna’s scanning area by executing conical patterns around the satellite’s
estimated trajectory. By using quaternion rotations and the Orekit library for trajectory estimation,
this algorithm significantly enhances the search capabilities, increasing the scanning area in the
sky.

Furthermore, the research highlights the importance of continuous signal acquisition from the
satellite for the planned data transfers. To tackle this issue, the groundwork for a tracking algorithm
based on the MMT method is introduced to provide precise measurements of the satellite’s position,
combining the MMT method with Kalman filters and GPS based methods. This novel method
promises the improvement of the accuracy and stability of the system.





Zusammenfassung

Satellitentechnologien sind aus dem modernen Leben nicht mehr wegzudenken und werden für
Rundfunk, Navigation, Kommunikation und Erdbeobachtung eingesetzt. Im Zuge des technolo-
gischen Fortschritts erzeugen Satelliten immer größere Datenmengen, was aufgrund begrenzter
Energiequellen eine Herausforderung für die Hardware in Bezug auf die Datenspeicherung und
-übertragung darstellt. Um die steigende Nachfrage nach Kanälen mit hoher Kapazität und hohen
Datenraten zu befriedigen, wurde das Projekt EIVE initiiert, um die Machbarkeit der Nutzung von
E-Band-Frequenzen (71−76 GHz) für die Satellitenkommunikation zu untersuchen. EIVE, das von
der Universität Stuttgart in Zusammenarbeit mit verschiedenen Partnern geleitet wird, zielt darauf
ab, die Möglichkeiten der Datenübertragung in diesem unerforschten Frequenzbereich zu testen.
Eine zentrale Herausforderung ist die Herstellung einer Kommunikationsverbindung zwischen
einer Bodenstationsantenne und dem Satelliten im Projekt EIVE. Diese Aufgabe wird durch die
Cassegrain-Antenne der Bodenstation mit einem schmalen HPBW von 0,23° und einem geringen
erreichten Scanbereich aufgrund des LEO erschwert.

Um diese Herausforderungen zu bewältigen, wird in dieser Forschungsarbeit ein auf CONSCAN
basierender Suchalgorithmus vorgestellt, der den Scanbereich der Antenne durch die Ausführung
von Kegelmustern um die geschätzte Flugbahn des Satelliten vergrößert. Durch die Verwendung
von Quaternion-Drehungen und der Orekit-Bibliothek für die Flugbahnschätzung verbessert dieser
Algorithmus die Suchmöglichkeiten erheblich und vergrößert den Scanbereich am Himmel.

Darüber hinaus unterstreicht die Forschung die Bedeutung einer kontinuierlichen Signalerfassung
vom Satelliten für die geplanten Datenübertragungen. Um dieses Problem anzugehen, werden die
Grundlagen für einen auf der MMT Methode basierenden Verfolgungsalgorithmus eingeführt, der
präzise Messungen der Satellitenposition ermöglicht und die MMT Methode mit Kalman Filtern
und GPS basierten Methoden kombiniert.Diese neuartige Methode verspricht eine Verbesserung
der Genauigkeit und Stabilität des Systems.
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1. Introduction

Satellite technologies are just at the center of this fast-developing trend and therefore become inte-
gral parts of our daily lives. Satellites are used by both the public and commercial sectors for broad-
casting, worldwide navigation, high-speed communication, Earth observation, and many more.
Following this trend, the capability and the quality of the used equipment on the satellites devel-
oped quickly in recent years. For example, high-resolution infrared/optical cameras or new radar
systems generate data at the rate of gigabits per second. The generated high data volumes result in
hardware challenges in storing and transmitting the data considering that most satellites have a lim-
ited power source generally supplied by solar panels. In light of these technical challenges, it is un-
surprising that there is a rapid escalation in the demand for high-capacity channels characterized by
high data rates. Harati et al. [6] demonstrated the practicability of employing the E-band frequency
range (71−76 GHz) for satellite communications, which extends beyond the conventional spectrum
exploited by satellite communications, which typically encompasses the L-band (1−2 GHz), the
S-band (2−4 GHz), the C-band (4−8 GHz), the X-band (8−12 GHz), the Ku-band (12−18 GHz),
the Ka-band (26−40 GHz), the Q-band (33−50 GHz), and the V-band (50−75 GHz). Greater band-
widths are frequently attainable through higher frequency ranges, consequently inducing aug-
mented data rates. Nonetheless, this gain in performance necessitates strengthened precision in
aligning the antennas of both the satellite and the ground station. Additionally, this configuration
is often susceptible to increased signal degradation [7]. In parallel, signal interference between
the satellites has gained prominence, particularly in the lower frequency bands with the increas-
ing number of satellites. The escalating population of satellites in the Earth‘s orbital space has
prompted the exploration of novel technologies to mitigate such interference and enhance overall
efficiency [8]. To address these new challenges, the Exploratory In-Orbit Verification of an E/W-
Band Satellite Communication Link (EIVE) project was initiated to examine the feasibility of a
communication link in the E-band. A model of the EIVE can be seen in figure 1.1.

Figure 1.1.: Model of the EIVE satellite [1]

1



2 1. Introduction

The University of Stuttgart is in charge of the CubeSat project EIVE in cooperation with Fraunhofer
Institute for Applied Solid State Physics, Radiometer Physics GmbH, TESAT, and Thales Alenia
Space. The Institute of Space Systems and the Institute of Robust Power Semiconductor Systems
are responsible for the design of the satellite bus and the payload. The 6U CubeSat developed
by the Institute of Space Systems is launched to orbit in June 2023 and is active in the Low
Earth Orbit (LEO). In an in-orbit verification, the data downlink from the CubeSat platform
will first show the viability of broadband radio connections in a frequency range new to satellite
communications. With the proposed payload, it then targets Earth observation applications and
ultra-high throughput services. It also assesses the impact of the atmosphere on modulated data
in this frequency range. Moreover, the payload consists of an E-band transmitter and a high-
resolution camera to generate sufficient data to fully utilize the available bandwidth. Additionally,
the satellite bus has an additional S-band (2−4 GHz) transceiver to send telemetry to the ground
station and receive telecommands. Visualization of the EIVE mission can be seen in figure 1.2.

Figure 1.2.: Visualization of the EIVE mission [2]

A Cassegrain antenna with a diameter of 1200mm is installed at the university to establish the
E-band communication link between the satellite‘s transmitter and the ground station antenna‘s
receiver. The required high antenna gain leads to a consequential reduction in the Half Power
Beamwidth (HPBW) at a mere 0.23◦ [2]. This characteristic outlines a narrow effective radiated
field in the sky that hinges on the satellite’s elevation and trajectory. Thus, a high precision system
is required to find and track the satellite.

The phenomenon of a constrained effective radiated field, along with the intricacies of tracking a
LEO satellite, are longstanding challenges within the domain of satellite communications. Over
time, diverse methodologies have been devised to confront these issues. Some approaches involve
the utilization of multiple antennas or/and multiple satellites, exemplified by techniques leveraging
the Doppler effect as outlined by Pedrosa et al. [9] and Neinavaie et al. [10]. Others emphasize
alternate strategies, such as amplitude-based signal analysis through electronic beam squinting or
the sequential amplitude sensing method, as elaborated by Hawking et al. [11]. The most straight-
forward approach involves aligning the antenna with the satellite’s projected orbital path based
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on precomputed data, and subsequently attempting to capture any incoming signals. However, in
this method, the antenna is directed blindly into the sky, lacking any confirmation of the correctness
of its orientation until a signal is actually detected from the satellite. In contrast, more intricate
systems use the received signal to determine the deviation between the antenna pointing and the
satellite’s actual position at the time of signal reception.

The selection of a tracking and searching methodology depends significantly on the specific equip-
ment in use, the system’s requirements, and the mission objectives. Considering EIVE only has
one Cassegrain antenna available and a very narrow HPBW, it is very crucial that the search area
is increased in the sky and a tracking system is utilized that requires only one antenna. Moreover,
time plays a critical role as well since the satellite will be visible from the antenna for approximately
10 minutes in each pass. Given the intention to transmit gigabytes of data during each satellite pass,
it is prudent to assign a sufficient duration to the data transfer period. Therefore, the detection and
tracking of the satellite should be performed as quickly as possible. This research thesis focuses on
the conical scanning algorithm (CONSCAN) and the novel multimode tracking (MMT) method to
tackle the given problems in the EIVE project. A CONSCAN based algorithm is used to detect the
satellite. The antenna‘s beam is rotated around the already predicted trajectory of the satellite in
a conical motion, which increases the searching area and simultaneously decreases the effect of a
possible error in the trajectory estimation. The MMT takes advantage of two radiation patterns, one
with a maximum at the boresight of the antenna and one at zero, converting this information to the
pointing error of the antenna in azimuth and elevation and then correcting the antenna‘s pointing
accordingly. Additionally, Kalman filters (KF) will also be discussed as possible improvement to
currently used methods.

CONSCAN and MMT were studied and addressed in this research thesis with a possible additional
technique to enhance the tracking system using the KF. However, the focus lies on primarily the
CONSCAN based search algorithm. First, the theoretical foundation for the searching and tracking
system is elaborated in chapter 2. Afterward, the used search algorithm and its implementation is
explained and provided in chapter 3, and the findings of the simulations and tests are displayed
and examined in chapter 4. In chapter 5, potential improvements and future work are discussed.
Lastly, the entire study is summarized and ended in chapter 6.





2. Theoretical Background and Literature Review

The theoretical background on the used search algorithm is given in this chapter. The used
coordinate systems are defined in section 2.1, the basics of tracking and search algorithms are
discussed in section 2.2, the method used to estimate the trajectory of the satellite is explained in
section 2.3, and a basic understanding of the KF is given in section 2.4.

2.1. Coordinate Systems

The used antenna‘s control system accepts only azimuth and elevation values as input. Therefore,
the horizontal coordinate system (HCS) is used as the main coordinate system to define the position
of the antenna and satellite. The horizontal coordinate system is a topocentric celestial system that
uses the observer’s local horizon as the fundamental plane to define two angles [12]. The azimuth
is the angle between an object’s vector on the horizontal plane and its vector in the direction of the
North Pole. It defines an object’s horizontal motion in space. It is expressed in degrees, moving
clockwise from north to south. Besides that, an object’s vertical orientation in space is described
by its elevation. It is the angle formed between the vector of the object on the vertical plane and
the horizon plane. Thus, an object in the zenith has an elevation of 90◦. An object with a negative
elevation is not visible to an observer since it is below the horizon. The HCS is visualized in 2.1.

Zenit

W

NS C

E

Figure 2.1.: Horizontal coordinate system [3]

The Earth-fixed coordinate system (ECEF) is also used for some of the computations in the algo-
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6 2. Theoretical Background and Literature Review

rithm. It is a Geocentric coordinate system that depicts locations close to the Earth as X, Y, and
Z (Cartesian Coordinates) measurements from its center of mass [12]. This includes the planet’s
surface, interior, atmosphere, and surrounding space. The North-South Polar axis is the Z axis, and
it has only positive values increasing northward. The X axis runs through the origin in the plane of
the equator, from the prime meridian (positive) to 180◦ of longitude (negative). Along with being
on the equator’s plane, the Y axis also runs through a region that stretches from 90◦W (negative)
to 90◦E (positive) in longitude. The visualization of the ECEF is shown in figure 2.2.

Zecef

Xecef

Saelite 
(x,y,z)

Yecef

Figure 2.2.: Earth-fixed coordinate system

The main difference between the HCS and ECEF is the origin of interest. ECEF defines its origin as
the earth‘s center; meanwhile, HCS defines its origin as the observer‘s position. They are both used
for satellite tracking applications. During the implementation of the algorithm, translations be-
tween ECEF and HCS were conducted depending on the performed action. The ECEF is employed
to compute the trajectory of the satellite, the antenna‘s pointing direction, and the beam‘s center
position, whereas the HCS is used to translate the antenna‘s rotation in azimuth and elevation, and
compute the input values for the antenna control system. The coordinate system transformations
are conducted with the open source Python library ’Pymap3D’ [13]. Pymap3D is employed by
various projects worldwide, offering solutions to coordinate system transformation problems.

2.2. Satellite Tracking and Detection

In the case of the EIVE, establishing the E-band link between the antenna and the satellite consists of
two dependent parts. First, the satellite should be detected when it enters the line of sight. Second, it
should be tracked after its localization is completed. To achieve these two tasks, conscan and MMT
are used. Before receiving any signals from the satellite, the antenna performs the blind search.
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The antenna points a circular motion around the expected horizon position of the satellite during
the blind search. After some time or the first detection, the antenna initiate the CONSCAN. During
the CONSCAN, the antenna moves in conical motion along the predicted trajectory and tries to
detect the satellite multiple times until the error between the satellite‘s position measurement and
prediction is under a certain threshold. When the threshold is reached, MMT will start running
and tracking the satellite in a control system. If the satellite is lost during the MMT, the CONSCAN
will be activated again and search for the satellite. In summary, CONSCAN is used to conduct the
localization, and MMT is used for tracking. The CONSCAN is explained in chapter 2.2.1, and the
MMT is explained in chapter 2.2.2.

2.2.1. Conical Scanning Algorithm

Even though we predict and compute the possible trajectory of the satellite as explained in chap-
ter 2.3, the antenna’s pointing accuracy is affected by the environmental disturbances or antenna‘s
mechanical limitations, such as its acceleration power [14]. Even wind or the weight of the pay-
load can play a decisive role in the precision of the pointing. CONSCAN is a technique used to
undermine these effects and detect the true position of the satellite. In the case of the EIVE, the
CONSCAN primarily focuses on first founding the satellite and then performing a high accuracy
localization during which the scanning area increases and the effect of the narrow beamwidht
decreases. Furthermore, the performed conical movements during the CONSCAN causes varia-
tions in the received signal. These variations are then used to estimate the true position of the
satellite [15]. The conical motion of the antenna around the trajectory is demonstrated in figure 2.3.

Azimuth in degrees

E
le

va
tio

n 
in

 d
eg

re
es

Conical Searching Motion
Estimated Trajectory(TLE)

Figure 2.3.: Conical motion of the antenna around satellite‘s trajectory

The CONSCAN involves the addition of harmonic movements in the azimuth and elevation axes,
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causing the antenna to follow the satellite in a circular pattern with an angular velocity of w and a
radius of r. Depending on the radius and the antenna‘s capabilities, a sampling rate ∆t with fixed
frequency should be set, which also satisfies the Nyquist-Theorem [15]. The frame of reference for
the circular motion is given in figure 2.4. The origin represents the original antenna direction, sk

denotes the location of the spacecraft, ŝk denotes the estimated spacecraft position, ak denotes the
position of the antenna throughout the scan, and ek is the vector indicating the difference between
the spacecraft and antenna positions. The definition of the pointing error is given in equation 2.1
where the sub indexes e and a refer to elevation and azimuth axes.

ek = sk− ak =

ea,k

ee,k

 = sa,k− r cos(w tk)
se,k− r sin(w tk)

 (2.1)

The estimation of the true position with the help of the variations in the signal power can be done
in different ways. The conventional way proposed by Gawronski and Craparo [15] with least
mean square estimation (LMS) is explained in 2.2.1.1, and a different estimation method proposed
by Souza Et al. [16] with KF is explained in 2.2.1.2. The method with the KF provides a strong
improvement to the conventional way since it is not required to assume the position of the satellite
and the carrier power constant. Additionally, it presents a model that allows one to estimate the
position even without any measurements.

Elevation

Azimuth

ak

r

sk

ek

ŝk

ω

Figure 2.4.: Frame of reference
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2.2.1.1. Least Mean Square Estimation

In Gawronski‘s and Craparo‘s work [15], the received signal power is defined as in equation 2.2

pk = p0,k exp(−µ
ϵ2k
h2 )+νk (2.2)

, where p0,k is the carrier power, µ= 4ln2 is a constant, h is the antenna beam width, vk is an additive
Gaussian white noise, and ϵ2k is the squared total error. ϵ2k is given in equation 2.3.

ϵ2k = eT
k ek = sT

k sk−2aT
k sk+ r2 (2.3)

The received power varies during the scan in a sinusoidal pattern as a result of the harmonic
motions, and its amplitude is dependent on the position of the spacecraft. Using the first-order
Taylor expansion of exp(x), that is exp(x) = 1+x, eq. 2.2 becomes:

pk = p0(1−µ
ϵ2k
h2 )+vk (2.4)

. If the equations 2.1 and 2.3 are combined, equation 2.4 can be written as

pk = pm+
2p0µr

h2 (sacos(wtk)+ sesin(wtk))+vk (2.5)

, where

pm = p0(1−
µ

h2 (r2+ sTs)) (2.6)

. Subsequently, the difference between the received power and the mean power can be written as
in 2.7.

dpk = pk−pm = gsacos(wtk)+ gsesin(wtk)+vk (2.7)

Afterward, a new parameter g is defined as in 2.8.

g =
2p0µr

h2 (2.8)

Finally, if mk = g
[
cos(wtk) sin(wtk)

]
, equation 2.7 can be rewritten as in equation 2.9.

dpk =mks+vk (2.9)

Gathering measurements during the scan period, the true position can be estimated using the LMS
as given in equation 2.10.



10 2. Theoretical Background and Literature Review

ŝ = [(MTM)−1MT]dp (2.10)

LMS assumes that the spacecraft’s position will remain constant throughout the scan duration
with a constant carrier power. This assumption holds if the measurements are taken at regular
intervals, and the distance between the spacecraft and the ground station is sufficient to allow for
gradual changes in the position of the spacecraft. However, in LEO applications like the EIVE,
the assumption of constant position and constant carrier power during the sampling period is not
applicable since the satellite in LEO moves fast [16], [17]. For example, EIVE moves with a speed of
7 km/s, making the constant position assumption absolute. Therefore, a constant position cannot
be assumed, and LMS cannot be employed for the EIVE.

2.2.1.2. Kalman Filter Estimation

The proposed technique by Souza [16], [17] employs the KF to estimate sk. The basics to KF
are explained chapter 2.4. This approach does not use the Taylor series to estimate the signal
power pk; instead, a mathematical adjustment is used to prevent linearization mistakes. The
proposal monitors not only the position of the spacecraft, but also a variable linked to the carrier
power. Furthermore, the state vector is expanded by its first-order time derivatives, making it
more resistant to fluctuations in the state vector dynamics. Equation 2.2 may be transformed into
the logarithmic function by neglecting vk and treating it as a deterministic function, in which case
it becomes:

ln(pk) = ln(po,k)−µ
ϵ2k
h2 (2.11)

.It is necessary to attribute all of the model’s uncertainty to the Gaussian white noise wk with a zero
mean and covariance W = σ2

p. Following that, the equation 2.11 can be rewritten as in equation 2.12.

ln(pk) = ∆k+
2µr
h2 (sacos(wtk)+ sesin(wtk))+wk (2.12)

The ∆k is defined as in equation 2.13.

∆k = ln(p0,k)−
µ

h2 (s2
a,k+ s2

e,k+ r2) (2.13)

The state vector Xk is composed of the state variables ∆k , sa,k, and se,k, and it is extended by the
first-order time derivatives of the state variables. Xk is given in equation 2.14.

Xk =
[
∆k ∆̇k sa,k ˙sa,k se,k ˙se,k

]T
(2.14)

The evolution function is modeled as given in equation 2.15.
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Xk =



1 Ts 0 0 0 0
0 1 0 0 0 0
0 0 1 Ts 0 0
0 0 0 1 0 0
0 0 0 0 1 Ts

0 0 0 0 0 1


Xk−1+qk−1 (2.15)

A Gaussian white noise vector qk−1 with a covariance matrix Q is used in this equation. The time
derivative variables are represented as constants disturbed by random noise. It should also be
pointed out here that the standard deviation of the spacecraft position depends on the application,
modeled as the maximum drift in one period, and the standard deviation of ∆ depends on the
sensor standard deviation σp. The measurement function is linear concerning the state variables,
and it can be written as in equation 2.16.

ln(pk) = Ck Xk+wk (2.16)

Ck is defined as given in equation 2.17.

Ck =
[
1 0 2µr

h2 cos(wtk) 0 2µr
h2 sin(wtk) 0

]
(2.17)

The state vector can be calculated using the KF in each sample period using the suggested formu-
lation. The carrier power is not directly estimated by the filter, and only the spacecraft position is.
The carrier power may be calculated using the predicted state using equation 2.13. This method
allows the estimation of the satellite‘s position and carrier power even in the absence of any mea-
surement. Moreover, there is no deterministic way to define the initial covariance matrix. Hence,
it must indicate a high degree of uncertainty considering reasonable values.

2.2.1.3. Implementation Methods for Conical Scanning Algorithm

Like every algorithm, CONSCAN describes a problem and then tries solving it with different
mathematical approaches. It is commonly used for adaptive tracking of an object whose position
is not precisely known. During the first years of its development, fast Fourier transformation (FFT)
was used as the base of this algorithm. However, Eldred [18] proved that a KF based algorithm
outperforms the FFT-based one. KF based approach is proven to include better accuracy of the
estimate, nearly continuous updates, and the ability to accumulate missing data, while it still has
the same robustness as the FFT-based one. Consequently, FFT became irrelevant in the case of the
CONSCAN.

KFs are a model predictive approach. The computed estimations are influenced by both the
measurement and the prediction. Thus, the used model is highly influential in the behavior of the
algorithm. The mathematical model in the CONSCAN describes a circular motion performed by
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the antenna that compensates for its manufacturing imperfections and other disturbances. During
the circular motion, the sinusoidal variations in the power of the received signal define the model‘s
prediction method, which is used to estimate the true spacecraft position. This prediction model
based on the power variations is given in equation 2.2 in chapter 2.2.1.1. This equation can be
solved both in a linear and a nonlinear form. The linear solutions using LMS or the KF are shown
in chapters 2.2.1.1 and 2.2.1.2. In the work of Chen Et al. [19], it is proven that the problem can be
transformed into a linear one, and a general solution to this problem with the LMS can be given.
It was also demonstrated that it is possible to define the problem as a nonlinear one with one
“exact” solution based on Markov Chain Monte Carlo (MCMC) method. Their findings showed
that linear approaches match the MCMC method in terms of performance when the amount of
data gathered in practice is the same. The nonlinear approach only outperforms linear methods in
terms of accuracy when the amount of data obtained is reduced, and the degree of noise is raised.
The MCMC provides only 10 % error reduction compared to linear methods. In addition, this
performance increase comes in the cost of computation power. For the EIVE, a linear solution to
the problem is used to simplify the model since the nonlinear solution does not provide a significant
performance increase, and it is not worth to increase the computation power.

2.2.2. Multimode Tracking

With a tracking speed of up to three degrees per second and pointing precision comparable to radio
telescopes, tracking a fast-moving satellite (7 km/s) with a high-gain beam antenna is challenging.
In this case, the standard solution to tracking problems, such as the GNSS-based tracking with
TLE data, proves not sufficient because of its pointing error, explained in chapter 2.3. Therefore, a
tracking method with higher accuracy and precision should be utilized for the EIVE. Multimode
tracking is a simultaneous sensing method that allows the evaluation of the pointing error at any
given time using only one antenna [3], making it a suitable candidate for LEO satellite tracking.
Furthermore, the MMT requires at least two radiation patterns. The output magnitude of the
communication signal is highest when the antenna is pointed directly at the point signal source
and receives an incident wave [20]. On the contrary, elevation of the antenna feed’s boresight axis
from alignment with the point source results in the excitation of higher order modes within the
waveguide [20]. The possible radiation patterns are demonstrated in figure 2.5.

Figure 2.5.: Electrical field distribution of different normal modes within the waveguide [3]

Two modes are utilized in the employed tracking system, with the main mode having its main lobe
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at the boresight and the other having a zero at the boresight. Consequently, only one waveguide
is enough to generate the required radiation patterns. Moreover, the fundamental mode TE11

combining the TE11,V and TE11,H radiation patterns are employed to transmit the signal, whereas
the second mode of higher order TE21 combining the TE21,1 and TE21,2 radiation patterns are
employed to sense and detect the deviation. During the tracking, the signals from both modes
are detected and fed into an IQ mixer. The offset and direction of the signal are defined by the
amplitude and the phase shift between the two modes [21].

As a closed loop approach, MMT allows for constant evaluation and correction of pointing errors.
The error correction process is done digitally with the help of a RaspberryPi and an analog digital
converter (ADC). The ADC has a throughput rate of 1 MSa/sec and 14 bit resolution, allowing
the discretization of the analog signals in 214

−1 = 16383 steps. However, the closed-loop tracking
mechanism confronts two principal challenges. Firstly, the transmitter antenna on the satellite has
a gain of 33dBi and an HPBW of 3◦, whereas the receiver Cassegrain antenna has a higher gain
of 59dBi and an HPBW of only 0.23◦. The beams of the satellite and the antenna are visualized in
figure 2.6. Consequently, the satellite’s beam is consistently positioned above the ground station’s
beam spot. Given the concurrent movement of both the satellite and the station, the smaller
beam spot of the ground station antenna complicates continuous satellite tracking. Therefore, the
MMT system needs to update itself continuously, not to lose the satellite. Secondly, a challenge is
introduced by the pedestal to track the EIVE satellite near the zenith. Because the azimuth angle
after the zenith is 180◦ different than the azimuth angle immediately previous to the zenith at
this moment, the MMT system will not be able to track the satellite when it is directly overhead.
Subsequently, the azimuth motor must quickly move the payload almost 180◦, which is unrealistic,
while the satellite is crossing the zenith position. These two challenges create the need for a MMT
system with a predictive model that accounts for the delays created by the second challenge and
can react if the satellite is lost at any time.

Figure 2.6.: Visualization of the beams



14 2. Theoretical Background and Literature Review

2.3. TLE and Trajectory Estimation

EIVE passes through the line of sight multiple times each day, with slight changes in its trajectory
each time. Two of the possible EIVE orbits with elevation of 45◦ and 90◦, the ground station, and
the visible area from the antenna are shown in figure 2.7. Because of the changes in the trajectory,
the ground station antenna should be adjusted each time since, in every pass, the position where
it is expected to detect the satellite for the first time changes. This adjustment is done with the
help of the so called two-line element (TLE). A list of an object’s orbital elements for a specific
period, or epoch, is encoded in the TLE data format [22]. The state (position and velocity) at any
time in the past or future may be predicted using an analytical orbit propagator with the help of
TLE. Furthermore, any method employing a TLE as a data source must implement one of the
Simplified General Perturbations (SGP) models to accurately compute the state at a time of interest
as the TLE data format is unique to the simplified perturbation models. The SGP4 model is used
for LEO propagation, and it considers the main perturbation influences on a satellite: first four
zonal Earth gravity field harmonics, atmospheric drag, and solar radiation pressure [22]. The open
source Python library ’orekit’ is used to read the TLE and then to compute the trajectories [23].
Orekit is employed worldwide, both by academics and industries, to realize space applications,
studies, and operations.

Figure 2.7.: Two possible EIVE orbits with 55 (red) and 90 (blue) degree maximum elevations, the
ground station and the visible area

When the TLE data is read for orbit determination, the six orbital elements of the satellite can be
seen: mean motion, eccentricity, inclination, longitude of the ascending node, argument of perigee,
and mean anomaly. The orbital elements define the orbit and describe its Keplerian behavior [12].
Moreover, TLE data also provides the UTC, epoch, and revolution required for further calculations.
The visual explanation of the TLE data can be seen in figure 2.8.
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Figure 2.8.: TLE data

• Mean Motion (n): It is the angular speed needed for a body to complete one circle under the
assumption of constant speed in a circular orbit that is equal in duration to the real body’s
variable speed in an elliptical orbit.

• Mean Anomaly (M): Despite not being a true geometric angle, it is a mathematical angle that
changes linearly over time. It may be transformed into the true anomaly v, which depicts the
angle between the orbiting object’s position and its periapsis (closest approach to the central
body) in the plane of the ellipse at any given time.

• Eccentricity (e): It describes how much the shape of the ellipse is elongated compared to a
perfect circle.

• Argument of Perigee (ω): It is the angle between the ascending node and the periapsis, which
defines as the ellipse’s orientation in the orbital plane.

• Right Ascension of the Ascending Node (Ω): It horizontally aligns the ascending node of the
ellipse with regard to the vernal point of the reference frame, which is when the orbit crosses
through the reference plane from south to north.

• Inclination (i): It is the vertical tilt of the ellipse with respect to the reference plane, measured
at the ascending node.

These values are then used in the SGP4 model to compute the predicted state vectors. When the
predicted values are compared with the Global Navigation Satellite System (GNSS) measurements,
an error of approximately (1km) is found [22] , [24]. This error may be negligible, depending on the
application and the system requirements. However, this is not acceptable for the EIVE precision
and pointing accuracy requirements. To undermine this pointing error, the provided TLE data
should be up to date. Despite that, TLE data is still used in the implementation of the algorithm to
predict the trajectory and make the necessary adjustment to the antenna until the MMT takes over.
Without the estimation of the trajectory, detection and localization of the satellite are not possible
since MMT requires a very high accuracy pointing in the first place and a continuous connection
with the satellite.
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2.4. Kalman Filter

In this chapter, only a brief explanation of the KF is given, and it is discussed how the KF is used
in tracking applications. The KF is a model based prediction method that can be described as a
predict and correct loop. There are two inputs to the model:

• Measured Values: These inputs are the real measurements, such as the detected satellite
position or the power variations in the power signal.

• Predicted Values: These inputs are the predictions done with the help of the used mathemat-
ical model.

Vital parameters are defined through the integration of both predicted and measured values, dif-
ferentiated by the methodologies of their obtainment method. One set of values originates from
real-time measurements captured through sensors or the antenna, while the other set is derived
through predictive calculations using a mathematical model. Estimation of the system state param-
eters can be computed using these two inputs since there is no sole reliance on either measurements
or predictions. Moreover, the alignment of the measured and predicted values through mathemat-
ical analysis serves to minimize error in the estimated state, considering sufficient data is available
for both measurements and predictions. KF in satellite tracking applications is used explicitly for
the reason that it allows projection of future movements, such as the future satellite position, and
a simultaneous error minimization of the estimated state parameter. As a result, the satellite can
be tracked even if the communication between the antenna and the satellite is interrupted. The
low-level description of the Kalman filter is given in figure 2.9.

Inputs (Measured Values)

Detected satellite 
positions and carrier 

power

Kalman Filter

Update Predict

Unit 
Delay

Estimated satellite 
position and carrier 

power

Outputs Inputs

Initial state of the 
satellite positions and 

carrier power

Figure 2.9.: Low level description of the Kalman filter
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The predictive model used in the KF can be defined in a linear or nonlinear form, depending on
the application. Tracking the satellite in its trajectory is a nonlinear problem. However, it is also
possible to linearize the problem. Firstly, the system can be modeled as a direct nonlinear system,
and an approximation method, such as the MCMC, can be used [19]. Nevertheless, this is proven
to be not effective and costly, as explained in chapter 2.2.1.3. Secondly, linearization of the system
can be performed. The linearization method with the standard KF is explained in chapter 2.2.1.2,
which proves to be much more accurate and effective than the LMS linearization method in LEO
applications, as explained in chapter 2.2.1.1. Additionally, it is also possible to use an extended
Kalman filter (EKF) instead of standard KF, as shown in the work of Coelho Et al. [25]. The EKF is a
recursive process with the ability to linearize the nonlinear model by using first-order Taylor series
expansion, meaning that it has the ability to linearize around the current mean and covariance.
It assumes that a local linearization is enough to cover the nonlinearity. This assumption leads
the EKF to several limitations, such as poor convergence, erratic behaviors, or even inadequate
linearization when applied to highly nonlinear systems. Moreover, to implement the KF in Python,
the ’filterpy’ library is used [26]. Filterpy library is a free library to implement any type of KF,
which is documented in detail and updated frequently.





3. Search Algorithm and its Implementation

In this chapter, the implementation of the used scanning algorithm is discussed and explained.
Firstly, the scanning patterns and the scanning area are explained in section 3.1. Secondly, ad-
vantages and disadvantages of different rotation matrices are discussed in section 3.2. Lastly, the
implementation of the search algorithm is explained in section 3.5.

3.1. Scanning Patterns and Scanning Area

The search algorithm is required to detect and then localize the satellite each time it passes through
the line of sight of the antenna. Considering each pass is approximately 8 to 15 minutes and the data
transfer period should be maximized, the satellite should be located as fast as possible. The narrow
beamwidth of the ground station antenna also creates an additional challenge since it translates
into a small scanning area. As a result, the search algorithm should perform fast and increase the
scanning area in the sky. There are different possible methods to increase the scanning in the sky.
Three well known and used scanning patterns are the Lissajous, rosette, and conical movements
pattern for the antenna. All these patterns use harmonic rotations of the antenna‘s x- and y-axis
orthogonal to the boresight. The rotation in the x-axis is defined as the azimuth, and rotation in the
the y-axis is defined as the elevation. The Lissajous, rosette, and conical scanning patterns from
the perspective of the boresight are shown in figures 3.1a, 3.1b and 3.1c.

(a) Lissajous pattern (b) Rosette pattern (c) Conical pattern

Figure 3.1.: Different scanning patterns shown from the perspective of the boresight

19
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Rotation Conical [mdeg] Rosette [mdeg] Lissajous [mdeg]
Elevation 0.089 0.080 0.083
Azimuth 0.089 0.088 0.080

Table 3.1.: Satellite position error with different scanning patterns [4]

The algorithm performs one complete pattern even if any signal is detected before it readjusts
itself to the next position. It is trivial that the Lissajous and rosette patterns take significantly
more time than the conical pattern. The quickness of the conical pattern comes from its simplistic
form. The antenna only needs to move in a circular motion rather than a much more complicated
motion like the rosette and Lissajous patterns. Additionally, the disturbances in the movement
of the antenna should also be considered. The wind, unbalanced weight on the antenna or any
problem with the motor might cause an error in the satellite detection. In the work of Gawronski and
Craparo [4], these three patterns are simulated and tested with random and harmonic disturbances,
and the errors in the detected satellite positions are analyzed. The summary of the results is given
in table 3.1. The results show that the error of the detected satellite positions did not change
significantly depending on the used pattern. That proves that the scanned area between the
defined limits is sufficient, and the satellite was detected in all cases. Consequently, the conical
scanning pattern is used for the implementation of the search algorithm.
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Figure 3.2.: Behavior of the antenna beam during CONSCAN

The behavior of the antenna‘s beam during the conical search is demonstrated in figure 3.2. The
blue line represents the movement of the antenna beam‘s center in the sky. The red point is the so
called horizon position. It is defined as the position in the sky where we expect to see the satellite
for the first time. As expected, the beam moves around the horizon position in a conical pattern,
searching for the satellite. If the same motion is observed from the boresight of the antenna, a
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circular shape with a fixed radius will be observed, as in figure 3.3.
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Figure 3.3.: Behavior of the antenna beam during CONSCAN seen from boresight

The visualization of the scanned area from the boresight perspective is shown in figure 3.4. The black
point at the center represents the estimated position of the satellite. The four circles demonstrate
the area covered by the beam during the conical search. The distance between the black point
(possible satellite position) and the most outer side of beam‘s scanning area is defined as the radius
of the conical scanning movement or rconscan. If the radius is set to a very high value, the beam‘s
area won‘t cover the entire search area around the estimated position of the satellite. That causes
blank spaces in the search area. If the radius is set to a very low value, the search area might be too
small, and the satellite might not be detected. Therefore, the conical scanning radius is a critical
parameter that plays a key role in satellite detection.

Figure 3.4.: Visualization of the scanned area

The scanning area of the antenna‘s beam is dependent on the slant range, HPBW and the radiation
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pattern of the antenna.

• Slant Range: It is the distance between the antenna and tracked object when the tracked
object is in the line of sight [27]. It is commonly given in kilometers. The slant range changes
depending on the position of the satellite in the line of sight and the satellite‘s current
trajectory.

• Half Power Beamwidht (HPBW)): HPBW is the angular separation in which the magnitude
of the radiation pattern decreases by 50% (or −3dB) from the peak of the main beam [27].
HPBW of the ground station antenna is 0.23◦.

• Radiation Pattern: The graphical depiction of an antenna’s radiation characteristics as a
function of space can be described as an antenna pattern or radiation pattern. In other words,
the antenna’s pattern reveals how it radiates energy into space [27]. A circular radiation
pattern is assumed for the ground station antenna.

The slant range or rslant can be calculated using the law of cosine, as shown in equation 3.1 where
ra is the distance between the earth‘s center and the antenna position, rs is the distance between
the earth‘s center and satellite‘s position, and α is the angle from the observer to the target or the
relative elevation in radians.

rslant =

√
r2

s + r2
a −2rsra cos(α) (3.1)

The change in rslant is demonstrated for a trajectory with a maximum elevation of 55◦ in figure 3.5.
It can be seen from the plot that the rslant decreases as the elevation increases when the satellite is in
the line of sight. Therefore, the active trajectory of the satellite indirectly effects the scanning area
of the antenna.

Figure 3.5.: Slant range relative to satellite‘s elevation
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If the slant range and the HPBW are known, the radius antenna beam area rbeam can be calculated
as given in equation 3.2.

rbeam = rslant · tan(
HPBW

2
) (3.2)

Because of the circular radiation pattern assumption, the antenna‘s scanning area or the beam area
Abeam can be calculated as given in equation 3.3.

Abeam = πr2
beam (3.3)

The Abeam is proportional to the rslant. The behavior of Abeam against the rslant with the same satellite
trajectory (maximum elevation of 55◦) is shown in figure 3.6. In the case of the EIVE, this means that
the beam scanning area decreases when the satellite gets close to its highest possible elevation and
increases when the satellite is at lower elevations. This behavior is useful for the search algorithm
since the beam‘s scanning area is larger in lower elevations. The search for the satellite starts first
from the horizon position (Elevation = 0◦ ) and continues until the satellite is detected. As a result,
the search starts with a higher scanning area, and the scanning area decreases with increasing
elevation.

Figure 3.6.: Beam‘s scanning area relative to slant range

During the search, the antenna moves in a circular motion. This movement translates to the conical
shape in the sky, as demonstrated in figures 3.2 and 3.3. Subsequently, the beam‘s circular scanning
area also moves in a circle from the boresight perspective. The scanned area during the conical
scanning movement is defined as the parameter Aconscan, and it can be calculated as the equation 3.4
where ω is the angular velocity of the antenna.
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Aconscan = Abeam ·ω (3.4)

The ω defines the movement speed of the antenna. The antenna should move fast enough to
perform the conical pattern in the sky and simultaneously catch up to the speed of the satellite.
Therefore, the angular velocity of the satellite in ECEF can be defined as the minimum limit to the
antenna‘s angular velocity. The satellite moves with a speed of 7km/s. The angular velocity of the
satellite ωs in ECEF , so the lowest limit for the antenna‘s angular velocity ωa,min can be calculated
as in 3.5.

ωa,min = ωs =
||r×v||
||r||

= 1.102
mdeg

s
(3.5)

The r and v vectors are the position and velocity vectors of the satellite‘s state vector, as explained in
section 2.3. These two vectors define the satellite‘s trajectory and are read from TLE data using the
Orekit library. It is crucial to point out that the changes in the r and v can be neglected. Therefore,
the satellite‘s trajectory is assumed to have a perfect circular shape to simplify the calculation.
Besides that, the Aconscan can also be calculated using geometry and the rconscan, as in equation 3.6.

Aconscan = π · r2
conscan (3.6)

The visualization of the used geometry is shown in figure 3.7. The darker blue area is the Abeam,
and the lighter blue area is the Aconscan.

Aconscan

rbeam

Abeam

rbeam

Trajectory

2rbeam

Figure 3.7.: Visualization of the scanning area of the conscan



3.1. Scanning Patterns and Scanning Area 25

If rconscan is equal to 2rbeam, as in figure 3.7, then the maximum conscan scanning area is reached
without any blank area in the conical shape. If rconscan is greater than 2rbeam, then there will be
blank spaces (unscanned area) near the point representing the trajectory. If rconscan is smaller than
2rbeam, Aconscan will be smaller, but there will be no blank spaces. Moreover, the Aconscan will decrease
with the increasing elevation of the satellite since rbeam will also decrease. Thus, rconscan should be
dynamically decreased with the increasing elevation to avoid blank spaces in the scanning area
during the conical search. The behavior of Aconscan relative to the rconscan is given in table 3.2.

Condition Blank space in Aconscan Aconscan
rconscan > 2rbeam yes Aconscan = ω ·Abeam
rconscan = 2rbeam no Aconscan = π · r2

conscan
rconscan < 2rbeam no Aconscan < π · r2

conscan

Table 3.2.: Behavior of the scanning area relative to the rconscan

In the employed search algorithm, the rslant is computed using the Orekit library. It is possible to
calculate the rslant for each point(state vector) in the propagated trajectory of the satellite. Therefore,
it is possible to calculate the rconscan for each point on the estimated trajectory, where the algorithm
performs the conical search. Subsequently, the condition of rconscan = 2rbeam can be held onto for
each performed conical pattern, and any blank space in Aconscan can be prevented. However, it is
also possible to set a constant rconscan and allow blank spaces or a smaller Aconscan depending on the
application.

If rconscan is larger than the 2rbeam, the radius of the created blank space rblank can be calculated,
as given in equation 3.7. The obeam and the oconscan represents the ECEF coordinates of the center
position of the antenna beam and the expected position of the satellite, respectively. The Euclidean
distance between these two points is calculated, and the rbeam is subtracted from the distance to
find the rblank.

rblank =
√

o2
beam− o2

conscan− rbeam (3.7)

If the rblank is known, the area of the blank space Ablank can be calculated, as given in equation 3.8.
The blank area is assumed to have a circular shape since the Abeam and the Aconscan are circular as
well.

Ablank = π · r2
blank (3.8)

In some test during the experimental phase, a deliberate choice is made to establish the value of
rconscan as 100 times its original value. This specific manipulation is undertaken to ensure a finer
level of precision in observing the resultant behaviors exhibited by the conical patterns generated
during the experiments. The underlying reason is that the antenna control system is only sensitive
enough to capture changes in the movement of the antenna to three decimal places since the ADC
employed in the control system has a sensitivity of 1 mdeg/s.
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3.2. Rotation Matrices

The efficacy of the employed 3D rotation matrix profoundly shapes the performance of the search
algorithm. The elevation in the CONSCAN is characterized as a rotation relative to a horizontal axis
orthogonal to the boresight, and the azimuth is characterized as a rotation relative to a vertical axis
orthogonal to the boresight [15], as explained in chapter 2.2.1. Thus, when the search algorithm is
executed, two distinct 3D rotations come into play. These rotations describe the antenna‘s circular
movement and are used to compute the direction of the antenna. Subsequently, the beam center‘s
position (in ECEF coordinates) is computed using the norm of the antenna‘s pointing at that specific
time. These beam center positions draw the conical trajectory of the beam across the sky.

There are many different 3D rotations that might be utilized for this purpose. Therefore, four
conditions are defined to compare the rotation matrices.

• Performance: The performance of a 3D rotation matrix can be defined as the number of
mathematical calculations (computations) needed to perform n number of rotations to a
vector. The number of computations directly affects the used memory and, thus, the fastness
of the algorithm. Comparison of the performance is done using the performance metrics
shown in the work of Soohwan and Minkyoung [5].

• Singularity: Singularity of a rotation matrix describes a point where the matrix has no inverse,
and therefore cannot be used to uniquely determine the orientation of a rigid body. In special
cases of Euler angles, one degree of freedom is lost, and the system is locked in a degenerate
two-dimensional space [5]. It cannot be avoided by limiting ranges and the iteration does not
converge near singularity. The Gimbal lock is a good example of this phenomenon.

• Complexity: This condition defines how complex it is to implement these rotation matrices
using Python and preexisting libraries.

• Accuracy: This condition defines how well and accurate the used rotation matrix behaves
when the algorithm is performed relative to the other options.

Considering the complexity condition, only three rotation matrices are tested in the search algo-
rithm, which are the Euler rotation, Rodrigues rotation, and quaternion rotation. The Euler and
Rodrigues rotations are implemented with the ’Rotations’ class using the open source Python li-
brary SciPy [28], whereas the quaternion rotation is implemented using the open source Python
library quaternion which extends the NumPy library [29].

3.2.1. Euler Angles and Rotation

The Euler angles (α, β, γ) describe the orientation of a rigid body relative to a fixed coordinate
system [5]. If the fixed coordinate system is defined as a traditional x, y, and z coordinate system,
any orientation of this rigid body can be reached utilizing the rotation matrices defined with Euler
angles for each axis (x, y, z). The reference coordinate system with Euler rotation angles is shown
in figure 3.8.
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Figure 3.8.: The reference coordinate system with Euler rotation angles

The rotation of the x-axis by angle α is given in equation 3.9.

Rx =


1 0 0
0 cosα −sinα
0 sinα cosα

 (3.9)

Similarly, the rotation of the y-axis by angle β is given in equation 3.10.

Ry =


cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

 (3.10)

Lastly, the rotation of the z-axis by angle γ is given in equation 3.11.

Rz =


cosγ −sinγ 0
sinγ cosγ 0

0 0 1

 (3.11)

Euler rotation is defined as a rotation with respect to a moving frame [30]. Therefore, the order of
the axis rotations is critical in defining the 3D rotation. For a rotation where first the x-axis, then
the y-axis, and lastly the z-axis is rotated, the 3D Euler rotation is given in equations 3.12 and 3.13.

Reuler = Rx(α)Ry(β)Rz(γ) (3.12)

Reuler =


cosβcosγ −cosβsinγ sinβ

cosαsinγ+ sinαsinβcosγ cosαcosγ− sinαsinβsinγ −sinαcosβ
sinαsinγ− cosαsinβcosγ sinαcosγ+ cosαsinβsinγ cosαcosβ

 (3.13)

Moreover, even though Euler rotation is widely used, it suffers from the singularity problem
known as the Gimbal lock. During the Gimbal lock, two rotation axes become parallel, and one
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degree of freedom is lost [5]. The loss of degree of freedom locks the system into a degenerate
two-dimensional space and causes unwanted behavior.

3.2.2. Rodrigues Rotation

Rodrigues’ rotation formula is an algorithm for rotating a vector around a given axis with a fixed
angle of rotation in space [31] [5]. If the Rodrigues’ rotation formula is applied to all the three
basis vectors, as defined in the 3D rotation group in Euclidean space [30], a rotation matrix can be
created without computing the full matrix exponential. Not computing the full matrix exponential
reduces the complexity of the implementation. Nevertheless, Rodrigues rotation has a singularity
at 180◦ that needs to be avoided so that the rotation stays stable. The Rodrigues’ formula is given in
equation 3.14 for a single vector. A vector p is rotated about an axis v̂ by an angleθ, and transformed
to the vector P. Additionally, v̂ is normalized and is a unit vector of one since only the direction is
needed and not the magnitude.

P = pcosθ+ (v̂×p)sinθ+ (v̂ ·p)v̂(1− cosθ) (3.14)

If P is redefined as given in equation 3.15, a three dimensional rotation is reached where R is the
rotation matrix.

P = Rp ∈R3 (3.15)

R ∈ R3x3 is given in equation 3.16, where I is the identity matrix, and [.]x ∈ R3x3 denotes a skew-
symmetric matrix which turns a cross product between two vectors into a matrix vector multipli-
cation [5].

R = I+ [v̂]x sinθ+ [v̂]2
x(1− cosθ) (3.16)

3.2.3. Quaternion Rotation

Unit quaternions, often referred to as versors, offer a concise mathematical framework to denote
spatial orientations and rotations within three-dimensional space. Precisely, these quaternions
encapsulate details of an axis-angle rotation, enabling representations of arbitrary rotational trans-
formations. Computer graphics, computer vision, robotics, navigation, molecular dynamics, flight
dynamics, and satellite orbital mechanics analysis benefits from the utility of rotation and orien-
tation quaternions [31],[30]. In this chapter, only a brief explanation of the quaternions is given
since this subject is highly complex and has many details. A quaternion q ∈H is described as a
summation of both imaginary and real numbers, as given in equation 3.17:

q = w+ ix+ jy+ kz, (3.17)
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where the x, y,z,w ∈R. If y = z = 0, then q can be defined as a complex number. Therefore, the set
of quaternionsH includes the set of complex numbers C. Moreover, a pure quaternion is defined
as given in 3.18:

q = ix+ jy+ kz, (3.18)

where w = 0. In this case, the pure quaternion can be interpreted as a 3D vector in space that allows
the computation of rotations [5]. If a rotation axis is defined as unit vector v̂ = [vx,vy,vy]T, the
corresponding unit quaternion for this rotation axis is given in 3.19:

v̂ = ivx+ jvy+ kvz. (3.19)

If the rotation of this axis v̂ is described with an angle θ, it can be defined as a unit quaternion, as
given in 3.20:

q̂ = cos(
θ
2

)+ v̂sin(
θ
2

). (3.20)

Subsequently, the rotated vector prot can be calculated, as given in equation 3.21:

prot = q̂pq̂∗ (3.21)

, where p is a vector defined as a pure quaternion, as in equation 3.18. This principle of rotation is
utilized for the 3D rotation. If a unit quaternion is defined as q̂ = qw+ iqx+ jqy+kqz, the 3D rotation
matrix Rquaternion ∈R

3x3 can be computed as given in equation 3.22:

Rquaternion =


1−2(q2

y+q2
z) 2(qxqy−qwqy) 2(qxqz+qwqy)

2(qyqx+qwqz) 1−2(q2
x+q2

z) 2(qyqz−qwqx)
2(qzqx−qwqy) 2(qzqy+qwqx) 1−2(q2

x+q2
y)

 . (3.22)

In other words, equation 3.22 denotes the conversion from a unit quaternion to a rotation matrix.
Besides that, the quaternions do not have any singularity. They are numerically stable and immune
to problems such as the Gimbal lock.

3.2.4. Comparison of the Rotation Matrices

The Euler, Rodrigues, and quaternion rotations are compared in this chapter considering the four
conditions defined in chapter 3.2. Firstly, the performance condition is analyzed. In the work
of Soohwan and Minkyoung [5], the three methods are compared in respect to computations
required to perform the n number of rotations to a vector. The results are summarized in table 3.3,
where the performance is explained as the summation of multiplication/division operations (MD),
addition/subtraction operation (AS), and number of math library function calls (MLFC). The
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comparative analysis reveals that the Rodrigues rotation exhibits the least favorable performance,
whereas the Euler and quaternion rotations demonstrate highly congruent levels of performance.
Consequently, it is argued that Euler and unit quaternions needs less memory usage and less
computation time in contrast to the Rodrigues rotation.

Rotation Method MD AS MLFC Total Operations
Euler 9n+13 6n+4 6 15n+23

Rodrigues 9n+12 6n+13 2 15n+27
Unit Quaternion 9n+12 6n+12 0 15n+24

Table 3.3.: Comparison of the rotation matrices for n number of rotations to a vector [5]

The singularity condition establishes the numerical stability characteristics of the applied rotation.
As explained in chapters 3.2.1, 3.2.2 and 3.2.3, only the quaternion rotation is immune to singularity
caused problems, including the Gimbal lock phenomenon. In contrast, the Rodrigues and Euler
rotations can exhibit singularity problems, potentially inducing unanticipated behaviors if the
singularity conditions are met.
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Figure 3.9.: Comparison of the accuracy condition of the rotation matrices in ECEF

The complexity condition is a rather subjective condition that characterizes the rotation matrices
on their implementation hardship using preexisting libraries. Within this context, the quaternion
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rotation manifests as the most straightforward to implement, succeeded by the Rodrigues rotation.
Conversely, the Euler rotation emerges as the most intricate to implement.

The accuracy condition characterizes how accurately the rotation matrices behave when the search
algorithm is conducted. The figure 3.9 visualizes the computed rotations for the antenna beam‘s
center position in ECEF for Euler (green), Rodrigues (magenta), and quaternion (blue) rotations
around the satellite‘s expected position for an exemplary trajectory. The graphical representation
highlights that Rodrigues and quaternion rotations exhibit the anticipated conical motion centered
around the expected satellite position. In contrast, the Euler rotation deviates unexpectedly. It
not only fails to achieve a conical motion but also presents an incorrect perspective, implying
a potential discrepancy in the rotation. The unexpected shape of the conducted Euler rotation
may arise as a consequence of numerical instability attributable to singularity. Consequently, the
potential numerical stability challenges associated with the Euler rotation render it an unfavorable
choice for integration within the search algorithm. That is particularly relevant, considering the
algorithm’s step count increases proportionally with the number of circles performed, which causes
more possible singularity points when performing the Euler rotation.

In figure 3.10, the behavior of the quaternion and Rodrigues rotations in HCS is shown for an
exemplary trajectory. As can be seen, there is no numerical difference between the quaternion
and Rodrigues rotation matrices. They both provide the same numerical and behavioral results.
Therefore, it can be concluded that both Rodrigues and quaternion rotations have the same accuracy.
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Figure 3.10.: Comparison of the accuracy condition of the quaternion and Rodrigues rotations in
HCS

Upon comprehensive comparison and analysis of all conditions, two distinct factors emerge as
paramount. Foremost is the presence of singularities, wielding a direct influence over the stability
of the executed rotation. Subsequently, accuracy emerges as the ensuing critical factor, given
that the algorithm’s efficacy is compromised in the absence of precise rotations. In light of these
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considerations, quaternion rotation inherently stands out as the compelling preference with low
complexity, high performance, high accuracy, and no singularity. Thus, it logically follows that the
performed rotations in the search algorithm are based on the quaternion rotations.

3.3. Characterization of the Conical Pattern

The nature of the conical pattern that unfolds is shaped by three principal parameters, with the
influence of the applied rotation matrix set aside since only quaternion rotation is employed in
the algorithm. These parameters are the number of steps in the conical pattern (nstep), the angular
velocity (ω), and the radius of the conical shape rconscan. The impact of the rconscan is already
elaborated in chapter 3.1. Therefore, only the effects of n and ω are analyzed in this chapter.

The parameter nstep plays a pivotal role in determining the distribution of rotated points around the
anticipated satellite location. In other words, it defines the number of steps executed to compute
the positions of the beam centers which form the conical shape. It is important to note that nstep

doesn’t have a direct influence on the shape of the conical search pattern itself. It only determines
how smooth the conical pattern is or if it has more edges. However, it dictates the time required
to execute a single conical pattern with the antenna. The azimuth and elevation values of the
antenna beam center positions are the input of the antenna control system. Subsequently, nstep

times beam center positions in ECEF are needed to be converted into HCS. As the antenna initiates
its motion, it cycles through these nstep points, with each cycle demanding at least 1 s per iteration.
Consequently, the total time required to complete a full circle corresponds to the value of n.
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Figure 3.11.: Shape of the conical shape with ω equal to 0.001102 mdeg/sec
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Theoretically, the step time of 1 s can be decreased to create a more precise circular shape, with less
time between each step. However, this is not feasible since the antenna is not capable of accelerating
and decelerating in such a short time.
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Figure 3.12.: Shape of the conical shape with ω equal to 15 mdeg/sec

The parameter ωwields a direct influence over the configuration of the executed conical pattern. It
precisely dictates the extent to which the pattern embodies a conical shape. Smaller ω values yield
patterns that lean towards a circular form, while higher values lead to a more pronounced conical
appearance. Furthermore, it is crucial to emphasize that the conical pattern’s presentation is also
contingent upon the satellite’s position relative to the antenna. As the pattern takes form at different
elevations and azimuth values, its structure undergoes alterations, consequently impacting the
degree of influence exerted by ω. However, it’s important to underline that, regardless of the
elevation and azimuth, ω plays a direct role in shaping the conical pattern. The conducted conical
shapes for an elevation of 25◦ and azimuth of 241◦withω equal to 0.001102 mdeg/sec, 15 mdeg/sec
are shown in figures 3.11, and 3.12. As expected, a higher value forω corresponds to a more conical
shape.

When ω is assigned to an excessively high value, it disrupts the intended conical shape, rendering
the antenna incapable of executing the conical scan as desired. This outcome arises from the
fundamental design of the conical scanning process, where the azimuth and elevation values are
defined through sinusoidal rotations that are orthogonal to the antenna’s boresight. This concept
is elaborated upon in chapter 2.2.1. When ω is raised beyond a certain point, the sinusoidal
behavior becomes overly stretched, which in turn causes unexpected and undesirable behaviors
in the rotation mechanism. However, the exact value of ω where this issue arises depends on the
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relative position of the satellite to the antenna. The conducted conical shape for an elevation of 25◦

and azimuth of 241◦ with ω equal to 100 mdeg/sec is shown in figures 3.13.
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Figure 3.13.: Shape of the conical shape with ω equal to 100 mdeg/sec

As can be seen in figure 3.13, the shape of the conical pattern deviates to an unwanted shape if the
value for ω is chosen too high.

3.4. Synchronization of the Conical Search and the Satellite Pass

Another important aspect of the search algorithm is the time synchronization of the antenna‘s and
the satellite‘s movement. The initial step to achieve the time synchronization is to compute both
the satellite and the antenna movement time in the same relative time interval. The movement time
of the antenna and the satellite is defined in seconds in UTC starting from 00.00 in UTC time. This
computation is essential for orchestrating a harmonized alignment of their respective movements.

The temporal window during which the satellite remains within the antenna’s line of sight can be
determined by leveraging the trajectory propagation capabilities offered by the Orekit library. The
process of trajectory propagation involves iterative computations, each executed with a predefined
time increment. In the context of the search algorithm, this interval is set at 1 s. In other words,
every state vector, which defines the satellite’s path within the line of sight, maintains a one-
second temporal gap between successive iterations. Consequently, the count of these state vectors
corresponds to the overall time span required for the satellite to traverse the designated trajectory
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within the antenna’s line of sight.

Determining the overall time necessary for the antenna’s operations involves a more intricate
process. Initially, it’s imperative to compute the duration required for executing a single conical
pattern. As explained in chapter 3.3, this duration aligns with the number of steps in the conical
pattern, given the one-second gap between each iteration. Subsequently, calculating the cumulative
time for all conical patterns necessitates the multiplication of the total number of patterns and the
count of steps (nstep). It is crucial to point out here that there are jumps from one pattern to the
other during the conical searching process. These jumps occur since the conical search is performed
iteratively around the trajectory. Furthermore, it is not feasible to perform the conical search for
each state vector in the trajectory. Therefore, the number of positions to perform the conical search
is downsampled. The downsampling is done with the downsampling factor (m). The number of
positions (npos,conscan) to perform a conical search is calculated, as given in equation 3.23, where the
nsv defines the total number of state vectors.

npos,conscan =
nsv

m
(3.23)

Moreover, the time passed to jump from one conical pattern to the other is calculated with the
angular separation method. The angular separation (θ) between the last step of the conducted
conical pattern (p f irst) to the first step of the next conical pattern (pnext) is calculated, as given in
equation 3.24. The p f irst and pnext are vectors containing the azimuth (az) and elevation (el) values
for that specific step.

θ = arccos(sin(el f irst) · sin(elnext)+ cos(el f irst) · cos(elnext) · cos(az f irst− aznext)) (3.24)

Subsequently, the jump time (t jump) between each conical pattern is calculated in seconds, as given
in equation 3.25, where ω is the angular velocity of the antenna.

t jump =
θ
ω

(3.25)

Therefore, the total time passed for the antenna to perform its actions can be calculated, as given
in equation 3.26.

ttotal,ant =

npos,conscan−1∑
k=1

t jump+npos,conscan ·nstep (3.26)

Nevertheless, some delay can be expected since the antenna also moves in iterations. It acceler-
ates and decelerates between each step to perform the conical pattern or the jumps, which causes
a cumulative delay in the whole movement. If some environmental effects slow down the an-
tenna movement, the cumulative delay can become too high, causing the synchronization to fail.
Therefore, it is crucial to set the satellite angular speed sufficiently.
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The time synchronization is implemented using the antenna‘s movement principles. Before con-
ducting any conical patterns, the satellite position in time and the time passed since the antenna
started moving are compared. The implementation method ensures that the antenna begins per-
forming the conical search in each down sampled position before the satellite arrives, creating a
time buffer between the satellite’s arrival and the antenna‘s movement. The buffer can be adjusted
depending on the application. The flowchart explaining how the synchronization works is shown
in figure 3.14.
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Figure 3.14.: ’Move antenna’ flowchart

3.5. Search Algorithm

The search algorithm is structured into three key components. The initial segment referred to
as ’Read TLE’, explained in Chapter 3.5.1, entails the input of TLE data and the Coordinated
Universal Time (UTC) for the projected satellite pass, achieved through a graphical user interface
(GUI). Subsequently, pivotal data for subsequent algorithm steps, such as the estimation of the
trajectory, angular velocity, state vectors, is extracted from the TLE. This is facilitated by the
Orekit library [23] and its propagator. The ensuing phase harnesses the extracted data to initiate
a blind search within the vicinity of the anticipated satellite position at the horizon, explained in
chapter 3.5.2. The blind search persists until either initial contact with the satellite is established
or a predefined time interval elapses. In the following phase, a conical search ensues along the
projected trajectory of the satellite, aiming to detect the satellite multiple times across its orbital
path, explained in chapter 3.5.3. Subsequent to the conical search’s execution, the tracking system
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transitions into operation, facilitated by the MMT.

3.5.1. Read TLE

Within the ’read TLE’ phase of the algorithm, the requisite data is acquired from the TLE to propel
subsequent algorithmic processes. As expounded upon in Chapter 2.3, Orekit [23] empowers users
to establish a reference environment and engage its propagator to derive satellite or astrophysics
related insights within this designated context.
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Figure 3.15.: ’Read TLE’ flowchart

The flowchart outlining the intricate functioning of this phase is demonstrated in figure 3.15. In this
algorithm, the Earth is modeled using the WGS84 model, and the SGP4 propagator, in combination
with the Orekit library, is enlisted. Following comprehensive initialization of the environment, the
state vector, encompassing both position and velocity vectors, is extracted from the TLE data for
the predefined temporal span. This state vector serves as the foundation for calculating angular
velocity, charting the satellite’s trajectory over the designated time frame, and pinpointing the
satellite’s horizon position. In addition, the slant range for each position, where the conical search
is conducted, is computed using the propagated trajectory. Subsequently, the beam radius, the
CONSCAN radius, the beam area, and the CONSCAN area are computed for each position, as
explained in chapter 3.1.
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3.5.2. Blind Search

Within the blind search phase, the primary objective revolves around localizing the satellite during
its initial passage near the horizon. Once the satellite’s position is pinpointed or a predetermined
time threshold is reached, the algorithm transitions into the subsequent phase, the conical search.
The flowchart demonstrating the blind search phase of the algorithm is given in figure 3.16.
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As seen in the in figure 3.16, the first step is to initialize the necessary variables for the blind search,
which are the number of steps n, angular velocity ω, rconscan, and time limit for the duration of
the blind search. After that, the pointing vector between the antenna‘s position and the satellite
horizon position is calculated. This pointing vector is called the horizon direction.

Upon obtaining the horizon direction, quaternion rotations are employed to derive rotation matrices
for both the elevation and azimuth components of the antenna. These matrices serve as pivotal
tools for the forthcoming computations. The pseudo code for the calculation of the rotations are
presented in Algorithm 1. Following this, a conical pattern is created for the blind search. This
pattern materializes through iterative rotations of the central point within the antenna beam around
the satellite’s fixed horizon position. This iterative process is executed n times, and the value of n
governs the number of distinct points forming the conical pattern. In other words, n defines the
number of steps in the conical pattern. It is essential to point out here that if the horizon position
has a too low elevation (depending on the propagated trajectory ), some of the computed beam
center positions in the conical pattern may be under the horizon line (0◦ elevation). Consequently,
that causes unwanted behaviors in the performed rotation and the movement of the antenna.
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Prior to calculating the beam center positions within ECEF coordinates, it becomes essential to
compute the antenna’s pointing direction concerning the anticipated position of the satellite on the
horizon. This pivotal step lays the groundwork for subsequent computations. The pseudo code
for the calculation of the beam center positions are presented in Algorithm 2.

Algorithm 1 Compute the rotations

1: Compute the horizon direction:
2: horizon_direction = horizon_pos_ECEF− antenna_command_posT

3: horizon_direction_norm = horizon_direction
∥horizon_direction∥

4: Compute the number of steps for each rotation:
5: θ = linspace(0,2π,num_steps)
6: Compute angles for elevation and cross-elevation:
7: angles_elevation = (θ)
8: angles_cross_elevation = (angular_velocity ·θ)
9: Quaternion-Based Rotations:

10: R_azimuth = quaternion_rotation([1,0,0],angles_elevation)
11: R_elevation = quaternion_rotation([0,1,0],angles_cross_elevation)

Following the comprehensive calculation of all beam center positions, a conversion process takes
place, transitioning these positions from ECEF coordinates to HCS. This conversion is imperative
due to the requirements of the antenna control system, which exclusively accepts input in terms of
azimuth and elevation values, or their corresponding velocities. Ultimately, the computed values
in HCS are transmitted to the antenna control system.The antenna keeps performing the blind
search until the satellite is detected or the predefined time limit is reached, and then the algorithm
switches to the conical search part, ending the blind search.

Algorithm 2 Compute beam center positions

1: for each index i from 0 to n−1 do
2: Compute antenna direction:
3: antenna_directioni = Razimuth[i] ·Relevation[i] ·horizon_direction_normT

4: antenna_direction_normi =
antenna_directioni
∥antenna_direction∥

5: antenna_directionsi = antenna_direction_normi
6: Compute beam center position relative to the horizon position:
7: beam_posi = horizon_pos_ECEF+ (radius_conscan · antenna_direction_normT

i )
8: beam_positionsi = beam_posi

3.5.3. Conical Search

The conical search phase mirrors the structure of the blind search segment. The computations for
the conical pattern and beam center positions are conducted, as detailed in algorithms 1 and 2. In
other words, the fundamental concept remains unaltered. Nonetheless, there is a key distinction:
while the blind search involves executing the conical pattern centered around a stationary position
(horizon position), the conical search dynamically extends around the estimated trajectory, ensuring
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a iterative search around the trajectory. The flowchart outlining functioning of the conical search
is demonstrated in figure 3.17.
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Figure 3.17.: Conical search flowchart

Within the conical search phase, the satellite’s projected trajectory serves as the foundational
reference. The estimation of the trajectory is propagated using the state vectors that are extracted
from the TLE. Each of these state vectors corresponds to a distinct temporal point along the
satellite’s trajectory. However, performing a conical search for every individual state vector is not
feasible due to the antenna’s limited movement speed and physical capacities. Consequently, the
state vectors are subjected to down sampling tailored to the desired number of circular motions
to be executed. Moreover, it’s important to note that each conical pattern corresponding to a
temporal state vector is executed in an iterative manner. The antenna undertakes the conical
pattern for one state vector before transitioning to the next, leading to jumps between iterations.
The magnitude of these jumps hinges upon the down sampling parameter. A smaller number
of circular motions results in longer jumps between consecutive iterations, effectively influencing
the overall movement dynamics of the antenna. The consequent trade-off between the number
of conducted circles and the jumps is a critical characterization of the conical search phase of the
algorithm.

The slant range isn’t a steady parameter; it fluctuates in relation to the elevation, as elaborated
upon in Chapter 3.1. Consequently, both rconscan and Aconscan undergo variations with each conical
pattern. The algorithm integrates this dynamism, leading to nuanced alterations in the conical
pattern shapes. An example of this phenomenon is given in figure 3.18 with m = 3, resulting
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in three conical patterns. As anticipated, the conical patterns get smaller, and the scanning area
decreases with the increasing elevation.
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Figure 3.18.: Conical search flowchart





4. Simulations and Tests

The primary objective of these tests revolves around analyzing the dynamics of antenna move-
ment while concurrently evaluating its agreement with the precomputed input parameters. As
previously highlighted, the antenna exclusively accepts azimuth and elevation values as inputs.
Consequently, the assessment pertains to the antenna’s ability to execute the intended motion using
the predetermined input values. The tests are conducted both for the case of the blind search and
the conical search.

4.1. Blind Search

The executed algorithm should perform the blind search and conical search for any given TLE.
Therefore, two different satellite passes of the EIVE are chosen to demonstrate the behavior of the
blind search in different test cases. It should also be mentioned that the antenna performs the blind
search for a time limit of 40 s with a maximum speed of 5 deg/sec so that the cumulative delay can
be observed with consecutive circles. The first satellite pass was on 11.07.2023, starting from 23.48
UTC with a duration of 10 min. The second satellite pass was on 21.08.2023, starting from 00.09
UTC with a duration of 6 min. The respective TLEs are given below:

• Satellite pass 1 TLE: First line is ’1 56937U 23084F 23185.31306180 .00007337 00000+0 42461-3
0 9997’ and the second line is ’2 56937 97.5131 301.5686 0010380 150.0134 210.1693 15.12491134
3245’.

• Satellite pass 2 TLE: First line is ’1 56937U 23084F 23233.32797279 .00011238 00000-0 62996-3
0 9996’ and the second line is ’2 56937 97.5162 348.8709 0008765 357.1043 3.0136 15.13522526
10501’.

The blind search initiates at lower elevations, representing the initial phase of the search process.
Consequently, our tests are carried out at these relatively lower elevations, where we anticipate the
satellite’s first detection. The defined test cases (TC) are given in table 4.1.

Test cases Elevation Satellite pass rconscan ω nstep
TC1 10◦ pass 1 = 2rbeam 15 deg/s 20
TC2 10◦ pass 2 = 2rbeam 15 deg/s 20
TC3 30◦ pass 1 = 2rbeam 15 deg/s 20
TC4 30◦ pass 2 = 2rbeam 15 deg/s 20

Table 4.1.: Blind search test cases

43
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Figure 4.1.: Behavior of the conical pattern in TC1

The behavior of the conical pattern in TC1 is shown in figure 4.1. As evident, the conical pattern is
notably offset from the horizon position, implying a requirement to augment ω to achieve a wider
conical pattern. If ω is increased, the conical pattern will expand centering around the horizon
position.
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Figure 4.2.: Behavior of the conical pattern in TC2
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The behavior of the conical pattern in TC2 is shown in figure 4.2. As evident, the conical pattern
centers the horizon position and behaves as anticipated.

The contrast in how the conical pattern behaves in TC1 and TC2 underscores the potential necessity
for algorithmic fine-tuning tailored to specific scenarios. Even if the start elevation is the same,
the azimuth and the specifications of the TLE change for each trajectory and each position on
the trajectory, resulting in varying behavior of the conical pattern. In other words, the essential
parameters of the algorithm should be adjusted accordingly for each satellite pass before the search
has begun.
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Figure 4.3.: Behavior of the conical pattern in simulation (blue) and tests (orange) in TC1 in HCS

The behavior of the conical pattern in the simulation (blue) and the tests (orange) in TC1 are
given in figure 4.3. As can be seen, the antenna behaves as expected, performing the conical
shaped pattern. However, an offset is evident when comparing the orange points (tests) to the
blue ones (simulations). That can be explained by the anticipated cumulative delay caused by
the acceleration and deceleration of the antenna and the environmental effects, such as the wind.
This offset cannot be eliminated entirely. Nevertheless, it is possible to undermine its effect by
increasing the antenna‘s acceleration speed. Additionally, a noticeable increase in the offset is
observed, particularly in two scenarios. First, when the antenna transitions from lower to higher
elevations, it contends with gravity, posing a challenge to acceleration. Second, when the distance
between successive steps is large, the antenna must either accelerate more rapidly or attain a higher
maximum speed. Nonetheless, it is only possible to change the maximum speed of the antenna.
If the maximum speed is set to a higher value, the antenna will try to reach a higher maximum
speed in the same time interval, resulting in an increased acceleration. Besides that, the elevation
values seem not to be correct. The chosen horizon point has an elevation of 10◦. As a result, it is
anticipated that the antenna should move around the elevation of 10◦. But the antenna performs
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the conical search between 14◦ to 26◦ elevation. On the other hand, the ECEF coordinates of the
performed conical patterns center around the horizon position and are correct, as seen in figure 4.1.
Consequently, the mistake in the elevation values points towards a problem in the coordinate
transformations from ECEF to HCS. The same problem is also observed for the azimuth values.

The behavior of the conical pattern in the simulation (blue) and the tests(orange) in TC2 are given
in figure 4.4. Similar to TC1, the antenna executes the conical pattern as intended. However, a
recurring issue persists. The elevation and azimuth values remain inaccurate. This discrepancy
becomes evident when the elevation values are examined. As outlined in Table 4.1, the horizon po-
sition should possess an elevation of 10◦. Yet, it is observed that the elevation value predominantly
centers around 1.5◦. That signifies a recurring challenge stemming from coordinate transformation.
Additionally, the cumulative delay can also be observed here with the slight offset of the antenna
values relative to the simulation values. The same affects explained for TC1 are also evident for
TC2. Notably, the movement’s shape differs compared to TC1, attributed to the parameterω. While
both cases share the same ω value, the distance between the satellite and antenna varies between
them. Consequently, the identical ω value yields diverse behaviors in these scenarios.
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Figure 4.4.: Behavior of the conical pattern in simulation (blue) and tests (orange) in TC2 in HCS

The behavior of the conical pattern in TC3 is shown in figure 4.5. As evident, the conical pattern is
slightly offset from the horizon position, implying a requirement to augment ω to achieve a wider
conical pattern, just like the TC1. By increasing ω, the conical pattern can expand, aligning more
closely with the horizon position. However, it’s worth noting that the ideal ω value isn’t a one-
size-fits-all solution. For instance, in Satellite Pass 1, the trajectory’s specific location demands a
higher value of ω (in this case, 15 deg/m is insufficient). Conversely, in Satellite Pass 2, the situation
differs. Each satellite pass or trajectory introduces variations that directly impact the required
conical shape. Therefore, it’s imperative to precompute the conical pattern before each pass and
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analyze its structure to ensure optimal alignment.
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Figure 4.5.: Behavior of the conical pattern in TC3

The behavior of the conical pattern in TC4 is shown in figure 4.6. As evident, the conical pattern
centers the horizon position and behaves as anticipated.
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Figure 4.6.: Behavior of the conical pattern in TC4

The behavior of the conical pattern in the simulation (blue) and the tests (orange) in TC3 are given
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in figure 4.7. As can be seen, the antenna behaves as expected, executing the conical movement.
However, the anticipated cumulative delay caused by the acceleration and deceleration of the
antenna and the environmental effects can be observed here as well. Besides that, the elevation
of values seems again not to be correct. The chosen horizon point has an elevation of 30◦. As a
result, it is anticipated that the antenna should move around the elevation of 30◦. But the antenna
performs the conical search between 14◦ to 22◦. On the other hand, the ECEF coordinates of the
performed conical patterns center around the horizon position and are correct, as seen in figure 4.5.
Consequently, the fact that the ECEf! values are correct but the HCS values are not points towards
a transformation mistake from ECEF to HCS.
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Figure 4.7.: Behavior of the conical pattern in simulation (blue) and tests (orange) in TC3 in HCS

The behavior of the conical pattern in the simulation (blue) and the tests (orange) in TC4 are given in
figure 4.8. This visualization notably highlights the issue surrounding coordinate transformation.
It is apparent that both the elevation azimuth values are wrongly transformed from ECEF to HCS
since the behavior of the pattern was correct in ECEF, as shown in figure 4.6.

Furthermore, a cumulative delay is observed in this case as well. However, the positions logged
during the test (orange) exhibit a more scattered distribution compared to the other TCs. Interest-
ingly, the cumulative offset doesn’t appear to increase uniformly during execution. This variation
can be attributed to strong winds encountered during the test. During this particular test, winds
were blowing at a relatively high pace of approximately 9 kmh−1. These strong winds significantly
influenced the antenna’s movement, resulting in greater deviations from the calculated values.
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Figure 4.8.: Behavior of the conical pattern in simulation (blue) and tests (orange) in TC4 in HCS

For all the TCs, the mean absolute error (MAE) for both elevation and azimuth is calculated so that
the error of the antenna’s movement can be analyzed further in detail. The MAE for all the TCs are
given in table 4.2. The total MAE, a combination of azimuth MAE and elevation MAE, increases
when there’s a wider angular gap between the maximum and minimum elevation and azimuth.
That is anticipated, as the antenna needs to cover a greater angular distance in the same timeframe,
causing higher total MAE. In other words, a larger scanning area during a single conical pattern
execution leads to a higher total MAE.

Test cases TC1 TC2 TC3 TC4 All TCs
Azimuth MAE [deg] 0.15907 0.14149 0.37373 0.07241 0.18668
Elevation MAE [deg] 0.17733 0.09295 0.49844 0.06598 0.20868

Total MAE [deg] 0.33640 0.23444 0.87217 0.13839 0.39536

Table 4.2.: Antenna movement MAE for all TCs

The Abeam, Aconscan and the increased area for dynamic slant range with the condition rconscan =

2rbeam fulfilled for all the TCs are given in table 4.3. The calculations are based on the ECEF
coordinates, disregarding the evident coordinate transformation problem in the algorithm since
the ECEF coordinates are proven to be correct.

Test cases TC1 TC2 TC3 TC4
Abeam [km2] 37520.54 38739.99 10791.70 11549.33

Aconscan [km2] 150082.16 154959.95 43166.79 46197.33
Achieved scanning area x4 x4 x4 x4

Table 4.3.: Comparison of achieved Abeam and Aconscan
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It can be seen that the conical search algorithm (Aconscan) increases the scanning area four times
compared to just pointing the antenna in the estimated position of the satellite (Abeam) for all the
TCs, achieving the primary objective of the search algorithm. Besides that, it can be seen that both
the Abeam and Aconscan are lower for TCs with higher elevation. That is anticipated since the slant
range is smaller for higher elevations, resulting in a narrower scanning area in the sky, as explained
in chapter 3.1.

In summary, the antenna executed the desired conical patterns for all the TCs, increasing the scan-
ning area four times for each of the TCs. However, two pivotal issues have surfaced. Firstly,
although the computed rotations appear accurate in ECEF coordinates, the conversion from ECEF
to HCS is wrong, leading to correct behavior but incorrect coordinates. Secondly, an observable
delay cumulatively compounds with the increasing number of conical pattern executions, primar-
ily attributed to the antenna’s physical limitations. To address the second issue, increasing the
antenna’s angular velocity or introducing optimization strategies to refine its motion is essential.
One such approach involves programming the antenna to maintain a near continuous acceleration
and deceleration between steps, thereby preserving its acceleration/deceleration reached in the
preceding step and leveraging it for smoother motion.
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4.2. Conical Search

The executed algorithm should perform the blind search and conical search for any given TLE.
Therefore, two different satellite passes of the EIVE are chosen to demonstrate the behavior of the
conical search in different test cases. For both of the satellite passes, the algorithm starts its search
at an elevation of 20◦ to avoid any negative elevations in the executed conical patterns and to avoid
damaging the antenna. It should also be mentioned that the antenna performs the conical search
with a maximum speed of 5 deg/sec between the steps, considering the equipment placed on the
antenna. The first chosen satellite pass was on 13.09.2023, starting from 23.56 UTC with a duration
of 12 min and a maximum elevation of 79.91◦. The second satellite pass was on 12.09.2023, starting
from 00.21 UTC with a duration of 12 min and a maximum elevation of 53.21◦. During both of the
satellite passes, the satellite reaches the maximum elevation in 6 min. Furthermore, the TLEs for
both the passes are the same since they are only one day apart from each other. The TLE is given
below:

• The first TLE line is ’1 56937U 23084F 23249.06111443 .00011380 00000-0 63201-3 0 9995’.

• The second TLE line is ’2 56937 97.5169 4.3915 0008005 297.0840 62.9574 15.13859529 12884’.

The first satellite pass is shown in azimuth and elevation in the figure 4.9. Noticeably, there is a
change of 45◦ azimuth between the 300. sample and the 360. sample. In other words, the satellite
moves 45◦ azimuth just in 60 s, as explained in chapter 3.4. This sharp shift induces additional
errors (cumulative delay) since the antenna must traverse a greater distance during this period
between steps with a fixed time frame between each step, leading to higher delays.
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Figure 4.9.: First satellite pass in azimuth (red) and elevation (blue) until the maximum elevation
is reached

The second satellite pass is shown in azimuth and elevation in the figure 4.10. The second pass
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shows a different characteristic. As can be seen, the azimuth increases with the increasing elevation,
and there is also a dramatic shift between the 30th sample and 360th sample, as in pass 1. During
this period the satellite moves 60◦ azimuth just in 60 s.
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Figure 4.10.: Second satellite pass in azimuth (red) and elevation (blue) until the maximum eleva-
tion is reached

The downsampling factor m is the decisive parameter for the conical search since it directly decides
how many conical patterns will be executed. Additionally, the number of propagated state vectors
for all trajectories is different. Therefore, the number of executed conical patterns (Ncp) for different
satellite passes with the same m changes depending on the satellite pass. The defined TCs are given
in table 4.4 with the critical parameters.

Test cases m Satellite pass rconscan ω nstep Ncp
TC1 10 pass 1 = 2rbeam 15 deg/s 20 15
TC2 10 pass 2 = 2rbeam 15 deg/s 20 17
TC3 30 pass 1 = 2rbeam 15 deg/s 20 5
TC4 30 pass 2 = 2rbeam 15 deg/s 20 6

Table 4.4.: Conical search test cases during the blind search

The behavior of the conical search until the satellite reaches its maximum elevation for the TC1
in ECEF can be seen in figure 4.11. As evident, the conical search is executed every tenth state
vector, resulting in a total of 15 conical patterns executed. These patterns are centered around
the estimated satellite trajectory, showing the desired behavior. Moreover, there’s a noticeable
reduction in the scanning area as elevation increases. That is the result of the decrease in the slant
range with the increasing elevation, as discussed in chapter 3.1. Fortunately, this behavior aligns
with the algorithm’s objectives. Initially, the algorithm aims for a large scanning area to detect and
locate the satellite at the first executed conical patterns, as explained in chapter 3.5.
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Figure 4.11.: Behavior of the conical search in TC1 in ECEF

The behavior of the conical search until the satellite reaches its maximum elevation for the TC2 in
ECEF can be seen in figure 4.12. As evident, the conical search is executed every tenth state vector,
resulting in a total of 17 conical patterns executed. The algorithm shows the desired behavior.
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Figure 4.12.: Behavior of the conical search in TC2 in ECEF
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In addition, TC2 also exhibits the trend of decreasing scanning areas as elevation increases, aligning
with the intended algorithm behavior. Besides that, the variation in the number of conical patterns
executed between TC1 and TC2 is attributed to the distance the satellite covers both in azimuth
and elevation in the line of sight of the antenna. The satellite covers a higher distance in pass 2,
resulting in more propagated state vectors and, therefore, more executed conical patterns.
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Figure 4.13.: Conical search in simulation (blue) and tests (orange) in TC1 in HCS

The behavior of the conical search until the satellite reaches its maximum elevation in both simula-
tion (blue) and tests (orange) for the TC1 can be seen in figure 4.13. The blue points in the simulation
correspond to the point where the conical patterns are conducted. As evident, the concentration of
the orange points around the blue ones proves that the antenna executes the conical patterns at the
correct positions. Examining the region where only a single conical pattern is executed reveals a
behavior consistent with that discussed in Chapter 4.1. An example can be found in Appendix A.
On the other hand, two prominent issues are observed during the conical search, similar to what
we encountered in the blind search tests. Firstly, there’s the issue of cumulative delay caused by the
iterative movement of the antenna. This delay grows as the gaps between conical patterns increase.
The antenna’s movement sequence, first in azimuth and then in elevation, can lead to significant
errors, especially when rapid changes in azimuth or elevation are required, such as when the an-
tenna jumps from 88◦ azimuth to 95◦ degree azimuth. Secondly, the persistent problem of ECEF
to HCS coordinate transformation becomes apparent again. Notably, the antenna fails to reach the
expected maximum elevation of 79.91◦ in both the simulation and the tests despite successfully
achieving the desired behavior in ECEF. This inconsistency highlights a potential error in the
transformation process from ECEF to HCS coordinates.
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Figure 4.14.: Behavior of the conical search in simulation (blue) and tests (orange) in TC2 in HCS

The behavior of the conical search until the satellite reaches its maximum elevation in both sim-
ulation (blue) and tests (orange) for the TC2 can be seen in figure 4.14. The results are similar to
the results from TC1. Even though the antenna moves as intended, executing 17 conical patterns
correctly, the cumulative delay can still be observed. Moreover, the same coordinate transformation
error happens, resulting in the correct behavior but false coordinates. The antenna did not reach
the maximum elevation in this TC as well. Interestingly, the elevation and azimuth range for both
the TC1 and TC2 are very similar, even though the satellite passes were happening in different
elevations and azimuths. This is interesting since the results in ECEF are correct, as can be seen in
figure 4.11 and 4.12, whereas the transformed HCS coordinates seem to be wrong.

The behavior of the conical search until the satellite reaches its maximum elevation for the TC3 can
be seen in figure 4.15. As evident, the conical search is executed every 30th state vector, resulting
in a total of 5 conical patterns executed. These patterns are centered around the estimated satellite
trajectory, just like the TC1 and TC2. Moreover, there’s a noticeable reduction in the scanning area
as elevation increases, as expected. Therefore, it is argued that the algorithm shows the expected
behavior in ECEF coordinates for TC3. Besides, one intriguing observation is that the last conical
pattern doesn’t reach maximum elevation. That is due to the employed downsampling factor. If
the downsampling factor is set to 40 instead of 30, that final pattern would get much closer to the
maximum elevation. This phenomenon is related to the varying number of state vectors in each
propagated trajectory. Consequently, the effect of the downsampling factor varies depending on
the specific orbit and the propagated trajectory.
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Figure 4.15.: Behavior of the conical search in TC3 in ECEF

The behavior of the conical search until the satellite reaches its maximum elevation for the TC4 can
be seen in figure 4.16. As evident, the conical search is executed every tenth state vector correctly,
similar to other TC3, resulting in 6 conical patterns executed.
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Figure 4.16.: Behavior of the conical search in TC4 in ECEF
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The behavior of the conical search until the satellite reaches its maximum elevation in both sim-
ulation (blue) and tests (orange) for the TC3 can be seen in figure 4.17. The results are similar to
the results from TC1 and TC2. Even though the antenna moves as intended, executing five conical
patterns, the cumulative delay is stronger in this TC since there is more distance between each
step because of the higher downsampling factor. However, the concentration of the points proves
that the conical patterns are executed at the correct positions and behave as expected, similar to
the shown example for the TC1 in appendix A. Moreover, the same coordinate transformation
error observed in other tests occurs, even though the results in ECEF are correct, as can be seen
in figure 4.15. The maximum elevation is also not reached in this TC, even though the number of
executed conical patterns match with the results of the ECEF simulations. This situation further
proves that the ECEF to HCS transformation is not happening as expected.
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Figure 4.17.: Behavior of the conical search in simulation (blue) and tests (orange) in TC3 in HCS

The behavior of the conical search until the satellite reaches its maximum elevation in both sim-
ulation (blue) and tests (orange) for the TC4 can be seen in figure 4.18. The results are similar to
the results from other TCs. While the antenna executes its movements as intended, executing six
conical patterns, in this TC, it’s worth noting that the cumulative delay is more pronounced relative
to the TC1 and TC2. This heightened delay occurs because there is a greater distance between each
step, a consequence of the higher downsampling factor. Nevertheless, the clustering of points
provides strong evidence that the conical patterns are being executed at the correct positions with
the correct behavior, similar to the example in appendix A. Furthermore, the coordinate transfor-
mation error, as observed in previous tests, still occurs despite the results being accurate in ECEF,
as shown in figure 4.16.
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Figure 4.18.: Behavior of the conical search in simulation (blue) and tests (orange) in TC4 in HCS

For all the TCs, the MAE for both elevation and azimuth is calculated so that the error of the
antenna’s movement can be analyzed further in detail. The MAE for all the TCs are given in
table 4.5. The MAE rises during the jumps between the executed conical patterns. This is a
predictable outcome because the antenna must traverse a greater distance within the same time
frame, leading to a higher MAE.

Test cases TC1 TC2 TC3 TC4 All TCs
Azimuth MAE [deg] 0.44349 0.71719 0.58704 0.59529 0.58575
Elevation MAE [deg] 0.15806 0.25098 0.16847 0.11203 0.17239

Total MAE [deg] 0.60155 0.96817 0.75551 0.70762 0.75814

Table 4.5.: Antenna movement MAE for all TCs during the conical search

Remarkably, MAE consistently exhibits higher values for azimuth across all the TCs. This outcome
is unsurprising, given that azimuth for both satellite passes involves covering a greater angular
distance between the minimum and maximum values compared to elevation. Additionally, the
total MAE, which is azimuth MAE added to elevation MAE, is highest for TC2 and lowest for TC1,
whereas the average total MAE is 0.75814◦ for all the TCs. It’s crucial to emphasize that the MAE
values are influenced by environmental factors, such as wind conditions, during the testing phase.
Consequently, generalizing these results across all scenarios can be challenging. Nonetheless, it’s
noteworthy that the total MAE consistently stays below 1◦ for all TCs.

The average MAE for both satellite passes and downsampling factors is given in table 4.6. If the
total MAE for satellite pass 1 and 2 are analyzed, it is seen that the total MAE is higher for pass 2,
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as anticipated. That can be explained by the higher angular distance the antenna needs to cover
when following the pass 2 compared to pass 1. Moreover, if the results are compared depending on
the downsampling factor, it is seen that the total MAE for the case where m = 10 is higher than the
case where m = 30. This outcome aligns with expectations since when m = 10, the antenna executes
much more conical patterns in the same time period, resulting in a higher cumulative error.

Test cases Pass 1 Pass 2 m = 10 m = 30
Azimuth MAE [deg] 0.51527 0.65624 0.58034 0.59117
Elevation MAE [deg] 0.16327 0.18151 0.20452 0.14025

Total MAE [deg] 0.67854 0.83775 0.78486 0.73142

Table 4.6.: Antenna movement MAE for the two satellite passes and the two downsampling factors
during the conical search

In table 4.7, the total area scanned in the sky with (Aconscan) and without (Abeam) using the search
algorithm is given for all TCs with the condition rconscan = 2rbeam fulfilled. The Aconscan and Abeam

are calculated as explained in chapter 3.1, and the calculations are based on the ECEF coordinates,
disregarding the evident coordinate transformation problem in the algorithm since the ECEF co-
ordinates are proven to be correct. As apparent, the searched area in the sky increases four times
compared to only pointing the antenna to the estimated trajectory. Therefore, it is argued that
the algorithm achieves its primary objective and increases the scanning area in the sky, offering a
solution to the very low HPBW limitation.

Test cases TC1 TC2 TC3 TC4
Total Abeam [km2] 146477.82 173476.78 54592.38 65012.10

Total Aconscan [km2] 585911.29 693907.11 218369.51 260048.41
Achieved scanning area x4 x4 x4 x4

Table 4.7.: Comparison of the total achieved Abeam and Aconscan

In summary, the antenna effectively executed the desired conical patterns in all four scenarios,
achieving the primary objective of increasing the scanning area. However, two critical issues have
come to light, like in the blind search tests. Firstly, while the computed rotations are accurate
in ECEF coordinates, the conversion to HCS appears flawed, resulting in correct behavior but
incorrect coordinates. Secondly, a noticeable delay accumulates as the number of conical pattern
executions increases, mainly due to the antenna’s physical limitations. The suggested solutions in
chapter 4.1 can also improve the behavior of the conical search as a whole.





5. Improvements and Future Work

In this chapter, further possible improvements to the scanning algorithm and the tracking system
are discussed and explained. Firstly, the required optimization on the search algorithm is elaborated
in section 5.1. Secondly, possible improvements to increase the accuracy of the tracking system are
explained and discussed in chapter 5.2.

5.1. Improvements in the search algorithm

The search algorithm serves two main task objectives next to its primary goal of increasing the
scanning area. The first involves computing the elevation and azimuth input parameters for the
antenna control system, specifically tailored for the CONSCAN before the satellite’s arrival. A key
challenge arises when translating the computed conical pattern coordinates from ECEF to HCS.
As expounded upon in chapter 4, although the desired conical patterns manifest accurately in
ECEF coordinates, the conversion to HCS coordinates, concerning the antenna’s position, exhibits
inaccuracies.

This translation process relies on the utilization of two libraries: the pymap3D library and the
orekit library. The orekit library plays a dual role, defining the Earth model and propagating the
satellite’s potential trajectory, extracted from the TLE. Meanwhile, the pymap3D library is tasked
with converting the computed ECEF coordinates, sticking to the specified Earth model, into HCS
coordinates relative to the antenna’s position.

It’s probable that compatibility issues may arise between the orekit and pymap3D libraries. An
alternative approach could involve azimuth and elevation conversion, avoiding the pymap3D
library. That could entail either manually implementing the intricate ECEF to HCS conversion or
seeking assistance from the orekit library.

The second objective is to set the antenna in motion. In this regard, achieving precise time synchro-
nization between the antenna and the satellite takes center stage, a subject discussed in chapter 3.4.
It’s essential to fine-tune the current time synchronization method and subject it to comprehensive
testing to detect and rectify any potential issues.

GPS data can be leveraged to enhance the accuracy of time synchronization, a well-established
method employed in orbit propagation and time synchronization for satellites in LEO [32], such as
the EIVE. The real-time data acquired from GPS serves as valuable input into the system and can
be cross-referenced with the calculated time, as elucidated in Chapter 3.4. Furthermore, there’s the
intriguing possibility of incorporating this information into the KF as input to further refine the
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tracking system’s precision [33]. In the work Hauschild and Montenbruck [34], a KF based GPS
clock estimation algorithm is demonstrated, and positioning accuracies at the decimeter level and
below are reached. Alternatively, in the work of Yang et al. [35], a consider KF is suggested to
determine the orbit of the satellite in real-time that can be used to increase the accuracy of both the
time synchronization and the tracking accuracy.

5.2. Improvements in the tracking system

Tracking the satellite represents a distinct challenge compared to the initial search and detection
phase. It necessitates a heightened level of precision in antenna positioning. Despite the CONSCAN
effectively addressing the issue of a narrow HPBW, the employed tracking method, MMT, mandates
a continuous signal from the satellite. Relying solely on an iterative CONSCAN approach falls
short of fulfilling this requirement, as it solely hinges on the TLE data (which inherently carries
some degree of error) and does not dynamically adjust its conical patterns and movement trajectory
in response to received signals during its motion.

When a signal is detected from the satellite, MMT provides precise satellite position information
for that specific moment. However, this information proves less beneficial in this version of the
system since the antenna doesn’t capitalize on it. What’s imperative is the integration of an error
minimization method that recalibrates and continuously updates itself using this data. Such an
approach is necessary to leverage the entirety of the available information, significantly enhancing
precision and enabling effective satellite tracking with MMT.

Two critical pieces of information offer a pathway for the required error minimization. Firstly, we
have the satellite’s predicted position, courtesy of the orekit library. Secondly, real-time data on
the satellite’s actual position is acquired through the MMT whenever a signal is detected. These
two data sources essentially lay the groundwork for a KF. As elucidated in Chapter 2.4, the
KF seamlessly combines model predictions with actual measurements to estimate the subsequent
satellite position. The effectiveness of the KF in error minimization has been well-established, as
evidenced by the work of Gawronski and Craparo [15], Souza et al. [16], and Karol et al. [36].
This method has proven to be both stable and exceptionally accurate. However, the KF approach
comes with its own problems. The traditional conical scanning estimator works very well under
conditions where the radius of the scan is comparable to or larger than the motion caused by
tracking or external noises [36]. However, for small rconscan, the step response of the estimator
highly increases. Considering that the EIVE is in LEO, and consequently the rconscan is relatively
small, with a high step response. In the work of Karol et al. [36], a new step response estimator is
suggested which overcomes this issue.

Another approach would be the incorporation of the GPS data into the KF system to increase the
precision. The GPS data provides real time orbit information which can be used to undermine the
error of prediction model (TLE based) that is used in the KF. In the work of Kavitha et al. [37], a
method is proposed for fast and precise estimation on ground, of orbits (position and velocity) of
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LEO satellites, based on EKF estimation technique using GPS precise data products. They reached
an accuracy of up to 1 m. A different approach using the unscented KF and information fusion is
proposed in the work of Ning and Fang [38]. Their results show a further improvement in the orbit
estimation compared to the EKF based methods. In the work of Mahmut et al. [39], an algorithm
based on robust unscented KF is shown. In their specific case the robust unscented KF showed
higher precision compared to a standard unscented KF.

In summary, enhancing system precision is imperative for achieving stable satellite tracking and,
by extension, reliable information transfer. Various KF applications, encompassing both nonlinear
and linear methods, offer viable solutions that can be effectively deployed in the context of the
EIVE project.





6. Conclusion

This research thesis primarily focuses on the CONSCAN based search algorithm designed for the
ground station antenna within the EIVE project. The overarching objective of the EIVE project is to
explore and establish data transfer capabilities using E-band frequency channels. A communication
link must be established between the ground based antenna and the satellite to achieve the required
communication link. However, there are notable challenges and limitations to overcome. The
satellite resides in LEO, and the ground station possesses only one antenna. Consequently, the
available scanning area in the sky is inherently limited and relatively small due to the lower slant
range, as explained in chapter 3.1. On top of that, the employed antenna has a narrow HPBW of
0.23◦, further constraining the scanning area in the sky. Given these constraints, the development
of an algorithm that effectively expands the search area in the sky becomes compulsory to precisely
localize the satellite.

The CONSCAN based algorithm tackles these limitations and challenges by increasing the scanning
area by executing a conical search pattern around the estimated trajectory/position of the satellite.
The algorithm implements the desired conical patterns by utilizing the quaternion rotations, as
explained in chapter 3.2. Quaternion rotations allow a numerically stable 3D rotation process,
achieving the required conical shapes without encountering singularity problems. Furthermore,
the search algorithm employs the Orekit library on Python to be able to propagate the estimated
trajectory of the EIVE, as detailed in chapters 2.3 and 3.5.1. This trajectory estimation is essential
as it is the sole source of information regarding the satellite’s position for this system version. It
essentially defines the area in the sky that needs to be scanned by the antenna to detect and localize
the satellite.

The conducted tests proved that the scanning area was increased four times, as shown in chapter 4,
compared to only pointing the antenna at the estimated position, achieving the primary goal of this
thesis. Nonetheless, two main problems surfaced during the tests. Firstly, there is an inconsistency
in the coordinate transformation process from ECEF to HCS, demanding a rectification. This
issue might originate from a potential incompatibility between the utilized libraries. It is likely
that the model generated using the Orekit library does not perfectly align with the transformation
functions within the Pymap3D library. Secondly, a cumulative positioning error has emerged in the
antenna’s movements due to its physical limitations and iterative motion. A promising approach to
mitigate this effect involves capitalizing on the antenna’s acceleration. This issue can be addressed
effectively by ensuring that the antenna never comes to a complete halt and utilizing its existing
acceleration to minimize cumulative errors.

Solving the coordination transformation problem and fine-tuning the time synchronization method,
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as outlined in Chapter 3.4, stand as crucial steps for further refinement of the search algorithm.
However, it’s important to note that testing the implemented time synchronization method remains
pending due to the coordination transformation issue, which currently obstructs the detection of
any satellite signals. Consequently, a conclusive determination of the time synchronization’s
functionality has yet to be made.

Another significant challenge on the horizon involves securing a continuous signal from the satellite
to facilitate the planned data transfer, during which the tracking algorithm takes center stage. The
tracking algorithm relies on the MMT method, as outlined in Chapter 2.2.2, and it excels at providing
precise measurements, pinpointing the satellite’s position upon signal detection. However, it does
not fully harness this information’s potential. An error minimization method is essential to fully
capitalize on the potential of the MMT method, as discussed in chapter 5.2. A KF approach can
help the system establish the required continuous data transfer by utilizing both the trajectory
estimation of the Orekit library and the measurement of MMT system, increasing the tracking
precision. In addition to that, a combination of both the KF and the GPS based methods can help
to refine the possible time synchronization problems between the antenna and the satellite, further
improving the accuracy and stability of the entire system.

In conclusion, this research thesis achieved its principal goal by increasing the scanning area of the
antenna, allowing the system to overcome its limitations. Despite the challenges mentioned in the
previous sections, the work described in this research thesis can be considered as a starting point
for the development of a tracking system, laying the groundwork for further improvement of the
search algorithm itself and the whole tracking system.
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MAE Mean Absolute Error

71



72 List of Abbreviations

A. Conical Search Tests

39.2

39.3

39.4

39.5

39.6

39.7

39.8

74.2 74.4 74.6 74.8 75 75.2 75.4 75.6

El
ev

a�
o

n
 [

d
eg

]

Azimuth [deg]

Simula�on Test

Figure A.1.: Conical search TC1 in HCS, the conical pattern around 75◦ azimuth and 39◦ elevation

The executed conical pattern in TC1 at 75◦ azimuth and 39◦ elevation. The anticipated behavior is
achieved. However, the cumulative delay can be observed. Additionally, the two points at 74.4◦

azimuth and 39.3◦ elevation and 74.9◦ azimuth and 39.5◦ elevation demonstrates how the antenna
conducts the jump between the conical patterns. This behavior can be observed for all the conical
patterns in each TC in the conical search tests.
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